JPS6218933Y2 - - Google Patents
Info
- Publication number
- JPS6218933Y2 JPS6218933Y2 JP1981053927U JP5392781U JPS6218933Y2 JP S6218933 Y2 JPS6218933 Y2 JP S6218933Y2 JP 1981053927 U JP1981053927 U JP 1981053927U JP 5392781 U JP5392781 U JP 5392781U JP S6218933 Y2 JPS6218933 Y2 JP S6218933Y2
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- compressor
- pipe
- gas
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000007788 liquid Substances 0.000 claims description 31
- 239000003507 refrigerant Substances 0.000 claims description 27
- 230000007246 mechanism Effects 0.000 claims description 22
- 238000001816 cooling Methods 0.000 claims description 11
- 238000005057 refrigeration Methods 0.000 claims description 5
- 238000001704 evaporation Methods 0.000 description 11
- 230000008020 evaporation Effects 0.000 description 11
- VOPWNXZWBYDODV-UHFFFAOYSA-N Chlorodifluoromethane Chemical compound FC(F)Cl VOPWNXZWBYDODV-UHFFFAOYSA-N 0.000 description 9
- 238000007791 dehumidification Methods 0.000 description 7
- 230000006835 compression Effects 0.000 description 6
- 238000007906 compression Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000004378 air conditioning Methods 0.000 description 2
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 2
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Description
【考案の詳細な説明】 本考案は、冷房用冷凍装置に関する。[Detailed explanation of the idea] The present invention relates to a cooling refrigeration device.
一般に、冷房用冷凍装置において、単位入力当
りの冷房能力、所謂EERを高くするには、蒸発
圧力を高くして圧縮機の圧縮比を小さくすること
が必要となる。例えば、使用冷媒としてフロン冷
媒R−22を用いたとき、一般には、吐出圧を19.8
Kg/cm2abs、吸入圧を6.0Kg/cm2absとして圧縮比
を3.3に設定しているのであるが、この場合にお
けるEERの値にくらべて、該値を高くするに
は、例えば蒸発圧力を9.3Kg/cm2absの高い圧力と
し、圧縮比を前記圧縮比の3.3に対し小さい値の
2.1にする必要がある。 Generally, in a cooling refrigeration system, in order to increase the cooling capacity per unit input, so-called EER, it is necessary to increase the evaporation pressure and reduce the compression ratio of the compressor. For example, when using Freon refrigerant R-22 as the refrigerant, the discharge pressure is generally 19.8
Kg/cm 2 abs, suction pressure is 6.0Kg/cm 2 abs, and the compression ratio is set to 3.3, but in order to increase this value compared to the EER value in this case, for example, the evaporation pressure is set to a high pressure of 9.3Kg/cm 2 abs, and the compression ratio is set to a smaller value than the compression ratio of 3.3.
It needs to be 2.1.
ところが、蒸発圧力を6.0から9.3に高くすれ
ば、蒸発温度も5℃から20℃に高くなつて除湿能
力が減少し、そのため、快適な冷房を行なえなく
なる問題が生ずるのであつて、蒸発圧力を高くす
るだけでは、根本的な解決にならないのである。 However, if the evaporation pressure is increased from 6.0 to 9.3, the evaporation temperature will also increase from 5℃ to 20℃, reducing the dehumidification ability, resulting in the problem of not being able to provide comfortable cooling. Simply doing so will not provide a fundamental solution.
又一方、前記EERの値を高くしながら、除湿
能力を発揮しうる装置として、第3図に示したも
のが提供されている。 On the other hand, the device shown in FIG. 3 has been provided as a device that can exhibit dehumidifying ability while increasing the EER value.
即ち、この装置は、二つの第1及び第2圧縮機
21,22と、一つの室外熱交換器23、及び二
つの第1及び第2室内熱交換器24,25とを用
い、前記第1,2圧縮機21,22の吐出側通路
を合流させて室外熱交換器23に連絡し、該熱交
換器23の出口側通路を分岐して、一方の通路に
膨張機構26を介して前記、第1室内熱交換器2
4を接続して第1圧縮機21の吸入側に連絡する
と共に、他方の通路に膨張機構27を介して前記
第2室内熱交換器25を接続して第2圧縮機22
の吸入側に連絡したものである。 That is, this device uses two first and second compressors 21 and 22, one outdoor heat exchanger 23, and two first and second indoor heat exchangers 24 and 25. , the discharge side passages of the two compressors 21 and 22 are joined together and connected to the outdoor heat exchanger 23, and the outlet side passage of the heat exchanger 23 is branched, and one passage is connected to the above-mentioned one through the expansion mechanism 26. First indoor heat exchanger 2
4 is connected to the suction side of the first compressor 21, and the second indoor heat exchanger 25 is connected to the other passage through the expansion mechanism 27 to connect the second compressor 22.
