JP4809076B2 - Refrigeration system and method of operating refrigeration system - Google Patents

Refrigeration system and method of operating refrigeration system Download PDF

Info

Publication number
JP4809076B2
JP4809076B2 JP2006052076A JP2006052076A JP4809076B2 JP 4809076 B2 JP4809076 B2 JP 4809076B2 JP 2006052076 A JP2006052076 A JP 2006052076A JP 2006052076 A JP2006052076 A JP 2006052076A JP 4809076 B2 JP4809076 B2 JP 4809076B2
Authority
JP
Japan
Prior art keywords
refrigeration
refrigeration cycle
refrigerant
supercooling
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006052076A
Other languages
Japanese (ja)
Other versions
JP2007232245A (en
Inventor
航祐 田中
浩司 山下
哲也 山下
隆 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006052076A priority Critical patent/JP4809076B2/en
Publication of JP2007232245A publication Critical patent/JP2007232245A/en
Application granted granted Critical
Publication of JP4809076B2 publication Critical patent/JP4809076B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

この発明は、2つの冷凍サイクルを互いに熱交換させる二元冷凍サイクルにより冷凍機等の過冷却度を適正に制御して、能力やCOP(成績係数)を向上させる冷凍システムおよびその運転方法に関するものである。   The present invention relates to a refrigeration system that appropriately controls the degree of supercooling of a refrigerator or the like by a dual refrigeration cycle that exchanges heat between two refrigeration cycles, and improves the capacity and COP (coefficient of performance), and an operation method thereof. It is.

従来から、圧縮機、凝縮器、膨張弁及び蒸発器が順に接続されて成る冷媒回路に過冷却熱交換器を有する過冷却装置を備えた冷凍装置が知られている。この冷凍装置の冷媒回路では、圧縮機から吐出された高温高圧の冷媒が凝縮器で凝縮され、凝縮された冷媒は前記冷媒回路とは独立した冷熱源によって過冷却熱交換器で過冷却され、膨張弁で減圧され、蒸発器で蒸発した後、圧縮機に戻る冷媒循環が行われている。減圧過程はほぼ断熱変化とみなすことができるので、蒸発前の冷媒のエンタルピーは、過冷却後の冷媒のエンタルピーにほぼ等しくなる。したがって、これら冷凍サイクルを構成する蒸発器の入口側と出口側とでは、過冷却分だけ冷媒のエンタルピー差(エンタルピーの変化量)が増加する。過冷却装置を設けていない場合に比べて、室内熱交換器における冷媒の吸熱量が増加するので、冷凍装置の性能が向上する。(例えば特許文献1参照)
特開2005−233559号公報(図2、図3)
Conventionally, a refrigeration apparatus including a supercooling device having a supercooling heat exchanger in a refrigerant circuit in which a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected is known. In the refrigerant circuit of this refrigeration apparatus, the high-temperature and high-pressure refrigerant discharged from the compressor is condensed in a condenser, and the condensed refrigerant is supercooled in a supercooling heat exchanger by a cooling heat source independent of the refrigerant circuit, Refrigerant circulation is performed after the pressure is reduced by the expansion valve, evaporated by the evaporator, and then returned to the compressor. Since the decompression process can be regarded as an adiabatic change, the enthalpy of the refrigerant before evaporation is substantially equal to the enthalpy of the refrigerant after supercooling. Therefore, the enthalpy difference (the amount of change in enthalpy) of the refrigerant is increased by the amount of supercooling between the inlet side and the outlet side of the evaporator constituting the refrigeration cycle. Since the amount of heat absorbed by the refrigerant in the indoor heat exchanger is increased as compared with the case where no supercooling device is provided, the performance of the refrigeration device is improved. (For example, see Patent Document 1)
Japanese Patent Laying-Open No. 2005-233559 (FIGS. 2 and 3)

しかしながら、従来の過冷却装置では、外気条件等の冷凍装置の運転条件によっては、過冷却度を適正に制御することができず、能力やCOPを確実に向上させることができないという問題点がある。   However, the conventional supercooling device has a problem that the degree of supercooling cannot be controlled properly depending on the operating conditions of the refrigeration device such as the outside air condition, and the capacity and COP cannot be improved reliably. .

また、冷凍装置の過冷却度を得るために温度検出手段を冷凍装置の配管に配置する必要性があるため、新設時あるいはリニューアル時の施工性が悪く、特にリモートコンデンサ型の冷凍装置の場合には、冷凍装置の凝縮器を室外に設置し過冷却熱交換器を機械室内に配置する必要があり、温度検出手段を機械室と室外間で配線しなければならないという問題点がある。   Also, since it is necessary to place temperature detection means in the piping of the refrigeration system in order to obtain the degree of supercooling of the refrigeration system, workability at the time of new installation or renewal is poor, especially in the case of a remote condenser type refrigeration system However, it is necessary to install the condenser of the refrigeration apparatus outside and to dispose the supercooling heat exchanger in the machine room, and there is a problem that the temperature detection means must be wired between the machine room and the outside.

また、過冷却装置の冷却能力が過大な場合には、過冷却度が増大することで、冷凍装置の膨張弁出口の冷媒が液相になってしまい、蒸発器の伝熱性能が悪化してCOPが低下し、更に冷媒の流れがハンチングして冷凍サイクルの運転状態が不安定となってしまい、安定した運転が得られないという問題点がある。   In addition, when the cooling capacity of the supercooling device is excessive, the degree of supercooling increases and the refrigerant at the outlet of the expansion valve of the refrigeration device becomes a liquid phase, which deteriorates the heat transfer performance of the evaporator. There is a problem that the COP is lowered, the refrigerant flow is further hunted, the operation state of the refrigeration cycle becomes unstable, and a stable operation cannot be obtained.

本発明は、従来技術における上記問題を解決するためになされたものであり、冷凍装置等の過冷却度が常時適正な値になるように過冷却装置を制御するため、どのような運転条件でも安定した制御を行うことができ、省エネにすることができる冷凍システムを得ることを目的とする。   The present invention has been made to solve the above-described problems in the prior art, and controls the supercooling device so that the degree of supercooling of the refrigeration device and the like is always an appropriate value. An object is to obtain a refrigeration system that can perform stable control and can save energy.

また、本発明は、冷凍装置等の過冷却度を過冷却装置の運転状態等から推測するため、温度検出手段を機械室と室外間で配線する必要が無く、過冷却装置設置時の施工が容易な冷凍システムを得ることを目的とする。   In addition, since the present invention estimates the degree of supercooling of the refrigeration device from the operating state of the supercooling device, etc., it is not necessary to wire the temperature detection means between the machine room and the outside, and the construction when the supercooling device is installed can be performed. The purpose is to obtain an easy refrigeration system.

また、本発明は、冷凍装置等の膨張弁出口の冷媒が確実に二相状態になるように冷凍装置の運転状態に基づき過冷却装置の運転状態を制御することにより、冷凍装置等の運転状態を常時安定させることができるようになり、システムとして常時高効率な運転を行うことができるようにする冷凍システムの運転方法を得ることを目的とする。   Further, the present invention controls the operation state of the refrigeration apparatus and the like by controlling the operation state of the supercooling apparatus based on the operation state of the refrigeration apparatus so that the refrigerant at the outlet of the expansion valve of the refrigeration apparatus is surely in a two-phase state. It is an object of the present invention to obtain a method for operating a refrigeration system that makes it possible to constantly stabilize the operation of the system and to perform a highly efficient operation at all times.

本発明に係る冷凍システムは、
第一の圧縮機と第一の熱交換器と第一の絞り手段と第二の熱交換器とを有し内部に第一の冷媒を流通させる第一の冷凍サイクルと、
第二の圧縮機と第三の熱交換器と第二の絞り手段と第四の熱交換器とを有し内部に第二の冷媒を流通させる第二の冷凍サイクルと、
前記第一の冷凍サイクルの前記第一の圧縮機の低圧側の圧力を検出する第一の低圧検出手段または第一の冷凍サイクルの蒸発温度を検出する第一の蒸発温度検出手段と、
前記第一の低圧検出手段または前記第一の蒸発温度検出手段の検出値に基づき前記第一の冷凍サイクルの動作を制御する第一の制御手段と、
前記第二の冷凍サイクルの前記第二の圧縮機の低圧側の圧力を検出する第二の低圧検出手段または第二の冷凍サイクルの蒸発温度を検出する第二の蒸発温度検出手段と、
前記第二の低圧検出手段または第二の蒸発温度検出手段の検出値に基づき前記第二の冷凍サイクルの動作を制御する第二の制御手段と
を備え、
前記第四の熱交換器は、冷媒と冷媒との熱交換を行う冷媒−冷媒熱交換器であって、前記第一の冷凍サイクルの前記第一の熱交換器出口から前記第一の絞り手段入口までの流路のいずれかの位置に挿入し、前記第一の冷凍サイクルと前記第二の冷凍サイクルとが相互に熱交換可能なように構成し、
前記第一の冷凍サイクルの運転状態に基づいて、前記第二の冷凍サイクルの動作を制御するよう、前記第一の制御手段と前記第二の制御手段とを有線もしくは無線にて接続し、連携して制御できるように構成し、
前記第二の制御手段は、前記第二の冷凍サイクルの前記第二の低圧検出手段または前記第二の蒸発温度検出手段の検出値から、前記第一の冷凍サイクルの前記第四の熱交換器の出口側から前記第一の絞り手段入口までの流路のいずれかの位置の冷媒温度、または前記第一の熱交換器内を流れる二相冷媒の飽和温度と前記第一の冷凍サイクルの前記第四の熱交換器の出口側から前記第一の絞り手段入口までの流路のいずれかの位置の前記冷媒温度との温度差である過冷却度を演算する機能を備え、前記演算して求められた冷媒温度または過冷却度に基づいて前記第二の冷凍サイクルの動作を制御する。
The refrigeration system according to the present invention includes:
A first refrigeration cycle having a first compressor, a first heat exchanger, a first throttling means, and a second heat exchanger, and circulating a first refrigerant therein;
A second refrigeration cycle having a second compressor, a third heat exchanger, a second throttling means, and a fourth heat exchanger, and circulating a second refrigerant therein;
First low pressure detection means for detecting the pressure on the low pressure side of the first compressor of the first refrigeration cycle or first evaporation temperature detection means for detecting the evaporation temperature of the first refrigeration cycle;
First control means for controlling the operation of the first refrigeration cycle based on the detection value of the first low-pressure detection means or the first evaporation temperature detection means;
Second low pressure detection means for detecting the pressure on the low pressure side of the second compressor of the second refrigeration cycle or second evaporation temperature detection means for detecting the evaporation temperature of the second refrigeration cycle;
Second control means for controlling the operation of the second refrigeration cycle based on the detection value of the second low-pressure detection means or the second evaporation temperature detection means ;
With
The fourth heat exchanger is a refrigerant-refrigerant heat exchanger that performs heat exchange between the refrigerant and the refrigerant, and the first throttling means from the outlet of the first heat exchanger of the first refrigeration cycle. Inserted in any position of the flow path to the inlet, configured so that the first refrigeration cycle and the second refrigeration cycle can exchange heat with each other,
Based on the operating state of the first refrigeration cycle, the first control means and the second control means are connected in a wired or wireless manner so as to control the operation of the second refrigeration cycle. Configured to be controllable,
The second control means is configured to detect the fourth heat exchanger of the first refrigeration cycle based on a detection value of the second low pressure detection means or the second evaporation temperature detection means of the second refrigeration cycle. Refrigerant temperature at any position in the flow path from the outlet side of the first throttle means or the saturation temperature of the two-phase refrigerant flowing in the first heat exchanger and the first refrigeration cycle A function of calculating a degree of supercooling that is a temperature difference from the refrigerant temperature at any position in the flow path from the outlet side of the fourth heat exchanger to the inlet of the first throttle means; The operation of the second refrigeration cycle is controlled based on the obtained refrigerant temperature or degree of supercooling.

