JP2948776B2 - Air conditioning system - Google Patents

Air conditioning system

Info

Publication number
JP2948776B2
JP2948776B2 JP9024197A JP9024197A JP2948776B2 JP 2948776 B2 JP2948776 B2 JP 2948776B2 JP 9024197 A JP9024197 A JP 9024197A JP 9024197 A JP9024197 A JP 9024197A JP 2948776 B2 JP2948776 B2 JP 2948776B2
Authority
JP
Japan
Prior art keywords
refrigerant
air
heat exchanger
heat
desiccant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9024197A
Other languages
Japanese (ja)
Other versions
JPH10267576A (en
Inventor
健作 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP9024197A priority Critical patent/JP2948776B2/en
Priority to MYPI98001295A priority patent/MY126406A/en
Priority to CN98803652A priority patent/CN1123738C/en
Priority to US09/381,802 priority patent/US6199392B1/en
Priority to CNB031545580A priority patent/CN1236258C/en
Priority to PCT/JP1998/001311 priority patent/WO1998043024A1/en
Publication of JPH10267576A publication Critical patent/JPH10267576A/en
Application granted granted Critical
Publication of JP2948776B2 publication Critical patent/JP2948776B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1028Rotary wheel combined with a spraying device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1088Rotary wheel comprising three flow rotor segments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空調システムに係
り、特にデシカントによる水分の吸着処理とヒートポン
プによるデシカントの再生処理を連続的に行えるように
した空調システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioning system, and more particularly to an air conditioning system capable of continuously performing a desiccant moisture adsorption process and a heat pump desiccant regeneration process.

【0002】[0002]

【従来の技術】図6は、USP4,430,864に開示
された従来技術であり、これは、処理空気経路Aと、再
生空気経路Bと、2つのデシカントベッド103A,1
03Bと、デシカントの再生及び処理空気の冷却を行う
ヒートポンプ200とを有している。このヒートポンプ
200は、2つのデシカントベッド103A,103B
に埋設された熱交換器220,240を高低熱源として
用いるもので、一方のデシカントベッドは処理空気を通
過させて吸着工程を行い、他方のデシカントは再生空気
を通過させて再生工程を行う。この空調処理が所定時間
行われた後、4方切り換え弁105,106を切り換え
て、再生及び処理空気を逆のデシカントベッドに流して
逆の工程を行う。
FIG. 6 shows a prior art disclosed in US Pat. No. 4,430,864, which includes a processing air path A, a regeneration air path B, and two desiccant beds 103A, 1A.
03B and a heat pump 200 for regenerating the desiccant and cooling the processing air. This heat pump 200 has two desiccant beds 103A and 103B.
The heat exchangers 220 and 240 buried in the air are used as high and low heat sources. One desiccant bed performs an adsorption step by passing process air, and the other desiccant performs a regeneration step by passing regeneration air. After the air-conditioning process has been performed for a predetermined time, the four-way switching valves 105 and 106 are switched to flow the regeneration and processing air to the opposite desiccant bed to perform the opposite process.

【0003】[0003]

【発明が解決しようとする課題】上記のような従来の技
術においては、ヒートポンプ200の高低の熱源と各デ
シカントがそれぞれ一体化されていたために、冷房効果
ΔQに相当する熱量がヒートポンプ(冷凍機)にそのま
ま負荷される。すなわち、ヒートポンプ(冷凍機)の能
力以上の効果が出せない。したがって、装置を複雑にし
ただけの効果が得られない。
In the prior art as described above, since the high and low heat sources of the heat pump 200 and the respective desiccants are integrated with each other, the amount of heat corresponding to the cooling effect ΔQ is equal to the heat pump (refrigerator). Is loaded as is. That is, the effect beyond the capacity of the heat pump (refrigerator) cannot be obtained. Therefore, it is not possible to obtain the effect of simply increasing the complexity of the device.

【0004】そこで、このような問題点を解決するため
に、図7に示すように、再生空気経路Bにヒートポンプ
の高温熱源220を配して再生空気を加熱し、処理空気
経路Aにヒートポンプの低温熱源240を配して処理空
気を冷却するとともに、デシカント103通過後の処理
空気とデシカント103通過前の再生空気との間で顕熱
交換を行う熱交換器104を設けることが考えられる。
ここでは、デシカント103が、処理空気経路Aと再生
空気経路Bの双方にまたがって回転するデシカントロー
タを用いている。
In order to solve such a problem, as shown in FIG. 7, a high-temperature heat source 220 of a heat pump is disposed in a regeneration air path B to heat regeneration air, and a heat pump of a heat pump is disposed in a processing air path A. It is conceivable to arrange the low-temperature heat source 240 to cool the processing air, and to provide the heat exchanger 104 for performing sensible heat exchange between the processing air after passing through the desiccant 103 and the regeneration air before passing through the desiccant 103.
Here, the desiccant 103 uses a desiccant rotor that rotates over both the processing air path A and the regeneration air path B.

【0005】これにより、図8の湿り空気線図に示すよ
うに、ヒートポンプによる冷却効果の他に、処理空気と
再生空気の間の顕熱交換による冷却効果を併せた冷却効
果(ΔQ)を得ることができるので、コンパクトな構成
で図6の空調システムより高い効率を得ることができ
る。
Thus, as shown in the psychrometric chart of FIG. 8, in addition to the cooling effect by the heat pump, a cooling effect (ΔQ) combining the cooling effect by sensible heat exchange between the processing air and the regeneration air is obtained. Therefore, higher efficiency than the air conditioning system of FIG. 6 can be obtained with a compact configuration.

【0006】このような用途に用いるヒートポンプに
は、デシカントの再生に必要な高熱源温度として65℃
以上の温度が、処理空気の冷却に必要な低熱源温度とし
て10℃程度の温度が必要となる。このような高熱源温
度と低熱源温度を持った蒸気圧縮式冷凍サイクルを冷媒
HFC134aのモリエル線図上に描くと図9のように
なる。図9に示すように、ヒートポンプの昇温幅は55
℃となり、圧力比や圧縮動力は冷媒HCFC22を用い
た従来の空調(エアコン)用ヒートポンプに近く、従っ
て冷媒HCFC22用の圧縮機を用いてデシカント空調
用のヒートポンプを構成できる可能性があり、しかも圧
縮機出口の過熱蒸気(図中80℃)の顕熱を利用すれば
再生空気を凝縮温度よりも高温に加熱できる可能性もあ
る。
A heat pump used for such an application has a high heat source temperature of 65 ° C. required for desiccant regeneration.
The above temperature requires a temperature of about 10 ° C. as a low heat source temperature required for cooling the processing air. FIG. 9 illustrates a vapor compression refrigeration cycle having such a high heat source temperature and a low heat source temperature on a Mollier diagram of the refrigerant HFC134a. As shown in FIG. 9, the temperature rise width of the heat pump is 55
° C, and the pressure ratio and compression power are close to those of a conventional air conditioner (air conditioner) heat pump using refrigerant HCFC22. Therefore, there is a possibility that a heat pump for desiccant air conditioning can be configured using a compressor for refrigerant HCFC22. If the sensible heat of the superheated steam (80 ° C. in the figure) at the outlet of the machine is used, there is a possibility that the regeneration air can be heated to a temperature higher than the condensation temperature.

【0007】しかしながら、この構成の空調システムに
おいても、図7に示すようにヒートポンプの高熱源熱交
換器に再生空気の全量を通過させて熱交換させるとする
と、再生空気は通常少なくとも40℃から60℃程度ま
で20℃の昇温幅が必要となるが、ヒートポンプ側の加
熱能力のうち冷媒の過熱蒸気で加熱できる熱量は図9に
示すように全体の発熱の12%を占めるに過ぎないた
め、20℃×0.12=2.4℃しか昇温できないことに
なり、従って圧縮機出口の過熱蒸気の顕熱は再生空気の
昇温には殆ど寄与せず、結果的に凝縮温度よりも低い温
度の再生空気でデシカントを再生せざるを得ない。
However, even in the air conditioning system having this configuration, if the entire amount of the regeneration air is passed through the high heat source heat exchanger of the heat pump for heat exchange as shown in FIG. Although it is necessary to increase the temperature by 20 ° C. up to about 0 ° C., the amount of heat that can be heated by the superheated steam of the refrigerant among the heating capacity on the heat pump side occupies only 12% of the entire heat generation as shown in FIG. It means that the temperature can be raised only by 20 ° C. × 0.12 = 2.4 ° C., so that the sensible heat of the superheated steam at the compressor outlet hardly contributes to the temperature rise of the regeneration air, and as a result, is lower than the condensation temperature The desiccant must be regenerated with regenerated air at the temperature.

【0008】一方、デシカントにシリカゲルのような材
料を用いる場合、再生温度としては90℃までの温度範
囲では温度が高いほど再生後のデシカントの吸湿能力が
高くなる傾向があるため、再生空気の温度は高いほどデ
シカント空調機の潜熱処理能力が高くなり、冷房能力が
向上する。そのため、もしこのような目的で再生温度を
高めるため凝縮温度を80℃程度まで高くしようとする
と、図9の点線で示すようなサイクルとなり冷媒の凝縮
圧力が異常に高く(26.8kg/cm2)なり、もはや冷媒
HCFC22用の圧縮機を用いてデシカント空調用のヒ
ートポンプを構成できなくなるとともに、圧縮動力が増
加して成績係数も低下してしまう。
On the other hand, when a material such as silica gel is used for the desiccant, in the temperature range up to 90 ° C., the higher the temperature, the higher the desiccant's ability to absorb moisture after regeneration tends to be. The higher the temperature, the higher the latent heat treatment capacity of the desiccant air conditioner and the better the cooling capacity. Therefore, if the condensing temperature is raised to about 80 ° C. in order to increase the regeneration temperature for such a purpose, a cycle as shown by a dotted line in FIG. 9 occurs, and the condensing pressure of the refrigerant is abnormally high (26.8 kg / cm 2). ), A heat pump for desiccant air-conditioning can no longer be configured using a compressor for the refrigerant HCFC22, and the compression power increases to lower the coefficient of performance.

