JPS6117318Y2 - - Google Patents

Info

Publication number
JPS6117318Y2
JPS6117318Y2 JP13499780U JP13499780U JPS6117318Y2 JP S6117318 Y2 JPS6117318 Y2 JP S6117318Y2 JP 13499780 U JP13499780 U JP 13499780U JP 13499780 U JP13499780 U JP 13499780U JP S6117318 Y2 JPS6117318 Y2 JP S6117318Y2
Authority
JP
Japan
Prior art keywords
evaporator
refrigeration circuit
heat exchanger
expansion valve
refrigeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13499780U
Other languages
Japanese (ja)
Other versions
JPS5760068U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13499780U priority Critical patent/JPS6117318Y2/ja
Publication of JPS5760068U publication Critical patent/JPS5760068U/ja
Application granted granted Critical
Publication of JPS6117318Y2 publication Critical patent/JPS6117318Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は除湿能力を十分に発揮しながら、エネ
ルギー有効比(E・E・R;冷凍能力の所要動力
に対する比)を向上することが可能な二段式空気
調和装置に関する。
[Detailed description of the invention] This invention is a two-stage air conditioner that can improve the effective energy ratio (E・E・R; ratio of refrigeration capacity to required power) while fully demonstrating dehumidification capacity. Regarding.

空気調和装置のE・E・Rを向上してランニン
グコストを低減することは、省エネルギー化が希
求されている現在の情勢下にあつて極めて好まし
いことである。
In the current situation where energy saving is desired, it is extremely desirable to improve the E/E/R of an air conditioner and reduce its running cost.

E・E・Rを向上するためには、理論上蒸発温
度(Te)を高くし、凝縮温度(Tc)を低くした
状態で運転すればよいことは十分認識されるとこ
ろである。
It is well recognized that in order to improve E・E・R, it is theoretically possible to operate with a high evaporation temperature (Te) and a low condensation temperature (Tc).

ところで、夏季の冷房条件は室外温度35℃の場
合で、室内空気の状態が温度27℃相対湿度50%
(露点温度15.5℃)が好ましいとされており、こ
の場合には、冷凍装置における蒸発温度が27℃以
下、凝縮温度が35℃以上に要求されるところか
ら、E・E・Rの達成値には自ら限界がある。
By the way, the cooling conditions in summer are when the outdoor temperature is 35℃ and the indoor air temperature is 27℃ and relative humidity is 50%.
(dew point temperature of 15.5℃). In this case, the evaporation temperature in the refrigeration equipment is required to be 27℃ or less, and the condensation temperature is required to be 35℃ or higher. has its own limits.

実際上のの運転に当つては、室内側・室外側熱
交換器において、上記温度条件との間に温度差を
取る必要があり、また、蒸発温度(Te)に関し
ては除湿をさらに必要とするところから、凝縮温
度(Tc)≒50℃、蒸発温度(Te)≒10℃の値を
取るのが一般的であつて、E・E・Rは尚更低下
する。
In actual operation, it is necessary to maintain a temperature difference between the indoor and outdoor heat exchangers with the above temperature conditions, and dehumidification is also required regarding the evaporation temperature (Te). Therefore, it is common that the condensation temperature (Tc) is approximately 50°C and the evaporation temperature (Te) is approximately 10°C, and E・E・R is further reduced.

このように、E・E・Rの改善には、単冷媒系
統のものでは限界があつて、向上が期待できない
事実に鑑みて、本考案はかかる理論上の限界を超
えて、さらにE・E・Rの向上をはかり得る新規
システムの空気調和装置を提供しようとしてなさ
れたものであつて、以下、添付図面に示す装置例
および特性線図によつて、本考案装置の具体的内
容を詳しく説明する。
In this way, in view of the fact that there is a limit to improving E・E・R with a single refrigerant system and no improvement can be expected, the present invention goes beyond such theoretical limits and further improves E・E・R.・This was done in an attempt to provide an air conditioner with a new system that can improve R.The specific contents of the device of the present invention will be explained in detail below with reference to device examples and characteristic diagrams shown in the attached drawings. do.

第1図に系統示した空気調和装置は二段式の構
造であつて、第1冷凍回路と第2冷凍回路とを備
えている。
The air conditioner systemically illustrated in FIG. 1 has a two-stage structure and includes a first refrigeration circuit and a second refrigeration circuit.