本発明に係る冷凍システムは、第一の冷凍サイクルの運転状態に基づいて第二の冷凍サイクルの動作を制御することができるように、第一の制御手段と第二の制御手段とを有線もしくは無線にて接続し、連携して制御できるように構成しており、第一の冷凍サイクルの過冷却度が常時適正な値になるように第二の冷凍サイクルを制御することができるので、どのような運転条件でも安定した制御を行うことができ、省エネにすることができる冷凍システムを得ることができる。   In the refrigeration system according to the present invention, the first control means and the second control means are wired or wired so that the operation of the second refrigeration cycle can be controlled based on the operating state of the first refrigeration cycle. It is configured so that it can be connected wirelessly and controlled in a coordinated manner, and the second refrigeration cycle can be controlled so that the degree of supercooling of the first refrigeration cycle is always an appropriate value. Stable control can be performed even under such operating conditions, and a refrigeration system that can save energy can be obtained.

実施の形態1.
図1は、本発明の実施の形態1を示す冷凍システムの冷媒回路図である。まずは、冷凍装置の動作について説明する。図において、1は冷蔵用または冷凍用圧縮機(第一圧縮機)、2は冷蔵用または冷凍用室外熱交換器(第一の熱交換器)、4は冷蔵用または冷凍用受液器、5a、5bは冷蔵用または冷凍用絞り手段(第一の絞り手段)、6a、6bは冷蔵用または冷凍用室内熱交換器(第二の熱交換器)であり、これらを冷媒配管13および14で接続して冷蔵用または冷凍用冷凍サイクル(第一の冷凍サイクル)20を構成しており、冷蔵用または冷凍用冷凍サイクル20内を流れる冷媒は、冷蔵用または冷凍用室外送風機3の作用によって冷蔵用または冷凍用室外熱交換器2にて室外空気に放熱し、冷蔵用または冷凍用室内送風機7a、7bの作用によって冷蔵用または冷凍用室内熱交換器6a、6bにて吸熱し室内に冷熱を供給している。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram of a refrigeration system showing Embodiment 1 of the present invention. First, the operation of the refrigeration apparatus will be described. In the figure, 1 is a compressor for refrigeration or freezing (first compressor), 2 is an outdoor heat exchanger for refrigeration or freezing (first heat exchanger), 4 is a receiver for refrigeration or freezing, Reference numerals 5a and 5b denote refrigeration or freezing throttling means (first throttling means), and 6a and 6b denote refrigeration or freezing indoor heat exchangers (second heat exchangers), which are connected to the refrigerant pipes 13 and 14 respectively. Are connected to each other to form a refrigeration or refrigeration cycle (first refrigeration cycle) 20, and the refrigerant flowing in the refrigeration or refrigeration cycle 20 is caused by the action of the outdoor fan 3 for refrigeration or refrigeration. Heat is radiated to the outdoor air by the refrigeration or freezing outdoor heat exchanger 2, and is absorbed by the refrigeration or freezing indoor heat exchangers 6a and 6b by the action of the refrigeration or freezing indoor fans 7a and 7b to cool indoors. Supply.

なお、図1においては、冷蔵用または冷凍用室外熱交換器2において冷媒が空気から吸熱する場合を示しているが、これに限るものではなく、水、冷媒、ブライン等から吸熱するように構成してもよい。また、冷蔵用または冷凍用室外送風機3はポンプ等でもよい。また、図1は室内機が2台の場合の構成例であるが3台以上の複数でもあるいは1台でもよく、それぞれの室内機の容量が大から小まで異なっていても、全てが同一容量でもよい。   1 shows a case where the refrigerant absorbs heat from the air in the refrigeration or freezing outdoor heat exchanger 2, but the present invention is not limited to this, and is configured to absorb heat from water, refrigerant, brine, or the like. May be. The outdoor fan 3 for refrigeration or freezing may be a pump or the like. In addition, FIG. 1 shows a configuration example when there are two indoor units. However, a plurality of units or three units may be used, and even if the capacity of each indoor unit varies from large to small, all of them have the same capacity. But you can.

42は室外の空気の温度を検出する室外空気温度検出手段、31は圧縮機1の吐出側の高圧圧力を検出する冷蔵用または冷凍用高圧圧力検出手段であり、室外空気温度検出手段42で検出される室外空気温度に基づき、冷蔵用または冷凍用高圧圧力が所望の範囲に収まるように制御装置(第一の制御手段)51は、冷蔵用または冷凍用室外送風機3の回転数を制御している。   42 is an outdoor air temperature detecting means for detecting the temperature of the outdoor air, 31 is a refrigeration or freezing high pressure pressure detecting means for detecting the high pressure on the discharge side of the compressor 1, and is detected by the outdoor air temperature detecting means 42. Based on the outdoor air temperature, the control device (first control means) 51 controls the number of rotations of the outdoor fan 3 for refrigeration or freezing so that the high pressure for refrigeration or freezing falls within a desired range. Yes.

32は圧縮機1の吸入側の低圧圧力を検出する冷蔵用または冷凍用低圧圧力検出手段(第一の低圧検出手段)であり、検出される低圧圧力に基づき、冷蔵用または冷凍用冷凍低圧圧力が所望の範囲に収まるように制御装置51は、冷蔵用または冷凍用圧縮機1の運転容量を制御している。   Reference numeral 32 denotes a refrigeration or refrigeration low pressure detection means (first low pressure detection means) for detecting the low pressure on the suction side of the compressor 1, and the refrigeration or refrigeration refrigeration low pressure based on the detected low pressure. The control device 51 controls the operating capacity of the refrigeration or refrigeration compressor 1 so that is within a desired range.

また、冷蔵用または冷凍用冷凍サイクル20の高圧、低圧の制御目標値は室外空気温度検出手段42、冷蔵用または冷凍用高圧圧力検出手段31、冷蔵用または冷凍用低圧圧力検出手段32の測定値に基づいて、制御装置51の演算部62にて演算され、記憶部61に記憶されている。   The control target values for the high pressure and low pressure of the refrigeration or freezing refrigeration cycle 20 are the measured values of the outdoor air temperature detection means 42, the refrigeration or freezing high pressure detection means 31, and the refrigeration or freezing low pressure detection means 32. Is calculated by the calculation unit 62 of the control device 51 and stored in the storage unit 61.

次に、過冷却装置の構成および動作について説明する。過冷却装置は、過冷却用圧縮機(第二の圧縮機)8と、過冷却用室外熱交換器(第三の熱交換器)9と、過冷却用絞り手段(第二の絞り手段)11と、過冷却用熱交換器(第四の熱交換器)12とが、冷媒配管で接続され、過冷却用冷凍サイクル(第二の冷凍サイクル)21を構成している。過冷却用冷凍サイクル21内を流れる冷媒は、過冷却用室外送風機10の作用によって過冷却用室外熱交換器9にて室外空気に放熱し、過冷却用熱交換器12にて冷凍用冷凍サイクル20内を流れる冷媒から吸熱し、冷凍用冷凍サイクル20内を流れる冷媒を冷却して過冷却度をつける作用をする。   Next, the configuration and operation of the supercooling device will be described. The supercooling device includes a supercooling compressor (second compressor) 8, a supercooling outdoor heat exchanger (third heat exchanger) 9, and a supercooling throttle means (second throttle means). 11 and a supercooling heat exchanger (fourth heat exchanger) 12 are connected by a refrigerant pipe to constitute a supercooling refrigeration cycle (second refrigeration cycle) 21. The refrigerant flowing in the supercooling refrigeration cycle 21 radiates heat to the outdoor air in the supercooling outdoor heat exchanger 9 by the action of the supercooling outdoor fan 10, and the refrigeration refrigeration cycle in the supercooling heat exchanger 12. The refrigerant that absorbs heat from the refrigerant flowing in the refrigerant 20 cools the refrigerant that flows in the refrigeration cycle 20 to give a degree of supercooling.

なお、過冷却用冷凍サイクル21と前出の冷蔵用または冷凍用冷凍サイクル20とはそれぞれ独立した冷媒回路になっており、内部を流れる冷媒は同じ種類のものでもよいし、別の種類のものでも構わないが、それぞれ混ざることなく過冷却用熱交換器12にて互いに熱交換をして流れている。過冷却用絞り手段11は、毛細管等の安価な冷媒流量調節手段、あるいは電子膨張弁による緻密な流量制御手段のいずれを使用してもよい。   The subcooling refrigeration cycle 21 and the above-described refrigeration or refrigeration cycle 20 are independent refrigerant circuits, and the refrigerant flowing through them may be of the same type or of different types. However, the heat is exchanged in the subcooling heat exchanger 12 without being mixed. The supercooling throttling means 11 may use either an inexpensive refrigerant flow rate control means such as a capillary tube or a precise flow rate control means using an electronic expansion valve.

なお、図1においては、過冷却用室外熱交換器9において冷媒が空気から吸熱する場合を示しているが、これに限るものではなく、水、冷媒、ブライン等から吸熱するように構成してもよい。また、過冷却用室外送風機10はポンプ等でもよい。   FIG. 1 shows a case where the refrigerant absorbs heat from the air in the subcooling outdoor heat exchanger 9. However, the present invention is not limited to this, and is configured to absorb heat from water, refrigerant, brine, or the like. Also good. The subcooling outdoor fan 10 may be a pump or the like.

43は室外の空気の温度を検出する室外空気温度検出手段、33は圧縮機8の吐出側の高圧圧力を検出する過冷却用高圧圧力検出手段であり、室外空気温度検出手段43で検出される室外空気温度に基づき、制御装置(第二の制御手段)52は、過冷却用高圧圧力が所望の範囲に収まるように過冷却用室外送風機10の回転数を制御している。   43 is an outdoor air temperature detecting means for detecting the temperature of outdoor air, and 33 is a supercooling high pressure detecting means for detecting the high pressure on the discharge side of the compressor 8, which is detected by the outdoor air temperature detecting means 43. Based on the outdoor air temperature, the control device (second control means) 52 controls the rotation speed of the subcooling outdoor blower 10 so that the high pressure for subcooling falls within a desired range.

34は圧縮機8の吸入側の低圧圧力を検出する過冷却用低圧圧力検出手段(第二の低圧検出手段)であり、検出される低圧圧力に基づき、制御装置52は、過冷却用低圧圧力を所望の範囲に収まるように過冷却用圧縮機8の運転容量を制御している。   34 is a subcooling low pressure detecting means (second low pressure detecting means) for detecting the low pressure on the suction side of the compressor 8, and based on the detected low pressure, the controller 52 controls the subcooling low pressure. Is controlled so as to be within a desired range.

また、過冷却用冷凍サイクル21の高圧、低圧の制御目標値は室外空気温度検出手段43、過冷却用高圧圧力検出手段33、過冷却用低圧圧力検出手段34の測定値に基づいて、制御装置51の演算部64にて演算され、記憶部63に記憶されている。   The control target values for the high pressure and low pressure of the supercooling refrigeration cycle 21 are based on the measured values of the outdoor air temperature detecting means 43, the supercooling high pressure pressure detecting means 33, and the supercooling low pressure pressure detecting means 34. 51 are calculated by the calculation unit 64 and stored in the storage unit 63.

なお、図1においては、過冷却用熱交換器12の冷蔵用または冷凍用冷凍サイクル20側の出口近傍には過冷却冷媒温度検出手段(冷媒温度検出手段)41が設置されている状態が図示されているが、ここでの説明においては過冷却冷媒温度検出手段(冷媒温度検出手段)41が設置されておらず、過冷却冷媒温度は後述のように演算処理等により求めるものとする。また、過冷却用熱交換器12の過冷却用冷凍サイクル21側の出口近傍には過冷却用熱交換器出口温度検出手段44が設置されている。この温度検出手段44は、冷媒配管に接するかあるいは冷媒配管内に挿入され、過冷却用冷凍サイクル21内の冷媒温度を検出しており、制御装置52は、過冷却用熱交換器12の冷蔵用または冷凍用冷凍サイクル20側の出口側の過冷却冷媒温度と、温度検出手段44の出力とに基づいて過冷却用絞り手段11の絞り量を調節して過冷却用熱交換器12に流入する冷媒の流量を制御することで、冷蔵用および冷凍用冷凍サイクル20の過冷却用熱交換器12での熱交換量を制御している。   FIG. 1 shows a state in which a supercooling refrigerant temperature detection means (refrigerant temperature detection means) 41 is installed in the vicinity of the outlet of the supercooling heat exchanger 12 on the refrigeration or refrigeration cycle 20 side. However, in the description here, the supercooling refrigerant temperature detection means (refrigerant temperature detection means) 41 is not installed, and the supercooling refrigerant temperature is obtained by arithmetic processing or the like as described later. A supercooling heat exchanger outlet temperature detecting means 44 is installed in the vicinity of the outlet of the supercooling heat exchanger 12 on the supercooling refrigeration cycle 21 side. The temperature detecting means 44 is in contact with or inserted into the refrigerant pipe and detects the refrigerant temperature in the supercooling refrigeration cycle 21, and the control device 52 refrigerates the supercooling heat exchanger 12. On the basis of the temperature of the supercooling refrigerant on the outlet side of the refrigerating cycle 20 for refrigerating or refrigerating and the output of the temperature detecting means 44, the amount of throttling of the subcooling throttling means 11 is adjusted and flows into the supercooling heat exchanger 12 The amount of heat exchange in the supercooling heat exchanger 12 of the refrigeration and refrigeration cycle 20 is controlled by controlling the flow rate of the refrigerant.

