JP2013087956A - Air conditioner, and vertical wall surface heat exchanger - Google Patents

Air conditioner, and vertical wall surface heat exchanger Download PDF

Info

Publication number
JP2013087956A
JP2013087956A JP2011225446A JP2011225446A JP2013087956A JP 2013087956 A JP2013087956 A JP 2013087956A JP 2011225446 A JP2011225446 A JP 2011225446A JP 2011225446 A JP2011225446 A JP 2011225446A JP 2013087956 A JP2013087956 A JP 2013087956A
Authority
JP
Japan
Prior art keywords
air
heat
heat transfer
cooling
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011225446A
Other languages
Japanese (ja)
Inventor
Kenji Umetsu
健児 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011225446A priority Critical patent/JP2013087956A/en
Publication of JP2013087956A publication Critical patent/JP2013087956A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve a problem that many technical examinations and proposals have been made conventionally to achieve an air conditioner operated by solar heat and the exhaust heat of fuel cells for a system for air-conditioning the room interior by a refrigerating cycle having a present electric compressor as a global environmental problem from the viewpoint of energy, and the energy efficiency of an air conditioner making the best use of adsorption type dehumidification as a system with a lowest product cost is about 0.5 in COP, which presents a basic problem of requirement of the vast amount of heat source and too large size of an apparatus.SOLUTION: A technology of a water evaporation cooler of high performance with an extremely simple structure is developed for cooling that accounts for 50% or more of the thermal quantity ratio in combination with an adsorption type dehumidifier that consumes the heat source, and a combination of this water evaporation cooler and the adsorption type dehumidifier is optimized to solve the problem described above.

Description

本発明は太陽熱、燃料電池の排熱、ガスエンジン発電装置の排熱など、低温度の熱源を利用して室内空気を除湿し、且つ換気による空気の温度と湿度を高めて排気させることにより冷却し、これらを巧みに組み合わせることにより高いエネルギー効率で冷房を行うことが可能な熱源を利用した空気調和装置を実現させるためのキー技術について提案している。この分野の冷房装置としては吸収式冷凍機、吸着式冷房装置、デシカント除湿装置などが既に実現されて利用されているが何れもエネルギー効率が低い。換気との巧みな組み合わせによる優れた冷房装置の事例は見られない。 The present invention uses a low-temperature heat source such as solar heat, exhaust heat from a fuel cell, exhaust heat from a gas engine power generator, etc. to dehumidify indoor air, and raises the temperature and humidity of the air by ventilation to cool the exhaust. In addition, a key technology for realizing an air conditioner using a heat source capable of performing cooling with high energy efficiency by skillfully combining them is proposed. As cooling devices in this field, absorption refrigerators, adsorption cooling devices, desiccant dehumidifying devices and the like have already been realized and used, but all have low energy efficiency. There are no examples of good cooling systems with skillful combination with ventilation.

従来の吸収式などの熱源を利用した冷房乃至は冷凍装置では85℃程度の比較的高温度の低温熱源を利用するもので、太陽熱など60℃程度の低温度熱源を利用して高性能で経済性で有効な装置を実現することが出来なかったため、高温度の工場排熱、特殊熱機器排熱などの破棄すべき排熱があるところ、乃至はガス燃料などを消費することが許されるところで利用されるものが多く、その市場は限定的であった。この為、装置の生産台数は限定的で1000台/年規模の事業者が数社であり、電動式の圧縮冷凍サイクル方式の通常のエアコンの事業者、例えば中国の事業者が1000万台/年もの多量な生産をしている多数の事業者と比較して製品のコストの差異は大きな隔たりがあった。   A conventional cooling or refrigeration system using a heat source such as an absorption type uses a relatively low temperature heat source of about 85 ° C., and uses a low temperature heat source of about 60 ° C. such as solar heat for high performance and economy. Because it was not possible to realize an effective and effective device, there is exhaust heat that should be discarded such as high-temperature factory exhaust heat and special heat equipment exhaust heat, or where gas fuel is allowed to be consumed Many were used and the market was limited. For this reason, the production volume of the equipment is limited, and there are several companies with a scale of 1000 units / year, and operators of electric air-conditioners of the electric compression refrigeration cycle method, for example, 10 million units / Compared with a large number of companies that produce a large amount of the year, there was a big gap in the cost of the product.

しかも、熱源を利用した冷凍装置や冷房装置では複雑な特殊構造な冷凍装置など、例えば二重効用、三重効用吸収式冷凍機など、を除いて、一般に冷房に用いられる吸着式除湿機や冷房機などに於いてはエネルギー効率(冷房能力と消費熱源熱量の比)を示すCOPは0.5程度と低く、即ち熱源熱量1に対し0.5程度の冷房能力の熱量しか得られず、必要な冷房能力を得るのに熱源熱量が多量に必要であるという欠点があった。また装置の容積の点でも電動式圧縮機を用いた空調装置に比べ2倍以上と大きく、従って製品コストも極めて高額にならざるを得なかった。
これを打開するための有効な手段として低温度の熱源を用いたデシカント除湿機構と、エネルギー消費を最小限に抑えて作動することができる換気の排熱を巧みに利用した冷房機構の組みあわせは有効な方式である点に着目し、この方式の具体化、実現化の技術が本発明の技術分野である。
Moreover, with the exception of refrigeration devices that use heat sources and refrigeration devices with complex special structures, such as double-effect and triple-effect absorption refrigeration machines, adsorption dehumidifiers and chillers that are generally used for cooling are used. The COP indicating the energy efficiency (ratio of the cooling capacity to the heat source heat consumption) is as low as about 0.5, that is, only the heat quantity of the cooling capacity of about 0.5 for the heat source heat quantity of 1 can be obtained. There is a drawback that a large amount of heat source heat is required to obtain cooling capacity. Further, the volume of the apparatus is more than twice as large as that of an air conditioner using an electric compressor, and thus the product cost has to be extremely high.
A combination of a desiccant dehumidification mechanism using a low-temperature heat source and a cooling mechanism that skillfully utilizes exhaust heat of ventilation that can operate with minimal energy consumption as an effective means to overcome this. Focusing on the fact that it is an effective method, the technology for realizing and realizing this method is the technical field of the present invention.

特許文献1及び2には何れも換気の排熱の空気の温湿度即ちエンタルピーを高めてその結果室内空間を冷房する方式ではあるが、何れも加熱源乃至は冷却源などを用いている。即ち外部エネルギーを利用して換気冷房乃至は換気除湿を行っている事例であり、そのエネルギー効率は優れているとは云えない。確かに、これらの技術は建物の内部空間から単純に室内空気を排気する方式に比べて換気による空調エネルギーの損失が減少する効果を生じている。しかも何れも換気エレメント乃至は全熱交換器と呼ばれる室内外空気間の温度と湿度即ち全熱の交換器を設置して換気によるエネルギー損失を低減させている効果も有しているし、デシカント除湿機能や除湿運転機能を備えている点では湿度制御による空調の快適性確保という点でも優れたシステムである。 In both Patent Documents 1 and 2, although the temperature and humidity, that is, the enthalpy, of exhaust air exhausted by ventilation is increased to cool the indoor space as a result, both use a heating source or a cooling source. In other words, this is an example of performing ventilation cooling or ventilation dehumidification using external energy, and it cannot be said that the energy efficiency is excellent. Certainly, these technologies have the effect of reducing the loss of air-conditioning energy due to ventilation compared to a system in which room air is simply exhausted from the interior space of a building. Moreover, both have the effect of reducing the energy loss due to ventilation by installing a temperature and humidity between the indoor and outdoor air called a ventilation element or total heat exchanger, that is, a total heat exchanger, and desiccant dehumidification In terms of having a function and a dehumidifying operation function, it is an excellent system in terms of ensuring air-conditioning comfort through humidity control.