【0009】本発明は前述した点に鑑みてなされたもの
で、デシカントによる水分の吸着処理とヒートポンプに
よるデシカントの再生処理を連続的に行えるようにした
空調システムのヒートポンプの高熱源熱交換器を2つの
高熱源熱交換器で構成し、圧縮機から吐出された冷媒が
第1の高熱源熱交換器から第2の高熱源熱交換器の順に
流れるよう構成し、かつ再生空気は第2の高熱源熱交換
器を通過したのち分岐して、一部がまずデシカントの第
1の再生を行うとともに、分岐した残りの再生空気が前
記ヒートポンプの第1の高熱源熱交換器を経た後、デシ
カントの第2の再生を行うようにすることによって、ヒ
ートポンプの圧縮後の冷媒の過熱蒸気の顕熱を利用して
デシカントの再生工程の最後の再生温度を高め、デシカ
ントの吸湿能力の増加を可能にして、除湿能力に優れ、
かつ省エネルギな空調システムを提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has a high heat source heat exchanger for a heat pump of an air conditioning system capable of continuously performing a desiccant moisture adsorption process and a desiccant regeneration process using a heat pump. Two high heat source heat exchangers, the refrigerant discharged from the compressor is configured to flow from the first high heat source heat exchanger to the second high heat source heat exchanger in order, and the regenerated air is supplied to the second high heat source heat exchanger. After passing through the heat source heat exchanger, it is branched and a part of the first regenerated desiccant is regenerated, and the remaining branched regenerated air passes through the first high heat source heat exchanger of the heat pump. By performing the second regeneration, the last regeneration temperature in the desiccant regeneration step is increased by utilizing the sensible heat of the superheated vapor of the refrigerant after compression of the heat pump, and the moisture absorption capacity of the desiccant is reduced. To allow pressurized, excellent dehumidification capacity,
Another object of the present invention is to provide an energy-saving air conditioning system.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
になされたもので、請求項1に記載の発明は、処理空気
中の水分を吸着するデシカントと、圧縮機を有し、処理
空気を低熱源、再生空気を高熱源として動作して再生空
気にデシカント再生用の熱を供給するヒートポンプとを
備えた空調システムにおいて、再生空気の一部を圧縮機
で圧縮した冷媒の過熱蒸気で加熱してデシカントを再生
することを特徴とする空調システムである。
Means for Solving the Problems The present invention has been made to achieve the above object, and the invention according to claim 1 has a desiccant that adsorbs moisture in the processing air, a compressor, and the processing air is provided. In an air conditioning system equipped with a low heat source and a heat pump that operates as a high heat source and supplies heat for desiccant regeneration to the regeneration air, a portion of the regeneration air is heated by superheated vapor of a refrigerant compressed by a compressor. This is an air conditioning system characterized by regenerating desiccant.

【0011】このように、再生空気の一部を冷媒の過熱
蒸気で加熱することで、再生空気の熱容量が小さくな
り、顕熱変化を大きく取れるため、過熱蒸気の持つ高い
温度ではあるが少量の熱でも再生空気温度を高めデシカ
ントの吸湿能力を増加させることができる。
As described above, by heating a part of the regenerated air with the superheated steam of the refrigerant, the heat capacity of the regenerated air is reduced and a large change in sensible heat can be obtained. Heat can also increase the temperature of the regeneration air and increase the desiccant's ability to absorb moisture.

【0012】請求項2に記載の発明は、デシカントを通
過する処理空気および再生空気の流路区画を少なくとも
処理空気の水分吸着工程を行う第1の区画と、再生空気
の第1の再生工程を行う第2の区画と、再生空気の第2
の再生工程を行う第3の区画とに分割し、デシカントが
第1の区画、第2の区画、第3の区画を経て第1の区画
に戻るよう構成し、かつ前記ヒートポンプの高熱源熱交
換器を少なくとも第1の高熱源熱交換器と第2の高熱源
熱交換器とを含んで少なくとも2つの熱交換器で構成
し、圧縮機から吐出された冷媒が第1の高熱源熱交換器
から第2の高熱源熱交換器の順に流れるよう構成し、か
つ再生空気は第2の高熱源熱交換器を通過したのち分岐
して、一部が前記第2の区画を通過し、分岐した残りの
再生空気は前記ヒートポンプの第1の高熱源熱交換器を
経た後、前記第3の区画を通過するよう構成することに
よって、前記分岐した残りの再生空気を冷媒の過熱蒸気
で加熱してデシカントを再生することを特徴とする請求
項1に記載の空調システムである。
According to a second aspect of the present invention, a flow path section for the processing air and the regeneration air passing through the desiccant is provided with a first section for performing at least a moisture adsorption step of the processing air and a first regeneration step for the regeneration air. A second compartment to perform and a second
And a third section in which the desiccant is returned to the first section via the first section, the second section, and the third section, and a high heat source heat exchange of the heat pump is performed. At least a first high heat source heat exchanger and a second high heat source
A heat exchanger and at least two heat exchangers, the refrigerant discharged from the compressor is configured to flow from the first high heat source heat exchanger to the second high heat source heat exchanger, and regeneration air branches after passing through the second high heat source heat exchanger, a portion passes through the second compartment, the remaining regeneration air that has branched the first high heat source heat exchanger of the heat pump The air-conditioning system according to claim 1, wherein after passing through the third section, the remaining regenerated air branched is heated with superheated steam of a refrigerant to regenerate the desiccant. It is.

【0013】このように、吸湿工程と再生工程を繰り返
すデシカントの工程のうち再生工程を2つに分割し、低
温の再生空気で第1の再生をした後、冷媒の過熱蒸気で
加熱した高温の再生空気で第2の再生を行うことによっ
て段階的にデシカントの再生を行いデシカントの吸湿能
力を増加させることができる。
As described above, of the desiccant process in which the moisture absorption process and the regeneration process are repeated, the regeneration process is divided into two, the first regeneration is performed with low-temperature regeneration air, and then the high-temperature regeneration is performed with the superheated steam of the refrigerant. By performing the second regeneration with the regeneration air, the desiccant is regenerated in a stepwise manner, and the desiccant's moisture absorbing ability can be increased.

【0014】請求項3に記載の発明は、デシカントがロ
ータ形状をしており、デシカントが回転することによっ
て第1の区画、第2の区画、第3の区画を経て第1の区
画に戻るよう構成したことを特徴とする請求項2に記載
の空調システムである。
According to a third aspect of the present invention, the desiccant has a rotor shape, and the desiccant rotates to return to the first section through the first section, the second section, and the third section. The air conditioning system according to claim 2, wherein the air conditioning system is configured.

【0015】このように、デシカントをロータ形状とし
デシカントが回転するようにしたことによってデシカン
トによる水分の吸着処理とヒートポンプの冷媒の過熱蒸
気を用いた加熱によるデシカントの再生処理を連続的に
行えるようにすることができる。
As described above, the desiccant is formed into a rotor shape and the desiccant is rotated so that the desiccant can be continuously subjected to moisture adsorption processing and desiccant regeneration processing by heating the superheated steam of the heat pump refrigerant. can do.

【0016】請求項4に記載の発明は、ヒートポンプの
圧縮機に流入する冷媒を圧縮後の冷媒の飽和蒸気で加熱
することによって、圧縮後の冷媒の温度を高くすること
を特徴とする請求項1乃至3のいずれかに記載の空調シ
ステムである。
According to a fourth aspect of the present invention, the temperature of the compressed refrigerant is increased by heating the refrigerant flowing into the compressor of the heat pump with the saturated vapor of the compressed refrigerant. An air conditioning system according to any one of 1 to 3.

【0017】このように、ヒートポンプの圧縮機吸込み
冷媒の過熱度を高めてから圧縮することにより圧縮機出
口の過熱度を高めるとともに、凝縮熱の一部を冷媒の過
熱度を増加させるために用いることによって、高圧冷媒
から再生空気に伝達する熱量に占める潜熱(凝縮分)と
顕熱(過熱分)の割合を変化させ再生空気の温度上昇に
寄与できる顕熱の割合を増加させることによって、再生
空気の温度を高くすることができ、デシカントの吸湿能
力を増加させることができる。
As described above, the superheat degree of the refrigerant sucked into the compressor of the heat pump is increased and then compressed, so that the superheat degree at the compressor outlet is increased, and a part of the heat of condensation is used to increase the superheat degree of the refrigerant. By changing the ratio of the latent heat (condensed portion) and the sensible heat (superheated portion) to the amount of heat transferred from the high-pressure refrigerant to the regeneration air, the ratio of the sensible heat that can contribute to the temperature rise of the regeneration air is increased. The air temperature can be increased, and the desiccant's ability to absorb moisture can be increased.

【0018】請求項5に記載の発明は、ヒートポンプの
第1の高熱源熱交換器と第2の高熱源熱交換器を結ぶ冷
媒経路中の冷媒と圧縮機に流入する冷媒とを熱交換させ
ることによって圧縮機に流入する冷媒を加熱することを
特徴とする請求項4に記載の空調システムである。
According to a fifth aspect of the present invention, the refrigerant in the refrigerant path connecting the first high heat source heat exchanger and the second high heat source heat exchanger of the heat pump exchanges heat with the refrigerant flowing into the compressor. The air conditioning system according to claim 4, wherein the refrigerant flowing into the compressor is heated by the heating.

【0019】このように、ヒートポンプの第1の高熱源
熱交換器において圧縮機出口の過熱冷媒で再生空気を加
熱し顕熱分を除去した後、冷媒熱交換器において飽和蒸
気の凝縮潜熱で圧縮機吸込み冷媒の過熱度を高めてから
圧縮することにより圧縮機出口の過熱度を高めるととも
に、凝縮熱の一部を冷媒の過熱度を増加させるために用
いることによって、高圧冷媒から再生空気に伝達する熱
量に占める潜熱(凝縮分)と顕熱(過熱分)の割合を変
化させ再生空気の温度上昇に寄与できる顕熱の割合を増
加させることによって、再生空気の温度を高くすること
ができ、デシカントの吸湿能力を増加させることができ
る。
As described above, in the first heat source heat exchanger of the heat pump, the regenerated air is heated by the superheated refrigerant at the compressor outlet to remove the sensible heat, and then compressed by the latent heat of condensation of saturated steam in the refrigerant heat exchanger. The superheat at the compressor outlet is increased by increasing the superheat of the refrigerant sucked into the compressor before compression, and part of the heat of condensation is used to increase the superheat of the refrigerant, so that the refrigerant is transferred from the high-pressure refrigerant to the regeneration air. By changing the ratio of latent heat (condensed component) and sensible heat (superheated component) to the amount of heat generated and increasing the ratio of sensible heat that can contribute to the temperature rise of the regeneration air, the temperature of the regeneration air can be increased, The desiccant's ability to absorb moisture can be increased.