This contact was made to the intake side of the system.
そして、フロン冷媒R22を用いると共に、前記
第1圧縮機21の冷媒系統における第1室内熱交
換器24の蒸発圧力を6Kg/cm2absとして、蒸発
温度を、十分な除湿能力を発揮可能な低温度、例
えば5℃にする一方、第2圧縮機22の冷媒系統
における第2室内熱交換器25の蒸発圧力を、第
2圧縮機22の圧縮比が前記した小さい値2.1に
なつて、前記EERの値を高くし得る高い圧力9.3
Kg/cm2absとしたものである。 Then, while using the fluorocarbon refrigerant R22, the evaporation pressure of the first indoor heat exchanger 24 in the refrigerant system of the first compressor 21 was set to 6 kg/cm 2 abs, and the evaporation temperature was set to a low level that can exhibit sufficient dehumidifying ability. While setting the temperature to, for example, 5° C., the evaporation pressure of the second indoor heat exchanger 25 in the refrigerant system of the second compressor 22 is set to the above-mentioned small value of 2.1, and the EER High pressure that can increase the value of 9.3
Kg/cm 2 abs.
尚、28は室内フアンである。 Note that 28 is an indoor fan.
ところが、第2圧縮機22の冷媒系統において
は、EERの値が高くなるけれども、第1圧縮機
21の冷媒系統においては、第1室内熱交換器2
4の蒸発温度5℃に対応する蒸発圧力が、EER
の値を低くする6.0Kg/cm2absであり、従つて、全
体のEERの値を十分に高くできない問題があつ
た。しかも、圧縮機を2台用いる必要がありイニ
シヤルコストが高くなる問題もあつた。 However, in the refrigerant system of the second compressor 22, the EER value becomes high, but in the refrigerant system of the first compressor 21, the value of EER becomes high.
The evaporation pressure corresponding to the evaporation temperature of 5℃ in 4 is EER
Therefore, there was a problem that the overall EER value could not be made sufficiently high. Furthermore, it is necessary to use two compressors, which increases the initial cost.
しかして本考案は以上の問題を解決すべく考案
したもので、目的とする所は、十分な除湿能力を
もち、快適な冷房を行なえながらEERの値を高
くでき、しかも高価な圧縮機を2台用いる必要が
なく1台のみでよい経済的に有利な冷房用冷凍装
置を提供する点にある。 However, the present invention was devised to solve the above problems, and the purpose is to have sufficient dehumidification capacity, provide comfortable cooling, and increase the EER value, while also eliminating the need for expensive compressors. It is an object of the present invention to provide an economically advantageous cooling refrigeration device that does not require the use of a single unit and only requires one unit.
即ち、本考案は、一つの圧縮機と室外熱交換器
と二つの第1及び第2室内熱交換器とを備え、前
記室外熱交換器の出口側に気液分離器を接続し
て、該分離器のガス域と液域とに、ガス管を第1
膨張機構をもつた液管とをそれぞれ接続すると共
に、前記ガス管と液管とを流れる冷媒を熱交換さ
せる熱交換器を設けて、前記ガス管に接続する前
記熱交換器の出口側を、第2膨張機構を介して前
記第1室内熱交換器の入口側に接続し、前記液管
に接続する前記熱交換器の出口側を、前記圧縮機
の吸入側に接続し、かつ、前記液管からの分岐管
を、第3膨張機構を介して、前記第2熱交換器の
入口側に接続する一方、飽和圧力の異なる2種の
冷媒を充填するごとくしたことを特徴とするもの
である。 That is, the present invention includes one compressor, an outdoor heat exchanger, and two first and second indoor heat exchangers, and a gas-liquid separator is connected to the outlet side of the outdoor heat exchanger. The first gas pipe is connected to the gas area and liquid area of the separator.
a liquid pipe having an expansion mechanism, and a heat exchanger for exchanging heat between the refrigerant flowing through the gas pipe and the liquid pipe, and an outlet side of the heat exchanger connected to the gas pipe, The outlet side of the heat exchanger connected to the inlet side of the first indoor heat exchanger via a second expansion mechanism and connected to the liquid pipe is connected to the suction side of the compressor, and A branch pipe from the pipe is connected to the inlet side of the second heat exchanger via a third expansion mechanism, and is filled with two types of refrigerants having different saturation pressures. .
