JPS6225644Y2 - - Google Patents

Info

Publication number
JPS6225644Y2
JPS6225644Y2 JP1982006365U JP636582U JPS6225644Y2 JP S6225644 Y2 JPS6225644 Y2 JP S6225644Y2 JP 1982006365 U JP1982006365 U JP 1982006365U JP 636582 U JP636582 U JP 636582U JP S6225644 Y2 JPS6225644 Y2 JP S6225644Y2
Authority
JP
Japan
Prior art keywords
evaporator
gas
liquid
refrigerant
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982006365U
Other languages
Japanese (ja)
Other versions
JPS58110760U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP636582U priority Critical patent/JPS58110760U/en
Publication of JPS58110760U publication Critical patent/JPS58110760U/en
Application granted granted Critical
Publication of JPS6225644Y2 publication Critical patent/JPS6225644Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【考案の詳細な説明】 本考案はルームエアコンデイシヨナの省電力化
に関するものであり、特に省電力のために蒸発圧
力を高くしても除湿機能を失なわない冷凍サイク
ルに関するものである。
[Detailed Description of the Invention] The present invention relates to power saving in a room air conditioner, and particularly relates to a refrigeration cycle that does not lose its dehumidifying function even when the evaporation pressure is increased to save power.

従来の冷凍サイクルを第1図に示す。圧縮機1
を出た高温高圧の冷媒は凝縮器2に入り、外気に
放熱して液冷媒になる。液冷媒は減圧器3で減圧
され、低温低圧の冷媒となり、蒸発器4に入る。
蒸発器4で室内から熱をうばいガス冷媒となり、
このガス冷媒は圧縮機1に吸い込まれサイクルを
一循する。ルームエアコンの省電力化において、
消費電力の最も大きい圧縮仕事を低減するのが最
も効果的である。圧縮仕事を低減させるには凝縮
圧力を低下させるかあるいは蒸発圧力を高くする
方法がある。特に後者の場合、第1図に示した従
来の冷凍サイクルでは蒸発圧力を高くすると蒸発
器温度が上昇し、除湿能力がなくなる。例えば室
内条件がJIS条件の温度27℃相対湿度50%の場合
には露点温度は約15.6℃である。したがつて1例
として除湿不能となるときの圧縮機吸込圧力Ps
を求めると以下のようになる。
A conventional refrigeration cycle is shown in FIG. Compressor 1
The high-temperature, high-pressure refrigerant that exits enters the condenser 2, where it radiates heat to the outside air and becomes a liquid refrigerant. The liquid refrigerant is depressurized by the pressure reducer 3 to become a low-temperature, low-pressure refrigerant, and enters the evaporator 4.
The evaporator 4 absorbs heat from the room and becomes a gas refrigerant.
This gas refrigerant is sucked into the compressor 1 and goes through the cycle. In reducing power consumption of room air conditioners,
It is most effective to reduce the compression work that consumes the most power. There are methods to reduce the compression work by lowering the condensing pressure or increasing the evaporation pressure. Particularly in the latter case, in the conventional refrigeration cycle shown in FIG. 1, when the evaporation pressure is increased, the evaporator temperature rises and the dehumidification ability is lost. For example, when the indoor conditions are JIS temperature of 27°C and relative humidity of 50%, the dew point temperature is about 15.6°C. Therefore, as an example, the compressor suction pressure Ps when dehumidification becomes impossible
The result is as follows.

