JP5548921B2 - Heat source air conditioner - Google Patents

Heat source air conditioner Download PDF

Info

Publication number
JP5548921B2
JP5548921B2 JP2009291667A JP2009291667A JP5548921B2 JP 5548921 B2 JP5548921 B2 JP 5548921B2 JP 2009291667 A JP2009291667 A JP 2009291667A JP 2009291667 A JP2009291667 A JP 2009291667A JP 5548921 B2 JP5548921 B2 JP 5548921B2
Authority
JP
Japan
Prior art keywords
air
indoor
outdoor
heat
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009291667A
Other languages
Japanese (ja)
Other versions
JP2011133146A (en
Inventor
健児 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GREEN FRONTIER TECHNOLOGY CORP.
Original Assignee
GREEN FRONTIER TECHNOLOGY CORP.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GREEN FRONTIER TECHNOLOGY CORP. filed Critical GREEN FRONTIER TECHNOLOGY CORP.
Priority to JP2009291667A priority Critical patent/JP5548921B2/en
Publication of JP2011133146A publication Critical patent/JP2011133146A/en
Application granted granted Critical
Publication of JP5548921B2 publication Critical patent/JP5548921B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Central Air Conditioning (AREA)

Description

本発明は太陽熱、燃料電池の排熱、ガスエンジン発電装置の排熱など、低温度の熱源を利用して室内空気を除湿し、且つ換気による空気の温度と湿度を高めて排気させることにより冷却し、これらを巧みに組み合わせることにより高いエネルギー効率で冷房を行うことが可能な熱源を利用した空気調和装置を実現させるためのキー技術について提案している。この分野の冷房装置としては吸収式冷凍機、吸着式冷房装置、デシカント除湿装置などが既に実現されて利用されているが何れもエネルギー効率が低い。換気との巧みな組み合わせによる優れた冷房装置の事例は見られない。 The present invention uses a low-temperature heat source such as solar heat, exhaust heat from a fuel cell, exhaust heat from a gas engine power generator, etc. to dehumidify indoor air, and raises the temperature and humidity of the air by ventilation to cool the exhaust. In addition, a key technology for realizing an air conditioner using a heat source capable of performing cooling with high energy efficiency by skillfully combining them is proposed. As cooling devices in this field, absorption refrigerators, adsorption cooling devices, desiccant dehumidifying devices and the like have already been realized and used, but all have low energy efficiency. There are no examples of good cooling systems with skillful combination with ventilation.

従来の吸収式などの熱源を利用した冷房乃至は冷凍装置では85℃程度の比較的高温度の低温熱源を利用するもので、太陽熱など60℃程度の低温度熱源を利用して高性能で経済性で有効な装置を実現することが出来なかったため、高温度の工場排熱、特殊熱機器排熱などの破棄すべき排熱があるところ、乃至はガス燃料などを消費することが許されるところで利用されるものが多く、その市場は限定的であった。この為、装置の生産台数は限定的で1000台/年規模の事業者が数社であり、電動式の圧縮冷凍サイクル方式の通常のエアコンの事業者、例えば中国の事業者が1000万台/年もの多量な生産をしている多数の事業者と比較して製品のコストの差異は大きな隔たりがあった。   A conventional cooling or refrigeration system using a heat source such as an absorption type uses a relatively low temperature heat source of about 85 ° C., and uses a low temperature heat source of about 60 ° C. such as solar heat for high performance and economy. Because it was not possible to realize an effective and effective device, there is exhaust heat that should be discarded such as high-temperature factory exhaust heat and special heat equipment exhaust heat, or where gas fuel is allowed to be consumed Many were used and the market was limited. For this reason, the production volume of the equipment is limited, and there are several companies with a scale of 1000 units / year, and operators of electric air-conditioners of the electric compression refrigeration cycle method, for example, 10 million units / Compared with a large number of companies that produce a large amount of the year, there was a big gap in the cost of the product.

しかも、熱源を利用した冷凍装置や冷房装置では複雑な特殊構造な冷凍装置など、例えば二重効用、三重効用吸収式冷凍機など、を除いて、一般に冷房に用いられる吸着式除湿機や冷房機などに於いてはエネルギー効率(冷房能力と消費熱源熱量の比)を示すCOPは0.5程度と低く、即ち熱源熱量1に対し0.5程度の冷房能力の熱量しか得られず、必要な冷房能力を得るのに熱源熱量が多量に必要であるという欠点があった。また装置の容積の点でも電動式圧縮機を用いた空調装置に比べ2倍以上と大きく、従って製品コストも極めて高額にならざるを得なかった。
これを打開するための有効な手段として低温度の熱源を用いたデシカント除湿機構と、エネルギー消費を最小限に抑えて作動することができる換気の排熱を巧みに利用した冷房機構の組みあわせは有効な方式である点に着目し、この方式の具体化、実現化の技術が本発明の技術分野である。
Moreover, with the exception of refrigeration devices that use heat sources and refrigeration devices with complex special structures, such as double-effect and triple-effect absorption refrigeration machines, adsorption dehumidifiers and chillers that are generally used for cooling are used. The COP indicating the energy efficiency (ratio of the cooling capacity to the heat source heat consumption) is as low as about 0.5, that is, only the heat quantity of the cooling capacity of about 0.5 for the heat source heat quantity of 1 can be obtained. There is a drawback that a large amount of heat source heat is required to obtain cooling capacity. Further, the volume of the apparatus is more than twice as large as that of an air conditioner using an electric compressor, and thus the product cost has to be extremely high.
A combination of a desiccant dehumidification mechanism using a low-temperature heat source and a cooling mechanism that skillfully utilizes exhaust heat of ventilation that can operate with minimal energy consumption as an effective means to overcome this. Focusing on the fact that it is an effective method, the technology for realizing and realizing this method is the technical field of the present invention.

特許文献1及び2には何れも換気の排熱の空気の温湿度即ちエンタルピーを高めてその結果室内空間を冷房する方式ではあるが、何れも加熱源乃至は冷却源などを用いている。即ち外部エネルギーを利用して換気冷房乃至は換気除湿を行っている事例であり、そのエネルギー効率は優れているとは云えない。確かに、これらの技術は建物の内部空間から単純に室内空気を排気する方式に比べて換気による空調エネルギーの損失が減少する効果を生じている。しかも何れも換気エレメント乃至は全熱交換器と呼ばれる室内外空気間の温度と湿度即ち全熱の交換器を設置して換気によるエネルギー損失を低減させている効果も有しているし、デシカント除湿機能や除湿運転機能を備えている点では湿度制御による空調の快適性確保という点でも優れたシステムである。 In both Patent Documents 1 and 2, although the temperature and humidity, that is, the enthalpy, of exhaust air exhausted by ventilation is increased to cool the indoor space as a result, both use a heating source or a cooling source. In other words, this is an example of performing ventilation cooling or ventilation dehumidification using external energy, and it cannot be said that the energy efficiency is excellent. Certainly, these technologies have the effect of reducing the loss of air-conditioning energy due to ventilation compared to a system in which room air is simply exhausted from the interior space of a building. Moreover, both have the effect of reducing the energy loss due to ventilation by installing a temperature and humidity between the indoor and outdoor air called a ventilation element or total heat exchanger, that is, a total heat exchanger, and desiccant dehumidification In terms of having a function and a dehumidifying operation function, it is an excellent system in terms of ensuring air-conditioning comfort through humidity control.

しかしながら、前述した加熱乃至は冷却にエネルギー源を消費している事に加え、デシカント除湿機能と排気を利用した換気空調の間には相乗効果が無く、消費エネルギー削減効果が限定的である。即ち特許文献1では冷却器と再熱器の実現に多大なエネルギーを消費しており、特許文献2では冷却器6、7と加熱再手段4にやはり多大なエネルギーを消費している。即ち除湿の機能のためには兎も角、冷却機能にエネルギー消費を押さえた技術は見ることが出来ない。 However, in addition to consuming the energy source for heating or cooling as described above, there is no synergistic effect between the desiccant dehumidifying function and the ventilation air-conditioning using exhaust, and the energy consumption reduction effect is limited. That is, in Patent Document 1, a great amount of energy is consumed for realizing the cooler and the reheater, and in Patent Document 2, a great amount of energy is also consumed for the coolers 6 and 7 and the heating re-means 4. In other words, for the function of dehumidification, it is impossible to see a technology that suppresses energy consumption in the corner and cooling function.