第1冷凍回路は第1圧縮機1A、第1凝縮器2
A、第1膨張弁3Aおよび第1蒸発器4Aを公知
の冷凍サイクルが形成されるように循環的に接続
され、また、第2冷凍回路は、同要領で第2圧縮
機1B、第2凝縮器2B、第2膨張弁3Bおよび
第2蒸発器4Bを循環的に接続している。
The first refrigeration circuit includes a first compressor 1A and a first condenser 2.
A, the first expansion valve 3A and the first evaporator 4A are cyclically connected to form a known refrigeration cycle, and the second refrigeration circuit is connected in the same way to the second compressor 1B and the second condenser. The vessel 2B, the second expansion valve 3B, and the second evaporator 4B are cyclically connected.

室内側に並列して設けてなる第1蒸発器4Aと
第2蒸発器4Bとは、対空気形の例えばクロスフ
イン形熱交換器に形成されていると共に、室内空
気流を基準として、第1蒸発器4Aを上流(風
上)側に、第2蒸発器4Bを下流(風下)側に
夫々配設していて、吸込口から流入した室内空気
を第1蒸発器4Aで一次冷却した後、第2蒸発器
4Bで二次冷却して冷風にし、吹出口から室内に
吹出すようになつている。
The first evaporator 4A and the second evaporator 4B, which are arranged in parallel on the indoor side, are formed as an air-type heat exchanger, for example, a cross-fin type heat exchanger, and the first evaporator 4A and the second evaporator 4B are arranged in parallel on the indoor side. The evaporator 4A is placed on the upstream (windward) side, and the second evaporator 4B is placed on the downstream (leeward) side. After the indoor air flowing in from the suction port is primarily cooled by the first evaporator 4A, 2 evaporator 4B to produce cold air, which is then blown into the room from the outlet.

なお、第1・第2圧縮機1A,1Bは夫々別個
に独立した圧縮機に限るものでもなく、往復多気
筒圧縮機の場合は1台で各気筒を第1・第2の圧
縮機に利用するようにすることも可能であり、ま
た回転式圧縮機1の場合でも、1基で複気筒有す
る構造であれば、これも亦使用可能である。
Note that the first and second compressors 1A and 1B are not limited to separate compressors, and in the case of a reciprocating multi-cylinder compressor, each cylinder can be used as the first and second compressors in one unit. In addition, even in the case of the rotary compressor 1, if it has a structure in which one unit has multiple cylinders, this can also be used.

一方、第1・第2凝縮器2A,2Bについても
並設した2基に限らなく共用回路形のものであつ
ても勿論差支えない。
On the other hand, the first and second condensers 2A and 2B are not limited to two installed in parallel, but may of course be of a shared circuit type.

しかして、第1冷凍回路および第2冷凍回路は
相互の運転条件に特定の関係を有せしめるよう設
計しており、圧縮機1A,1B、凝縮器2A,2
B、膨張弁3A,3B、蒸発器4A,4Bの容量
を適当に選定することによつて、第1蒸発器4A
を第2蒸発器4Bよりも高い蒸発温度で、好まし
くは前者4Aを室内空気の露点温度に比し高い蒸
発温度で、かつ後者4B前記露点温度よりも低い
蒸発温度で夫々運転し得るように形成している。
Therefore, the first refrigeration circuit and the second refrigeration circuit are designed to have a specific relationship in mutual operating conditions, and the compressors 1A and 1B and the condensers 2A and 2
B. By appropriately selecting the capacities of the expansion valves 3A, 3B and the evaporators 4A, 4B, the first evaporator 4A
The second evaporator 4A is preferably operated at a higher evaporation temperature than the second evaporator 4B, preferably the former 4A is operated at an evaporation temperature higher than the dew point temperature of the indoor air, and the latter 4B is operated at an evaporation temperature lower than the dew point temperature. are doing.

上記空気調和装置は、さらに過冷却用の熱交換
器5を第1・第2冷凍回路に関連して設けてお
り、一方の冷媒通路5Aを第1冷凍回路の低圧冷
媒液管中に、すなわち第1膨張弁3Aを通過して
第1蒸発器4Aに流れ込む前の低圧冷媒液の流通
路中に介設し、他方の冷媒通路5Bを第2冷凍回
路の高圧冷媒液管中に、すなわち第2凝縮器2B
を通過して第2膨張弁3Bに流入する前の高圧冷
媒液の流通路中に介設して、前記熱交換器5で第
1・第2冷凍回路の低圧冷媒と高圧冷媒液を熱交
換しうる如く構成している。
The air conditioner is further provided with a heat exchanger 5 for supercooling in association with the first and second refrigeration circuits, and one refrigerant passage 5A is connected to the low-pressure refrigerant liquid pipe of the first refrigeration circuit, i.e. It is interposed in the flow path of the low-pressure refrigerant liquid before passing through the first expansion valve 3A and flowing into the first evaporator 4A, and the other refrigerant path 5B is inserted into the high-pressure refrigerant liquid pipe of the second refrigeration circuit. 2 condenser 2B
The heat exchanger 5 is installed in the flow path of the high-pressure refrigerant liquid before passing through and flowing into the second expansion valve 3B, and the heat exchanger 5 exchanges heat between the low-pressure refrigerant and the high-pressure refrigerant liquid in the first and second refrigeration circuits. It is structured in such a way that it can be done.