【0020】請求項6に記載の発明は、ヒートポンプの
低熱源熱交換器と圧縮機を結ぶ冷媒の低圧経路中に冷媒
熱交換器を設け、該冷媒熱交換器のもう一方の媒体経路
にヒートポンプの第1の高熱源熱交換器と第2の高熱源
熱交換器を結ぶ冷媒の高圧経路中の冷媒を導いて熱交換
させることによって圧縮機に流入する冷媒を加熱するこ
とを特徴とする請求項4又は5に記載の空調システムで
ある。
According to a sixth aspect of the present invention, a refrigerant heat exchanger is provided in a low pressure path of the refrigerant connecting the low heat source heat exchanger of the heat pump and the compressor, and a heat pump is provided in the other medium path of the refrigerant heat exchanger. The refrigerant flowing into the compressor is heated by guiding the refrigerant in the high pressure path of the refrigerant connecting the first high heat source heat exchanger and the second high heat source heat exchanger to perform heat exchange. An air conditioning system according to item 4 or 5.

【0021】このように、ヒートポンプの第1の高熱源
熱交換器において圧縮機出口の過熱冷媒で再生空気を加
熱し顕熱分を除去した後、冷媒熱交換器において飽和蒸
気の凝縮潜熱でヒートポンプの低熱源熱交換器を出た乾
き飽和状態の圧縮機吸込み冷媒の過熱度を高めてから圧
縮することにより圧縮機出口の過熱度を高めるととも
に、凝縮熱の一部を冷媒の過熱度を増加させるために用
いることによって、高圧冷媒から再生空気に伝達する熱
量に占める潜熱(凝縮分)と顕熱(過熱分)の割合を変
化させ再生空気の温度上昇に寄与できる顕熱の割合を増
加させることによって、再生空気の温度を高くすること
ができ、デシカントの吸湿能力を増加させることができ
る。
As described above, after the regeneration air is heated by the superheated refrigerant at the compressor outlet in the first heat source heat exchanger of the heat pump to remove the sensible heat, the heat pump is heated by the latent heat of condensation of the saturated vapor in the refrigerant heat exchanger. The superheat of the dry and saturated compressor suction refrigerant that has exited the low heat source heat exchanger is increased before being compressed, thereby increasing the superheat at the compressor outlet and increasing the superheat of the refrigerant as part of the condensation heat By changing the ratio of latent heat (condensed portion) and sensible heat (overheated portion) to the amount of heat transferred from the high-pressure refrigerant to the regeneration air, the ratio of sensible heat that can contribute to the temperature rise of the regeneration air is increased. As a result, the temperature of the regeneration air can be increased, and the desiccant's ability to absorb moisture can be increased.

【0022】請求項7に記載の発明は、ヒートポンプの
低熱源熱交換器と圧縮機を結ぶ冷媒の低圧経路中に冷媒
熱交換器を設け、かつヒートポンプの第1の高熱源熱交
換器と第2の高熱源熱交換器を結ぶ冷媒の高圧経路中に
気液分離器を設け、該気液分離器で気相の冷媒を分離
し、前記冷媒熱交換器に導き凝縮させることによって圧
縮機に流入する冷媒を加熱することを特徴とする請求項
4乃至6のいずれかに記載の空調システムである。
According to a seventh aspect of the present invention, a refrigerant heat exchanger is provided in a low pressure path of the refrigerant connecting the low heat source heat exchanger of the heat pump and the compressor, and the first high heat source heat exchanger of the heat pump is connected to the first heat source heat exchanger. A gas-liquid separator is provided in a high-pressure path of the refrigerant connecting the high heat source heat exchangers of No. 2 and the gas-liquid separator is separated by the gas-liquid separator, and guided to the refrigerant heat exchanger to be condensed. The air conditioning system according to any one of claims 4 to 6, wherein the inflowing refrigerant is heated.

【0023】このように、ヒートポンプの圧縮機吸込み
冷媒の過熱度を高めるために用いる乾き飽和状態の冷媒
蒸気のみを気液分離器で分離して取り出すことにより冷
媒熱交換器を流動する高圧冷媒の流量が少なくて済み、
該冷媒系統の配管口径および冷媒熱交換器を小さく構成
することができる。
As described above, only the dry saturated refrigerant vapor used for increasing the degree of superheat of the refrigerant sucked into the compressor of the heat pump is separated and taken out by the gas-liquid separator, so that the high-pressure refrigerant flowing through the refrigerant heat exchanger is removed. Low flow rate,
The pipe diameter of the refrigerant system and the refrigerant heat exchanger can be made small.

【0024】請求項8に記載の発明は、気液分離器の気
相を取り出す高圧冷媒の経路を冷媒熱交換器に導くとと
もに、前記気液分離器の液相を取り出す経路の途中に絞
りを設け、該絞りを経た経路と前記冷媒熱交換器を経た
高圧冷媒の経路とを合流させたのち、ヒートポンプの第
2の高熱源熱交換器に導くよう構成したことを特徴とす
る請求項7に記載の空調システムである。
According to the present invention, a path of the high-pressure refrigerant for extracting the gas phase of the gas-liquid separator is guided to the refrigerant heat exchanger, and a restriction is provided in the middle of the path for extracting the liquid phase of the gas-liquid separator. 8. The method according to claim 7, wherein a path passing through the throttle and a path of the high-pressure refrigerant passing through the refrigerant heat exchanger are merged and then guided to a second high heat source heat exchanger of the heat pump. It is an air conditioning system of description.

【0025】このように、気液分離器の液相を取り出す
経路の途中に絞りを設けることによって、気相の冷媒が
流れる冷媒熱交換器の高圧冷媒経路の前後の差圧を確保
できるため、冷媒熱交換器を第1の高熱源熱交換器およ
び第2の高熱源熱交換器から離れた場所に設置しても、
確実に乾き飽和状態の高圧冷媒蒸気を冷媒熱交換器に流
動させることができる。
As described above, by providing the throttle in the middle of the path for extracting the liquid phase of the gas-liquid separator, the differential pressure across the high-pressure refrigerant path of the refrigerant heat exchanger through which the gas-phase refrigerant flows can be secured. Even if the refrigerant heat exchanger is installed in a place away from the first high heat source heat exchanger and the second high heat source heat exchanger,
High-pressure refrigerant vapor in a dry and saturated state can reliably flow to the refrigerant heat exchanger.

【0026】[0026]

【実施例】以下、本発明に係るデシカント空調装置の実
施例を図面を参照して説明する。図1は本発明に係る空
調システムの第1の実施例の基本構成を示す図であり、
このうち蒸気圧縮式ヒートポンプの部分の構成は、圧縮
機260、低熱源熱交換器(蒸発器)240、第1の高
熱源熱交換器(顕熱熱交換器)230、第2の高熱源熱
交換器(凝縮器)220、膨張弁250を構成機器とし
て蒸気圧縮式冷凍サイクルを形成し、かつ蒸発器240
において低圧の冷媒の湿り蒸気がデシカント103通過
後の処理空気と熱交換関係をなし、かつ顕熱熱交換器2
30においてデシカント103通過前の再生空気と冷媒
の過熱蒸気が熱交換関係をなし、かつ凝縮器220にお
いて高圧の冷媒の湿り蒸気が顕熱熱交換器230および
デシカント103通過前の再生空気と熱交換関係をなす
サイクルを形成したものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a desiccant air conditioner according to the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a basic configuration of a first embodiment of an air conditioning system according to the present invention,
Among them, the configuration of the part of the vapor compression heat pump includes a compressor 260, a low heat source heat exchanger (evaporator) 240, a first high heat source heat exchanger (sensible heat exchanger) 230, and a second high heat source heat exchanger. A vapor compression refrigeration cycle is formed by using an exchanger (condenser) 220 and an expansion valve 250 as components, and an evaporator 240
And the humid vapor of the low-pressure refrigerant has a heat exchange relationship with the treated air after passing through the desiccant 103, and the sensible heat exchanger 2
At 30, the regenerated air before passing through the desiccant 103 and the superheated vapor of the refrigerant have a heat exchange relationship, and the wet steam of the high-pressure refrigerant has heat exchange with the regenerated air before passing through the sensible heat exchanger 230 and the desiccant 103 at the condenser 220. A cycle that forms a relationship.

【0027】デシカントロータ103は、図7において
説明したものと同じように、デシカントが、処理空気経
路Aと再生空気経路Bの双方に跨がって所定のサイクル
で回転するよう構成されている。処理空気経路Aは、空
調空間と還気導入用の送風機102の吸い込み口と経路
107を介して接続し、送風機102の吐出口はデシカ
ントロータ103の水分吸着工程を行う第1の区画と経
路108を介して接続し、デシカントロータ103の処
理空気の出口は再生空気と熱交換関係にある顕熱熱交換
器104と経路109を介して接続し、顕熱熱交換器1
04の処理空気の出口は蒸発器(冷却器)240と経路
110を介して接続し、蒸発器240の処理空気の出口
は加湿器105と経路111を介して接続し、加湿器1
05の処理空気の出口は給気口となる処理空気出口と経
路112を介して接続して処理空気のサイクルを形成す
る。
The desiccant rotor 103 is configured so that the desiccant rotates in a predetermined cycle across both the processing air path A and the regeneration air path B in the same manner as described with reference to FIG. The processing air path A is connected to the air-conditioned space and the suction port of the blower 102 for introducing the return air through a path 107, and the discharge port of the blower 102 is connected to the first section and the path 108 where the desiccant rotor 103 performs the moisture adsorption process. The outlet of the processing air of the desiccant rotor 103 is connected to the sensible heat exchanger 104, which has a heat exchange relationship with the regeneration air, via the path 109, and the sensible heat exchanger 1
04 is connected to the evaporator (cooler) 240 via the path 110, and the processing air outlet of the evaporator 240 is connected to the humidifier 105 via the path 111.
The processing air outlet 05 is connected to a processing air outlet serving as an air supply port via a path 112 to form a processing air cycle.