蒸発器において蒸発器伝熱面表面と冷媒間には
熱抵抗があり、約2.5℃程度の温度差が生じる。
したがつて伝熱面表面温度t=15.6℃のときの
冷媒温度は13.1℃であり、これを圧力に換算する
と蒸発器圧力Pe=6.6Kg/cm2Gとなる。さらに蒸
発器4の出口と圧縮機1の吸込口との間に圧力損
失があり、この圧力差Pe−Psは一般に約0.3Kg/
cm2程度ある。したがつて蒸発器伝熱面温度が15.6
℃となり、除湿不能となるときの圧縮機吸込圧力
は6.3Kg/cm2G程度になる。したがつて第1図に
示した従来の冷凍サイクルで例えば蒸発器4の伝
熱面積および蒸発器を通る空気風量を共に100%
増大した場合、EERはおよそ17%向上するが蒸
発器表面温度は19.1℃となり、室内のJIS条件に
おける露点温度15.6℃を大幅に越えるため除湿す
ることができない。
In the evaporator, there is thermal resistance between the evaporator heat transfer surface and the refrigerant, resulting in a temperature difference of approximately 2.5°C.
Therefore, when the heat transfer surface temperature t=15.6°C, the refrigerant temperature is 13.1°C, and when converted into pressure, the evaporator pressure Pe=6.6Kg/cm 2 G. Furthermore, there is a pressure loss between the outlet of the evaporator 4 and the suction port of the compressor 1, and this pressure difference Pe-Ps is generally about 0.3Kg/
It is about cm 2 . Therefore, the evaporator heat transfer surface temperature is 15.6
℃, and the compressor suction pressure when dehumidification becomes impossible is approximately 6.3 kg/cm 2 G. Therefore, in the conventional refrigeration cycle shown in FIG.
If the temperature is increased, the EER will improve by approximately 17%, but the evaporator surface temperature will be 19.1°C, which significantly exceeds the dew point temperature of 15.6°C under indoor JIS conditions, making it impossible to dehumidify.

快適な冷房を行うためには除湿を行い、湿度を
低下させることが不可欠であるため、従来のサイ
クルでは上記例に示したように蒸発器圧力を上げ
ることにより、省電力効果を得ようとしても空気
調和機としての機能を果すことができないという
問題がある。
In order to provide comfortable cooling, it is essential to perform dehumidification and reduce humidity, so in the conventional cycle, even if you try to achieve a power saving effect by increasing the evaporator pressure as shown in the example above, There is a problem that it cannot function as an air conditioner.

本考案の目的は上記した従来技術の欠点をなく
し、蒸発器圧力を上げ省電力化を図ると同時に除
湿能力もあるルームエアコンデイシヨナを提供す
ることにある。
The purpose of the present invention is to eliminate the drawbacks of the prior art described above, and to provide a room air conditioner that increases evaporator pressure, saves power, and has dehumidifying ability.

上記目的を達成するために非共沸混合冷媒を用
いることにより同一蒸発圧力の状態で二蒸発温度
の得られる冷凍サイクルを考案した。
In order to achieve the above object, we devised a refrigeration cycle that can obtain two evaporation temperatures at the same evaporation pressure by using a non-azeotropic mixed refrigerant.

本考案の第1の実施例を第2図に示す。第2図
の構成は圧縮機1、凝縮器2、減圧器3、第1の
蒸発器5、気液分離器6、第2の蒸発器7、吸込
パイプA8、吸込パイプB9を通り圧縮機1へと
サイクルを一循している。さらに気液分離器6で
分離されたガスは吸込パイプC10を通り、吸込
パイプB9に合流するように接続されている。ま
た第1の蒸発器5、第2の蒸発器7と熱交換する
空気の流れ11は第2の蒸発器7を通つてから第
1の蒸発器5に入る。さらに第2図に示した冷凍
サイクル中の冷媒は非共沸混合冷媒(例えばフロ
ン22とフロン13B1)とする。本実施例の動作原
理および動作状態を第2図、第3図を用いて説明
する。第3図は第2図の動作原理を説明するため
の非共沸混合冷媒の相平衡状態を示す定圧(P=
E)における組成対平衡温度線図である。その
横軸は低沸成分(例えばフロン13B1)のモル分
率を%で示したものであり、縦軸は平衡温度を示
している。
A first embodiment of the present invention is shown in FIG. The configuration of FIG. 2 is as follows. It goes through a cycle. Further, the gas separated by the gas-liquid separator 6 passes through a suction pipe C10 and is connected to join the suction pipe B9. Furthermore, the air flow 11 that exchanges heat with the first evaporator 5 and the second evaporator 7 enters the first evaporator 5 after passing through the second evaporator 7 . Furthermore, the refrigerant in the refrigeration cycle shown in FIG. 2 is a non-azeotropic mixed refrigerant (for example, Freon 22 and Freon 13B1). The operating principle and operating state of this embodiment will be explained using FIGS. 2 and 3. Figure 3 shows the phase equilibrium state of a non-azeotropic refrigerant mixture at constant pressure (P=
FIG. 2 is a composition versus equilibrium temperature diagram for P E ). The horizontal axis shows the mole fraction of a low-boiling component (eg, Freon 13B1) in %, and the vertical axis shows the equilibrium temperature.