次に、上記装置の運転作動態様を第1図乃至第
5図によつて以下説明する。
Next, the operating mode of the above device will be explained below with reference to FIGS. 1 to 5.

第1冷凍回路において、第1圧縮機1Aに吸入
された冷媒ガスイは圧縮されて高圧ガスロとな
り、第1凝縮器2Aで凝縮し高圧液ハとなつた
後、第1膨張弁3Aで減圧膨張されてニの低圧液
となり、熱交換器5の通路5Aに流入して、通路
5B内の高圧液から吸熱し、乾き度が増した状態
ニ″となつて第1蒸発器4Aに至る。
In the first refrigeration circuit, the refrigerant gas sucked into the first compressor 1A is compressed to become a high-pressure gas, condensed in the first condenser 2A to become a high-pressure liquid, and then decompressed and expanded in the first expansion valve 3A. The liquid becomes a low-pressure liquid, flows into the passage 5A of the heat exchanger 5, absorbs heat from the high-pressure liquid in the passage 5B, becomes dry, and reaches the first evaporator 4A.

一方、第2冷凍回路において、第2圧縮機1B
に吸入された冷媒ガスイ′は圧縮さて高圧ガス
ロ′となり、第2凝縮器2Bで凝縮し高圧液ハと
なつた後、熱交換器5の通路5Bに流入して、通
路5A内の低圧液により冷却され、過冷却液ハ′
となつて第2蒸発器4Bに至る。
On the other hand, in the second refrigeration circuit, the second compressor 1B
The refrigerant gas I' sucked in is compressed and becomes a high-pressure gas lo', and after being condensed in the second condenser 2B and becoming a high-pressure liquid, it flows into the passage 5B of the heat exchanger 5, where it is compressed by the low-pressure liquid in the passage 5A. The cooled and supercooled liquid
This leads to the second evaporator 4B.

この運転状態は、エンタルピ(i4″−i4)と(i4
−i4′)とに相当する部分が熱交換され、熱交換器
5を用いない二段運転方式に比べて、蒸発温度が
高い第1冷凍回路側の冷凍能力は、第2図に示す
ようにG1×(i1−i4)からG1(i1−i4″)に減少し、
一方、第2冷凍回路側の冷凍能力は、G2(i1′−
i4)からG2(i′1−i′4)に増加したことになる。
In this operating state, the enthalpy (i 4 ″−i 4 ) and (i 4
-i 4 ') is heat exchanged, and the refrigeration capacity of the first refrigeration circuit side, which has a higher evaporation temperature than the two-stage operation method that does not use the heat exchanger 5, is as shown in Figure 2. decreases from G 1 × (i 1 − i 4 ) to G 1 (i 1 − i 4 ″),
On the other hand, the refrigeration capacity on the second refrigeration circuit side is G 2 (i 1 ′−
i 4 ) to G 2 (i′ 1 −i′ 4 ).

但し、G1,G2はそれぞれ第1・第2冷凍回路
における冷媒循環量である。
However, G 1 and G 2 are the refrigerant circulation amounts in the first and second refrigeration circuits, respectively.

以上のことから、蒸発温度Te1,Te2が夫々変
わらない条件で、熱交換器5を用いない二段サイ
クルにより同等の冷凍能力[Te1においてはG1×
(i1−i″4)、Te2においてはG2×(i′1−i′4)]を
得よ
うとすると、G1を少く、G2を多くする必要のあ
ることがわかる。
From the above, it can be seen that under conditions where the evaporation temperatures Te 1 and Te 2 do not change, the two-stage cycle without the heat exchanger 5 can achieve the same refrigerating capacity [G 1 × in Te 1 ]
(i 1 −i″ 4 ), and in Te 2 , G 2 ×(i′ 1 −i′ 4 )], it is found that it is necessary to decrease G 1 and increase G 2 .