図2は、冷蔵用または冷凍用冷凍サイクル20と、過冷却用冷凍サイクル21の冷凍サイクルを、p−h線図中に表した図である。冷蔵用または冷凍用冷凍サイクル20において上記過冷却用熱交換器12での過冷却の作用がある場合のp−h線図を破線で示し、上記過冷却用熱交換器12での過冷却の作用がない場合のp−h線図を実線で示す。図2から分かるように、過冷却度が増加することによって、冷蔵用または冷凍用絞り手段5a、5b入口の冷媒の温度がTr1からTr2に低下し、冷蔵用または冷凍用室内熱交換器6a、6bの入口側と出口側ではこの温度差分だけ冷媒のエンタルピー差Δhが増加する。冷蔵用または冷凍用冷凍サイクル20の過冷却度は、冷蔵用または冷凍用高圧圧力検出手段31から求められる凝縮温度から過冷却用熱交換器出口温度検出手段44の温度を減じて求めることができる。   FIG. 2 is a diagram illustrating the refrigeration cycle of the refrigeration cycle 20 for refrigeration or refrigeration and the refrigeration cycle 21 for supercooling in a ph diagram. In the refrigeration or freezing refrigeration cycle 20, a ph diagram in the case where there is a supercooling action in the supercooling heat exchanger 12 is indicated by a broken line, and the supercooling in the supercooling heat exchanger 12 is The ph diagram when there is no effect is shown by a solid line. As can be seen from FIG. 2, as the degree of supercooling increases, the temperature of the refrigerant at the inlet of the refrigeration or refrigeration throttle means 5a, 5b decreases from Tr1 to Tr2, and the refrigeration or refrigeration indoor heat exchanger 6a, The enthalpy difference Δh of the refrigerant increases by this temperature difference between the inlet side and the outlet side of 6b. The degree of supercooling of the refrigeration or refrigeration cycle 20 can be obtained by subtracting the temperature of the subcooling heat exchanger outlet temperature detection means 44 from the condensation temperature obtained from the refrigeration or refrigeration high pressure detection means 31. .

この冷蔵用または冷凍用冷凍サイクル20では、過冷却用冷凍サイクル21が設置されていない場合に比べて、冷蔵用または冷凍用室内熱交換器6a、6bにおける冷媒の吸熱量が増加、すなわち、冷蔵用または冷凍用冷凍サイクル20の冷却能力が向上する。   In this refrigeration or freezing refrigeration cycle 20, the amount of heat absorbed by the refrigerant in the refrigeration or freezing indoor heat exchangers 6a and 6b is increased, that is, refrigeration compared to the case where the supercooling refrigeration cycle 21 is not installed. The cooling capacity of the refrigeration cycle 20 for use or refrigeration is improved.

また、冷蔵用または冷凍用冷凍サイクル20の冷却能力が向上する分、冷凍サイクルにおける冷媒の循環量を低減することができるので、冷媒の循環に用いられる動力が少なくて済む。このため、過冷却用冷凍サイクル21を設けると、過冷却用冷凍サイクル21を設けない場合に比べて冷蔵用または冷凍用冷凍サイクル20のCOPが高くなる。   Further, since the cooling capacity of the refrigeration cycle can be reduced by reducing the cooling capacity of the refrigeration or refrigeration cycle 20, the power used for circulating the refrigerant can be reduced. For this reason, when the supercooling refrigeration cycle 21 is provided, the COP of the refrigeration or refrigeration cycle 20 is higher than when the supercooling refrigeration cycle 21 is not provided.

また、過冷却用冷凍サイクル21を設けることで冷媒循環量が減り配管での圧損が減るため、冷蔵用または冷凍用冷凍サイクル20の配管サイズを小さくすることができ施工性が向上する。また、配管サイズが小さくなるため配管での熱損失が低減され性能が向上し、さらに充填冷媒量も減らすことができるため、製品コストが安価になる。   In addition, since the refrigerant circulation amount is reduced and the pressure loss in the piping is reduced by providing the supercooling refrigeration cycle 21, the piping size of the refrigeration or refrigeration cycle 20 can be reduced, and the workability is improved. In addition, since the pipe size is reduced, heat loss in the pipe is reduced, the performance is improved, and the amount of charged refrigerant can be reduced, so that the product cost is reduced.

さらに、図2に示される冷蔵用または冷凍用冷凍サイクル20の蒸発温度Ter0が低いほど、圧縮機吸入の冷媒の密度が小さいため、冷媒循環量が減り、また、圧縮比が増加することで圧縮機入力も増加するので、冷蔵用または冷凍用冷凍サイクル20のCOPは低くなる。過冷却用冷凍サイクル21の蒸発温度Ter1はTer0よりも高いため、過冷却用冷凍サイクル21で過冷却をつけた運転の方が冷凍サイクルシステム全体のCOPが高くなる。   Furthermore, the lower the evaporation temperature Ter0 of the refrigeration or refrigeration cycle 20 shown in FIG. 2, the smaller the density of refrigerant sucked by the compressor, so that the refrigerant circulation amount decreases and the compression ratio increases and compression occurs. Since the machine input also increases, the COP of the refrigeration cycle 20 for refrigeration or refrigeration decreases. Since the evaporation temperature Ter1 of the subcooling refrigeration cycle 21 is higher than Ter0, the operation with supercooling in the subcooling refrigeration cycle 21 increases the COP of the entire refrigeration cycle system.

過冷却用冷凍サイクル21の冷凍能力は冷蔵用または冷凍用冷凍サイクル20に必要な能力増強分の過冷却をつけられる容量であればよいため、過冷却用冷凍サイクル21の圧縮機8の容量は冷蔵用または冷凍用冷凍サイクル20で使用する圧縮機1よりも小さいもので十分であり、冷蔵用または冷凍用冷凍サイクル20の圧縮機1の容量に対して、例えば20〜30%程度又はそれ以下の容量でよい。   Since the refrigerating capacity of the subcooling refrigeration cycle 21 may be any capacity that can provide supercooling for the capacity enhancement necessary for the refrigeration or freezing refrigeration cycle 20, the capacity of the compressor 8 of the subcooling refrigeration cycle 21 is A size smaller than the compressor 1 used in the refrigeration or freezing refrigeration cycle 20 is sufficient, and is, for example, about 20 to 30% or less with respect to the capacity of the compressor 1 of the refrigeration or freezing refrigeration cycle 20. Capacity.

また、冷蔵用または冷凍用冷凍サイクル20において冷媒配管13と過冷却用熱交換器12とが、直列に設けられているので、延長配管の途中に過冷却用熱交換器を設置することができ、施工が容易である。また、冷蔵用または冷凍用冷凍サイクル20と過冷却用冷凍サイクル21との冷媒回路が独立しているためトラブル発生時も他方の冷媒回路に影響を与えることなく、信頼性の高いシステムが実現できると共に、冷媒回路も複雑ではなく独立しているためメンテナンスが容易であり、メンテナンスコストも低減される。   Further, since the refrigerant pipe 13 and the supercooling heat exchanger 12 are provided in series in the refrigeration or refrigeration cycle 20, the supercooling heat exchanger can be installed in the middle of the extension pipe. Easy to install. In addition, since the refrigerant circuit of the refrigeration or refrigeration cycle 20 and the subcooling refrigeration cycle 21 are independent, a highly reliable system can be realized without affecting the other refrigerant circuit even when trouble occurs. At the same time, since the refrigerant circuit is not complicated and independent, maintenance is easy, and maintenance costs are reduced.

また、通常の冷蔵用または冷凍用装置を構成する冷蔵用または冷凍用冷凍サイクル20とは別に過冷却用冷凍サイクル21を設けるだけでシステムが構成できるため、既設の冷蔵用または冷凍用装置をそのまま利用して、本発明にかかる冷凍システムを容易に構築することができる。   In addition, since the system can be configured only by providing the supercooling refrigeration cycle 21 separately from the refrigeration or refrigeration cycle 20 constituting the normal refrigeration or refrigeration apparatus, the existing refrigeration or refrigeration apparatus can be used as it is. By utilizing this, the refrigeration system according to the present invention can be easily constructed.

また、制御装置51と制御装置52とが、通信線53を介して相互の情報をやりとりすることができるので連携して制御を行うことが可能となるため、より高度な、より安定性の増した、省エネシステムが構築できる。   In addition, since the control device 51 and the control device 52 can exchange information with each other via the communication line 53, it is possible to perform control in cooperation with each other. An energy saving system can be constructed.

例えば、制御装置51から制御装置52へ冷蔵用または冷凍用圧縮機1のON/OFF状態を通信し、それに合わせて過冷却用圧縮機8のON/OFFタイミングを制御してやれば、過冷却用圧縮機8の無駄な運転がなくなるため、省エネとなる。また、冷蔵用または冷凍用圧縮機1の起動後、冷蔵用または冷凍用冷凍サイクル20の凝縮器2の出口冷媒が完全に液冷媒になるまで待ってから過冷却用圧縮機8を起動させることにより、過冷却用冷凍サイクル21の冷媒が過冷却用熱交換器12を通過する際に、冷蔵用または冷凍用冷凍サイクル20の熱を十分吸熱でき、蒸発することができるため、過冷却用冷凍サイクル21が安定して動作することができるようになり、システムの信頼性が増し、確実に省エネにすることができる。   For example, if the ON / OFF state of the refrigeration or refrigeration compressor 1 is communicated from the control device 51 to the control device 52 and the ON / OFF timing of the subcooling compressor 8 is controlled accordingly, the subcooling compression is performed. Since there is no useless operation of the machine 8, energy is saved. In addition, after the refrigeration or refrigeration compressor 1 is started, the subcooling compressor 8 is started after waiting until the outlet refrigerant of the condenser 2 of the refrigeration or refrigeration cycle 20 becomes completely liquid refrigerant. Thus, when the refrigerant of the supercooling refrigeration cycle 21 passes through the supercooling heat exchanger 12, the heat of the refrigeration or freezing refrigeration cycle 20 can be sufficiently absorbed and evaporated, so that the supercooling refrigeration The cycle 21 can operate stably, the reliability of the system is increased, and energy saving can be ensured.

