WO2022097757A1 - Air-conditioning or cooling device using hybrid cooling - Google Patents

Air-conditioning or cooling device using hybrid cooling Download PDF

Info

Publication number
WO2022097757A1
WO2022097757A1 PCT/JP2021/042346 JP2021042346W WO2022097757A1 WO 2022097757 A1 WO2022097757 A1 WO 2022097757A1 JP 2021042346 W JP2021042346 W JP 2021042346W WO 2022097757 A1 WO2022097757 A1 WO 2022097757A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
cooling
cooled
heat
water
Prior art date
Application number
PCT/JP2021/042346
Other languages
French (fr)
Japanese (ja)
Inventor
健兒 梅津
Original Assignee
株式会社Gf技研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gf技研 filed Critical 株式会社Gf技研
Priority to JP2022560842A priority Critical patent/JPWO2022097757A1/ja
Publication of WO2022097757A1 publication Critical patent/WO2022097757A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/032Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/039Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing using water to enhance cooling, e.g. spraying onto condensers

Definitions

  • the device that cools the indoor air with the outdoor air is called a heat pump air conditioner and uses a refrigerant.
  • An air conditioner in which this refrigerant is compressed by a compressor and the high-temperature refrigerant is cooled by outdoor or indoor air has been realized and is widely used worldwide.
  • this method consumes a large amount of power from the compressor, and when the power is generated, the exhaust gas of the generator or the leaked gas of the refrigerant is one of the causes of global warming. It is thought that the spread of air conditioners will increase worldwide in the future, and there is a possibility that it will have a more adverse effect on global warming than the exhaust gas of cars, so it can be said that it has a big problem on a global scale.
  • the so-called fin tube heat exchanger which is a heat exchanger between the refrigerant and air used in the above-mentioned heat pump air conditioner, is designed to achieve extremely high performance, reliability, and compactness, and can be mass-produced. Since the method has been established, reduction of the compression power applied to the refrigerant compressor, that is, reduction of power consumption has been promoted, but now it has reached the limit. Moreover, the spread of air conditioners is constantly increasing, and the increase in greenhouse gas emissions is unstoppable.
  • the air-to-air heat exchanger used for cooling and cooling by the water evaporation utilization cooling method which is a further advanced method, that is, the water evaporation indirect cooling heat exchanger IDEC (Indirect Evaporative Cooler) is a refrigerant circulation type cooling device. It has hardly been realized in the product field of air conditioners and air conditioners. The reason is that the performance comparable to that of the refrigerant compression type air conditioner has not been obtained, but it is also because the excellent design and manufacturing method have not been realized, and sufficient marketing is not done and the product concept is insufficient. Therefore, the final products such as air cooling devices, cooling devices, and heating devices are not ensured in size, low cost, sufficient performance, and reliability, and are not mass-produced.
  • IDEC Direct Evaporative Cooler
  • Patent Document 1 presents a technique for realizing a cooling / dehumidifying system utilizing the latent heat of vaporization of water. According to the summary, it is equipped with an indirect vaporization cooling device (referred to as a water evaporation indirect cooling heat exchanger in this proposal) and a desiccant humidity control device to realize a cooling and dehumidifying system with high cooling capacity and dehumidifying capacity. Presenting new technology.
  • Cooled air is passed through the wet channel to form a wet film by attaching a water retaining agent to the heat transfer surface in order to utilize the wet-bulb temperature, and the cooled air (treated air) passes through the dry channel through the heat transfer surface. ) Is cooling. 2. In order to enhance the cooling effect, cooling air and non-cooling air are flowed in a countercurrent flow. 3. By taking out a part of the air at the outlet of the cooled air flowing through the dry channel and flowing it to the wet channel in the direction opposite to the dry channel, the processed air of the dry channel is separated by this part of the air. Cool more efficiently.
  • the above three techniques are extremely effective techniques for cooling the treated air.
  • Patent Document 2 presents a technique for further enhancing the cooling effect. Using a thin aluminum heat transfer plate, it is molded into a corrugated plate shape, and many improvement items are presented, such as making the two air flows countercurrent. However, although some improvement can be expected with this alone, a sufficient effect cannot be expected.
  • Water evaporation Indirect cooling heat exchanger A power refrigeration cycle device that uses a refrigerant based on a cooling device that uses an air-to-air heat exchanger called IDEC, and a dehumidifying device that uses a desiccant unit that uses a heat source such as a solar heat source. It is to clarify the method and technology to use the above in combination with the hybrid. The purpose of solving the problem is as follows: 1) While sufficiently improving the cooling performance, 2) Reducing the amount of electric power energy used, 3) Significantly reducing the amount of refrigerant used, and 4) Improving the air quality of the treatment space.
  • the advantage of this method is that it is easy to obtain a stable drive power supply anywhere and anytime.
  • the problems of this method are that it consumes a large amount of power and that it uses a fluorocarbon refrigerant whose use is about to be regulated internationally.
  • the main reason for the large power consumption is that the outdoor air temperature reaches 35 ° C. in the summer, so that the condensation pressure increases and the compression power of the compressor increases.
  • Means 2 method using water evaporation indirect cooling type heat exchanger ...
  • the main method adopted and proposed is cooling by water evaporation indirect cooling type heat exchanger and a command chamber device.
  • More than 100 thin aluminum plates are laminated with a certain gap, and the outdoor air and indoor air are flowed independently in each gap so that they do not mix, and heat is exchanged between them.
  • both air are cooled by the heat of vaporization of tap water and flow out.
  • the indoor air is cooled without being humidified, that is, it is cooled.
  • the outdoor air is humidified and cooled. Therefore, if the cooling heat of both the indoor air and the outdoor air to be cooled can be used together, the cooling effect will be doubled.
  • the advantage of this method is that when cooling, only the blower power is used, the power consumption is low, and the energy efficiency is high.
  • the problem is that the cooling capacity is reduced when the humidity of the treated air, especially the outdoor air, is high.
  • the third means for cooling and cooling is cooling with a water evaporation indirect cooling heat exchanger using desiccant member, before processing with a command chamber device. It is a method to enhance the cooling and cooling effect by adsorbing and dehumidifying the moisture of the indoor air. Therefore, it is necessary to first remove (dehumidify) the moisture from the member by using outdoor air heated to about 60 ° C. as a pretreatment.
  • the structure of the desiccant member is such that a hygroscopic material made of silica gel, zeolite, polymer resin, etc., which has hygroscopic properties, is supported on the surface and inside, and is molded in a wavy shape with the paper or resin sheet flat plate that is the base material.
  • a cardboard sheet is formed by laminating a molded plate that has been (processed) or a triangular shape continuously molded into a cardboard shape with a space for air passage inside, and then stacking a large number of them inside.
  • the air enthalpy is lowered by dehumidifying the air, and the air is cooled and cooled in combination with the above two methods.
  • the advantages of this method are that it can reduce the amount of power consumed by using heat without using power, and that the hot water storage tank required for storing heat such as solar heat in hot water is not required, and the desiccant box itself is a heat storage layer. The required volume can be reduced compared to the hot water tank method that uses the sensible heat of water to store heat by using the latent heat of water, and the energy stored by heat leaks that occur in hot water storage tanks, etc.
  • the technique described in claim 1 is a technique for cooling the air to be cooled to a lower temperature by combining means 1, a heat pump method and means 2, and a method using a water evaporation indirect cooling heat exchanger.
  • the air to be cooled is cooled to near the wet bulb temperature of the cooling air with almost no power consumption by the means 2, but when the wet bulb temperature is high due to rainy weather or the like, the cooled air is only about 1 to 2 ° C. It may not be cooled. Therefore, when the heat pump of the means 2 is used for additional cooling, the cooling effect can be sufficiently obtained, but the power consumption of the heat pump, that is, the power consumption of the compressor is added, and the water evaporation cooling type heat exchanger of the main means can be used.
  • claim 1 is a technique of using the cooling side air cooled by the water evaporation cooling type heat exchanger as the cooling air of the find tube refrigerant condensed radiator which is the condenser of the heat pump.
  • the electric power required for the compressor to compress the refrigerant is reduced to about 40% compared to using the air on the cooling side as it is, and the cooling capacity of the heat pump is reduced to 130%.
  • the air to be cooled is first cooled by a water evaporation indirect cooling type heat exchanger, and further cooled by a fin tube refrigerant evaporation cooler as described in claim 1, and at the same time, from the cooled air.
  • Dehumidify This air is heated and reheated by the upstream find tube refrigerant condensed radiator provided separately from the find tube refrigerant condensed radiator described above in the heat pump, and as a result, the cooled air is output without being excessively cooled. Since it is output mainly in a dehumidified state, the dry operation effect usually referred to can be obtained.
  • Claim 3 is a technique for further improving the efficiency and cooling performance of the method according to claim 1 by a simple method.
  • the cooling efficiency of a heat pump is significantly improved by sprinkling water on the heat radiation fin portion on the outer surface of the fin tube condenser which is a heat sink.
  • a method in which a water tank and a pump for sprinkling water on a water evaporation indirect cooling type heat exchanger are installed in claim 1, and the cooling performance of the heat pump can be easily improved by sprinkling the water on a fin tube condenser. Is proposed as a new technology.
  • the technique of claim 4 is used by dividing a part of the cooled air after cooling and returning it as cooling air, and when the air volume of about 30% is returned, the cooling air is output. It is known that the temperature can be reduced by about 1.0 ° C.
  • the returned 30% of the air is also the ventilation air from the room to the outside. If the indoor air cooled by the normal cooling operation is ventilated by the above effect, the outdoor air having a higher temperature will enter the room in terms of balance. It has the effect of recovering about 50% of the heat loss (called ventilation energy loss) due to ventilation.
  • ventilation energy loss due to ventilation.
  • both the cooling air and the cooled air are cooled by the heat of vaporization of water and discharged.
  • the technique of claim 5 is an idea of blowing both output airs into different spaces and using them for cooling and cooling of both spaces.
  • the technique of claim 6 is to stop sprinkling and operate the heat pump when the temperature of the space where there is a heat generating source in the space and the air to be cooled is blown out is higher than the temperature of the air to be cooled. It is a technology that cools and cools the space cooled by the water evaporation indirect cooling type heat exchanger without sprinkling water only by stopping and blowing air. Of course, the main purpose is to save energy. Typical examples are factory spaces with a lot of internal heat generation and office spaces in the evening when the outside air is cold.
  • a seventh aspect of the present invention is a technique for heating in the cooling / cooling device according to the first aspect.
  • a switching valve called a four-way switching valve
  • the fin tube refrigerant evaporative cooler according to claim 1 changes to the fin tube refrigerant reduced radiator to heat the cooled air for heating.
  • the heat source absorbs heat from the cooling air with a cooler that has changed from a fin tube refrigerant condensation radiator to a fin tube refrigerant evaporation cooler.
  • Claim 8 presents a standard basic technique for cooling a room.
  • claim 9 presents a method of cooling by releasing the cooled air into the room by using the outdoor air for both the cooling air and the cooling air. In this case, we aim to achieve the maximum air supply / ventilation effect by releasing a large amount of outdoor air into the indoor space.