特開平06−123444号広報Japanese Laid-Open Patent Publication No. 06-123444 特開2000−111096号広報JP 2000-1111096 PR

本発明が解決しようとしている課題は、動力源乃至は熱源をほとんど消費することなく 室内空間を冷却できる装置の実現と、極めて広範囲に獲得できる低温度の熱源、即ち太陽熱で得られる様な60℃前後の温熱や、70℃程度の低温度作動型の燃料電池の65℃前後の排熱など、比較的低温度の温熱エネルギーや自然エネルギーを利用して作動ができる除湿装置の実現、さらにはその双方を組み合わせて効果を高める事ができる冷房システムの実現である。その狙いとは総合エネルギー効率であるCOPが1.2以上の高効率であり、冷房運転による室内空間の温湿度及び空気の流れなどによって影響される冷房快適性であり、且つコンパクトで民生用機器として実用性に耐える経済性を持ったシステムの実現である。 The problems to be solved by the present invention are the realization of a device that can cool an indoor space with little consumption of a power source or a heat source, and a low-temperature heat source that can be obtained in a very wide range, that is, 60 ° C. that can be obtained by solar heat. Realization of a dehumidifying device that can operate using relatively low temperature thermal energy and natural energy, such as heat before and after, exhaust heat around 65 ° C. of a low temperature operation type fuel cell of about 70 ° C., and further It is the realization of a cooling system that can enhance the effect by combining both. The aim is a high-efficiency COP of 1.2 or more, which is the total energy efficiency, cooling comfort that is affected by the temperature and humidity of the indoor space and air flow, etc., due to cooling operation, and compact, consumer equipment The realization of an economical system that can withstand practical use.

具体的な課題として、上記の熱源を利用した装置として現在実現されているデシカント冷房装置のエネルギー効率COPは0.5程度で消費熱量に対し50%の冷房熱量しか得られないため、必要な冷房熱量を得るには多量のエネルギーが必要で装置の容積は実用性が失われてしまうほど大型となるという問題がある。この問題を解消するには、COPが高いエネルギー効率の性能を有する装置であることが重要であり、発明者らはその目標値を1.2に設定している。例えば住宅用の5000KCal/h(5.8KW)の冷房装置を考えた場合、現在実現されている民生用のCOP0.5レベルのデシカント吸着式冷房装置と、本発明が目標としているCOP1.2以上の高性能な冷房装置を運転するときに必要となる太陽熱温水装置の容量の違いは大きなものがある。 As a specific problem, the energy efficiency COP of the desiccant cooling device currently realized as a device using the above heat source is about 0.5, and only 50% of the heat consumption can be obtained. In order to obtain the amount of heat, a large amount of energy is required, and there is a problem that the volume of the apparatus becomes so large that practicality is lost. In order to solve this problem, it is important that the COP is a device having high energy efficiency performance, and the inventors set the target value to 1.2. For example, when considering a 5000 Kcal / h (5.8 KW) air conditioner for residential use, a COP 0.5 level desiccant adsorption type air conditioner currently used for consumer use and a COP of 1.2 or more, which is the target of the present invention There are significant differences in the capacity of solar water heaters that are required when operating high-performance cooling systems.

即ちそのパネルの太陽熱の集熱特性が平均的な特性である400W/平米の場合、その必要なパネルの総面積は12平米対29平米と2.4倍の差があり、COP0.5のままではパネルの面積が大きいために生じるコスト増加、屋根など設置場所の制約、工事費の増加などに直接結びつくという問題がある。同時に装置は大型になり、製品コストは高くなり、このため普及が進まないでいる。
さらに重要な課題として、装置の容積とコストが挙げられる。デシカント冷房装置の全体のコストを考えると、装置を小型化することによる材料費の低減と同時に、デシカントに利用する吸着材を塗布した吸着材エレメントの材料費の低減が重要である。従って、この吸着材エレメントを如何に小型化してその材料費を低減させ、冷房装置を小型化してコストの低減を図り、その状態で冷房能力を確保することが重要な課題となる。
In other words, in the case of 400 W / sq.m, where the solar heat collection characteristic of the panel is an average characteristic, the total area of the required panel is 2.4 times as large as 12 square meters versus 29 square meters, and remains at COP 0.5. However, there are problems such as an increase in costs caused by the large panel area, restrictions on installation locations such as roofs, and an increase in construction costs. At the same time, the device becomes larger and the product cost becomes higher, so that it has not become popular.
A further important issue is the volume and cost of the device. Considering the overall cost of the desiccant cooling device, it is important to reduce the material cost of the adsorbent element coated with the adsorbent used for the desiccant as well as reducing the material cost by downsizing the device. Accordingly, it is an important issue how to reduce the size of the adsorbent element to reduce the material cost, reduce the size of the cooling device to reduce the cost, and ensure the cooling capacity in that state.

その目標値としては、現在普及している圧縮機と冷凍サイクル持った電気モーターを駆動源としたエアコンに匹敵する小容積となるが、具体的には現状の室内機と室外機に分離された所謂スプリット型エアコンの室外ユニットの2倍の容積を目標としたい。
以上の課題を解決するにはこの吸着剤エレメントの容積ベースの性能向上とコストダウンが必要であり、その構造機構の工夫が課題のひとつであると言える。
前述した様に、本発明では吸着材による除湿機能を活かすと同時に、動力や熱量などのエネルギーを必要としない新しい冷却方式を発明して提案する。さらに吸着剤の除湿方式とこの新しい冷却方式の両者を組み合わせて新しい冷房方式を構成するという技術を発明として提示して、前述した課題を解決しようとするものである。従って最も重要な課題は
この冷却方式を実現するためにその方式と細部構造、材料を具体化することであるといえる。
The target value is as small as an air conditioner that uses a compressor and an electric motor with a refrigeration cycle as a drive source, but specifically, it was separated into the current indoor unit and outdoor unit. We want to aim for a volume twice that of the outdoor unit of the so-called split type air conditioner.
In order to solve the above problems, it is necessary to improve the volume-based performance of the adsorbent element and reduce the cost, and it can be said that the contrivance of the structure mechanism is one of the problems.
As described above, the present invention invents and proposes a new cooling system that makes use of the dehumidifying function of the adsorbent and does not require energy such as power and heat. Furthermore, the present invention proposes a technique for constructing a new cooling system by combining both the dehumidifying system of the adsorbent and the new cooling system, and intends to solve the above-described problems. Therefore, it can be said that the most important problem is to materialize the cooling method, the detailed structure, and the material.

請求項1には、室内空気を導入して2分割し、一方の空気を換気空気とし、その換気させる空気の保有熱量(エンタルピー)を増加させて室外に排気することにより他方の室内吹き出し空気を冷却して室内を冷却させる方式を提示している。この具体例は図2の中の冷却装置室内機102に示される。
この方式では室内空気から除湿することは出来ないため、請求項3に提示した様に、デシカント方式の除湿装置を請求項1の冷却装置の入り口室内空気を除湿する方式を提示している。この二つの機能装置のドッキングが極めて高い効果を生むことは後述する。
In claim 1, indoor air is introduced and divided into two, one air is used as ventilation air, and the other indoor blow-out air is discharged by increasing the amount of heat (enthalpy) of the air to be ventilated and exhausting it outside the room. A method of cooling and cooling the room is presented. A specific example is shown in the cooling unit indoor unit 102 in FIG.
Since this method cannot dehumidify the room air, a desiccant type dehumidifier is presented as a method for dehumidifying the inlet room air of the cooling device of claim 1. It will be described later that docking of these two functional devices produces a very high effect.

水蒸発冷却方式についてその原理を詳述する。即ち、空気に散水して水の蒸発潜熱により加湿して冷却する方法は良く知られている。庭の打ち水や散水式冷却装置などがその原理を利用している。この空気状態の変化を示すと、室内の空気を湿り空気線図(図1に示す)上でA点に示す。水蒸発潜熱によりその空気は等エンタルピ線上をA点から湿度100%のラインとの交点であるB点方向に移行しており、温度は下がるが湿度が上昇する。これを室内の冷房に利用すれば室内の湿度が上昇して住人は不快に感じることが多い。 The principle of the water evaporative cooling method will be described in detail. That is, a method of spraying water and humidifying and cooling with the latent heat of evaporation of water is well known. The garden watering and sprinkling cooling systems use this principle. When this change in the air state is shown, indoor air is shown at point A on the wet air diagram (shown in FIG. 1). Due to the latent heat of water evaporation, the air moves on the isenthalpy line from the point A to the point B, which is the intersection of the 100% humidity line, and the temperature decreases but the humidity increases. If this is used for indoor cooling, the humidity in the room rises and residents often feel uncomfortable.

