JPS6150211B2 - - Google Patents

Info

Publication number
JPS6150211B2
JPS6150211B2 JP54145696A JP14569679A JPS6150211B2 JP S6150211 B2 JPS6150211 B2 JP S6150211B2 JP 54145696 A JP54145696 A JP 54145696A JP 14569679 A JP14569679 A JP 14569679A JP S6150211 B2 JPS6150211 B2 JP S6150211B2
Authority
JP
Japan
Prior art keywords
evaporator
air
evaporation temperature
indoor
sensible heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54145696A
Other languages
Japanese (ja)
Other versions
JPS5668738A (en
Inventor
Katsumi Hokotani
Yukio Nishihama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP14569679A priority Critical patent/JPS5668738A/en
Publication of JPS5668738A publication Critical patent/JPS5668738A/en
Publication of JPS6150211B2 publication Critical patent/JPS6150211B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/104Heat exchanger wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Description

【発明の詳細な説明】 本発明は、除湿性能をそこなわせずに、エネル
ギー有効比(E・E・R;冷凍能力の所要動力に
対する比)を向上することが可能な冷房用空気調
和装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a cooling air conditioner that can improve the effective energy ratio (E・E・R; ratio of refrigeration capacity to required power) without impairing dehumidification performance. Regarding.

空気調和装置のE・E・Rを向上してランニン
グコストを低減することは、省エネルギー化が希
求されている現下の情勢にあつて極めて好ましい
ことである。
In the current situation where energy saving is desired, it is extremely desirable to improve the E/E/R of an air conditioner and reduce its running cost.

E・E・Rを向上するためには、理論上蒸発温
度Teを高くし、凝縮温度Tcを低くした状態で運
転すればよいことは十分認識されるところであつ
て、第1図に示す特性から容易に理解できる。
It is well recognized that in order to improve E・E・R, it is theoretically possible to operate with a high evaporation temperature Te and a low condensation temperature Tc. Easy to understand.

ところで、夏季の冷房条件は室外温度35℃の場
合で室内空気の状態が温度27℃相対湿度50%(露
点温度15.5℃)が好ましいとされており、この場
合には、冷凍装置における蒸発温度が27℃以下、
凝縮温度が35℃以上に要求されるところから、
E・E・Rの達成値には自ら限界がある。
By the way, it is said that the preferred cooling conditions in summer are when the outdoor temperature is 35°C and the indoor air condition is 27°C and relative humidity 50% (dew point temperature 15.5°C).In this case, the evaporation temperature in the refrigeration equipment is below 27℃,
Since the condensation temperature is required to be 35℃ or higher,
E・E・R has its own limits to what it can achieve.

実際上の運転に当つては、室内側・室外側熱交
換器において、上記温度条件との間に温度差を取
る必要があり、また、蒸発温度Teに関しては除
湿をさらに必要とするところから、凝縮温度Tc
≒50℃、蒸発温度Te≒10℃の値を取るのが一般
的であつて、E・E・Rは尚更低下する。
In actual operation, it is necessary to maintain a temperature difference between the indoor and outdoor heat exchangers with the above temperature conditions, and further dehumidification is required regarding the evaporation temperature Te. Condensing temperature Tc
Generally, the values are ≒50°C and the evaporation temperature Te≒10°C, and E・E・R further decreases.

上述の運転における室内空気の空気線図上での
動きは、第3図でイからロ印に至る線として表わ
され、該線の延長と飽和線との交点△はTe=10
℃に対し、12.5℃となつているものの、これは実
際の室内側熱交換器においてはこの程度の温度差
2.5℃をつけた線上に吹出口状態点が来ることを
意味している。
The movement of the indoor air on the psychrometric chart during the above operation is expressed as a line from A to B in Figure 3, and the intersection point △ of the extension of this line and the saturation line is Te = 10
℃, it is 12.5℃, but this is a temperature difference of this degree in an actual indoor heat exchanger.
This means that the outlet state point is on the line marked with 2.5℃.

このように、E・E・Rの改善には、単冷媒系
統のものでは限度があつて、向上が期待できない
事実に鑑みて、本発明はかゝる理論上の限界を超
えてさらにE・E・Rの向上をはかり得る新規シ
ステムの空気調和装置を提供しようとして成され
たものであつて、以下、添付図面に示す装置例お
よび特性線図によつて、本発明装置の具体的内容
を詳しく説明する。
In this way, there is a limit to the improvement of E・E・R in a single refrigerant system, and in view of the fact that no improvement can be expected, the present invention goes beyond such theoretical limits and further improves E・E・R. This invention was developed in an attempt to provide an air conditioner with a new system that can improve E/R.The specific details of the device of the present invention will be explained below with reference to the device examples and characteristic diagrams shown in the attached drawings. explain in detail.

第2図において、2点鎖線で区分した右半部は
室外側ユニツト1であり、左半部は室内側ユニツ
ト2であつて、室外側ユニツト1には、2台の圧
縮機3A,3Bからなる圧縮機構3と、凝縮器4
と、室外側フアン9とがケーシング内に収納さ
れ、一方、室内側ユニツト2には、空気冷却用蒸
発器5と、減圧機構6と、顕熱回収器7と、室内
側フアン10,11とがケーシング内に収納され
ている。
In FIG. 2, the right half divided by the two-dot chain line is the outdoor unit 1, and the left half is the indoor unit 2. The outdoor unit 1 has two compressors 3A and 3B. Compression mechanism 3 and condenser 4
and an outdoor fan 9 are housed in the casing, while the indoor unit 2 includes an air cooling evaporator 5, a pressure reduction mechanism 6, a sensible heat recovery device 7, and indoor fans 10, 11. is housed inside the casing.