冷凍サイクル中の混合冷媒の低沸成分のモル分
率を第3図に示すようにx0の状態とし、減圧器
3を出たときの圧力PE温度TE0とするとき、減
圧器3を出たときの冷媒はXE0Lの組成の液冷媒
とXE0Gの組成のガス冷媒との混合状態にある。
この場合の液とガスの混合割合は液が点E0−
E0Gガスが点E0−E0Lの長さの割合になつてい
る。上記混合冷媒は第1の蒸発器5に入り空気1
1と熱交換することにより第1の蒸発器5内の液
成分は点E0Lから点E1Lに沿つて変化し、ガス成
分は点E0Gから点E1Gに沿つて変化し、第1の蒸
発器5出口の液およびガスの混合状態における平
衡温度はTE1になつている。第1の蒸発器を出た
液とガスは気液分離器6に入り、XE1Lの組成の
液とXE1Gの組成のガスに分離される。分離され
たガスは吸込パイプC10、吸込パイプB9を通
り圧縮機1に吸込まれる。
When the molar fraction of the low-boiling components of the mixed refrigerant in the refrigeration cycle is set to x0 as shown in Fig. 3, and the pressure P E when exiting the pressure reducer 3 is set to the temperature T E0 , the At this time, the refrigerant is in a mixed state of a liquid refrigerant with a composition of X E0L and a gas refrigerant with a composition of X E0G .
In this case, the mixing ratio of liquid and gas is that the liquid is at the point E0−
E0G gas is in proportion to the length of point E0−E0L. The above mixed refrigerant enters the first evaporator 5 and air 1
By exchanging heat with 1, the liquid component in the first evaporator 5 changes along the point E 0 L to the point E 1 L, and the gas component changes along the point E 0 G to the point E 1 G. , the equilibrium temperature in the mixed state of liquid and gas at the outlet of the first evaporator 5 is T E1 . The liquid and gas exiting the first evaporator enter the gas-liquid separator 6, where they are separated into a liquid with a composition of X E1L and a gas with a composition of X E1G . The separated gas is sucked into the compressor 1 through the suction pipe C10 and the suction pipe B9.

一方気液分離器6で分離された液は点E1Lの状
態であり、この液は第2の蒸発器7に入り、空気
11と熱交換することにより液成分は点E1Lから
点E2Lに沿つて組成が変化しながら蒸発し第2の
蒸発器出口の点E2Lで液成分の量は零になる。こ
の間ガス成分は点E1Gから点E2Gに沿つて変化
し、第2の蒸発器7の出口におけるガス成分は点
E2Gになりその組成は第2の蒸発器入口の液組成
E1Lと同じになる。これは第2の蒸発器出口で
は液成分が零になることを意味している。
On the other hand, the liquid separated by the gas-liquid separator 6 is in the state of point E 1 L, and this liquid enters the second evaporator 7, and by exchanging heat with the air 11, the liquid component is transferred from point E 1 L to point E 1 L. The liquid component evaporates while changing its composition along E 2 L, and the amount of the liquid component becomes zero at the second evaporator outlet point E 2 L. During this time, the gas composition changes along the point E 1 G to the point E 2 G, and the gas composition at the outlet of the second evaporator 7 changes from the point E 1 G to the point E 2 G.
E 2 G, and its composition is the same as the liquid composition X E1L at the inlet of the second evaporator. This means that the liquid component becomes zero at the second evaporator outlet.