しかして、圧縮機での入力はG1×(i2−i1)+G2
×(i′2−i′1)で表わされるので、動力を多く必要と
する第2冷凍回路でのG2が増加することから、
E・E・Rは悪くなる。
Therefore, the input at the compressor is G 1 × (i 2 − i 1 ) + G 2
×(i′ 2 −i′ 1 ), so since G 2 increases in the second refrigeration circuit, which requires a lot of power,
E・E・R gets worse.

上述の説明は、第1蒸発器4Aの蒸発温度Te1
と第2蒸発器4Bの蒸発温度Te2とを、熱交換器
5が有るか無いかの両比較装置において不変とし
た場合であつて、即ち、除湿能力を表わす顕熱比
(SHF)を変化させない場合であり、夫々のE・
E・Rは第3図に示す通りである。
The above explanation is based on the evaporation temperature Te 1 of the first evaporator 4A.
This is the case where the evaporation temperature Te 2 of the second evaporator 4B is kept unchanged in both comparison devices with and without the heat exchanger 5, that is, the sensible heat ratio (SHF) representing the dehumidification ability is changed. In this case, each E.
E and R are as shown in FIG.

第3図においてTe1=21℃の場合につき説明す
ると、凝縮温度(Tc)=43℃、過冷却5℃即ちT3
(第2図参照)=38℃、SHF=0.65、室内空気温度
27℃、相対湿度50%、室外温度35℃、過熱度7.5
℃とした一般的な場合では、 (イ) 熱交換器5を備えた二段サイクル。
To explain the case of Te 1 = 21°C in Fig. 3, the condensation temperature (Tc) = 43°C, supercooling 5°C, or T 3
(See Figure 2) = 38℃, SHF = 0.65, indoor air temperature
27℃, relative humidity 50%, outdoor temperature 35℃, superheat degree 7.5
In the general case where the temperature is ℃, (a) a two-stage cycle equipped with a heat exchanger 5;

i−x空気線図によると、 Te2=7.3℃、T′3=22.0℃、 i1=152.0kcal/Kg、i2=155.4kcal/Kg i3=111.2kcal/Kg、 i′3=106.2kcal/Kg i″4については下記の式より求められる。 According to the i-x air diagram, Te 2 = 7.3℃, T′ 3 = 22.0℃, i 1 = 152.0kcal/Kg, i 2 = 155.4kcal/Kg i 3 = 111.2kcal/Kg, i′ 3 = 106.2 kcal/Kg i″ 4 can be obtained from the following formula.

i″4−i4=i″4−i3=G/G(i3−i′3) 即ち、i″4=G/G(i3−i′3)+i3 ここでG/Gについては、SHF=0.65にするため
に は、G/G=2.68とする必要がある。
i″ 4 −i 4 = i″ 4 −i 3 = G 2 /G 1 (i 3 − i′ 3 ), i.e., i″ 4 = G 2 /G 1 (i 3 − i′ 3 ) + i 3 where Regarding G 2 /G 1 , in order to make SHF=0.65, it is necessary to set G 2 /G 1 =2.68.

∴ i″4=125.4kcal/Kg また、i′1=150.9kcal/Kg、i′2=156.9kcal/Kg 一方、E・E・Rは下式で表わされる。∴ i″ 4 = 125.4kcal/Kg Also, i′ 1 = 150.9kcal/Kg, i′ 2 = 156.9kcal/Kg On the other hand, E・E・R is expressed by the following formula.

E・E・R=0.86×G(i−i″)+G(i′−i′)/G(i−i)+G(i′−i
) =0.86×(i−i″)+G/G(i′−i′)/(i−i)+G/G(i′
−i′) =0.86×(152.0−125.4)+2.68(150.9−106.2)/(155.4−15
2.0)+2.68(156.9−150.9) ≒6.46 (ロ) 熱交換器5を有しない二段サイクル。
E・E・R=0.86×G 1 (i 1 −i″ 4 )+G 2 (i′ 1 −i′ 3 )/G 1 (i 2 −i 1 )+G 2 (i′ 2 −i
' 1 ) = 0.86 x (i 1 - i'' 4 ) + G 2 /G 1 (i' 1 - i' 3 ) / (i 2 - i 1 ) + G 2 /G 1 (i' 2
-i'1 ) =0.86×(152.0-125.4)+2.68(150.9-106.2)/(155.4-15
2.0) + 2.68 (156.9 - 150.9) ≒ 6.46 (b) Two-stage cycle without heat exchanger 5.