上記室内側ユニツト2において、蒸発器5およ
び減圧機構6は夫々2つの冷媒系を形成してお
り、蒸発器5を第1蒸発器5Aと第2蒸発器5B
とに2分するとともに、減圧機構6を両蒸発器5
A,5Bに対応させた第1減圧器6Aと第2減圧
器6Bとから形成している。
In the indoor unit 2, the evaporator 5 and the pressure reducing mechanism 6 each form two refrigerant systems, and the evaporator 5 is connected to the first evaporator 5A and the second evaporator 5B.
At the same time, the decompression mechanism 6 is connected to both evaporators 5 and 5.
It is formed from a first pressure reducer 6A and a second pressure reducer 6B corresponding to the pressure reducers A and 5B.

前記第1、第2蒸発器5A,5Bは、ケーシン
グ内の室内空気流を基準として、第1蒸発器5A
を風上側、第2蒸発器5Bを風下側に夫々配設
し、吸込口12から流入した室内空気を第1蒸発
器5Aで一次冷却した後第2蒸発器5Bで二次冷
却して、冷風にし、吹出口13を介し室内に再送
せしめる。
The first and second evaporators 5A and 5B are based on the indoor air flow inside the casing, and the first evaporator 5A and the second evaporator 5B are
is disposed on the windward side and the second evaporator 5B is disposed on the leeward side, and the indoor air flowing in from the suction port 12 is primarily cooled in the first evaporator 5A and then secondarily cooled in the second evaporator 5B to produce cold air. The air is then re-sent into the room through the air outlet 13.

前記両ユニツト1,2間に構成される冷凍回路
は、第2図々示の如く、凝縮器4を共用として、
第1圧縮機3A→凝縮器4→第1減圧器6A→第
1蒸発器5A→第1圧縮機3Aの冷凍サイクルお
よび第2圧縮機3B→凝縮器4→第2減圧器6B
→第2蒸発器5B→第2圧縮機3Bの冷凍サイク
ルの2冷媒系からなつており、圧縮機3A,3
B、減圧器6A,6Bおよび両蒸発器5A,5B
の容量を適当に選ぶことによつて、第1蒸発器5
Aを室内空気の露点温度よりも高い蒸発温度Te1
で、また、第2蒸発器5Bを前記露点温度よりも
低い蒸発温度Te2で夫々運転し得るよう形成して
いる。
The refrigeration circuit constructed between the two units 1 and 2 shares a condenser 4 as shown in FIG.
First compressor 3A → condenser 4 → first pressure reducer 6A → first evaporator 5A → refrigeration cycle of first compressor 3A and second compressor 3B → condenser 4 → second pressure reducer 6B
→Second evaporator 5B→Second compressor 3B Consists of two refrigerant systems in the refrigeration cycle, compressors 3A, 3
B, pressure reducer 6A, 6B and both evaporators 5A, 5B
By appropriately selecting the capacity of the first evaporator 5
A is the evaporation temperature Te 1 higher than the dew point temperature of the indoor air
Further, the second evaporator 5B is formed so as to be able to operate at an evaporation temperature Te 2 lower than the dew point temperature.

なお、本発明装置は上記例の如く、第1、第2
蒸発器5A,5Bに対応して2基の圧縮機3A,
3Bを設けるほか、往復多気筒圧縮機の場合では
1台であつても良く、また回転式圧縮機の場合で
も1基で複気筒有する構造であればそれでもよ
い。
Note that, as in the above example, the device of the present invention has the first and second
Two compressors 3A, corresponding to the evaporators 5A, 5B,
In addition to providing 3B, in the case of a reciprocating multi-cylinder compressor, it may be one unit, and in the case of a rotary compressor, as long as it has a structure in which one unit has multiple cylinders, it may be used.

また、凝縮器4についても上記例の共用回路形
でなく、蒸発器5A,5Bに対応して2基の凝縮
器を用い、相互に独立した冷凍サイクルが形成さ
れるようにしても勿論差支えない。
Further, the condenser 4 may also be of the shared circuit type as in the above example, but it is of course possible to use two condensers corresponding to the evaporators 5A and 5B to form mutually independent refrigeration cycles. .

以上述べた構造は冷凍系についてであるが、前
記顕熱回収器7はE・E・Rの向上に重要な役割
りを果すために設けたものであつて、熱交換器を
室内側ユニツト2内の空気流路中に介設するに際
し、第1蒸発器5Aと第2蒸発器5Bとの間およ
び第2蒸発器5Bの下流側の各位置で空気流を横
切るように設けている。
The structure described above is for the refrigeration system, but the sensible heat recovery device 7 is provided to play an important role in improving E.E.R. When interposed in the air flow path in the interior, it is provided so as to cross the air flow at each position between the first evaporator 5A and the second evaporator 5B and on the downstream side of the second evaporator 5B.

この顕熱回収器7は上述の配置形態をとらせた
ことにより、第2蒸発器5Bを通過した後の二次
冷却空気が保有する冷熱の一部を第1蒸発器5A
を通過した後の一次冷却空気に熱回収する機能を
有している。
By adopting the above-described arrangement, this sensible heat recovery device 7 transfers a part of the cold heat held by the secondary cooling air after passing through the second evaporator 5B to the first evaporator 5A.
It has the function of recovering heat to the primary cooling air after passing through it.

