JPS6246781B2 - - Google Patents

Info

Publication number
JPS6246781B2
JPS6246781B2 JP18404781A JP18404781A JPS6246781B2 JP S6246781 B2 JPS6246781 B2 JP S6246781B2 JP 18404781 A JP18404781 A JP 18404781A JP 18404781 A JP18404781 A JP 18404781A JP S6246781 B2 JPS6246781 B2 JP S6246781B2
Authority
JP
Japan
Prior art keywords
heat
refrigerant
boiling point
component containing
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18404781A
Other languages
Japanese (ja)
Other versions
JPS5885066A (en
Inventor
Juji Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18404781A priority Critical patent/JPS5885066A/en
Publication of JPS5885066A publication Critical patent/JPS5885066A/en
Publication of JPS6246781B2 publication Critical patent/JPS6246781B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Central Heating Systems (AREA)

Description

【発明の詳細な説明】 本発明は非共沸混合冷媒を用いることによつて
高効率で省エネルギな熱ポンプ装置を提供するこ
とを目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION An object of the present invention is to provide a heat pump device that is highly efficient and energy-saving by using a non-azeotropic mixed refrigerant.

従来、家庭内温排熱、太陽熱、燃焼熱等の排熱
エネルギを熱ポンプ装置の蒸発器で回収する技術
は公知のものである。またかかる排熱エネルギは
その特性上高温度であつても熱量的に不足がち
で、かつまた間欠的であり、外気からの熱回収と
併用するため、2つの蒸発器で直列又は並列に回
収する技術も公知のものである。
BACKGROUND ART Conventionally, there is a well-known technique for recovering waste heat energy such as domestic heat waste heat, solar heat, combustion heat, etc. using an evaporator of a heat pump device. In addition, due to its characteristics, such waste heat energy tends to be insufficient in calorific value even at high temperatures, and is also intermittent, so in order to use it in conjunction with heat recovery from the outside air, it is collected by two evaporators in series or in parallel. The techniques are also known.

しかるに、かかる公知の技術においては、一つ
の圧縮機を用いた冷凍サイクルにおいて、単一冷
媒を用いたものであり、蒸発器における蒸発温度
は一定となり、かつその一定となる蒸発温度は排
熱エネルギの温度レベルと外気の温度レベルの低
い方よりも必ず低温となる。従つて蒸発器におい
て過熱が大きくなるだけだつたり、温度レベルの
高い方にサイクルを切換えたりして利用している
のが現状で、サイクル効率上は必ずしも改善され
たものではなかつた。
However, in such known technology, a single refrigerant is used in a refrigeration cycle using one compressor, and the evaporation temperature in the evaporator is constant, and the constant evaporation temperature is equal to the exhaust heat energy. The temperature level will always be lower than the lower of the temperature level of the outside air and the temperature level of the outside air. Therefore, the current situation is that the evaporator simply becomes overheated or the cycle is switched to a higher temperature level, and the cycle efficiency is not necessarily improved.

本発明は、一つの圧縮機、複数の蒸発器を用い
た冷凍サイクルにおいて、非共沸混合冷媒を用い
ることによつて、上記した従来技術の欠点を解消
することを目的としたものである。すなわち、同
一の蒸発圧力でありながら温度レベルの異なる複
数の蒸発器を作製し、異なる温度レベルを持つ複
数の熱源に対応して、高い温度レベルの熱源に対
しては高い蒸発温度をもつ蒸発器で熱交換させ、
低い温度レベルの熱源に対しては低い蒸発温度を
もつ蒸発器で熱交換させることによつて、複数の
熱源から熱回収しながら、従来技術に比して圧縮
機入力を低減させ、高効率で省エネルギが可能と
なるもので、非共沸混合冷媒を用いた一つの圧縮
機を有し、凝縮器出口に高沸点冷媒をより多く含
んだ液相成分と低沸点冷媒をより多く含んだ気相
成分に分離する気液分離器を設け、低沸点冷媒を
より多く含んだ成分を液化膨張後外気と熱交換す
る第1の蒸発器を設け、高沸点冷媒をより多く含
んだ成分を膨張後外気よりも高温度レベルの熱源
と熱交換する第2の蒸発器を設けたことを特徴と
するものである。
The present invention aims to solve the above-described drawbacks of the prior art by using a non-azeotropic refrigerant mixture in a refrigeration cycle using one compressor and a plurality of evaporators. In other words, multiple evaporators with the same evaporation pressure but different temperature levels are manufactured, and in response to multiple heat sources with different temperature levels, an evaporator with a high evaporation temperature is created for a heat source with a high temperature level. exchange heat with
By exchanging heat with a low-temperature heat source using an evaporator with a low evaporation temperature, the system recovers heat from multiple heat sources, reduces compressor input compared to conventional technology, and achieves high efficiency. It enables energy saving, and has one compressor that uses a non-azeotropic mixed refrigerant. At the condenser outlet, a liquid phase component containing more high-boiling point refrigerant and an air containing more low-boiling point refrigerant are used. A gas-liquid separator is provided to separate the phase components, and a first evaporator is provided to exchange heat with outside air after the component containing more low-boiling point refrigerant is liquefied and expanded. It is characterized by the provision of a second evaporator that exchanges heat with a heat source at a higher temperature level than the outside air.