しかしながら、前述した加熱乃至は冷却にエネルギー源を消費している事に加え、デシカント除湿機能と排気を利用した換気空調の間には相乗効果が無く、消費エネルギー削減効果が限定的である。即ち特許文献1では冷却器と再熱器の実現に多大なエネルギーを消費しており、特許文献2では冷却器6、7と加熱再手段4にやはり多大なエネルギーを消費している。即ち除湿の機能のためには兎も角、冷却機能にエネルギー消費を押さえた技術は見ることが出来ない。 However, in addition to consuming the energy source for heating or cooling as described above, there is no synergistic effect between the desiccant dehumidifying function and the ventilation air-conditioning using exhaust, and the energy consumption reduction effect is limited. That is, in Patent Document 1, a great amount of energy is consumed for realizing the cooler and the reheater, and in Patent Document 2, a great amount of energy is also consumed for the coolers 6 and 7 and the heating re-means 4. In other words, for the function of dehumidification, it is impossible to see a technology that suppresses energy consumption in the corner and cooling function.

特開平06−123444号広報Japanese Laid-Open Patent Publication No. 06-123444 特開2000−111096号広報JP 2000-1111096 PR

本発明が解決しようとしている課題は、動力源乃至は熱源をほとんど消費することなく 室内空間を冷却できる装置の実現と、極めて広範囲に獲得できる低温度の熱源、即ち太陽熱で得られる様な60℃前後の温熱や、70℃程度の低温度作動型の燃料電池の65℃前後の排熱など、比較的低温度の温熱エネルギーや自然エネルギーを利用して作動ができる除湿装置の実現、さらにはその双方を組み合わせて効果を高める事ができる冷房システムの実現である。その狙いとは総合エネルギー効率であるCOPが1.2以上の高効率であり、冷房運転による室内空間の温湿度及び空気の流れなどによって影響される冷房快適性であり、且つコンパクトで民生用機器として実用性に耐える経済性を持ったシステムの実現である。 The problems to be solved by the present invention are the realization of a device that can cool an indoor space with little consumption of a power source or a heat source, and a low-temperature heat source that can be obtained in a very wide range, that is, 60 ° C. obtained by solar heat Realization of a dehumidifying device that can operate using relatively low temperature thermal energy and natural energy, such as heat before and after, exhaust heat around 65 ° C. of a low temperature operation type fuel cell of about 70 ° C., and further It is the realization of a cooling system that can enhance the effect by combining both. The aim is a high-efficiency COP of 1.2 or more, which is the total energy efficiency, cooling comfort that is affected by the temperature and humidity of the indoor space and air flow, etc., due to cooling operation, and compact, consumer equipment The realization of an economical system that can withstand practical use.

具体的な課題として、上記の熱源を利用した装置として現在実現されているデシカント冷房装置のエネルギー効率COPは0.5程度で消費熱量に対し50%の冷房熱量しか得られないため、必要な冷房熱量を得るには多量のエネルギーが必要で装置の容積は実用性が失われてしまうほど大型となるという問題がある。この問題を解消するには、COPが高いエネルギー効率の性能を有する装置であることが重要であり、発明者らはその目標値を1.2に設定している。例えば住宅用の5000KCal/h(5.8KW)の冷房装置を考えた場合、現在実現されている民生用のCOP0.5レベルのデシカント吸着式冷房装置と、本発明が目標としているCOP1.2以上の高性能な冷房装置を運転するときに必要となる太陽熱温水装置の容量の違いは大きなものがある。 As a specific problem, the energy efficiency COP of the desiccant cooling device currently realized as a device using the above heat source is about 0.5, and only 50% of the heat consumption can be obtained. In order to obtain the amount of heat, a large amount of energy is required, and there is a problem that the volume of the apparatus becomes so large that practicality is lost. In order to solve this problem, it is important that the COP is a device having high energy efficiency performance, and the inventors set the target value to 1.2. For example, when considering a 5000 Kcal / h (5.8 KW) air conditioner for residential use, a COP 0.5 level desiccant adsorption type air conditioner currently used for consumer use and a COP of 1.2 or more, which is the target of the present invention There are significant differences in the capacity of solar water heaters that are required when operating high-performance cooling systems.

即ちそのパネルの太陽熱の集熱特性が平均的な特性である400W/平米の場合、その必要なパネルの総面積は12平米対29平米と2.4倍の差があり、COP0.5のままではパネルの面積が大きいために生じるコスト増加、屋根など設置場所の制約、工事費の増加などに直接結びつくという問題がある。同時に装置は大型になり、製品コストは高くなり、このため普及が進まないでいる。
さらに重要な課題として、装置の容積とコストが挙げられる。デシカント冷房装置の全体のコストを考えると、装置を小型化することによる材料費の低減と同時に、デシカントに利用する吸着材を塗布した吸着材エレメントの材料費の低減が重要である。従って、この吸着材エレメントを如何に小型化してその材料費を低減させ、冷房装置を小型化してコストの低減を図り、その状態で冷房能力を確保することが重要な課題となる。
In other words, in the case of 400 W / sq.m, where the solar heat collection characteristic of the panel is an average characteristic, the total area of the required panel is 2.4 times as large as 12 square meters versus 29 square meters, and remains at COP 0.5. However, there are problems such as an increase in costs caused by the large panel area, restrictions on installation locations such as roofs, and an increase in construction costs. At the same time, the device becomes larger and the product cost becomes higher, so that it has not become popular.
A further important issue is the volume and cost of the device. Considering the overall cost of the desiccant cooling device, it is important to reduce the material cost of the adsorbent element coated with the adsorbent used for the desiccant as well as reducing the material cost by downsizing the device. Accordingly, it is an important issue how to reduce the size of the adsorbent element to reduce the material cost, reduce the size of the cooling device to reduce the cost, and ensure the cooling capacity in that state.

その目標値としては、現在普及している圧縮機と冷凍サイクル持った電気モーターを駆動源としたエアコンに匹敵する小容積となるが、具体的には現状の室内機と室外機に分離された所謂スプリット型エアコンの室外ユニットの2倍の容積を目標としたい。
以上の課題を解決するにはこの吸着剤エレメントの容積ベースの性能向上とコストダウンが必要であり、その構造機構の工夫が課題のひとつであると言える。
前述した様に、本発明では吸着材による除湿機能を活かすと同時に、動力や熱量などのエネルギーを必要としない新しい冷却方式を発明して提案する。さらに吸着剤の除湿方式とこの新しい冷却方式の両者を組み合わせて新しい冷房方式を構成するという技術を発明として提示して、前述した課題を解決しようとするものである。従って最も重要な課題は
この冷却方式を実現するためにその方式と細部構造、材料を具体化することであるといえる。
The target value is as small as an air conditioner that uses a compressor and an electric motor with a refrigeration cycle as a drive source, but specifically, it was separated into the current indoor unit and outdoor unit. We want to aim for a volume twice that of the outdoor unit of the so-called split type air conditioner.
In order to solve the above problems, it is necessary to improve the volume-based performance of the adsorbent element and reduce the cost, and it can be said that the contrivance of the structure mechanism is one of the problems.
As described above, the present invention invents and proposes a new cooling system that makes use of the dehumidifying function of the adsorbent and does not require energy such as power and heat. Furthermore, the present invention proposes a technique for constructing a new cooling system by combining both the dehumidifying system of the adsorbent and the new cooling system, and intends to solve the above-described problems. Therefore, it can be said that the most important problem is to materialize the cooling method, the detailed structure, and the material.