第2の蒸発器7を出たガスは吸込パイプA8、
吸込パイプA9を通り圧縮機1に吸い込まれ圧縮
され、高圧ガスは凝縮器2で凝縮し、再び減圧器
3に入りサイクルを一循する。
The gas exiting the second evaporator 7 is passed through the suction pipe A8,
The high-pressure gas is sucked into the compressor 1 through the suction pipe A9 and compressed, and the high-pressure gas is condensed in the condenser 2, and then enters the pressure reducer 3 again to complete the cycle.

上記動作から明らかなように第1の蒸発器5の
動作温度はTE0からTE1の範囲であり、第2の蒸
発器7の動作温度はTE1からTE2となり、同一低
圧側圧力PEの状態で2蒸発温度を作ることがで
きる。したがつて、成分Aとしてフロン22を用い
成分Bとしてフロン22より低沸点冷媒を混合させ
ることにより、フロン22のみ用いたサイクルと同
じ蒸発器圧力に設定しても蒸発器温度はフロン22
のみを用いたサイクルの蒸発温度TAよりも低い
第2の蒸発器(蒸発温度TE1〜TE2)およびそれ
よりもさらに温度の低い第1の蒸発器(蒸発温度
E0〜TE1)の2温度に設定でき蒸発圧力を上げ
ていつても第1の蒸発器を除湿用蒸発器とするこ
とにより除湿運転が可能な範囲が広がり快適な冷
房運転が可能になる。
As is clear from the above operation, the operating temperature of the first evaporator 5 ranges from T E0 to T E1 , and the operating temperature of the second evaporator 7 ranges from T E1 to T E2 , with the same low pressure side pressure P E 2 evaporation temperatures can be created in the state of . Therefore, by mixing Freon 22 as component A and a refrigerant with a boiling point lower than Freon 22 as component B, the evaporator temperature will be lower than that of Freon 22 even if the evaporator pressure is set to be the same as in a cycle using only Freon 22.
The second evaporator (evaporation temperature T E1 - T E2 ) is lower than the evaporation temperature T A of the cycle using only the second evaporator (evaporation temperature T E1 - T E2 ) and the first evaporator (evaporation temperature T E0 - T E1 ) whose temperature is even lower than that. By using the first evaporator as a dehumidifying evaporator even when two temperatures can be set and the evaporation pressure is increased, the range in which dehumidifying operation can be performed is expanded and comfortable cooling operation is possible.

第4図に第2の実施例を示す。第2の実施例は
第1の実施例に対して以下の点を改善したもので
ある。第1の実施例における第1の蒸発器と第2
の蒸発器の動作蒸発温度は近接している。したが
つて第1の蒸発器と第2の蒸発器の動作温度範囲
をはなすことにより、第1の蒸発器を除湿用熱交
換器とし、第2の蒸発器を顕熱熱交換器として利
用するために第4図に示した第2の実施例が有効
になる。上記した除湿用熱交換器と顕熱々交換器
に区別すると除湿水を受けるドレン受を除湿用熱
交換器のみに取付ければよいというメリツトがあ
る。
FIG. 4 shows a second embodiment. The second embodiment has the following improvements over the first embodiment. The first evaporator and the second evaporator in the first embodiment
The operating evaporation temperatures of the evaporators are close. Therefore, by separating the operating temperature ranges of the first evaporator and the second evaporator, the first evaporator can be used as a dehumidifying heat exchanger, and the second evaporator can be used as a sensible heat exchanger. Therefore, the second embodiment shown in FIG. 4 becomes effective. A distinction between the dehumidifying heat exchanger and the sensible heat exchanger described above has the advantage that a drain receiver for receiving dehumidified water only needs to be attached to the dehumidifying heat exchanger.