SHF=0.65を得るためには、Te1,Te2共に熱
交換器5を有する本考案装置と同値になる。
In order to obtain SHF=0.65, both Te 1 and Te 2 are equivalent to the device of the present invention having a heat exchanger 5.

但し、G2/G1が異り4.37となる。即ち相対的に
G2が大きくなる。従つて、 E・E・R=0.86×G×(i−i)+G(i′−i)/G×(i−i)+G(i′−i
) =0.86×(152.0−111.2)+4.37(150.9−111.2)/(155.4−15
2.0)+4.37(156.9−150.9) ≒6.22 上述の比較から明らかなように、熱交換器5を
有しない二段サイクルでもE・E・Rの向上がは
かれるが、本考案装置はそれよりもさらに約4%
の向上が望まれる。
However, G 2 /G 1 is different and becomes 4.37. i.e. relatively
G 2 becomes larger. Therefore, E・E・R=0.86×G 1 ×(i 1 −i 3 )+G 2 (i′ 1 −i 3 )/G 1 ×(i 2 −i 1 )+G 2 (i′ 2 −i
' 1 ) =0.86×(152.0-111.2)+4.37(150.9-111.2)/(155.4-15
2.0) + 4.37 (156.9 - 150.9) ≒ 6.22 As is clear from the above comparison, the two-stage cycle without the heat exchanger 5 can also improve E・E・R, but this Approximately 4% more for devised devices
It is hoped that improvements will be made.

次に、圧縮機、凝縮器、蒸発器等冷凍用機器の
容量を変化させずに、過冷却用の熱交換器5を追
加した本考案の場合について、第4図の空気線図
により説明すると、この場合、第1冷凍回路側で
の冷凍能力は減少し、第2冷凍回路側での冷凍能
力は増加するから、蒸発温度(Te1)は高めの
(Te′1)に、かつ蒸発温度(Te2)は低めの
(Te′2)に変つてバランスすることになる。
Next, the case of the present invention in which a heat exchanger 5 for supercooling is added without changing the capacity of refrigeration equipment such as a compressor, condenser, and evaporator will be explained using the psychrometric diagram shown in Fig. 4. In this case, the refrigeration capacity on the first refrigeration circuit side decreases and the refrigeration capacity on the second refrigeration circuit side increases, so the evaporation temperature (Te 1 ) becomes higher (Te′ 1 ) and the evaporation temperature (Te 2 ) changes to a lower (Te′ 2 ) and becomes balanced.

従つて、圧縮機に係る入力としては(Te′1)が
高くなるため有利となる反面、(Te′2)が低くなつ
て不利となり、また、全体の冷凍能力も大きくは
変化しない。
Therefore, as for the input to the compressor, (Te' 1 ) increases, which is advantageous, but (Te' 2 ) decreases, which is disadvantageous, and the overall refrigerating capacity does not change significantly.

このことから、E・E・Rは殆ど変化しない
が、吹出空気の状態点が温度、湿度ともに低くな
るので、除湿能力を示す顕熱比(SHF)が低く
なり、除湿能力は大きくなる利点がある。
From this, E・E・R hardly changes, but since the state point of the blown air becomes lower in both temperature and humidity, the sensible heat ratio (SHF), which indicates the dehumidification ability, decreases, which has the advantage of increasing the dehumidification ability. be.

かゝる根拠を裏付けるものとして、実質的な効
果を示す例を第5図イ,ロに挙げているが、外気
温度に対するE・E・RおよびSHFは熱交換器
5を有する本考案装置(実線示のもの)が、熱交
換器5を有しない二段冷凍装置(一点鎖線示)に
比して何れも向上していることを明確に示してい
る。
In order to support this basis, examples showing substantial effects are shown in Figure 5 (a) and (b). It clearly shows that the two-stage refrigeration system (shown by the solid line) is improved over the two-stage refrigeration system (shown by the one-dot chain line) that does not have the heat exchanger 5.