この方式をさらに改善した方法として、室内の空気を2分割し、一方の空気中に散水して空気そのものを冷却し、この散水冷却された空気で他方の空気を冷却する方式がある。理想的に熱交換を行えば、他方の空気は絶対湿度が上昇することなく、その空気を露点温度E点の途中であるF点まで冷却することが可能である。この時一方の空気はB点からG点まで温度湿度共に上昇している。即ち一方の空気の風量と他方の空気の風量の比はそのエンタルピー変化である(IA−IF)と(IG−IB)の比に逆比例する。ここで、Iはエンタルピを表し、IEとはE点での空気のエンタルピーを示している。   As a method that further improves this method, there is a method in which indoor air is divided into two parts, water is sprinkled into one air to cool the air itself, and the other air is cooled with this sprinkled and cooled air. If heat exchange is performed ideally, the other air can be cooled to point F, which is in the middle of the dew point temperature E, without increasing the absolute humidity. At this time, the temperature and humidity of one air rise from point B to point G. That is, the ratio of the air volume of one air to the air volume of the other air is inversely proportional to the ratio of (IA-IF) and (IG-IB), which is the enthalpy change. Here, I represents enthalpy, and IE represents the enthalpy of air at point E.

次に室内空気をA点で二つに分割するのでは無くて、上記原理で一方の空気で冷却された後のC点で二分割することを考える。分割された一方の空気は分割する前の全体の空気をA点からC点まで冷却し、一方の空気はB点からでは無くC点からJ点にまで加熱され加湿される。この結果(IG−IC)は(IA−IF)よりさらに大きなエンタルピーの差になるから、30%より更に少ない風量、例えば25%程度で一方の75%の空気を冷却することができる。この結果は排熱の一方の空気風量の割合は減少し換気風量が減少する。これによって少ない換気量で同一の室内空気冷却量が確保できるという大きな効果を生むことができる。請求項1に示した基本技術であり、図2の冷却装置室内機102に示される。 Next, consider not dividing the room air into two at the point A, but dividing it into two at the point C after being cooled with one air according to the above principle. One of the divided air cools the whole air before the division from point A to point C, and the other air is heated not from point B but from point C to point J to be humidified. As a result, (IG-IC) has a larger enthalpy difference than (IA-IF), and therefore 75% of the air can be cooled with an air volume of even less than 30%, for example, about 25%. As a result, the ratio of one air volume of exhaust heat decreases and the ventilation volume decreases. This can produce a great effect that the same indoor air cooling amount can be secured with a small amount of ventilation. This is the basic technique shown in claim 1 and is shown in the cooling device indoor unit 102 of FIG.

図2に示される室内冷却用熱交換器1、2、3と室内水蒸発器4、5、6とはチューブを垂直に配置したフィンチューブ熱交換器から構成されその中央の仕切り面で分割した流路を全量の室内空気が下側を通り、その時に室内冷却用熱交換器で冷却される。一方その出口でこの空気は少量と多量に2分割され多量な空気が室内に吹き出され、少量の空気は反転して中央の仕切り面の上側の三つのフィンチューブ熱交換器を通過する。この時三つの熱交換器の上流側から水道水が散布するから少量の空気は水の潜熱で冷却されると同時にフィンチューブ熱交換器を冷却する。この熱交換器は水が散布される状態で作動するからここでは室内水蒸発器と呼称する。 The indoor cooling heat exchangers 1, 2, and 3 and the indoor water evaporators 4, 5, and 6 shown in FIG. 2 are composed of finned tube heat exchangers in which tubes are arranged vertically, and are divided by a partition surface at the center. The entire amount of room air passes through the flow path and is cooled by the heat exchanger for room cooling at that time. On the other hand, this air is divided into a small amount and a large amount at the outlet, and a large amount of air is blown into the room. At this time, since tap water is sprinkled from the upstream side of the three heat exchangers, a small amount of air is cooled by the latent heat of the water and at the same time the fin tube heat exchanger is cooled. Since this heat exchanger operates in a state where water is sprayed, it is called an indoor water evaporator here.

水蒸発器と室内冷却用熱交換器はその垂直な多数本のチューブで上下に連結されており、そのため、その内部に注入された水がチューブ内を循環し、蒸発と凝縮を繰り返して熱を伝える。即ち室内冷却用熱交換器から室内水蒸発器へと伝熱される。この結果そこを流れる全量の室内空気は分割後の少量の室内空気により冷却されることとなる。少量の室内空気は水を蒸発させ、全量の室内空気から熱を奪って高温高湿となり、図1中ではH点までエンタルピが上昇して室外に排気される。この分だけ換気が生じることとなる。この結果、換気空気によって室内空気は冷却される。   The water evaporator and the indoor cooling heat exchanger are connected one above the other by a number of vertical tubes, so that the water injected inside circulates inside the tubes and repeats evaporation and condensation to generate heat. Tell. That is, heat is transferred from the indoor cooling heat exchanger to the indoor water evaporator. As a result, the total amount of room air flowing therethrough is cooled by the small amount of room air after division. A small amount of room air evaporates water and takes heat from the entire amount of room air, resulting in high temperature and high humidity. In FIG. 1, the enthalpy rises to the point H and is exhausted outside the room. Ventilation will occur by this amount. As a result, the indoor air is cooled by the ventilation air.

さらにこの効果を高める技術を請求項2に提示した。前記の熱交換をさらに良くするために、この全量の空気と分割後の少量の空気を対向流状態で熱交換させる方法である。即ち熱交換器を極めて高性能なものを使って理想的に熱交換させた場合、全量の空気はC点更には理想的にはE点まで冷却され、一方の分割後の少量の空気はH点を越えた点まで理想的にはJ点まで加湿加熱されることになる。この場合、湿り空気線図から明白な様に(IJ−IC)は(IG−IB)より極めて大きなエンタルピ差となる。このため一方の分割した少量の空気は更に少量で成り立つ事が分かる。 Further, a technique for enhancing this effect is presented in claim 2. In order to further improve the heat exchange, this is a method of exchanging heat in the counterflow state between the entire amount of air and a small amount of air after the division. That is, when heat is exchanged ideally using a very high performance heat exchanger, the total amount of air is cooled to point C and ideally to point E, while the small amount of air after one division is H The point beyond the point is ideally humidified and heated to point J. In this case, (IJ-IC) has a much larger enthalpy difference than (IG-IB), as is apparent from the wet air diagram. For this reason, it can be seen that a small amount of divided air can be achieved with a smaller amount.

これを具体的に実現するには図2の様に熱的にも構造的にも分離された三つの室内冷却用熱交換器と三つの室内水蒸発器を構成する三つのフィンチューブ熱交換器を設置した事例である。この熱交換器を多数設置して理想的に熱交換させた場合室内吹き出し空気は図1のE点となり、室外吹き出し空気はJ点となる。ここで重要な事は多数の室内冷却用熱交換器と室内水蒸発器はそこを流れる空気の最上流と最下流のもの同志がこの事例の様なヒートパイプで連結された様に熱交換関係に構成されていることである。これにより夫々の空気の到達点は限りなくE点とJ点に近付くことができ、装置全体の室内を冷却する特性を向上させることができる。勿論空気の流れ中で最上流、最下流に位置し室内冷却熱交換器と室内水蒸発器は夫々の空気が対向流となる順番で配置され、相互に伝熱関係に構成する。 In order to realize this concretely, as shown in FIG. 2, three indoor cooling heat exchangers and three finned tube heat exchangers constituting three indoor water evaporators are separated from each other thermally and structurally. This is an example of installing. When a large number of these heat exchangers are installed to exchange heat ideally, the indoor blown air becomes point E in FIG. 1 and the outdoor blown air becomes point J. The important thing here is that the heat exchanger for indoor cooling and the indoor water evaporator are related to heat exchange as if the most upstream and the most downstream air were connected by a heat pipe like this case. It is to be configured. Thereby, the arrival point of each air can approach the E point and the J point as much as possible, and the characteristic which cools the room | chamber interior of the whole apparatus can be improved. Of course, the indoor cooling heat exchanger and the indoor water evaporator, which are located at the most upstream and the most downstream in the air flow, are arranged in the order in which the respective airs face each other, and constitute a heat transfer relationship with each other.