以下本発明の熱ポンプ装置の構成を図面に基づ
いて説明する。第1図は本発明の熱ポンプ装置を
外気とその他の熱源を利用したヒートポンプ暖房
装置に適用した一実施例を示す。1は圧縮機、2
は凝縮器、3は気液分離器であり、非共沸混合冷
媒を用いるとき、液相側には高沸点冷媒をより多
く含み、気相側には低沸点冷媒をより多く含むこ
とになる。4は気液分離器3で分離された液相成
分のための絞り装置、5は気液分離器3で分離さ
れた気相成分を液化するために、絞り装置4で温
度低下された混合冷媒と熱交換するための熱交換
器、6は低沸点冷媒をより多く含んだ成分のため
の絞り装置である。7は低沸点冷媒をより多く含
んだ成分に対する蒸発器、8は高沸点冷媒を多く
含んだ成分に対する蒸発器、9は両蒸発器7,8
からの冷媒を合流させて収容するアキユームレー
タであり、その出口は圧縮機1の吸入口に接続さ
れている。10は室内の空気と凝縮器2を流れる
冷媒を熱交換させるためのフアン、11は外気と
蒸発器7を流れる冷媒を熱交換させるためのフア
ン、12は家庭内温排熱、太陽熱、燃焼熱等の排
熱エネルギを回収した水等の搬送流体と蒸発器8
を流れる冷媒を熱交換させるための搬送管であ
る。
The configuration of the heat pump device of the present invention will be explained below based on the drawings. FIG. 1 shows an embodiment in which the heat pump device of the present invention is applied to a heat pump heating device that uses outside air and other heat sources. 1 is a compressor, 2
is a condenser, and 3 is a gas-liquid separator. When using a non-azeotropic mixed refrigerant, the liquid phase side contains more high-boiling point refrigerant, and the gas phase side contains more low-boiling point refrigerant. . 4 is a throttle device for the liquid phase component separated by the gas-liquid separator 3; 5 is a mixed refrigerant whose temperature has been lowered by the throttle device 4 in order to liquefy the gas phase component separated by the gas-liquid separator 3; 6 is a throttling device for the component containing more low boiling point refrigerant. 7 is an evaporator for the component containing more low boiling point refrigerant, 8 is the evaporator for the component containing more high boiling point refrigerant, 9 is both evaporator 7, 8
This is an accumulator that combines and stores refrigerant from the compressor 1, and its outlet is connected to the suction port of the compressor 1. 10 is a fan for exchanging heat between the indoor air and the refrigerant flowing through the condenser 2, 11 is a fan for exchanging heat between the outside air and the refrigerant flowing through the evaporator 7, and 12 is a domestic exhaust heat, solar heat, combustion heat. A carrier fluid such as water and an evaporator 8 that recover waste heat energy such as
This is a conveyor pipe for heat exchange of the refrigerant flowing through the pipe.