  • Claim 10 presents a technique for supplying and ventilating outdoor air and at the same time exhausting and ventilating indoor air. According to this, if the air supply and exhaust volume are equalized to increase the ventilation volume and the air volume flows in and out equally, the indoor air pressure is equalized to the outdoor air pressure, and it becomes positive pressure or negative pressure.
  • Claim 11 presents a method of easily installing a ventilation air passage to perform supply air ventilation and exhaust ventilation in the proposed devices of claims 1, 2, 3, 4, and 5.
  • Most of the equipment is air passages that pass air on the cooling side and air on the cooling side, and since both air passages are adjacent to each other, a ventilation hole (ventilation port) is provided in the partition wall (partition wall). If a blower is installed there, it is possible to easily transfer air from one air passage to the other air passage.
  • Claim 12 presents a technique for controlling cooling and cooling capacities.
  • the desiccant slip is a flat plate made of paper or resin carrying a desiccant material (hygroscopic material) such as silica gel, zeolite, or a polymer hygroscopic material, and a flat plate made of resin, which is molded into a wavy shape.
  • a desiccant material hygroscopic material
  • the corrugated sheets are overlapped as shown in FIG. 4 and the whole is joined in a flat shape, and the planar shape is a quadrangle.
  • FIG. 4 shows the cross section so that the wavy shape can be seen.
  • a number of these desiccant slips are stacked so that the wave shapes are in the same direction to form a desiccant block.
  • the air to be cooled is passed through the desiccant block in advance to absorb moisture by the desiccant hygroscopic material, and the temperature is raised by a corresponding amount.
  • the amount of cooling heat when cooled in the water evaporation indirect cooling type heat exchanger and the fin tube refrigerant evaporation cooler is larger than that in the case where the desiccant block is not passed. To increase. If it is humidified and adjusted before it is finally blown out as output air, it will be possible to output cooler air at the optimum humidity.
  • two types of steps a so-called drying preparation step of heating and releasing the hygroscopic agent in the desiccant block and a step of absorbing moisture and absorbing moisture from the air-conditioned air, may be performed at the same time, so two blocks are prepared. However, it is necessary to operate these two steps simultaneously or separately.
  • the drying preparation step of heating and releasing the hygroscopic agent in the desiccant block and a step of absorbing moisture and absorbing moisture from the air-conditioned air
  • two blocks are prepared. However, it is necessary to operate these two steps simultaneously or separately.
  • In the daytime it is possible to dehumidify the air-conditioned air by the moisture absorption process during the daytime cooling process by drying both blocks using solar heat, and using separate blocks one by one during the daytime. It is also possible to perform the drying step and the moisture absorbing step for cooling at the same time.
  • This desiccant block has a kind of heat storage layer function that utilizes the latent heat of water.
  • Claim 15 presents that it is easy to install and store in a narrow space such as a ceiling, an attic, or an underfloor space of a high-rise building or a house, or a space with a weight limit. Its characteristics are extremely effective as part of the air conditioner of the building.
  • FIG. 1 is an internal configuration diagram viewed from the side of the hybrid cooling device according to the present invention.
  • FIG. 2 is a side view of the 100% ventilated cooling / cooling device according to the present invention.
  • FIG. 3 is a side view of the 100% ventilation / exhaust type cooling / cooling device according to the present invention.
  • FIG. 4 is a cross-sectional view of the desiccant slip according to the present invention.
  • FIG. 1 shown in FIGS. 1 and 2 shows a side view of the hybrid cooling / cooling device 1 according to the present invention.
  • 16 indicates the outer wall of the building, the left side of which is indoors and the right side is outdoor.
  • the indoor air 7 is sucked from the suction port of the air 20 to be cooled, advances to the right on the front side of the upper part of the apparatus, makes a U-turn to the middle part, and is cooled in the water evaporation indirect cooling type heat exchanger 2. It is cooled while proceeding from right to left in the flow path of the flowing air. After that, it passes through the fin tube refrigerant evaporation cooler 3 and is further cooled to a lower temperature to be dehumidified. As a result, hybrid cooling is performed.
  • the dry fin tube refrigerant condensed radiator 5 When the dry fin tube refrigerant condensed radiator 5 is operating, it is heated by the dry fin tube and is sent out by the air blower 8 on the side where the temperature becomes substantially the same as the indoor air temperature and is cooled into the room. When no refrigerant is flowing in the dry fin tube 5, the cooled air is blown into the room in a cooled state for cooling. On the other hand, the outdoor air on the cooling side is sucked from the suction port 19, passes through the inner side of the upper part of the apparatus, and is sucked from the upper surface of the water evaporative cooling type heat exchanger 2.
  • water is sprayed by three sprinklers 15 as indicated by the arrows, and together with the outdoor air, flows down the flow path of the cooling air of the heat exchanger 2, and the surface of the flow path at that time is sprinkled. It flows together with the water and cools the surface of the flow path by evaporating the water.
  • the water evaporation indirect cooling heat exchanger 2 is not shown, 129 vertical and 129 thin aluminum plates having a plane area of 300 mm in length and width and about 260 sheets are laminated in a state where the pitch is 3 mm. Every other air passage that flows in the direction and 129 in the horizontal direction is configured, and the vertical air passage and the horizontal air passage are configured to exchange heat between the air flowing across the thin aluminum plate. ing.
  • the cooling air flowing through the vertical air passage and the cooling air flowing through the horizontal air passage are completely separated and are configured so as not to be mixed.
  • the basic structure of this heat exchanger is known as a plate-type air-to-air heat exchanger.
  • the outdoor air on the cooling side passes through the fin tube refrigerant condensed radiator 4, cools the outdoor air, and the temperature of the outdoor air rises by that amount and is exhausted to the outside of the device by the air blower 10 on the cooling side.
  • water is sprinkled in the direction of the arrow from the sprinkler 14 for the fin tube refrigerant condenser, and the radiator 4 is efficiently cooled by utilizing the latent heat of vaporization of the water.
  • the sprinkler 14 and the sprinkler 15 utilize the water pumped from the evaporative cooling water storage tank 13 by the evaporative cooling water water pump 12. Of the water sprinkled from all the sprinklers, the portion that has not evaporated is returned to the water storage tank 13 for evaporative cooling water and reused.
  • the additional cooling air blower 11 When the additional cooling air blower 11 is operated, the cooled air is sent to the cooling side air 9 after being cooled, and flows as the cooling air as shown by the arrow air volume shown in the figure to operate. Exhaust ventilation is performed by this amount of air. Since the temperature of this air is lowered, the downstream portion of the cooled air in the water evaporation indirect cooling heat exchanger 2 of the air 7 cooled by the temperature is further cooled, so that the temperature is lower.
  • the air supply / ventilation blower 17 When the air supply / ventilation blower 17 is operated, air supply / ventilation is performed for the air volume. When the two ventilation blowers 11 and 17 are operated at the same time, the air supply and the exhaust are balanced, so that there is an effect that the indoor air pressure can be ventilated in the atmospheric pressure state.
  • the heat exchangers of the refrigerant compressors 6 and 3, 4, and 5 have the same configuration as a general heat pump refrigeration cycle.
  • the refrigerant is not a Freon refrigerant, but a new refrigerant such as an HC refrigerant that does not affect global warming.
  • HC propane gas which is an operating refrigerant
  • a 6-refrigerant compressor to form a high-temperature, high-pressure gas refrigerant, which is dissipated by the fin tube refrigerant condensing radiator 4 to change to a liquid refrigerant.
  • this liquid refrigerant is not shown, the flow rate and pressure are controlled by an expansion valve, and the outlet becomes a low temperature liquid refrigerant, which is sent to the fin tube refrigerant evaporation cooler 30 to cool the room air.
  • the high temperature gas refrigerant discharged from the compressor is first guided to the 5-dry fin tube refrigerant condensed radiator and dissipated to the cooled indoor air. Is reheated, and then sent to the fin tube refrigerant condensed radiator 4 to flow as described above.
  • both the air on the cooling side and the air on the cooling side are cooled by the latent heat of evaporation of the sprinkled water. Both can be used as cooling and cooling devices.
  • the air installed in the office in the factory and cooled is used to cool the inside of the office, and the cooling air is used as a device to cool the inside of the factory around the office.
  • the air on the cooling side is humidified, it can be used as a cooling device in an open space factory.
  • a normal heat pump type air conditioner the air on the cooling side is exhausted at a high temperature, so a cooling effect cannot be expected, but in a cooling device using a water evaporation indirect cooling type heat exchanger, the effect of cooling not only the indoor side but also the outdoor side Can be expected.
  • the cooling water sprinkling is stopped, the flow of the refrigerant in the heat pump cycle is changed, and the fin tube heat exchangers shown in 3 and 5 are condensed radiators, and the fin tube heat exchangers shown in 4 are used. Switch the control valve (not shown) during the cycle to operate as an evaporative heat exchanger.
  • FIG. 2 shows a side configuration view of a fully ventilated hybrid cooling cooling system.
  • the device of FIG. 1 is based on zero ventilation, whereas the device of FIG. 2 is based on 100% ventilation. It is a device suitable for spaces with poor air environment, and is based on the fact that all the air handled is outdoor air. Outdoor air is also used for the air 7 on the cooling side, and outdoor air is also used for the air on the cooling side.
  • the air supply / ventilation blower 17 installed in the device of FIG. 1 is not installed. Air conditioners with high ventilation are desired in distribution warehouses, factories, open restaurants, etc. where the indoor air environment is poor.
  • the desiccant slip used here is a flat plate made of paper or resin carrying a desiccant (hygroscopic material) such as silica gel, zeolite, or a polymer hygroscopic material, and a wavy shape thereof.
  • a desiccant hygroscopic material
  • the corrugated sheets molded into the above are laminated and joined in a plane shape, and the plane shape is a quadrangle.
  • the figure shows the cross section so that the wavy shape can be seen.
  • a number of desiccant slips are stacked so that the wave shapes are in the same direction to form a desiccant block. Since the vertical pitch 32 and the wave pitch 33 exist, an air passage through which air passes is configured in the desiccant block.
  • Each of the two desiccant blocks is equipped with two blowers for ventilation, a total of four blowers (not shown), and the blower for passing the heat source air taken from the heat source and the air on the cooling side. It is a blower for passing 7.
  • one desiccant block is dried using the heat of the summer sun, and another desiccant block is used for cooling used in the cooling and cooling apparatus shown in FIGS. 1, 2, and 3.
  • a mode that uses the air on the side to dry and raise the temperature, and two desiccant blocks that are dried using the heat of the summer sun, and in the evening, these two desiccant blocks are used in the figure.
  • an air conditioner and an air conditioner can be realized by a new principle instead of the conventional refrigerant type air conditioner, and a new air conditioner market can be cultivated.
  • a new air conditioner market can be cultivated.
  • the world's new air conditioning industry will spread all over the world.
  • an air conditioner with zero energy consumption will be created by using solar heat.
  • Hybrid cooling and cooling device 2 Water evaporation indirect cooling heat exchanger 3 Fin tube refrigerant evaporation cooler 4 Fin tube refrigerant condensed radiator 5 Dry fin tube refrigerant condensed radiator 6 Refrigerator compressor 7 Air to be cooled 8 Blower for cooled air 9 Air on the cooling side 10 Blower for air on the cooling side 11 Blower for additional cooling air 12 Pump for evaporative cooling water 13 Water storage tank for evaporative cooling water 14 Fin tube Sprinkler for refrigerant condensed radiator 15 Water Evaporation Sprinkler for indirect cooling heat exchanger 16 Building outer wall 17 Air supply ventilation blower 19 Cooling air suction port 20 Cooled air suction port 30 Desiccant flat plate 31 Desiccant corrugated plate 32 Desiccant flat plate pitch 33 Desiccant wave Wave pitch of the board