また、過冷却用熱交換器12では、過冷却用冷凍サイクル21の蒸発温度と冷蔵用または冷凍用冷凍サイクル20の液冷媒とが熱交換を行っており、過冷却用熱交換器12の性能から、冷蔵用または冷凍用冷凍サイクル20の過冷却用熱交換器12出口の過冷却冷媒温度と過冷却用冷凍サイクル21の蒸発温度との温度差を、ある程度の精度で推測できることが分かっている。例えば、ある組み合わせにおいて、冷凍サイクル20が冷蔵用の場合には、冷凍サイクル20の過冷却用熱交換器12出口の過冷却冷媒温度は過冷却用冷凍サイクル21の蒸発温度に5℃を加えた値、冷凍サイクル20が冷凍用の場合は、冷凍サイクル20の過冷却用熱交換器12出口の過冷却冷媒温度は過冷却用冷凍サイクル21の蒸発温度に0℃を加えた値で推測できることがシミュレーションにより確認されている。従って、過冷却冷媒温度を一定値に制御する場合には、制御装置51と制御装置52とはON/OFF情報の伝達のみで動作させることができる。環境条件の変化その他の影響をより詳細に考慮し更に高性能化を図る場合には、制御装置51から制御装置52へ過冷却用冷凍サイクル21の低圧制御目標値または蒸発温度制御目標値(または過冷却度の目標値)を通信することで、冷蔵用または冷凍用冷凍サイクル20の過冷却用熱交換器12出口の過冷却冷媒温度を常時最適値に制御することができるようになり、省エネ効果が高くなる。また、その過冷却冷媒温度を制御する際には、制御装置52が過冷却用冷凍サイクル21の過冷却用低圧圧力検出手段34の出力または過冷却用冷凍サイクル21の蒸発温度から、冷蔵用または冷凍用冷凍サイクル20の過冷却用熱交換器12出口の過冷却冷媒温度又は冷蔵用または冷凍用冷凍サイクル20の過冷却度を求めて、過冷却用熱交換器12出口の過冷却冷媒温度を最適値に制御することにより精度の高い制御が可能になる。   Further, in the supercooling heat exchanger 12, heat is exchanged between the evaporation temperature of the supercooling refrigeration cycle 21 and the liquid refrigerant of the refrigeration or refrigeration cycle 20, and the performance of the supercooling heat exchanger 12 is improved. From this, it is known that the temperature difference between the supercooling refrigerant temperature at the outlet of the supercooling heat exchanger 12 of the refrigeration or refrigeration cycle 20 and the evaporation temperature of the supercooling refrigeration cycle 21 can be estimated with a certain degree of accuracy. . For example, in a certain combination, when the refrigeration cycle 20 is for refrigeration, the supercooling refrigerant temperature at the outlet of the supercooling heat exchanger 12 of the refrigeration cycle 20 is 5 ° C. added to the evaporation temperature of the supercooling refrigeration cycle 21. When the refrigeration cycle 20 is for refrigeration, the supercooling refrigerant temperature at the outlet of the supercooling heat exchanger 12 of the refrigeration cycle 20 can be estimated by adding 0 ° C. to the evaporation temperature of the supercooling refrigeration cycle 21. It has been confirmed by simulation. Therefore, when the supercooled refrigerant temperature is controlled to a constant value, the control device 51 and the control device 52 can be operated only by transmitting ON / OFF information. When considering further changes in environmental conditions and other effects in order to achieve higher performance, the control device 51 transfers to the control device 52 a low pressure control target value or an evaporation temperature control target value (or an evaporation temperature control target value) of the supercooling refrigeration cycle 21 (or By communicating the target value of the degree of supercooling), the supercooled refrigerant temperature at the outlet of the supercooling heat exchanger 12 of the refrigeration cycle 20 for refrigeration or refrigeration can be controlled to the optimum value at all times, saving energy. Increases effectiveness. Further, when the supercooling refrigerant temperature is controlled, the control device 52 uses the output of the supercooling low-pressure pressure detection means 34 of the supercooling refrigeration cycle 21 or the evaporation temperature of the supercooling refrigeration cycle 21 for refrigeration or The supercooling refrigerant temperature at the outlet of the supercooling heat exchanger 12 of the refrigeration cycle 20 or the degree of supercooling of the refrigeration or freezing refrigeration cycle 20 is obtained, and the supercooling refrigerant temperature at the outlet of the supercooling heat exchanger 12 is determined. By controlling to the optimum value, highly accurate control is possible.

また、制御装置51から制御装置52へ、冷蔵用または冷凍用冷凍サイクル20の過冷却冷媒温度の制御目標値または過冷却度の制御目標値を通信することで、冷蔵用または冷凍用冷凍サイクル20の冷蔵用または冷凍用室内熱交換器6a、6bの入口の冷媒が確実に二相となるように、過冷却用冷凍サイクル21の圧縮機8の運転容量を制御することができる。これにより、冷蔵用または冷凍用冷凍サイクル20の安定した運転が行えると共に、熱交換器全域で熱伝達率が高くなり、冷却能力とCOPを確実に向上できる。また、過冷却冷媒温度の測定値または過冷却冷媒温度の制御目標値の通信値をトリガーとして過冷却用圧縮機8をON/OFFさせることも可能である。   Further, the control target value of the supercooling refrigerant temperature or the control target value of the degree of supercooling of the refrigeration or refrigeration cycle 20 is communicated from the control device 51 to the control device 52, so that the refrigeration or refrigeration cycle 20 is stored. The operating capacity of the compressor 8 of the subcooling refrigeration cycle 21 can be controlled so that the refrigerant at the inlet of the refrigeration or freezing indoor heat exchangers 6a and 6b has two phases. As a result, the refrigeration or refrigeration cycle 20 can be stably operated, and the heat transfer coefficient can be increased throughout the heat exchanger, so that the cooling capacity and the COP can be reliably improved. It is also possible to turn on / off the supercooling compressor 8 using a measured value of the supercooling refrigerant temperature or a communication value of the control target value of the supercooling refrigerant temperature as a trigger.

次に、適正な過冷却度の制御方法について冷蔵用または冷凍用冷凍サイクル制御フローチャート図3および過冷却用冷凍サイクル制御フローチャート図4を用いて説明する。   Next, an appropriate method for controlling the degree of supercooling will be described with reference to a refrigeration or refrigeration cycle control flowchart of FIG. 3 and a subcooling refrigeration cycle control flowchart of FIG.

図3は、冷蔵用または冷凍用制御装置51が行っている制御動作である。まず、冷蔵用または冷凍用冷凍サイクル20の通常運転時の目標低圧圧力Psrmを読み込む(ST101)。次に、低圧圧力検出手段32によりPsrを測定し(ST102)、低圧圧力測定値Psrが目標低圧圧力Psrmに近づくように、圧縮機1の運転容量を制御する(ST103)。   FIG. 3 shows a control operation performed by the control device 51 for refrigeration or freezing. First, the target low pressure Psrm during normal operation of the refrigeration or refrigeration cycle 20 is read (ST101). Next, Psr is measured by the low pressure detection means 32 (ST102), and the operating capacity of the compressor 1 is controlled so that the low pressure measurement value Psr approaches the target low pressure Psrm (ST103).

次に、過冷却冷媒温度Tr2の制御目標温度Tr2mを低圧圧力目標値Psrmより演算する(ST104)。そして、冷蔵用または冷凍用室内熱交換器6a、6b入口の冷媒が二相になるように、過冷却冷媒温度Tr2の制御目標温度Tr2mを設定、制御することにより、安定した運転が行えると共に、熱交換器全域で熱伝達率が高くなり、冷却能力とCOPを確実に向上できる。   Next, the control target temperature Tr2m of the subcooling refrigerant temperature Tr2 is calculated from the low pressure target value Psrm (ST104). And, by setting and controlling the control target temperature Tr2m of the supercooling refrigerant temperature Tr2 so that the refrigerant at the inlet of the refrigeration or freezing indoor heat exchanger 6a, 6b becomes two-phase, stable operation can be performed, The heat transfer coefficient is increased throughout the heat exchanger, and the cooling capacity and COP can be reliably improved.

実際には、冷蔵用または冷凍用冷凍サイクル20の絞り手段5a、5b出口から圧縮機1の吸入に至るまでに圧損があるため、これを考慮して、過冷却冷媒温度の目標値Tr2mを設定することで、確実に二相冷媒で冷蔵用または冷凍用室内熱交換器6a、6bに流入させることができ、熱交換効率が向上する。   Actually, there is a pressure loss from the outlet of the throttle means 5a, 5b of the refrigeration or freezing refrigeration cycle 20 to the suction of the compressor 1, so the target value Tr2m of the supercooled refrigerant temperature is set taking this into consideration. By doing so, the two-phase refrigerant can surely flow into the refrigeration or freezing indoor heat exchangers 6a and 6b, and the heat exchange efficiency is improved.

また、冷蔵用または冷凍サイクル20の冷媒が非共沸混合冷媒の場合には、二相では同じ圧力であっても乾き度によって温度が異なるため、非共沸混合冷媒の特性の違いによる温度差を考慮して過冷却冷媒温度の目標値Tr2mを設定することで、確実に二相冷媒で冷蔵用または冷凍用室内熱交換器6a、6bに流入させることができ、熱交換効率が向上する。   Further, when the refrigerant for refrigeration or the refrigeration cycle 20 is a non-azeotropic refrigerant mixture, the temperature varies depending on the dryness even if the two-phase refrigerant has the same pressure. By setting the target value Tr2m of the supercooled refrigerant temperature in consideration of the above, the two-phase refrigerant can surely flow into the refrigeration or refrigeration indoor heat exchangers 6a and 6b, and the heat exchange efficiency is improved.

冷蔵用または冷凍用冷凍サイクル20の冷却能力に対して冷却負荷が小さい場合には、発停によるエネルギー損失が増加する。そこで、冷蔵用または冷凍用冷凍サイクル20の運転状態より冷却負荷に対する冷却能力を推測し、過冷却用冷凍サイクル21の稼動要求レベルを設定し、そのレベルに応じて、過冷却用冷凍サイクル21の過冷却冷媒温度の目標値Tr2m(過冷却度の目標値)を補正する(ST105)。稼動要求レベルとは過冷却用冷凍サイクル21の稼動の必要性を表す指標であり、冷却負荷に対して冷却能力が過剰な場合には、過冷却用冷凍サイクル21を稼動する必要性がなく、稼動要求レベルが低い状態を示す。過冷却要求レベルが小さい場合には、過冷却度の目標値を上げ、冷却能力を小さくすることで、冷蔵用または冷凍用冷凍サイクル20のON/OFFによるエネルギー損失が低減され、冷却対象の庫内温度が安定する。稼動要求レベルは、例えば、冷蔵用または冷凍用圧縮機1の運転率や冷蔵用または冷凍用室外空気温度検出手段42もしくは過冷却用室外空気温度検出手段43より測定される外気温度などから冷却負荷を推測して決定する。なお、稼動要求レベルは段階的に変えてもよいし、リニア(直線的)に変えてもよい。   When the cooling load is small with respect to the cooling capacity of the refrigeration or refrigeration cycle 20, energy loss due to start / stop increases. Therefore, the cooling capacity with respect to the cooling load is estimated from the operating state of the refrigeration or refrigeration cycle 20, and the operation request level of the subcooling refrigeration cycle 21 is set. The target value Tr2m of the supercooling refrigerant temperature (target value of the supercooling degree) is corrected (ST105). The operation request level is an index indicating the necessity of operation of the supercooling refrigeration cycle 21. When the cooling capacity is excessive with respect to the cooling load, there is no need to operate the supercooling refrigeration cycle 21, Indicates that the operation request level is low. When the supercooling request level is small, the target value of the supercooling degree is increased and the cooling capacity is reduced, so that energy loss due to ON / OFF of the refrigeration cycle 20 for refrigeration or refrigeration is reduced, and the warehouse to be cooled is stored. The internal temperature is stable. The required operation level is determined by the cooling load based on, for example, the operating rate of the refrigeration or refrigeration compressor 1, the outdoor air temperature measured by the refrigeration or freezing outdoor air temperature detection means 42, or the subcooling outdoor air temperature detection means 43. Guess and decide. The operation request level may be changed step by step or may be changed linearly (linearly).

また、冷蔵用または冷凍用冷凍サイクル20において、過冷却用熱交換器12出口から冷蔵用または冷凍用絞り手段5a、5b入口に至る配管が周囲空気と断熱されていないかあるいは断熱が十分でない場合には、過冷却冷媒温度Tr2が0℃以下になると配管が凍結する。配管の表面が凍結すると、配管の伝熱面積が増加するため熱損失が増加し性能が低下し、更に氷が溶けたときに機械室や室内に水が落ち機器信頼性上の問題が生じる。このため、過冷却冷媒温度の目標値Tr2mを0℃以上とし、配管の凍結を防止することで過冷却後の配管の熱損失による性能低下を防ぎ信頼性の高いシステムが構築できる。もちろん、過冷却用熱交換器12を冷蔵用または冷凍用絞り手段5a、5bに出来るだけ近いところに配置することで過冷却後の配管での熱損失を最小に抑えることが可能である。   Also, in the refrigeration or refrigeration cycle 20, when the piping from the outlet of the supercooling heat exchanger 12 to the inlet of the refrigeration or refrigeration throttle means 5a, 5b is not insulated from the surrounding air or is not sufficiently insulated When the supercooled refrigerant temperature Tr2 becomes 0 ° C. or lower, the pipe freezes. If the surface of the pipe freezes, the heat transfer area of the pipe increases, resulting in an increase in heat loss and a decrease in performance. Further, when ice melts, water falls into the machine room and the room, causing problems in equipment reliability. For this reason, by setting the target value Tr2m of the supercooling refrigerant temperature to 0 ° C. or higher and preventing the pipe from freezing, it is possible to construct a highly reliable system by preventing performance degradation due to heat loss of the pipe after supercooling. Of course, by disposing the supercooling heat exchanger 12 as close as possible to the refrigeration or refrigeration squeezing means 5a, 5b, it is possible to minimize heat loss in the pipe after supercooling.