第2の実施例の構成を第4図により説明する。
圧縮機1を出た冷媒は凝縮器2減圧器3第1の蒸
発器5、第1の気液分離器6と流れるように接続
されている。第1の気液分離器6で分離されたガ
スは吸込パイプC10、吸込パイプB9を通り圧
縮機1に吸込まれるように接続されている。一方
第1の気液分離器6で分離された液冷媒はパイプ
D12をとおり凝縮器2の一部に設けられた熱交
換器13で吸熱し、パイプE14を通り第2の気
液分離器15に流れるように接続されている。第
2の気液分離器15で分離されたガスは吸込パイ
プF16吸込パイプB9を通り圧縮機1に吸込ま
れるように接続されている。第2の気液分離器1
5で分離された液冷媒は第2の蒸発器7、吸込パ
イプA8、吸込パイプB9を通り圧縮機に吸込ま
れるように接続されている。さらに本実施例でも
冷凍サイクル中の冷媒は非共沸混合冷媒とする。
The configuration of the second embodiment will be explained with reference to FIG.
The refrigerant leaving the compressor 1 is connected to a condenser 2, a pressure reducer 3, a first evaporator 5, and a first gas-liquid separator 6 so as to flow therein. The gas separated by the first gas-liquid separator 6 is connected to be sucked into the compressor 1 through a suction pipe C10 and a suction pipe B9. On the other hand, the liquid refrigerant separated by the first gas-liquid separator 6 passes through the pipe D12, absorbs heat in the heat exchanger 13 provided in a part of the condenser 2, and passes through the pipe E14 to the second gas-liquid separator 15. connected in a fluid manner. The gas separated by the second gas-liquid separator 15 is connected to be sucked into the compressor 1 through a suction pipe F16 and a suction pipe B9. Second gas-liquid separator 1
The liquid refrigerant separated in step 5 passes through the second evaporator 7, suction pipe A8, and suction pipe B9, and is connected to be sucked into the compressor. Further, in this embodiment as well, the refrigerant in the refrigeration cycle is a non-azeotropic mixed refrigerant.

本実施例の動作原理および動作状態を第4図、
第5図を用いて説明する。第5図は第4図の動作
原理を説明するための非共沸混合冷媒の相平衡状
態を示す定圧(P=PE)における組成対平衡温
度線図である。その横軸、縦軸は第3図の説明と
同じである。
The operating principle and operating state of this embodiment are shown in Figure 4.
This will be explained using FIG. FIG. 5 is a composition versus equilibrium temperature diagram at constant pressure (P=P E ) showing the phase equilibrium state of the non-azeotropic mixed refrigerant for explaining the operating principle of FIG. 4. FIG. The horizontal and vertical axes are the same as those explained in FIG.