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Central Air Conditioning (AREA)

Abstract

Among air conditioning technologies, the indirect water evaporation-type cooling system, which directly cools indoor air with outdoor air by using the evaporative latent heat of water, is effective at reducing power consumption. However, there has been the problem that the cooling performance of this system is affected by the humidity in the air, and cooling performance drops under high humidity conditions. In order to solve this problem, a hybrid system combining an electric heat pump device is effective, but a simple combination would increase power consumption. The present proposal gives a solution for such a problem.

Description

ハイブリッド冷却による冷房乃至は冷却装置Cooling or cooling device by hybrid cooling
室外空気で室内空気を冷房する装置はヒートポンプエアコンと呼ばれ冷媒が使われている。この冷媒を圧縮機で圧縮し、高温度になった冷媒を室外又は室内空気で冷却する方式のエアコンが実現され世界的に普及している。しかしながらこの方式は 圧縮機の消費電力が大きく、その電力を発電する時に発電機の排ガス、または冷媒の漏洩ガスが地球温暖化の元凶の一つとなっている。世界的には今後益々エアコンの普及が進展すると考えられており、車の排ガス以上に地球温暖化に悪影響する可能性があり、地球規模の大きな問題を抱えていると云えよう。
一方、前述したヒートポンプエアコン装置に使われる冷媒と空気との間の熱交換器である所謂フィンチューブ熱交換器は極めて高い性能、信頼性、コンパクト性を実現する設計であり、大量生産可能な製造方式が確立されているため、冷媒圧縮機にかかる圧縮動力の軽減、即ち消費電力の削減が進められてきたが、現在では限界近くに達している。しかもエアコンの普及は絶え間なく進展しており地球温暖化ガス排出量の増加は留まるところを知らない。
 一方、ヒートポンプエアコンで冷房する場合、少しでも高いエネルギー効率と冷却効果を得るには、冷却空気(室外空気)の乾球温度による冷却ではなくてそれより低温度の湿球温度を利用することが有効であることは広く知られている。このために冷却する室外空気に継続的に散水してその乾球温度を湿球温度近くまで下げつつ、それを冷却源として利用することが有効である。
The device that cools the indoor air with the outdoor air is called a heat pump air conditioner and uses a refrigerant. An air conditioner in which this refrigerant is compressed by a compressor and the high-temperature refrigerant is cooled by outdoor or indoor air has been realized and is widely used worldwide. However, this method consumes a large amount of power from the compressor, and when the power is generated, the exhaust gas of the generator or the leaked gas of the refrigerant is one of the causes of global warming. It is thought that the spread of air conditioners will increase worldwide in the future, and there is a possibility that it will have a more adverse effect on global warming than the exhaust gas of cars, so it can be said that it has a big problem on a global scale.
On the other hand, the so-called fin tube heat exchanger, which is a heat exchanger between the refrigerant and air used in the above-mentioned heat pump air conditioner, is designed to achieve extremely high performance, reliability, and compactness, and can be mass-produced. Since the method has been established, reduction of the compression power applied to the refrigerant compressor, that is, reduction of power consumption has been promoted, but now it has reached the limit. Moreover, the spread of air conditioners is constantly increasing, and the increase in greenhouse gas emissions is unstoppable.
On the other hand, when cooling with a heat pump air conditioner, in order to obtain even a little higher energy efficiency and cooling effect, it is possible to use a lower wet-bulb temperature instead of cooling by the dry-bulb temperature of the cooling air (outdoor air). It is widely known that it is effective. For this reason, it is effective to continuously sprinkle water on the outdoor air to be cooled to lower the dry-bulb temperature to near the wet-bulb temperature and use it as a cooling source.
一方、これを更に進めた方式の水蒸発利用冷却方式による冷却や冷房に使われる空気対空気熱交換器、即ち水蒸発間接冷却熱交換器IDEC(Indirect Evaporative Cooler)については冷媒循環式の冷房装置や空調装置の商品分野ではほとんど実現されていない。それは、冷媒圧縮方式の冷暖房機に匹敵するような性能が得られていないせいであるが、優れた設計、製造方式が実現されていない為でもあり、十分なマーケッティングがなされず商品構想が不十分であって、そのため最終商品である空気冷却装置、冷房装置、暖房装置は、小型化、低廉なコスト、十分な性能、信頼性が確保されておらず、大量生産が行われていないせいでもあると考えられる。
そこで、ここでは、空気対空気熱交換器である水蒸発間接冷却式熱交換器IDECを利用して優れた特性の新方式空調装置を実現するための方法、技術を提案するものである。
 特許文献1は水の蒸発潜熱を利用する冷房除湿システムを実現する技術を提示している。
 其の要約によれば、間接気化冷却装置(本提案では水蒸発間接冷却式熱交換器と呼称)とデシカント調湿装置を備えて、高い冷房能力と除湿能力を備えた冷房除湿システムを実現している新技術を提示している。
 1,ウエットチャネルに冷却空気を流してその湿球温度を利用するために伝熱面に保水剤を貼り付けて湿潤膜を形成し、伝熱面を通してドライチャネルを通過する 被冷却空気(処理空気)を冷却している。
 2,その冷却効果を高めるため、冷却空気と非冷却空気を対向流に流している。
 3,ドライチャネルを流れる被冷却空気の出口でその一部の空気を取り出してこれをドライチャネルと対向流方向に向けてウェットチャンネルに流すことによりこの一部の空気により、ドライチャネルの処理空気をより効率的に冷却する。
以上の3つの技術は処理空気を冷却する上で極めて有効な技術である。
しかしながら、冷却効果が水の蒸発潜熱のみによって得られるのみでは十分な温度降下が得られ憎く、特に冷却側空気の湿度が高い時(雨天など)には1~2℃程度しか冷却効果が得られない。
そこで、更に冷却効果を上げる技術が特許文献2に提示されている。薄肉のアルミ製伝熱板を用いて、波板状に成型し、二つの空気の流れを対向流状にするなど多くの改善アイテムを提示している。しかしながら、これだけでは若干の改善は望めるが、十分な効果が望めない。
On the other hand, the air-to-air heat exchanger used for cooling and cooling by the water evaporation utilization cooling method, which is a further advanced method, that is, the water evaporation indirect cooling heat exchanger IDEC (Indirect Evaporative Cooler) is a refrigerant circulation type cooling device. It has hardly been realized in the product field of air conditioners and air conditioners. The reason is that the performance comparable to that of the refrigerant compression type air conditioner has not been obtained, but it is also because the excellent design and manufacturing method have not been realized, and sufficient marketing is not done and the product concept is insufficient. Therefore, the final products such as air cooling devices, cooling devices, and heating devices are not ensured in size, low cost, sufficient performance, and reliability, and are not mass-produced. it is conceivable that.
Therefore, here, we propose a method and technique for realizing a new type air conditioner with excellent characteristics by using the water evaporation indirect cooling heat exchanger IDEC, which is an air-to-air heat exchanger.
Patent Document 1 presents a technique for realizing a cooling / dehumidifying system utilizing the latent heat of vaporization of water.
According to the summary, it is equipped with an indirect vaporization cooling device (referred to as a water evaporation indirect cooling heat exchanger in this proposal) and a desiccant humidity control device to realize a cooling and dehumidifying system with high cooling capacity and dehumidifying capacity. Presenting new technology.
1. Cooled air is passed through the wet channel to form a wet film by attaching a water retaining agent to the heat transfer surface in order to utilize the wet-bulb temperature, and the cooled air (treated air) passes through the dry channel through the heat transfer surface. ) Is cooling.
2. In order to enhance the cooling effect, cooling air and non-cooling air are flowed in a countercurrent flow.
3. By taking out a part of the air at the outlet of the cooled air flowing through the dry channel and flowing it to the wet channel in the direction opposite to the dry channel, the processed air of the dry channel is separated by this part of the air. Cool more efficiently.
The above three techniques are extremely effective techniques for cooling the treated air.
However, if the cooling effect is obtained only by the latent heat of vaporization of water, a sufficient temperature drop can be obtained, which is unpleasant. Especially when the humidity of the cooling side air is high (rainy weather, etc.), the cooling effect can be obtained only about 1 to 2 ° C. not.
Therefore, Patent Document 2 presents a technique for further enhancing the cooling effect. Using a thin aluminum heat transfer plate, it is molded into a corrugated plate shape, and many improvement items are presented, such as making the two air flows countercurrent. However, although some improvement can be expected with this alone, a sufficient effect cannot be expected.
特開2015−190633号広報Japanese Patent Application Laid-Open No. 2015-190633 特開2018−211043号広報Japanese Patent Application Laid-Open No. 2018-211043
水蒸発間接冷却式熱交換器:IDECと呼ばれる空気対空気熱交換器を利用した冷房装置を基本に冷媒を用いた電力式冷凍サイクル装置、さらには太陽熱源など熱源を利用したデシカントユニットによる除湿装置等をハイブリッドに組み合わせて使う方式、技術を明確化することである。
其の課題解決の目的は以下の項目である
 1)冷却性能を十分に高めながら
 2)電力エネルギー使用量を減らし
 3)冷媒の使用量も大幅に減少させ
 4)処理空間の空気の質を高める
Water evaporation Indirect cooling heat exchanger: A power refrigeration cycle device that uses a refrigerant based on a cooling device that uses an air-to-air heat exchanger called IDEC, and a dehumidifying device that uses a desiccant unit that uses a heat source such as a solar heat source. It is to clarify the method and technology to use the above in combination with the hybrid.
The purpose of solving the problem is as follows: 1) While sufficiently improving the cooling performance, 2) Reducing the amount of electric power energy used, 3) Significantly reducing the amount of refrigerant used, and 4) Improving the air quality of the treatment space.
ここでは室内空気を冷却、冷房する手段は、冷房装置の商品性を考慮して次の3種類の冷房原理をベースに最適な組み合わせ方法を手段として検討する。
手段1、ヒートポンプ方式————通常のエアコンに採用されているヒートポンプと呼ばれる機器での冷房方法は、冷媒を圧縮して、高温度になって吐出される冷媒をフィンチューブ凝縮器に送り室外空気で送風冷却し、チューブ内の冷媒を液化させる。その液冷媒を膨張させて低温度の液冷媒にしてフィンチューブ冷却器に送り、外側を流れる室内空気を冷却し、除湿するとともに液冷媒は蒸発してガス化し圧縮機に戻る。この方式の優位点は駆動用電源がどこでも何時でも安定して得られやすいことにある。一方この方式の課題は消費電力が大きい事と国際的にも使用規制が実施されようとしているフロン冷媒を使用することである。その消費電力が大きい原因は室外気温度が夏場に35℃にもなるので、凝縮圧力が高くなり、圧縮機の圧縮動力が増すことが主原因になっている。
手段2、水蒸発間接冷却式熱交換器による方式……ここで主役の方法として採用し提案するのは水蒸発間接冷却式熱交換器による冷却、令房装置である。アルミの薄い板材を100枚以上一定のすき間を開けて積層してそのすき間に一枚おきに室外空気と室内空気を独立で、混ざらない様に流しその間で熱交換させるもので、室外空気側に水道水を散布すれば、両方の空気は水道水の蒸発熱で冷却されて流れ出る。この時室内空気は加湿される事無く冷却される、即ち冷房される。一方室外空気は加湿されて冷却される。従って、この冷却される室内空気及び室外空気の両方の冷熱を合わせて利用することができればその冷却効果は2倍になる。この方式の優位点は冷房するときは送風機動力のみで消費電力が少なく、エネルギー効率が高い事である。課題は、処理空気、特に室外空気の湿度が高い時は冷却冷房能力が低下してしまうことにある。
手段3、デシカント用部材による除湿による方式————三つ目の冷房、冷却を担う手段は、デシカント用部材を使って水蒸発間接冷却式熱交換器による冷却、令房装置で処理する前に室内空気の湿分を吸着、除湿することにより冷却、冷房効果を高める方法である。その為に最初に前処理として当該部材を60℃程度に熱した室外空気を使って当該部材から湿気を取り去っておく(脱湿しておく)必要がある。
デシカント用部材の構成は、吸湿特性のあるシリカゲル、ゼオライト、高分子樹脂などからなる吸湿材を表面及び内部に担持させ、その母材である紙製乃至は樹脂製シート平板と波状に成型(コルゲート加工)した乃至は三角型を連続に成型した成形板とを、ダンボール状に相互の間に風路用空間を内部に持つ形で張り合わせたダンボールシートを形成し、さらにそれらを多数重ねあわせて内部に風路空間を持った立方体(デシカントボックス)による方式は、空気を除湿することにより、其の空気エンタルピーを降下させておき、前述した二つの方法と組みあわせて空気の冷却、冷房を行うものである。
この方式の優位点は電力を使わずに、温熱を利用して電力の消費量を削減できること、及び、太陽熱などの温熱を温水に蓄熱する時に必要な貯湯タンクが不要となりデシカントボックス自体が蓄熱層に代わる機能を果たせる、水の潜熱を利用して熱を貯めるため水の顕熱利用の温水タンク方式に比べて必要な体積が小容量化できる、更に貯湯タンクなどで生じる熱リークによる貯めたエネルギーロスの軽減ができるなどの点があり、太陽熱で昼間に蓄熱(除湿)しておいて、夕方の冷房などにこの熱を利用することに有利であるなどの利点がある。 課題は、電力の様に供給インフラが十分ではない温熱エネルギーの供給手段を設ける必要があることである。
以上、空気の冷却、冷房に寄与する3種の原理を利用した手段、方法について説明したが、どの方式もそれだけでは夫々欠点課題があり、今後の人々、社会が利用する冷房、冷却方式の本命の方式とは成りえない。
本発明では、これらの方法を組み合わせて活用し、エネルギー性能、経済性、商品性に最適な手段、方法に仕上げる為の技術、発明を提示する。
請求項1に記した技術は、手段1、ヒートポンプ方式と手段2、水蒸発間接冷却式熱交換器による方式を組み合わせて冷却される空気をより低温度まで冷却する為の技術である。手段2によりほとんど電力消費なしに、冷却される空気は冷却する空気の湿球温度近くまで冷却されるが、雨天などで当該湿球温度が高い場合は冷却される空気は1~2℃程度しか冷却されないことがある。そこで、手段2のヒートポンプで追加して冷却した場合は冷却効果は十分得られるが、ヒートポンプの消費電力、即ち圧縮機の消費電力がプラスされ、主力手段の水蒸発冷却式熱交換器で得られる電力の削減効果は失われてしまう。そこで請求項1ではヒートポンプの凝縮器であるフィンドチューブ冷媒凝縮放熱器の冷却空気として、水蒸発冷却式熱交換器で冷却された冷却する側の空気も利用するという技術である。この成果で圧縮機が冷媒を圧縮するために必要な電力は、実証実験によると、冷却する側の空気をそのまま利用するのに比べて約40%に軽減され、ヒートポンプの冷却能力は130%に増加する。結果としてヒートポンプの効率は1.3/0.4=3.2倍になり、結果として消費電力は 1/3.2=0.31 となり約30%に削減される。
請求項2は、冷却される空気を、先ず水蒸発間接冷却式熱交換器で冷却し、さらに請求項1に記載したようにフィンチューブ冷媒蒸発冷却器で冷却して同時にこの冷却される空気から除湿する。この空気を、ヒートポンプにおいて先に説明したフィンドチューブ冷媒凝縮放熱器とは別に設けた上流のフィンドチューブ冷媒凝縮放熱器によって加熱させて再熱し、結果として冷却される空気は過度に冷却されずに出力させ、主に除湿された状態で出力されるため、通常云われるドライ運転効果を得ることができる。
請求項3は、請求項1に記載の方法を簡単な手法でさらに高効率化、冷却性能向上を図る技術である。一般にヒートポンプの冷却効率は、放熱器であるフィンチューブ凝縮器の外表面の放熱フィン部に散水することにより大幅に向上することがわかっている。請求項1で水蒸発間接冷却式熱交換器に散水するための水槽とポンプが設置されており、その水をフィンチューブ凝縮器にも散水させることにより簡単にヒートポンプの冷却性能の向上が図れる方法を新技術として提案している。
請求項4の技術は、冷却される空気の冷却された後の一部を分断し冷却する空気としてリターンさせて使うもので、約30%の風量をリターンさせると冷却される空気の出力時の温度は約1.0℃低下させることができることがわかっている。出力空気の出口温度を下げる効果を生むと同時に、リターンされた30%の空気は室内から室外への換気空気でもあるわけである。以上の効果により通常の冷房運転で冷えた室内空気を換気させれば、バランス上、その分温度の高い室外空気が室内に入り込むことになる。換気による熱ロス(換気エネルギーロスと云われる)の50%前後を回収する効果があるわけである。
請求項1では、水蒸発間接冷却式熱交換器の出口では、冷却する空気も冷却される空気も双方とも水の蒸発熱により冷却されて排出される。請求項5の技術は、両方の出力空気を、異なる空間に吹き出させて両方の空間の冷却、冷房に利用するアイデアである。工場内の事務室には冷却される側の空気を、事務室外の工場空間には冷却する側の加湿され冷却された空気を吹き出して両空間の冷却、冷房に役立てようとする技術である。
請求項6の技術は、空間内の発熱源があって冷却される空気の吹き出される空間の温度が、冷却する空気の温度より高温度の場合には、散水を止めて、ヒートポンプの運転も停止して、送風運転のみで、散水なしに水蒸発間接冷却式熱交換器により冷却される空間を冷却、冷房するという技術である。勿論、省エネが主な目的である。内部発熱の多い工場空間、外気が低温化した夕方のオフィス空間、等はその代表事例である。
請求項7は、請求項1に記載された冷房冷却装置において暖房を行なうための技術である。通常、ヒートポンプにおいて暖房を行なう場合、圧縮機の運転は変えずに圧縮機から吐出された冷媒の流れを、切り替えバルブ(四方切換え弁と云われる)を作動させて、循環方向を逆転させることにより行う。この時、求項1に記載されたフィンチューブ冷媒蒸発冷却器はフィンチューブ冷媒縮放熱器へと変わって冷却される空気を加熱して暖房を行なう。その熱源は冷却する空気から、フィンチューブ冷媒凝縮放熱器からフィンチューブ冷媒蒸発冷却器に変わった冷却器で熱を吸収して賄う。この時重要な技術は、水蒸発間接冷却式熱交換器には散水を行わない事である。
請求項8は室内を冷房する場合についての標準的基礎技術を提示している。
一方、請求項9では冷却する空気、冷却される空気の双方とも室外空気を利用して冷却される空気を室内に放出させて冷房する方式を提示している。この場合、大量の室外空気を室内空間に放出することにより最大の給気換気効果を達成することを目指している。
請求項10では、室外空気を給気換気させ、同時に室内空気を排気換気させる技術を提示している。これによれば給気、排気量を等しくして換気量を増やして且つ風量の出入りを等しくすれば室内の気圧は室外の気圧と均圧され、陽圧になったり陰圧になったりすることなく、空気圧の違いによるドアの急激な開け閉めによる怪我や異常音の発生が防止できる。