次に、冷媒が過冷却されると冷蔵用または冷凍用室内熱交換器6a、6bでの冷却能力が大きくなるが、冷却負荷は変わらないため、そのままにしておくと冷蔵用または冷凍用圧縮機1のON/OFFが発生してしまい、効率が悪くなってしまう。そこで、冷蔵用または冷凍用圧縮機1の制御目標である目標低圧圧力Psrmを過冷却度に応じて変化させる(ST106)。例えば、過冷却度が5℃以下、5〜10℃、10〜15℃、15℃以上などの区分にし、それぞれの目標低圧圧力Psrmを変化させる。このようにすることで冷凍能力が増加し圧縮機1のON/OFFが増えるのを防止するとともに、低圧制御目標が高くなるため圧縮機1の周波数も低下し、より効率の高い、エネルギーの少ない運転が可能になる。なお、目標低圧圧力Psrmは段階的に変えてもよいし、低圧制御目標値の増加量を、リニアに過冷却度から直接演算してもよい。   Next, when the refrigerant is supercooled, the cooling capacity in the refrigeration or freezing indoor heat exchangers 6a and 6b increases, but the cooling load does not change. 1 will be turned ON / OFF, and the efficiency will deteriorate. Therefore, the target low pressure Psrm, which is the control target of the refrigeration or refrigeration compressor 1, is changed according to the degree of supercooling (ST106). For example, the degree of supercooling is 5 ° C. or lower, 5 to 10 ° C., 10 to 15 ° C., 15 ° C. or higher, and the target low pressure Psrm is changed. By doing so, the refrigeration capacity is increased and ON / OFF of the compressor 1 is prevented from being increased, and the low-pressure control target is increased, so that the frequency of the compressor 1 is also lowered, and the efficiency is high and the energy is low. Driving becomes possible. Note that the target low pressure Psrm may be changed stepwise, or the amount of increase in the low pressure control target value may be calculated directly from the degree of supercooling.

なお、冷蔵用または冷凍用冷凍サイクル20の過冷却度は、冷蔵用または冷凍用高圧圧力検出手段31の出力から演算した凝縮温度と、冷蔵用または冷凍用冷凍サイクル20の熱交換器12の出口温度である過冷却冷媒温度との温度差で求められる。冷蔵用または冷凍用高圧圧力検出手段31の出力を演算して凝縮温度を求める代わりに、冷蔵用または冷凍用室外熱交換器2の配管に温度検出手段(図示せず)を設け、凝縮温度を直接検出できるようにしてもよい。   Note that the degree of supercooling of the refrigeration or refrigeration cycle 20 depends on the condensation temperature calculated from the output of the refrigeration or refrigeration high pressure detection means 31 and the outlet of the heat exchanger 12 of the refrigeration or refrigeration cycle 20. It is obtained from the temperature difference from the supercooled refrigerant temperature, which is the temperature. Instead of calculating the condensing temperature by calculating the output of the refrigeration or refrigeration high pressure detection means 31, a temperature detection means (not shown) is provided in the piping of the refrigeration or refrigeration outdoor heat exchanger 2, and the condensation temperature is determined. It may be possible to detect directly.

なお、低圧圧力と圧縮機周波数の関係や凝縮器の熱交換性能を予め記憶しておけば、精度は悪いが過冷却度をある程度推測することができ、冷蔵用または冷凍用高圧圧力検出手段31が無くても同様のシステムを構成でき、同様の効果を奏する。また、過冷却用冷凍サイクル21に関しても同様のことが言え、高圧圧力検出手段33がなくても同様のシステムを構成でき、同様の効果を奏する。   If the relationship between the low pressure and the compressor frequency and the heat exchange performance of the condenser are stored in advance, the degree of supercooling can be estimated to some extent although the accuracy is low, and the high pressure detection means 31 for refrigeration or freezing is used. Even if there is no, a similar system can be configured and the same effect can be obtained. The same can be said for the supercooling refrigeration cycle 21, and the same system can be configured without the high-pressure detecting means 33, and the same effect can be obtained.

また、冷蔵用または冷凍用冷凍サイクル20の蒸発温度を検出する手段(第一の蒸発温度検出手段)は、冷蔵用または冷凍用低圧圧力検出手段32から演算して求めるものとしたが、冷蔵用または冷凍用室内熱交換器6a、6bの配管に温度検出手段(図示せず)を取り付け、直接蒸発温度を検出できるようにしてもよい。   The means for detecting the evaporating temperature of the refrigeration or refrigeration cycle 20 (first evaporating temperature detecting means) is calculated from the refrigeration or refrigeration low-pressure pressure detecting means 32. Alternatively, temperature detecting means (not shown) may be attached to the piping of the freezing indoor heat exchangers 6a and 6b so that the evaporation temperature can be detected directly.

図4は、過冷却用制御装置52が行っている制御動作である。冷蔵用または冷凍用冷凍サイクル制御フローチャートで演算された過冷却冷媒温度の制御目標値Tr2m(または過冷却度の目標値)を読み込む(ST201)。この値は冷蔵用または冷凍用制御装置から通信線53を介して渡される。過冷却冷媒温度Tr2が制御目標値Tr2m(または過冷却度の目標値)に近づくように過冷却用圧縮機8の運転容量を制御する(ST202)。この過冷却冷媒温度Tr2は、上述のように、過冷却用冷凍サイクル21の過冷却用低圧圧力検出手段34の出力または過冷却用冷凍サイクル21の蒸発温度から得られる。   FIG. 4 shows a control operation performed by the supercooling control device 52. The control target value Tr2m (or the target value of the degree of supercooling) of the supercooling refrigerant temperature calculated in the refrigeration or refrigeration cycle control flowchart is read (ST201). This value is passed from the control device for refrigeration or freezing via the communication line 53. The operating capacity of the supercooling compressor 8 is controlled so that the supercooling refrigerant temperature Tr2 approaches the control target value Tr2m (or the supercooling degree target value) (ST202). This supercooling refrigerant temperature Tr2 is obtained from the output of the supercooling low-pressure pressure detecting means 34 of the supercooling refrigeration cycle 21 or the evaporation temperature of the supercooling refrigeration cycle 21 as described above.

過冷却用絞り手段11は、過冷却用熱交換器12の過冷却用冷凍サイクルの出口側で過熱度がつくように絞り量を制御する(ST203)。過冷却用熱交換器12出口の過熱度は、過冷却用圧縮機8の低圧圧力検出手段34から演算して求まる蒸発温度と過冷却用熱交換器出口温度検出手段44にて測定される温度との温度差から求まる。   The supercooling throttling means 11 controls the amount of throttling so that the degree of superheat is generated on the outlet side of the supercooling refrigeration cycle of the supercooling heat exchanger 12 (ST203). The degree of superheat at the outlet of the supercooling heat exchanger 12 is determined by calculating the evaporation temperature calculated from the low-pressure pressure detecting means 34 of the supercooling compressor 8 and the temperature measured by the supercooling heat exchanger outlet temperature detecting means 44. It is obtained from the temperature difference.

過熱度を適正な値、例えば3℃に制御することで、過冷却用圧縮機8の手前で確実に冷媒を蒸発させて、圧縮機8の信頼性を確保できる。また、過冷却用熱交換器12の全域に渡って冷媒が二相となるため、熱交換効率が向上しCOPが向上する。   By controlling the degree of superheat to an appropriate value, for example, 3 ° C., the refrigerant is surely evaporated before the supercooling compressor 8 and the reliability of the compressor 8 can be ensured. In addition, since the refrigerant has two phases over the entire area of the supercooling heat exchanger 12, the heat exchange efficiency is improved and the COP is improved.

なお、上記過熱度を制御するために、吐出温度検出手段(図示せず)を過冷却用圧縮機8から過冷却用室外熱交換器9入口に至る配管に設け、過冷却用冷凍サイクル21の高圧圧力、低圧圧力および図2のp−h線図上の圧縮過程の傾きから、上記過熱度を適性値にするような圧縮機8の吐出温度の目標値を演算し、上記吐出温度検出手段の測定値が目標値に近づくように過冷却用絞り手段11の開度を調節してもよい。   In order to control the degree of superheat, a discharge temperature detection means (not shown) is provided in a pipe from the supercooling compressor 8 to the inlet of the supercooling outdoor heat exchanger 9, and the supercooling refrigeration cycle 21 From the high pressure, the low pressure and the slope of the compression process on the ph diagram of FIG. 2, a target value of the discharge temperature of the compressor 8 that makes the superheat degree appropriate is calculated, and the discharge temperature detecting means The degree of opening of the subcooling throttle means 11 may be adjusted so that the measured value of the value approaches the target value.

なお、過冷却用冷凍サイクル21の蒸発温度を検出する手段(第二の蒸発温度検出手段)は、過冷却用低圧圧力検出手段34から演算して求めるものとしたが、過冷却用熱交換器12の配管に温度検出手段を設け、直接蒸発温度を検出できるようにしてもよい。   The means for detecting the evaporating temperature of the subcooling refrigeration cycle 21 (second evaporating temperature detecting means) is calculated from the subcooling low pressure pressure detecting means 34, but the subcooling heat exchanger The temperature detection means may be provided in the 12 pipes so that the evaporation temperature can be detected directly.

なお、図3と図4の制御フローチャートは、それぞれ別の基板上に記憶されていると、汎用的なシステムが構成できるというメリットがあるが、1つの基板上に記憶されていても同様の動作が可能なのは言うまでもなく、その場合は基板間の通信がいらなくなり、より簡素かつ応答性の速いシステムになる。また、別基板で持っている場合、ここで挙げた通信項目は、最低限動作するのに必要な項目であり、これに限らずより多くの通信を行う方がより高度な、より安定性の増した、省エネシステムが構築できる。また、基板間の通信は接点による通信、シリアルによる通信、その他どんな方法でもよい。   Note that the control flowcharts of FIGS. 3 and 4 have the advantage that a general-purpose system can be configured if they are stored on different substrates, but similar operations are possible even if they are stored on a single substrate. Needless to say, in this case, communication between the boards is unnecessary, and the system becomes simpler and faster in response. Also, if you have another board, the communication items listed here are the items that are necessary to operate at the minimum, not limited to this, it is more advanced and more stable to perform more communication Increased energy saving system can be constructed. Further, communication between the substrates may be performed by contact, serial communication, or any other method.

また、本実施の形態では冷蔵用または冷凍用冷凍サイクルの制御装置51と過冷却用冷凍サイクルの制御装置52との間で通信線53を介して信号をやりとりしている場合を例に説明を行ったが、冷凍装置に通信線53の接続口がなく信号のやりとりが不可能な場合でも、例えば、過冷却用冷凍サイクル21の蒸発温度の目標値を例えば0℃に固定し、低圧圧力の低圧カット値を設けて過冷却装置を停止することで、省エネ性能は多少悪くなるが、省エネシステムが構築できる。   Further, in the present embodiment, the case where signals are exchanged via the communication line 53 between the control device 51 for the refrigeration or refrigeration cycle and the control device 52 for the supercooling refrigeration cycle will be described as an example. Although the refrigeration apparatus does not have a connection port for the communication line 53 and cannot exchange signals, for example, the target value of the evaporation temperature of the subcooling refrigeration cycle 21 is fixed at, for example, 0 ° C. By providing a low-pressure cut value and stopping the supercooling device, the energy-saving performance is somewhat deteriorated, but an energy-saving system can be constructed.