このように、蒸発器7,8は圧縮機1にアキユ
ームレータ9を通じて連通しているので、同じ蒸
発圧力をもつているので、蒸発器8を流れる冷媒
は高沸点冷媒をより多く含んでいるため、低沸点
冷媒をより多く含んだ蒸発器7よりも高温に保つ
ことが可能となる。従つて、凝縮器2における凝
縮温度および蒸発器7における蒸発温度を、従来
の単一冷媒を用いた冷凍サイクルの凝縮温度およ
び蒸発温度と略同一とすると、より高温度レベル
の排熱エネルギを熱回収する蒸発器8の蒸発温度
は蒸発器7の蒸発温度より高温となるため、圧縮
機1の入力を低減することが可能となるものであ
る。
In this way, since the evaporators 7 and 8 communicate with the compressor 1 through the accumulator 9, they have the same evaporation pressure, so the refrigerant flowing through the evaporator 8 contains more high-boiling point refrigerant. Therefore, it is possible to maintain the temperature at a higher temperature than the evaporator 7 which contains a larger amount of low boiling point refrigerant. Therefore, if the condensation temperature in the condenser 2 and the evaporation temperature in the evaporator 7 are made approximately the same as the condensation temperature and evaporation temperature in a conventional refrigeration cycle using a single refrigerant, the exhaust heat energy at a higher temperature level is converted into heat. Since the evaporation temperature of the evaporator 8 for recovery is higher than the evaporation temperature of the evaporator 7, it is possible to reduce the input to the compressor 1.

上記作用を第2図に示した一定圧力における低
沸点冷媒濃度対温度のグラフで説明する。なお、
この第2図においては、説明の都合上一定の凝縮
圧力と蒸発圧力のグラフを上下に並べて配置して
いる。第2図上に示した(a)〜(k)点は、第1図にお
ける(a)〜(k)点における圧力・温度・濃度に対応し
ている。すなわち点(a)点−(b)点間は、凝縮器2に
おける凝縮過程であり、非共沸混合冷媒を用いて
いるため温度低下が見られる。(c)点および(d)点は
気液分離器3で分離された気相および液相の状態
点である。(d)点−(e)点間は、絞り装置4における
絞り過程であり、凝縮圧力から蒸発圧力への圧力
低下とともに、温度低下をもたらす。(e)点−(f)点
間と(c)点−(g)点間は熱交換器5における高沸点冷
媒をより多く含んだ成分と低沸点冷媒をより多く
含んだ成分との熱交換過程であり、(g)点において
冷媒が完全に液化される如く熱交換器5は構成さ
れるものである。(g)点−(h)点間は、絞り装置6に
おける絞り過程であり、同じく凝縮圧力から蒸発
圧力への圧力低下をもたらすとともに(f)点の冷媒
がより多くの高沸点冷媒を含んだ成分であるた
め、(f)点の温度が(h)点の温度より高くなる如く構
成することは容易なことである。(h)点−(i)点間お
よび(f)点−(j)点間は、それぞれ蒸発器7および8
における蒸発過程であり、非共沸混合冷媒の場
合、温度上昇が見られる。(k)点は、蒸発器7,8
からの冷媒が混合されるアキユームレータ9の出
口における状態点であり、過熱蒸気の状態で圧縮
機1に吸入され、圧縮機1では(k)点(蒸発圧力)
から(a)点(凝縮圧力)まで圧縮される。かかる混
合冷媒の状態変化を通じて上記した高効率で省エ
ネルギなヒートポンプ暖房装置を提供できるもの
である。
The above action will be explained using the graph of low boiling point refrigerant concentration versus temperature at constant pressure shown in FIG. In addition,
In FIG. 2, graphs of constant condensation pressure and evaporation pressure are arranged vertically for convenience of explanation. Points (a) to (k) shown in FIG. 2 correspond to the pressure, temperature, and concentration at points (a) to (k) in FIG. 1. That is, the period between point (a) and point (b) is the condensation process in the condenser 2, and since a non-azeotropic refrigerant mixture is used, a decrease in temperature is observed. Points (c) and (d) are state points of the gas phase and liquid phase separated by the gas-liquid separator 3. The process between point (d) and point (e) is the throttling process in the throttling device 4, which brings about a pressure drop from the condensing pressure to the evaporation pressure, as well as a temperature drop. Between points (e) and (f) and between points (c) and (g), heat exchange occurs between a component containing more high boiling point refrigerant and a component containing more low boiling point refrigerant in heat exchanger 5. The heat exchanger 5 is constructed so that the refrigerant is completely liquefied at point (g). The process between points (g) and (h) is the throttling process in the throttling device 6, which also causes a pressure drop from condensing pressure to evaporation pressure, and the refrigerant at point (f) contains more high-boiling point refrigerant. component, it is easy to configure the temperature at point (f) to be higher than the temperature at point (h). Between points (h) and (i) and between points (f) and (j) are evaporators 7 and 8, respectively.
In the case of non-azeotropic mixed refrigerants, a temperature rise is observed. (k) points are evaporators 7 and 8
This is the state point at the outlet of the accumulator 9 where the refrigerant from
is compressed from to point (a) (condensation pressure). Through this change in the state of the mixed refrigerant, it is possible to provide the above-described highly efficient and energy-saving heat pump heating device.