この原理を用いて空調装置を考えたものが請求項1、2に記載の発明である。この空調装置には以上の説明で分かるとおり、全ての作動空気は大気圧状態で作動する。かつ、一方の空気を冷却するためには圧縮機乃至は加熱装置などエネルギーを多量に消費する機構は使用しない。唯一の消費エネルギーは図2で示されるように空気を流通させる為に必要な送風機を駆動するファンモータや水ポンプで消費されるモータ電力のみである。これは電動圧縮式のエアコンに消費される電力や吸収式の冷凍機に消費される熱源熱量に比べ10分の一程度に小さな消費エネルギーである。 The invention according to claims 1 and 2 is an air-conditioner that uses this principle. In this air conditioner, as can be seen from the above description, all the working air operates at atmospheric pressure. In addition, a mechanism that consumes a large amount of energy such as a compressor or a heating device is not used to cool one air. As shown in FIG. 2, the only energy consumed is only the motor power consumed by a fan motor or a water pump that drives a blower necessary for circulating air. This is energy consumption that is about one-tenth of the power consumed by the electric compression air conditioner and the heat source heat consumed by the absorption refrigerator.

請求項1、2の発明は。室内を冷却すると同時にエンタルピーの高くなった蒸し暑い空気を室外に排気して冷房効果を発揮させると同時に換気効果を持たせているものである。人が多く集まる劇場やデパートは勿論、現在では換気量の確保が法律によっても推奨され規定されており、通常の電気動力の冷媒循環式のエアコンでは換気ダクト装置の併設が必要で、設備の大型化、コスト増大、排気ロスによる必要空調能力の増大など、大きな課題を抱えている現状からみて、次世代の空調方式として極めて有効な方式を提示する発明である。   The inventions of claims 1 and 2. It cools the room and exhausts the sultry air with high enthalpy to the outside of the room to exert the cooling effect and at the same time have the ventilation effect. In addition to theaters and department stores where many people gather, it is currently recommended and regulated by the law to ensure ventilation, and ordinary electric-powered refrigerant circulation air conditioners require the addition of a ventilation duct device, which requires a large facility. It is an invention that presents a system that is extremely effective as a next-generation air conditioning system in view of the current situation that has major problems such as the increase in required air conditioning capacity due to the increase in cost, cost, and exhaust loss.

前述した様に他方の空気で一方の空気を冷却するための具体的な方策は、隔壁を隔てた流路に両方の空気を流して隔壁を通して熱交換させたり、請求項10に提示した様に
他方の空気との熱交換器と一方の空気の熱交換器を管路でつなぎ、その管路内に水などの蒸発媒体を充填してその水の自然循環により伝熱させる所謂ヒートパイプ機能により熱交換させる事が可能である。
As described above, a specific measure for cooling one air with the other air is to flow both air through a flow path separating the partition walls to exchange heat through the partition walls. By the so-called heat pipe function that connects the heat exchanger with the other air and the heat exchanger with one air by a pipe line, fills the pipe line with an evaporation medium such as water, and transfers heat by natural circulation of the water. It is possible to exchange heat.

この両方の空気間の熱交換の性能は空気調和装置全体の性能に大きな影響を持つ。この性能を高める手段として請求項2の発明を提示した。即ち室内冷却用熱交換器及び室内水蒸発器を複数設けて空気との熱交換性能を向上させるものである。当然ながら夫々の室内冷却用熱交換器と室内水蒸発器は熱交換関係に置かれており、室内水蒸発器は空気冷却用熱交換器を冷却する関係である。請求項2の技術はこの関係を高い熱交換性能が得られる所謂対抗流熱交換の方式を採用させるための技術である。   The performance of heat exchange between both air has a great influence on the performance of the entire air conditioner. The invention of claim 2 is presented as means for enhancing this performance. That is, a plurality of indoor cooling heat exchangers and indoor water evaporators are provided to improve the heat exchange performance with air. Naturally, each indoor cooling heat exchanger and indoor water evaporator are placed in a heat exchange relationship, and the indoor water evaporator is in a relationship cooling the air cooling heat exchanger. The technique of claim 2 is a technique for adopting a so-called countercurrent heat exchange system that can obtain a high heat exchange performance.

即ち、室内冷却用熱交換器と室内水蒸発器を夫々多数乃至は通風方向に二重三重の構造を持たせて設置するのが前提である。請求項2では夫々2個以上の空気冷却用熱交換器と室内水蒸発器を設置して夫々最上流側と最下流側の空気冷却熱交換器と室内水蒸発器とを熱交換させ、順次相互に対向流となる様に構成させる。 That is, it is premised that a large number of indoor cooling heat exchangers and indoor water evaporators are installed with double or triple structures in the direction of ventilation. In claim 2, two or more air-cooling heat exchangers and indoor water evaporators are installed, respectively, so that the air cooling heat exchanger and the indoor water evaporator on the most upstream side and the most downstream side respectively exchange heat. It is made to constitute a mutually opposing flow.

以上は室内空気を冷却させるための発明に関する。
実際にはこれに加えて湿度の制御、具体的には除湿が必要となる。請求項3は請求項1、2と組み合わせてデシカント除湿機を組みこむ技術である。通常、デシカントを用いた冷房装置では、デシカント材と空気を接触させて除湿させると同時に温度上昇させる。図1では空気はA点からAA点に移動する。通常はこの空気を室外空気などで冷却した後に水を散水加湿して適温適湿な空気に調整して冷房を完了させる。
本発明では除湿され高温度化した空気(AA点)をそのまま請求項1、2、に記載した空気調和装置に導入して冷却するもので、室外空気による冷却と加湿による温湿度調整は不要である。但し、図2に示した様なデシカント除湿機21の前後の空気間で熱交換させて消費熱量を回収させて熱効率を向上させる事は有効である。
The above relates to an invention for cooling indoor air.
Actually, in addition to this, humidity control, specifically dehumidification is required. Claim 3 is a technique for incorporating a desiccant dehumidifier in combination with claims 1 and 2. Usually, in a cooling device using a desiccant, the desiccant material and air are brought into contact with each other to dehumidify and at the same time the temperature is increased. In FIG. 1, air moves from point A to point AA. Normally, this air is cooled with outdoor air or the like, and then water is sprinkled and humidified to adjust the air to an appropriate temperature and humidity, thereby completing the cooling.
In the present invention, the dehumidified and heated air (point AA) is directly introduced into the air conditioning apparatus described in claims 1 and 2 for cooling, and the temperature and humidity adjustment by outdoor air cooling and humidification is unnecessary. is there. However, it is effective to improve heat efficiency by recovering heat consumption by exchanging heat between the air before and after the desiccant dehumidifier 21 as shown in FIG.

この方式によれば冷却装置室内機102の室内空気入り口はデシカント除湿器21から出た高温度低湿度の室内空気がそのまま導入されており、その結果全室内空気の入り口温度は比較的高温度で、それが前述した様に、結果として分割されて室外に排気される室内空気の温湿度状態は図2で示したJJ点の様に高温度高湿度の空気となる為、換気による室内を冷却するという目標に一致した運転となるわけである。従ってデシカント除湿器21の下流には室外空気による冷却装置を設置したり、散水して温湿度調整することは本システムでは有効な施策とはならない。 According to this method, the indoor air inlet of the cooling unit indoor unit 102 is introduced as it is with high temperature and low humidity indoor air from the desiccant dehumidifier 21, and as a result, the inlet temperature of all indoor air is relatively high. As described above, the temperature and humidity of the room air that is divided and exhausted to the outside as a result becomes high-temperature and high-humidity air as indicated by the JJ point shown in FIG. The driving will be in line with the goal to do. Therefore, installing a cooling device using outdoor air downstream of the desiccant dehumidifier 21 or adjusting the temperature and humidity by spraying water is not an effective measure.