なお、本実施の形態では、庫内を所定の温度まで冷却する冷蔵用および冷凍用冷凍サイクルに本発明を適用した場合について説明したが、本発明はこれに限るものではなく、空調機等その他の冷凍装置に対しても適用可能である。冷蔵用および冷凍用冷凍サイクルに対して適用した場合には、蒸発温度が低いため(例えば−10℃)、蒸発温度の高い運転が可能な過冷却用冷凍サイクルと組み合わせた場合に、システム全体としてより省エネ効果が高くなるという効果がある。   In the present embodiment, the case where the present invention is applied to a refrigeration cycle and a refrigeration cycle that cools the interior to a predetermined temperature has been described. However, the present invention is not limited to this, and other components such as an air conditioner can be used. The present invention can also be applied to other refrigeration apparatuses. When applied to refrigeration and refrigeration cycles, the evaporation temperature is low (eg, -10 ° C), so when combined with a supercooling refrigeration cycle capable of operating at a high evaporation temperature, the system as a whole There is an effect that energy saving effect becomes higher.

なお、図2では、説明を分かりやすくするため、冷蔵用または冷凍用冷凍サイクルの冷媒と過冷却用冷凍サイクルの冷媒とが同じ冷媒である場合を例に説明を行ったが、それぞれ利用温度帯が異なり、各温度帯に適した別々の冷媒を使用することもでき、同様の省エネ効果を得ることができる。冷媒としては、R410A、R407C、R404Aなどのフロン系の冷媒やCO2やプロパンなどの自然冷媒や、その他の冷媒が使用できるが、どれもこれに限ったものではなく、どんな冷媒の組み合わせでもよい。また、それぞれの冷凍サイクルが独立しているため、冷凍機油もそれぞれの冷凍サイクルに適した冷凍機油を使用することができ、それぞれ異なった冷凍機油を使用しても一向に構わない。 In FIG. 2, for ease of explanation, the case where the refrigerant in the refrigeration or refrigeration cycle and the refrigerant in the supercooling refrigeration cycle are the same refrigerant is described as an example. However, different refrigerants suitable for each temperature zone can be used, and the same energy saving effect can be obtained. As the refrigerant, fluorocarbon refrigerants such as R410A, R407C, and R404A, natural refrigerants such as CO 2 and propane, and other refrigerants can be used, but these are not limited to these, and any combination of refrigerants may be used. . Moreover, since each refrigerating cycle is independent, refrigerating machine oil can use the refrigerating machine oil suitable for each refrigerating cycle, and it does not matter if it uses each different refrigerating machine oil.

また、上記の説明においては、過冷却冷媒温度検出手段(冷媒温度検出手段)41が設置されていないものとして説明したが、仮に、リモートコンデンサ型の冷凍装置ではない場合には、過冷却冷媒温度検出手段41を機械室と室外間で配線しなければならないというような制約がないことから、そのような場合には過冷却冷媒温度検出手段41を設置してもよく、この温度検出手段41の出力により冷蔵用または冷凍用冷凍サイクル20の過冷却用熱交換器12出口の過冷却冷媒温度を検出することができ、上記のように過冷却用冷凍サイクル21の過冷却用低圧圧力検出手段34の出力または過冷却用冷凍サイクル21の蒸発温度から求める必要がなくなる。そして、このようにした場合には、制御装置52は本発明の第二の制御手段の他に、本発明の制御手段としても機能する。過冷却冷媒温度検出手段41を設置した場合には冷蔵用又は冷凍用冷凍サイクル20の過冷却用熱交換器12の出口側から冷蔵用又は冷凍用絞り手段5a,5bの入口までの間の過冷却冷媒温度が高精度に検出され、制御装置52は検出された過冷却冷媒温度が過冷却冷媒温度の目標値になるように過冷却用冷凍サイクル21を制御するので、どのような運転条件でも安定した制御を行うことができ、省エネにすることができる冷凍システムを得ることができる。なお、温度検出手段41は、温度検出手段44と同様に冷媒配管に接するかあるいは冷媒配管内に挿入される。   In the above description, the supercooled refrigerant temperature detecting means (refrigerant temperature detecting means) 41 has been described as being not installed. However, if it is not a remote condenser type refrigeration apparatus, the supercooled refrigerant temperature is not limited. Since there is no restriction that the detection means 41 must be wired between the machine room and the outside, in such a case, the supercooled refrigerant temperature detection means 41 may be installed. The supercooling refrigerant temperature at the outlet of the supercooling heat exchanger 12 of the refrigeration or freezing refrigeration cycle 20 can be detected from the output, and the supercooling low pressure pressure detecting means 34 of the supercooling refrigeration cycle 21 as described above. Need to be obtained from the output of the above or the evaporation temperature of the subcooling refrigeration cycle 21. In such a case, the control device 52 functions as the control means of the present invention in addition to the second control means of the present invention. When the supercooling refrigerant temperature detecting means 41 is installed, the supercooling refrigerant temperature detection means 41 from the outlet side of the supercooling heat exchanger 12 of the refrigeration or refrigeration cycle 20 to the inlet of the refrigeration or refrigeration throttle means 5a, 5b. The cooling refrigerant temperature is detected with high accuracy, and the control device 52 controls the supercooling refrigeration cycle 21 so that the detected supercooling refrigerant temperature becomes the target value of the supercooling refrigerant temperature. A refrigeration system that can perform stable control and save energy can be obtained. The temperature detecting means 41 is in contact with the refrigerant pipe or inserted into the refrigerant pipe in the same manner as the temperature detecting means 44.

実施の形態2.
次に、実施の形態2について図を参照して説明するが、上記の実施の形態1と同一部分については同一符号を付して詳細な説明を省略する。
Embodiment 2. FIG.
Next, the second embodiment will be described with reference to the drawings. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

図5は実施の形態2を示す冷凍システムの冷媒回路図である。この冷凍システムは、図5に示されるように、冷蔵用または冷凍用冷凍サイクルの圧縮機1、受液器4が機械室A等に設置されているリモートコンデンサ型の冷凍装置の場合の構成例である。冷蔵用または冷凍用室内熱交換器6a、6bは室内に設置され、冷蔵用または冷凍用絞り手段5a、5bは機械室と室内との間に設置されている。図5では過冷却用室外熱交換器9の出口温度を測定する過冷却用室外熱交換器出口温度検出手段45が設けられている。   FIG. 5 is a refrigerant circuit diagram of the refrigeration system showing the second embodiment. As shown in FIG. 5, this refrigeration system is a configuration example in the case of a remote condenser type refrigeration apparatus in which a compressor 1 and a liquid receiver 4 of a refrigeration or refrigeration cycle are installed in a machine room A or the like. It is. The refrigeration or freezing indoor heat exchangers 6a and 6b are installed indoors, and the refrigeration or freezing expansion means 5a and 5b are installed between the machine room and the indoors. In FIG. 5, the subcooling outdoor heat exchanger outlet temperature detection means 45 for measuring the outlet temperature of the subcooling outdoor heat exchanger 9 is provided.

この場合、過冷却用冷凍サイクル21は、冷蔵用または冷凍用冷凍サイクル20に過冷却をつける作用をするため、受液器4と冷蔵用または冷凍用絞り手段5a、5bとの間の流路に設置する必要があり、配管を一旦室外側にまで引き出すのは施工面で煩雑になるため、過冷却用熱交換器12は受液器4の出口の機械室A内に設置するのが望ましい。   In this case, the subcooling refrigeration cycle 21 acts to supercool the refrigeration or refrigeration refrigeration cycle 20, so that the flow path between the liquid receiver 4 and the refrigeration or refrigeration throttling means 5a, 5b. It is necessary to install the supercooling heat exchanger 12 in the machine room A at the outlet of the liquid receiver 4 because it is complicated in terms of construction to pull out the pipe to the outdoor side once. .

過冷却用熱交換器12が機械室Aにある場合に、図1のように構成すると、過冷却冷媒温度検出手段41を屋内まで引き伸ばし機械室と室外間で配線する必要が生じてしまうが、図5のように構成すれば、機械室−室外間での配線が必要なくなり、施工が容易になる。ただし、この場合、過冷却用冷凍サイクル21に具備している検出手段の検出値から、冷蔵用または冷凍用冷凍サイクル20の過冷却度を推測する必要がある。以下、その推測方法について述べる。   When the supercooling heat exchanger 12 is located in the machine room A, the configuration as shown in FIG. 1 requires that the supercooling refrigerant temperature detecting means 41 be extended indoors and wired between the machine room and the outside. If it comprises as FIG. 5, the wiring between machine room-outdoors will become unnecessary, and construction will become easy. However, in this case, it is necessary to estimate the degree of supercooling of the refrigeration cycle 20 for refrigeration or refrigeration from the detection value of the detection means provided in the subcooling refrigeration cycle 21. The estimation method will be described below.

過冷却用熱交換器12での過冷却用冷凍サイクルの吸熱量Qe[W]は次式(1)で表せる。   The endothermic amount Qe [W] of the supercooling refrigeration cycle in the supercooling heat exchanger 12 can be expressed by the following equation (1).

[数1]
Qe=Gre×(Hs−Hco) ・・・(1)
[Equation 1]
Qe = Gre × (Hs−Hco) (1)

ここで、Greは過冷却用冷媒の質量流量[kg/s]であり、過冷却用圧縮機8の運転周波数と、過冷却用高圧圧力検出手段33によって測定される高圧圧力と、過冷却用低圧圧力検出手段34によって測定される低圧圧力と、あらかじめ過冷却用制御装置記憶部63に記憶された過冷却用圧縮機8の圧縮機性能との関係から求めることができる。Hsは過冷却用冷凍サイクル21の圧縮機吸入のエンタルピー[J/kg]であり、過冷却用低圧圧力検出手段34によって測定される低圧圧力と、過冷却用熱交換器出口温度検出手段44によって測定される温度から演算し求めることができる。Hcoは過冷却用室外熱交換器9の出口のエンタルピー[J/kg]であり、過冷却用室外熱交換器出口温度検出手段45によって測定される温度から演算し求めることができる。   Here, Gre is the mass flow rate [kg / s] of the supercooling refrigerant, the operating frequency of the supercooling compressor 8, the high pressure measured by the supercooling high pressure detector 33, and the supercooling pressure. It can be obtained from the relationship between the low pressure measured by the low pressure detector 34 and the compressor performance of the supercooling compressor 8 stored in the supercooling control device storage unit 63 in advance. Hs is the enthalpy [J / kg] of the compressor suction of the supercooling refrigeration cycle 21, and the low pressure measured by the supercooling low pressure detection means 34 and the supercooling heat exchanger outlet temperature detection means 44 It can be calculated from the measured temperature. Hco is the enthalpy [J / kg] at the outlet of the subcooling outdoor heat exchanger 9 and can be calculated from the temperature measured by the subcooling outdoor heat exchanger outlet temperature detecting means 45.

一方、過冷却用熱交換器12での冷蔵用または冷凍用冷凍サイクル20の放熱量Qr[W]は次式(2)で表せる。   On the other hand, the heat release amount Qr [W] of the refrigeration cycle 20 for refrigeration or freezing in the supercooling heat exchanger 12 can be expressed by the following equation (2).

[数2]
Qr=Grr×(Hsci−Hsco) ・・・(2)
[Equation 2]
Qr = Grr × (Hsci−Hsco) (2)

ここで、Grrは冷蔵用または冷凍用冷凍サイクル20の冷媒の質量流量[kg/s]であり、冷蔵用または冷凍用圧縮機1の運転周波数と、冷蔵用または冷凍用高圧圧力検出手段31によって測定される高圧圧力と、冷蔵用または冷凍用低圧圧力検出手段32によって測定される低圧圧力と、あらかじめ冷蔵用または冷凍用制御装置記憶部61に記憶された冷蔵用または冷凍用圧縮機1の圧縮機性能との関係から求めることができる。Hsciは冷蔵用または冷凍用冷凍サイクル20の過冷却用熱交換器12入口のエンタルピー[J/kg]であり、冷蔵用または冷凍用高圧圧力検出手段31によて測定される高圧圧力から演算し求まる凝縮温度の飽和エンタルピーと等しいため求めることができる。Hscoは冷蔵用または冷凍用冷凍サイクル20の過冷却用熱交換器12出口のエンタルピー[J/kg]であり、過冷却後の冷媒の温度によって決まる値である。   Here, Grr is the mass flow rate [kg / s] of the refrigerant in the refrigeration or refrigeration cycle 20, and is determined by the operating frequency of the refrigeration or refrigeration compressor 1 and the refrigeration or refrigeration high-pressure detection means 31. The measured high pressure, the low pressure measured by the refrigeration or freezing low pressure detecting means 32, and the compression of the refrigeration or freezing compressor 1 stored in the refrigerating or freezing control device storage unit 61 in advance. It can be obtained from the relationship with machine performance. Hsci is the enthalpy [J / kg] at the inlet of the supercooling heat exchanger 12 of the refrigeration or refrigeration cycle 20, and is calculated from the high pressure measured by the refrigeration or refrigeration high pressure detection means 31. Since it is equal to the saturation enthalpy of the condensation temperature to be obtained, it can be obtained. Hsco is the enthalpy [J / kg] at the outlet of the supercooling heat exchanger 12 of the refrigeration or refrigeration cycle 20, and is a value determined by the temperature of the refrigerant after supercooling.