冷凍サイクル中の混合冷媒の低沸成分のモル分
率を第5図に示すようにX0の状態とし、減圧器
3を出たときの圧力PE温度TE0とするとき、減
圧器3を出た冷媒はXE0Lの組成の液冷媒とXE0G
の組成のガス冷媒の混合状態にある。この場合の
液とガスの混合割合は液が点E0−E0G、ガスが点
E0−E0Lの長さの割合になつている。上記混合冷
媒は第1の蒸発器5に入り、空気11と熱交換す
ることにより、第1の蒸発器5内の液組成は点
E0Lから点E1Lに沿つて変化し、ガス組成は点
E0Gから点E1Gに沿つて変化し、第1の蒸発器5
出口の液およびガス混合状態における平衡温度は
E1になつている。第1の蒸発器を出た液とガス
は第1の気液分離器6に入り、XE1Lの組成の液
とXE1Gの組成のガスに分離される。分離された
ガスは吸込パイプC10、吸込パイプB9を通り
圧縮機1に吸込まれる。一方第1の気液分離器6
で分離された液は点E1Lの組成であり、この液は
パイプD12をとおり凝縮器2の一部に設けられ
た熱交換器13で凝縮器の高温高圧冷媒を冷却し
上記液冷媒は点E1Lから点E2Lに沿つて蒸発す
る。その間のガス冷媒の組成は点E1Gから点E2G
に沿つて変化し、熱交換器13の出口でのガス組
成は点E2Gになる。したがつて熱交換器13の出
口における液の組成はXE2L、ガスの組成はXE2G
で両者の温度はTE2である。また熱交換器13出
口における液とガスの混合割合は液が点E2
E2G、ガスが点E2−E2Lの長さの割合になつてい
る。熱交換器13を出た冷媒はパイプE14を通
り第2の気液分離器15に入り組成XE2Lの液と
組成XE2Gのガスに分離される。分離されたガス
は吸込パイプF16、吸込パイプB9を通り圧縮
機1に吸込まれる。
When the molar fraction of the low-boiling components of the mixed refrigerant in the refrigeration cycle is set to X 0 as shown in FIG. The refrigerant that came out is a liquid refrigerant with a composition of X E0L and X E0G.
It is a mixture of gas refrigerants with a composition of . In this case, the mixing ratio of liquid and gas is the point E 0 −E 0 G for the liquid and the point E 0 −E 0 G for the gas.
It is a ratio of the length of E 0 −E 0 L. The mixed refrigerant enters the first evaporator 5 and exchanges heat with the air 11, so that the liquid composition in the first evaporator 5 changes to a point.
It changes along the point E 1 L from E 0 L, and the gas composition changes from the point
Varying along the point E 1 G from E 0 G, the first evaporator 5
The equilibrium temperature in the liquid and gas mixed state at the outlet is T E1 . The liquid and gas exiting the first evaporator enter the first gas-liquid separator 6, where they are separated into a liquid with a composition of X E1L and a gas with a composition of X E1G . The separated gas is sucked into the compressor 1 through the suction pipe C10 and the suction pipe B9. On the other hand, the first gas-liquid separator 6
The separated liquid has a composition of point E 1 L, and this liquid passes through the pipe D12 and cools the high temperature and high pressure refrigerant in the condenser in the heat exchanger 13 provided in a part of the condenser 2. Evaporates from point E 1 L to point E 2 L. The composition of the gas refrigerant between points E 1 G and E 2 G
The gas composition at the outlet of the heat exchanger 13 is at the point E 2 G. Therefore, the composition of the liquid at the outlet of the heat exchanger 13 is X E2L and the composition of the gas is X E2G
The temperature of both is T E2 . Also, the mixing ratio of liquid and gas at the outlet of the heat exchanger 13 is such that the liquid is at the point E 2
E 2 G, the gas is in proportion to the length of the point E 2 −E 2 L. The refrigerant leaving the heat exchanger 13 passes through the pipe E14 and enters the second gas-liquid separator 15, where it is separated into a liquid having a composition of X E2L and a gas having a composition of X E2G . The separated gas is sucked into the compressor 1 through the suction pipe F16 and the suction pipe B9.

一方第2の気液分離器15で分離された液は点
E2Lの状態であり、この液は第2の蒸発器7に入
り空気11と熱交換することにより液組成は点
E2Lから点E3Lに沿つて変化しながら蒸発し、第
2の蒸発器出口の点E2Lで液成分の量は零にな
る。この間ガス成分の組成は点E2Gから点E3Gに
沿つて変化する。
On the other hand, the liquid separated in the second gas-liquid separator 15 is
E 2 L, this liquid enters the second evaporator 7 and exchanges heat with the air 11, so that the liquid composition changes to a point.
The liquid component evaporates while changing from E 2 L to point E 3 L, and the amount of liquid component becomes zero at point E 2 L at the second evaporator outlet. During this time, the composition of the gas components changes from point E 2 G to point E 3 G.

第2の蒸発器7を出たガスは吸込パイプA8、
吸込パイプB9を通り圧縮機1に吸込まれ、圧縮
され、高圧ガスは凝縮器2で凝縮し、再び減圧器
3に入り、サイクルを一循する。
The gas exiting the second evaporator 7 is passed through the suction pipe A8,
The high-pressure gas is sucked into the compressor 1 through the suction pipe B9 and compressed, and the high-pressure gas is condensed in the condenser 2, enters the pressure reducer 3 again, and completes the cycle.

上記動作説明から明らかなように蒸発器5の動
作温度はTE0からTE1の範囲でであり、第2の蒸
発器7の動作温度はTE2からTE3の範囲となり、
同一低圧側圧力PEの状態で互に隔れた温度範囲
を持つ2蒸発温度を得ることができる。したがつ
て第1の蒸発器を除湿用熱交換器とし第2の蒸発
器を顕熱用熱交換器として区別して使用用するこ
とができる。
As is clear from the above operation description, the operating temperature of the evaporator 5 is in the range from T E0 to T E1 , and the operating temperature of the second evaporator 7 is in the range from T E2 to T E3 .
Two evaporation temperatures having mutually separated temperature ranges can be obtained under the same low pressure side pressure P E . Therefore, the first evaporator can be used as a dehumidifying heat exchanger and the second evaporator can be used as a sensible heat exchanger.