【0028】一方、再生空気経路Bは、再生空気となる
外気導入用の送風機140の吸い込み口と経路124を
介して接続し、送風機140の吐出口は処理空気と熱交
換関係にある顕熱熱交換器104と接続し、顕熱熱交換
器104の再生空気の出口は凝縮器220と経路126
を介して接続し、凝縮器220の再生空気の出口は2つ
に分岐して、一方はデシカントロータ103の再生空気
の第1の再生工程を行う第2の区画と経路128A及び
パンチングメタル等の絞り機構150を介して接続し、
分岐した他の一方は顕熱熱交換器230と経路127B
を介して接続し、顕熱熱交換器230の再生空気の出口
はデシカントロータ103の再生空気の第2の再生工程
を行う第3の区画と経路128Bを介して接続し、デシ
カントロータ103の再生空気の第1の再生工程を行う
第2の区画の再生空気の出口とデシカントロータ103
の再生空気の第2の再生工程を行う第3の区画の再生空
気の出口は合流して外部空間と経路129を介して接続
して再生空気を外部から取り入れて、外部に排気するサ
イクルを形成する。なお図中、丸で囲ったアルファベッ
トK〜Uは、図2と対応する空気の状態を示す記号であ
る。
On the other hand, the regeneration air path B is connected via a path 124 to a suction port of a blower 140 for introducing outside air which becomes regeneration air, and a discharge port of the blower 140 has a sensible heat heat exchange relation with the processing air. The outlet of the regeneration air of the sensible heat exchanger 104 is connected to the condenser 220 and the passage 126.
The outlet of the regenerating air of the condenser 220 is branched into two, one of which is connected to the second section for performing the first regenerating step of the regenerating air of the desiccant rotor 103, the path 128A, the punching metal and the like. Connected via the aperture mechanism 150,
The other branch is the sensible heat exchanger 230 and the path 127B.
And the outlet of the regenerated air of the sensible heat exchanger 230 is connected to the third section of the desiccant rotor 103 through which the second regenerating process of the regenerated air is performed through the path 128B to regenerate the desiccant rotor 103. The outlet of the regenerated air in the second section for performing the first regenerating step of the air and the desiccant rotor 103
The outlet of the regeneration air in the third section for performing the second regeneration process of the regeneration air merges with the external space through the path 129 to take in the regeneration air from the outside and exhaust it to the outside. I do. In the figure, circled letters K to U are symbols indicating the state of air corresponding to FIG.

【0029】また処理空気経路Aと再生空気経路Bの双
方に跨がって所定のサイクルで回転するデシカントは、
図1のデシカント詳細図に示すように、処理空気経路A
に経路108,109を介して接続されていて水分吸着
工程を行う第1の区画と、再生空気経路Bに経路128
A,129を介して接続されていて再生空気の第1の再
生工程を行う第2の区画と、再生空気経路Bに経路12
8B,129を介して接続されていて再生空気の第2の
再生工程を行う第3の区画とに分割され、デシカントが
第1の区画、第2の区画、第3の区画を経て第1の区画
に戻るよう構成する。
The desiccant that rotates in a predetermined cycle across both the processing air path A and the regeneration air path B is:
As shown in the detailed desiccant diagram of FIG.
To the first section, which is connected to the first path through the paths 108 and 109 to perform the moisture adsorption step, and to the path 128 to the regeneration air path B.
A, a second section which is connected via A, 129 and performs a first regeneration step of the regeneration air;
8B, 129 and a third section for performing the second regeneration step of the regeneration air, and the desiccant is passed through the first section, the second section, and the third section to the first section. Configure to return to parcel.

【0030】上述のように構成されたデシカント空調装
置の蒸気圧縮式冷凍サイクル部分のサイクルを次に説明
する。冷媒は蒸発器(冷却器)240でデシカント10
3で除湿された処理空気から蒸発潜熱を奪って蒸発し、
経路209を経て圧縮機260に吸引され圧縮されたの
ち経路201を経て第1の高熱源熱交換器(顕熱熱交換
器)230に流入し冷媒の過熱蒸気の顕熱をデシカント
103に流入前の再生空気に放出したのち経路202を
経て第2の高熱源熱交換器(凝縮器)220に流入し凝
縮熱をデシカント103および第1の高熱源熱交換器
(顕熱熱交換器)230に流入前の再生空気に放出して
凝縮する。凝縮した冷媒は経路206を経て膨張弁25
0に至りそこで減圧膨張した後、蒸発器(冷却器)24
0に還流する。
Next, the cycle of the vapor compression refrigeration cycle of the desiccant air conditioner constructed as described above will be described. The refrigerant is desiccant 10 in the evaporator (cooler) 240.
Evaporating the latent heat of evaporation from the dehumidified processing air in step 3,
After being sucked and compressed by the compressor 260 via the path 209 and flowing into the first high heat source heat exchanger (sensible heat exchanger) 230 via the path 201, the sensible heat of the superheated steam of the refrigerant before flowing into the desiccant 103 After being discharged to the regenerated air, flows into the second high heat source heat exchanger (condenser) 220 via the path 202 and transfers the heat of condensation to the desiccant 103 and the first high heat source heat exchanger (sensible heat exchanger) 230. It is released to the regeneration air before inflow and condensed. The condensed refrigerant passes through the path 206 and enters the expansion valve 25.
0, and after expanding under reduced pressure there, evaporator (cooler) 24
Reflux to 0.

【0031】次に前述のように構成されたヒートポンプ
を熱源とするデシカント空調システムの動作を図2の湿
り空気線図を参照して説明する。導入される還気(処理
空気:状態K)は経路107を経て送風機102に吸引
され昇圧されて経路108をへてデシカントロータ10
3の水分吸着工程を行う第1の区画に送られデシカント
ロータの吸湿剤で空気中の水分を吸着され絶対湿度が低
下するとともに吸着熱によって空気は温度上昇する(状
態L)。湿度が下がり温度上昇した空気は経路109を
経て顕熱熱交換器104に送られ外気(再生空気)と熱
交換して冷却される(状態M)。冷却された空気は経路
110を経て蒸発器(冷却器)240を通過して冷却さ
れる(状態N)。冷却された処理空気は加湿器105に
送られ水噴射または気化式加湿によって等エンタルピ過
程で温度低下し(状態P)、経路112を経て給気とし
て空調空間に戻される。
Next, the operation of the desiccant air conditioning system using the heat pump configured as described above as a heat source will be described with reference to the psychrometric chart of FIG. The introduced return air (process air: state K) is sucked into the blower 102 via the path 107, pressurized, and passed through the path 108 to the desiccant rotor 10.
The moisture is adsorbed by the desiccant rotor in the first section where the moisture adsorption step 3 is performed, and the moisture in the air is adsorbed. The absolute humidity decreases and the temperature of the air rises due to the heat of adsorption (state L). The air whose humidity has decreased and its temperature has increased is sent to the sensible heat exchanger 104 via the path 109 and exchanges heat with outside air (regenerated air) to be cooled (state M). The cooled air is cooled by passing through the evaporator (cooler) 240 via the path 110 (state N). The cooled processing air is sent to the humidifier 105, and its temperature is reduced in the isenthalpy process by water injection or vaporization humidification (state P), and is returned to the air-conditioned space via the path 112 as air supply.

【0032】一方、デシカントロータの再生は次のよう
に行われる。再生空気として用いられる外気(状態Q)
は経路124を経て送風機140に吸引され昇圧されて
顕熱熱交換器104に送られ、処理空気を冷却して自ら
は温度上昇し(状態R)、経路126を経て凝縮器22
0に送られて、冷媒の湿り蒸気によって加熱されて温度
上昇する(状態S)。さらに凝縮器220を出た再生空
気は2つに分岐して、一方はデシカントロータ103の
再生空気の第1の再生工程を行う第2の区画を通過して
デシカントロータの水分を除去し再生作用を行い(状態
U-A)、分岐した他の一方は顕熱熱交換器230に送
られて、冷媒の過熱蒸気によってさらに加熱されて温度
上昇し(状態T)たのち、デシカントロータ103の再
生空気の第2の再生工程を行う第3の区画を通過してデ
シカントロータの水分を除去し再生作用を行い(状態U
-A)、デシカントロータ103の再生空気の第2の再
生工程を行う第3の区画を通過した再生空気は前記デシ
カントロータ103の再生空気の第1の再生工程を行う
第2の区画を通過した再生空気と混合して(状態U)経
路129を経て排気として外部に捨てられる。
On the other hand, the regeneration of the desiccant rotor is performed as follows. Outside air used as regeneration air (state Q)
Is suctioned by the blower 140 via the passage 124, is pressurized and sent to the sensible heat exchanger 104, cools the processing air to increase its temperature (state R), and passes through the passage 126 to the condenser 22.
0, and is heated by the wet steam of the refrigerant to increase the temperature (state S). Further, the regenerated air exiting the condenser 220 is branched into two, and one of the regenerated air passes through a second section of the desiccant rotor 103 in which the first regeneration step of the regenerated air is performed to remove water from the desiccant rotor 103 and to perform a regeneration operation. (State UA), and the other branch is sent to the sensible heat exchanger 230, where it is further heated by the superheated vapor of the refrigerant to increase the temperature (state T), and then the desiccant rotor 103 is regenerated. After passing through the third section for performing the second regeneration step of the air, the desiccant rotor is removed to perform the regeneration action (state U
-A), the regeneration air that has passed through the third section of the desiccant rotor 103 that performs the second regeneration step of the regeneration air has passed through the second section that performs the first regeneration step of the regeneration air of the desiccant rotor 103. After being mixed with the regeneration air (state U), it is discarded to the outside as exhaust gas via a path 129.