以上の構造になる装置の運転作動態様を第2図
および第3図によつて説明する。
The operating mode of the apparatus having the above structure will be explained with reference to FIGS. 2 and 3.

圧縮機3A,3B、各フアン9,10,11を
付勢し、顕熱回収器7を回転して冷房運転を行う
と、吸込口12から流入した室内空気イ(以下第
3図参照)は、第1蒸発器5A(蒸発温度Te1
20℃)で一次冷却され顕熱変化するだけで、温度
低下するとともに相対湿度は高くなる。
When the compressors 3A, 3B and the fans 9, 10, 11 are energized and the sensible heat recovery device 7 is rotated to perform cooling operation, the indoor air A flowing in from the suction port 12 (see Fig. 3 below) is , first evaporator 5A (evaporation temperature Te 1
The relative humidity increases as the temperature decreases due to primary cooling (20℃) and sensible heat change.

この状態の空気ロは、顕熱回収器7の冷却側熱
交換部7bによつて、さらに冷却されてハの状態
の空気となり、相対湿度は一層高くなる。
The air B in this state is further cooled by the cooling side heat exchange section 7b of the sensible heat recovery device 7 to become air in the state C, and the relative humidity becomes higher.

次いで、第2蒸発器5B(蒸発温度Te2≒10
℃)で除湿を伴う二次冷却されてニの状態の空気
となり、顕熱回収器7の加熱側交換部7aを通し
て加熱され、ホの状態の空気となり吹出口13か
ら室内に向けて送出される。
Next, the second evaporator 5B (evaporation temperature Te 2 ≒10
The air is subjected to secondary cooling with dehumidification at a temperature (°C) to become the air in state D, which is heated through the heating side exchange part 7a of the sensible heat recovery device 7, and becomes air in state E, which is sent out from the air outlet 13 into the room. .

なお、室内空気イと吹出空気ホとを結ぶ顕熱比
SHFは例えば0.75程度にすることが望ましいもの
であつて、第1蒸発器5A、第2蒸発器5Bおよ
び熱回収器7の能力を適当に選ぶことによつて可
能である。
In addition, the sensible heat ratio connecting indoor air A and outlet air E
It is desirable to set SHF to about 0.75, for example, and this can be achieved by appropriately selecting the capacities of the first evaporator 5A, the second evaporator 5B, and the heat recovery device 7.

こゝで、第1圧縮機3Aにおける単位冷媒循環
量当りの所要動力をW1、冷凍能力をQ1、冷媒循
環量をG1とし、第2圧縮幾3Bにおける同様の
各値をW2,Q2,G2とすると、 その際、凝縮温度Tc=40℃、第1蒸発温度Te1
=20℃、第2蒸発温度Te2=10℃とすると、冷媒
R―22における理論上の値として、 W1=3.3Kca/Kg,W2=4.9Kcal/Kg、 Q1=40.4Kcal/Kg,Q2=39.6Kcal/Kg、 が定まる。G2/G1は次のように計算する。
Here, the required power per unit refrigerant circulation amount in the first compressor 3A is W 1 , the refrigeration capacity is Q 1 , the refrigerant circulation amount is G 1 , and the similar values in the second compression geometry 3B are W 2 , Assuming Q 2 and G 2 , At that time, condensation temperature Tc = 40℃, first evaporation temperature Te 1
= 20℃, second evaporation temperature Te 2 = 10℃, the theoretical values for refrigerant R-22 are W 1 = 3.3Kca/Kg, W 2 = 4.9Kcal/Kg, Q 1 = 40.4Kcal/Kg , Q 2 = 39.6Kcal/Kg, is determined. G 2 /G 1 is calculated as follows.

第1蒸発器5Aを通る空気重量流量をGW1
同じく第2蒸発器5BのそれをGW2とすると、 Gw1・△i1=G1・Q1 ………(B) Gw2・△i2=G2・Q2 ………(C) 但し、△i1、△i2は第4図を参照のこと、 ∴G/G=Gw/Gw×△i/△i×Q
/Q……(D) なお、Gw2=Gw1であり、 また、△i/△i=1.1/1.45≒0.76 ∴G/G=1×1.24×40.4/39.6≒0.78
8 ∴EER=0.86×40.4+0.774×39.6/3
.3+0.774×4.9≒8.62 となる。
The air weight flow rate passing through the first evaporator 5A is GW 1 ,
Similarly, if GW 2 is that of the second evaporator 5B, then Gw 1・△i 1 =G 1・Q 1 ………(B) Gw 2・△i 2 =G 2・Q 2 ………(C) However, please refer to Figure 4 for △i 1 and △i 2 , ∴G 2 /G 1 =Gw 2 /Gw 1 ×△i 2 /△i 1 ×Q
1 /Q 2 ...(D) In addition, Gw 2 = Gw 1 , and △i 2 /△i 1 = 1.1/1.45≒0.76 ∴G 2 /G 1 = 1×1.24×40 .4/39.6≒0.78
8 ∴EER=0.86×40.4+0.774×39.6/3
.. 3+0.774×4.9≒8.62.