請求項1には圧縮機を組み込んだ冷凍サイクルを用いずに空間の空気を冷却する冷房機の原理を提案している。従来から、吸着装置を用いて処理空気の湿気を吸着して高温度化し、その後に屋外空気によってそれを冷却して常温に戻す方式の除湿器は実用化されている。さらにこの除湿した空気に水分を蒸発させてこれを冷却する。これがデシカント式冷房機の原理である。しかしながら、これでは冷房された処理空気の吹き出し温度は電動式冷凍サイクル利用冷房機(エアコン)の半分程度しか冷却できない。即ち、27℃の室温空気の冷房後の吹き出し温度は電動エアコンが17℃程度であるのに対し、22℃程度が普通である。
そこで、請求項1では、空間外空気(通常は室外空気)によって一端冷却された処理空気(通常は室内空気)に対し、冷房機として十分な温度まで冷却する方法を提示している。例えば、処理空気の20%程度を分離しそこに散水して加湿させることにより冷却し、この低温度の空気を用いて残りの80%の空気をさらに冷却する技術である。この冷却機構を実現するには極めて高性能な空気対空気熱交換器が必要である。
Claim 1 proposes the principle of an air conditioner that cools air in a space without using a refrigeration cycle incorporating a compressor. 2. Description of the Related Art Conventionally, a dehumidifier has been put to practical use in which moisture of processing air is adsorbed using an adsorption device to increase the temperature, and then cooled by outdoor air to return to normal temperature. Further, moisture is evaporated in the dehumidified air to cool it. This is the principle of the desiccant air conditioner. However, in this case, the blown-out temperature of the cooled processing air can be cooled only about half that of an air-conditioner using an electric refrigeration cycle. That is, the blowout temperature after cooling the room temperature air of 27 ° C. is usually about 22 ° C. while the electric air conditioner is about 17 ° C.
In view of this, a method for cooling the processing air (usually indoor air), which has been cooled once by outside air (usually outdoor air), to a temperature sufficient as a cooling device is presented. For example, it is a technique in which about 20% of the processing air is separated, sprinkled therewith and humidified to cool, and the remaining 80% air is further cooled using this low temperature air. An extremely high performance air-to-air heat exchanger is required to realize this cooling mechanism.

ここで用いる熱交換器は連続する平面の伝熱壁面によって熱交換させるべき空気と空気の間を分離して且つ相互に効率良く熱交換させること、及びこの伝熱面の片方の表面に散水した水が水膜を形成し、この蒸発熱をこの伝熱壁面を介してさらに効率良く熱交換させるものである。
この為に使用される高性能な熱交換器の技術を請求項5に示し、その最適な実施例を図1に示す。最大の特徴技術は伝熱面が垂直で連続する平坦面を繰り返しジグザグに櫛形に折りたたんだもので、その伝熱性能に寄与する莫大な表面積とその全ての表面積が垂直状態に設置することが可能で、冷却のためにそこに散水した水が伝熱面を濡らしながら自由に落下するため伝熱面表面に水玉が堆積し憎いことであり、この結果空気流量が減少することが少なく高い性能の空気対空気間の熱交換性能を実現するものである。空間内空気の湿度の低いとき乃至は湿度の低い地域では吸着工程を利用せずにこの熱交換器の作動のみで冷房運転ができるという効果を有する。図1に示す様に処理空気は冷却される空気として図中左下から熱交換器のFP1のすき間に入り込み上部に上昇しながら冷却されて図中左の矢印の様に流出し、通常は室内空間に吹き出される。一方通常は室外空気である冷却する側の空気は図中右側の上の流入口から入り水道水散水ノズル4から吹きつけられる水道水ミストと混じり合って冷却されながら垂直壁面熱交換器のFP2の寸法のすき間を流れ、垂直壁面を濡らして水膜を形成し、この冷却熱で伝熱壁面を通して処理空気を冷却する。散水された水は壁面に付着し重力と冷却用空気の流れに従って壁面を流れ落ちる。これが高性能な水蒸発式空気対空気熱交換器を実現する。
The heat exchanger used here separates the air to be heat-exchanged by a continuous flat heat-transfer wall and allows heat exchange with each other efficiently, and water is sprayed on one surface of this heat-transfer surface. Water forms a water film, and the heat of evaporation is further efficiently exchanged through the heat transfer wall surface.
The technology of the high-performance heat exchanger used for this purpose is shown in claim 5, and an optimum embodiment is shown in FIG. The biggest feature technology is a flat surface with vertical and continuous heat transfer surfaces folded in a zigzag comb shape. The huge surface area that contributes to the heat transfer performance and all the surface areas can be installed vertically. The water sprinkled there for cooling falls freely while wetting the heat transfer surface, so that polka dots accumulate on the surface of the heat transfer surface and hate it. It realizes heat exchange performance between air and air. When the humidity of the air in the space is low or in an area where the humidity is low, there is an effect that the cooling operation can be performed only by the operation of the heat exchanger without using the adsorption process. As shown in FIG. 1, the process air enters the gap of the FP1 of the heat exchanger from the lower left in the figure as the air to be cooled, is cooled while rising to the upper part, and flows out as indicated by the arrow on the left in the figure. Is blown out. On the other hand, the air on the cooling side, which is usually outdoor air, enters the inlet on the right side in the figure and mixes with the tap water mist blown from the tap water sprinkling nozzle 4 and is cooled while being cooled by the FP2 of the vertical wall heat exchanger. It flows through a gap of dimensions, wets the vertical wall surface to form a water film, and this cooling heat cools the processing air through the heat transfer wall surface. The sprinkled water adheres to the wall surface and flows down the wall surface according to the flow of gravity and cooling air. This realizes a high-performance water evaporation air-to-air heat exchanger.

FP2は壁面の水膜の分だけFP1より寸法を大きくしてあり、図の例ではFP1は2mm、FP2は3mmとなっている。
請求項1により処理空気を冷却する上で、処理空気から分離した一部の空気で分離前の処理空気を冷却するときにその冷却効果を増す技術を請求項2、3に提示している。即ち請求項2はこの冷却源となる分離する一部の空気を処理空気から分離させるポイントを冷却されて空間内に吹き出される前とすることであり、請求項3はこの一部の空気と処理空気を対向流に流す技術である。空間内に吹き出される処理空気は冷却されて除湿されているから、これの一部を分離して処理空気と対向流に熱交換させれば、高エンタルピ(温度湿度が高い)の処理空気は散水して最も低温度になった低エンタルピの分離された一部の空気に冷却されて空間内に吹き出される。一方、一部の空気は散水状態で処理空気を冷却して熱を受け取り高温高湿の高エンタルピ空気となる。以上の現象は冷却空気として最も低エンタルピの空気を用いたこと、及び散水効果、及び対向流の効果が重なって生じた効果である。
The size of FP2 is larger than that of FP1 by the amount of the water film on the wall surface. In the example shown in the figure, FP1 is 2 mm and FP2 is 3 mm.
When cooling the processing air according to claim 1, a technique for increasing the cooling effect when cooling the processing air before separation with a part of the air separated from the processing air is presented in claims 2 and 3. That is, the second aspect is that the part of the air to be separated as the cooling source is separated from the processing air before being cooled and blown out into the space, and the third aspect is the point where This is a technique for flowing process air in a counterflow. Since the processing air blown into the space is cooled and dehumidified, if a part of this is separated and heat exchange is performed with the processing air to counter flow, the processing air with high enthalpy (temperature and humidity) is high. It is cooled by a part of the separated low enthalpy air that has been sprinkled to the lowest temperature and blown into the space. On the other hand, a part of the air cools the processing air in the watering state, receives heat, and becomes high-temperature and high-humidity high enthalpy air. The above phenomenon is the effect that the air having the lowest enthalpy was used as the cooling air, and the effect of the sprinkling effect and the counterflow effect overlapped.