【0033】このようにして、デシカントの再生と処理
空気の除湿、冷却をくりかえし行うことによって、デシ
カントによる空調を行うことができるが、本実施例で
は、再生空気の一部を凝縮器220を出たのち2つに分
岐して、一方を流量を減少させ熱容量を減少させた上で
圧縮機で圧縮した冷媒の過熱蒸気で加熱するため、全熱
量の12%程度の少ない熱量でも、過熱蒸気の持つ顕熱
で再生空気の温度を凝縮温度よりも高い温度まで加熱す
ることが可能となり、その温度でデシカントロータ10
3の再生空気の第2の再生工程を行う第3の区画のデシ
カントを再生することができるため、吸着工程に移行す
る直前のデシカントの除湿能力が従来に比べて向上す
る。以下に事例を用いて説明する。
In this manner, the desiccant is air-conditioned by repeating the regeneration of the desiccant and the dehumidification and cooling of the processing air. In this embodiment, however, a part of the regenerated air exits the condenser 220. After branching into two, one of them is heated with the superheated steam of the refrigerant compressed by the compressor after reducing the flow rate and the heat capacity, so even with a small heat amount of about 12% of the total heat amount, It is possible to heat the temperature of the regeneration air to a temperature higher than the condensing temperature by the sensible heat of the desiccant rotor 10 at that temperature.
Since the desiccant in the third section where the second regeneration step of the regeneration air of No. 3 is performed can be regenerated, the desiccant dehumidifying ability immediately before shifting to the adsorption step is improved as compared with the conventional method. This will be described below using examples.

【0034】今、冷媒サイクルが前記図9のサイクル
で、従来の再生空気の凝縮器入口温度が40℃で、昇温
巾が20℃で、冷媒凝縮温度が65℃であった場合を想
定すると、本実施例によれば、ヒートポンプの凝縮器2
20による加熱量は88%になるから、状態Sの温度Ts
は、 Ts=40+20×88/100=57.6℃ となる。このあと再生空気を分岐して、12%の熱量で
15%相当の空気を過熱蒸気で過熱するとすれば、状態
Tの温度Ttは、 Tt=57.6+20×12/100/0.15=73.6
℃ となる。この時の熱交換器の温度効率を求めると、 Φ=(73.6−57.6)/(80−57.6)×10
0%=71.4% となり、向流形の熱交換器を顕熱熱交換器230として
用いれば十分達成可能であり、凝縮温度65℃よりも
8.3℃高い温度の再生空気が得られる。
Now, suppose that the refrigerant cycle is the cycle shown in FIG. 9 and the conventional condenser inlet temperature of the regeneration air is 40.degree. C., the temperature rise width is 20.degree. C., and the refrigerant condensation temperature is 65.degree. According to the present embodiment, the condenser 2 of the heat pump
Since the heating amount by 20 becomes 88%, the temperature Ts of the state S
Ts = 40 + 20 × 88/100 = 57.6 ° C. After that, if the regenerated air is branched and the air equivalent to 15% is superheated with superheated steam with 12% heat, the condition is as follows.
The temperature Tt of T is: Tt = 57.6 + 20 × 12/100 / 0.15 = 73.6
° C. When the temperature efficiency of the heat exchanger at this time is obtained, Φ = (73.6-57.6) / (80−57.6) × 10
0% = 71.4%, which is sufficiently achievable if a countercurrent heat exchanger is used as the sensible heat exchanger 230, and regenerated air at a temperature 8.3 ° C. higher than the condensation temperature of 65 ° C. can be obtained. .

【0035】このように、本実施例によれば、凝縮温度
よりも高い温度温度でデシカントロータ103の再生空
気の第2の再生工程を行う第3の区画のデシカントを再
生することができるため、吸着工程に移行する直前のデ
シカントの除湿能力を従来に比べて向上させることがで
き、従って除湿能力に優れ、かつ省エネルギな空調シス
テムを提供することができる。
As described above, according to this embodiment, the desiccant in the third section where the second regeneration step of the regeneration air of the desiccant rotor 103 is performed at a temperature higher than the condensation temperature can be regenerated. The desiccant dehumidifying capacity immediately before shifting to the adsorption step can be improved as compared with the related art, and therefore, an air-conditioning system having excellent dehumidifying capacity and energy saving can be provided.

【0036】なお再生用空気として室内換気にともなう
排気を用いる方法も従来からデシカント空調では広く行
われているが、本発明においても室内からの排気を再生
用空気として使用してもさしつかえなく、本実施例と同
様の効果が得られる。
The method of using the exhaust air accompanying the indoor ventilation as the regeneration air has been widely used in the desiccant air conditioner. However, in the present invention, the exhaust air from the room may be used as the regeneration air. The same effect as that of the embodiment can be obtained.

【0037】図3は本発明の第2の実施例である。この
実施例では、蒸気圧縮式ヒートポンプの部分は、圧縮機
260、低熱源熱交換器(蒸発器)240、第1の高熱
源熱交換器(顕熱熱交換器)230、第2の高熱源熱交
換器(凝縮器)220、膨張弁250を構成機器とした
蒸気圧縮式冷凍サイクルに加え、このサイクルの低熱源
熱交換器(蒸発器)240から圧縮機260に至る経路
中に冷媒熱交換器270を設け、該冷媒熱交換器270
において圧縮機吸い込み前の低圧冷媒と顕熱熱交換器2
30を出た高圧の湿り蒸気とが熱交換したあと、高圧の
湿り蒸気が凝縮器220に流動するようサイクルを構成
したものである。なお、蒸発器240において低圧の冷
媒の湿り蒸気がデシカント103通過後の処理空気と熱
交換関係をなし、かつ顕熱熱交換器230においてデシ
カント103通過前の再生空気と冷媒の過熱蒸気が熱交
換関係をなし、かつ凝縮器220において高圧の冷媒の
湿り蒸気が顕熱熱交換器230およびデシカント103
通過前の再生空気と熱交換関係をなすサイクルは第1の
実施例と同様である。
FIG. 3 shows a second embodiment of the present invention. In this embodiment, the parts of the vapor compression heat pump include a compressor 260, a low heat source heat exchanger (evaporator) 240, a first high heat source heat exchanger (sensible heat exchanger) 230, and a second high heat source. In addition to the vapor compression refrigeration cycle including the heat exchanger (condenser) 220 and the expansion valve 250 as components, the refrigerant heat exchange in the path from the low heat source heat exchanger (evaporator) 240 to the compressor 260 in this cycle. 270 is provided, and the refrigerant heat exchanger 270 is provided.
Pressure refrigerant and sensible heat exchanger 2 before suction
After the heat exchange with the high-pressure wet steam exiting from 30, the cycle is configured so that the high-pressure wet steam flows to the condenser 220. In the evaporator 240, the wet steam of the low-pressure refrigerant has a heat exchange relationship with the processing air after passing through the desiccant 103, and in the sensible heat exchanger 230, the reheated air and the superheated vapor of the refrigerant before passing through the desiccant 103 exchange heat In the condenser 220, the wet vapor of the high-pressure refrigerant is passed through the sensible heat exchanger 230 and the desiccant 103
The cycle that forms a heat exchange relationship with the regeneration air before passing is the same as in the first embodiment.

【0038】空気側サイクルの構成は第1の実施例と差
異がないので、以下に上述のように構成されたデシカン
ト空調装置の蒸気圧縮式冷凍サイクル部分のサイクルを
次に説明する。冷媒は蒸発器(冷却器)240でデシカ
ント103で除湿された処理空気から蒸発潜熱を奪って
蒸発し、経路209を経て冷媒熱交換器270に至りこ
こで顕熱熱交換器230を出た高圧の飽和蒸気と熱交換
したのち、圧縮機260に吸引され圧縮される。圧縮さ
れた冷媒は経路201を経て顕熱熱交換器230に流入
し冷媒の過熱蒸気の顕熱をデシカント103に流入前の
再生空気に放出したのち経路202を経て冷媒熱交換器
270に至りここで圧縮機吸い込み前の乾き飽和状態の
低圧冷媒と熱交換して一部が凝縮する。冷媒熱交換器2
70を出た高圧冷媒は凝縮器220に流入し凝縮熱をデ
シカント103および第1の高熱源熱交換器(顕熱熱交
換器)230に流入前の再生空気に放出して凝縮する。
凝縮した冷媒は経路206を経て膨張弁250に至りそ
こで減圧膨張した後、蒸発器(冷却器)240に還流す
る。
Since the configuration of the air side cycle is not different from that of the first embodiment, the cycle of the vapor compression refrigeration cycle portion of the desiccant air conditioner configured as described above will be described below. The refrigerant evaporates by removing the latent heat of evaporation from the processing air dehumidified by the desiccant 103 in the evaporator (cooler) 240, evaporates, reaches the refrigerant heat exchanger 270 via the path 209, and exits the sensible heat exchanger 230 there. After the heat exchange with the saturated steam, the air is sucked and compressed by the compressor 260. The compressed refrigerant flows into the sensible heat exchanger 230 via the path 201, releases the sensible heat of the superheated vapor of the refrigerant to the regenerated air before flowing into the desiccant 103, and then reaches the refrigerant heat exchanger 270 via the path 202. Then, heat exchange occurs with the low-pressure refrigerant in a dry and saturated state before suction of the compressor, and a portion of the refrigerant condenses. Refrigerant heat exchanger 2
The high-pressure refrigerant that has exited 70 flows into the condenser 220 and discharges the heat of condensation into the regenerated air before flowing into the desiccant 103 and the first high-heat-source heat exchanger (sensible heat exchanger) 230 to condense.
The condensed refrigerant reaches the expansion valve 250 via the path 206, is decompressed and expanded there, and then returns to the evaporator (cooler) 240.