以下本考案冷凍装置の実施例を図面に基づいて
説明する。 Embodiments of the refrigeration system of the present invention will be described below based on the drawings.
第1図に示したものは、一つの圧縮機1と室外
熱交換器2と二つの第1及び第2室内熱交換器
3,4とを備え、前記圧縮機1の吐出側を前記室
外熱交換器2の入口側に接続し、該室外熱交換器
2の出口側に気液分離器5を接続して、該気液分
離器5のガス域にガス管6を、また液域に第1膨
張機構7をもつた液管8をそれぞれ接続するので
ある。 The one shown in FIG. 1 includes one compressor 1, an outdoor heat exchanger 2, and two first and second indoor heat exchangers 3, 4, and the discharge side of the compressor 1 is connected to the outdoor heat exchanger 2. A gas-liquid separator 5 is connected to the inlet side of the outdoor heat exchanger 2, and a gas pipe 6 is connected to the gas region of the gas-liquid separator 5, and a gas pipe 6 is connected to the liquid region of the gas-liquid separator 5. 1. Liquid pipes 8 each having an expansion mechanism 7 are connected to each other.
そして、前記ガス管6と液管8とを流れる冷媒
を熱交換させる熱交換器9を設けて、該熱交換器
9を前記ガス管6と液管8とに接続する。また、
前記ガス管6に接続する熱交換器9の出口側を、
第2膨張機構10を介して前記第1室内熱交換器
3の入口側に接続すると共に、前記液管8に接続
する熱交換器9の出口側を、前記圧縮機1の吸入
側に接続する。また、前記液管8における、気液
分離器5と第1膨張機構7との間の位置から、第
3膨張機構11をもつた分岐管12を設けて、該
分岐管12を前記第2室内熱交換器4の入口側に
接続し、第1及び第2室内熱交換器3,4の各吸
入側を合流させて圧縮機1の吸入側に接続するの
である。 A heat exchanger 9 for exchanging heat between the refrigerant flowing through the gas pipe 6 and the liquid pipe 8 is provided, and the heat exchanger 9 is connected to the gas pipe 6 and the liquid pipe 8. Also,
The outlet side of the heat exchanger 9 connected to the gas pipe 6 is
It is connected to the inlet side of the first indoor heat exchanger 3 via the second expansion mechanism 10, and the outlet side of the heat exchanger 9, which is connected to the liquid pipe 8, is connected to the suction side of the compressor 1. . Further, a branch pipe 12 having a third expansion mechanism 11 is provided from a position between the gas-liquid separator 5 and the first expansion mechanism 7 in the liquid pipe 8, and the branch pipe 12 is connected to the second chamber. It is connected to the inlet side of the heat exchanger 4, and the suction sides of the first and second indoor heat exchangers 3, 4 are merged and connected to the suction side of the compressor 1.
また、以上のごとく構成する冷媒回路に、飽和
温度に対応する飽和圧力の値が異なる2種の冷媒
を充填するのであつて、これら冷媒として、以下
フロン冷媒R22,R32を用いたものについて説明
する。 In addition, the refrigerant circuit configured as above is filled with two types of refrigerants having different values of saturation pressure corresponding to saturation temperature, and as these refrigerants, the use of fluorocarbon refrigerants R22 and R32 will be explained below. .
尚、13は室内フアンである。 Note that 13 is an indoor fan.