なお第1の実施例、第2の実施例ともに第1の
蒸発器、第2の蒸発器と熱交換する空気の流れれ
に対して、第2の蒸発器を上流側、第1の蒸発器
を下流側に配置した理由はそれぞれの蒸発器と空
気流との温度差を有効にとり、熱交換効率を上げ
るためである。また第1,第2の実施例では第1
の蒸発器と第2の蒸発器を分離して図示したが、
必要に応じて一体にしてもよい。
In both the first embodiment and the second embodiment, with respect to the flow of air that exchanges heat with the first evaporator and the second evaporator, the second evaporator is placed on the upstream side, and the second evaporator is placed on the upstream side, and The reason for placing the evaporator on the downstream side is to effectively take advantage of the temperature difference between each evaporator and the air flow and increase heat exchange efficiency. In addition, in the first and second embodiments, the first
Although the evaporator and the second evaporator are illustrated separately,
They may be integrated if necessary.

非共沸混合冷媒を用い、第1の蒸発器と第2の
蒸発器の動作温度をかえることにより、単一冷媒
を用いたサイクルと同じ低圧側圧力の状態で単一
冷媒を用いたサイクルよりも低い蒸発温度を第1
の蒸発器で得ることができるため、省電力のため
に圧縮機吸込圧力を上げても除湿可能となり、快
適な冷房ができる。
By using a non-azeotropic refrigerant mixture and changing the operating temperatures of the first evaporator and the second evaporator, the cycle using a single refrigerant can be made at the same low pressure side as the cycle using a single refrigerant. The first is the low evaporation temperature.
Since the air can be obtained using an evaporator, it is possible to dehumidify even if the compressor suction pressure is increased to save power, providing comfortable cooling.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術を示すサイクル構成図、第2
図、第4図は本考案の実施例を示すサイクル構成
図、第3図、第5図は本考案の原理を示す非共沸
混合冷媒の定圧における組成対平衡温度線図であ
る。 1:圧縮機、2:凝縮器、3:減圧器、4:蒸
発器、5:第1の蒸発器、6:第1の気液分離
器、7:第2の蒸発器、8:吸込パイプA、9:
吸込パイプA、10:吸込パイプC、11:空気
の流れ、12:パイプD、13:熱交換器、1
4:パイプE、15:第2の気液分離器、16:
吸込パイプF。
Figure 1 is a cycle configuration diagram showing the conventional technology, Figure 2
4 are cycle configuration diagrams showing an embodiment of the present invention, and FIGS. 3 and 5 are composition versus equilibrium temperature diagrams at constant pressure of a non-azeotropic mixed refrigerant showing the principle of the present invention. 1: Compressor, 2: Condenser, 3: Pressure reducer, 4: Evaporator, 5: First evaporator, 6: First gas-liquid separator, 7: Second evaporator, 8: Suction pipe A.9:
Suction pipe A, 10: Suction pipe C, 11: Air flow, 12: Pipe D, 13: Heat exchanger, 1
4: Pipe E, 15: Second gas-liquid separator, 16:
Suction pipe F.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧縮機、凝縮器、減圧器、第1の蒸発器、第2
の蒸発器、気液分離器を主な構成要素とする冷凍
サイクルで、冷凍サイクル内の冷媒として非共沸
混合冷媒を封入した冷凍サイクルにおいて、圧縮
機、凝縮器、減圧器、第1の蒸発器、気液分離器
が順次接続され、上記気液分離器で分離されるガ
ス冷媒を上記圧縮機の吸込側に吸込むことのでき
る配管を上記気液分離器と圧縮機の吸込側の間に
設け、上記気液分離器で分離される液冷媒を第2
の蒸発器に導びく配管を設け、さらに第2の蒸発
器と圧縮機の吸込側の間に配管を設けたことを特
徴とする冷凍サイクル。
Compressor, condenser, pressure reducer, first evaporator, second
In the refrigeration cycle, which mainly comprises an evaporator and a gas-liquid separator, and in which a non-azeotropic mixed refrigerant is charged as the refrigerant in the refrigeration cycle, a compressor, a condenser, a pressure reducer, a first evaporator, and a gas-liquid separator are connected in sequence, and a pipe capable of sucking the gas refrigerant separated in the gas-liquid separator into the suction side of the compressor is provided between the gas-liquid separator and the suction side of the compressor, and the liquid refrigerant separated in the gas-liquid separator is sucked into the suction side of the compressor,
a piping leading to the first evaporator, and a piping further provided between the second evaporator and the suction side of the compressor.
JP636582U 1982-01-22 1982-01-22 refrigeration cycle Granted JPS58110760U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP636582U JPS58110760U (en) 1982-01-22 1982-01-22 refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP636582U JPS58110760U (en) 1982-01-22 1982-01-22 refrigeration cycle