【0039】このような冷媒のサイクルをモリエル線図
である図4を用いて説明する。冷媒は蒸発器(冷却器)
240で蒸発し(状態g)、経路209を経て冷媒熱交
換器270に至りここで顕熱熱交換器230を出た高圧
の飽和蒸気と熱交換した(状態a)のち、圧縮機260
に吸引され圧縮される。圧縮された冷媒(状態b)は顕
熱熱交換器30に流入し冷媒の過熱蒸気の顕熱をデシカ
ント103に流入前の再生空気に放出した(状態c)の
ち冷媒熱交換器270に至りここで圧縮機吸い込み前の
乾き飽和状態の低圧冷媒と熱交換して一部が凝縮する
(状態f)。この時低圧冷媒(状態g〜a)は凝縮温度
以上には加熱されることがないため、伝熱量が制限さ
れ、冷媒熱交換器270では高圧飽和蒸気は乾き度が状
態fまで下がってエンタルピが減少する一方、低圧冷媒
は過熱蒸気(状態a)となってエンタルピが増加する。
冷媒熱交換器270を出た高圧冷媒(状態f)は凝縮器
220に流入し凝縮熱をデシカント103および顕熱熱
交換器230に流入前の再生空気に放出して凝縮する
(状態d)。凝縮した冷媒は膨張弁250に至りそこで
減圧膨張した後(状態e)、蒸発器(冷却器)240に
還流する。この実施例では、凝縮器220入口の冷媒エ
ンタルピ(状態f)が低下する一方、圧縮機出口で顕熱
交換器230入口の冷媒エンタルピが上昇するため、図
1の実施例の実施例に比べて顕熱交換器230の伝熱量
の占める割合が増加し、顕熱交換器230で35%、凝
縮器220で65%の伝熱量となる。
Such a refrigerant cycle will be described with reference to FIG. 4 which is a Mollier diagram. Refrigerant is evaporator (cooler)
After evaporating at 240 (state g), the refrigerant reaches the refrigerant heat exchanger 270 via the path 209 and exchanges heat with the high-pressure saturated steam exiting the sensible heat exchanger 230 (state a).
Is sucked and compressed. The compressed refrigerant (state b) flows into the sensible heat exchanger 30 and releases the sensible heat of superheated vapor of the refrigerant into the regenerated air before flowing into the desiccant 103 (state c), and then reaches the refrigerant heat exchanger 270. , Heat exchanges with the dry saturated low-pressure refrigerant before the suction of the compressor, and a part of the refrigerant is condensed (state f). At this time, since the low-pressure refrigerant (states g to a) is not heated to a temperature higher than the condensing temperature, the amount of heat transfer is limited, and in the refrigerant heat exchanger 270, the high-pressure saturated vapor drops in dryness to state f and enthalpy is reduced. On the other hand, the low-pressure refrigerant becomes superheated steam (state a) and the enthalpy increases.
The high-pressure refrigerant (state f) that has exited the refrigerant heat exchanger 270 flows into the condenser 220 and discharges the heat of condensation to the regenerated air before flowing into the desiccant 103 and the sensible heat exchanger 230 (state d). The condensed refrigerant reaches the expansion valve 250 and is decompressed and expanded there (state e), and then returns to the evaporator (cooler) 240. In this embodiment, the refrigerant enthalpy at the inlet of the condenser 220 (state f) decreases, while the refrigerant enthalpy at the inlet of the sensible heat exchanger 230 increases at the compressor outlet. The ratio of the heat transfer amount of the sensible heat exchanger 230 increases, and the heat transfer amount of the sensible heat exchanger 230 is 35%, and that of the condenser 220 is 65%.

【0040】この実施例のように構成された空調システ
ムの空気側の動作は第1の実施例と同様に図2の湿り空
気線図を参照して説明できるので省略するが、第1の実
施例と比べて、顕熱交換器230を通過させる空気の流
量を増加させることができる。図4の冷媒サイクルはこ
のような効果を見込んで、凝縮温度を60℃としてい
る。以下にこの効果について事例を用いて説明する。
The operation on the air side of the air-conditioning system constructed as in this embodiment can be described with reference to the psychrometric chart of FIG. 2 similarly to the first embodiment. As compared with the example, the flow rate of the air passing through the sensible heat exchanger 230 can be increased. In the refrigerant cycle of FIG. 4, the condensation temperature is set to 60 ° C. in consideration of such an effect. Hereinafter, this effect will be described using an example.

【0041】本実施例によれば、ヒートポンプの凝縮器
220による加熱量は65%になるから、状態Sの温度
Tsは、 Ts=40+20×65/100=53℃ となる。このあと再生空気を分岐して、35%の熱量で
30%相当の空気を過熱蒸気で過熱するとすれば、状態
Tの温度Ttは、 Tt=53+20×30/100/0.3=73℃ となる(第1の実施例とほぼ同じ温度)。この時の熱交
換器の温度効率を求めると、 Φ=(73−53)/(105−53)×100%=3
8.4% となり、熱交換器として十分達成可能であり、凝縮温度
60℃よりも13℃高い温度の再生空気が得られる。
According to the present embodiment, the amount of heating by the condenser 220 of the heat pump is 65%, so the temperature Ts in the state S is Ts = 40 + 20 × 65/100 = 53 ° C. Thereafter, if the regenerated air is branched and the air equivalent to 30% is superheated with superheated steam at a heat amount of 35%, the temperature Tt of the state T is Tt = 53 + 20 × 30/100 / 0.3 = 73 ° C. (Substantially the same temperature as in the first embodiment). When the temperature efficiency of the heat exchanger at this time is obtained, Φ = (73−53) / (105−53) × 100% = 3
8.4%, which is sufficiently achievable as a heat exchanger, and regenerated air at a temperature 13 ° C. higher than the condensation temperature of 60 ° C. is obtained.

【0042】このように、顕熱熱交換器230において
圧縮機出口の過熱冷媒で再生空気を加熱し顕熱分を除去
した後、冷媒熱交換器270において飽和蒸気の凝縮潜
熱でヒートポンプの蒸発器240を出た乾き飽和状態の
圧縮機吸込み冷媒の過熱度を高めてから圧縮することに
より圧縮機出口の過熱度を高めるとともに、凝縮熱の一
部を冷媒の過熱度を増加させるために用いることによっ
て、圧縮機の圧縮比を高めることなく(この実施例では
むしろ圧縮比は減少させている)高圧冷媒から再生空気
に伝達する熱量に占める潜熱(凝縮分)と顕熱(過熱
分)の割合を変化させ再生空気の温度上昇に寄与できる
顕熱の割合を増加させることによって、凝縮温度よりも
高い温度でデシカントロータ103の再生空気の第2の
再生工程を行う第3の区画のデシカントを再生すること
ができるため、吸着工程に移行する直前のデシカントの
除湿能力を従来に比べて向上させることができ、従って
除湿能力に優れ、かつ省エネルギな空調システムを提供
することができる。
After the regeneration air is heated by the superheated refrigerant at the compressor outlet in the sensible heat exchanger 230 to remove the sensible heat, the refrigerant heat exchanger 270 uses the latent heat of condensation of the saturated vapor to evaporate the heat pump. Increasing the superheat at the compressor outlet by increasing the superheat of the dry-saturated compressor suction refrigerant exiting 240 and then increasing the superheat at the compressor outlet, and using a part of the heat of condensation to increase the superheat of the refrigerant The ratio of the latent heat (condensed portion) and the sensible heat (superheated portion) to the amount of heat transferred from the high-pressure refrigerant to the regenerating air without increasing the compression ratio of the compressor (in this embodiment, the compression ratio is rather reduced) To perform the second regeneration step of the regeneration air of the desiccant rotor 103 at a temperature higher than the condensation temperature by increasing the ratio of the sensible heat that can contribute to the temperature rise of the regeneration air. Since the desiccant in the section can be regenerated, the desiccant dehumidifying capacity immediately before shifting to the adsorption step can be improved as compared with the conventional art, and therefore, it is possible to provide an air conditioning system that is excellent in dehumidifying capacity and energy saving. it can.

【0043】図5は本発明の第3の実施例である。この
実施例では、蒸気圧縮式ヒートポンプの部分は、圧縮機
260、低熱源熱交換器(蒸発器)240、第1の高熱
源熱交換器(顕熱熱交換器)230、第2の高熱源熱交
換器(凝縮器)220、膨張弁250を構成機器とした
蒸気圧縮式冷凍サイクルに加え、このサイクルの低熱源
熱交換器(蒸発器)240から圧縮機260に至る経路
中に冷媒熱交換器270を設け、該冷媒熱交換器270
において圧縮機吸い込み前の低圧冷媒と顕熱熱交換器2
30を出た高圧の湿り蒸気とが熱交換したあと、高圧の
湿り蒸気が凝縮器220に流動するようサイクルを構成
した第2の実施例と同様のものであるが、本実施例で
は、さらに顕熱熱交換器230を出た高圧の冷媒蒸気を
気液分離器280で冷媒経路を分岐して、一方の気相を
取り出す側を経路203を介して前記の冷媒熱交換器2
70に導くとともに、前記気液分離器280の液相を取
り出す経路の途中に絞り285を設け、該絞り285を
経た経路205と前記冷媒熱交換器270を経た高圧冷
媒の経路204とを合流させたのち、凝縮器220に導
くよう構成した。なお、蒸発器240において低圧の冷
媒の湿り蒸気がデシカント103通過後の処理空気と熱
交換関係をなし、かつ顕熱熱交換器230においてデシ
カント103通過前の再生空気と冷媒の過熱蒸気が熱交
換関係をなし、かつ凝縮器220において高圧の冷媒の
湿り蒸気が顕熱熱交換器230およびデシカント103
通過前の再生空気と熱交換関係をなすサイクルは第1お
よび第2の実施例と同様である。
FIG. 5 shows a third embodiment of the present invention. In this embodiment, the parts of the vapor compression heat pump include a compressor 260, a low heat source heat exchanger (evaporator) 240, a first high heat source heat exchanger (sensible heat exchanger) 230, and a second high heat source. In addition to the vapor compression refrigeration cycle including the heat exchanger (condenser) 220 and the expansion valve 250 as components, the refrigerant heat exchange in the path from the low heat source heat exchanger (evaporator) 240 to the compressor 260 in this cycle. 270 is provided, and the refrigerant heat exchanger 270 is provided.
Pressure refrigerant and sensible heat exchanger 2 before suction
This is the same as the second embodiment in which the cycle is configured such that the high-pressure wet steam flowing to the condenser 220 flows after the heat exchange with the high-pressure wet steam exiting 30. The high-pressure refrigerant vapor that has exited the sensible heat exchanger 230 branches off the refrigerant path in the gas-liquid separator 280, and one side from which the gas phase is taken out is connected to the refrigerant heat exchanger 2 via the path 203.
A throttle 285 is provided in the middle of a path for extracting the liquid phase of the gas-liquid separator 280, and a path 205 passing through the throttle 285 and a path 204 of the high-pressure refrigerant passing through the refrigerant heat exchanger 270 are merged. After that, it was configured to guide to the condenser 220. In the evaporator 240, the wet steam of the low-pressure refrigerant has a heat exchange relationship with the processing air after passing through the desiccant 103, and in the sensible heat exchanger 230, the reheated air and the superheated vapor of the refrigerant before passing through the desiccant 103 exchange heat. In the condenser 220, the wet vapor of the high-pressure refrigerant is passed through the sensible heat exchanger 230 and the desiccant 103
The cycle that forms a heat exchange relationship with the regeneration air before passing is the same as in the first and second embodiments.