この冷房装置の状態の変化を図3の湿り空気線図で説明する。A:処理空気(室内空気)は吸着工程で等エンタルピ吸湿されてB点に至る。即ちたとえば27℃が34.5℃まで加熱除湿される。この状態で請求項7に記載の技術によりC点まで冷却される。このとき
冷却源となる室外空気は室内空気と熱交換してb点からc点に加湿され、加熱される。即ち室内空気はBからCへ冷却され、室外空気はb点からc点へ加熱される。C点の室内空気は請求項4の技術により冷却されてD点に至る。D点にて20%程度の空気が分離されてその空気がC点の空気をD点まで冷却するわけである。20%の分離された空気は散水された水と接触してE点に至り、請求項4の技術により加熱加湿されてF点に至る。即ち相互に熱交換して処理空気はCからDへ冷却され、冷却空気はEからFへ加熱されてる。しかして室内空気A点は冷却除湿されてD点に至る。これは電動圧縮機を持った冷凍サイクル冷房機の蒸発気における冷却の結果I点にいたるエアコンとほぼ同等のエンタルピ低減効果、即ち冷房効果を達成することができることを意味する。
The change in the state of the cooling device will be described with reference to the wet air diagram of FIG. A: Treated air (room air) is absorbed by an enthalpy in the adsorption step and reaches point B. That is, for example, 27 ° C. is heated and dehumidified to 34.5 ° C. In this state, it is cooled to point C by the technique described in claim 7. At this time, outdoor air serving as a cooling source exchanges heat with room air, is humidified from point b to point c, and is heated. That is, the indoor air is cooled from B to C, and the outdoor air is heated from point b to point c. The room air at point C is cooled by the technique of claim 4 to point D. About 20% of the air is separated at the point D, and the air cools the air at the point C to the point D. 20% of the separated air comes into contact with the sprinkled water and reaches point E, and is heated and humidified by the technique of claim 4 to point F. In other words, the processing air is cooled from C to D through mutual heat exchange, and the cooling air is heated from E to F. Thus, the indoor air point A is cooled and dehumidified to reach the point D. This means that almost the same enthalpy reduction effect as that of the air conditioner up to the point I as a result of the cooling in the evaporated air of the refrigeration cycle cooler having the electric compressor, that is, the cooling effect can be achieved.

請求項4は処理空気と冷却空気即ち処理空気から20%程度を分離した空気との間の熱交換をさらに効率良く行わせて処理空気を最大限冷却する技術を提示している。即ち薄い且つ垂直な伝熱壁面から成る図1に示される様な空気対空気熱交換器を用い、冷却空気となる役割の分離した一部の空気を下向きに流しつつそこに散水して壁面に水膜を形成させる。図1から分かる通り伝熱壁面はFP2で示される間隔でアルミの薄板が折重ねられた稠密な構造で且つ冷却空気が下向きの流れであるから散水した水の落下を促進し、伝熱壁面上に水球となって停留することを防ぎ、伝熱面には薄い水膜を形成し易く、伝熱壁を冷却する。この状態で処理空気を上向きに対交流に流して図1のFP1で示される狭い流路内を流すことにより相互の空気のコンタクトファクタを上げる。即ち相手方空気温度への到達割合を向上させる。この結果処理空気はこの熱交換工程で十分に冷却されるという効果が得られる。 The fourth aspect of the present invention presents a technique for maximally cooling the processing air by efficiently performing heat exchange between the processing air and cooling air, that is, air separated by about 20% from the processing air. That is, using an air-to-air heat exchanger as shown in FIG. 1 consisting of a thin and vertical heat transfer wall surface, a part of the separated air that serves as cooling air is made to flow downward and sprinkle on the wall surface. A water film is formed. As can be seen from FIG. 1, the heat transfer wall has a dense structure in which aluminum thin plates are folded at intervals indicated by FP2, and the cooling air flows downward. It is easy to form a thin water film on the heat transfer surface and cool the heat transfer wall. In this state, the processing air is flowed upward in a counter current to flow in the narrow flow path indicated by FP1 in FIG. 1, thereby increasing the mutual air contact factor. That is, the rate of reaching the counterpart air temperature is improved. As a result, the effect is obtained that the treated air is sufficiently cooled in this heat exchange step.

請求項5に提示される熱交換器は伝熱面はアルミの薄板であるが、請求項8の様に樹脂にして生産性を向上させることの有効である。また請求項9の様に散水を行う方のFP2をFP1より大きな寸法にして水膜や水滴が形成されても通風路を確保することは全体の性能を向上させる上で有効である。また、伝熱面のうち、水膜を形成する側にはその表面に水ガラスなど、親水性に富んだ皮膜をコーティングすることにより薄い水膜の形成に有効であり、ひいては全体の熱交換性能の向上に有効である。さらには伝熱面の腐食防止、水スケールなどの付着や汚染の防止にも有効である。   In the heat exchanger presented in claim 5, the heat transfer surface is a thin aluminum plate, but it is effective to improve productivity by using resin as in claim 8. In addition, as in claim 9, it is effective in improving the overall performance to secure the ventilation path even if a water film or water droplets are formed by making the FP2 on which water is sprayed larger than FP1. In addition, it is effective in forming a thin water film by coating the surface of the heat transfer surface on which the water film is formed with a hydrophilic film such as water glass on the surface, and thus the overall heat exchange performance. It is effective in improving Furthermore, it is effective for preventing corrosion of the heat transfer surface and preventing adhesion and contamination of the water scale.

請求項6は本発明の冷房装置の空気対空気熱交換器として請求項5の垂直壁面熱交換器を用いることを提示しており、この垂直壁面熱交換器の伝熱性能の優位性によって、当該冷房装置の性能、小型化、低価格化が図れることになる。
請求項7は以上述べてきた処理空気から一部分離した冷却空気を図3に示したように高いエンタルピにした後、室外など、空間外に排気させるもので、図でわかる通り、a
点で示される室外空気のエンタルピとこの排気空気F点のエンタルピはほとんど等しく、従って換気によるエネルギーロスが無いという特徴がある。一般に室内空気を換気により屋外に排気するときはその双方のエンタルピ差により、換気エネルギーロスが大きくなるという問題があるが、本発明の冷房装置による冷房はそのロスがほとんど無く、大量の換気量が必要な空間、即ちホテル、劇場、老人施設などでは省エネルギーの点では特に有効である。
Claim 6 presents the use of the vertical wall heat exchanger of claim 5 as the air-to-air heat exchanger of the cooling device of the present invention, and by virtue of the heat transfer performance of this vertical wall heat exchanger, The performance, size reduction, and cost reduction of the cooling device can be achieved.
According to the seventh aspect of the present invention, the cooling air partially separated from the processing air described above is made high enthalpy as shown in FIG. 3 and then exhausted to the outside of the room or the like.
The enthalpy of the outdoor air indicated by dots and the enthalpy of the exhaust air F point are almost equal, and therefore, there is a feature that there is no energy loss due to ventilation. In general, when indoor air is exhausted outdoors by ventilation, there is a problem that the ventilation energy loss increases due to the difference in enthalpy of both, but the cooling by the cooling device of the present invention has almost no loss, and a large amount of ventilation is It is particularly effective in terms of energy saving in the necessary space, i.e., hotels, theaters, and elderly facilities.