室内空気の湿度が低い時にはデシカント除湿の作動を停止し、高い時には作動させる。このように切り替えても本発明の冷房装置では室内空気の冷却効果は維持できる。従って請求項4では湿度によるデシカント除湿運転の作動を停止することを提示している。具体的には図2のデシカント切り替えダンパを切り替えて室内空気をデシカント除湿器21を通過させない様に制御し、熱源媒体の供給を停止する。 The desiccant dehumidification operation is stopped when the humidity of the room air is low, and is activated when the humidity is high. Even with such switching, the cooling effect of the room air can be maintained in the cooling device of the present invention. Therefore, claim 4 proposes to stop the operation of the desiccant dehumidifying operation due to humidity. Specifically, the desiccant switching damper shown in FIG. 2 is switched to control the room air so that it does not pass through the desiccant dehumidifier 21, and the supply of the heat source medium is stopped.

本発明において、室内冷房機の効果をさらに高める技術を請求項9に提示している。請求項1〜4の発明は室内空気の一部を室外に排気することにより成立している。然しながらこの結果、作動中は常時換気が生じており、その換気量に見合う分は高温高湿度の室外空気が室内に強制導入される。この結果この換気による冷房能力の損失は大きく、以上の冷房装置の効果の半分は消失させてしまうほどの場合がある。 In the present invention, a technique for further enhancing the effect of the indoor air conditioner is presented in claim 9. The inventions of claims 1 to 4 are realized by exhausting a part of the indoor air to the outside. However, as a result of this, ventilation is always occurring during operation, and outdoor air of high temperature and high humidity is forcibly introduced into the room as much as the amount of ventilation. As a result, the cooling capacity loss due to this ventilation is large, and half of the effects of the above cooling device may be lost.

請求項5は請求項1の室内外を反転させた方式と考えれば理解し易い。違いは請求項1の場合室外へ排気空気量は30%程度と少ないが、請求項5は換気風量と看做される室内への吹き出し風量は室外への排気風量より多い。この結果図2に提示した様に冷却装置室内機102と冷却装置室外機103の双方の換気量を等しく設定してやればこの冷房装置以外の部分に生じる換気量を抑えてゼロにする事も可能となる。
請求項5に示した冷却装置は請求項1と同等な技術を用いたに過ぎないが、請求項9や図1の様にその双方を1つの冷房装置に組み込んで同時に作動させる事による換気ロス低減の効果を実現させる上で画期的な発明である。
Claim 5 is easy to understand if it is considered as a system in which the interior and the exterior of claim 1 are reversed. The difference is that, in the case of claim 1, the amount of exhaust air to the outside is as small as about 30%, but in claim 5, the amount of air blown into the room considered as the ventilation air amount is larger than the amount of exhaust air to the outside. As a result, as shown in FIG. 2, if the ventilation amounts of both the cooling device indoor unit 102 and the cooling device outdoor unit 103 are set to be equal, the ventilation amount generated in portions other than the cooling device can be suppressed to zero. Become.
The cooling device shown in claim 5 uses only the technology equivalent to that of claim 1, but the ventilation loss caused by operating both of them together in one cooling device as in claim 9 and FIG. This is an epoch-making invention in realizing the effect of reduction.

その技術を具体的に提示したのは請求項9である。この場合、冷却装置室内機である空気調和機と冷却装置室外機である空調装置を合わせて一体とし、同時に作動させ、より高度な空気調和装置を実現するという効果を生む。
ここで分かることは、冷却装置室内機102の室外への排気風量と冷却装置室外機103の室内吹き出し風量を等しく設定すると、冷却装置室外機の全風量は冷却装置室内機の全風量の約20〜40%と小さな割合に設定してやる事が双方を一体化したときの最適運転を実現する条件となる。
Claim 9 specifically shows the technique. In this case, an air conditioner that is a cooling device indoor unit and an air conditioner that is a cooling device outdoor unit are combined and operated at the same time, thereby producing an effect of realizing a more advanced air conditioner.
What can be seen here is that if the exhaust air flow rate to the outside of the cooling device indoor unit 102 is set equal to the blowout air flow rate of the cooling device outdoor unit 103, the total air flow of the cooling device outdoor unit is about 20 times the total air flow of the cooling device indoor unit. Setting to a small ratio of ˜40% is a condition for realizing optimum operation when both are integrated.

請求項6は請求項2の室内空気処理を室外空気処理に置き換えたものである。請求項7は請求項3が請求項2に対して湿度制御機能を付加するという機能を提示した目的と手段は同じである。
デシカント除湿装置101の熱源としては、太陽熱、燃料電池排熱、ガスエンジンコジェネ排熱、ヒートポンプ凝縮熱、ガス燃焼熱など多くの種類の熱源を利用できる。
A sixth aspect of the present invention replaces the indoor air treatment of claim 2 with an outdoor air treatment. Claim 7 is the same as the purpose and means for providing the function of adding humidity control function to claim 2 to claim 2.
As the heat source of the desiccant dehumidifier 101, many types of heat sources such as solar heat, fuel cell exhaust heat, gas engine cogeneration exhaust heat, heat pump condensation heat, and gas combustion heat can be used.

請求項8は請求項4と同等な機能を果たす技術を提示したものであるが、重要な違いがある。即ち請求項8は作動空気である室外空気の湿度を検知するのではなくて、あくまでも空調対象である室内空気の湿度を検知して作動制御を行うものである。室内の顕熱負荷と潜熱負荷の状態によって湿度が変わるわけで、その湿度を検知することこそ重要である。図2に示した冷房装置に於いては室内空気の温湿度センサー25によって全体の作動を制御する。 Claim 8 presents a technique that performs the same function as claim 4, but there are significant differences. That is, claim 8 does not detect the humidity of the outdoor air that is the working air, but rather controls the operation by detecting the humidity of the indoor air that is the air conditioning target. The humidity changes depending on the sensible heat load and the latent heat load in the room, and it is important to detect the humidity. In the cooling apparatus shown in FIG. 2, the overall operation is controlled by a temperature / humidity sensor 25 for room air.

請求項9は請求項1、2、3、4の室内空気を扱う空気調和装置と請求項5、6、7、8の室外空気を扱う空気調和装置を組み合わせて1つの空気調和装置とするもので、基本的には双方の換気風量を同じ風量にして出入りの換気風量をゼロにすることにより実質的に空気の入れ替えは行っているので、その他の換気を必要としない空気調和装置をつくりあげようとする狙いである。図2に記載の実施例はこの一例である。 Claim 9 combines the air conditioner that handles indoor air of claims 1, 2, 3, and 4 and the air conditioner that handles outdoor air of claims 5, 6, 7, and 8 into one air conditioner. Basically, the air flow is changed by making the ventilation air volume of both sides the same and making the ventilation air flow in and out zero, so let's create an air conditioner that does not require other ventilation It is an aim. The embodiment shown in FIG. 2 is an example of this.

請求項10は室内乃至は室外冷却用熱交換器と室内乃至は室外水蒸発器の構成とその間の伝熱に両者にまたがって配設された管路を用い、その管路内に水等の冷媒をチャージして蒸発凝縮によってそれを循環させて伝熱を行う所謂ヒートパイプ方式を用いた方法を提示している。ヒートパイプは伝熱性能が高く、簡単な構造で、信頼性の高い伝熱方式である。 The tenth aspect uses a pipe line extending over both the indoor and outdoor cooling heat exchanger and the indoor or outdoor water evaporator and the heat transfer therebetween, and water or the like is contained in the pipe line. A method using a so-called heat pipe system in which a refrigerant is charged and heat is transferred by circulating the refrigerant by evaporative condensation is presented. Heat pipes have high heat transfer performance, a simple structure, and a highly reliable heat transfer system.

以上の発明により以下の様な効果を期待できる。
1、水蒸発潜熱を有効に使って、ファンモータと水ポンプ以外に熱源や動力源を使わずに室内空気の冷却を行う空気調和装置を提供できる。
2、室内空気を扱う空気調和装置と室外空気を扱う空気調和装置を組み合わせて、換気量として室内外の出入り空気量をバランスさせた空気調和装置を提供できる。
3、以上の装置に熱源を利用したデシカント除湿器を組み込んで除湿と冷却の双方を効率よく行う空気調和装置を提供できる。
The following effects can be expected from the above invention.
1. It is possible to provide an air conditioner that effectively uses the latent heat of water evaporation to cool indoor air without using a heat source or a power source other than a fan motor and a water pump.
2. By combining an air conditioner that handles indoor air and an air conditioner that handles outdoor air, it is possible to provide an air conditioner that balances the amount of air flowing in and out of the room as the amount of ventilation.
3. A desiccant dehumidifier using a heat source is incorporated into the above apparatus to provide an air conditioner that efficiently performs both dehumidification and cooling.