【0044】空気側サイクルの構成は第1および第2の
実施例と差異がないため、ここでは蒸気圧縮式冷凍サイ
クル部分のサイクルの前記実施例との相違を説明する。
本実施例では、顕熱熱交換器230を出た高圧の冷媒蒸
気(ほぼ乾き飽和状態にある)を気液分離器280で冷
媒経路を分岐して、一方の気相を取り出す側を冷媒熱交
換器270に導いて、ここで圧縮機吸い込み前の乾き飽
和状態の低圧冷媒と熱交換して凝縮させる。冷媒熱交換
器270で凝縮する冷媒の量は、被加熱側の低圧冷媒の
比熱が小さく、顕熱変化であるため、凝縮温度以上には
温度上昇できず、従って移動熱量が限定されるため全量
が凝縮するわけではなく、圧縮機吐出冷媒流量の20%
未満である。そのため冷媒熱交換器270に導く高圧冷
媒の量は少なくて良くこの系統の配管口径は細くするこ
とができる。
Since the configuration of the air-side cycle is not different from the first and second embodiments, the difference between the cycle of the vapor compression refrigeration cycle and the above-described embodiment will be described.
In this embodiment, the high-pressure refrigerant vapor (which is almost dry and saturated) exiting the sensible heat exchanger 230 is branched into a refrigerant path by the gas-liquid separator 280, and one of the gaseous phases is taken out by the refrigerant heat. The refrigerant is led to the exchanger 270, where the refrigerant exchanges heat with the dry saturated low-pressure refrigerant before suctioning the compressor to condense the refrigerant. The amount of the refrigerant condensed in the refrigerant heat exchanger 270 is small because the specific heat of the low-pressure refrigerant on the heated side is small and a sensible heat change, so that the temperature cannot rise above the condensing temperature. Is not condensed, 20% of the refrigerant flow rate
Is less than. Therefore, the amount of the high-pressure refrigerant guided to the refrigerant heat exchanger 270 may be small, and the pipe diameter of this system can be reduced.

【0045】一方、気液分離器280の液相を取り出す
経路には圧縮機吐出冷媒流量の80%程度を冷媒熱交換
器270をバイパスして直接凝縮器220に冷媒を導く
ことができる。デシカント空調機の構成上、顕熱熱交換
器230と凝縮器220は近くに設置することが望まし
いため、このように圧縮機吐出冷媒流量の80%程度を
冷媒熱交換器270をバイパスして直接凝縮器220に
冷媒を導くことができることは配管コストを削減できる
効果がある。なお、バイパス経路205に抵抗が無い
と、冷媒の殆どが冷媒熱交換器270をバイパスしてし
まうため、絞り285を設けて、バイパス流量比を調節
する必要があるが、このバイパス量の調整は厳密なもの
ではなく、多めの冷媒が冷媒熱交換器270を流動する
ように設定しても、前記のごとく移動熱量に限界がある
ため作動に不具合を生じることはない。
On the other hand, about 80% of the flow rate of the refrigerant discharged from the compressor can be introduced directly to the condenser 220 by bypassing the refrigerant heat exchanger 270 in the path for taking out the liquid phase of the gas-liquid separator 280. Since it is desirable that the sensible heat exchanger 230 and the condenser 220 be installed close to each other due to the configuration of the desiccant air conditioner, about 80% of the flow rate of the refrigerant discharged from the compressor is directly bypassed to the refrigerant heat exchanger 270 in this way. The ability to guide the refrigerant to the condenser 220 has the effect of reducing piping costs. If there is no resistance in the bypass path 205, most of the refrigerant bypasses the refrigerant heat exchanger 270. Therefore, it is necessary to provide the throttle 285 and adjust the bypass flow rate ratio. Even if it is not strict and a large amount of refrigerant is set to flow through the refrigerant heat exchanger 270, there is no problem in operation because the amount of heat transferred is limited as described above.

【0046】このように、ヒートポンプの圧縮機吸込み
冷媒の過熱度を高めるために用いる乾き飽和状態の冷媒
蒸気のみを気液分離器で分離して取り出すことにより、
冷媒熱交換器を流動する高圧冷媒の流量が少なくて済
み、該冷媒系統の配管口径および冷媒熱交換器を小さく
構成することができる。また気液分離器の液相を取り出
す経路の途中に絞りを設けることによって、気相の冷媒
が流れる冷媒熱交換器の高圧冷媒経路の前後の差圧を確
保できるため、冷媒熱交換器を顕熱交換器230および
凝縮器220から離れた場所に設置しても、確実に乾き
飽和状態の高圧冷媒蒸気を冷媒熱交換器270に流動さ
せることができる。
As described above, only the dry saturated refrigerant vapor used for increasing the degree of superheat of the refrigerant sucked into the compressor of the heat pump is separated and taken out by the gas-liquid separator.
The flow rate of the high-pressure refrigerant flowing through the refrigerant heat exchanger can be reduced, and the piping diameter of the refrigerant system and the refrigerant heat exchanger can be reduced. Also, by providing a throttle in the middle of the path for extracting the liquid phase of the gas-liquid separator, a differential pressure across the high-pressure refrigerant path of the refrigerant heat exchanger through which the gas-phase refrigerant flows can be secured. Even if the high-pressure refrigerant vapor is in a dry and saturated state, it can flow to the refrigerant heat exchanger 270 without fail even if it is installed at a location away from the heat exchanger 230 and the condenser 220.

【0047】[0047]

【発明の効果】以上説明したように本発明によれば、ヒ
ートポンプの圧縮後の冷媒の過熱蒸気の顕熱を利用して
デシカントの再生工程の最後の再生温度を高め、あるい
はヒートポンプの圧縮後の過熱冷媒で再生空気を加熱し
た後の冷媒蒸気で圧縮機吸込み冷媒の過熱度を高めてか
ら圧縮して圧縮機出口の過熱度を高めることで、高圧冷
媒から再生空気に伝達する熱量に占める潜熱(凝縮分)
と顕熱(過熱分)の割合を変化させ再生空気の温度上昇
に寄与できる顕熱の割合を増加させることによって、デ
シカント再生の最終工程に用いる再生空気の温度を高く
することができるため、デシカントの吸湿能力の増加を
可能にして、除湿能力に優れ、コンパクトで、かつ省エ
ネルギな空調システムを提供することができる。
As described above, according to the present invention, the last regeneration temperature in the desiccant regeneration step is increased by utilizing the sensible heat of the superheated vapor of the refrigerant after compression of the heat pump, or Latent heat in the amount of heat transferred from the high-pressure refrigerant to the regeneration air by increasing the superheat of the refrigerant drawn into the compressor and increasing the superheat at the compressor outlet by increasing the superheat of the refrigerant drawn into the compressor with the refrigerant vapor after heating the regeneration air with the superheated refrigerant (Condensed matter)
By increasing the ratio of sensible heat that can contribute to a rise in the temperature of the regenerated air by changing the ratio of the sensible heat (superheated component) to the temperature of the regenerated air used in the final step of the desiccant regeneration, Can provide an air-conditioning system that is excellent in dehumidifying capacity, compact, and energy saving.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る空調システムの第1の実施例の、
(a)基本構成を示す説明図、(b)デシカントロータ
の部分を示す斜視図である。
FIG. 1 shows a first embodiment of an air conditioning system according to the present invention.
(A) is an explanatory view showing a basic configuration, and (b) is a perspective view showing a part of a desiccant rotor.

【図2】図1の空調機の空気のデシカント空調サイクル
を湿り空気線図で示す説明図である。
FIG. 2 is an explanatory diagram showing a desiccant air-conditioning cycle of air of the air conditioner of FIG. 1 in a psychrometric chart.

【図3】本発明に係る空調システムの第2の実施例の、
(a)基本構成を示す説明図、(b)デシカントロータ
の部分を示す斜視図である。
FIG. 3 shows a second embodiment of the air conditioning system according to the present invention;
(A) is an explanatory view showing a basic configuration, and (b) is a perspective view showing a part of a desiccant rotor.

【図4】図3の実施例の冷媒のサイクルを示すモリエル
線図である。
FIG. 4 is a Mollier diagram showing a refrigerant cycle of the embodiment of FIG. 3;

【図5】本発明に係る空調システムの第3の実施例の、
(a)基本構成を示す説明図、(b)デシカントロータ
の部分を示す斜視図である。
FIG. 5 shows a third embodiment of the air conditioning system according to the present invention;
(A) is an explanatory view showing a basic configuration, and (b) is a perspective view showing a part of a desiccant rotor.

【図6】従来の空調システムの基本構成を示す説明図で
ある。
FIG. 6 is an explanatory diagram showing a basic configuration of a conventional air conditioning system.

【図7】他の従来の空調システムの基本構成を示す説明
図である。
FIG. 7 is an explanatory diagram showing a basic configuration of another conventional air conditioning system.

【図8】従来のデシカント空調の空気のデシカント空調
サイクルを湿り空気線図で示す説明図である。
FIG. 8 is an explanatory diagram showing a desiccant air-conditioning cycle of air in a conventional desiccant air-conditioning in a psychrometric chart.