次に第6図は冷房・暖房の両運転が可能な本考
案装置の例であり、第1冷凍回路、第2冷凍回路
を備えて第1冷凍回路の冷房時に蒸発器として作
用する室内側熱交換器4Aを第2冷凍回路の同じ
く蒸発器として作用する室内側熱交換器4Bに対
して風上側に配したこと、また、第1冷凍回路の
冷媒と第2冷凍回路の冷媒との間で熱交換を行わ
せる熱交換器5を配設したことの基本的構造につ
いては、第1図々示のものと同じであつて、冷房
サイクルに関しては全く同じ作用をなすものであ
る。
Next, Figure 6 shows an example of the device of the present invention that is capable of both cooling and heating operations, and is equipped with a first refrigeration circuit and a second refrigeration circuit. The exchanger 4A is arranged on the windward side with respect to the indoor heat exchanger 4B, which also acts as an evaporator, in the second refrigeration circuit, and the refrigerant in the first refrigeration circuit and the refrigerant in the second refrigeration circuit are The basic structure of the heat exchanger 5 provided therein for heat exchange is the same as that shown in FIG. 1, and has exactly the same effect regarding the cooling cycle.

たゞし、冷房と暖房との両運転を可能ならしめ
るために、夫々の冷凍回路に対して、第1冷房用
膨張弁3A、第1暖房用膨張弁6Aおよび第1四
路切換弁7Aと、第2冷房用膨張弁3B、第2暖
房用膨張弁6Bおよび第2四路切換弁7Bとを追
加して設けており、両四路切換弁7A,7Bを連
動的に切換え操作することにより、冷房運転の場
合は実線矢示、暖房運転の場合は破線矢示の冷媒
流通が成されるようになつている。
However, in order to enable both cooling and heating operations, each refrigeration circuit is equipped with a first cooling expansion valve 3A, a first heating expansion valve 6A, and a first four-way switching valve 7A. , a second cooling expansion valve 3B, a second heating expansion valve 6B, and a second four-way switching valve 7B are additionally provided, and both four-way switching valves 7A and 7B are switched in conjunction with each other. , the refrigerant flows as shown by the solid line arrow in the case of cooling operation, and as shown by the broken line arrow in the case of heating operation.

この装置においては、前記熱交換器5の配設形
態に特徴を有しており、一方冷媒通路5Aを第1
冷房用膨張弁3A出口と第1室内側熱交換器4A
とを接続する液管中に介設し、他方の冷媒通路5
Bを第2冷房用膨張弁3Bの入口と第2暖房用膨
張弁6Bの入口とを接続する液管中に介設した接
続形態をとらせている。
This device is characterized by the arrangement form of the heat exchanger 5, and on the other hand, the refrigerant passage 5A is
Cooling expansion valve 3A outlet and first indoor heat exchanger 4A
The other refrigerant passage 5 is interposed in the liquid pipe connecting the
B is interposed in a liquid pipe connecting the inlet of the second cooling expansion valve 3B and the inlet of the second heating expansion valve 6B.

かゝる接続形態とすることによつて、冷媒通路
5Aと冷媒通路5Bとが、冷房サイクル時におい
ては、低圧冷媒通路と高圧冷媒通路となつて熱交
換器5を過冷却用熱交換器として作用せしめ、暖
房サイクル時においては共に高圧冷媒流通路とな
つて、熱交換器5が実質的に熱交換作用を成さな
くなり、従つて暖房運転時には、熱交換器5を設
けたことが二段冷凍サイクルに何等影響を与える
結果とならないのを明確に示している。
With this connection, the refrigerant passage 5A and the refrigerant passage 5B become a low-pressure refrigerant passage and a high-pressure refrigerant passage during the cooling cycle, and the heat exchanger 5 functions as a subcooling heat exchanger. During the heating cycle, the heat exchanger 5 serves as a high-pressure refrigerant flow path, and the heat exchanger 5 substantially does not perform any heat exchange action. This clearly shows that the results do not affect the refrigeration cycle in any way.

この暖房運転の場合は、第1・第2室外側熱交
換器2A,2Bが同じ蒸発温度で運転しているた
めに、冷房時におけるごとく熱交換器5を機能さ
せる必要がないことは明らかであり、従つて前述
する熱交換器5配設形態は目的に叶つたものであ
ることが認識される。
In the case of this heating operation, since the first and second outdoor heat exchangers 2A and 2B operate at the same evaporation temperature, it is clear that there is no need to make the heat exchanger 5 function as in the case of cooling. Therefore, it is recognized that the arrangement of the heat exchanger 5 described above is one that satisfies the purpose.