請求項11はこの垂直壁面熱交換器を請求項3、及び4に記載している第二ステップにおける処理空気を空間外空気で冷却する場合に用いることを提示している。この場合、空間外空気側に散水するので垂直壁面熱交換器の全ての技術効果が有効になる。今まで述べてきた第三ステップで用いる垂直壁面熱交換器とここで提示している第二ステップの垂直壁面熱交換器を一体で構成させ一つの熱交換器の株で第二ステップの、上部で第一ステップの熱交換を行わせる方法は全体の冷房装置の小型化、低コスト化に有効であり、実用性の高い技術である。 Claim 11 proposes that this vertical wall heat exchanger is used when the process air in the second step described in claims 3 and 4 is cooled by outside air. In this case, all the technical effects of the vertical wall heat exchanger are effective because water is sprinkled on the outside air side. The vertical wall heat exchanger used in the third step described so far and the vertical wall heat exchanger in the second step presented here are configured integrally, and the upper part of the second step is made up of one heat exchanger stock. The method of performing heat exchange in the first step is effective in reducing the size and cost of the entire cooling device, and is a highly practical technique.

本冷房装置の大きな課題の一つは水蒸発冷却器における水道水カルキの発生と固着及び同部分での汚染やカビの発生、さらには匂いの発生である。そこで請求項12では散水した水量のうち一定割合を廃棄させることがこれらの課題の防止になる。さらには請求項14に示したように雨水を用いることが有効であり、水道代の節約という点でも有効である。このため雨水を貯留してこの冷房装置が作動する時に使用することが有効となる。 One of the major problems of this cooling device is the generation and fixation of tap water chalk in the water evaporative cooler, the generation of contamination and mold, and the generation of odors. Accordingly, in claim 12, it is possible to prevent these problems by discarding a certain proportion of the amount of water sprayed. Furthermore, it is effective to use rain water as shown in claim 14, and it is also effective in terms of saving water bills. For this reason, it is effective to store rainwater and use it when this cooling device operates.

請求項13ではこの水をさらに有効利用するために請求項1、2、3、4に示した冷房機の最初のステップの吸着除湿工程でも活用しようとする技術である。即ち水蒸発冷却器で散水され蒸発することにより処理空気を冷却し、垂直壁面熱交換器の最低部に落下したこの水をドレンパンで集め、図2に示す様に16ドレんホースを介して3及び15吸着材付き熱交換器の管内に連通し、管外の薄肉フィンを通じてフィン表面に接合した吸着材を冷却して吸着効果の再生を図る上で有効であることを示している。   In claim 13, in order to make more effective use of this water, it is a technique to be utilized in the adsorption dehumidification process of the first step of the air conditioner shown in claims 1, 2, 3, and 4. That is, the processing air is cooled by being sprinkled and evaporated by a water evaporative cooler, and this water dropped on the lowest part of the vertical wall heat exchanger is collected by a drain pan, and as shown in FIG. And 15 is effective in regenerating the adsorption effect by cooling the adsorbent which is communicated with the inside of the pipe of the heat exchanger with adsorbent and joined to the fin surface through the thin fin outside the pipe.

請求項14ではこの冷房機の吸着材の再生に用いる加熱源となる熱源を提示している。太陽熱は勿論燃料電池の排熱、厨房の料理排熱燃焼ガス排熱、ヒートポンプ冷房機の排熱その他60℃以上の温熱を利用できる。特に空間内温度の高い厨房や多くの換気量の必要な劇場などでは本冷房装置の持つ換気機能は冷房効果を高める上で有効である。 In Claim 14, the heat source used as the heating source used for reproduction | regeneration of the adsorbent of this air conditioner is shown. Of course, it is possible to use not only solar heat but also exhaust heat from the fuel cell, cooking exhaust heat from the kitchen, exhaust gas from the combustion gas, exhaust heat from the heat pump air conditioner, and other temperatures of 60 ° C. or higher. In particular, the ventilation function of the present cooling device is effective in enhancing the cooling effect in a kitchen where the temperature in the space is high or a theater that requires a large amount of ventilation.

以上の発明により以下の様な効果を期待できる。
1、水蒸発潜熱を有効に使って、ファンモータと水ポンプ以外に熱源や動力源を使わずに室内空気の冷却を行う空気調和装置を提供できる。
2、以上の装置に熱源を利用したデシカント除湿器を組み込んで除湿と冷却の双方を効率よく行う空気調和装置を提供できる。
3、室内空気湿度を検知して湿度が低い時乃至は湿度が低い地域ではデシカント除湿器の作動を停止して乃至はデシカント部分が無い装置で冷房が可能となり、熱源の使用量が少ない又は無い空気調和装置を提供できる。
4、以上の空気調和装置は圧縮機や冷凍サイクルを用いた従来の空気調和装置に比べ、製造減価の低減が期待でき、また一次エネルギー使用量の少ない空気調和装置を実現できる。
The following effects can be expected from the above invention.
1. It is possible to provide an air conditioner that effectively uses the latent heat of water evaporation to cool indoor air without using a heat source or a power source other than a fan motor and a water pump.
2. A desiccant dehumidifier using a heat source is incorporated into the above apparatus to provide an air conditioner that efficiently performs both dehumidification and cooling.
3. When the indoor air humidity is detected and the humidity is low or in an area with low humidity, the desiccant dehumidifier is stopped or cooling is possible with a device without the desiccant part, and the amount of heat source used is small or absent. An air conditioner can be provided.
4. The above air conditioner can be expected to reduce manufacturing depreciation compared to conventional air conditioners using a compressor or a refrigeration cycle, and can realize an air conditioner that uses less primary energy.

本発明の垂直壁面熱交換器の外観図External view of vertical wall heat exchanger of the present invention 本発明による代表的な空気調和装置の構造図Structural drawing of a typical air conditioner according to the present invention 本発明の処理空気と冷却空気の作動を示す湿り空気線図Wet air diagram showing operation of processing air and cooling air of the present invention

以上の発明を具体化したパッケイジ型の高効率空気調和装置の代表事例を図2に示す。この装置は下部のデシカント除湿装置、上部の水蒸発冷却装置で構成されている。デシカント除湿装置の中心はデシカント除湿器3及び15であり、フィンチューブ熱交換器のフィンの外表面に吸着材であるゼラチンの結晶を焼き付けて湿気を吸収できる構造になっている。
ドレンホース16から25℃の水がデシカント除湿器3、15の銅管内に送られると送風切り替えダンパ7でガイドされた室内空気はその湿度分をデシカント除湿器の吸着材に吸着される。この運転を5分程度継続すると、デシカント切り替えダンパが切り替えられて室外空気が導入され、同時に太陽熱温水管路5に太陽熱温水器で暖められた60℃の温熱媒体である温水が送られる。この結果デシカント除湿器3、15の吸着材から放湿され、この放湿作業は5分程度継続される。これを繰り返して室内空気を除湿し、その湿分は室外空気へと放湿される。
A typical example of a package type high-efficiency air conditioner embodying the above invention is shown in FIG. This device is composed of a lower desiccant dehumidifier and an upper water evaporative cooling device. The center of the desiccant dehumidifier is the desiccant dehumidifiers 3 and 15, which have a structure that can absorb moisture by baking gelatin crystals as an adsorbent on the outer surface of the fins of the fin tube heat exchanger.
When water at 25 ° C. is sent from the drain hose 16 into the copper tubes of the desiccant dehumidifiers 3 and 15, the indoor air guided by the air blowing damper 7 is adsorbed by the adsorbent of the desiccant dehumidifier. If this operation is continued for about 5 minutes, the desiccant switching damper is switched and outdoor air is introduced, and at the same time, hot water, which is a 60 ° C. heating medium heated by the solar water heater, is sent to the solar hot water pipe 5. As a result, moisture is released from the adsorbent of the desiccant dehumidifiers 3 and 15, and this moisture release operation is continued for about 5 minutes. This is repeated to dehumidify the indoor air, and the moisture is released to the outdoor air.