【図9】図8の実施例の冷媒のサイクルを示すモリエル
線図である。
FIG. 9 is a Mollier chart showing a refrigerant cycle of the embodiment of FIG. 8;

【符号の説明】[Explanation of symbols]

200 ヒートポンプ 102,140 送風機 103 デシカントロータ 104 全熱交換器 220 第2の高熱源熱交換器 230 第1の高熱源熱交換器 240 低熱源熱交換器 260 圧縮機 A 処理空気経路 B 再生空気経路 200 heat pump 102,140 blower 103 desiccant rotor 104 total heat exchanger 220 second high heat source heat exchanger 230 first high heat source heat exchanger 240 low heat source heat exchanger 260 compressor A process air path B regenerative air path

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F24F 3/00 F25B 29/00 F28D 21/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) F24F 3/00 F25B 29/00 F28D 21/00

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 処理空気中の水分を吸着するデシカント
と、圧縮機を有し、処理空気を低熱源、再生空気を高熱
源として動作して再生空気にデシカント再生用の熱を供
給するヒートポンプとを備えた空調システムにおいて、
再生空気の一部を圧縮機で圧縮した冷媒の過熱蒸気で加
熱してデシカントを再生することを特徴とする空調シス
テム。
1. A heat pump having a desiccant for adsorbing moisture in processing air and a compressor, operating as a low heat source for the processing air and a high heat source for the regeneration air, and supplying heat for desiccant regeneration to the regeneration air. In an air conditioning system with
An air conditioning system characterized by regenerating a desiccant by heating a part of regenerated air with superheated steam of a refrigerant compressed by a compressor.
【請求項2】 デシカントを通過する処理空気および再
生空気の流路区画を少なくとも処理空気の水分吸着工程
を行う第1の区画と、再生空気の第1の再生工程を行う
第2の区画と、再生空気の第2の再生工程を行う第3の
区画とに分割し、デシカントが第1の区画、第2の区
画、第3の区画を経て第1の区画に戻るよう構成し、か
つ前記ヒートポンプの高熱源熱交換器を少なくとも第1
の高熱源熱交換器と第2の高熱源熱交換器とを含んで
なくとも2つの熱交換器で構成し、圧縮機から吐出され
た冷媒が第1の高熱源熱交換器から第2の高熱源熱交換
器の順に流れるよう構成し、かつ再生空気は第2の高熱
源熱交換器を通過したのち分岐して、一部が前記第2の
区画を通過し、分岐した残りの再生空気は前記ヒートポ
ンプの第1の高熱源熱交換器を経た後、前記第3の区画
を通過するよう構成することによって、前記分岐した残
りの再生空気を冷媒の過熱蒸気で加熱してデシカントを
再生することを特徴とする請求項1に記載の空調システ
ム。
2. A flow path section for processing air and regeneration air passing through a desiccant, a first section for performing at least a moisture adsorption step of processing air, a second section for performing a first regeneration step of regeneration air, A third section for performing a second regeneration step of the regeneration air, wherein the desiccant is configured to return to the first section via the first section, the second section, the third section, and the heat pump. At least the first heat source heat exchanger
At least two heat exchangers including the first heat source heat exchanger and the second high heat source heat exchanger, and the refrigerant discharged from the compressor is provided with the first high heat source heat exchanger. configured to flow from vessel in the order of the second high heat source heat exchanger, and regeneration air is branched after passing through the second high heat source heat exchanger, a portion passes through the second compartment, the branch after the remaining regeneration air which has passed through the first high heat source heat exchanger of the heat pump, by configuring so as to pass the third compartment, and the branch remaining
The air conditioning system according to claim 1, wherein the regenerated air is heated by superheated steam of the refrigerant to regenerate the desiccant.
【請求項3】 デシカントがロータ形状をしており、デ
シカントが回転することによって第1の区画、第2の区
画、第3の区画を経て第1の区画に戻るよう構成したこ
とを特徴とする請求項2に記載の空調システム。
3. The desiccant has a rotor shape, and is configured to return to the first section via the first section, the second section, and the third section by rotating the desiccant. The air conditioning system according to claim 2.
【請求項4】 ヒートポンプの圧縮機に流入する冷媒を
圧縮後の冷媒の飽和蒸気で加熱することによって、圧縮
後の冷媒の温度を高くすることを特徴とする請求項1乃
至3のいずれかに記載の空調システム。
4. The compressor according to claim 1, wherein the refrigerant flowing into the compressor of the heat pump is heated with saturated vapor of the compressed refrigerant to increase the temperature of the compressed refrigerant. The described air conditioning system.
【請求項5】 ヒートポンプの第1の高熱源熱交換器と
第2の高熱源熱交換器を結ぶ冷媒経路中の冷媒と圧縮機
に流入する冷媒とを熱交換させることによって圧縮機に
流入する冷媒を加熱することを特徴とする請求項4に記
載の空調システム。
5. A refrigerant in a refrigerant path connecting the first heat source heat exchanger and the second high heat source heat exchanger of the heat pump and the refrigerant flowing into the compressor are heat-exchanged to flow into the compressor. The air conditioning system according to claim 4, wherein the refrigerant is heated.
【請求項6】 ヒートポンプの低熱源熱交換器と圧縮機
を結ぶ冷媒の低圧経路中に冷媒熱交換器を設け、該冷媒
熱交換器のもう一方の媒体経路にヒートポンプの第1の
高熱源熱交換器と第2の高熱源熱交換器を結ぶ冷媒の高
圧経路中の冷媒を導いて熱交換させることによって圧縮
機に流入する冷媒を加熱することを特徴とする請求項4
又は5に記載の空調システム。
6. A refrigerant heat exchanger is provided in a low pressure path of a refrigerant connecting the low heat source heat exchanger of the heat pump and the compressor, and a first heat source heat of the heat pump is provided in another medium path of the refrigerant heat exchanger. The refrigerant flowing into the compressor is heated by guiding the refrigerant in a high pressure path of the refrigerant connecting the exchanger and the second high heat source heat exchanger to perform heat exchange.
Or the air conditioning system according to 5.
【請求項7】 ヒートポンプの低熱源熱交換器と圧縮機
を結ぶ冷媒の低圧経路中に冷媒熱交換器を設け、かつヒ
ートポンプの第1の高熱源熱交換器と第2の高熱源熱交
換器を結ぶ冷媒の高圧経路中に気液分離器を設け、該気
液分離器で気相の冷媒を分離し、前記冷媒熱交換器に導
き凝縮させることによって圧縮機に流入する冷媒を加熱
することを特徴とする請求項4乃至6のいずれかに記載
の空調システム。
7. A first heat source heat exchanger and a second high heat source heat exchanger of a heat pump, wherein a refrigerant heat exchanger is provided in a low pressure path of the refrigerant connecting the low heat source heat exchanger of the heat pump and the compressor. Providing a gas-liquid separator in a high-pressure path of the refrigerant connecting the refrigerant, separating the gas-phase refrigerant by the gas-liquid separator, guiding the refrigerant to the refrigerant heat exchanger, condensing the refrigerant, and heating the refrigerant flowing into the compressor. The air conditioning system according to any one of claims 4 to 6, wherein:
【請求項8】 気液分離器の気相を取り出す高圧冷媒の
経路を冷媒熱交換器に導くとともに、前記気液分離器の
液相を取り出す経路の途中に絞りを設け、該絞りを経た
経路と前記冷媒熱交換器を経た高圧冷媒の経路とを合流
させたのち、ヒートポンプの第2の高熱源熱交換器に導
くよう構成したことを特徴とする請求項7に記載の空調
システム。
8. A high-pressure refrigerant path for extracting a gaseous phase of the gas-liquid separator is guided to a refrigerant heat exchanger, and a throttle is provided in the middle of a path for extracting the liquid phase of the gas-liquid separator. The air-conditioning system according to claim 7, wherein the air-conditioning system is configured to join the high-pressure refrigerant through the refrigerant heat exchanger and then to a second heat source heat exchanger of the heat pump.
JP9024197A 1997-03-25 1997-03-25 Air conditioning system Expired - Fee Related JP2948776B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP9024197A JP2948776B2 (en) 1997-03-25 1997-03-25 Air conditioning system
MYPI98001295A MY126406A (en) 1997-03-25 1998-03-25 Air conditioning system
CN98803652A CN1123738C (en) 1997-03-25 1998-03-25 Air conditioning system
US09/381,802 US6199392B1 (en) 1997-03-25 1998-03-25 Air conditioning system
CNB031545580A CN1236258C (en) 1997-03-25 1998-03-25 Air-conditioning system
PCT/JP1998/001311 WO1998043024A1 (en) 1997-03-25 1998-03-25 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9024197A JP2948776B2 (en) 1997-03-25 1997-03-25 Air conditioning system

Publications (2)

Publication Number Publication Date
JPH10267576A JPH10267576A (en) 1998-10-09
JP2948776B2 true JP2948776B2 (en) 1999-09-13

Family

ID=13993010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9024197A Expired - Fee Related JP2948776B2 (en) 1997-03-25 1997-03-25 Air conditioning system

Country Status (1)

Country Link
JP (1) JP2948776B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111089354A (en) * 2019-12-09 2020-05-01 珠海格力电器股份有限公司 Dehumidification system and fresh air dehumidifier

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4912382B2 (en) * 2008-10-31 2012-04-11 三菱電機株式会社 Refrigeration air conditioner
JP5405801B2 (en) 2008-11-07 2014-02-05 ヤンマー株式会社 Desiccant air conditioner
CN117956747B (en) * 2023-12-14 2024-07-12 广东同方瑞风节能科技股份有限公司 Constant temperature and humidity air conditioning system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111089354A (en) * 2019-12-09 2020-05-01 珠海格力电器股份有限公司 Dehumidification system and fresh air dehumidifier

Also Published As

Publication number Publication date
JPH10267576A (en) 1998-10-09

Similar Documents

Publication Publication Date Title
US6199392B1 (en) Air conditioning system
JP2968231B2 (en) Air conditioning system
JP2994303B2 (en) Air conditioning system and operating method thereof
US5761923A (en) Air conditioning system
US20090139254A1 (en) Thermodynamic closed loop desiccant rotor system and process
JP3585308B2 (en) Desiccant air conditioner
WO2000000774A1 (en) Heat exchanger, heat pump, dehumidifier, and dehumidifying method
WO2001038799A1 (en) Heat pump and dehumidifying device
JP5611079B2 (en) Outside air treatment equipment using desiccant rotor
CN112050618B (en) Triple-effect heat recovery type air mixing type heat pump drying system and application thereof
JP4948513B2 (en) Air conditioner, its operating method and air conditioning system
CN107726480B (en) Semi-decoupling type graded dehumidification and cooling dehumidification heat pump system and method
JP2000257907A (en) Dehumidifying apparatus
JP2948776B2 (en) Air conditioning system
JP3693581B2 (en) Dehumidifier
JP2968230B2 (en) Air conditioning system
CN113983570A (en) Water taking and dehumidifying integrated heat pump system and method based on dehumidifying heat exchanger
JP2000346396A (en) Method and device for dehumidification
JP3765932B2 (en) Dehumidification air conditioner and dehumidification air conditioning system
JP3699623B2 (en) Heat pump and dehumidifier
JPH1026433A (en) Air conditioning system
JP2000337657A (en) Dehumidifying device and dehumidifying method
JP3874624B2 (en) Heat pump and dehumidifying air conditioner
JPH1026434A (en) Air conditioning system
JPH09196483A (en) Desiccant air-conditioning apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990622

LAPS Cancellation because of no payment of annual fees