一方、これに対して、蒸発器を単冷媒系統とし
た場合の空気調和機では、蒸発温度10℃、凝縮温
度40℃で運転すると、第1図からEERは7.0とな
り、従つて本発明装置の場合は、 8.62−7.0/7.0×100≒23% の向上がはかれることが明らかとなる。
On the other hand, in an air conditioner in which the evaporator is a single refrigerant system, when operated at an evaporation temperature of 10°C and a condensation temperature of 40°C, the EER is 7.0 as shown in Figure 1. In this case, it is clear that an improvement of 8.62-7.0/7.0×100≒23% can be achieved.

このように、E・E・Rの向上が可能であるの
は、次の理由によるからである。
The reason why E・E・R can be improved in this way is as follows.

即ち、蒸発温度の低い第2蒸発器5Bでの冷却
処理能力が空気線図(第3図)の△i2に示されて
いるように単冷媒系統になる一般の空気調和装置
の蒸発器のそれに比べて少なくすることが可能で
ある。
That is, the cooling capacity of the second evaporator 5B, which has a low evaporation temperature, is the same as that of the evaporator of a general air conditioner, which is a single refrigerant system, as shown by △i 2 in the psychrometric diagram (Figure 3). It is possible to reduce it compared to that.

しかして、第2の発明は第4図に示す如く、室
内側ユニツト2には、さらに、一次冷却空気の一
部を顕熱回収器7通過後の吹出口13から吹出さ
せる吹出空気中に混流するためのバイパス路8
を、前記ユニツト2内の空気流通路中に設けてい
るが、第4図に例示するように、顕熱回収器7が
回転蓄熱式構造のものである場合には、半分の加
熱側流通路と半分の冷却側流通路とを仕切る仕切
壁部に開口を設けることによつて簡単にバイパス
路を形成し得る。
As shown in FIG. 4, the second invention further includes a mixed flow in the indoor unit 2 in which a part of the primary cooling air is blown out from the outlet 13 after passing through the sensible heat recovery device 7. Bypass path 8 for
is provided in the air flow path in the unit 2, but if the sensible heat recovery device 7 is of a rotating heat storage type structure as illustrated in FIG. A bypass path can be easily formed by providing an opening in the partition wall that partitions the cooling side flow path and the cooling side flow path.

なお、バイパス路8に空気を円滑に流通せしめ
るために、室内側空気循環系を2基のフアン1
0,11による直列送風方式となし、後段の吹出
口13に臨ませたフアン11の吸込口に前記バイ
パス路8が連通するようにしている。
In addition, in order to smoothly circulate air through the bypass path 8, the indoor air circulation system is equipped with two fans 1.
0 and 11, and the bypass passage 8 communicates with the suction port of the fan 11 facing the blowout port 13 at the rear stage.

また、上記バイパス路8には、バイパス風量を
増減調節するための風量調節装置例えばダンパー
を介在せしめている。
Further, the bypass passage 8 is provided with an air volume adjusting device, such as a damper, for increasing or decreasing the bypass air volume.

ここで、第4図々示装置は前述の如く、顕熱回
収器7に回転蓄熱構造のものを使用した例を示し
ているが、第5図々示装置は自然環熱移動方式に
よる顕熱回収器7を採用した例であり、凝縮器7
aを上部、蒸発器7bを下部に配置し両器7a,
7bを液管とガス管で循環的に接続し、この循環
系路中に凝縮性ガス冷媒を適当量封入してなる公
知の熱回収装置である。
Here, as mentioned above, the device shown in the fourth figure shows an example in which the sensible heat recovery device 7 has a rotating heat storage structure. This is an example in which the recovery device 7 is used, and the condenser 7
a is placed in the upper part, and the evaporator 7b is placed in the lower part, and both vessels 7a,
7b is cyclically connected through a liquid pipe and a gas pipe, and an appropriate amount of condensable gas refrigerant is sealed in this circulation path.

この装置例は、さらに室外側ユニツト1、室内
側ユニツト2を下部、上部に配置した一体構造に
なるコンパクトなパツケージ形となした特徴を有
し、実用装置として好適なものである。
This example of the device is further characterized by being in the form of a compact package with an integrated structure in which the outdoor unit 1 and the indoor unit 2 are arranged at the bottom and the top, and is suitable as a practical device.

なお、本発明装置に係る顕熱回収器7は、上述
の両例のほかに直交流静止形熱回収器、ヒートパ
イプ形熱回収器なども適用可能である。
Note that, in addition to the above-mentioned two examples, a cross-flow stationary heat recovery device, a heat pipe type heat recovery device, etc. can also be applied to the sensible heat recovery device 7 according to the device of the present invention.

上述の構造になる装置の運転作動態様を、第4
図および第6図によつて次に説明する。
The operation mode of the device having the above structure is explained in the fourth section.
This will be explained below with reference to the figures and FIG.

圧縮機3A,3B、各フアン9,10,11を
付勢し、顕熱回収器7を回転して冷房運転を行う
と、吸込口12から流入した室内空気イ(以下第
6図参照)は、第1蒸発器5A(蒸発温度Te1
20℃)で一次冷却された顕熱変化するだけで、温
度低下するとともに相対湿度は高くなる。
When the compressors 3A, 3B and the fans 9, 10, 11 are energized and the sensible heat recovery device 7 is rotated to perform cooling operation, the indoor air A flowing in from the suction port 12 (see Fig. 6 below) is , first evaporator 5A (evaporation temperature Te 1
The relative humidity increases as the temperature decreases just by changing the sensible heat caused by primary cooling (20℃).