この除湿運転は室内空気(図3ではA点27℃)の温湿度が温湿度センサーによって検知され、湿度が高く運転すべきと判定された時のみ運転され、それ以外では除湿運転は行われない。以上で除湿されて高温度になった室内空気は図3中でB点に達し34.5℃まで高温度になる。
この空気は図2の室内送風機9により上部の水蒸発冷却装置に送られる。これが図2中で室内空気経路17で示される経路で垂直壁面熱交換器1の中を通り抜ける。
このとき、まづは12で示される散水されて冷却された室外空気によって冷却され、それが次の様な仕掛けでさらに冷却される。 即ち冷却されたこの室内空気はそのうち約80%が室内へと吹き出される。一方残りの20%は図2最上部に示した処理空気から分離した冷却空気18に示される様に垂直面熱交換器の右側に回り込み、水道水散水ノズル4で散水噴霧されたミストと混合され垂直壁面熱交換器の壁面を冷却し室外冷却送風機11により室外へと排気される。 この結果、伝熱壁面を通して17で示される室内空気を冷却する。
This dehumidifying operation is operated only when the temperature and humidity of the indoor air (point A at 27 ° C. in FIG. 3) is detected by the temperature / humidity sensor and it is determined that the humidity should be high, and otherwise the dehumidifying operation is not performed. . The indoor air that has been dehumidified and has reached a high temperature reaches point B in FIG. 3 and reaches a high temperature of 34.5 ° C.
This air is sent to the upper water evaporative cooling device by the indoor blower 9 of FIG. This passes through the vertical wall heat exchanger 1 along a path indicated by an indoor air path 17 in FIG.
At this time, the water is first cooled by the sprinkled and cooled outdoor air indicated by 12, and it is further cooled by the following mechanism. That is, about 80% of the cooled indoor air is blown into the room. On the other hand, the remaining 20% goes to the right side of the vertical surface heat exchanger as shown by the cooling air 18 separated from the processing air shown at the top of FIG. 2 and is mixed with the mist sprayed by the tap water spray nozzle 4. The wall surface of the vertical wall heat exchanger is cooled and exhausted to the outside by the outdoor cooling fan 11. As a result, the indoor air indicated by 17 is cooled through the heat transfer wall surface.

水蒸発冷却装置での室内空気と室外空気の作動を図3の湿り空気線図上で説明する。B点まで除湿され高温度化した室内空気は図2の垂直壁面熱交換器1の下半分で室外空気により冷却され図のC点まで冷却される。これが通常のデシカント冷房機である。このとき冷却空気としての室外空気は逆に図中でb点からc点に加熱加湿される。 本冷房機ではさらに処理空気から20%程度分離された冷却空気18によって冷却されてD点に至る。その吹き出し温度は22.1℃である。その湿度は70%程度であるから、冷房機の吹き出し口には図示していないが水道水利用加湿装置を設置してさらに加湿冷却する方法がとられる。     The operation of indoor air and outdoor air in the water evaporative cooling device will be described on the wet air diagram of FIG. The room air dehumidified to a point B and heated to a high temperature is cooled by the outdoor air in the lower half of the vertical wall heat exchanger 1 in FIG. This is a normal desiccant air conditioner. At this time, outdoor air as cooling air is heated and humidified from point b to point c in the figure. In this air conditioner, the air is further cooled by the cooling air 18 separated from the processing air by about 20% to reach point D. The blowing temperature is 22.1 ° C. Since the humidity is about 70%, although not shown at the air outlet of the air conditioner, a method of further humidifying and cooling by installing a tap water use humidifier is used.

20%の冷却空気は図3のF点まで加熱加湿された状態で室外へと放出され、それは換気空気となる。通常の建物で必要な換気量を歓喜する時のエネルギーロスはほぼゼロになるから換気の無い電導式冷凍サイクルエアコンの場合に生じる換気ロスは省エネの観点上
極めて有効な装置と言える。
20% of the cooling air is released to the outside in the state of being heated and humidified up to point F in FIG. 3 and becomes ventilation air. The energy loss when rejoicing the necessary ventilation in a normal building becomes almost zero, so the ventilation loss that occurs in the case of a conductive refrigeration cycle air conditioner without ventilation can be said to be an extremely effective device in terms of energy saving.

以上の説明でわかる通り、極めて広い市場での地球環境に優れた空調機を提供できるから、従来の電動圧縮機式の空調機の広大な世界市場である約4兆円の市場に浸透していくことが期待される。その10%でも4000億円の事業を構成することができるから、産業上の視点でも極めて重要な発明であると認識している。   As can be seen from the above explanation, we can provide air conditioners with excellent global environment in a very wide market, so we have penetrated the approximately 4 trillion yen market, which is a vast world market for conventional electric compressor air conditioners. It is expected to go. Even 10% of this can constitute a 400 billion yen business, so we recognize that this is an extremely important invention from an industrial point of view.

1 垂直壁面熱交換器
2 冷房装置
3 デシカント除湿器2
4 水道水散水ノズル
5 太陽熱温水管路
6 温水切換え弁
7 送風切換えダンパ
8 室外送風機
9 室内送風機
10 ドレンパン
11 室外冷却送風機
12 室外空気経路
14 散水
15 デシカント除湿器1
16 ドレンホース
17 室内空気経路
18 処理空気から分離された冷却空気
























1 Vertical wall heat exchanger 2 Cooling device 3 Desiccant dehumidifier 2
4 Tap Water Sprinkling Nozzle 5 Solar Hot Water Pipe Line 6 Hot Water Switch Valve 7 Blow Switch Damper 8 Outdoor Blower 9 Indoor Blower 10 Drain Pan 11 Outdoor Cooling Blower 12 Outdoor Air Path 14 Water Spray 15 Desiccant Dehumidifier 1
16 Drain hose 17 Indoor air path
18 Cooling air separated from process air
























Claims (15)