なお、第2図からもわかる如く、非共沸混合冷
媒を用いた場合、凝縮過程においては温度低下、
蒸発過程においては温度上昇が見られるので、凝
縮器2、蒸発器7,8では熱源と対向流とし、熱
交換器5においても対向流とするのがよい。
As can be seen from Figure 2, when a non-azeotropic refrigerant mixture is used, the temperature decreases during the condensation process.
Since a temperature rise is observed during the evaporation process, it is preferable that the condenser 2 and evaporators 7 and 8 have counterflow to the heat source, and the heat exchanger 5 should also have counterflow.

以上説明した如く、本発明の熱ポンプ装置は、
非共沸混合冷媒を用い、高沸点冷媒をより多く含
んだ成分と低沸点冷媒をより多く含んだ成分に分
離し、低沸点冷媒をより多く含んだ成分を蒸発器
において外気等の低熱源と熱交換し、高沸点冷媒
をより多く含んだ成分を第2の蒸発器においてよ
り高温度レベルの熱源と熱交換させる如く構成し
たので、高効率で省エネルギな熱ポンプ装置を提
供できるに至つたものである。
As explained above, the heat pump device of the present invention includes:
Using a non-azeotropic mixed refrigerant, it is separated into a component containing more high-boiling point refrigerant and a component containing more low-boiling point refrigerant, and the component containing more low-boiling point refrigerant is used in an evaporator as a low-heat source such as outside air. By exchanging heat, the component containing a larger amount of high boiling point refrigerant is configured to exchange heat with a heat source at a higher temperature level in the second evaporator, making it possible to provide a highly efficient and energy-saving heat pump device. It is something.

なお、実施例においては省略したが、絞り装置
入口の過冷却をとるための熱交換器を設けたもの
や、給湯装置等に利用した熱ポンプ装置も本発明
に含まれるものであり、高温度レベルの熱源とし
ては、家庭内温排熱、太陽熱、燃焼熱等の外気よ
り温度レベルの高い排熱エネルギが好適となるも
のである。
Although omitted in the examples, devices equipped with a heat exchanger for supercooling the inlet of the throttling device and heat pump devices used in water heaters, etc. are also included in the present invention. As the heat source, exhaust heat energy having a higher temperature level than outside air, such as household waste heat, solar heat, and combustion heat, is suitable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の熱ポンプ装置の一実施例を
示す構成図、第2図は第1図の各状態点を説明す
るための低沸点冷媒濃度対温度のグラフである。 1……圧縮機、2……凝縮器、3……気液分離
器、4……絞り装置、5……熱交換器、6……絞
り装置、7,8……蒸発器。
FIG. 1 is a configuration diagram showing one embodiment of a heat pump device of the present invention, and FIG. 2 is a graph of low boiling point refrigerant concentration versus temperature for explaining each state point in FIG. 1. 1... Compressor, 2... Condenser, 3... Gas-liquid separator, 4... Throttle device, 5... Heat exchanger, 6... Throttle device, 7, 8... Evaporator.