4、室内空気湿度を検知して湿度が低い時はデシカント除湿器の作動を停止して熱源の使用量を削減できる空気調和装置を提供できる。
5、以上の空気調和装置は圧縮機や冷凍サイクルを用いた従来の空気調和装置に比べ、製造減価の低減が期待でき、また一次エネルギー使用量の少ない空気調和装置を実現できる。
4. When the indoor air humidity is detected and the humidity is low, the operation of the desiccant dehumidifier can be stopped to reduce the amount of heat source used.
5. The above air conditioner can be expected to reduce manufacturing depreciation compared to conventional air conditioners using a compressor or a refrigeration cycle, and can realize an air conditioner that uses less primary energy.

本発明の空気の状態変化を示す湿り空気線図Wet air diagram showing air condition change of the present invention 本発明による代表的な空気調和装置の構造図Structural drawing of a typical air conditioner according to the present invention

以上の発明を具体化したパッケイジ型の高効率空気調和装置の代表事例を図2に示す。この装置は最下部のデシカント除湿装置101、中間の冷却装置室内機102、最上部の冷却装置室外機から構成されている。デシカント除湿装置の中心はデシカント除湿器21であり、フィンチューブ熱交換器のフィンの外表面に吸着材であるゼラチンの結晶を焼き付けて湿気を吸収できる構造になっている。熱源媒体管路22から25℃の水道水がデシカント除湿器の銅管内に送られるとデシカント切り替えダンパ52でガイドされた室内空気はその湿度分をデシカント除湿器の吸着材に吸着される。この運転を5分程度継続すると、デシカント切り替えダンパが切り替えられて室外空気が導入され、同時に熱源媒体管路22に太陽熱温水器で暖められた60℃の温熱媒体であるプロピレングリコールが送られる。この結果デシカント除湿器21の吸着材から放湿され、この放湿作業は5分程度継続される。これを繰り返して室内空気から除湿し、その場合は室外空気へと放湿される。放湿運転の時はその出口空気から熱回収器23で熱を回収し、入り口の熱回収放熱器24に於いて放熱するから太陽熱の消費量は削減される。熱回収器23と熱回収放熱器24とは図示していないが、ヒートパイプを介して伝熱関係に構成されている。 A typical example of a package type high-efficiency air conditioner embodying the above invention is shown in FIG. This apparatus comprises a lowermost desiccant dehumidifying device 101, an intermediate cooling device indoor unit 102, and an uppermost cooling device outdoor unit. The center of the desiccant dehumidifier is a desiccant dehumidifier 21, which has a structure capable of absorbing moisture by baking gelatin crystals as an adsorbent on the outer surface of the fins of the fin tube heat exchanger. When tap water of 25 ° C. is sent from the heat source medium pipe line 22 into the copper pipe of the desiccant dehumidifier, the room air guided by the desiccant switching damper 52 is adsorbed by the adsorbent of the desiccant dehumidifier. When this operation is continued for about 5 minutes, the desiccant switching damper is switched to introduce outdoor air, and at the same time, propylene glycol, which is a 60 ° C. heating medium heated by a solar water heater, is sent to the heat source medium pipe line 22. As a result, moisture is released from the adsorbent of the desiccant dehumidifier 21 and this moisture release operation is continued for about 5 minutes. This is repeated to dehumidify the room air, and in that case, it is dehumidified to the outdoor air. During the moisture discharge operation, heat is recovered from the outlet air by the heat recovery unit 23 and is radiated by the heat recovery radiator 24 at the entrance, so that the solar heat consumption is reduced. Although the heat recovery device 23 and the heat recovery heat radiator 24 are not shown, they are configured in a heat transfer relationship via a heat pipe.

この除湿運転は室内空気の温湿度が温湿度センサーによって検知され、湿度が高く運転すべきと判定された時のみ運転され、それ以外では除湿運転は行われない。
除湿運転作動有無にかかわらず、1000立方m/時間の風量の室内空気は室内ファン62を通して冷却装置室内機102に送られる。その室内空気は室内冷却用熱交換器1、2、3、を通過して冷却されてその75%が室内に吹き出させる。その他の25%である250立方m/時間の室内空気はUターンして室内水蒸発器4、5、6によって加湿加熱されて室外に放出される。この間に室内水蒸発器を冷却し、さらにその中心に配設されたヒートパイプチューブを冷却しその内面に水を凝縮させる。凝縮した水は重力によりヒートパイプ内を落下し冷却装置室内機に達し、そこで蒸発して該冷却装置室内機を冷却し、最終的に室内空気を冷却する。
The dehumidifying operation is performed only when the temperature and humidity of the indoor air is detected by the temperature / humidity sensor and it is determined that the operation should be performed at a high humidity. Otherwise, the dehumidifying operation is not performed.
Regardless of whether or not the dehumidifying operation is activated, the indoor air having an air volume of 1000 cubic meters / hour is sent to the cooling device indoor unit 102 through the indoor fan 62. The indoor air passes through the indoor cooling heat exchangers 1, 2, and 3 and is cooled, and 75% of the indoor air is blown into the room. The other 25% of room air at 250 cubic meters / hour is U-turned, humidified and heated by the indoor water evaporators 4, 5, and 6 and discharged outside the room. During this time, the indoor water evaporator is cooled, and the heat pipe tube disposed at the center is cooled to condense water on the inner surface. The condensed water falls in the heat pipe due to gravity and reaches the cooling device indoor unit, where it evaporates to cool the cooling device indoor unit, and finally cools the indoor air.

冷却装置室内機の3台の室内冷却用熱交換器の配列と室内水蒸発器の3台の配列は、そこの空気の流れの最上流にあるものと最下流にあるものがヒートパイプを内包した一体のフィンチューブ熱交換器で構成されている。即ち全量の室内空気と分割後の25%の冷却用空気は対向流で熱交換される様に構成されている。室内冷却用熱交換器と室内水蒸発器は4台以上で構成しても良いが装置の複雑化、コスト増加を考慮して3台に設定している。     The arrangement of the three indoor cooling heat exchangers of the cooling unit indoor unit and the arrangement of the three indoor water evaporators include heat pipes in the most upstream and the most downstream of the air flow. It is comprised by the integral fin tube heat exchanger. That is, the entire amount of room air and the 25% cooling air after the division are configured to exchange heat in a counterflow. The indoor cooling heat exchanger and the indoor water evaporator may be composed of four or more units, but the number is set to three in consideration of the complexity of the apparatus and the cost increase.

最上部にある冷却装置室外機は、330立方m/時間の室外空気が導入され室外冷却熱交換器11、12、13によって冷却された後その75%である250立方m/時間の風量が室内に吹き出される。残りの25%がUターンして室外水蒸発器14、15、16を通過して散水された水の蒸発熱でこれを冷却し、自身は高湿度高温度になって室外に排出される。以上の室内及び室外水蒸発器は全て6台の散水器7によって散水され水蒸発器のフィン外表面を濡らしながらそこを通過する空気を加湿加熱する。 The cooling unit outdoor unit at the top has an air volume of 250 cubic m / hour which is 75% after outdoor air of 330 cubic m / hour is introduced and cooled by the outdoor cooling heat exchangers 11, 12 and 13. Is blown out. The remaining 25% is U-turned and cooled by the evaporation heat of the water sprayed through the outdoor water evaporators 14, 15, and 16, and becomes itself high humidity and high temperature and discharged outside the room. All the indoor and outdoor water evaporators described above are sprinkled by the six water sprayers 7 and humidify and heat the air passing therethrough while wetting the fin outer surface of the water evaporator.

冷却装置室内機102の室外排気風量と冷却装置室外機の室内吹き出し風量は同じ250立方m/時間であるから、換気量として出入り風量が一致している。これは建物の必要換気量の風量と同じ風量に設定している。この結果、通常の冷房機の運転では換気ダクトによる換気量の確保が必要であるが、この冷房機ではその必要が無い。その結果、追加換気で冷気を排出して生じる換気エネルギー損失の発生が無い。 Since the outdoor exhaust air volume of the cooling device indoor unit 102 and the indoor blowing air volume of the cooling device outdoor unit are the same 250 cubic m / hour, the incoming and outgoing air volumes are the same as the ventilation amount. This is set to the same air volume as the necessary ventilation of the building. As a result, in the normal operation of the air conditioner, it is necessary to ensure the amount of ventilation by the ventilation duct, but in this air conditioner, this is not necessary. As a result, there is no ventilation energy loss caused by exhausting cold air with additional ventilation.