空間内の空気を処理空気として装置に取り込んで、吸着器により除湿し、次に空間外空気によってこれを冷却し、次に連続する平面状の薄い仕切り壁を伝熱面として該伝熱面の両側を流れる空気同士を熱交換させる空気対空気熱交換器を使って前記処理空気から分離した一部空気に乃至は該空気が流れる側の前記伝熱面に散水することにより低温度化した当該空気乃至は当該伝熱面により当該伝熱面の裏側の伝熱面に接して流れる前記処理空気をさらに冷却することにより処理空気を除湿及び冷却することを特徴とする冷房装置。 Air in the space is taken into the apparatus as treated air, dehumidified by an adsorber, then cooled by outside air, and then a continuous flat thin partition wall is used as the heat transfer surface. The temperature is lowered by sprinkling water on the heat transfer surface on the side through which the air flows or part of the air separated from the processing air using an air-to-air heat exchanger that exchanges heat between air flowing on both sides. A cooling apparatus characterized in that the processing air is dehumidified and cooled by further cooling the processing air flowing in contact with the heat transfer surface on the back side of the heat transfer surface by the air or the heat transfer surface. 空間内の空気を処理空気として装置に取り込んで、吸着器により除湿し、次に空間外空気によって冷却し、次に連続する薄い平面状の仕切り壁を伝熱面として該伝熱面の両側を流れる空気同士を熱交換させる空気対空気熱交換器を使って前記処理空気が空間内に吹き出される前にその一部空気を分離し、該分離した一部空気に乃至は該空気が流れる側の前記伝熱面に散水することにより低温度化した当該空気乃至は当該伝熱面により当該伝熱面の裏側の伝熱面に接して前記処理空気を流してこれをさらに冷却することにより処理空気を除湿及び冷却することを特徴とする冷房装置。 Air in the space is taken into the apparatus as treated air, dehumidified by an adsorber, then cooled by outside air, and then a continuous thin flat partition wall is used as a heat transfer surface to cover both sides of the heat transfer surface. A part of the separated air is separated before or after the processing air is blown into the space by using an air-to-air heat exchanger for exchanging heat between the flowing air. The air that has been lowered in temperature by spraying water on the heat transfer surface or the heat transfer surface is in contact with the heat transfer surface on the back side of the heat transfer surface and the process air is flowed to further cool the air. A cooling device characterized by dehumidifying and cooling air. 空間内の空気を装置内に取り込んで処理空気となし、この処理空気を第一ステップで吸着剤と接触させて吸着除湿し、さらに第二ステップとしてこの処理空気を空間外空気と熱交換させてこれを冷却し、さらに第三ステップとしてこの処理空気を垂直の薄い平面状の伝熱壁面からなる空気対空気熱交換器の当該壁面の表面に沿って流してさらにこれを冷却してその一部の空気を除いた大部分の空気を空間に吹き出すとともに、空間に吹き出す前の当該処理空気のうち当該一部の空気を前記垂直の伝熱壁面の反対面に沿って前記大部分の空気と対向流に流すとともに、該反対面には薄い水膜が生成できるように散水させ、この散水された水が蒸発することにより該一部の空気を加湿して湿球温度近くまで冷却させると同時に該垂直の伝熱壁面を冷却し、この壁面の表面に接して流れる前記処理空気を冷却させ、この三つのステップにより空間に吹き出す処理空気を除湿・冷却し、空間に吹き出さなかった前記一部の空気を空間外に排気して換気空気としたことを特徴とした冷房装置。 Air in the space is taken into the device to form processing air, this processing air is brought into contact with the adsorbent in the first step, adsorbed and dehumidified, and in the second step, this processing air is heat exchanged with outside air. This is cooled, and as a third step, the treated air is allowed to flow along the surface of the wall surface of the air-to-air heat exchanger composed of a vertical thin flat heat transfer wall surface. Most of the air excluding the air is blown into the space, and the part of the treated air before being blown into the space is opposed to the majority of the air along the opposite surface of the vertical heat transfer wall surface. The water is sprinkled so that a thin water film can be formed on the opposite surface, and the sprinkled water evaporates to humidify and cool the part of the air to near the wet bulb temperature. Vertical heat transfer wall However, the processing air flowing in contact with the surface of the wall surface is cooled, and the processing air blown into the space is dehumidified and cooled by these three steps, and the part of the air that has not blown into the space is exhausted out of the space. The cooling device is characterized by the ventilation air. 空間内の空気を装置内に取り込んで処理空気となし、この処理空気を第一ステップで吸着剤と接触させて吸着除湿し、さらに第二ステップとしてこの処理空気を空間外空気と熱交換させてこれを冷却し、さらに第三ステップとしてこの処理空気を垂直の伝熱壁面からなる空気対空気熱交換器の当該壁面の表面に沿って流してこれを冷却して空間に吹き出す過程で、空間に吹き出す前の当該処理空気のうち一部の空気を分離してこの空気を前記垂直の伝熱壁面の反対面に沿って前記大部分の空気と対向流に且つ下向きに流すとともに、該反対面には薄い水膜が生成できるように前記一部の空気内に散水させ、この散水された水が蒸発することにより該一部の空気を加湿して湿球温度近くまで冷却させると同時に該垂直の伝熱壁面に水膜を形成してこれを冷却し、この壁面の反対の表面に接して上向きに流れる前記処理空気を冷却させるというステップを構成し、この三つのステップにより空間に吹き出す処理空気を除湿・冷却し、空間に吹き出さなかった前記一部の空気を空間外に排気して換気空気としたことを特徴とした冷房装置。 Air in the space is taken into the device to form processing air, this processing air is brought into contact with the adsorbent in the first step, adsorbed and dehumidified, and in the second step, this processing air is heat exchanged with outside air. In the process of cooling this, and as a third step, this process air flows along the surface of the wall of the air-to-air heat exchanger consisting of a vertical heat transfer wall, cools it and blows it into the space. A part of the treated air before blowing out is separated, and this air flows in the opposite direction of the vertical heat transfer wall along the opposite surface of the majority of the air and downwards, and on the opposite surface. Is sprayed into the part of the air so that a thin water film can be formed, and the sprinkled water evaporates to humidify the part of the air and cool it to near the wet bulb temperature, while simultaneously A water film is formed on the heat transfer wall The step of cooling this and cooling the processing air flowing upward in contact with the opposite surface of the wall surface is configured, and the processing air blown into the space is dehumidified and cooled by these three steps, and is not blown into the space. In addition, a cooling apparatus characterized in that the part of the air is exhausted out of the space to obtain ventilation air. 空気流路が平坦な連続するアルミの薄板を繰り返しジグザグに折り畳んで多数のフィンピッチを構成した伝熱面で二つに仕切られた熱交換器で、全ての伝熱面が垂直になるように、即ち水平切断面形状が前記ジグザグの形状となる様に配置して、前記垂直の伝熱面を挟んだ両側の流路に夫々の空気を流して相互に伝熱させる方式の空気対空気熱交換器に於いて、
一方の空気は下から上へと該伝熱面の片方の面に沿って流し、他方の空気は上から下へと該伝熱面の他方の面に沿って流し、且つ何れかの空気乃至は及び伝熱面表面に散水して該伝熱面の表面に水膜を形成して該伝熱面が水膜で被われて濡れている状態となし、該伝熱面の温度をその面を流れる空気の湿球温度に近い温度まで冷却させることにより、該伝熱面を介して反対側の面に接して流れる前記一方の空気を冷却することを特徴とする冷房装置用の垂直壁面熱交換器。
It is a heat exchanger that is divided into two by a heat transfer surface composed of many fin pitches by repeatedly folding a continuous aluminum thin plate with a flat air flow path in a zigzag so that all the heat transfer surfaces are vertical In other words, the air-to-air heat is a method in which the horizontal cut surface is arranged in the zigzag shape and the air flows through the flow paths on both sides sandwiching the vertical heat transfer surface to transfer heat to each other. In the exchanger
One air flows from bottom to top along one side of the heat transfer surface, the other air flows from top to bottom along the other surface of the heat transfer surface, and any air or The surface of the heat transfer surface is sprinkled to form a water film on the surface of the heat transfer surface so that the heat transfer surface is covered with the water film and wetted. Vertical wall surface heat for a cooling device, wherein the one air flowing in contact with the opposite surface through the heat transfer surface is cooled by cooling to a temperature close to the wet bulb temperature of the air flowing through Exchanger.
前記垂直壁面熱交換器を前記空気対空気熱交換器として用いたことを特徴とする請求項1、2、3、4の何れか一項に記載の冷房装置。 The cooling apparatus according to any one of claims 1, 2, 3, and 4, wherein the vertical wall heat exchanger is used as the air-to-air heat exchanger. 空間内から取り込んだ空気に空間外の空気を取り込んで一体化して前記処理空気となし、空間外から取り込んだ当該空気量と前記排気空気の空気量とを大略一致させたことを特徴とする請求項3、4の何れか一項に記載の冷房装置。 The outside air is taken in and integrated with the air taken in from the space to form the processing air, and the amount of air taken from outside the space and the air amount of the exhaust air are approximately matched. Item 5. The cooling device according to any one of items 3 and 4. 伝熱壁面を樹脂により形成したことを特徴とする請求項5に記載の垂直壁面熱交換器。 The vertical wall surface heat exchanger according to claim 5, wherein the heat transfer wall surface is formed of a resin. 伝熱壁面の形状は、水膜を形成する伝熱面の側の壁面間ピッチを水膜を形成しない反対面側の壁面間ピッチより大きな寸法としたことを特徴とした請求項5、8の何れか一項に記載の垂直壁面熱交換器。 The shape of the heat transfer wall surface is such that the pitch between the wall surfaces on the side of the heat transfer surface on which the water film is formed is larger than the pitch between the wall surfaces on the opposite surface side where the water film is not formed. The vertical wall surface heat exchanger according to any one of claims. 伝熱壁面は、水膜を形成する伝熱面の側の壁面表面に親水性塗膜を形成したことを特徴とした請求項5、8、9の何れか一項に記載の垂直壁面熱交換器。 The vertical wall surface heat exchange according to any one of claims 5, 8, and 9, wherein the heat transfer wall has a hydrophilic coating formed on the wall surface on the side of the heat transfer surface forming the water film. vessel. 前記垂直壁面熱交換器を前記処理空気を前記空間外空気で冷却する時の熱交換装置として用いたことを特徴とする請求項1、2、3、4の何れか一項に記載の冷房装置。 The cooling apparatus according to any one of claims 1, 2, 3, and 4, wherein the vertical wall heat exchanger is used as a heat exchange apparatus when the processing air is cooled by the outside air. . 前記冷房装置を運転し、前記伝熱面に散水する水をその含有カルキ濃度乃至は運転時間など一定の基準に基づいてその基準を満たした時にその一部または一定量を乃至は連続的または断続的に一定割合の水量を前記冷房装置から廃棄させることを特徴とした請求項1、2、3、4、5、6、7、8、9、10、11の何れか一項に記載の冷房装置。   When the air conditioner is operated and the water sprayed on the heat transfer surface satisfies the standard based on a certain standard such as the concentration of the chlorinated acid or the operation time, a part or a constant amount or continuous or intermittent The cooling according to any one of claims 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11, wherein a certain amount of water is discarded from the cooling device. apparatus. 前記冷房装置を運転し、前記伝熱面に散水する水を、前記吸着装置に備えた冷却配管の中に連通させることによりこれを冷却し、前記空気対空気熱交換器で蒸発効果を発揮させると共に前記吸着装置の吸着特性の向上にも寄与させたことを特徴とした請求項1、2、3、4、5、6、7、8、9、10、11、12の何れか一項に記載の冷房装置。   The cooling device is operated, and the water sprayed on the heat transfer surface is cooled by communicating with the cooling piping provided in the adsorption device, and the evaporation effect is exhibited in the air-to-air heat exchanger. Further, the present invention contributes to the improvement of the adsorption characteristics of the adsorption device, according to any one of claims 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. The cooling apparatus as described. 水の再利用と雨水利用
前記、伝熱面に散水する水を空間周辺の雨水を貯留した水を用いたことを特徴とした請求項1、2、3、4、5、6、7、8、9、10、11、12、13の何れか一項に記載の冷房装置。
Reuse of water and use of rainwater The water used to spray water on the heat transfer surface is water stored with rainwater around the space. , 9, 10, 11, 12, or 13.
太陽熱、厨房熱
前記吸着除湿する工程で吸着材の再生のために使用する熱源として太陽熱乃至は燃料電池発電装置の排熱乃至はレストランの厨房における料理に使われた燃焼ガスの排熱乃至は冷房運転する電動式ヒートポンプエアコンの排熱を利用したことを特徴とした請求項1、2、3、4、5、6、7、8、9、10、11、12、13、14の何れか一項に記載の冷房装置。
Solar heat, kitchen heat As a heat source used for regeneration of the adsorbent in the adsorption and dehumidification step, solar heat, exhaust heat from the fuel cell power generator, exhaust heat from the combustion gas used for cooking in the restaurant kitchen, or cooling Any one of claims 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14 using exhaust heat of an operating electric heat pump air conditioner. The cooling device according to item.
JP2011225446A 2011-10-13 2011-10-13 Air conditioner, and vertical wall surface heat exchanger Pending JP2013087956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011225446A JP2013087956A (en) 2011-10-13 2011-10-13 Air conditioner, and vertical wall surface heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011225446A JP2013087956A (en) 2011-10-13 2011-10-13 Air conditioner, and vertical wall surface heat exchanger