この状態の空気ロの一部は、顕熱回収器7の冷
却側熱交換部7bによつて、さらに冷却されてハ
の状態の空気となり、相対湿度は一層高くなる。
A part of the air in this state is further cooled by the cooling-side heat exchange section 7b of the sensible heat recovery device 7 to become air in the state shown in C, and the relative humidity becomes higher.

次いで、第2蒸発器5B(蒸発温度Te2≒10
℃)で除湿を伴う二次冷却されてニの状態の空気
となり、顕熱回収器7の加熱側熱交換部7aを通
過して加熱され、ホの状態の空気となる。
Next, the second evaporator 5B (evaporation temperature Te 2 ≒10
The air is subjected to secondary cooling with dehumidification at a temperature of 100° C.) to become the air in state (d), passes through the heating-side heat exchange section 7a of the sensible heat recovery device 7, is heated, and becomes the air in state (e).

この空気は、ロの状態の空気の残りがバイパス
路8から流入してくるので、混和されてヘの状態
の空気となり、しかる後吹出口13から室内に向
けて送出される。
This air is mixed with the rest of the air in the state B as it flows in from the bypass passage 8 to become the air in the state B, and is then sent out from the air outlet 13 into the room.

なお、室内空気イとこのヘの状態の吹出空気を
結ぶ顕熱比SHFは、例えばSHF=0.75程度にする
ことが望ましく、従つて風量調節用ダンパーを操
作してバイパス風量を加減させるようにしてい
る。
In addition, it is desirable that the sensible heat ratio SHF connecting indoor air A and the blown air in this state is set to, for example, about SHF = 0.75, so the bypass air volume can be adjusted by operating the air volume adjustment damper. There is.

上記装置におけるE・E・Rを第1番目の発明
に係る装置の計算例と同要領にて計算すると下記
の如くなる(諸元については下記以外は前記条件
と同じである)。
When E·E·R in the above device is calculated in the same manner as in the calculation example for the device according to the first invention, the results are as follows (the specifications are the same as the above conditions except for the following).

即ち、Gw/Gwは第6図において線分ロ―ヘ/
線分 ロ―ホであつて空気線図上から計算した結果、
0.623となる。
That is, Gw 2 /Gw 1 is the line segment Loh/Gw 1 in FIG.
As a result of calculating from the line segment Roho on the psychrometric diagram,
It becomes 0.623.

また、 △i/△i=1.8/1.45≒1.24となる。 Further, △i 2 /△i 1 =1.8/1.45≒1.24.

∴G/G=0.623×1.24×40.4/39.6≒0
.788 ∴EER=0.86×40.4+0.788×39.6/3
.3+0.788×4.9≒8.60 となる。
∴G 2 /G 1 = 0.623×1.24×40.4/39.6≒0
.788 ∴EER=0.86×40.4+0.788×39.6/3
.. 3+0.788×4.9≒8.60.

一方、これに対して、蒸発器を単冷媒系統とし
た場合の空気調和機では、蒸発温度10℃、凝縮温
度40℃で運転すると、第1図からEERは7.0とな
り、従つて、本発明装置の場合は、 8.60−7.0/7.0×100≒23% の向上がはかれることが明らかとなる。
On the other hand, in an air conditioner in which the evaporator is a single refrigerant system, when operated at an evaporation temperature of 10°C and a condensation temperature of 40°C, the EER is 7.0 as shown in Figure 1. In the case of , it is clear that an improvement of 8.60-7.0/7.0×100≒23% can be achieved.

このように、E・E・Rの向上が可能であるの
は、次の理由によるからである。即ち、EERの
悪い低い蒸発温度Te2で運転する第2圧縮機3B
における冷凍処理能力を、顕熱回収器7およびバ
イパス路8を用いることにより、従来の単冷媒系
のものに比し小さくすることが可能になつたこと
に依つている。
The reason why E・E・R can be improved in this way is as follows. In other words, the second compressor 3B operates at a low evaporation temperature Te 2 with poor EER.
This is due to the fact that by using the sensible heat recovery device 7 and the bypass path 8, it has become possible to reduce the refrigeration processing capacity of the refrigerating system compared to that of a conventional single refrigerant system.

なお、上記例におけるバイパス路8を用いない
場合には、第2蒸発器5Bを通る室内空気量は上
記例より増加し、第2圧縮機3Bの冷凍処理能力
は増加するが吹出空気状態を上記例と同様に第4
図のヘの状態にしようとすれば、図からわかるよ
うに第2蒸発器5Bの蒸発温度Te2は上記例より
高くとることが可能となり、やはりEERを高く
することができる。
Note that when the bypass path 8 in the above example is not used, the amount of indoor air passing through the second evaporator 5B increases compared to the above example, and the refrigeration processing capacity of the second compressor 3B increases, but the blown air condition does not change as described above. Similarly to the example, the fourth
As shown in the figure, if the state shown in FIG .

以上は理論上のEERに対する効果であるが実
際においては更に第6図から明らかなように、顕
熱回収器7出口の状態点ハの相対湿度は非常に高
くすることが可能であつて、状態ハから状態ニに
冷却減湿する際の第2蒸発器5Bの蒸発温度Te2
は、従来の単冷媒系統の場合よりも高くとれるこ
とを意味し、これがE・E・Rの向上につなが
る。
The above is a theoretical effect on EER, but in reality, as is clear from FIG. Evaporation temperature Te 2 of the second evaporator 5B when cooling and dehumidifying from state C to state D
This means that it can be higher than in the case of a conventional single refrigerant system, which leads to an improvement in E・E・R.