 請求項11には請求項1、2、3、4、5の提案の装置において、簡単に換気風路の設置をして給気換気、排気換気を行わせる方法について提示している。
装置は冷却される側の空気と冷却する側の空気を通す風路が大半を占めており、両風路は隣接しているから、その仕切り壁(隔壁)に風穴(通風口)を設けてそこに送風機を設置すれば、片方の風路からもう一方の風路に空気の移行を簡単に行わせることが可能である。排気と給気の二つの通風口を設けることにより排気換気、給気換気を行うことが容易に可能となるわけである。
請求項12には、冷却、冷房能力の制御方法についての技術を提示している。冷却する空間の温度を検知して、冷却、冷房能力が十分すぎると判断したときにどの様に制御するかは、冷却性能の安定と快適性の維持、消費電力の最小化を実現するための重要技術である。先ず、ヒートポンプ用の圧縮機を制御し、其れでも冷却性能を更に少なくする制御をしたいときには水蒸発間接冷却式熱交換器への散水量を制御することが望ましい。さらに冷却性能を少なくしたいときには装置の送風量を少なくする制御を行う。
請求項13には冷房冷却乃至は冷却装置において冷却される空気を導入する前に当該空気を除湿しておくことによりその冷房乃至は冷却効果を高める方法の実践的技術を提示している。冒頭に説明した冷却、冷房の施策のうち手段3、として説明したものである。デシカントスリップとは、図4にその断面を示すように、シリカゲル乃至はゼオライト乃至は高分子吸湿材などのデシカント材(吸湿材)を担持した紙乃至は樹脂製の平板とそれを波状に成型した波板を図4の様に重ねあわせて全体を平坦状に接合したものであり平面形状は四角形である。図4は波状の形状がわかるようにその断面を示している。このデシカントスリップを波形状が同じ方向になるように何枚も重ねてデシカントブロックを構成する。縦ピッチ32、波ピッチ33が適宜選定すればデシカントブロック内に空気の通過する多数の風路が構成される。
請求項13では、冷却される空気を予めデシカントブロック内を通過させることによりデシカント吸湿材により吸湿させ、それに相応する分だけ温度上昇させられる。この高温度の冷却される空気を処理空気として利用することにより、水蒸発間接冷却式熱交換器,及びフィンチューブ冷媒蒸発冷却器において冷却した時に、デシカントブロックを通さなかった場合よりも冷却熱量が増加する。最終的に出力空気として吹き出す前に加湿して調整すれば、最適な湿度で、より冷却された空気を出力できることになる。
 請求項14はデシカントブロック内の吸湿剤を加熱放湿させる、いわゆる乾かす準備工程と、吸湿して空調処理空気から吸湿させる工程の2種類の工程を同時に行うことがあるから、2つのブロックを用意し、同時に又は別々にこの2つの工程を作動させる必要がある。昼間時間は太陽熱を使って2つのブロックとも乾かす工程をして夕方の冷房する時間に吸湿工程により空調処理空気から除湿させることが可能であるし、昼間時間に1つづつ別々のブロックを使って乾かす工程と冷房するために吸湿工程を同時に行うことも可能である。
このデシカントブロックは水の潜熱量を利用した一種の蓄熱層の機能がある。貯湯槽の水の顕熱を使った蓄熱水槽に比べ、潜熱を利用することによりその層全体の体積は小型化でき、重量は大幅に軽量化できる。その効果を生かして建物の設置には有利な点が多い。
請求項15は高層ビルや住宅の天井裏、屋根裏、床下空間などの狭い空間や重量制限のある空間に設置収納しやすいことを提示している。その特性はその建物の空調装置の一部として極めて有効な特性である。
Here, as the means for cooling and cooling the indoor air, the optimum combination method will be examined as a means based on the following three types of cooling principles in consideration of the commercial value of the cooling device.
Means 1, heat pump method ———— The cooling method using a device called a heat pump, which is used in ordinary air conditioners, is to compress the refrigerant and send the refrigerant discharged at a high temperature to the fin tube condenser outdoors. Air is blown to cool and the refrigerant in the tube is liquefied. The liquid refrigerant is expanded to become a low-temperature liquid refrigerant and sent to a fin tube cooler to cool and dehumidify the indoor air flowing outside, and the liquid refrigerant evaporates to gas and returns to the compressor. The advantage of this method is that it is easy to obtain a stable drive power supply anywhere and anytime. On the other hand, the problems of this method are that it consumes a large amount of power and that it uses a fluorocarbon refrigerant whose use is about to be regulated internationally. The main reason for the large power consumption is that the outdoor air temperature reaches 35 ° C. in the summer, so that the condensation pressure increases and the compression power of the compressor increases.
Means 2, method using water evaporation indirect cooling type heat exchanger ... Here, the main method adopted and proposed is cooling by water evaporation indirect cooling type heat exchanger and a command chamber device. More than 100 thin aluminum plates are laminated with a certain gap, and the outdoor air and indoor air are flowed independently in each gap so that they do not mix, and heat is exchanged between them. When tap water is sprayed, both air are cooled by the heat of vaporization of tap water and flow out. At this time, the indoor air is cooled without being humidified, that is, it is cooled. On the other hand, the outdoor air is humidified and cooled. Therefore, if the cooling heat of both the indoor air and the outdoor air to be cooled can be used together, the cooling effect will be doubled. The advantage of this method is that when cooling, only the blower power is used, the power consumption is low, and the energy efficiency is high. The problem is that the cooling capacity is reduced when the humidity of the treated air, especially the outdoor air, is high.
Means 3, method by dehumidification with desiccant member ———— The third means for cooling and cooling is cooling with a water evaporation indirect cooling heat exchanger using desiccant member, before processing with a command chamber device. It is a method to enhance the cooling and cooling effect by adsorbing and dehumidifying the moisture of the indoor air. Therefore, it is necessary to first remove (dehumidify) the moisture from the member by using outdoor air heated to about 60 ° C. as a pretreatment.
The structure of the desiccant member is such that a hygroscopic material made of silica gel, zeolite, polymer resin, etc., which has hygroscopic properties, is supported on the surface and inside, and is molded in a wavy shape with the paper or resin sheet flat plate that is the base material. A cardboard sheet is formed by laminating a molded plate that has been (processed) or a triangular shape continuously molded into a cardboard shape with a space for air passage inside, and then stacking a large number of them inside. In the method using a cube (decicant box) with an air passage space, the air enthalpy is lowered by dehumidifying the air, and the air is cooled and cooled in combination with the above two methods. Is.
The advantages of this method are that it can reduce the amount of power consumed by using heat without using power, and that the hot water storage tank required for storing heat such as solar heat in hot water is not required, and the desiccant box itself is a heat storage layer. The required volume can be reduced compared to the hot water tank method that uses the sensible heat of water to store heat by using the latent heat of water, and the energy stored by heat leaks that occur in hot water storage tanks, etc. There is a point that loss can be reduced, and there is an advantage that it is advantageous to store heat (dehumidification) in the daytime with solar heat and use this heat for cooling in the evening. The problem is that it is necessary to provide a means of supplying thermal energy, such as electric power, whose supply infrastructure is not sufficient.
So far, we have explained the means and methods that utilize the three principles that contribute to air cooling and cooling, but each method has its own drawbacks, and the favorite of cooling and cooling methods that people and society will use in the future. It cannot be the method of.
In the present invention, a technique and an invention for making the most suitable means and methods for energy performance, economy, and commerciality by utilizing these methods in combination are presented.
The technique described in claim 1 is a technique for cooling the air to be cooled to a lower temperature by combining means 1, a heat pump method and means 2, and a method using a water evaporation indirect cooling heat exchanger. The air to be cooled is cooled to near the wet bulb temperature of the cooling air with almost no power consumption by the means 2, but when the wet bulb temperature is high due to rainy weather or the like, the cooled air is only about 1 to 2 ° C. It may not be cooled. Therefore, when the heat pump of the means 2 is used for additional cooling, the cooling effect can be sufficiently obtained, but the power consumption of the heat pump, that is, the power consumption of the compressor is added, and the water evaporation cooling type heat exchanger of the main means can be used. The power reduction effect is lost. Therefore, claim 1 is a technique of using the cooling side air cooled by the water evaporation cooling type heat exchanger as the cooling air of the find tube refrigerant condensed radiator which is the condenser of the heat pump. According to the demonstration experiment, the electric power required for the compressor to compress the refrigerant is reduced to about 40% compared to using the air on the cooling side as it is, and the cooling capacity of the heat pump is reduced to 130%. To increase. As a result, the efficiency of the heat pump is 1.3 / 0.4 = 3.2 times, and as a result, the power consumption is 1 / 3.2 = 0.31, which is reduced to about 30%.
According to claim 2, the air to be cooled is first cooled by a water evaporation indirect cooling type heat exchanger, and further cooled by a fin tube refrigerant evaporation cooler as described in claim 1, and at the same time, from the cooled air. Dehumidify. This air is heated and reheated by the upstream find tube refrigerant condensed radiator provided separately from the find tube refrigerant condensed radiator described above in the heat pump, and as a result, the cooled air is output without being excessively cooled. Since it is output mainly in a dehumidified state, the dry operation effect usually referred to can be obtained.
Claim 3 is a technique for further improving the efficiency and cooling performance of the method according to claim 1 by a simple method. In general, it is known that the cooling efficiency of a heat pump is significantly improved by sprinkling water on the heat radiation fin portion on the outer surface of the fin tube condenser which is a heat sink. A method in which a water tank and a pump for sprinkling water on a water evaporation indirect cooling type heat exchanger are installed in claim 1, and the cooling performance of the heat pump can be easily improved by sprinkling the water on a fin tube condenser. Is proposed as a new technology.
The technique of claim 4 is used by dividing a part of the cooled air after cooling and returning it as cooling air, and when the air volume of about 30% is returned, the cooling air is output. It is known that the temperature can be reduced by about 1.0 ° C. At the same time as producing the effect of lowering the outlet temperature of the output air, the returned 30% of the air is also the ventilation air from the room to the outside. If the indoor air cooled by the normal cooling operation is ventilated by the above effect, the outdoor air having a higher temperature will enter the room in terms of balance. It has the effect of recovering about 50% of the heat loss (called ventilation energy loss) due to ventilation.
According to claim 1, at the outlet of the water evaporation indirect cooling type heat exchanger, both the cooling air and the cooled air are cooled by the heat of vaporization of water and discharged. The technique of claim 5 is an idea of blowing both output airs into different spaces and using them for cooling and cooling of both spaces. It is a technology that blows out the air on the cooling side to the office room inside the factory and the humidified and cooled air on the cooling side to the factory space outside the office to help cool and cool both spaces.
The technique of claim 6 is to stop sprinkling and operate the heat pump when the temperature of the space where there is a heat generating source in the space and the air to be cooled is blown out is higher than the temperature of the air to be cooled. It is a technology that cools and cools the space cooled by the water evaporation indirect cooling type heat exchanger without sprinkling water only by stopping and blowing air. Of course, the main purpose is to save energy. Typical examples are factory spaces with a lot of internal heat generation and office spaces in the evening when the outside air is cold.
A seventh aspect of the present invention is a technique for heating in the cooling / cooling device according to the first aspect. Normally, when heating is performed in a heat pump, the flow of the refrigerant discharged from the compressor is changed by operating a switching valve (called a four-way switching valve) to reverse the circulation direction without changing the operation of the compressor. conduct. At this time, the fin tube refrigerant evaporative cooler according to claim 1 changes to the fin tube refrigerant reduced radiator to heat the cooled air for heating. The heat source absorbs heat from the cooling air with a cooler that has changed from a fin tube refrigerant condensation radiator to a fin tube refrigerant evaporation cooler. At this time, the important technique is not to sprinkle water on the water evaporation indirect cooling heat exchanger.
Claim 8 presents a standard basic technique for cooling a room.
On the other hand, claim 9 presents a method of cooling by releasing the cooled air into the room by using the outdoor air for both the cooling air and the cooling air. In this case, we aim to achieve the maximum air supply / ventilation effect by releasing a large amount of outdoor air into the indoor space.