定常状態では、Qe=Qrの関係が成り立つため、式(1)、式(2)よりHscoについて解くと式(3)式で表せる。ここで、式(3)の右辺の各値は冷蔵用または冷凍用冷凍サイクル20に具備している検出手段の測定値と、過冷却用冷凍サイクル21が具備している検出手段による測定値から演算し求まるため、Hscoを求めることができる。   In a steady state, the relationship of Qe = Qr is established, and therefore, when Hsco is solved from Equations (1) and (2), it can be expressed by Equation (3). Here, each value on the right side of the equation (3) is based on the measured value of the detecting means provided in the refrigeration or refrigeration cycle 20 and the measured value obtained by the detecting means provided in the subcooling refrigeration cycle 21. Since it is obtained by calculation, Hsco can be obtained.

[数3]
Hsco=Hsci−Gre/Grr×(Hs−Hco)・・・(3)
[Equation 3]
Hsco = Hsci−Gre / Grr × (Hs−Hco) (3)

例えばR404A冷媒の場合には、液のエンタルピーH[J/kg]と冷媒温度T(℃)の関係は式(4)で近似できるため、Hscoを式(4)のHに代入することで、過冷却後の冷媒温度Tr2が求まる。
T=000697×H−139.97 ・・・(4)
For example, in the case of the R404A refrigerant, the relationship between the enthalpy H [J / kg] of the liquid and the refrigerant temperature T (° C.) can be approximated by the equation (4). The refrigerant temperature Tr2 after supercooling is obtained.
T = 000697 × H-139.97 (4)

制御装置52は、このように、冷蔵用または冷凍用冷凍サイクル20に具備している検出手段31,32の測定値(これらの測定値は通信線53を介して制御装置51から取り込む)と、過冷却用冷凍サイクル21に具備している検出手段33,34,44,45の測定値により、冷蔵用または冷凍用冷凍サイクル20の過冷却用熱交換器12出口の過冷却冷媒の温度を推測し、その過冷却冷媒温度に基づいて、上記の実施形態1の場合と同様に、冷蔵または冷凍用室内熱交換器6a,6bの入り口の冷媒が二相となるように過冷却用圧縮機8と過冷却用絞り手段11とを制御することで、実施の形態1の効果を保有しつつ、上記の実施の形態1での過冷却冷媒温度検出手段41を機械室と室外間で配線する必要がなくなり、施工が容易になる。   As described above, the control device 52 has measured values of the detection means 31 and 32 provided in the refrigeration or freezing refrigeration cycle 20 (these measured values are taken from the control device 51 via the communication line 53), and The temperature of the supercooling refrigerant at the outlet of the supercooling heat exchanger 12 of the refrigeration or freezing refrigeration cycle 20 is estimated from the measured values of the detection means 33, 34, 44, 45 provided in the supercooling refrigeration cycle 21. Then, based on the temperature of the supercooling refrigerant, as in the case of the first embodiment, the supercooling compressor 8 is configured such that the refrigerant at the entrance of the refrigeration or freezing indoor heat exchangers 6a and 6b becomes two-phase. And the supercooling throttle means 11 are controlled so that the supercooling refrigerant temperature detecting means 41 in the first embodiment is wired between the machine room and the outside while maintaining the effects of the first embodiment. Ease of construction .

実施の形態3.
次に、実施の形態3について図を参照して説明するが、実施の形態1と同一部分については同一符号を付して詳細な説明を省略する。
Embodiment 3 FIG.
Next, the third embodiment will be described with reference to the drawings. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図6は本発明の実施の形態3を示す冷凍システムの冷媒回路図である。この冷凍システムにおいて、過冷却用室外熱交換器9は冷蔵用または冷凍用室外熱交換器2と近接して設置され、冷蔵用または冷凍用室外送風機3は過冷却用室外熱交換器9と冷蔵用または冷凍用室外熱交換器2とに同時に空気を送り込む。そして、冷蔵用または冷凍用制御装置(制御手段)51は、過冷却冷媒温度検出手段41の検出温度に基づき、冷蔵または冷凍用室内熱交換器6a,6bの入り口の冷媒が二相となるように過冷却用圧縮機8と過冷却用絞り手段11とを制御する。   FIG. 6 is a refrigerant circuit diagram of a refrigeration system showing Embodiment 3 of the present invention. In this refrigeration system, the subcooling outdoor heat exchanger 9 is installed close to the refrigeration or freezing outdoor heat exchanger 2, and the refrigeration or freezing outdoor fan 3 is refrigerated with the subcooling outdoor heat exchanger 9. At the same time, the air is fed into the outdoor heat exchanger 2 for freezing or freezing. The refrigeration or refrigeration control device (control means) 51 makes the refrigerant at the entrance of the refrigeration or refrigeration indoor heat exchangers 6a and 6b to be two-phase based on the temperature detected by the supercooled refrigerant temperature detection means 41. The supercooling compressor 8 and the supercooling throttle means 11 are controlled.

過冷却用室外熱交換器9と冷蔵用または冷凍用室外熱交換器2とは、互いに伝熱管は共有しないが、熱交換器の形態がプレートフィンチューブの場合は、フィンが互いに共有されていても良く、これにより近接設置に比べて更に冷媒配管同士の熱交換性能が向上する。   The subcooling outdoor heat exchanger 9 and the refrigeration or freezing outdoor heat exchanger 2 do not share a heat transfer tube with each other, but if the heat exchanger is a plate fin tube, the fins are shared with each other. As a result, the heat exchange performance between the refrigerant pipes is further improved as compared with the proximity installation.

前記のような構成とすることで、冷凍サイクルのシステムをコンパクトにでき、過冷却用室外熱交換器9と冷蔵用または冷凍用室外熱交換器2の送風動力が冷蔵用または冷凍用室外送風機3の1台で済むため、送風機の動力が低減され、システムの効率向上、すなわち省エネが実現できる。なお、本発明の実施の形態3の過冷却用室外熱交換器9と冷蔵用または冷凍用室外熱交換器2の構成は上記の実施の形態1及び2にも同様に適用される。また、本実施の形態3において、上記の実施の形態2の例と同様に、過冷却冷媒温度検出手段41の設置を省略して、過冷却冷媒温度を演算して求めるようにしてよい。その場合には、上記のように、機械室−室外間での配線が必要なくなり、施工が容易になる。   With the configuration as described above, the refrigeration cycle system can be made compact, and the cooling power of the outdoor heat exchanger 9 for supercooling and the outdoor heat exchanger 2 for refrigeration or refrigeration is the refrigeration or refrigeration outdoor fan 3. Therefore, the power of the blower is reduced, and the efficiency of the system, that is, energy saving can be realized. The configurations of the subcooling outdoor heat exchanger 9 and the refrigeration or freezing outdoor heat exchanger 2 according to the third embodiment of the present invention are similarly applied to the first and second embodiments. In the third embodiment, similarly to the example of the second embodiment described above, the supercooling refrigerant temperature detection means 41 may be omitted and the supercooling refrigerant temperature may be calculated and obtained. In that case, as described above, wiring between the machine room and the outside becomes unnecessary, and the construction becomes easy.

本発明の実施の形態1を示す冷凍システムの冷媒回路図である。1 is a refrigerant circuit diagram of a refrigeration system showing Embodiment 1 of the present invention. 本発明の実施の形態1を示すp−h線図である。It is a ph diagram showing Embodiment 1 of the present invention. 本発明の実施の形態1を示す冷蔵用または冷凍用冷凍サイクルの制御フローチャートである。It is a control flowchart of the refrigerating cycle for refrigerating or freezing which shows Embodiment 1 of this invention. 本発明の実施の形態1を示す過冷却用冷凍サイクルの制御フローチャートである。It is a control flowchart of the refrigerating cycle for supercooling which shows Embodiment 1 of this invention. 本発明の実施の形態2を示す冷凍システムの冷媒回路図である。It is a refrigerant circuit figure of the refrigerating system which shows Embodiment 2 of this invention. 本発明の実施の形態3を示す冷凍システムの冷媒回路図である。It is a refrigerant circuit figure of the refrigerating system which shows Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 冷蔵用または冷凍用圧縮機、2 冷蔵用または冷凍用室外熱交換器、3 冷蔵用または冷凍用室外送風機、4 冷蔵用または冷凍用受液器、5a、5b 冷蔵用または冷凍用絞り手段、6a、6b 冷蔵用または冷凍用室内熱交換器、7a、7b 冷蔵用または冷凍用室内送風機、8 過冷却用圧縮機、9 過冷却用室外熱交換器、10 過冷却用室外送風機、11 過冷却用絞り手段、12 過冷却用熱交換器、13 冷媒配管、14 冷媒配管、20 冷蔵用または冷凍用冷凍サイクル、21 過冷却用冷凍サイクル、31 冷蔵用または冷凍用高圧圧力検出手段、32 冷蔵用または冷凍用低圧圧力検出手段、33 過冷却用高圧圧力検出手段、34 過冷却用低圧圧力検出手段、41 過冷却冷媒温度検出手段、42 冷蔵用または冷凍用室外空気温度検出手段、43 過冷却用室外空気温度検出手段、44 過冷却用熱交換器出口温度検出手段、45 過冷却用室外熱交換器出口温度検出手段、51 冷蔵用または冷凍用制御装置、52 過冷却用制御装置、53 通信線、61 冷蔵用および冷凍用制御装置記憶部、62 冷蔵用および冷凍用制御装置演算部、63 過冷却用制御装置記憶部、64 過冷却用制御装置演算部、A 機械室。
1 Refrigeration or refrigeration compressor, 2 refrigeration or refrigeration outdoor heat exchanger, 3 refrigeration or refrigeration outdoor fan, 4 refrigeration or refrigeration receiver, 5a, 5b refrigeration or refrigeration throttle means, 6a, 6b Refrigeration or refrigeration indoor heat exchanger, 7a, 7b Refrigeration or refrigeration indoor blower, 8 Supercooling compressor, 9 Supercooling outdoor heat exchanger, 10 Supercooling outdoor blower, 11 Supercooling Throttle means, 12 Supercooling heat exchanger, 13 Refrigerant pipe, 14 Refrigerant pipe, 20 Refrigeration cycle for refrigeration or freezing, 21 Refrigeration cycle for supercooling, 31 High pressure detection means for refrigeration or freezing, 32 Or low pressure pressure detection means for freezing, 33 high pressure pressure detection means for supercooling, 34 low pressure pressure detection means for supercooling, 41 supercooling refrigerant temperature detection means, 42 outdoor air temperature detection means for refrigeration or freezing , 43 Supercooling outdoor air temperature detection means, 44 Supercooling heat exchanger outlet temperature detection means, 45 Supercooling outdoor heat exchanger outlet temperature detection means, 51 Control device for refrigeration or freezing, 52 Supercooling control Device, 53 communication line, 61 refrigeration and refrigeration control device storage unit, 62 refrigeration and refrigeration control device calculation unit, 63 supercooling control device storage unit, 64 supercooling control device calculation unit, A machine room.