さらに、第1圧縮機3Aにおける吸入ガス圧力
が通常の単冷媒系統の場合よりも高くなつて、冷
媒ガスの比体積が減少するので同一容量を較べた
場合に圧縮機能力が増大することと、圧縮比も小
さくなるために圧縮機内部におけるガス洩れ、逆
流、機械摩擦損失等の値が何れも小さくなり効率
が良くなる効果があり、上記EER、向上の比率
はさらに増大する。
Furthermore, the suction gas pressure in the first compressor 3A becomes higher than in the case of a normal single refrigerant system, and the specific volume of refrigerant gas decreases, so the compression function increases when comparing the same capacity, Since the compression ratio is also reduced, the values of gas leakage, backflow, mechanical friction loss, etc. inside the compressor are all reduced, which has the effect of improving efficiency, and the above-mentioned rate of improvement in EER further increases.

次に第7図および第8図について説明すると、
これは前記例の装置を変型したものであつて、第
2蒸発器5Bをさらに上流側の蒸発器5B−
下流側の蒸発器5B−に2分して、前者の蒸発
温度12℃を後者10℃に較べて高く、かつ室内空気
の露点温度よりも低く設定している。
Next, to explain Fig. 7 and Fig. 8,
This is a modification of the device of the above example, in which the second evaporator 5B is further divided into an upstream evaporator 5B- 1 and a downstream evaporator 5B- 2 , and the evaporation temperature of the former is 12°C. The temperature is set higher than the latter 10℃, and lower than the dew point temperature of indoor air.

かゝる構造としたことにより、前述例と同様の
試算をしたところ、E・E・R≒8.62となり、僅
かではあるが、EERの向上がみられる。
With such a structure, when the same calculation as in the above example was performed, E・E・R≒8.62, which shows that the EER is improved, albeit slightly.

なお、運転方法として、室内の湿度が低くなつ
てきて除湿する必要がない時は、第2蒸発器5B
を停止し、第1蒸発器5Aのみを運転すれば、さ
らにEERが向上する。また、除湿だけを必要の
時は、第2蒸発器5Bのみを運転し第1蒸発器5
Aを停止してもEERが向上することは勿論であ
る。
In addition, as an operating method, when the indoor humidity is low and there is no need to dehumidify, the second evaporator 5B
If the evaporator 5A is stopped and only the first evaporator 5A is operated, the EER can be further improved. In addition, when only dehumidification is required, only the second evaporator 5B is operated and the first evaporator 5B is operated.
Of course, EER will improve even if A is stopped.

本発明は、以上の説明によつて明らかにした如
く、第1の発明は、圧縮機構3および凝縮器4を
有する室外側ユニツト1と、第1蒸発器5A、第
2蒸発器5B、および顕熱回収器7を有する室内
側ユニツト2とからなり、室内側ユニツト2にお
ける室内空気流の流れ方向を基準として、第1蒸
発器5Aは上流側、第2蒸発器5Bは下流側に
夫々配設して、第1蒸発器5Aを第2蒸発器5B
の蒸発温度よりも高い蒸発温度で夫々運転する冷
凍回路を前記両ユニツト1,2間に形成する一
方、前記顕熱回収器7は、熱交換器を第2蒸発器
5Bに対し上流側および下流側に配設して、第2
蒸発器5Bを通過した後の二次冷却空気が保有す
る冷熱の一部を第1蒸発器5Aを通過した後の一
次冷却空気に熱回収可能となした構成を特徴とす
るものであるから、従来の冷却能力を確保するた
めに室内空気温度と蒸発温度との間に大きい温度
差を保たせて1個の蒸発器で冷却運転する所謂単
系統蒸発器方式の空気調和装置では、限界とされ
ていたE・E・Rをさらに向上することが可能と
なり、省エネルギーを果し得る経済的な空気調和
装置である。
As clarified by the above description, the first invention includes an outdoor unit 1 having a compression mechanism 3 and a condenser 4, a first evaporator 5A, a second evaporator 5B, and a refrigerator. It consists of an indoor unit 2 having a heat recovery device 7, and the first evaporator 5A is disposed on the upstream side and the second evaporator 5B is disposed on the downstream side with respect to the flow direction of the indoor air flow in the indoor unit 2. Then, the first evaporator 5A is replaced with the second evaporator 5B.
A refrigeration circuit is formed between the two units 1 and 2, each operating at an evaporation temperature higher than that of placed on the side, the second
It is characterized by a configuration in which a part of the cold heat held by the secondary cooling air after passing through the evaporator 5B can be recovered into the primary cooling air after passing through the first evaporator 5A. Conventional so-called single-system evaporator type air conditioners, which maintain a large temperature difference between indoor air temperature and evaporation temperature and perform cooling operation with one evaporator in order to maintain cooling capacity, have reached their limits. This is an economical air conditioner that can save energy by further improving the E・E・R.

さらに実施態様項の如くすれば顕熱変化のほか
に潜熱変化も利用でき効率はさらに向上するもの
である。
Furthermore, according to the embodiments, latent heat changes can be utilized in addition to sensible heat changes, further improving efficiency.