しかして、以上の構成において、前記圧縮機1
の吐出圧を19.8Kg/cm2absに設定すると共に、膨
張機構により設定する吸入圧を、従来用いる圧力
6.0Kg/cm2absよりも高い圧力9.3Kg/cm2absに設定
するのである。ところで、前記冷媒R22,R32
は、飽和圧力が前記設定圧力19.8Kg/cm2absのと
き、相当飽和温度はそれぞれ50℃、30℃となり、
また、飽和圧力が前記設定圧力9.3Kg/cm2absのと
き、相当飽和温度はそれぞれ20℃、5℃となるの
である。 However, in the above configuration, the compressor 1
In addition to setting the discharge pressure to 19.8Kg/cm 2 abs, the suction pressure set by the expansion mechanism
The pressure is set at 9.3Kg/cm 2 abs, which is higher than 6.0Kg/cm 2 abs. By the way, the refrigerants R22 and R32
When the saturation pressure is the set pressure 19.8Kg/cm 2 abs, the equivalent saturation temperature is 50℃ and 30℃, respectively.
Furthermore, when the saturation pressure is the set pressure 9.3Kg/cm 2 abs, the equivalent saturation temperatures are 20°C and 5°C, respectively.
斯くのごとく、圧縮機1の吐出圧を19.8Kg/cm2
absに、また、圧縮機1に吸入される冷媒の吸入
圧を9.3Kg/cm2absに保持して運転を行なうと、冷
媒R22の吐出ガスは、室外熱交換器2において50
℃で凝縮液化して、気液分離器5の液域に流入す
る。そして、該分離器5から液管8に流出した
後、該液管8と分岐管12とを分流して、それぞ
れ第1,3膨張機構7,11で圧力9.3Kg/cm2abs
に減圧され、熱交換器9、第2室内熱交換器4に
おいて、前記圧力の相当飽和温度20℃で蒸発気化
され、圧縮機1に吸入するサイクルを繰り返すの
である。 As described above, the discharge pressure of compressor 1 is set to 19.8Kg/cm 2
abs, and the suction pressure of the refrigerant sucked into the compressor 1 is maintained at 9.3Kg/cm 2 abs, the discharge gas of the refrigerant R22 is
It condenses and liquefies at ℃ and flows into the liquid region of the gas-liquid separator 5. After flowing out from the separator 5 to the liquid pipe 8, the liquid pipe 8 and the branch pipe 12 are separated, and the pressure is 9.3 Kg/cm 2 abs by the first and third expansion mechanisms 7 and 11, respectively.
The pressure is reduced to 20.degree. C. in the heat exchanger 9 and the second indoor heat exchanger 4 at a saturation temperature of 20.degree. C., which corresponds to the pressure, and the cycle is repeated.
また一方、冷媒R32の吐出ガスは、吐出圧が
19.8Kg/cm2absのとき、その相当飽和温度が30℃
であるため、50℃の室外熱交換器2では凝縮せず
にガス状のまゝ通過して気液分離器5のガス域に
至る。そして、前記冷媒R32はガス管6に流出す
ると共に、前記室外熱交換器2で状態変化し、前
記膨張機構7で圧力9.3Kg/cm2absに減圧された前
記冷媒R22と熱交換器9において熱交換するので
ある。即ち、ガス状の冷媒R32は圧力9.3Kg/cm2
absの相当飽和温度20℃で蒸発する冷媒R22と熱
交換し、前記圧力19.8Kg/cm2absの相当飽和温度
30℃で凝縮液化するのである。そして、斯く液化
した冷媒R32は、第2膨張機構10で圧力9.3
Kg/cm2absに減圧されて第1室内熱交換器3に入
り、該熱交換器3において、前記圧力の飽和温度
5℃で蒸発気化され、圧縮機1に吸入されるサイ
クルを繰り返すのである。従つて、以上の各冷媒
R22,R32のサイクルにより冷房が行なえると共
に、前記冷媒R32の第1熱交換器3における圧力
9.3Kg/cm2abs相当飽和温度5℃での蒸発温度によ
り除湿も行なえ、それでいて圧縮比も、2.1にで
きるのである。 On the other hand, the discharge pressure of the discharge gas of refrigerant R32 is
When 19.8Kg/cm 2 abs, its equivalent saturation temperature is 30℃
Therefore, it passes through the outdoor heat exchanger 2 at 50° C. without condensing and reaches the gas region of the gas-liquid separator 5. Then, the refrigerant R32 flows out into the gas pipe 6, changes its state in the outdoor heat exchanger 2, and enters the heat exchanger 9 with the refrigerant R22, which has been reduced in pressure to 9.3 Kg/cm 2 abs by the expansion mechanism 7. It exchanges heat. In other words, gaseous refrigerant R32 has a pressure of 9.3Kg/cm 2
Equivalent saturation temperature of abs Exchanges heat with refrigerant R22 which evaporates at 20℃, and the pressure is 19.8Kg/cm 2 Equivalent saturation temperature of abs
It condenses and liquefies at 30℃. The liquefied refrigerant R32 then reaches a pressure of 9.3 in the second expansion mechanism 10.