Claim 10 presents a technique for supplying and ventilating outdoor air and at the same time exhausting and ventilating indoor air. According to this, if the air supply and exhaust volume are equalized to increase the ventilation volume and the air volume flows in and out equally, the indoor air pressure is equalized to the outdoor air pressure, and it becomes positive pressure or negative pressure. It is possible to prevent injuries and abnormal noise caused by sudden opening and closing of the door due to the difference in air pressure.
Claim 11 presents a method of easily installing a ventilation air passage to perform supply air ventilation and exhaust ventilation in the proposed devices of claims 1, 2, 3, 4, and 5.
Most of the equipment is air passages that pass air on the cooling side and air on the cooling side, and since both air passages are adjacent to each other, a ventilation hole (ventilation port) is provided in the partition wall (partition wall). If a blower is installed there, it is possible to easily transfer air from one air passage to the other air passage. By providing two ventilation openings for exhaust and air supply, it is possible to easily perform exhaust ventilation and air supply ventilation.
Claim 12 presents a technique for controlling cooling and cooling capacities. How to detect the temperature of the cooling space and control it when it is judged that the cooling and cooling capacity is too sufficient is to realize stable cooling performance, maintenance of comfort, and minimization of power consumption. It is an important technology. First, when it is desired to control the compressor for the heat pump and still control the cooling performance to be further reduced, it is desirable to control the amount of water sprinkled on the water evaporation indirect cooling type heat exchanger. When it is desired to further reduce the cooling performance, control is performed to reduce the amount of air blown by the device.
Claim 13 presents a practical technique of a method of enhancing the cooling or cooling effect by dehumidifying the air before introducing the air to be cooled in the cooling cooling or the cooling device. This is explained as means 3 of the cooling and cooling measures explained at the beginning. As shown in the cross section in FIG. 4, the desiccant slip is a flat plate made of paper or resin carrying a desiccant material (hygroscopic material) such as silica gel, zeolite, or a polymer hygroscopic material, and a flat plate made of resin, which is molded into a wavy shape. The corrugated sheets are overlapped as shown in FIG. 4 and the whole is joined in a flat shape, and the planar shape is a quadrangle. FIG. 4 shows the cross section so that the wavy shape can be seen. A number of these desiccant slips are stacked so that the wave shapes are in the same direction to form a desiccant block. If the vertical pitch 32 and the wave pitch 33 are appropriately selected, a large number of air passages through which air passes are configured in the desiccant block.
In claim 13, the air to be cooled is passed through the desiccant block in advance to absorb moisture by the desiccant hygroscopic material, and the temperature is raised by a corresponding amount. By using this high-temperature cooled air as the processing air, the amount of cooling heat when cooled in the water evaporation indirect cooling type heat exchanger and the fin tube refrigerant evaporation cooler is larger than that in the case where the desiccant block is not passed. To increase. If it is humidified and adjusted before it is finally blown out as output air, it will be possible to output cooler air at the optimum humidity.
According to claim 14, two types of steps, a so-called drying preparation step of heating and releasing the hygroscopic agent in the desiccant block and a step of absorbing moisture and absorbing moisture from the air-conditioned air, may be performed at the same time, so two blocks are prepared. However, it is necessary to operate these two steps simultaneously or separately. In the daytime, it is possible to dehumidify the air-conditioned air by the moisture absorption process during the daytime cooling process by drying both blocks using solar heat, and using separate blocks one by one during the daytime. It is also possible to perform the drying step and the moisture absorbing step for cooling at the same time.
This desiccant block has a kind of heat storage layer function that utilizes the latent heat of water. Compared to the heat storage water tank that uses the sensible heat of the water in the hot water storage tank, the volume of the entire layer can be reduced and the weight can be significantly reduced by using latent heat. Taking advantage of this effect, there are many advantages in installing a building.
Claim 15 presents that it is easy to install and store in a narrow space such as a ceiling, an attic, or an underfloor space of a high-rise building or a house, or a space with a weight limit. Its characteristics are extremely effective as part of the air conditioner of the building.
以上の発明により以下の様な効果を期待できる。
 1, エアコンの運転で大量消費される電力消費量の半減、地球温暖化の阻止、消費者の経済的効果。
 2、地球温暖化に影響するフロン冷媒の使用量の大幅削減
 3、換気機能の高度化による空調特性の向上と健康安全の促進。
 4、熱帯地域の開発途上国の人々への冷房快適性の提供、普及
The following effects can be expected from the above invention.
1. Half the amount of electricity consumed by operating an air conditioner, prevent global warming, and have an economic effect on consumers.
2. Significant reduction in the amount of Freon refrigerant that affects global warming 3. Improvement of air conditioning characteristics and promotion of health and safety by improving ventilation functions.
4. Providing and disseminating cooling comfort to people in developing countries in the tropics
図1は本発明によるハイブリッド冷房装置の側面から見た内部構成図である。
図2は本発明による100%換気する冷却冷房装置の側面構成図である
図3は本発明による100%換気排気型冷却冷房装置の側面構成図である
図4本発明によるデシカントスリップの断面図である
FIG. 1 is an internal configuration diagram viewed from the side of the hybrid cooling device according to the present invention.
FIG. 2 is a side view of the 100% ventilated cooling / cooling device according to the present invention. FIG. 3 is a side view of the 100% ventilation / exhaust type cooling / cooling device according to the present invention. FIG. 4 is a cross-sectional view of the desiccant slip according to the present invention. be
 実施例を図1と図2に示す
図1に本発明による ハイブリッド冷却冷房装置1 の側面構成図を示す。16は建物の外壁を示し、その左側は室内、右側は室外である。 室内空気7は冷却される空気20の吸い込み口より吸い込まれ、装置の上段部の手前側を右方向に進み、中段部へとUターンし、水蒸発間接冷却式熱交換器2内の冷却される空気の流れる流路を右から左へ進みながら冷却される。その後、フィンチューブ冷媒蒸発冷却器3を通過して更に低温度まで冷却され、除湿される。結果としてハイブリッド冷房が行われる。
ドライ用フィンチューブ冷媒凝縮放熱器5が作動している場合はそれにより加熱されて、ほぼ室内空気温度と同等となり室内へと冷却される側の空気用送風機8によって送り出される。ドライ用フィンチューブ5のチューブ内に冷媒が流されていない場合には、冷却される空気は冷却された状態で室内へ吹き出され冷房を行う。
一方冷却する側の室外空気は吸い込み口19から吸い込まれ、装置の上段部の奥側を通過し、水蒸発冷却式熱交換器2の上面から吸い込まれる。同時に3台の散水器15により水が矢印で示される様に散布されて室外空気と一緒に熱交換器2の冷却する空気の流れる流路を下方に流れ落ち、その時の流路の表面を散水された水と一緒になって流れ、水が蒸発することにより流路の表面を冷却する。水蒸発間接冷却熱交換器2は図示しないが、その内部に、縦、横300mmの平面面積を持つ薄肉アルミ板、約260枚がピッチ3mmの間隔を保った状態で積層され、129個の縦方向に流れる及び129個横方向に流れる風路を一枚おきに構成し、縦方向の風路と横方向の風路は薄肉アルミ板を挟んで流れる空気の間で熱交換される構成となっている。縦の風路を流れる冷却する空気と横の風路を流れる冷却される空気は完全に分離されており混じることはない様に構成されている。この熱交換器の基本構造はプレート式空気対空気熱交換器として知られている。
その後に、冷却する側の室外空気はフィンチューブ冷媒凝縮放熱器4を通過し、これを冷却し、自身はその分温度上昇して冷却する側の空気送風機10により装置外へ排気される。そのとき、請求項3に示すようにフィンチューブ冷媒凝縮器用の散水器14から矢印方向に散水させて、水の蒸発潜熱を利用して放熱器4を効率良く冷却する。
散水器14と散水器15は蒸発冷却水用貯水槽13から蒸発冷却水用水ポンプ12によって汲み上げられた水を利用している。全ての散水器から散水された水のうち蒸発しなかった分は蒸発冷却水用貯水槽13に戻り、再利用させる。
追加冷却空気用送風機11を作動させると、冷却される空気が冷却された後に冷却する側の空気9の方へと送り込まれ、冷却する空気として図に示す矢印風量の様に流れて作動し、この風量分だけ排気換気が行われる。この空気は低温度化されているので、これによって冷却される空気7の水蒸発間接冷却式熱交換器2における冷却される空気の最下流部分がさらに追加して冷却されるから、より低温度まで冷却される。即ちこの効果により排気換気すると換気による熱ロス即ち換気ロスが発生するが、そのエネルギーロスの50%程度が回収されることになる。
給気換気用送風機17を作動させるとその風量分は給気換気が行われる。11,17の二つの換気送風機を同時に作動させると、給気と排気がバランスするので室内空気圧が大気の圧力状態で換気できるという効果がある。
 冷媒圧縮機6と3,4,5の各熱交換器は、図示はしないが、一般的なヒートポンプ冷凍サイクル同様な構成となっている。冷媒はフロン冷媒ではなく地球温暖化に影響しないHC冷媒など新冷媒が使われている。装置内の全ての送風機と圧縮機が作動されると、空気と冷媒が作動され、冷却される空気7として室内空気は冷却されて室内へと出力されて冷房する。
ヒートポンプ冷凍サイクルで作動冷媒であるHCプロパンガスを6−冷媒圧縮機で圧縮し高温度高圧力ガス冷媒とし、フィンチューブ冷媒凝縮放熱器4で放熱し液冷媒に変化する。この液冷媒は図示しないが膨張弁で流量と圧力が制御されて、出口は低温度の液冷媒となり、フィンチューブ冷媒蒸発冷却器30に送られて室内空気を冷却する。
請求項2の様にドライ運転を行う時は、圧縮機から吐出された高温度ガス冷媒は最初に5−ドライ用フィンチューブ冷媒凝縮放熱器に導かれて冷却された室内空気に放熱してこれを再熱し、その後、フィンチューブ冷媒凝縮放熱器4に送られて前述した様に流される。
図1において、ヒートポンプ冷凍サイクルが設置されていない装置では、請求項5に記載したように、冷却される側の空気も冷却する側の空気も散水される水の蒸発潜熱により冷却されるから、両方とも冷却、冷房装置として利用が可能である。工場内の事務所に設置して冷却される側の空気は事務所内を冷房し、冷却する空気は事務所の外周の工場内を冷房する装置として利用される。冷却する側の空気は加湿されているが、オープン空間的工場では冷房装置として使えることになる。 通常のヒートポンプ式エアコンでは冷却する側の空気は高温度で排気されるので冷房効果は期待できないが水蒸発間接冷却式熱交換器を用いた冷房装置では室内側は勿論、室外側も冷却する効果を期待できるのである。
暖房運転を行う時には、冷却水の散水を停止し、ヒートポンプサイクルの冷媒の流れを変えて、3及び5に示されるフィンチューブ熱交換器が凝縮放熱器、4に示されるフィンチューブ熱交換器が蒸発吸熱器として作動する様に、サイクル中の制御弁(図示せず)を切り替える。この結果冷却される側の空気は加熱されて室内、庫内へ吹き出される、結果として暖房運転を行う。
図2は全換気ハイブリッド冷却冷房装置の側面構成図を示す。図1の装置が換気量ゼロをベースにしたものであるのに対し、図2は換気量100%をベースにした装置である。空気環境の悪い空間用などに適した装置であり、扱う全ての空気は室外空気であることをベースにしている。冷却される側の空気7にも室外空気を用い、冷却する側の空気も室外空気を利用している。図1の装置に設置した給気換気用送風機17は設置しない。室内空気環境の悪い物流倉庫、工場、オープンレストランなどでは換気量の多い空調装置が望まれる。図2の装置では大量の給気換気が行われるため、室内乃至は庫内は給気により陽圧となることが歓迎されるところに利用される。
図3は、図2に対し冷却する側の空気9には室内、庫内空気を用いる。排気される室内、庫内空気9と給気される室外、庫外空気量がバランスしており、その結果、図2の装置に比べ、室内はほぼ大気圧に保つことができるという利点がある。
 以上図1、2、3の装置において、冷却、冷房能力の制御は省エネ性、快適性の点で重要である。室内空気が設定値より低温度の時は、冷媒圧縮機6の作動を停止し、ハイブリッド冷却は解消され、室内空気は水蒸発間接冷却式熱交換器2で冷却されて室内へと出力されて冷房する。それでも室内空気が設定値より低温度の時は蒸発冷却水用ポンプ12は流量を抑えるか、更には停止する。以上の運転制御をすることにより冷媒圧縮機6の駆動電力消費量を削減することができ、装置の省エネ性は大幅に向上する。この技術が請求項12に提案される。逆に室内、庫内の空気温度が設定値より高温度の時は、請求項6のごとく、やはり冷媒圧縮機6、及び蒸発冷却水用ポンプ12の運転は停止し、水蒸発間接冷却式熱交換器2による顕熱熱交換による冷却運転を行う方法が選定される。
冷却、冷房性能を更に高め、消費エネルギーを削減する方法を請求項13に示した。これは太陽熱源など熱源を利用したデシカントユニットによる除湿装置をハイブリッドに組み合わせて使う方式である。
請求項13には冷房冷却乃至は冷却装置において冷却される空気を導入する前に除湿しておくことによりその冷房乃至は冷却効果を高める技術を提示している。ここで利用するデシカントスリップとは、図4にその断面を示すように、シリカゲル乃至はゼオライト乃至は高分子吸湿材などのデシカント(吸湿材)を担持した紙乃至は樹脂製の平板とそれを波状に成型した波板を図4の様に重ねあわせて平面状に接合したものであり平面形状は四角形である。図は波状の形状がわかるようにその断面を示している。このデシカントスリップを波形状が同じ方向になるようにして何枚も重ねてデシカントブロックを構成する。縦ピッチ32、波ピッチ33が存在するからデシカントブロック内に空気の通過する風路が構成される。2台のデシカントブロックには夫々通風させるための2個の送風機、合計4個の送風機(図示せず)が設置されており、熱源からとれる熱源空気を通す為の送風機と冷却される側の空気7を通す為の送風機である。
請求項14に示すように、夏の太陽熱を利用して1台のデシカントブロックを乾燥させ、もう一台のデシカントブロックを利用して図1、2、3に示した冷却冷房装置に使う冷却される側の空気を乾燥高温度化するように利用するモードと、夏の太陽熱を利用して2台のデシカントブロックを乾燥させておき、夕方になってそれら2台のデシカントブロックを利用して図1、2、3に示した冷却冷房装置に使う冷却される側の空気を乾燥高温度化させるために利用することも可能であり、双方の利用モードに対応できる利点がある。
デシカントブロックは上記の様な使い方をした場合、その所要容積は大きくなる。しかしながらデシカント材やデシカントスリップは紙の様に重量は軽量であるため、ブロックの荷重は建物内の耐荷重面ではその制約は少なく、天井裏、屋根裏、床下などを収納空間として、ハイブリッド冷却冷房装置1、2、3の近傍に設置しやすいという利点がある。
以上概説した通り、これか21世紀の未来を目指す新しい空調機、特に冷房装置として広く普及するためには多くの技術開発テーマが存在する。本発明提案はその基本技術の一つとして実用化を進めたい。
FIG. 1 shown in FIGS. 1 and 2 shows a side view of the hybrid cooling / cooling device 1 according to the present invention. 16 indicates the outer wall of the building, the left side of which is indoors and the right side is outdoor. The indoor air 7 is sucked from the suction port of the air 20 to be cooled, advances to the right on the front side of the upper part of the apparatus, makes a U-turn to the middle part, and is cooled in the water evaporation indirect cooling type heat exchanger 2. It is cooled while proceeding from right to left in the flow path of the flowing air. After that, it passes through the fin tube refrigerant evaporation cooler 3 and is further cooled to a lower temperature to be dehumidified. As a result, hybrid cooling is performed.
When the dry fin tube refrigerant condensed radiator 5 is operating, it is heated by the dry fin tube and is sent out by the air blower 8 on the side where the temperature becomes substantially the same as the indoor air temperature and is cooled into the room. When no refrigerant is flowing in the dry fin tube 5, the cooled air is blown into the room in a cooled state for cooling.