叙上のごとく本考案装置は第1圧縮機1A、第
2凝縮器2A、第1膨張弁3A、対空気形の第1
蒸発器4Aからなる第1冷凍回路、第2圧縮機1
B、第2凝縮器2B、第2膨張弁3B、対空気形
の第2蒸発器4Bからなる第2冷凍回路を備え、
室内空気流の流通方向を基準として第1蒸発器4
Aを上流側、第2蒸発器4Bを下流側に夫々配設
すると共に、前記第1冷凍回路を前記第2冷凍回
路の蒸発温度よりも高い蒸発温度で運転する如く
成す一方、前記第1冷凍回路の第1膨張弁3Aを
通過した後の低圧冷媒と、前記第2冷凍回路の第
2凝縮器2Bを通過した後の高圧冷媒との間で熱
交換を行わせる熱交換器5を前記第1・第2冷凍
回路に関連して設けた構成としたから、従来、冷
却能力を確保するために室内空気温度と蒸発温度
との間に大きい温度差を保てせて運転する単系統
蒸発器方式の空気調和装置では、限界とされてい
たE・E・Rの値をさらに向上することができ
る。
As mentioned above, the device of the present invention includes a first compressor 1A, a second condenser 2A, a first expansion valve 3A, and an air-type first
First refrigeration circuit consisting of evaporator 4A, second compressor 1
B, a second refrigeration circuit consisting of a second condenser 2B, a second expansion valve 3B, and a second air-type evaporator 4B,
The first evaporator 4 is based on the flow direction of the indoor air flow.
A is disposed on the upstream side and a second evaporator 4B is disposed on the downstream side, and the first refrigeration circuit is operated at an evaporation temperature higher than the evaporation temperature of the second refrigeration circuit. The heat exchanger 5 is configured to perform heat exchange between the low-pressure refrigerant after passing through the first expansion valve 3A of the circuit and the high-pressure refrigerant after passing through the second condenser 2B of the second refrigeration circuit. 1. Since it is configured in conjunction with the second refrigeration circuit, conventional single-system evaporators are operated by maintaining a large temperature difference between indoor air temperature and evaporation temperature to ensure cooling capacity. In this type of air conditioner, it is possible to further improve the E・E・R values, which were considered to be the limits.

また、第1蒸発器4Aを室内空気の露点温度よ
りも高い蒸発温度で、第2蒸発器4Bを前記露点
温度よりも低い蒸発温度で運転することにより、
顕熱変化のほか潜熱変化も利用できて効率は一層
向上するし、過冷却用の熱交換器5を設けたため
に除湿能力が増大する利点がある。
Furthermore, by operating the first evaporator 4A at an evaporation temperature higher than the dew point temperature of indoor air and the second evaporator 4B at an evaporation temperature lower than the dew point temperature,
In addition to the sensible heat change, the latent heat change can also be used, which further improves the efficiency, and since the supercooling heat exchanger 5 is provided, there is an advantage that the dehumidification capacity is increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案装置の1例に係る冷凍回路図、
第2図乃至第4図、第5図イ,ロは本考案装置の
運転特性説明図で、第2図はモリエル線図、第3
図は蒸発温度−E・E・R関係線図、第4図は空
気線図、第5図イは外気温度−E・E・R関係線
図、第5図ロは外気温度−SHF関係線図、第6
図は本考案装置例に係る冷凍回路図である。 1A……第1圧縮機、1B……第2圧縮機、2
A……第1凝縮器、2B……第2凝縮器、3A…
…第1膨張弁、3B……第2膨張弁、4A……第
1蒸発器、4B……第2蒸発器、5……熱交換
器。
FIG. 1 is a refrigeration circuit diagram according to an example of the device of the present invention,
Figures 2 to 4 and Figures 5A and 5B are explanatory diagrams of the operating characteristics of the device of the present invention; Figure 2 is a Mollier diagram;
The figure shows the evaporation temperature - E, E, R relationship diagram, Figure 4 is the air line diagram, Figure 5 A is the outside air temperature - E, E, R relationship diagram, and Figure 5 B is the outside air temperature - SHF relationship diagram. Figure, 6th
The figure is a refrigeration circuit diagram according to an example of the device of the present invention. 1A...First compressor, 1B...Second compressor, 2
A...first condenser, 2B...second condenser, 3A...
...first expansion valve, 3B...second expansion valve, 4A...first evaporator, 4B...second evaporator, 5...heat exchanger.