The pressure is reduced to Kg/cm 2 abs, enters the first indoor heat exchanger 3, is evaporated in the heat exchanger 3 at a saturation temperature of 5° C., and is sucked into the compressor 1, where the cycle is repeated. . Therefore, each of the above refrigerants
Cooling can be performed by the cycle of R22 and R32, and the pressure of the refrigerant R32 in the first heat exchanger 3
Dehumidification can be performed at an evaporation temperature of 5°C, which corresponds to a saturation temperature of 9.3Kg/cm 2 abs, and a compression ratio of 2.1 can be achieved.
つぎに、室内空気の状態変化を第2図により説
明する。即ち、室内空気の状態が、例えば温度30
℃、相対湿度75%、絶対湿度0.020(Kg/Kg)の
状態Aである場合、先ず室内空気が第2室内熱交
換器4を流通することにより、太実線のごとく飽
和線に至り露点温度25℃の状態B迄顕熱変化した
後、飽和線に沿つて下がり、露点温度24℃の状態
C迄顕熱変化し、かつ潜熱変化して絶対湿度が
0.001(Kg/Kg)程小幅に小さくなつて0.019とな
るのである。 Next, changes in the state of indoor air will be explained with reference to FIG. That is, if the condition of the indoor air is, for example, a temperature of 30
℃, relative humidity 75%, and absolute humidity 0.020 (Kg/Kg), the indoor air first flows through the second indoor heat exchanger 4 and reaches the saturation line as shown by the thick solid line, resulting in a dew point temperature of 25 After the sensible heat changes to state B of ℃, the temperature decreases along the saturation line, and the sensible heat changes to state C, where the dew point temperature is 24℃, and then the latent heat changes and the absolute humidity decreases.
It decreases slightly by 0.001 (Kg/Kg) to 0.019.
そして、次に、前記第2熱交換器4を通過した
室内空気が第1室内熱交換器3を流通することに
より、太点線のごとく飽和線に沿つて、状態Cか
ら所望の露点温度20℃の状態D迄顕熱変化し、か
つ潜熱変化して絶対湿度が0.004(Kg/Kg)程大
幅に小さくなつて0.015(Kg/Kg)となり、冷房
とともに除湿が可能となるのである。 Then, the indoor air that has passed through the second heat exchanger 4 flows through the first indoor heat exchanger 3, so that the air moves from state C to a desired dew point temperature of 20° C. along the saturation line as shown by the thick dotted line. Until state D, sensible heat changes and latent heat changes, and the absolute humidity significantly decreases by 0.004 (Kg/Kg) to 0.015 (Kg/Kg), making it possible to dehumidify as well as air condition.
以上のごとく、高温多湿の室内空気は、第2,
1室内熱交換器4,3により冷却を、また、主と
して第1室内熱交換器3により除湿をそれぞれ確
実に行なえ、快適な冷房を行なえるのである。 As mentioned above, hot and humid indoor air is
Cooling can be reliably performed by the first indoor heat exchangers 4 and 3, and dehumidification can be performed mainly by the first indoor heat exchanger 3, thereby providing comfortable cooling.
また、斯くのごとく冷房を行なうとき、圧縮機
1の吐出圧は19.8Kg/cm2absに対し、吸入圧は9.3
Kg/cm2absとし、圧縮機1の圧縮比を2.1に小さく
したので、EERの値を高くできるのである。 Also, when performing air conditioning in this way, the discharge pressure of compressor 1 is 19.8Kg/cm 2 abs, while the suction pressure is 9.3
Kg/cm 2 abs and the compression ratio of compressor 1 is reduced to 2.1, making it possible to increase the EER value.