On the other hand, the outdoor air on the cooling side is sucked from the suction port 19, passes through the inner side of the upper part of the apparatus, and is sucked from the upper surface of the water evaporative cooling type heat exchanger 2. At the same time, water is sprayed by three sprinklers 15 as indicated by the arrows, and together with the outdoor air, flows down the flow path of the cooling air of the heat exchanger 2, and the surface of the flow path at that time is sprinkled. It flows together with the water and cools the surface of the flow path by evaporating the water. Although the water evaporation indirect cooling heat exchanger 2 is not shown, 129 vertical and 129 thin aluminum plates having a plane area of 300 mm in length and width and about 260 sheets are laminated in a state where the pitch is 3 mm. Every other air passage that flows in the direction and 129 in the horizontal direction is configured, and the vertical air passage and the horizontal air passage are configured to exchange heat between the air flowing across the thin aluminum plate. ing. The cooling air flowing through the vertical air passage and the cooling air flowing through the horizontal air passage are completely separated and are configured so as not to be mixed. The basic structure of this heat exchanger is known as a plate-type air-to-air heat exchanger.
After that, the outdoor air on the cooling side passes through the fin tube refrigerant condensed radiator 4, cools the outdoor air, and the temperature of the outdoor air rises by that amount and is exhausted to the outside of the device by the air blower 10 on the cooling side. At that time, as shown in claim 3, water is sprinkled in the direction of the arrow from the sprinkler 14 for the fin tube refrigerant condenser, and the radiator 4 is efficiently cooled by utilizing the latent heat of vaporization of the water.
The sprinkler 14 and the sprinkler 15 utilize the water pumped from the evaporative cooling water storage tank 13 by the evaporative cooling water water pump 12. Of the water sprinkled from all the sprinklers, the portion that has not evaporated is returned to the water storage tank 13 for evaporative cooling water and reused.
When the additional cooling air blower 11 is operated, the cooled air is sent to the cooling side air 9 after being cooled, and flows as the cooling air as shown by the arrow air volume shown in the figure to operate. Exhaust ventilation is performed by this amount of air. Since the temperature of this air is lowered, the downstream portion of the cooled air in the water evaporation indirect cooling heat exchanger 2 of the air 7 cooled by the temperature is further cooled, so that the temperature is lower. Will be cooled to. That is, when exhaust ventilation is performed due to this effect, heat loss due to ventilation, that is, ventilation loss occurs, but about 50% of the energy loss is recovered.
When the air supply / ventilation blower 17 is operated, air supply / ventilation is performed for the air volume. When the two ventilation blowers 11 and 17 are operated at the same time, the air supply and the exhaust are balanced, so that there is an effect that the indoor air pressure can be ventilated in the atmospheric pressure state.
Although not shown, the heat exchangers of the refrigerant compressors 6 and 3, 4, and 5 have the same configuration as a general heat pump refrigeration cycle. The refrigerant is not a Freon refrigerant, but a new refrigerant such as an HC refrigerant that does not affect global warming. When all the blowers and compressors in the apparatus are operated, the air and the refrigerant are operated, and the indoor air is cooled as the air 7 to be cooled and output to the room for cooling.
In the heat pump refrigeration cycle, HC propane gas, which is an operating refrigerant, is compressed by a 6-refrigerant compressor to form a high-temperature, high-pressure gas refrigerant, which is dissipated by the fin tube refrigerant condensing radiator 4 to change to a liquid refrigerant. Although this liquid refrigerant is not shown, the flow rate and pressure are controlled by an expansion valve, and the outlet becomes a low temperature liquid refrigerant, which is sent to the fin tube refrigerant evaporation cooler 30 to cool the room air.
When the dry operation is performed as in claim 2, the high temperature gas refrigerant discharged from the compressor is first guided to the 5-dry fin tube refrigerant condensed radiator and dissipated to the cooled indoor air. Is reheated, and then sent to the fin tube refrigerant condensed radiator 4 to flow as described above.
In FIG. 1, in the apparatus in which the heat pump refrigeration cycle is not installed, as described in claim 5, both the air on the cooling side and the air on the cooling side are cooled by the latent heat of evaporation of the sprinkled water. Both can be used as cooling and cooling devices. The air installed in the office in the factory and cooled is used to cool the inside of the office, and the cooling air is used as a device to cool the inside of the factory around the office. Although the air on the cooling side is humidified, it can be used as a cooling device in an open space factory. In a normal heat pump type air conditioner, the air on the cooling side is exhausted at a high temperature, so a cooling effect cannot be expected, but in a cooling device using a water evaporation indirect cooling type heat exchanger, the effect of cooling not only the indoor side but also the outdoor side Can be expected.
During the heating operation, the cooling water sprinkling is stopped, the flow of the refrigerant in the heat pump cycle is changed, and the fin tube heat exchangers shown in 3 and 5 are condensed radiators, and the fin tube heat exchangers shown in 4 are used. Switch the control valve (not shown) during the cycle to operate as an evaporative heat exchanger. As a result, the air on the cooled side is heated and blown out into the room and the refrigerator, and as a result, the heating operation is performed.
FIG. 2 shows a side configuration view of a fully ventilated hybrid cooling cooling system. The device of FIG. 1 is based on zero ventilation, whereas the device of FIG. 2 is based on 100% ventilation. It is a device suitable for spaces with poor air environment, and is based on the fact that all the air handled is outdoor air. Outdoor air is also used for the air 7 on the cooling side, and outdoor air is also used for the air on the cooling side. The air supply / ventilation blower 17 installed in the device of FIG. 1 is not installed. Air conditioners with high ventilation are desired in distribution warehouses, factories, open restaurants, etc. where the indoor air environment is poor. Since a large amount of air supply ventilation is performed in the device of FIG. 2, it is used in a place where it is welcomed to have a positive pressure due to air supply in the room or the refrigerator.
In FIG. 3, indoor and indoor air is used as the air 9 on the cooling side with respect to FIG. 2. The amount of air inside the room to be exhausted, the amount of air inside the refrigerator 9 and the amount of air supplied from the outside to the outside of the refrigerator are balanced. ..
In the devices shown in FIGS. 1, 2 and 3, control of cooling and cooling capacity is important in terms of energy saving and comfort. When the temperature of the indoor air is lower than the set value, the operation of the refrigerant compressor 6 is stopped, the hybrid cooling is canceled, and the indoor air is cooled by the water evaporation indirect cooling type heat exchanger 2 and output to the room. Cool. Even so, when the temperature of the indoor air is lower than the set value, the evaporative cooling water pump 12 suppresses the flow rate or even stops. By performing the above operation control, the drive power consumption of the refrigerant compressor 6 can be reduced, and the energy saving performance of the apparatus is greatly improved. This technique is proposed in claim 12. On the contrary, when the air temperature in the room or the refrigerator is higher than the set value, the operation of the refrigerant compressor 6 and the sensible cooling water pump 12 is also stopped as in claim 6, and the water evaporation indirect cooling type heat is stopped. A method of performing cooling operation by sensible heat exchange by the exchanger 2 is selected.
A method of further improving cooling and cooling performance and reducing energy consumption is shown in claim 13. This is a method in which a dehumidifying device using a desiccant unit that uses a heat source such as a solar heat source is used in combination with a hybrid.
Claim 13 presents a technique for enhancing the cooling or cooling effect by dehumidifying the air to be cooled in the cooling cooling device or the cooling device before introducing the air. As shown in the cross section of FIG. 4, the desiccant slip used here is a flat plate made of paper or resin carrying a desiccant (hygroscopic material) such as silica gel, zeolite, or a polymer hygroscopic material, and a wavy shape thereof. As shown in FIG. 4, the corrugated sheets molded into the above are laminated and joined in a plane shape, and the plane shape is a quadrangle. The figure shows the cross section so that the wavy shape can be seen. A number of desiccant slips are stacked so that the wave shapes are in the same direction to form a desiccant block. Since the vertical pitch 32 and the wave pitch 33 exist, an air passage through which air passes is configured in the desiccant block. Each of the two desiccant blocks is equipped with two blowers for ventilation, a total of four blowers (not shown), and the blower for passing the heat source air taken from the heat source and the air on the cooling side. It is a blower for passing 7.
As shown in claim 14, one desiccant block is dried using the heat of the summer sun, and another desiccant block is used for cooling used in the cooling and cooling apparatus shown in FIGS. 1, 2, and 3. A mode that uses the air on the side to dry and raise the temperature, and two desiccant blocks that are dried using the heat of the summer sun, and in the evening, these two desiccant blocks are used in the figure. It can also be used to raise the drying temperature of the air on the cooled side used in the cooling and cooling devices shown in 1, 2 and 3, and has the advantage of being compatible with both usage modes.
When the desiccant block is used as described above, its required volume becomes large. However, since desiccant materials and desiccant slips are as light as paper, the load of the block is not restricted in terms of load capacity in the building, and the hybrid cooling and cooling device uses the ceiling, attic, and underfloor as storage spaces. It has the advantage of being easy to install in the vicinity of 1, 2, and 3.
As outlined above, there are many technological development themes for widespread use as new air conditioners, especially cooling devices, aiming for the future of the 21st century. We would like to promote the practical application of the present invention proposal as one of the basic techniques.
本発明により、従来の冷媒式エアコンに代わって新しい原理により空調機、冷房機が実現でき、新しい空調市場が開拓可能となる。 世界の新しい空調産業が世界中に広まる可能性がある。 さらには太陽熱の利用によりエネルギー消費ゼロの空調機が生まれる可能性がある。 According to the present invention, an air conditioner and an air conditioner can be realized by a new principle instead of the conventional refrigerant type air conditioner, and a new air conditioner market can be cultivated. There is a possibility that the world's new air conditioning industry will spread all over the world. Furthermore, there is a possibility that an air conditioner with zero energy consumption will be created by using solar heat.
 1  ハイブリッド冷却、冷房装置
 2  水蒸発間接冷却式熱交換器
 3  フィンチューブ冷媒蒸発冷却器
 4  フィンチューブ冷媒凝縮放熱器
 5  ドライ用フィンチューブ冷媒凝縮放熱器
 6  冷媒圧縮機
 7  冷却される側の空気
 8  冷却される空気用送風機
 9  冷却する側の空気
 10 冷却する側の空気用送風機
 11 追加冷却空気用送風機
 12 蒸発冷却水用ポンプ
 13 蒸発冷却水用貯水槽
 14 フィンチューブ冷媒凝縮放熱器用の散水器
 15 水蒸発間接冷却式熱交換器用の散水器
 16 建物外壁
 17 給気換気用送風機
 19 冷却する空気の吸い込み口
 20 冷却される空気の吸い込み口
 30 デシカント平板
 31 デシカント波板
 32 デシカント平板間ピッチ
 33 デシカント波板の波ピッチ
1 Hybrid cooling and cooling device 2 Water evaporation indirect cooling heat exchanger 3 Fin tube refrigerant evaporation cooler 4 Fin tube refrigerant condensed radiator 5 Dry fin tube refrigerant condensed radiator 6 Refrigerator compressor 7 Air to be cooled 8 Blower for cooled air 9 Air on the cooling side 10 Blower for air on the cooling side 11 Blower for additional cooling air 12 Pump for evaporative cooling water 13 Water storage tank for evaporative cooling water 14 Fin tube Sprinkler for refrigerant condensed radiator 15 Water Evaporation Sprinkler for indirect cooling heat exchanger 16 Building outer wall 17 Air supply ventilation blower 19 Cooling air suction port 20 Cooled air suction port 30 Desiccant flat plate 31 Desiccant corrugated plate 32 Desiccant flat plate pitch 33 Desiccant wave Wave pitch of the board