Publications (2)

Publication Number Publication Date
JPS58110760U JPS58110760U (en) 1983-07-28
JPS6225644Y2 true JPS6225644Y2 (en) 1987-06-30

Family

ID=30019146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP636582U Granted JPS58110760U (en) 1982-01-22 1982-01-22 refrigeration cycle

Country Status (1)

Country Link
JP (1) JPS58110760U (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55837A (en) * 1978-06-19 1980-01-07 Tokyo Shibaura Electric Co Heattpumpptype refrigeration cycle
JPS5520360A (en) * 1978-07-31 1980-02-13 Tokyo Shibaura Electric Co Heat pump apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5690660U (en) * 1979-12-17 1981-07-20

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55837A (en) * 1978-06-19 1980-01-07 Tokyo Shibaura Electric Co Heattpumpptype refrigeration cycle
JPS5520360A (en) * 1978-07-31 1980-02-13 Tokyo Shibaura Electric Co Heat pump apparatus

Also Published As

Publication number Publication date
JPS58110760U (en) 1983-07-28

Similar Documents

Publication Publication Date Title
WO2018045697A1 (en) High-efficient fresh air dehumidifier based on heat pump heat recovery and dual-evaporation temperature
CN110285511A (en) A kind of the direct-expansion-type air-conditioner set and cool-down dehumidification step processing method of sensible heat and latent heat segment processing
CN103615836B (en) A kind of screw total heat recovery air-cooled heat-pump air-conditioner group
CN209558605U (en) A kind of humiture independence control air conditioner system fresh air dehumidifying system
CN206269310U (en) The energy recovery type big enthalpy difference accumulation of energy Fresh air handling units of double low-temperature receivers
US20040226686A1 (en) Heat pump and dehumidifying air-conditioning apparatus
JP2006317012A (en) Air conditioner
CN209371555U (en) Ultra low temperature overlapping heat pump unit
JPS6225644Y2 (en)
Hai et al. Design and research of the digital VRV multi-connected units with three pipes type heat recovery system
JPS6218933Y2 (en)
US20040118133A1 (en) Heat pump and dehumidifying air-conditioning apparatus
JPS6117318Y2 (en)
CN206488366U (en) The air-conditioner set of condensing pressure is controlled with pressure controller
JPS6150211B2 (en)
CN217715211U (en) High-efficient dehumidifier suitable for under low humidity operating mode
JPH02272265A (en) Two stage compression refrigeration cycle and heat-pump type air conditioner
CN216347034U (en) Heat exchange system and air conditioner with same
CN219868242U (en) Low dew point dehumidifier
CN220541218U (en) Constant temperature and humidity refrigerating air conditioning system
CN218379966U (en) Refrigeration system assembly based on cold and warm air blower
CN207729741U (en) A kind of water-cooled packaged air-conditioner
CN211177052U (en) Dehumidification structure using refrigerant reheating technology
JPS6246781B2 (en)
CN206488424U (en) Water cooling constant temperature dehumidification heat recovery air conditioner unit