Claims (10)

第一の圧縮機と第一の熱交換器と第一の絞り手段と第二の熱交換器とを有し、内部に第一の冷媒を流通させる第一の冷凍サイクルと、
第二の圧縮機と第三の熱交換器と第二の絞り手段と第四の熱交換器とを有し、内部に第二の冷媒を流通させる第二の冷凍サイクルと、
前記第一の冷凍サイクルの前記第一の圧縮機の低圧側の圧力を検出する第一の低圧検出手段または第一の冷凍サイクルの蒸発温度を検出する第一の蒸発温度検出手段と、
前記第一の低圧検出手段または前記第一の蒸発温度検出手段の検出値に基づき前記第一の冷凍サイクルの動作を制御する第一の制御手段と、
前記第二の冷凍サイクルの前記第二の圧縮機の低圧側の圧力を検出する第二の低圧検出手段または第二の冷凍サイクルの蒸発温度を検出する第二の蒸発温度検出手段と、
前記第二の低圧検出手段または第二の蒸発温度検出手段の検出値に基づき前記第二の冷凍サイクルの動作を制御する第二の制御手段と、
を備え、
前記第四の熱交換器は、冷媒と冷媒との熱交換を行う冷媒−冷媒熱交換器であって、前記第一の冷凍サイクルの前記第一の熱交換器出口から前記第一の絞り手段入口までの流路のいずれかの位置に挿入し、前記第一の冷凍サイクルと前記第二の冷凍サイクルとが相互に熱交換可能なように構成し、
前記第一の冷凍サイクルの運転状態に基づいて、前記第二の冷凍サイクルの動作を制御するよう、前記第一の制御手段と前記第二の制御手段とを有線もしくは無線にて接続し、連携して制御できるように構成し、
前記第二の制御手段は、前記第二の冷凍サイクルの前記第二の低圧検出手段または前記第二の蒸発温度検出手段の検出値から、前記第一の冷凍サイクルの前記第四の熱交換器の出口側から前記第一の絞り手段入口までの流路のいずれかの位置の冷媒温度、または前記第一の熱交換器内を流れる二相冷媒の飽和温度と前記第一の冷凍サイクルの前記第四の熱交換器の出口側から前記第一の絞り手段入口までの流路のいずれかの位置の前記冷媒温度との温度差である過冷却度を演算する機能を備え、前記演算して求められた冷媒温度または過冷却度に基づいて前記第二の冷凍サイクルの動作を制御することを特徴とする冷凍システム。
A first refrigeration cycle having a first compressor, a first heat exchanger, a first throttling means, and a second heat exchanger, and circulating a first refrigerant therein;
A second refrigeration cycle having a second compressor, a third heat exchanger, a second throttling means, and a fourth heat exchanger, and circulating a second refrigerant therein;
First low pressure detection means for detecting the pressure on the low pressure side of the first compressor of the first refrigeration cycle or first evaporation temperature detection means for detecting the evaporation temperature of the first refrigeration cycle;
First control means for controlling the operation of the first refrigeration cycle based on the detection value of the first low-pressure detection means or the first evaporation temperature detection means;
Second low pressure detection means for detecting the pressure on the low pressure side of the second compressor of the second refrigeration cycle or second evaporation temperature detection means for detecting the evaporation temperature of the second refrigeration cycle;
Second control means for controlling the operation of the second refrigeration cycle based on the detection value of the second low-pressure detection means or the second evaporation temperature detection means;
With
The fourth heat exchanger is a refrigerant-refrigerant heat exchanger that performs heat exchange between the refrigerant and the refrigerant, and the first throttling means from the outlet of the first heat exchanger of the first refrigeration cycle. Inserted in any position of the flow path to the inlet, configured so that the first refrigeration cycle and the second refrigeration cycle can exchange heat with each other,
Based on the operating state of the first refrigeration cycle, the first control means and the second control means are connected in a wired or wireless manner so as to control the operation of the second refrigeration cycle. Configured to be controllable,
The second control means is configured to detect the fourth heat exchanger of the first refrigeration cycle based on a detection value of the second low pressure detection means or the second evaporation temperature detection means of the second refrigeration cycle. Refrigerant temperature at any position in the flow path from the outlet side of the first throttle means or the saturation temperature of the two-phase refrigerant flowing in the first heat exchanger and the first refrigeration cycle A function of calculating a degree of supercooling that is a temperature difference from the refrigerant temperature at any position in the flow path from the outlet side of the fourth heat exchanger to the inlet of the first throttle means; An operation of the second refrigeration cycle is controlled based on the obtained refrigerant temperature or degree of supercooling.
前記第一の冷凍サイクルの前記第一の圧縮機のON/OFF状態に基づき、前記第二の圧縮機のON/OFFタイミングを制御することを特徴とする請求項1に記載の冷凍システム。   2. The refrigeration system according to claim 1, wherein ON / OFF timing of the second compressor is controlled based on an ON / OFF state of the first compressor of the first refrigeration cycle. 前記二の制御手段は、前記第二の圧縮機を前記第一の圧縮機に対して遅延して起動させることを特徴とする請求項2に記載の冷凍システム。   The refrigeration system according to claim 2, wherein the second control means starts the second compressor with a delay relative to the first compressor. 前記第一の制御手段から前記第二の制御手段に対し、前記第二の冷凍サイクルの低圧制御目標値または蒸発温度制御目標値を送信することを特徴とする請求項1に記載の冷凍システム。   2. The refrigeration system according to claim 1, wherein the low pressure control target value or the evaporation temperature control target value of the second refrigeration cycle is transmitted from the first control unit to the second control unit. 前記第一の制御手段から前記第二の制御手段に対し、前記第一の冷凍サイクルの前記冷媒温度検出値または演算値の制御目標値、または前記第一の熱交換器内を流れる二相冷媒の飽和温度と前記第一の冷凍サイクルの前記第四の熱交換器の出口側から前記第一の絞り手段入口までの流路のいずれかの位置の冷媒温度との温度差である過冷却度の制御目標値を送信することを特徴とする請求項2に記載の冷凍システム。   A control target value of the refrigerant temperature detection value or calculation value of the first refrigeration cycle or a two-phase refrigerant flowing in the first heat exchanger from the first control means to the second control means Is the temperature difference between the saturation temperature of the refrigerant and the refrigerant temperature at any position in the flow path from the outlet side of the fourth heat exchanger of the first refrigeration cycle to the inlet of the first throttle means The refrigeration system according to claim 2, wherein the control target value is transmitted. 前記第一の熱交換器と前記第三の熱交換器は同一の熱源の流路に配置されていることを特徴とする請求項1〜請求項のいずれかに記載の冷凍システム。 The refrigeration system according to any one of claims 1 to 5 , wherein the first heat exchanger and the third heat exchanger are arranged in a flow path of the same heat source. 前記第二の冷凍サイクルの冷却能力が前記第一の冷凍サイクルの冷却能力よりも低いことを特徴とする請求項1〜請求項のいずれかに記載の冷凍システム。 The refrigeration system according to any one of claims 1 to 6 , wherein the cooling capacity of the second refrigeration cycle is lower than the cooling capacity of the first refrigeration cycle. 前記第二の冷凍サイクルの蒸発温度または低圧が前記第一の冷凍サイクルの蒸発温度または低圧よりも高い状態で運転することを特徴とする請求項1〜請求項のいずれかに記載の冷凍システム。 The refrigeration system according to any one of claims 1 to 7 , wherein the evaporating temperature or low pressure of the second refrigeration cycle is operated in a state higher than the evaporating temperature or low pressure of the first refrigeration cycle. . 前記第二の熱交換器入口の冷媒が二相となるように前記第二の冷凍サイクルを制御することを特徴とする請求項2又は請求項3に記載の冷凍システムの運転方法。   The operation method of the refrigeration system according to claim 2 or 3, wherein the second refrigeration cycle is controlled so that the refrigerant at the inlet of the second heat exchanger has two phases. 前記冷媒温度が0℃以上となるように制御することを特徴とする請求項1〜請求項9のいずれかに記載の冷凍システムの運転方法。   The operation method of the refrigeration system according to any one of claims 1 to 9, wherein the refrigerant temperature is controlled to be 0 ° C or higher.
JP2006052076A 2006-02-28 2006-02-28 Refrigeration system and method of operating refrigeration system Active JP4809076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006052076A JP4809076B2 (en) 2006-02-28 2006-02-28 Refrigeration system and method of operating refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006052076A JP4809076B2 (en) 2006-02-28 2006-02-28 Refrigeration system and method of operating refrigeration system

Publications (2)

Publication Number Publication Date
JP2007232245A JP2007232245A (en) 2007-09-13
JP4809076B2 true JP4809076B2 (en) 2011-11-02

Family

ID=38553016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006052076A Active JP4809076B2 (en) 2006-02-28 2006-02-28 Refrigeration system and method of operating refrigeration system

Country Status (1)

Country Link
JP (1) JP4809076B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4096984B2 (en) * 2006-06-30 2008-06-04 ダイキン工業株式会社 Refrigeration equipment
JP2009041904A (en) * 2008-09-29 2009-02-26 Sanyo Electric Co Ltd Supercooling device
JP2008309470A (en) * 2008-09-29 2008-12-25 Sanyo Electric Co Ltd Supercooling device
JP2009036508A (en) * 2008-09-29 2009-02-19 Sanyo Electric Co Ltd Supercooling system
IT1393257B1 (en) * 2009-03-06 2012-04-12 Antonio Leto REFRIGERATION REFRIGERATION LINE UNDER-COOLING REFRIGERATION SYSTEM
WO2013035459A1 (en) * 2011-09-08 2013-03-14 株式会社神戸製鋼所 Heat pump
JP5409747B2 (en) * 2011-10-20 2014-02-05 三菱電機株式会社 Dual refrigeration equipment
JP5999501B2 (en) * 2012-11-30 2016-09-28 パナソニックIpマネジメント株式会社 Refrigeration equipment
WO2018096580A1 (en) 2016-11-22 2018-05-31 三菱電機株式会社 Refrigeration cycle device
CN109916090B (en) * 2018-11-29 2022-10-18 青岛经济技术开发区海尔热水器有限公司 Heat pump water heater control method and heat pump water heater
JP7499615B2 (en) 2020-06-04 2024-06-14 三菱電機ビルソリューションズ株式会社 Air Conditioning System

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742377U (en) * 1980-08-21 1982-03-08
JPS6117318Y2 (en) * 1980-09-22 1986-05-27
JPS59163873U (en) * 1983-04-19 1984-11-02 三洋電機株式会社 Refrigeration equipment
JP3376844B2 (en) * 1996-12-19 2003-02-10 ダイキン工業株式会社 Air conditioner
JP4273470B2 (en) * 1998-12-25 2009-06-03 三菱電機株式会社 Refrigeration apparatus and method for increasing capacity of refrigeration apparatus
JP4186399B2 (en) * 2000-09-19 2008-11-26 株式会社デンソー Heat pump air conditioner
JP2002277087A (en) * 2001-03-16 2002-09-25 Hitachi Ltd Air conditioner
JP4488712B2 (en) * 2003-10-08 2010-06-23 三菱電機株式会社 Air conditioner
WO2005052467A1 (en) * 2003-11-28 2005-06-09 Mitsubishi Denki Kabushiki Kaisha Freezer and air contitioner
JP2005233559A (en) * 2004-02-20 2005-09-02 Mitsubishi Heavy Ind Ltd Air conditioning/refrigerating/freezing equipment and its operation method
EP1775528A1 (en) * 2004-08-02 2007-04-18 Daikin Industries, Ltd. Refrigeration unit

Also Published As

Publication number Publication date
JP2007232245A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP4809076B2 (en) Refrigeration system and method of operating refrigeration system
KR101101946B1 (en) Refrigeration apparatus
WO2012128229A1 (en) Binary refrigeration cycle device
AU2010364150B2 (en) Air conditioner
JP5094942B2 (en) Heat pump equipment
US9625187B2 (en) Combined air-conditioning and hot-water supply system
JPWO2007013382A1 (en) Refrigeration air conditioner
WO2007110908A9 (en) Refrigeration air conditioning device
JPH1054616A (en) Air conditioner
JP4462435B2 (en) Refrigeration equipment
CN103154639A (en) Air-conditioning apparatus
CN102483250A (en) Air conditioning device
JP2001221526A (en) Refrigerative air conditioner
CN102575860A (en) Air conditioning device
JP2008134031A (en) Refrigerating device using zeotropic refrigerant mixture
JP2008224135A (en) Refrigerating device
CN102597661B (en) Air conditioning device
JPWO2016121068A1 (en) Refrigeration cycle equipment
JP4462436B2 (en) Refrigeration equipment
JP2002147904A (en) Method for detecting frost formation on heat exchanger
JP2002228297A (en) Refrigerating device
JP6758506B2 (en) Air conditioner
JP2012141070A (en) Refrigerating device
JP4542054B2 (en) Refrigeration equipment
JP6206787B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4809076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250