つぎに第2の発明はバイパス路を設けたことに
より、第2蒸発器を通る室内空気量を減少させ、
蒸発温度が低くE・E・Rの悪い第2圧縮機の冷
凍処理能力を減少させることができるので、E・
E・Rを向上させることができるものである。
Next, the second invention reduces the amount of indoor air passing through the second evaporator by providing a bypass path,
Since the refrigeration processing capacity of the second compressor, which has a low evaporation temperature and poor E・E・R, can be reduced, the E・E・R is low.
It is possible to improve E/R.

さらに第2の発明は実施態様項の如くすれば、
快適な空調条件は保つたまゝ、E・E・Rを向上
させることができる。
Furthermore, if the second invention is as described in the embodiment section,
E・E・R can be improved while maintaining comfortable air conditioning conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は冷凍装置における圧縮機の理論エネル
ギー有効比と蒸発温度との関係を示す線図、第2
図は第1の発明に係る装置例の冷凍回路図、第3
図は同じく運転特性を説明するための空気線図、
第4図は第2の発明に係る装置例の冷凍回路図、
第5図は本発明装置の具体的構造を略示する正面
図、第6図は第4図々示の本発明装置の運転特性
を説明するための空気線図、第7図および第8図
は本発明装置の例に係る略示構造図および空気線
図である。 1……室外側ユニツト、2…室内側ユニツト、
3……圧縮機構、3A……第1圧縮機、3B……
第2圧縮機、4……凝縮器、5……蒸発器、5A
……第1蒸発器、5B……第2蒸発器、6A,6
B……減圧器、7……顕熱回収器、8……バイパ
ス路、9……室外側フアン、10,11……室内
側フアン、12……吸込口、13……吹出口。
Figure 1 is a diagram showing the relationship between the theoretical effective energy ratio of the compressor and the evaporation temperature in a refrigeration system.
The figure is a refrigeration circuit diagram of an example of the device according to the first invention,
The figure is also an psychrometric diagram to explain the driving characteristics.
FIG. 4 is a refrigeration circuit diagram of an example of a device according to the second invention;
FIG. 5 is a front view schematically showing the specific structure of the device of the present invention, FIG. 6 is an psychrometric diagram for explaining the operating characteristics of the device of the present invention shown in FIG. 4, and FIGS. 7 and 8. 1 is a schematic structural diagram and an psychrometric diagram according to an example of the device of the present invention. 1...Outdoor unit, 2...Indoor unit,
3... Compression mechanism, 3A... First compressor, 3B...
2nd compressor, 4... Condenser, 5... Evaporator, 5A
...First evaporator, 5B...Second evaporator, 6A, 6
B... Pressure reducer, 7... Sensible heat recovery device, 8... Bypass path, 9... Outdoor side fan, 10, 11... Indoor side fan, 12... Suction port, 13... Air outlet.

Claims (1)

【特許請求の範囲】 1 圧縮機構3および凝縮器4を有する室外側ユ
ニツト1と、第1蒸発器5A、第2蒸発器5Bお
よび顕熱回収器7を有する室内側ユニツト2とか
らなり、室内側ユニツト2における室内空気流の
流れ方向を基準として、第1蒸発器5Aは上流
側、第2蒸発器5Bは下流側に夫々配設して、第
1蒸発器5Aを第2蒸発器5Bの蒸発温度よりも
高い蒸発温度で夫々運転する冷凍回路を前記両ユ
ニツト1,2間に形成する一方、前記顕熱回収器
7は、熱交換器を第2蒸発器5Bに対し上流側お
よび下流側に配設して、第2蒸発器5Bを通過し
た後の二次冷却空気が保有する冷熱の一部を、第
1蒸発器5Aを通過した後の一次冷却空気に熱回
収可能となしたことを特徴とする空気調和機。 2 前記第1蒸発器5Aを室内空気の露点温度よ
りも高い蒸発温度で、第2蒸発器5Bを前記露点
温度よりも低い蒸発温度で夫々運転する特許請求
の範囲第1項記載の空気調和機。 3 圧縮機構3および凝縮器4を有する室外側ユ
ニツト1と、第1蒸発器5A第2蒸発器5Bおよ
び顕熱回収器7を有する室内側ユニツト2とから
なり、室内側ユニツト2における室内空気流の流
れ方向を基準として、第1蒸発器5Aは上流側、
第2蒸発器5Bは下流側に夫々配設して、第1蒸
発器5Aを室内空気の露点温度よりも高い蒸発温
度で、第2蒸発器5Bを前記露点温度よりも低い
蒸発温度で夫々運転する冷凍回路を前記両ユニツ
ト1,2間に形成する一方、前記顕熱回収器7
は、熱交換器を第2蒸発器5Bに対し上流側およ
び下流側に配設して、第2蒸発器5Bを通過した
後の二次冷却空気が保有する冷熱の一部を、第1
蒸発器5Aを通過した後の一次冷却空気に熱回収
可能となし、さらに第1蒸発器5Aを通過した後
の一次冷却空気の一部を顕熱回収器7を通過した
後の吹出冷却空気に混流するバイパス路8を室内
側ユニツト2内に設けたことを特徴とする空気調
和装置。 4 バイパス路8が、吸込空気と吹出空気との顕
熱比を一定に保持すべくバイパス風量調節装置を
介在して有する特許請求の範囲第3項記載の空気
調和装置。
[Scope of Claims] 1 Consists of an outdoor unit 1 having a compression mechanism 3 and a condenser 4, and an indoor unit 2 having a first evaporator 5A, a second evaporator 5B, and a sensible heat recovery device 7. The first evaporator 5A is disposed on the upstream side and the second evaporator 5B is disposed on the downstream side with respect to the flow direction of the indoor air flow in the inner unit 2. Refrigeration circuits each operating at an evaporation temperature higher than the evaporation temperature are formed between the two units 1 and 2, while the sensible heat recovery device 7 has a heat exchanger located upstream and downstream of the second evaporator 5B. A part of the cold heat held by the secondary cooling air after passing through the second evaporator 5B can be recovered to the primary cooling air after passing through the first evaporator 5A. An air conditioner featuring: 2. The air conditioner according to claim 1, wherein the first evaporator 5A is operated at an evaporation temperature higher than the dew point temperature of indoor air, and the second evaporator 5B is operated at an evaporation temperature lower than the dew point temperature. . 3 Consists of an outdoor unit 1 having a compression mechanism 3 and a condenser 4, and an indoor unit 2 having a first evaporator 5A, a second evaporator 5B, and a sensible heat recovery device 7, and indoor air flow in the indoor unit 2. The first evaporator 5A is located on the upstream side with respect to the flow direction of
The second evaporators 5B are arranged on the downstream side, and the first evaporator 5A is operated at an evaporation temperature higher than the dew point temperature of indoor air, and the second evaporator 5B is operated at an evaporation temperature lower than the dew point temperature. A refrigeration circuit is formed between the two units 1 and 2, while the sensible heat recovery device 7
In this method, heat exchangers are arranged upstream and downstream of the second evaporator 5B, and a part of the cold heat held by the secondary cooling air after passing through the second evaporator 5B is transferred to the first evaporator 5B.
Heat can be recovered to the primary cooling air after passing through the evaporator 5A, and a part of the primary cooling air after passing through the first evaporator 5A is converted into the blowout cooling air after passing through the sensible heat recovery device 7. An air conditioner characterized in that a bypass passage 8 for mixed flow is provided in an indoor unit 2. 4. The air conditioner according to claim 3, wherein the bypass passage 8 has a bypass air volume adjusting device interposed therebetween in order to maintain a constant sensible heat ratio between the intake air and the blown air.
JP14569679A 1979-11-10 1979-11-10 Air conditioner Granted JPS5668738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14569679A JPS5668738A (en) 1979-11-10 1979-11-10 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14569679A JPS5668738A (en) 1979-11-10 1979-11-10 Air conditioner