Claims (15)

  1. 多数枚数の伝熱面を挟んで分離した状態で二つの空気を流し、片方の空気に散水冷却させて前記二つの空気を熱交換させる構造からなる水蒸発間接冷却式熱交換器と、フィンチューブ冷媒蒸発冷却器とフィンチューブ冷媒凝縮放熱器と圧縮機を冷媒管路でサイクル状につないだヒートポンプサイクルと、前記二つの空気を送風させるための送風機を組み込んだ装置において、
    前記水蒸発間接冷却式熱交換器において冷却する側の空気又はその流路の伝熱面表面上に散水することにより前記冷却する側の空気を加湿して冷却し、前記伝熱面の反対面に接して流れる冷却される側の空気を当該伝熱面を通して加湿せずに冷却させ、加湿されて冷却された前記冷却する側の空気を前記ヒートポンプサイクルの放熱用のフィンチューブ冷媒凝縮放熱器のフィン部に流してそのチューブ内部を流れる冷媒を冷却した後に装置外に排出させ、前記加湿されずに冷却された前記冷却される空気を前記ヒートポンプサイクルのフィンチューブ冷媒蒸発冷却器に流してそのチューブ内部を流れる低温度の冷媒により前記冷却される空気をさらに冷却して低温度化された空気を出力として利用することを特徴とした冷房乃至は冷却装置。
    A water evaporation indirect cooling type heat exchanger and a fin tube having a structure in which two airs are flowed in a state of being separated by sandwiching a large number of heat transfer surfaces, and the two airs are sprinkled and cooled to exchange heat with the two airs. In a device incorporating a heat pump cycle in which a refrigerant evaporation cooler, a fin tube refrigerant condensing radiator, and a compressor are connected in a cycle by a refrigerant pipeline, and a blower for blowing the two airs.
    In the water evaporation indirect cooling type heat exchanger, the air on the cooling side is humidified and cooled by sprinkling water on the surface of the heat transfer surface of the cooling side or the flow path thereof, and the opposite surface of the heat transfer surface is cooled. The air on the cooled side flowing in contact with the heat transfer surface is cooled without being humidified, and the air on the cooling side that has been humidified and cooled is used in the fin tube refrigerant condensing radiator for heat dissipation of the heat pump cycle. The refrigerant flowing inside the tube is cooled by flowing through the fin portion and then discharged to the outside of the device, and the cooled air cooled without being humidified is passed through the fin tube refrigerant evaporation cooler of the heat pump cycle to the tube. A cooling or cooling device characterized in that the air to be cooled by a low-temperature refrigerant flowing inside is further cooled and the cooled air is used as an output.
  2. 前記冷却される空気が冷却されて出力される前に前記ヒートポンプサイクルに追加した再加熱用のフィンチューブ冷媒凝縮放熱器のフィン部を通して再加熱してから出力させることを特徴とした請求項1に記載の冷房乃至は装置。 The first aspect of the present invention is characterized in that, before the cooled air is cooled and output, it is reheated through the fin portion of the fin tube refrigerant condensing radiator for reheating added to the heat pump cycle and then output. The cooling or equipment described.
  3. 前記冷却する側の空気又はその流路にある水蒸発間接冷却式熱交換器と、前記放熱用のフィンチューブ冷媒凝縮放熱器に散水する水を同じ冷却水用水ポンプの出力水を使ったことを特徴とした請求項1、2のいづれか一項に記載の冷房乃至は冷却装置。 The fact that the output water of the same cooling water water pump was used for the water to be sprinkled on the cooling side air or the water evaporation indirect cooling type heat exchanger in the flow path thereof and the fin tube refrigerant condensation radiator for heat dissipation. The cooling or cooling device according to any one of claims 1 and 2 as a feature.
  4. 前記水蒸発間接冷却式熱交換器から流れ出た前記冷却される空気を2分割し、その一部は請求項1,2,3に記載のごとく出力させ、他の一部の空気を前記水蒸発間接冷却式熱交換器に流入させる前の前記冷却する空気に合流させて冷却する空気の一部となし、前記水蒸発間接冷却式熱交換器へと冷却する空気として流入させたことを特徴とした請求項1、2、3のいづれか一項に記載の冷房乃至は冷却装置。 Water evaporation The cooled air flowing out of the indirect cooling heat exchanger is divided into two parts, a part of which is output as described in claims 1, 2 and 3, and the other part of the air is evaporated by the water. It is characterized by being a part of the air to be cooled by merging with the cooling air before flowing into the indirect cooling type heat exchanger, and flowing into the water evaporation indirect cooling type heat exchanger as cooling air. The cooling or cooling device according to any one of claims 1, 2 and 3.
  5. 伝熱面を挟んで二つの空気を分離した状態で流し、二つの空気を熱交換させる構造からなる水蒸発間接冷却式熱交換器において片方の冷却する側の空気又はその流路の伝熱面表面上に散水することにより冷却する側の空気を加湿して冷却し、前記伝熱面の反対面に接して流れるもう一方の冷却される側の空気を当該伝熱面を通して加湿せずに冷却させて、前記冷却する側の空気と前記冷却される側の空気を夫々別の空間乃至は夫々別の被冷却体に当たるように吹き出させ、当該別々の空間乃至は被冷却体を同時に冷房乃至は冷却させること特徴とした冷房乃至は冷却装置。 In a water evaporation indirect cooling type heat exchanger that has a structure in which two airs are flowed in a separated state across a heat transfer surface and the two airs are exchanged for heat, the heat transfer surface of one of the cooling side air or its flow path. The air on the cooling side is humidified and cooled by sprinkling water on the surface, and the air on the other cooled side flowing in contact with the opposite surface of the heat transfer surface is cooled without being humidified through the heat transfer surface. Then, the air on the cooling side and the air on the cooling side are blown out so as to hit different spaces or different cooled objects, and the separate spaces or cooled objects are simultaneously cooled or cooled. A cooling or cooling device characterized by cooling.
  6. 前記冷却される側の空気の温度が前記冷却する側の空気温度より一定の温度より低温度の時、及び別の一定の温度高温度のときなどの条件を満たす時は前記水蒸発間接冷却式熱交換器への散水を停止し、前記ヒートポンプの圧縮機の作動を停止して、双方の空気の温度差により熱交換させることにより前記冷却される空気を冷却することができる様に制御して運転することを特徴とした請求項1、5のいづれか1項に記載の冷房乃至は冷却装置 The water evaporation indirect cooling type is used when the conditions such as when the temperature of the air on the cooling side is lower than a constant temperature than the air temperature on the cooling side and when another constant temperature and high temperature are satisfied. Controlled so that the cooled air can be cooled by stopping watering to the heat exchanger, stopping the operation of the compressor of the heat pump, and exchanging heat due to the temperature difference between the two air. The cooling or cooling device according to any one of claims 1 and 5, wherein the cooling device is operated.
  7. 前記水蒸発間接冷却式熱交換器と前記フィンチューブ冷媒凝縮放熱器への散水を停止し、且つ前記ヒートポンプサイクル内の冷媒の流し方を反転させることにより前記フィンチューブ冷媒凝縮放熱器を冷媒蒸発冷却器及び前記フィンチューブ冷媒蒸発冷却器を冷媒凝縮放熱器として作動させて、前記冷却される空気を加熱して高温度にして出力させることにより暖房機能を持たせた運転ができるようにしたことを特徴とした請求項1に記載の冷房乃至は冷却装置。 By stopping watering to the water evaporation indirect cooling type heat exchanger and the fin tube refrigerant condensing radiator and reversing the flow of the refrigerant in the heat pump cycle, the fin tube refrigerant condensing radiator is cooled by refrigerant evaporation. By operating the device and the fin tube refrigerant evaporation cooler as a refrigerant condensation radiator to heat the cooled air to a high temperature and output it, it is possible to operate with a heating function. The cooling or cooling device according to claim 1, which is characterized.
  8. 前記冷却される空気を室内空気を用いて室内に出力空気として排出させ、前記冷却する空気として室外空気を用いて室外に排出させたことを特徴とした請求項1、2、3、4、5のいづれか1項に記載の冷房乃至は冷却装置。 Claims 1, 2, 3, 4, 5 characterized in that the cooled air is discharged into the room as output air using indoor air, and the outdoor air is used as the cooling air to be discharged to the outside. The cooling or cooling device according to any one of the above.
  9. 前記冷却される空気と前記冷却する空気の双方を室外空気を用い、冷却される空気である室外空気は室外から取り込んで、室内へと放出させて出力空気とさせ、前記冷却する空気は室外から取り込んで室外へ排出させたことを特徴とした請求項1、2、3、4のいづれか1項に記載の冷房乃至は冷却装置。 Outdoor air is used for both the cooled air and the cooled air, and the outdoor air, which is the cooled air, is taken in from the outside and discharged into the room to be output air, and the cooled air is taken from the outside. The cooling or cooling device according to any one of claims 1, 2, 3, and 4, characterized in that the air is taken in and discharged to the outside of the room.
  10. 前記冷却される空気を室外空気を取り込んで出力空気として室内へ排出させ、冷却する空気を室内空気を取り込んで室外へ排出させたことを特徴とした請求項1、2、3、4のいづれか1項に記載の冷房乃至は冷却装置。 One of claims 1, 2, 3 and 4, characterized in that the cooled air is taken in the outdoor air and discharged as output air into the room, and the cooled air is taken in the indoor air and discharged to the outside. The cooling or cooling device according to the section.
  11. 室内外空気が両側を流れる隔壁に換気用の通風口を2つ、室内空気を室外空気側へ排気させる通風口と、室外空気を室内空気側へ給気させる通風口を設けたことを特徴とした請求項1、2、3、4、5のいづれか1項に記載の冷房乃至は冷却装置。 It features two ventilation openings on the partition wall where indoor and outdoor air flows on both sides, a ventilation port that exhausts indoor air to the outdoor air side, and a ventilation port that supplies outdoor air to the indoor air side. The cooling or cooling device according to any one of claims 1, 2, 3, 4, and 5.
  12. 冷却乃至は冷房の対象空間に吹き出す空気乃至は空間の温度を制御する目的で冷却乃至は冷房の能力を調整するときに、先ず前記圧縮器の運転と非運転を切り替えて制御し、当該圧縮機の停止状態でさらに能力を減少調整するときに、前記水蒸発間接冷却器熱交換器への前記冷却水の散水有と無し又は水量を選択制御して調整するようにしたことを特徴とした請求項1、3、4、8、9、10、11のいづれかI項に記載の冷房乃至は冷却装置。 When adjusting the cooling or cooling capacity for the purpose of controlling the temperature of the air or space blown out into the target space for cooling or cooling, first, the compressor is controlled by switching between operation and non-operation, and the compressor is controlled. When the capacity is further reduced and adjusted in the stopped state, the claim is characterized in that the water evaporation indirect cooler heat exchanger is adjusted by selectively controlling the presence or absence of watering of the cooling water or the amount of water. Item 6. The cooling or cooling device according to any one of Items 1, 3, 4, 8, 9, 10, and I.
  13. 前記冷却される空気乃至は冷房の対象空間に吹き出す空気が前記冷房乃至は冷却装置に導入される前に、デシカントブロックに太陽熱などの温熱を利用して高温度になった空気を導入させて除湿し同時に加熱させた後に前記デシカントスリップの積層体に、前記冷却される空気乃至は冷房の対象空間に吹き出す空気を通過させて当該空気を除湿させ、高温度になった状態で前記冷房乃至は冷却装置に導入することを特徴とした請求項1~12に記載のいづれかI項に記載の冷房乃至は冷却装置。 Before the air to be cooled or the air blown out into the target space for cooling is introduced into the cooling or cooling device, the desiccant block is dehumidified by introducing high-temperature air using heat such as solar heat. After heating at the same time, the air to be cooled or the air blown out to the target space for cooling is passed through the laminate of the desiccant slip to dehumidify the air, and the cooling or cooling is performed in a high temperature state. The cooling or cooling device according to any one of claims 1 to 12, which is characterized by being introduced into an apparatus.
  14. 2台の前記デシカントブロックを固定して設置し、片方を高温度の空気を導入させて除湿して加熱させ、もう一方で前記デシカントブロックに、前記冷却される空気乃至は冷房の対象空間に吹き出す空気を通過させて当該空気を除湿させ、高温度になった状態で前記冷房乃至は冷却装置に導入するようにして、2台の前記デシカントブロックを同時に別々の機能で使う場合と、2台同時に高温度の空気を導入させて除湿して加熱させ、別の時間帯に2台同時に通過空気を除湿し加熱させる様にする場合とに使い分けることにより、異なった目的の運転を可能にしたことを特徴とした請求項13に記載の冷房乃至は冷却装置 Two of the desiccant blocks are fixedly installed, one of which is introduced with high temperature air to dehumidify and heat it, and the other is blown out to the desiccant block to the cooled air or the target space for cooling. When the two desiccant blocks are used for different functions at the same time, and two at the same time, the air is passed through to dehumidify the air and introduced into the cooling or cooling device in a high temperature state. By introducing high-temperature air to dehumidify and heat it, and to dehumidify and heat the passing air at the same time for two units at different times, it is possible to operate for different purposes. The cooling or cooling device according to claim 13, which is characterized by this.
  15. 前記デシカントブロックを、鉄板以外の樹脂、木材、紙、薄板アルミなどの軽量な収納ケース内に収めて、冷房乃至は冷却しようとする建物の天井裏、屋根裏、床下などの建物内に設置したことを特徴とした請求項13、14、のいづれかI項に記載の冷房乃至は冷却装置。 The desiccant block is housed in a lightweight storage case made of resin other than iron plate, wood, paper, thin aluminum, etc., and installed in the ceiling, attic, underfloor, etc. of the building to be cooled or cooled. The cooling or cooling device according to any one of claims 13 and 14, wherein the cooling device is characterized by the above-mentioned item I.
PCT/JP2021/042346 2020-11-05 2021-11-04 Air-conditioning or cooling device using hybrid cooling WO2022097757A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022560842A JPWO2022097757A1 (en) 2020-11-05 2021-11-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020184818 2020-11-05
JP2020-184818 2020-11-05