尚、以上の説明では、室内空気の状態を、温度
が30℃で、相対湿度が75%であるとしたが、その
他各種の状態の場合でも同様に冷却と除湿とを確
実に行なえるのである。 In the above explanation, the temperature of the indoor air is 30°C and the relative humidity is 75%, but cooling and dehumidification can be similarly performed under various other conditions. .
また、以上の説明では、2種の冷媒の組合わせ
として、フロンR22及びR32を用いたが、その他
各種の組合わせのものを使用できる。 Furthermore, in the above description, Freon R22 and R32 were used as the combination of two types of refrigerants, but various other combinations may be used.
以上のごとく本考案は、一つの圧縮機1と室外
熱交換器2と二つの第1及び第2室内熱交換器
3,4とを備え、室外熱交換器2の出口側に気液
分離器5を接続して、該分離器5のガス域と液域
とにガス管6と第1膨張機構7をもつた液管8と
をそれぞれ接続すると共に、ガス管6と液管8と
を流れる冷媒を熱交換器9を設けて、ガス管6に
接続する熱交換器9の出口側を、第2膨張機構1
0を介して第1室内熱交換器3の入口側に接続
し、液管8に接続する熱交換器9の出口側を、圧
縮機1の吸入側に接続し、かつ、液管8からの分
岐管12を、第3膨張機構11を介して第2熱交
換器4の入口側に接続する一方、飽和圧力の異な
る2種の冷媒を充填するごとくしたのであるか
ら、圧縮機1を2台用いる必要がなく単に1台の
みでよくイニシヤルコストを安価にできながら、
第1室内熱交換器3の蒸発温度を、十分な除湿能
力を発揮しうる低温度として、該熱交換器3によ
り十分除湿を行なえると共に、第1,2室内熱交
換器3,4により所望の低温度迄冷却でき、快適
な冷房を行なえるのである。しかも、圧縮機1の
吸入圧はEERの値を十分に高くし得る程高い圧
力にでき、EERの高い運転を行なえるのであ
る。 As described above, the present invention includes one compressor 1, an outdoor heat exchanger 2, and two first and second indoor heat exchangers 3, 4, and a gas-liquid separator on the outlet side of the outdoor heat exchanger 2. A gas pipe 6 and a liquid pipe 8 having a first expansion mechanism 7 are connected to the gas region and liquid region of the separator 5, respectively. A heat exchanger 9 is provided for the refrigerant, and the outlet side of the heat exchanger 9 connected to the gas pipe 6 is connected to the second expansion mechanism 1.
0 to the inlet side of the first indoor heat exchanger 3, and the outlet side of the heat exchanger 9, which is connected to the liquid pipe 8, is connected to the suction side of the compressor 1, and Since the branch pipe 12 is connected to the inlet side of the second heat exchanger 4 via the third expansion mechanism 11 and charged with two types of refrigerants having different saturation pressures, two compressors 1 are used. There is no need to use one, and the initial cost can be kept low with just one unit.
By setting the evaporation temperature of the first indoor heat exchanger 3 to a low temperature that can exhibit sufficient dehumidifying ability, the heat exchanger 3 can perform sufficient dehumidification, and the first and second indoor heat exchangers 3 and 4 can perform the desired dehumidification. It can be cooled down to as low as 200 degrees, providing comfortable air conditioning. Moreover, the suction pressure of the compressor 1 can be made high enough to increase the EER value sufficiently, and operation with a high EER can be performed.
第1図は本考案の実施例を示す冷媒配管系統
図、第2図は空気線図、第3図は従来例を示す冷
媒配管系統図である。
1……圧縮機、2……室外熱交換器、3……第
1室内熱交換器、4……第2室内熱交換器、5…
…気液分離器、6……ガス管、7……第1膨張機
構、8……液管、9……熱交換器、10……第2
膨張機構、12……分岐管、11……第3膨張機
構。
FIG. 1 is a refrigerant piping system diagram showing an embodiment of the present invention, FIG. 2 is an psychrometric diagram, and FIG. 3 is a refrigerant piping system diagram showing a conventional example. 1... Compressor, 2... Outdoor heat exchanger, 3... First indoor heat exchanger, 4... Second indoor heat exchanger, 5...
... Gas-liquid separator, 6 ... Gas pipe, 7 ... First expansion mechanism, 8 ... Liquid pipe, 9 ... Heat exchanger, 10 ... Second
Expansion mechanism, 12... Branch pipe, 11... Third expansion mechanism.
Claims (1)
及び第2室内熱交換器3,4とを備え、前記室外
熱交換器2の出口側に気液分離器5を接続して、
該分離器5のガス域と液域とに、ガス管6と第1
膨張機構7をもつた液管8とをそれぞれ接続する
と共に、前記ガス管6と液管8とを流れる冷媒を
熱交換させる熱交換器9を設けて、前記ガス管6
に接続する前記熱交換器9の出口側を、第2膨張
機構10を介して前記第1室内熱交換器3の入口
側に接続し、前記液管8に接続する前記熱交換器
9の出口側を、前記圧縮機1の吸入側に接続し、
かつ、前記液管8からの分岐管12を、第3膨張
機構11を介して前記第2熱交換器4の入口側に
接続する一方、飽和圧力の異なる2種の冷媒を充
填するごとくしたことを特徴とする冷房用冷凍装
置。 One compressor 1, outdoor heat exchanger 2 and two first
and second indoor heat exchangers 3 and 4, and a gas-liquid separator 5 is connected to the outlet side of the outdoor heat exchanger 2,
A gas pipe 6 and a first
A heat exchanger 9 is provided to connect the liquid pipes 8 each having an expansion mechanism 7 and to exchange heat between the refrigerant flowing through the gas pipe 6 and the liquid pipe 8.
The outlet side of the heat exchanger 9 is connected to the inlet side of the first indoor heat exchanger 3 via a second expansion mechanism 10, and the outlet side of the heat exchanger 9 is connected to the liquid pipe 8. side is connected to the suction side of the compressor 1,
Further, a branch pipe 12 from the liquid pipe 8 is connected to the inlet side of the second heat exchanger 4 via a third expansion mechanism 11, and two types of refrigerants having different saturation pressures are charged therein. A cooling refrigeration device featuring:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1981053927U JPS6218933Y2 (en) | 1981-04-14 | 1981-04-14 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1981053927U JPS6218933Y2 (en) | 1981-04-14 | 1981-04-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57166057U JPS57166057U (en) | 1982-10-19 |
JPS6218933Y2 true JPS6218933Y2 (en) | 1987-05-15 |
Family
ID=29850543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1981053927U Expired JPS6218933Y2 (en) | 1981-04-14 | 1981-04-14 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6218933Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4789978B2 (en) * | 2008-06-30 | 2011-10-12 | 三菱電機株式会社 | Refrigeration cycle equipment |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5645062A (en) * | 1979-09-07 | 1981-04-24 | Bosch Gmbh Robert | Rectifier unit |
-
1981
- 1981-04-14 JP JP1981053927U patent/JPS6218933Y2/ja not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5645062A (en) * | 1979-09-07 | 1981-04-24 | Bosch Gmbh Robert | Rectifier unit |
Also Published As
Publication number | Publication date |
---|---|
JPS57166057U (en) | 1982-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6199392B1 (en) | Air conditioning system | |
US5689962A (en) | Heat pump systems and methods incorporating subcoolers for conditioning air | |
JP3228731B2 (en) | Heat pump and dehumidifier | |
JP2010107059A (en) | Refrigerating and air-conditioning apparatus | |
ES2048036A2 (en) | Air conditioner with dehumidifying mode | |
WO2012085965A1 (en) | Air conditioner | |
JP2006317012A (en) | Air conditioner | |
JPS6218933Y2 (en) | ||
JPS602505Y2 (en) | air conditioner | |
JP2698118B2 (en) | Air conditioner | |
CN215892596U (en) | Dehumidifier | |
JP2760500B2 (en) | Multi-room air conditioner | |
JPH07294047A (en) | Air conditioner | |
JP3253021B1 (en) | Heat pump and dehumidifying air conditioner | |
JPS6150211B2 (en) | ||
JPH0426847Y2 (en) | ||
JPS6225644Y2 (en) | ||
JPS6117318Y2 (en) | ||
JP2001330309A (en) | Air conditioner | |
JPS6143632B2 (en) | ||
JP2968230B2 (en) | Air conditioning system | |
JPH083891Y2 (en) | Air conditioner | |
JP2685230B2 (en) | Air conditioner | |
JPS5878060A (en) | Air conditioner | |
JPH0718936Y2 (en) | Separate type air conditioner |