Publications (2)

Publication Number Publication Date
JPS5668738A JPS5668738A (en) 1981-06-09
JPS6150211B2 true JPS6150211B2 (en) 1986-11-01

Family

ID=15390983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14569679A Granted JPS5668738A (en) 1979-11-10 1979-11-10 Air conditioner

Country Status (1)

Country Link
JP (1) JPS5668738A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1170055A (en) * 1982-02-17 1984-07-03 Roger Williams Central dehumidification (tandem) system
JPH05112962A (en) * 1991-10-21 1993-05-07 Shimosato Kensetsu Kk Attachment for stripesodding
KR20050037852A (en) * 2003-10-20 2005-04-25 엘에스전선 주식회사 Multi compression-centrifugal chiller with split shell-heat exchangers
JP4885481B2 (en) * 2005-05-30 2012-02-29 株式会社前川製作所 Cooling device operation method
CN107726480B (en) * 2017-09-28 2020-07-14 上海交通大学 Semi-decoupling type graded dehumidification and cooling dehumidification heat pump system and method
JP7211299B2 (en) * 2019-07-26 2023-01-24 三菱電機株式会社 dehumidifier

Also Published As

Publication number Publication date
JPS5668738A (en) 1981-06-09

Similar Documents

Publication Publication Date Title
JP5068235B2 (en) Refrigeration air conditioner
Zhang et al. Performance analysis of a no-frost hybrid air conditioning system with integrated liquid desiccant dehumidification
US4104890A (en) Air conditioning apparatus
WO2003095906A1 (en) Thermo siphon chiller refrigerator for use in cold district
US9651282B2 (en) Refrigeration and air-conditioning apparatus and humidity control device
JP3283706B2 (en) Air conditioner
CN107036194B (en) High-temperature water-cooling double-cold-source dehumidifying fresh air ventilator unit
WO2020244207A1 (en) Air conditioning system
JP2000274879A (en) Air conditioner
JPH10300128A (en) Cooling/dehumidifying apparatus of refrigerant natural circulation type air air-conditioning apparatus combinedly provided therewith
JP2006317012A (en) Air conditioner
JPS6150211B2 (en)
JP2002228187A (en) Outdoor-air treating air-conditioner of air-cooled heat- pump type
JPS602505Y2 (en) air conditioner
JPH0420764A (en) Air conditioner
CN205957320U (en) Air conditioner device between multi -functional dual system row
JP2760500B2 (en) Multi-room air conditioner
JP5548921B2 (en) Heat source air conditioner
JP2002250540A (en) Thin heat pump type fresh air processing air conditioner
JP2766580B2 (en) Air conditioner
JP2001330309A (en) Air conditioner
JPS6323456B2 (en)
JPS5852924A (en) Air conditioner utilizing condensing heat of coolant
JPH06337176A (en) Air-conditioner
JPS6218933Y2 (en)