Publications (1)

Publication Number Publication Date
WO2022097757A1 true WO2022097757A1 (en) 2022-05-12

Family

ID=81458321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042346 WO2022097757A1 (en) 2020-11-05 2021-11-04 Air-conditioning or cooling device using hybrid cooling

Country Status (2)

Country Link
JP (1) JPWO2022097757A1 (en)
WO (1) WO2022097757A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004319A1 (en) * 2022-06-27 2024-01-04 シャープ株式会社 Total heat exchanger and ventilator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH044633U (en) * 1990-04-26 1992-01-16
JP2006313027A (en) * 2005-05-06 2006-11-16 Mitsubishi Electric Corp Ventilation air conditioner
CN102425822A (en) * 2011-09-02 2012-04-25 张洪 Fresh air conditioner
JP2016090136A (en) * 2014-11-05 2016-05-23 梅津 健兒 Air-cooling device with water evaporation cooling
JP2018021711A (en) * 2016-08-04 2018-02-08 梅津 健兒 Water evaporation cooler

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH044633U (en) * 1990-04-26 1992-01-16
JP2006313027A (en) * 2005-05-06 2006-11-16 Mitsubishi Electric Corp Ventilation air conditioner
CN102425822A (en) * 2011-09-02 2012-04-25 张洪 Fresh air conditioner
JP2016090136A (en) * 2014-11-05 2016-05-23 梅津 健兒 Air-cooling device with water evaporation cooling
JP2018021711A (en) * 2016-08-04 2018-02-08 梅津 健兒 Water evaporation cooler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004319A1 (en) * 2022-06-27 2024-01-04 シャープ株式会社 Total heat exchanger and ventilator

Also Published As

Publication number Publication date
JPWO2022097757A1 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
US10690358B2 (en) Air conditioning with recovery wheel, passive dehumidification wheel, cooling coil, and secondary direct-expansion circuit
CN206361857U (en) Heat reclamation type embrane method solution heat pump system
US10928082B2 (en) Energy exchange system for conditioning air in an enclosed structure
CN100538208C (en) A kind of double-temperature refrigerator water/cold wind unit
CN103017262B (en) Heat recovery fresh air dehumidifier
US11320161B2 (en) Air conditioning with recovery wheel, dehumidification wheel, and cooling coil
CN102506475A (en) Heat pump system of heat humidity independent control driven by condensation waste heat and based on solid dehumidification
CN109373480B (en) Energy-saving purification air-conditioning system combining evaporative cooling and evaporative condensation
CN201285124Y (en) Vaporization cooling and evaporation condensing combined air-conditioning unit
CN103727615A (en) Evaporative condensation heat pump type total heat recovery fresh air unit
CN107477740A (en) A kind of fresh air treatment system using two phase flow separate heat pipe temperature control
CN208998234U (en) In conjunction with the cooling energy-saving and purifying air-conditioning system with evaporative condenser of evaporation
WO2022097757A1 (en) Air-conditioning or cooling device using hybrid cooling
CN100451467C (en) Combined method and device for treating air
CN103925657B (en) It arranges wind source heat pump and drives fresh air system
CN110986207A (en) Heat pump driven direct-expansion type temperature-humidity separate heat control recovery type solution humidity conditioning fresh air handling unit
JP5548921B2 (en) Heat source air conditioner
JP2013087956A (en) Air conditioner, and vertical wall surface heat exchanger
JP4255056B2 (en) Interconnection system of combined heat source system and air conditioning system
JP2010071497A (en) Air conditioner
CN111006336B (en) Composite air conditioning system and air conditioning room
JP2010243003A (en) Dehumidification system
CN217058001U (en) Fluorine-water integrated machine capable of simultaneously providing high-temperature chilled water and low-dew-point fresh air
CN206522882U (en) Integral type embrane method solution heat pump system
CN116972462B (en) Heat pump type solution deep dehumidification integrated unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21889308

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560842

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21889308

Country of ref document: EP

Kind code of ref document: A1