Claims (1)

【実用新案登録請求の範囲】 1 第1圧縮機1A、第1凝縮器2A、第1膨張
弁3A、対空気形の第1蒸発器4Aからなる第
1冷凍回路、第2圧縮機1B、第2凝縮器2
B、第2膨張弁3B、対空気形の第2蒸発器4
Bからなる第2冷凍回路を備え、室内空気流の
流通方向を基準として第1蒸発器4Aを上流
側、第2蒸発器4Bを下流側に夫々配設すると
共に、前記第1冷凍回路を前記第2冷凍回路の
蒸発温度よりも高い蒸発温度で連転する如く成
す一方、前記第1冷凍回路の第1膨張弁3Aを
通過した後の低圧冷媒と、前記第2冷凍回路の
第2凝縮器2Bを通過した後の高圧冷媒との間
で熱交換を行わせる熱交換器5を前記第1・第
2冷凍回路に関連して設けたことを特徴とする
二段式空気調和装置。 2 前記第1蒸発器4Aが室内空気の露点温度よ
りも高い蒸発温度で、前記第2蒸発器4Bが前
記露点温度よりも低い蒸発温度で夫々運転され
る特徴とする実用新案登録請求の範囲第1項記
載の二段式空気調和装置。
[Claims for Utility Model Registration] 1. A first refrigeration circuit consisting of a first compressor 1A, a first condenser 2A, a first expansion valve 3A, and an air-type first evaporator 4A; 2 condenser 2
B, second expansion valve 3B, second air-type evaporator 4
The first evaporator 4A is disposed on the upstream side and the second evaporator 4B is disposed on the downstream side with respect to the flow direction of the indoor air flow. The low-pressure refrigerant after passing through the first expansion valve 3A of the first refrigeration circuit and the second condenser of the second refrigeration circuit A two-stage air conditioner characterized in that a heat exchanger 5 for exchanging heat with the high-pressure refrigerant after passing through the refrigerant 2B is provided in association with the first and second refrigeration circuits. 2. The first evaporator 4A is operated at an evaporation temperature higher than the dew point temperature of indoor air, and the second evaporator 4B is operated at an evaporation temperature lower than the dew point temperature. The two-stage air conditioner according to item 1.
JP13499780U 1980-09-22 1980-09-22 Expired JPS6117318Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13499780U JPS6117318Y2 (en) 1980-09-22 1980-09-22

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13499780U JPS6117318Y2 (en) 1980-09-22 1980-09-22

Publications (2)

Publication Number Publication Date
JPS5760068U JPS5760068U (en) 1982-04-09
JPS6117318Y2 true JPS6117318Y2 (en) 1986-05-27

Family

ID=29495186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13499780U Expired JPS6117318Y2 (en) 1980-09-22 1980-09-22

Country Status (1)

Country Link
JP (1) JPS6117318Y2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680376B2 (en) * 1985-05-13 1994-10-12 オリオン機械株式会社 Dual refrigeration system
JP4809076B2 (en) * 2006-02-28 2011-11-02 三菱電機株式会社 Refrigeration system and method of operating refrigeration system
JP2009300000A (en) * 2008-06-13 2009-12-24 Sharp Corp Refrigerator-freezer and cooling storage
JPWO2012085965A1 (en) * 2010-12-22 2014-05-22 日立アプライアンス株式会社 Air conditioner

Also Published As

Publication number Publication date
JPS5760068U (en) 1982-04-09

Similar Documents

Publication Publication Date Title
US7984621B2 (en) Air conditioning system for communication equipment and controlling method thereof
CN112377998B (en) All-condition heat pump heat recovery type fresh air fan with multiple reheating modes
WO2019091240A1 (en) Heating circulation system for air conditioning, and air conditioner
CN210951942U (en) Thermal management system
CN216281897U (en) Fresh air equipment
CN108119953A (en) Splitting heat pump air conditioner device
CN109386985B (en) Two-pipe jet enthalpy-increasing outdoor unit and multi-split system
US20040226686A1 (en) Heat pump and dehumidifying air-conditioning apparatus
JPS6117318Y2 (en)
JPH01247967A (en) Multi-room type air-conditioner
CN108088008B (en) Multi-split air conditioner and heat recovery system thereof
CN215930176U (en) Refrigerating system
CN215951838U (en) Refrigerating system and household appliance
CN215930175U (en) Refrigerating system
JP2760500B2 (en) Multi-room air conditioner
US20040118133A1 (en) Heat pump and dehumidifying air-conditioning apparatus
CN112577103A (en) Multi-split air conditioner and control method thereof
JPS6150211B2 (en)
CN214249789U (en) Multi-split air conditioner
CN218915106U (en) Air conditioner system
CN214370578U (en) Multi-split air conditioner
CN219328259U (en) Novel drying system
CN214249792U (en) Multi-split air conditioner
CN214039030U (en) Air conditioning system
CN111707015B (en) Air conditioning system and control method thereof