以上の事例での室内への吹き出し空気の温度は吸い込み室温に対し10Deg程度冷却されている。またその湿度はデシカント除湿装置101が作動していない時は吹き出し空気の絶対湿度が吸い込み空気と同じであるが、デシカント除湿装置101を作動する事によって室内空気の相対湿度は10%程度低下させることができる。この湿度はデシカント除湿装置の作動時間割合を調整することで設定される。 In the above example, the temperature of the air blown into the room is cooled by about 10 Degg with respect to the suction room temperature. In addition, when the desiccant dehumidifying device 101 is not operating, the absolute humidity of the blown air is the same as that of the sucked air. However, by operating the desiccant dehumidifying device 101, the relative humidity of the indoor air is reduced by about 10%. Can do. This humidity is set by adjusting the operating time ratio of the desiccant dehumidifier.

室外冷却熱交換器と室外水蒸発器の構成と配置は冷却装置室内機102のそれと同様の考えでなされている。
以上の事例で分かる通り、この空気調和器によれば室内の冷却には殆ど動力も熱量も使わないし、除湿に対しても太陽熱や燃料電池の排熱などの低温度熱源を利用できる。しかしてエネルギー地球環境の点では極めて優れた冷房機能を提供できるものである。因みに
総合エネルギー効率COP=1.2以上が得られるから、電動圧縮機を用いた冷房機に比較して一次エネルギー使用量は少なく、地球環境に優れている冷房が提供できる。
暖房には暖房用放熱器24に太陽熱媒体を通じて暖房すれば、まさに一次エネルギー使用量最小の空調機が実現できるものである。
さらに温度と湿度が容易に設定できるから、従来の電動式圧縮機で室内熱交換器を冷やして冷房する方式に比べて、快適性、健康性などに優れた冷房運転が実現できる。
The configuration and arrangement of the outdoor cooling heat exchanger and the outdoor water evaporator are based on the same idea as that of the cooling unit indoor unit 102.
As can be seen from the above examples, according to this air conditioner, almost no power or heat is used for indoor cooling, and low-temperature heat sources such as solar heat and exhaust heat from fuel cells can be used for dehumidification. Therefore, it is possible to provide an extremely excellent cooling function in terms of energy global environment. Incidentally, since the total energy efficiency COP = 1.2 or more can be obtained, the amount of primary energy used is small compared with the air conditioner using the electric compressor, and the air conditioner excellent in the global environment can be provided.
For heating, if the heating radiator 24 is heated through a solar heat medium, an air conditioner with the least amount of primary energy can be realized.
Furthermore, since the temperature and humidity can be set easily, it is possible to realize a cooling operation that is superior in comfort, health and the like as compared with a method in which the indoor heat exchanger is cooled by a conventional electric compressor.

以上の説明でわかる通り、極めて広い市場での地球環境に優れた空調機を提供できるから、従来の電動圧縮機式の空調機の広大な世界市場である約4兆円の市場に浸透していくことが期待される。その10%でも4000億円の事業を構成することができるから、産業上の視点でも極めて重要な発明であると認識している。   As can be seen from the above explanation, we can provide air conditioners with excellent global environment in a very wide market, so we have penetrated the approximately 4 trillion yen market, which is a vast world market for conventional electric compressor air conditioners. It is expected to go. Even 10% of this can constitute a 400 billion yen business, so we recognize that this is an extremely important invention from an industrial point of view.

1 室内冷却用熱交換器1
2 室内冷却用熱交換器2
3 室内冷却用熱交換器3
4 室内水蒸発器1
5 室内水蒸発器2
6 室内水蒸発器3
7 散水器
11 室外冷却用熱交換器1
12 室外冷却用熱交換器2
13 室外冷却用熱交換器3
14 室外水蒸発器1
15 室外水蒸発器2
16 室外水蒸発器3
21 デシカント除湿器
22 熱源媒体管路
23 熱回収器
24 熱回収放熱器
25 暖房用放熱器
26 温湿度センサー
51 デシカント切り替えダンパー1
52 デシカント切り替えダンパー2
53 室内ダンパー
61 室外ファン
62 室内ファン
63 室外ファン
101デシカント除湿装置
102冷却装置室内機
103冷却装置室外機


1 Heat exchanger for indoor cooling 1
2 Heat exchanger 2 for indoor cooling
3 Heat exchanger 3 for indoor cooling
4 Indoor water evaporator 1
5 Indoor water evaporator 2
6 Indoor water evaporator 3
7 Sprinkler 11 Heat exchanger 1 for outdoor cooling
12 Heat exchanger 2 for outdoor cooling
13 Heat exchanger 3 for outdoor cooling
14 Outdoor water evaporator 1
15 Outdoor water evaporator 2
16 Outdoor water evaporator 3
21 Desiccant dehumidifier
22 Heat source medium pipe line 23 Heat recovery unit 24 Heat recovery radiator 25 Heating radiator 26 Temperature / humidity sensor 51 Desiccant switching damper 1
52 Desiccant switching damper 2
53 indoor damper 61 outdoor fan 62 indoor fan 63 outdoor fan 101 desiccant dehumidifying device 102 cooling device indoor unit 103 cooling device outdoor unit


Claims (9)