Claims (1)

【特許請求の範囲】 1 非共沸混合冷媒を用いた一つの圧縮機を有
し、凝縮器出口に高沸点冷媒をより多く含んだ液
相成分と低沸点冷媒をより多く含んだ気相成分に
分離する気液分離器を設け、低沸点冷媒をより多
く含んだ成分を液化膨張後外気と熱交換する第1
の蒸発器を設け、高沸点冷媒をより多く含んだ成
分を膨張後外気よりも高温度レベルの熱源と熱交
換する第2の蒸発器を設けた熱ポンプ装置。 2 低沸点冷媒をより多く含んだ気相成分の液化
は、膨張後の高沸点冷媒をより多く含んだ成分と
の熱交換により行なわれる特許請求の範囲第1項
記載の熱ポンプ装置。
[Claims] 1. One compressor using a non-azeotropic mixed refrigerant, with a liquid phase component containing more high boiling point refrigerant and a gas phase component containing more low boiling point refrigerant at the condenser outlet. The first stage is equipped with a gas-liquid separator that separates the component containing a larger amount of low-boiling refrigerant into a gas-liquid separator that exchanges heat with outside air after liquefaction and expansion.
A heat pump device is provided with a second evaporator that exchanges heat with a heat source having a higher temperature level than outside air after expanding a component containing a larger amount of high boiling point refrigerant. 2. The heat pump device according to claim 1, wherein the gas phase component containing a larger amount of low boiling point refrigerant is liquefied by heat exchange with the expanded component containing a larger amount of high boiling point refrigerant.
JP18404781A 1981-11-16 1981-11-16 Heat pump device Granted JPS5885066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18404781A JPS5885066A (en) 1981-11-16 1981-11-16 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18404781A JPS5885066A (en) 1981-11-16 1981-11-16 Heat pump device

Publications (2)

Publication Number Publication Date
JPS5885066A JPS5885066A (en) 1983-05-21
JPS6246781B2 true JPS6246781B2 (en) 1987-10-05

Family

ID=16146431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18404781A Granted JPS5885066A (en) 1981-11-16 1981-11-16 Heat pump device

Country Status (1)

Country Link
JP (1) JPS5885066A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH086977B2 (en) * 1989-02-14 1996-01-29 松下電器産業株式会社 Two-stage compression refrigeration cycle and air conditioner
JP2789661B2 (en) * 1989-04-11 1998-08-20 松下電器産業株式会社 Two-stage compression refrigeration cycle and heat pump type air conditioner
JP2712644B2 (en) * 1989-10-06 1998-02-16 松下電器産業株式会社 Two-stage compression refrigeration cycle device
JP4857076B2 (en) * 2006-10-31 2012-01-18 三菱電機システムサービス株式会社 Weather cover

Also Published As

Publication number Publication date
JPS5885066A (en) 1983-05-21

Similar Documents

Publication Publication Date Title
CN100494814C (en) Condenser
JPS61119954A (en) Absorption heat pump/refrigeration system
JP2000249479A (en) Heat exchanger
CN108895694B (en) Improved self-cascade refrigeration cycle system and control method thereof
Gao et al. System principles and applications of hybrid sorption–compression heat pump–A review
CN108375235B (en) Air source heat pump system and control method
CN109163470A (en) A kind of ultralow temperature carbon dioxide water chiller-heater unit
JPS6246781B2 (en)
CN110411047A (en) Refrigeration system
CN201964610U (en) Air source and water source heat pump hot water unit
CN110173912B (en) Mixed working medium compression circulation system with mechanical heat recovery function and working method
CN103615764B (en) A kind of energy-saving type air conditioner
CN112923423A (en) Heat pump heating system with solar heat energy and air heat energy complementary
CN202304056U (en) Double-working medium cascade directly-heated type heat pump hot water unit
JPS6246780B2 (en)
CN111076419A (en) Self-overlapping high-temperature hot water system
JPS6353456B2 (en)
JPS63238367A (en) Refrigeration cycle device
JPS6058380B2 (en) heat pump equipment
CN211903298U (en) Self-overlapping high-temperature hot water system
KR100421320B1 (en) A regenerative heat-pump-system having the function of withdrawing waste heats
KR200257255Y1 (en) refrigerator/heat pump system
CN116085993A (en) Waste heat recovery method for air source heat pump
KR100467524B1 (en) A heat promotion of a combined circuit for a liquid separator
JPH01212863A (en) Hot-water supplying device