Publications (1)

Publication Number Publication Date
JP2013087956A true JP2013087956A (en) 2013-05-13

Family

ID=48532054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011225446A Pending JP2013087956A (en) 2011-10-13 2011-10-13 Air conditioner, and vertical wall surface heat exchanger

Country Status (1)

Country Link
JP (1) JP2013087956A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090136A (en) * 2014-11-05 2016-05-23 梅津 健兒 Air-cooling device with water evaporation cooling
CN105627473B (en) * 2016-02-23 2018-11-16 上海交通大学 A kind of humiture independence control air conditioner system of solar heat driving
CN114127482A (en) * 2019-07-18 2022-03-01 兄弟工业株式会社 Air conditioner
JP7363857B2 (en) 2019-07-18 2023-10-18 ブラザー工業株式会社 air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090136A (en) * 2014-11-05 2016-05-23 梅津 健兒 Air-cooling device with water evaporation cooling
CN105627473B (en) * 2016-02-23 2018-11-16 上海交通大学 A kind of humiture independence control air conditioner system of solar heat driving
CN114127482A (en) * 2019-07-18 2022-03-01 兄弟工业株式会社 Air conditioner
JP7363857B2 (en) 2019-07-18 2023-10-18 ブラザー工業株式会社 air conditioner

Similar Documents

Publication Publication Date Title
Ge et al. Exergy analysis of dehumidification systems: A comparison between the condensing dehumidification and the desiccant wheel dehumidification
Rafique et al. A review on desiccant based evaporative cooling systems
Buker et al. Recent developments in solar assisted liquid desiccant evaporative cooling technology—A review
CN206361857U (en) Heat reclamation type embrane method solution heat pump system
Comino et al. Experimental energy performance assessment of a solar desiccant cooling system in Southern Europe climates
Finocchiaro et al. Advanced solar assisted desiccant and evaporative cooling system equipped with wet heat exchangers
Zaki et al. Separate sensible and latent cooling technologies: A comprehensive review
Enteria et al. Review of the advances in open-cycle absorption air-conditioning systems
Pandelidis et al. Multi-stage desiccant cooling system for moderate climate
US9383116B2 (en) Dehumidification apparatus, and air conditioning apparatus and air conditioning system having the same
Mohammed et al. Indirect evaporative cooling for buildings: A comprehensive patents review
KR101341790B1 (en) Ultra energy saving type compression chiller and absorption chiller-heater
US10655870B2 (en) Methods for enhancing the dehumidification of heat pumps
CN110748963B (en) Air conditioner system, air conditioner and control method of air conditioner
CN102927629A (en) Solution humidity-regulating air conditioning system with pre-cooling function
JP2013087956A (en) Air conditioner, and vertical wall surface heat exchanger
CN110748964B (en) Air conditioner system, air conditioner and control method of air conditioner
JP2018021711A (en) Water evaporation cooler
JP2015194304A (en) Outside air treatment device
JPH10300128A (en) Cooling/dehumidifying apparatus of refrigerant natural circulation type air air-conditioning apparatus combinedly provided therewith
EP3457038B1 (en) Self-contained air conditioning system and use method
JP5548921B2 (en) Heat source air conditioner
CN205332427U (en) Salt solution double -cold -source fresh air unit
Mohammed et al. Desiccants enabling energy-efficient buildings: A review
Ge et al. Review of solar-powered desiccant cooling systems