装置内に導入した室内空気の全量を室内冷却用熱交換器で冷却した後に少量と多量の室内空気とに2分割し、前記多量の室内空気を室内に吹き出させて室内を冷房し、前記少量の室内空気を室内水蒸発器によって加湿した後に屋外に排気するとともに、前記室内冷却用熱交換器と前記室内水蒸発器とを熱交換関係に構成して前記室内冷却用熱交換器から前記室内水蒸発器へと伝熱させて熱移動させることにより、装置内に導入した前記室内空気の全量を、分割後に室内水蒸発器において加湿されて同時に冷却された前記少量の室内空気によって冷却させる様に構成したことを特徴とした空気調和装置。The whole amount of room air introduced into the apparatus is cooled by an indoor cooling heat exchanger and then divided into a small amount and a large amount of room air. The large amount of room air is blown into the room to cool the room, and the small amount The indoor air is humidified by an indoor water evaporator and then exhausted to the outside, and the indoor cooling heat exchanger and the indoor water evaporator are configured in a heat exchange relationship from the indoor cooling heat exchanger to the indoor by and transfer heated thereby to the water evaporator to heat transfer, cooling the total amount of the indoor air introduced into the apparatus, by the small amount of room air that has been cooled simultaneously being Oite humidified chamber water evaporator after the split An air conditioner characterized by being configured to allow 請求項1に記載の空気調和装置に於いて、前記室内冷却用熱交換器を空気の流れ方向に沿って、熱的に分離された状態で2個以上設置し、一方前記室内水蒸発器を空気の流れ方向に沿って熱的に分離された状態で同数個設置し、
前記室内空気の全量が最初に熱交換する最上流の前記室内冷却用熱交換器と前記少量の空気が最後に加湿される場所である最下流にある前記室内水蒸発器とが、また室内空気の全量が最後に熱交換する最下流の前記室内冷却用熱交換器と前記少量の室内空気が最初に加湿される最上流の前記室内水蒸発器とを夫々熱交換関係に構成したことを特徴とした空気調和装置。
2. The air conditioner according to claim 1, wherein two or more indoor cooling heat exchangers are installed in a thermally separated state along an air flow direction, while the indoor water evaporator is installed Install the same number in the state of being thermally separated along the air flow direction,
The most upstream indoor cooling heat exchanger in which the entire amount of the indoor air exchanges heat first, and the indoor water evaporator in the most downstream where the small amount of air is finally humidified are also indoor air. The most downstream indoor cooling heat exchanger in which the entire amount of the heat is exchanged last and the most upstream indoor water evaporator in which the small amount of indoor air is first humidified are configured in a heat exchange relationship. Air conditioner.
吸着剤で空気の湿分を吸着し、該吸着剤を熱源により加熱して吸着した湿分を脱着し、これを繰り返し行う方式の水分吸着式除湿機、即ち通称デシカント除湿機と呼ばれる除湿装置を組み込んで前記空気調和装置に入る室内空気の除湿を行うようにしたことを特徴とした請求項1又は2に記載の空気調和装置。A moisture adsorption dehumidifier that adsorbs moisture in the air with an adsorbent, heats the adsorbent with a heat source, desorbs the adsorbed moisture, and repeats this, that is, a dehumidifier called a desiccant dehumidifier. The air conditioner according to claim 1 or 2, wherein dehumidification of the indoor air that is incorporated and enters the air conditioner is performed. 室内空気の湿度を検知し、該湿度が設定値以上の時のみ前記水分吸着式除湿機を作動させ、設定値以下の時には作動させないことを特徴とした請求項3に記載の空気調和装置。  The air conditioner according to claim 3, wherein humidity of indoor air is detected, and the moisture adsorption dehumidifier is operated only when the humidity is equal to or higher than a set value, and is not operated when the humidity is equal to or lower than the set value. 装置内に導入した室外空気の全量を室外冷却用熱交換器で冷却した後に少量と多量の空気に2分割し、前記多量の室外空気を室内に吹き出させて室内を冷房し、前記少量の室外空気を室外水蒸発器によって加湿した後に室外に排気するとともに、前記室外冷却用熱交換器と前記室外水蒸発器とを熱交換関係に構成して前記室外冷却用熱交換器から前記室外水蒸発器へと伝熱させて熱移動させることにより、装置内に導入した前記室外空気の全量を、分割後に室外水蒸発器において加湿されて同時に冷却された前記少量の室外空気によって冷却させる様に構成したことを特徴とした空気調和装置。After the entire outdoor air introduced into the apparatus is cooled by an outdoor cooling heat exchanger, it is divided into a small amount and a large amount of air, and the large amount of outdoor air is blown into the room to cool the room. The air is humidified by the outdoor water evaporator and then exhausted to the outside, and the outdoor cooling heat exchanger and the outdoor water evaporator are configured in a heat exchange relationship to evaporate the outdoor water from the outdoor cooling heat exchanger. by transfer was heated to be heat transfer into the vessel, the total amount of the outdoor air introduced into the apparatus, is humidified at the outdoor water evaporator after divided as to be cooled by the small amount of outdoor air that is cooled at the same time An air conditioner characterized by comprising the above. 請求項5に記載の空気調和装置に於いて、前記室外冷却用熱交換器を空気の流れに沿って、熱的に分離された状態で2個以上設置し、一方前記室外水蒸発器を空気の流れ方向に沿って、熱的に分離された状態で同数個設置し、
前記室外空気の全量が最初に熱交換する最上流の前記室外冷却用熱交換器と前記少量の空気が最後に加湿される場所である最下流にある前記室外水蒸発器とが、また室外空気の全量が最後に熱交換する最下流の前記室外冷却用熱交換器と前記少量の室外空気が最初に加湿される最上流の前記室外水蒸発器とを夫々熱交換関係に構成したことを特徴とした空気調和装置。
6. The air conditioner according to claim 5, wherein two or more outdoor cooling heat exchangers are installed in a thermally separated state along the air flow, while the outdoor water evaporator is installed in the air. Along the flow direction, install the same number in a thermally separated state,
The most upstream outdoor cooling heat exchanger in which the entire amount of the outdoor air exchanges heat first, and the outdoor water evaporator in the most downstream area where the small amount of air is finally humidified are also outdoor air. The outdoor cooling heat exchanger which is the most downstream of which the total amount of heat is finally exchanged and the most upstream outdoor water evaporator in which the small amount of outdoor air is first humidified are configured in a heat exchange relationship. Air conditioner.
吸着剤で空気の湿分を吸着し、該吸着剤を熱源により加熱して吸着した湿分を脱着し、これを繰り返し行う方式の水分吸着式除湿機、即ち通称デシカント除湿機と呼ばれる除湿装置を組み込んで前記空気調和装置に入る室外空気の除湿を行うようにしたことを特徴とした請求項5又は6に記載の空気調和装置。A moisture adsorption dehumidifier that adsorbs moisture in the air with an adsorbent, heats the adsorbent with a heat source, desorbs the adsorbed moisture, and repeats this, that is, a dehumidifier called a desiccant dehumidifier. The air conditioner according to claim 5 or 6, wherein outdoor air entering the air conditioner is dehumidified. 前記多量の室外空気を吹き出させて冷房する室内の空気湿度を検知し、該湿度が設定値以上の時のみ前記水分吸着式除湿機を作動させ、設定値以下の時は作動させないことを特徴とした請求項7に記載の空気調和装置。Detecting air humidity in the room to be cooled by blowing a large amount of outdoor air, and operating the moisture adsorption dehumidifier only when the humidity is higher than a set value, and not operating when the humidity is lower than a set value. The air conditioning apparatus according to claim 7. 請求項1、2、3、4の何れか一項に記載の空気調和装置と、請求項5、6、7、8の何れか一項に記載の空気調和装置の双方を合わせて一体の装置としたことを特徴とした空気調和装置。  The air conditioner according to any one of claims 1, 2, 3, and 4 and the air conditioner according to any one of claims 5, 6, 7, and 8 are combined together to form an integrated device. An air conditioner characterized by that.
JP2009291667A 2009-12-24 2009-12-24 Heat source air conditioner Expired - Fee Related JP5548921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009291667A JP5548921B2 (en) 2009-12-24 2009-12-24 Heat source air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009291667A JP5548921B2 (en) 2009-12-24 2009-12-24 Heat source air conditioner

Publications (2)

Publication Number Publication Date
JP2011133146A JP2011133146A (en) 2011-07-07
JP5548921B2 true JP5548921B2 (en) 2014-07-16

Family

ID=44346082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009291667A Expired - Fee Related JP5548921B2 (en) 2009-12-24 2009-12-24 Heat source air conditioner

Country Status (1)

Country Link
JP (1) JP5548921B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101363941B1 (en) 2012-11-13 2014-02-25 한국지역난방공사 Stand type dehumidified cooling system with ventilation for apartment building district cooling
KR101361099B1 (en) * 2012-11-13 2014-02-13 (주)귀뚜라미 Dehumidified cooling system with ventilation for apartment building district cooling
JP2015190305A (en) * 2014-03-31 2015-11-02 株式会社アイビック house structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4164125A (en) * 1977-10-17 1979-08-14 Midland-Ross Corporation Solar energy assisted air-conditioning apparatus and method
JP4011724B2 (en) * 1998-04-22 2007-11-21 高砂熱学工業株式会社 Desiccant air conditioning method
JP2004092956A (en) * 2002-08-30 2004-03-25 Shin Nippon Air Technol Co Ltd Desiccant air conditioning method and desiccant air conditioner

Also Published As

Publication number Publication date
JP2011133146A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
US11761645B2 (en) Energy exchange system for conditioning air in an enclosed structure
JP6494765B2 (en) Air conditioning system
JP5822931B2 (en) Humidity control apparatus, air conditioning system, and control method of humidity control apparatus
US9383116B2 (en) Dehumidification apparatus, and air conditioning apparatus and air conditioning system having the same
CN102506475A (en) Heat pump system of heat humidity independent control driven by condensation waste heat and based on solid dehumidification
JP2002081688A (en) Ventilator
JP6377933B2 (en) Outside air treatment device
JP5548921B2 (en) Heat source air conditioner
JP2010112633A (en) Desiccant air conditioner
JP2018021711A (en) Water evaporation cooler
JP2013087956A (en) Air conditioner, and vertical wall surface heat exchanger
WO2022097757A1 (en) Air-conditioning or cooling device using hybrid cooling
JP2010243005A (en) Dehumidification system
JP5906708B2 (en) Humidity control device
JP7238266B2 (en) air conditioner
CN107869808B (en) Heat recovery type membrane solution air conditioner
JP4016346B2 (en) Air source heat pump air conditioner
JP2004144334A (en) Ceiling-installed integral type air conditioner
TWI515398B (en) Multi - function air conditioner
JP2024013040A (en) Air conditioner and air-conditioning system
JP2002323232A (en) Ceiling-mounted heat pump type air conditioner
JP2013044495A (en) Humidity controller
JP2002267214A (en) Air-cooled heat pump type heat storage air conditioner
JP2002267202A (en) Air-cooling heat pump type air conditioner
JP2002323233A (en) Floor-type heat pump air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140425

R150 Certificate of patent or registration of utility model

Ref document number: 5548921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees