JP2968230B2 - Air conditioning system - Google Patents

Air conditioning system

Info

Publication number
JP2968230B2
JP2968230B2 JP9024297A JP9024297A JP2968230B2 JP 2968230 B2 JP2968230 B2 JP 2968230B2 JP 9024297 A JP9024297 A JP 9024297A JP 9024297 A JP9024297 A JP 9024297A JP 2968230 B2 JP2968230 B2 JP 2968230B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
air
heat
desiccant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9024297A
Other languages
Japanese (ja)
Other versions
JPH10267577A (en
Inventor
健作 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP9024297A priority Critical patent/JP2968230B2/en
Priority to MYPI98001295A priority patent/MY126406A/en
Priority to CN98803652A priority patent/CN1123738C/en
Priority to US09/381,802 priority patent/US6199392B1/en
Priority to CNB031545580A priority patent/CN1236258C/en
Priority to PCT/JP1998/001311 priority patent/WO1998043024A1/en
Publication of JPH10267577A publication Critical patent/JPH10267577A/en
Application granted granted Critical
Publication of JP2968230B2 publication Critical patent/JP2968230B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1028Rotary wheel combined with a spraying device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空調システムに係
り、特にデシカントによる水分の吸着処理とヒートポン
プによるデシカントの再生処理を連続的に行えるように
した空調システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioning system, and more particularly to an air conditioning system capable of continuously performing a desiccant moisture adsorption process and a heat pump desiccant regeneration process.

【0002】[0002]

【従来の技術】図6は、USP4,430,864に開示
された従来技術であり、これは、処理空気経路Aと、再
生空気経路Bと、2つのデシカントベッド103A,1
03Bと、デシカントの再生及び処理空気の冷却を行う
ヒートポンプ200とを有している。このヒートポンプ
200は、2つのデシカントベッド103A,103B
に埋設された熱交換器220,240を高低熱源として
用いるもので、一方のデシカントベッドは処理空気を通
過させて吸着工程を行い、他方のデシカントは再生空気
を通過させて再生工程を行う。この空調処理が所定時間
行われた後、4方切り換え弁105,106を切り換え
て、再生及び処理空気を逆のデシカントベッドに流して
逆の工程を行う。
FIG. 6 shows a prior art disclosed in US Pat. No. 4,430,864, which includes a processing air path A, a regeneration air path B, and two desiccant beds 103A, 1A.
03B and a heat pump 200 for regenerating the desiccant and cooling the processing air. This heat pump 200 has two desiccant beds 103A and 103B.
The heat exchangers 220 and 240 buried in the air are used as high and low heat sources. One desiccant bed performs an adsorption step by passing process air, and the other desiccant performs a regeneration step by passing regeneration air. After the air-conditioning process has been performed for a predetermined time, the four-way switching valves 105 and 106 are switched to flow the regeneration and processing air to the opposite desiccant bed to perform the opposite process.

【0003】[0003]

【発明が解決しようとする課題】上記のような従来の技
術においては、ヒートポンプ200の高低の熱源と各デ
シカントがそれぞれ一体化されていたために、冷房効果
ΔQに相当する熱量がヒートポンプ(冷凍機)にそのま
ま負荷される。すなわち、ヒートポンプ(冷凍機)の能
力以上の効果が出せない。したがって、装置を複雑にし
ただけの効果が得られない。
In the prior art as described above, since the high and low heat sources of the heat pump 200 and the respective desiccants are integrated with each other, the amount of heat corresponding to the cooling effect ΔQ is equal to the heat pump (refrigerator). Is loaded as is. That is, the effect beyond the capacity of the heat pump (refrigerator) cannot be obtained. Therefore, it is not possible to obtain the effect of simply increasing the complexity of the device.

【0004】そこで、このような問題点を解決するため
に、図7に示すように、再生空気経路Bにヒートポンプ
の高温熱源220を配して再生空気を加熱し、処理空気
経路Aにヒートポンプの低温熱源240を配して処理空
気を冷却するとともに、デシカント103通過後の処理
空気とデシカント103通過前の再生空気との間で顕熱
交換を行う熱交換器104を設けることが考えられる。
ここでは、デシカント103が、処理空気経路Aと再生
空気経路Bの双方にまたがって回転するデシカントロー
タを用いている。
In order to solve such a problem, as shown in FIG. 7, a high-temperature heat source 220 of a heat pump is disposed in a regeneration air path B to heat regeneration air, and a heat pump of a heat pump is disposed in a processing air path A. It is conceivable to arrange the low-temperature heat source 240 to cool the processing air, and to provide the heat exchanger 104 for performing sensible heat exchange between the processing air after passing through the desiccant 103 and the regeneration air before passing through the desiccant 103.
Here, the desiccant 103 uses a desiccant rotor that rotates over both the processing air path A and the regeneration air path B.

【0005】これにより、図8の湿り空気線図に示すよ
うに、ヒートポンプによる冷却効果の他に、処理空気と
再生空気の間の顕熱交換による冷却効果を併せた冷却効
果(ΔQ)を得ることができるので、コンパクトな構成
で図6の空調システムより高い効率を得ることができ
る。
Thus, as shown in the psychrometric chart of FIG. 8, in addition to the cooling effect by the heat pump, a cooling effect (ΔQ) combining the cooling effect by sensible heat exchange between the processing air and the regeneration air is obtained. Therefore, higher efficiency than the air conditioning system of FIG. 6 can be obtained with a compact configuration.

【0006】このような用途に用いるヒートポンプに
は、デシカントの再生に必要な高熱源温度として65℃
以上の温度と、処理空気の冷却に必要な低熱源温度とし
て10℃程度の温度が必要となる。このような高熱源温
度と低熱源温度を持った蒸気圧縮式冷凍サイクルを冷媒
HFC134aのモリエル線図上に描くと図9のように
なる。図9に示すように、ヒートポンプの昇温幅は55
℃となり、圧力比や圧縮動力は冷媒HCFC22を用い
た従来の空調(エアコン)用ヒートポンプに近く、従っ
て冷媒HCFC22用の圧縮機を用いてデシカント空調
用のヒートポンプを構成できる可能性があり、しかも圧
縮機出口の過熱蒸気(図中80℃)の顕熱を利用すれば
再生空気を凝縮温度よりも高温に加熱できる可能性もあ
る。
A heat pump used for such an application has a high heat source temperature of 65 ° C. required for desiccant regeneration.
The above temperature and a low heat source temperature of about 10 ° C. required for cooling the processing air are required. FIG. 9 illustrates a vapor compression refrigeration cycle having such a high heat source temperature and a low heat source temperature on a Mollier diagram of the refrigerant HFC134a. As shown in FIG. 9, the temperature rise width of the heat pump is 55
° C, and the pressure ratio and compression power are close to those of a conventional air conditioner (air conditioner) heat pump using refrigerant HCFC22. Therefore, there is a possibility that a heat pump for desiccant air conditioning can be configured using a compressor for refrigerant HCFC22. If the sensible heat of the superheated steam (80 ° C. in the figure) at the outlet of the machine is used, there is a possibility that the regeneration air can be heated to a temperature higher than the condensation temperature.

【0007】しかしながら、この構成の空調システムに
おいても、図7に示すヒートポンプの高熱源熱交換器に
再生空気の全量を通過させて熱交換させる場合の冷媒お
よび再生空気の温度変化とエンタルピ変化の関係を示す
と図10のようになる。図10に示すように、高熱源熱
交換器220の冷媒が凝縮する凝縮熱伝達部分の温度効
率を80%とすると、再生空気は40℃から60℃程度
まで20℃の加熱されるが、ヒートポンプ側の加熱能力
のうち冷媒の過熱蒸気で加熱できる熱量は図9に示すよ
うに全体の発熱の12%を占めるに過ぎないため、この
残り12%の熱で再生空気を加熱しても、 (20℃/0.88)×0.12=2.7℃ しか昇温できないことになり、従って圧縮機出口の過熱
蒸気の顕熱は再生空気の昇温には殆ど寄与せず、結果的
に凝縮温度よりも低い温度の再生空気(図中62.7
℃)でデシカントを再生せざるを得ない。一方、デシカ
ントにシリカゲルのような材料を用いる場合、再生温度
としては90℃までの温度範囲では温度が高いほど再生
後のデシカントの吸湿能力が高くなる傾向があるため、
再生空気の温度は高いほどデシカント空調機の潜熱処理
能力が高くなり、冷房能力が向上する。そのため、もし
このような目的で再生温度を高めるため凝縮温度を75
℃程度まで高くしようとすると、図9の点線で示すよう
なサイクルとなり冷媒の凝縮圧力が異常に高く(24.
1kg/cm2)なり、もはや冷媒HCFC22用の圧縮機を
用いてデシカント空調用のヒートポンプを構成できなく
なるとともに、圧縮動力が増加して成績係数も低下して
しまう。
However, also in the air conditioning system of this configuration, the relationship between the temperature change of the refrigerant and the regeneration air and the enthalpy change when the entire amount of the regeneration air is passed through the high heat source heat exchanger of the heat pump shown in FIG. Is shown in FIG. As shown in FIG. 10, assuming that the temperature efficiency of the condensing heat transfer portion where the refrigerant of the high heat source heat exchanger 220 condenses is 80%, the regeneration air is heated at 20 ° C. from 40 ° C. to about 60 ° C. As shown in FIG. 9, the amount of heat that can be heated by the superheated steam of the refrigerant in the heating capacity of the refrigerant occupies only 12% of the entire heat generation. 20 ° C./0.88)×0.12=2.7° C. Therefore, the sensible heat of the superheated steam at the outlet of the compressor hardly contributes to the temperature rise of the regeneration air. Regeneration air at a temperature lower than the condensation temperature (62.7 in the figure)
C) to regenerate the desiccant. On the other hand, when a material such as silica gel is used as the desiccant, as the regeneration temperature in a temperature range up to 90 ° C., the desiccant after regeneration tends to have a higher moisture absorbing capacity as the temperature is higher.
The higher the temperature of the regenerating air, the higher the latent heat treatment capacity of the desiccant air conditioner and the better the cooling capacity. Therefore, if the condensing temperature is raised to 75% to increase the regeneration temperature for such a purpose.
Attempting to increase the temperature to about ° C. results in a cycle as shown by the dotted line in FIG. 9, and the condensing pressure of the refrigerant is abnormally high (24.
1 kg / cm 2 ), and a heat pump for desiccant air conditioning can no longer be configured using a compressor for the refrigerant HCFC22, and the compression power increases to lower the coefficient of performance.

【0008】本発明は、デシカントの再生温度を高め、
デシカントの吸湿能力の増加を可能にして、除湿能力に
優れ、かつ省エネルギな空調システムを提供することを
目的とする。
[0008] The present invention is to increase the desiccant regeneration temperature,
An object of the present invention is to provide an air-conditioning system that is capable of increasing the moisture absorbing capacity of a desiccant, has excellent dehumidifying capacity, and saves energy.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
になされたもので、請求項1に記載の発明は、処理空気
中の水分を吸着するデシカントと、圧縮機を有し、処理
空気を低熱源、再生空気を高熱源として動作して再生空
気にデシカント再生用の熱を供給するヒートポンプとを
備えた空調システムにおいて、前記ヒートポンプの圧縮
機に流入する冷媒を圧縮後の冷媒の飽和蒸気で加熱する
ことによって、圧縮後の冷媒の温度を高めたのち再生空
気と熱交換させることを特徴とする空調システムであ
る。
Means for Solving the Problems The present invention has been made to achieve the above object, and the invention according to claim 1 has a desiccant that adsorbs moisture in the processing air, a compressor, and the processing air is provided. A low heat source, a heat pump that operates as a high heat source using the regeneration air to supply heat for desiccant regeneration to the regeneration air, wherein the refrigerant flowing into the compressor of the heat pump is compressed with saturated vapor of the refrigerant. An air conditioning system characterized in that the temperature of a compressed refrigerant is increased by heating and then heat exchange is performed with regenerated air.

【0010】このようにヒートポンプの圧縮機に流入す
る冷媒を圧縮後の冷媒の飽和蒸気で加熱して、圧縮後の
冷媒過熱蒸気の温度すなわちエンタルピを高め、ヒート
ポンプの高熱源で放出する熱量に占める顕熱の割合を増
加させたのち再生空気と熱交換させることによって、デ
シカントの再生温度を高め、デシカントの吸湿能力を増
加させることができる。
As described above, the refrigerant flowing into the compressor of the heat pump is heated by the saturated vapor of the compressed refrigerant to increase the temperature, that is, the enthalpy of the superheated refrigerant after compression, and occupies the amount of heat released by the high heat source of the heat pump. By increasing the ratio of the sensible heat and then conducting heat exchange with the regeneration air, the regeneration temperature of the desiccant can be increased, and the desiccant's ability to absorb moisture can be increased.

【0011】請求項2に記載の発明は、デシカントを通
過する処理空気および再生空気の流路区画を少なくとも
処理空気の水分吸着工程を行う第1の区画と、再生空気
の再生工程を行う第2の区画とに分割し、デシカントが
第1の区画、第2の区画を経て第1の区画に戻るよう構
成し、かつヒートポンプの高熱源熱交換器を少なくとも
第1の高熱源熱交換器と第2の高熱源熱交換器とを含ん
で構成し、圧縮機から吐出された冷媒が第1の高熱源熱
交換器から第2の高熱源熱交換器の順に流れるよう構成
し、かつ再生空気は第2の高熱源熱交換器から第1の高
熱源熱交換器の順に流れてからデシカントの第2の区画
を通過するよう構成し、かつヒートポンプの低熱源熱交
換器と圧縮機を結ぶ冷媒の低圧経路中に冷媒熱交換器を
設け、該冷媒熱交換器のもう一方の媒体経路にヒートポ
ンプの第1の高熱源熱交換器と第2の高熱源熱交換器を
結ぶ冷媒の高圧経路中の冷媒を導いて熱交換させるよう
に構成されたことを特徴とする請求項1に記載の空調シ
ステムである。
According to a second aspect of the present invention, at least a first section for performing a process of adsorbing moisture of the processing air and a second section for performing a process of regenerating the regeneration air are provided in a flow path section for the processing air and the regeneration air passing through the desiccant. And the desiccant is configured to return to the first section through the first section and the second section, and the heat source high heat source heat exchanger of the heat pump is provided at least.
A first high heat source heat exchanger and a second high heat source heat exchanger, wherein the refrigerant discharged from the compressor is supplied from the first high heat source heat exchanger to the second high heat source. A heat exchanger, and the regeneration air flows from the second heat source heat exchanger to the first heat source heat exchanger, and then passes through the second section of the desiccant; and A refrigerant heat exchanger is provided in a low pressure path of the refrigerant connecting the low heat source heat exchanger of the heat pump and the compressor, and a first high heat source heat exchanger and a second heat pump of the heat pump are provided in another medium path of the refrigerant heat exchanger. leading the refrigerant of the high pressure path of the refrigerant connecting the high heat source heat exchanger so as to heat exchange
A conditioning system according to claim 1, characterized in that configured.

【0012】このように、再生空気の流れと冷媒の流れ
を向流状に構成し、再生空気がまず凝縮温度で作動する
ヒートポンプの第2の高熱源熱交換器で熱交換し次に温
度が高い冷媒の過熱蒸気と顕熱交換するヒートポンプの
第1の高熱源熱交換器で熱交換させてからデシカントの
再生区画に導くことによって、デシカントの再生温度を
高め、デシカントの吸湿能力を増加させることができ
る。
As described above, the flow of the regeneration air and the flow of the refrigerant are formed in countercurrent, and the regeneration air first exchanges heat with the second high heat source heat exchanger of the heat pump operating at the condensing temperature, and then the temperature is reduced. Increasing the desiccant regeneration temperature and increasing the desiccant moisture absorption capacity by conducting heat exchange with the first high heat source heat exchanger of the heat pump that exchanges sensible heat with the superheated vapor of the high refrigerant and then guiding the heat to the desiccant regeneration section. Can be.

【0013】以上の空調システムでは、デシカントがロ
ータ形状をしており、デシカントが回転することによっ
て第1の区画、第2の区画を経て第1の区画に戻るよう
構成してもよい。
In the above air conditioning system, the desiccant may have a rotor shape, and the desiccant may rotate to return to the first section via the first section and the second section .

【0014】このように、デシカントをロータ形状とし
デシカントが回転するようにしたことによってデシカン
トによる水分の吸着処理とヒートポンプの冷媒の過熱蒸
気を用いた加熱によるデシカントの再生処理を連続的に
行えるようにすることができる。
As described above, the desiccant is made to have a rotor shape and the desiccant is rotated so that the desiccant can be continuously subjected to moisture adsorption processing and desiccant regeneration processing by heating the superheated steam of the heat pump refrigerant. can do.

【0015】請求項3に記載の空調システムは、請求項
2に記載のシステムにおいて、ヒートポンプの第1の高
熱源熱交換器と第2の高熱源熱交換器を結ぶ冷媒の高圧
経路中に気液分離器を設け、該気液分離器で気相の冷媒
を分離し、前記冷媒熱交換器に導き凝縮させることによ
って圧縮機に流入する冷媒を加熱することを特徴とす
る。
[0015] The air conditioning system according to the third aspect of the present invention provides the air conditioning system according to the third aspect.
3. The system according to 2, wherein a gas-liquid separator is provided in a high-pressure path of the refrigerant connecting the first heat source heat exchanger and the second heat source heat exchanger of the heat pump, and the gas-liquid separator The method is characterized in that the refrigerant is separated, and the refrigerant is introduced into the refrigerant heat exchanger and condensed, thereby heating the refrigerant flowing into the compressor.
You.

【0016】このように、ヒートポンプの圧縮機吸込み
冷媒の過熱度を高めるために用いる乾き飽和状態の冷媒
蒸気のみを気液分離器で分離して取り出すことにより冷
媒熱交換器を流動する高圧冷媒の流量が少なくて済み、
該冷媒系統の配管口径および冷媒熱交換器を小さく構成
することができる。
As described above, only the dry saturated refrigerant vapor used for increasing the degree of superheat of the refrigerant sucked into the compressor of the heat pump is separated and taken out by the gas-liquid separator, whereby the high-pressure refrigerant flowing through the refrigerant heat exchanger is removed. Low flow rate,
The pipe diameter of the refrigerant system and the refrigerant heat exchanger can be made small.

【0017】請求項4に記載の空調システムは、請求項
3に記載のシステムにおいて、気液分離器の気相を取り
出す高圧冷媒の経路を冷媒熱交換器に導くとともに、前
記気液分離器の液相を取り出す経路の途中に絞りを設
け、該絞りを経た経路と前記冷媒熱交換器を経た高圧冷
媒の経路とを合流させたのち、ヒートポンプの第2の高
熱源熱交換器に導くよう構成したことを特徴とする。
[0017] The air conditioning system according to the fourth aspect is characterized in that:
3. The system according to 3 , wherein a path of the high-pressure refrigerant for extracting the gas phase of the gas-liquid separator is guided to the refrigerant heat exchanger, and a throttle is provided in the middle of the path for extracting the liquid phase of the gas-liquid separator. After they are merged and the route of the high refrigerant which has flowed through via path and said refrigerant heat exchanger, you characterized by being configured to direct the second high heat source heat exchanger of the heat pump.

【0018】このように、気液分離器の液相を取り出す
経路の途中に絞りを設けることによって、気相の冷媒が
流れる冷媒熱交換器の高圧冷媒経路の前後の差圧を確保
できるため、冷媒熱交換器を第1の高熱源熱交換器およ
び第2の高熱源熱交換器から離れた場所に設置しても、
確実に乾き飽和状態の高圧冷媒蒸気を冷媒熱交換器に流
動させることができる。
As described above, by providing the throttle in the middle of the path for extracting the liquid phase of the gas-liquid separator, the differential pressure across the high-pressure refrigerant path of the refrigerant heat exchanger through which the gas-phase refrigerant flows can be secured. Even if the refrigerant heat exchanger is installed in a place away from the first high heat source heat exchanger and the second high heat source heat exchanger,
High-pressure refrigerant vapor in a dry and saturated state can reliably flow to the refrigerant heat exchanger.

【0019】[0019]

【実施例】以下、本発明に係るデシカント空調装置の実
施例を図面を参照して説明する。図1は本発明に係る空
調システムの第1の実施例の基本構成を示す図であり、
このうち蒸気圧縮式ヒートポンプの部分は、圧縮機26
0、低熱源熱交換器(蒸発器)240、第1の高熱源熱
交換器(顕熱熱交換器)230、第2の高熱源熱交換器
(凝縮器)220、膨張弁250を構成機器とした蒸気
圧縮式冷凍サイクルに加え、このサイクルの低熱源熱交
換器(蒸発器)240から圧縮機260に至る経路中に
冷媒熱交換器270を設け、該冷媒熱交換器270にお
いて圧縮機吸い込み前の低圧冷媒と顕熱熱交換器230
を出た高圧の湿り蒸気とが熱交換したあと、高圧の湿り
蒸気が凝縮器220に流動するようサイクルを構成した
ものである。そして蒸発器240において低圧の冷媒の
湿り蒸気がデシカント103通過後の処理空気と熱交換
関係をなし、かつ顕熱熱交換器230においてデシカン
ト103通過前の再生空気と冷媒の過熱蒸気が熱交換関
係をなし、かつ凝縮器220において高圧の冷媒の湿り
蒸気が顕熱熱交換器230通過前の再生空気と熱交換関
係をなすを形成したものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a desiccant air conditioner according to the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a basic configuration of a first embodiment of an air conditioning system according to the present invention,
Of these, the part of the vapor compression heat pump is the compressor 26
0, low heat source heat exchanger (evaporator) 240, first high heat source heat exchanger (sensible heat exchanger) 230, second high heat source heat exchanger (condenser) 220, expansion valve 250 In addition to the above-described vapor compression refrigeration cycle, a refrigerant heat exchanger 270 is provided in a path from the low heat source heat exchanger (evaporator) 240 to the compressor 260 in this cycle. Previous low pressure refrigerant and sensible heat exchanger 230
After the heat exchange with the high-pressure wet steam flowing out of the heat exchanger, the high-pressure wet steam flows to the condenser 220 to form a cycle. Then, in the evaporator 240, the wet steam of the low-pressure refrigerant has a heat exchange relationship with the processing air after passing through the desiccant 103, and in the sensible heat exchanger 230, the reheated air and the superheated vapor of the refrigerant before passing through the desiccant 103 have a heat exchange relationship. And the heat vapor of the high-pressure refrigerant in the condenser 220 forms a heat exchange relationship with the regenerated air before passing through the sensible heat exchanger 230.

【0020】デシカントロータ103は、図7において
説明したものと同じように、デシカントが、処理空気経
路Aと再生空気経路Bの双方に跨がって所定のサイクル
で回転するよう構成されている。処理空気経路Aは、空
調空間と還気導入用の送風機102の吸い込み口と経路
107を介して接続し、送風機102の吐出口はデシカ
ントロータ103の水分吸着工程を行う第1の区画と経
路108を介して接続し、デシカントロータ103の処
理空気の出口は再生空気と熱交換関係にある顕熱熱交換
器104と経路109を介して接続し、顕熱熱交換器1
04の処理空気の出口は蒸発器(冷却器)240と経路
110を介して接続し、蒸発器240の処理空気の出口
は加湿器105と経路111を介して接続し、加湿器1
05の処理空気の出口は給気口となる処理空気出口と経
路112を介して接続して処理空気のサイクルを形成す
る。
The desiccant rotor 103 is configured so that the desiccant rotates in a predetermined cycle across both the processing air path A and the regeneration air path B in the same manner as described with reference to FIG. The processing air path A is connected to the air-conditioned space and the suction port of the blower 102 for introducing the return air through a path 107, and the discharge port of the blower 102 is connected to the first section and the path 108 where the desiccant rotor 103 performs the moisture adsorption process. The outlet of the processing air of the desiccant rotor 103 is connected to the sensible heat exchanger 104, which has a heat exchange relationship with the regeneration air, via the path 109, and the sensible heat exchanger 1
04 is connected to the evaporator (cooler) 240 via the path 110, and the processing air outlet of the evaporator 240 is connected to the humidifier 105 via the path 111.
The processing air outlet 05 is connected to a processing air outlet serving as an air supply port via a path 112 to form a processing air cycle.

【0021】一方、再生空気経路Bは、再生空気となる
外気導入用の送風機140の吸い込み口と経路124を
介して接続し、送風機140の吐出口は処理空気と熱交
換関係にある顕熱熱交換器104と接続し、顕熱熱交換
器104の再生空気の出口は凝縮器220と経路126
を介して接続し、凝縮器220の再生空気の出口は顕熱
熱交換器230と経路127を介して接続し、顕熱熱交
換器230の再生空気の出口はデシカントロータ103
の再生空気の再生工程を行う第2の区画と経路128を
介して接続し、デシカントロータ103の再生空気の再
生工程を行う第2の区画の再生空気の出口は外部空間と
経路129を介して接続して再生空気を外部から取り入
れて、外部に排気するサイクルを形成する。なお図中、
丸で囲ったアルファベットK〜Uは、図3と対応する空
気の状態を示す記号である。
On the other hand, the regeneration air path B is connected to a suction port of a blower 140 for introducing outside air, which becomes regeneration air, via a path 124, and a discharge port of the blower 140 has a sensible heat heat exchange relation with the processing air. The outlet of the regeneration air of the sensible heat exchanger 104 is connected to the condenser 220 and the passage 126.
The outlet of the regenerating air of the condenser 220 is connected to the sensible heat exchanger 230 via the path 127, and the outlet of the regenerating air of the sensible heat exchanger 230 is connected to the desiccant rotor 103.
And the outlet of the regenerated air in the second section for performing the regenerating process of the regenerated air of the desiccant rotor 103 is connected to the external space and the path 129. A cycle for connecting and taking in regeneration air from the outside and exhausting to the outside is formed. In the figure,
The circled letters K to U are symbols indicating the state of air corresponding to FIG.

【0022】上述のように構成されたデシカント空調装
置の蒸気圧縮式冷凍サイクル部分のサイクルを次に説明
する。冷媒は蒸発器(冷却器)240でデシカント10
3で除湿された処理空気から蒸発潜熱を奪って蒸発し、
経路209を経て冷媒熱交換器270に至りここで顕熱
熱交換器230を出た高圧の飽和蒸気と熱交換したの
ち、圧縮機260に吸引され圧縮される。圧縮された冷
媒は経路201を経て顕熱熱交換器230に流入し冷媒
の過熱蒸気の顕熱をデシカント103に流入前の再生空
気に放出したのち経路202を経て冷媒熱交換器270
に至りここで圧縮機吸い込み前の乾き飽和状態の低圧冷
媒と熱交換して一部が凝縮する。冷媒熱交換器270を
出た高圧冷媒は凝縮器220に流入し凝縮熱を顕熱熱交
換器230に流入前の再生空気に放出して凝縮する。凝
縮した冷媒は経路206を経て膨張弁250に至りそこ
で減圧膨張した後、蒸発器(冷却器)240に還流す
る。
The cycle of the vapor compression refrigeration cycle of the desiccant air conditioner constructed as described above will be described below. The refrigerant is desiccant 10 in the evaporator (cooler) 240.
Evaporating the latent heat of evaporation from the dehumidified processing air in step 3,
After reaching the refrigerant heat exchanger 270 via the path 209, the heat is exchanged with the high-pressure saturated steam that has exited the sensible heat exchanger 230, and then sucked and compressed by the compressor 260. The compressed refrigerant flows into the sensible heat exchanger 230 via the path 201 and releases the sensible heat of the superheated vapor of the refrigerant to the regenerated air before flowing into the desiccant 103, and then passes through the path 202 to the refrigerant heat exchanger 270
Here, heat exchange is performed with the low-pressure refrigerant in a dry and saturated state before suction of the compressor, and a part of the refrigerant is condensed. The high-pressure refrigerant that has exited the refrigerant heat exchanger 270 flows into the condenser 220 and discharges the heat of condensation to the regenerated air before flowing into the sensible heat exchanger 230 to be condensed. The condensed refrigerant reaches the expansion valve 250 via the path 206, is decompressed and expanded there, and then returns to the evaporator (cooler) 240.

【0023】このような冷媒のサイクルをモリエル線図
である図2を用いて説明する。冷媒は蒸発器240で蒸
発し(状態g)、経路209を経て冷媒熱交換器270
に至りここで顕熱熱交換器230を出た高圧の飽和蒸気
と熱交換した(状態a)のち、圧縮機260に吸引され
圧縮される。圧縮された冷媒(状態b)は顕熱熱交換器
230に流入し冷媒の過熱蒸気の顕熱をデシカント10
3に流入前の再生空気に放出した(状態c)のち冷媒熱
交換器270に至りここで圧縮機吸い込み前の乾き飽和
状態の低圧冷媒と熱交換して一部が凝縮する(状態
f)。この時低圧冷媒(状態g〜a)は凝縮温度以上に
は加熱されることがないため、伝熱量が制限され、冷媒
熱交換器270では高圧飽和蒸気は乾き度が状態fまで
下がってエンタルピが減少する一方、低圧冷媒は過熱蒸
気(状態a)となってエンタルピが増加する。冷媒熱交
換器270を出た高圧冷媒(状態f)は凝縮器220に
流入し凝縮熱を顕熱熱交換器230に流入前の再生空気
に放出して凝縮する(状態d)。凝縮した冷媒は膨張弁
250に至りそこで減圧膨張した後(状態e)、蒸発器
240に還流する。この実施例では、凝縮器220入口
の冷媒エンタルピ(状態f)が低下する一方、圧縮機出
口で顕熱交換器230入口の冷媒エンタルピが上昇する
ため、図7の実施例に比べて顕熱交換器230の伝熱量
の占める割合が増加し、顕熱交換器230でヒートポン
プの全加熱量の35%、凝縮器220で65%の伝熱量
となる。
Such a refrigerant cycle will be described with reference to FIG. 2 which is a Mollier diagram. The refrigerant evaporates in the evaporator 240 (state g) and passes through the path 209 to the refrigerant heat exchanger 270
Then, after heat exchange with the high-pressure saturated steam exiting the sensible heat exchanger 230 (state a), the refrigerant is sucked and compressed by the compressor 260. The compressed refrigerant (state b) flows into the sensible heat exchanger 230 and converts the sensible heat of the superheated vapor of the refrigerant to the desiccant 10.
After being discharged to the regeneration air before flowing into 3 (state c), the refrigerant reaches the refrigerant heat exchanger 270 where it exchanges heat with the dry saturated low-pressure refrigerant before suctioning the compressor and partially condenses (state f). At this time, since the low-pressure refrigerant (states g to a) is not heated to a temperature higher than the condensing temperature, the amount of heat transfer is limited, and in the refrigerant heat exchanger 270, the high-pressure saturated vapor drops in dryness to state f and the enthalpy increases. On the other hand, the low-pressure refrigerant becomes superheated steam (state a) and the enthalpy increases. The high-pressure refrigerant (state f) that has exited the refrigerant heat exchanger 270 flows into the condenser 220 and discharges the heat of condensation into the regenerated air before flowing into the sensible heat exchanger 230 and condenses (state d). The condensed refrigerant reaches the expansion valve 250 and is decompressed and expanded there (state e), and then returns to the evaporator 240. In this embodiment, the refrigerant enthalpy at the inlet of the condenser 220 (state f) decreases, while the refrigerant enthalpy at the inlet of the sensible heat exchanger 230 increases at the compressor outlet. The ratio of the heat transfer amount of the heat exchanger 230 increases, and the heat transfer amount of the sensible heat exchanger 230 becomes 35% of the total heat amount of the heat pump and the condenser 220 becomes 65% of the heat transfer amount.

【0024】次に前述のように構成されたヒートポンプ
を熱源とするデシカント空調システムの動作を図3の湿
り空気線図を参照して説明する。導入される還気(処理
空気:状態K)は経路107を経て送風機102に吸引
され昇圧されて経路108をへてデシカントロータ10
3の水分吸着工程を行う第1の区画に送られデシカント
ロータの吸湿剤で空気中の水分を吸着され絶対湿度が低
下するとともに吸着熱によって空気は温度上昇する(状
態L)。湿度が下がり温度上昇した空気は経路109を
経て顕熱熱交換器104に送られ外気(再生空気)と熱
交換して冷却される(状態M)。冷却された空気は経路
110を経て蒸発器(冷却器)240を通過して冷却さ
れる(状態N)。冷却された処理空気は加湿器105に
送られ水噴射または気化式加湿によって等エンタルピ過
程で温度低下し(状態P)、経路112を経て給気とし
て空調空間に戻される。
Next, the operation of the desiccant air conditioning system using the heat pump configured as described above as a heat source will be described with reference to the psychrometric chart of FIG. The introduced return air (process air: state K) is sucked into the blower 102 via the path 107, pressurized, and passed through the path 108 to the desiccant rotor 10.
The moisture is adsorbed by the desiccant rotor in the first section where the moisture adsorption step 3 is performed, and the moisture in the air is adsorbed. The absolute humidity decreases and the temperature of the air rises due to the heat of adsorption (state L). The air whose humidity has decreased and its temperature has increased is sent to the sensible heat exchanger 104 via the path 109 and exchanges heat with outside air (regenerated air) to be cooled (state M). The cooled air is cooled by passing through the evaporator (cooler) 240 via the path 110 (state N). The cooled processing air is sent to the humidifier 105, and its temperature is reduced in the isenthalpy process by water injection or vaporization humidification (state P), and is returned to the air-conditioned space via the path 112 as air supply.

【0025】一方、デシカントロータの再生は次のよう
に行われる。再生空気として用いられる外気(状態Q)
は経路124を経て送風機140に吸引され昇圧されて
顕熱熱交換器104に送られ、処理空気を冷却して自ら
は温度上昇し(状態R)、経路126を経て凝縮器22
0に送られて、冷媒の湿り蒸気によって加熱されて温度
上昇する(状態S)。さらに凝縮器220を出た再生空
気は顕熱熱交換器230に送られて、冷媒の過熱蒸気に
よってさらに加熱されて温度上昇し(状態T)たのち、
デシカントロータ103の再生工程を行う区画を通過し
てデシカントロータの水分を除去し再生作用を行い(状
態U)、経路129を経て排気として外部に捨てられ
る。
On the other hand, the regeneration of the desiccant rotor is performed as follows. Outside air used as regeneration air (state Q)
Is suctioned by the blower 140 via the passage 124, is pressurized and sent to the sensible heat exchanger 104, cools the processing air to increase its temperature (state R), and passes through the passage 126 to the condenser 22.
0, and is heated by the wet steam of the refrigerant to increase the temperature (state S). Further, the regenerated air exiting the condenser 220 is sent to the sensible heat exchanger 230, where it is further heated by the superheated vapor of the refrigerant to increase the temperature (state T).
After passing through the section of the desiccant rotor 103 where the regeneration process is performed, the moisture of the desiccant rotor is removed to perform the regeneration operation (state U), and is discarded as exhaust gas through the path 129 to the outside.

【0026】このようにして、デシカントの再生と処理
空気の除湿、冷却をくりかえし行うことによって、デシ
カントによる空調を行うことができるが、本実施例で
は、前記のように顕熱交換器230における再生空気の
加熱量と凝縮器220における再生空気の加熱量の比を
35%:65%にして顕熱交換器230における再生空
気の加熱量を増加させることができるため、過熱蒸気の
持つ顕熱で再生空気の温度を凝縮温度よりも高い温度ま
で加熱することが可能となる。そのため、デシカントの
除湿能力が従来に比べて向上する。以下に事例を用いて
説明する。
As described above, the air conditioning by the desiccant can be performed by repeating the regeneration of the desiccant and the dehumidification and cooling of the processing air. In this embodiment, as described above, the regeneration in the sensible heat exchanger 230 is performed. The heating amount of the regenerated air in the sensible heat exchanger 230 can be increased by setting the ratio of the heating amount of the air to the heating amount of the regeneration air in the condenser 220 to 35%: 65%. It is possible to heat the temperature of the regeneration air to a temperature higher than the condensation temperature. Therefore, the desiccant's dehumidifying ability is improved as compared with the conventional case. This will be described below using examples.

【0027】図4は図1の実施例の再生空気および加熱
源となるヒートポンプの高圧冷媒のエンタルピ(熱量)
変化量と温度との関係を示す図である。ヒートポンプの
冷媒と再生空気が熱交換する場合には、熱収支バランス
から、冷媒及び再生空気のエンタルピの変化量は同じに
なる。また空気は比熱がほぼ一定の顕熱変化を経るた
め、図中連続した直線となり、冷媒は潜熱変化と顕熱変
化を経るため、潜熱変化の部分は水平となる。従って、
凝縮器220出口の再生空気の温度が決まると、顕熱交
換器230出口の再生空気温度は熱交換する相手側の冷
媒の加熱蒸気の温度によらず、熱バランスから計算でき
る。
FIG. 4 shows the enthalpy (calorific value) of the high-pressure refrigerant of the heat pump serving as the heating source and the regeneration air of the embodiment of FIG.
It is a figure showing the relation between the amount of change and temperature. When heat exchange between the refrigerant of the heat pump and the regeneration air is performed, the amounts of change in the enthalpy of the refrigerant and the regeneration air are the same from the heat balance. Since the specific heat of the air passes through a sensible heat change that is almost constant, the air becomes a continuous straight line in the figure, and the refrigerant goes through a latent heat change and a sensible heat change, so that the portion of the latent heat change becomes horizontal. Therefore,
When the temperature of the regeneration air at the outlet of the condenser 220 is determined, the temperature of the regeneration air at the exit of the sensible heat exchanger 230 can be calculated from the heat balance irrespective of the temperature of the heated steam of the refrigerant on the other side that exchanges heat.

【0028】従って図4において、冷媒サイクルが前記
図2のサイクルで、再生空気の凝縮器220入口温度が
40℃で、冷媒凝縮温度が65℃である場合、本実施例
によれば、ヒートポンプの凝縮器220の温度効率を8
0%と想定すると、状態Sの温度Tsは、 Ts=40+(65−40)×80/100=60℃ となる。このあと再生空気を全加熱量の35%相当の空
気を過熱蒸気で過熱するとすれば、状態Tの温度Ttは、
前記の通り熱バランスから、 Tt=60+20×35/65=70.8℃ となる。従って、凝縮温度65℃よりも5.8℃高い温
度の再生空気が得られる。
Therefore, in FIG. 4, when the refrigerant cycle is the cycle of FIG. 2 and the inlet temperature of the condenser 220 of the regeneration air is 40 ° C. and the refrigerant condensing temperature is 65 ° C., according to the present embodiment, The temperature efficiency of the condenser 220 is set to 8
Assuming 0%, the temperature Ts of the state S is as follows: Ts = 40 + (65−40) × 80/100 = 60 ° C. After that, if the regenerated air is to be heated with superheated steam at 35% of the total heating amount, the temperature Tt in the state T is
As described above, from the heat balance, Tt = 60 + 20 × 35/65 = 70.8 ° C. Therefore, regenerated air having a temperature 5.8 ° C. higher than the condensation temperature 65 ° C. is obtained.

【0029】このように、本実施例によれば、凝縮温度
よりも高い温度温度でデシカントロータ103のデシカ
ントを再生することができるため、デシカントの除湿能
力を従来に比べて向上させることができ、従って除湿能
力に優れ、かつ省エネルギな空調システムを提供するこ
とができる。
As described above, according to the present embodiment, the desiccant of the desiccant rotor 103 can be regenerated at a temperature higher than the condensing temperature, so that the desiccant's dehumidifying ability can be improved as compared with the prior art. Therefore, it is possible to provide an air-conditioning system that is excellent in dehumidifying capacity and energy saving.

【0030】なお再生用空気として室内換気にともなう
排気を用いる方法も従来からデシカント空調では広く行
われているが、本発明においても室内からの排気を再生
用空気として使用してもさしつかえなく、本実施例と同
様の効果が得られる。
Although the method of using the exhaust air accompanying the indoor ventilation as the regeneration air has been widely used in the desiccant air conditioning, the exhaust gas from the room may be used as the regeneration air in the present invention. The same effect as that of the embodiment can be obtained.

【0031】図5は本発明の第2の実施例である。この
実施例では、蒸気圧縮式ヒートポンプの部分は、圧縮機
260、低熱源熱交換器(蒸発器)240、第1の高熱
源熱交換器(顕熱熱交換器)230、第2の高熱源熱交
換器(凝縮器)220、膨張弁250を構成機器とした
蒸気圧縮式冷凍サイクルに加え、このサイクルの低熱源
熱交換器(蒸発器)240から圧縮機260に至る経路
中に冷媒熱交換器270を設け、該冷媒熱交換器270
において圧縮機吸い込み前の低圧冷媒と顕熱熱交換器2
30を出た高圧の湿り蒸気とが熱交換したあと、高圧の
湿り蒸気が凝縮器220に流動するようサイクルを構成
した第1の実施例と同様のものであるが、本実施例で
は、さらに顕熱熱交換器230を出た高圧の冷媒蒸気を
気液分離器280で冷媒経路を分岐して、一方の気相を
取り出す側を経路203を介して前記の冷媒熱交換器2
70に導くとともに、前記気液分離器280の液相を取
り出す経路の途中に絞り285を設け、該絞り285を
経た経路205と前記冷媒熱交換器270を経た高圧冷
媒の経路204とを合流させたのち、凝縮器220に導
くよう構成した。なお、蒸発器240において低圧の冷
媒の湿り蒸気がデシカント103通過後の処理空気と熱
交換関係をなし、かつ顕熱熱交換器230においてデシ
カント103通過前の再生空気と冷媒の過熱蒸気が熱交
換関係をなし、かつ凝縮器220において高圧の冷媒の
湿り蒸気が顕熱熱交換器230通過前の再生空気と熱交
換関係をなすサイクルは第1の実施例と同様である。
FIG. 5 shows a second embodiment of the present invention. In this embodiment, the parts of the vapor compression heat pump include a compressor 260, a low heat source heat exchanger (evaporator) 240, a first high heat source heat exchanger (sensible heat exchanger) 230, and a second high heat source. In addition to the vapor compression refrigeration cycle including the heat exchanger (condenser) 220 and the expansion valve 250 as components, the refrigerant heat exchange in the path from the low heat source heat exchanger (evaporator) 240 to the compressor 260 in this cycle. 270 is provided, and the refrigerant heat exchanger 270 is provided.
Pressure refrigerant and sensible heat exchanger 2 before suction
This is the same as the first embodiment in which the cycle is configured such that the high-pressure wet steam flowing to the condenser 220 flows after heat exchange with the high-pressure wet steam that has exited 30. In the present embodiment, furthermore, The high-pressure refrigerant vapor that has exited the sensible heat exchanger 230 branches off the refrigerant path in the gas-liquid separator 280, and one side from which the gas phase is taken out is connected to the refrigerant heat exchanger 2 via the path 203.
A throttle 285 is provided in the middle of a path for extracting the liquid phase of the gas-liquid separator 280, and a path 205 passing through the throttle 285 and a path 204 of the high-pressure refrigerant passing through the refrigerant heat exchanger 270 are merged. After that, it was configured to guide to the condenser 220. In the evaporator 240, the wet steam of the low-pressure refrigerant has a heat exchange relationship with the processing air after passing through the desiccant 103, and in the sensible heat exchanger 230, the reheated air and the superheated vapor of the refrigerant before passing through the desiccant 103 exchange heat. The cycle in which the wet steam of the high-pressure refrigerant has a heat exchange relationship with the regenerated air before passing through the sensible heat exchanger 230 in the condenser 220 is the same as in the first embodiment.

【0032】空気側サイクルの構成は第1の実施例と差
異がないため、ここでは蒸気圧縮式冷凍サイクル部分の
サイクルの前記実施例との相違を説明する。本実施例で
は、顕熱熱交換器230を出た高圧の冷媒蒸気(ほぼ乾
き飽和状態にある)を気液分離器280で冷媒経路を分
岐して、一方の気相を取り出す側を冷媒熱交換器270
に導いて、ここで圧縮機吸い込み前の乾き飽和状態の低
圧冷媒と熱交換して凝縮させる。冷媒熱交換器270で
凝縮する冷媒の量は、被加熱側の低圧冷媒の比熱が小さ
く、顕熱変化であるため、凝縮温度以上には温度上昇で
きず、従って移動熱量が限定されるため全量が凝縮する
わけではなく、圧縮機吐出冷媒流量の20%未満であ
る。そのため冷媒熱交換器270に導く高圧冷媒の量は
少なくて良く、この系統の配管口径は細くすることがで
きる。
Since the configuration of the air-side cycle is not different from that of the first embodiment, here, the difference of the cycle of the vapor compression refrigeration cycle from that of the first embodiment will be described. In this embodiment, the high-pressure refrigerant vapor (which is almost dry and saturated) exiting the sensible heat exchanger 230 is branched into a refrigerant path by the gas-liquid separator 280, and one of the gaseous phases is taken out by the refrigerant heat. Exchanger 270
Where it is condensed by exchanging heat with a dry and saturated low-pressure refrigerant before suctioning the compressor. The amount of the refrigerant condensed in the refrigerant heat exchanger 270 is small because the specific heat of the low-pressure refrigerant on the heated side is small and a sensible heat change, so that the temperature cannot rise above the condensing temperature. Is not condensed and is less than 20% of the compressor discharge refrigerant flow rate. Therefore, the amount of the high-pressure refrigerant guided to the refrigerant heat exchanger 270 may be small, and the pipe diameter of this system can be reduced.

【0033】一方、気液分離器280の液相を取り出す
経路には圧縮機吐出冷媒流量の80%程度を冷媒熱交換
器270をバイパスして直接凝縮器220に冷媒を導く
ことができる。デシカント空調機の構成上、顕熱熱交換
器230と凝縮器220は近くに設置することが望まし
いため、このように圧縮機吐出冷媒流量の80%程度を
冷媒熱交換器270をバイパスして直接凝縮器220に
冷媒を導くことができることは配管コストを削減できる
効果がある。なお、バイパス経路205に抵抗が無い
と、冷媒の殆どが冷媒熱交換器203をバイパスしてし
まうため、絞り285を設けて、バイパス流量比を調節
する必要があるが、このバイパス量の調整は厳密なもの
ではなく、多めの冷媒が冷媒熱交換器270を流動する
ように設定しても、前記のごとく移動熱量に限界がある
ため作動に不具合を生じることはない。
On the other hand, about 80% of the flow rate of the refrigerant discharged from the compressor can be introduced directly to the condenser 220 by bypassing the refrigerant heat exchanger 270 in the path for taking out the liquid phase of the gas-liquid separator 280. Since it is desirable that the sensible heat exchanger 230 and the condenser 220 be installed close to each other due to the configuration of the desiccant air conditioner, about 80% of the flow rate of the refrigerant discharged from the compressor is directly bypassed to the refrigerant heat exchanger 270 in this way. The ability to guide the refrigerant to the condenser 220 has the effect of reducing piping costs. If there is no resistance in the bypass path 205, most of the refrigerant bypasses the refrigerant heat exchanger 203. Therefore, it is necessary to provide a throttle 285 to adjust the bypass flow rate ratio. Even if it is not strict and a large amount of refrigerant is set to flow through the refrigerant heat exchanger 270, there is no problem in operation because the amount of heat transferred is limited as described above.

【0034】このように、ヒートポンプの圧縮機吸込み
冷媒の過熱度を高めるために用いる乾き飽和状態の冷媒
蒸気のみを気液分離器で分離して取り出すことにより、
冷媒熱交換器を流動する高圧冷媒の流量が少なくて済
み、該冷媒系統の配管口径および冷媒熱交換器を小さく
構成することができる。また気液分離器の液相を取り出
す経路の途中に絞りを設けることによって、気相の冷媒
が流れる冷媒熱交換器の高圧冷媒経路の前後の差圧を確
保できるため、冷媒熱交換器を顕熱交換器230および
凝縮器220から離れた場所に設置しても、確実に乾き
飽和状態の高圧冷媒蒸気を冷媒熱交換器270に流動さ
せることができる。
As described above, only the dry saturated refrigerant vapor used for increasing the degree of superheat of the refrigerant sucked into the compressor of the heat pump is separated and taken out by the gas-liquid separator.
The flow rate of the high-pressure refrigerant flowing through the refrigerant heat exchanger can be reduced, and the piping diameter of the refrigerant system and the refrigerant heat exchanger can be reduced. Also, by providing a throttle in the middle of the path for extracting the liquid phase of the gas-liquid separator, a differential pressure across the high-pressure refrigerant path of the refrigerant heat exchanger through which the gas-phase refrigerant flows can be secured. Even if the high-pressure refrigerant vapor is in a dry and saturated state, it can flow to the refrigerant heat exchanger 270 without fail even if it is installed at a location away from the heat exchanger 230 and the condenser 220.

【0035】なお、一般に市販されている冷媒圧縮機を
本発明の圧縮機260に用いる場合、市販されている冷
媒圧縮機は駆動モータを圧縮機の吸い込み冷媒で冷却す
る構造のものが多いため、該モータが過熱することが懸
念されるが、その対策として、モータのまわりにジャケ
ットを形成して低圧の飽和蒸気を流動させるように構成
したり、或いは冷媒液を噴射して冷却するよう構成して
も差し支えない。
When a commercially available refrigerant compressor is used for the compressor 260 of the present invention, many commercially available refrigerant compressors have a structure in which a drive motor is cooled by the suction refrigerant of the compressor. There is a concern that the motor may overheat, but as a countermeasure, a jacket may be formed around the motor to allow low-pressure saturated steam to flow, or a coolant may be injected to cool the motor. No problem.

【0036】[0036]

【発明の効果】以上説明したように本発明によれば、ヒ
ートポンプの圧縮後の過熱冷媒で再生空気を加熱した後
の冷媒蒸気で圧縮機吸込み冷媒の過熱度を高めてから圧
縮して圧縮機出口の過熱度を高めることで、高圧冷媒か
ら再生空気に伝達する熱量に占める潜熱(凝縮分)と顕
熱(過熱分)の割合を変化させ再生空気の温度上昇に寄
与できる顕熱の割合を増加させることによって、デシカ
ント再生温度を高くすることができるため、デシカント
の吸湿能力の増加を可能にして、除湿能力に優れ、コン
パクトで、かつ省エネルギな空調システムを提供するこ
とができる。
As described above, according to the present invention, the superheated refrigerant is heated by the superheated refrigerant after compression by the heat pump, the refrigerant vapor is heated by the refrigerant vapor, the superheat of the refrigerant sucked into the compressor is increased, and then the compressor is compressed. By increasing the degree of superheat at the outlet, the ratio of the latent heat (condensed portion) and the sensible heat (superheated portion) in the amount of heat transferred from the high-pressure refrigerant to the regenerating air is changed, and the ratio of the sensible heat that can contribute to the temperature rise of the regenerating air is increased. By increasing the desiccant regeneration temperature, the desiccant regeneration temperature can be increased, so that the desiccant's moisture absorption capacity can be increased, and a compact, energy-saving air-conditioning system with excellent dehumidification capacity can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る空調システムの第1の実施例の基
本構成を示す説明図である。
FIG. 1 is an explanatory diagram showing a basic configuration of a first embodiment of an air conditioning system according to the present invention.

【図2】図1の実施例の冷媒のサイクルを示すモリエル
線図である。
FIG. 2 is a Mollier diagram showing a refrigerant cycle of the embodiment of FIG.

【図3】図1の空調機の空気のデシカント空調サイクル
を湿り空気線図で示す説明図である。
FIG. 3 is an explanatory diagram showing a desiccant air-conditioning cycle of air of the air conditioner of FIG. 1 in a psychrometric chart.

【図4】図1の実施例の再生空気および加熱源となるヒ
ートポンプの高圧冷媒のエンタルピ(熱量)変化量と温
度との関係を示す図である。
FIG. 4 is a diagram showing the relationship between the amount of change in enthalpy (calorific value) of the high-pressure refrigerant of the heat pump serving as the heating source and the regeneration air of the embodiment of FIG. 1 and the temperature.

【図5】本発明に係る空調システムの第2の実施例の基
本構成を示す説明図である。
FIG. 5 is an explanatory diagram showing a basic configuration of a second embodiment of the air conditioning system according to the present invention.

【図6】従来の空調システムの構成を示す説明図であ
る。
FIG. 6 is an explanatory diagram showing a configuration of a conventional air conditioning system.

【図7】他の従来の空調システムの基本構成を示す説明
図である。
FIG. 7 is an explanatory diagram showing a basic configuration of another conventional air conditioning system.

【図8】従来のデシカント空調の空気のデシカント空調
サイクルを湿り空気線図で示す説明図である。
FIG. 8 is an explanatory diagram showing a desiccant air-conditioning cycle of air in a conventional desiccant air-conditioning in a psychrometric chart.

【図9】図8の実施例の冷媒のサイクルを示すモリエル
線図である。
FIG. 9 is a Mollier chart showing a refrigerant cycle of the embodiment of FIG. 8;

【図10】従来のデシカント空調の冷媒および再生空気
の温度変化とエンタルピ変化の関係を示す図である。
FIG. 10 is a diagram showing a relationship between a change in temperature and a change in enthalpy of a refrigerant and regeneration air in a conventional desiccant air conditioner.

【符号の説明】[Explanation of symbols]

200 ヒートポンプ 102,140 送風機 103 デシカントロータ 104 全熱交換器 220 第2の高熱源熱交換器 230 第1の高熱源熱交換器 240 低熱源熱交換器 260 圧縮機 A 処理空気経路 B 再生空気経路 200 heat pump 102,140 blower 103 desiccant rotor 104 total heat exchanger 220 second high heat source heat exchanger 230 first high heat source heat exchanger 240 low heat source heat exchanger 260 compressor A process air path B regenerative air path

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F24F 3/00 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 6 , DB name) F24F 3/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 処理空気中の水分を吸着するデシカント
と、圧縮機を有し、処理空気を低熱源、再生空気を高熱
源として動作して再生空気にデシカント再生用の熱を供
給するヒートポンプとを備えた空調システムにおいて、
前記ヒートポンプの圧縮機に流入する冷媒を圧縮後の冷
媒の飽和蒸気で加熱することによって、圧縮後の冷媒の
温度を高めたのち再生空気と熱交換させることを特徴と
する空調システム。
1. A heat pump having a desiccant for adsorbing moisture in processing air and a compressor, operating as a low heat source for the processing air and a high heat source for the regeneration air, and supplying heat for desiccant regeneration to the regeneration air. In an air conditioning system with
An air conditioning system characterized in that a refrigerant flowing into a compressor of the heat pump is heated with saturated vapor of the compressed refrigerant, thereby increasing the temperature of the compressed refrigerant and then performing heat exchange with regenerated air.
【請求項2】 デシカントを通過する処理空気および再
生空気の流路区画を少なくとも処理空気の水分吸着工程
を行う第1の区画と、再生空気の再生工程を行う第2の
区画とに分割し、デシカントが第1の区画、第2の区画
を経て第1の区画に戻るよう構成し、かつヒートポンプ
の高熱源熱交換器を少なくとも第1の高熱源熱交換器と
第2の高熱源熱交換器とを含んで構成し、圧縮機から吐
出された冷媒が第1の高熱源熱交換器から第2の高熱源
熱交換器の順に流れるよう構成し、かつ再生空気は第2
の高熱源熱交換器から第1の高熱源熱交換器の順に流れ
てからデシカントの第2の区画を通過するよう構成し、
かつヒートポンプの低熱源熱交換器と圧縮機を結ぶ冷媒
の低圧経路中に冷媒熱交換器を設け、該冷媒熱交換器の
もう一方の媒体経路にヒートポンプの第1の高熱源熱交
換器と第2の高熱源熱交換器を結ぶ冷媒の高圧経路中の
冷媒を導いて熱交換させるように構成されたことを特徴
とする請求項1に記載の空調システム。
2. A flow path section for the processing air and the regeneration air passing through the desiccant is divided into at least a first section for performing a process for adsorbing moisture of the processing air and a second section for performing a regeneration step for the regeneration air. The desiccant is configured to return to the first section via the first section, the second section, and the high heat source heat exchanger of the heat pump includes at least a first high heat source heat exchanger.
And a second high heat source heat exchanger, wherein the refrigerant discharged from the compressor flows from the first high heat source heat exchanger to the second high heat source heat exchanger in order, and the regeneration air Is the second
Flowing from the high heat source heat exchanger to the first high heat source heat exchanger in order, and then passing through the second section of the desiccant.
A refrigerant heat exchanger is provided in a low pressure path of the refrigerant connecting the low heat source heat exchanger of the heat pump and the compressor, and a first high heat source heat exchanger of the heat pump and a second heat source heat exchanger are provided in another medium path of the refrigerant heat exchanger. The air conditioning system according to claim 1, wherein the air conditioning system is configured to guide the refrigerant in a high pressure path of the refrigerant that connects the second heat source heat exchangers to perform heat exchange.
【請求項3】 ヒートポンプの第1の高熱源熱交換器と
第2の高熱源熱交換器を結ぶ冷媒の高圧経路中に気液分
離器を設け、該気液分離器で気相の冷媒を分離し、前記
冷媒熱交換器に導き凝縮させることによって圧縮機に流
入する冷媒を加熱することを特徴とする請求項2に記載
の空調システム。
3. A gas-liquid separator is provided in a high-pressure path of a refrigerant connecting the first high heat source heat exchanger and the second high heat source heat exchanger of the heat pump, and the gas-liquid separator is used for the gas-liquid separator. The air conditioning system according to claim 2 , wherein the refrigerant flowing into the compressor is heated by being separated, guided to the refrigerant heat exchanger, and condensed.
【請求項4】 気液分離器の気相を取り出す高圧冷媒の
経路を冷媒熱交換器に導くとともに、前記気液分離器の
液相を取り出す経路の途中に絞りを設け、該絞りを経た
経路と前記冷媒熱交換器を経た高圧冷媒の経路とを合流
させたのち、ヒートポンプの第2の高熱源熱交換器に導
くよう構成したことを特徴とする請求項に記載の空調
システム。
4. A path for a high-pressure refrigerant for extracting a gas phase of a gas-liquid separator to a refrigerant heat exchanger, and a throttle provided in a middle of a path for extracting a liquid phase of the gas-liquid separator, and a path passing through the throttle. 4. The air conditioning system according to claim 3 , wherein the air-conditioning system is configured to join the high-pressure refrigerant through the refrigerant heat exchanger and then to a second high heat source heat exchanger of the heat pump.
JP9024297A 1997-03-25 1997-03-25 Air conditioning system Expired - Fee Related JP2968230B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP9024297A JP2968230B2 (en) 1997-03-25 1997-03-25 Air conditioning system
MYPI98001295A MY126406A (en) 1997-03-25 1998-03-25 Air conditioning system
CN98803652A CN1123738C (en) 1997-03-25 1998-03-25 Air conditioning system
US09/381,802 US6199392B1 (en) 1997-03-25 1998-03-25 Air conditioning system
CNB031545580A CN1236258C (en) 1997-03-25 1998-03-25 Air-conditioning system
PCT/JP1998/001311 WO1998043024A1 (en) 1997-03-25 1998-03-25 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9024297A JP2968230B2 (en) 1997-03-25 1997-03-25 Air conditioning system

Publications (2)

Publication Number Publication Date
JPH10267577A JPH10267577A (en) 1998-10-09
JP2968230B2 true JP2968230B2 (en) 1999-10-25

Family

ID=13993038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9024297A Expired - Fee Related JP2968230B2 (en) 1997-03-25 1997-03-25 Air conditioning system

Country Status (1)

Country Link
JP (1) JP2968230B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4075950B2 (en) * 2006-08-02 2008-04-16 ダイキン工業株式会社 Air conditioner

Also Published As

Publication number Publication date
JPH10267577A (en) 1998-10-09

Similar Documents

Publication Publication Date Title
US6199392B1 (en) Air conditioning system
JP2994303B2 (en) Air conditioning system and operating method thereof
JP5068235B2 (en) Refrigeration air conditioner
JP2968231B2 (en) Air conditioning system
US5761923A (en) Air conditioning system
JP2968232B2 (en) Air conditioning system and operating method thereof
JP2968241B2 (en) Dehumidifying air conditioning system and operating method thereof
JP4835688B2 (en) Air conditioner, air conditioning system
US20030074913A1 (en) Air conditioner
JP3585308B2 (en) Desiccant air conditioner
JP2001241693A (en) Air conditioner
JP4948513B2 (en) Air conditioner, its operating method and air conditioning system
CN107726480B (en) Semi-decoupling type graded dehumidification and cooling dehumidification heat pump system and method
JP2000257907A (en) Dehumidifying apparatus
JPH1026369A (en) Air conditioning system and control method
JP2948776B2 (en) Air conditioning system
JPH10288487A (en) Air-conditioning system and its operating method
JP2968230B2 (en) Air conditioning system
JP2000346396A (en) Method and device for dehumidification
JP3765932B2 (en) Dehumidification air conditioner and dehumidification air conditioning system
JP7366874B2 (en) Dehumidifier and dehumidification system equipped with it
CN218328385U (en) Air conditioner
CN115013889B (en) Environment-independent rotating wheel dehumidification regeneration system
JPH09178289A (en) Desiccant air-conditioner
JP3765930B2 (en) Dehumidification air conditioner and dehumidification air conditioning system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990727

LAPS Cancellation because of no payment of annual fees