JPS6353456B2 - - Google Patents

Info

Publication number
JPS6353456B2
JPS6353456B2 JP20438081A JP20438081A JPS6353456B2 JP S6353456 B2 JPS6353456 B2 JP S6353456B2 JP 20438081 A JP20438081 A JP 20438081A JP 20438081 A JP20438081 A JP 20438081A JP S6353456 B2 JPS6353456 B2 JP S6353456B2
Authority
JP
Japan
Prior art keywords
condenser
heat pump
gas
boiling point
pump device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20438081A
Other languages
Japanese (ja)
Other versions
JPS58104466A (en
Inventor
Juji Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20438081A priority Critical patent/JPS58104466A/en
Publication of JPS58104466A publication Critical patent/JPS58104466A/en
Publication of JPS6353456B2 publication Critical patent/JPS6353456B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Central Heating Systems (AREA)

Description

【発明の詳細な説明】 本発明は非共沸混合冷媒を用いた熱ポンプ装置
において、冷凍サイクル上の工夫と相まつて、高
効率で省エネルギをはかるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention aims at high efficiency and energy saving in a heat pump device using a non-azeotropic mixed refrigerant, in combination with improvements to the refrigeration cycle.

従来、非共沸混合冷媒を用いた熱ポンプ装置に
おいては、圧縮機、凝縮器、絞り装置、蒸発器等
を単純に連結した冷凍サイクルにおいて、凝縮器
かつ蒸発器に関し熱源となる被加熱流体及び被冷
却流体と非共沸混合冷媒をそれぞれ対向流に熱交
換させることにより、熱交換過程の不可逆損失を
減少させ高効率化を図ることが実施されている。
Conventionally, in a heat pump device using a non-azeotropic mixed refrigerant, in a refrigeration cycle in which a compressor, a condenser, a throttle device, an evaporator, etc. are simply connected, the heated fluid and the heat source are connected to the condenser and evaporator. It has been implemented to reduce irreversible loss in the heat exchange process and increase efficiency by exchanging heat between the fluid to be cooled and the non-azeotropic mixed refrigerant in countercurrent flows.

また高効率化の効果、被加熱流体の温度上昇と
非共沸混合冷媒の凝縮過程による温度低下及び被
冷却流体の温度降下と非共沸混合冷媒の蒸発過程
による温度上昇をできるだけ一致させることによ
りその効果は大なるものとされている。しかるに
かかる熱ポンプ装置の被加熱流体を給湯利用する
場合、被加熱流体の出口温度は70〜80℃が望まし
く、入口温度は20〜30℃が通常(たとえば水道
水)であり、約50degの温度差を得なければなら
ないが、これを非共沸混合冷媒で不可逆損失を減
少させようとすると、約150degの沸点差のある
冷媒を混合させるのが望ましいものとなる。これ
に対し現実に冷凍サイクルで好適となるハロゲン
化炭化水素類(以下フロンと称する)の中で、こ
れらに適した組合せを見い出すことは、臨界温
度・臨界圧力・比熱等の関係できわめて困難とな
るものであり、不可逆損失の減少の効果も低減さ
れたものとなるものである。
In addition, by increasing the efficiency, the temperature rise of the heated fluid and the temperature drop due to the condensation process of the non-azeotropic mixed refrigerant, and the temperature drop of the cooled fluid and the temperature rise due to the evaporation process of the non-azeotropic mixed refrigerant are made to match as much as possible. The effect is said to be great. However, when the heated fluid of such a heat pump device is used for hot water supply, the outlet temperature of the heated fluid is preferably 70 to 80°C, the inlet temperature is usually 20 to 30°C (for example, tap water), and the temperature of about 50 deg. To reduce the irreversible loss using a non-azeotropic mixed refrigerant, it is desirable to mix refrigerants with a boiling point difference of about 150 degrees. On the other hand, it is extremely difficult to find a suitable combination of halogenated hydrocarbons (hereinafter referred to as fluorocarbons) that are actually suitable for refrigeration cycles due to factors such as critical temperature, critical pressure, and specific heat. This means that the effect of reducing irreversible loss is also reduced.

本発明は、上記した熱ポンプ装置の欠点を解消
するものであり、以下実施例とともに詳細に説明
する。
The present invention eliminates the drawbacks of the heat pump device described above, and will be described in detail below along with examples.

第1図は本発明の一実施例である非共沸混合冷
媒を用いた熱ポンプ装置の一実施例であり、1は
圧縮機、2は第1凝縮器、3は気液分離器であ
り、非共沸混合冷媒を用いるとき、液相側には高
沸点冷媒をより多く含み、気相側には低沸点冷媒
をより多く含むことになる。4は気相成分を液化
するために気液分離器3の頂部、すなわち気相部
に接続された第2凝縮器であり、その出口は気液
分離器3の液相出口と合流させている。5は絞り
装置、6は蒸発器、7はアキユームレータであ
り、出口は圧縮機1の吸入口に接続されている。
FIG. 1 shows an embodiment of a heat pump device using a non-azeotropic mixed refrigerant, which is an embodiment of the present invention, in which 1 is a compressor, 2 is a first condenser, and 3 is a gas-liquid separator. When a non-azeotropic mixed refrigerant is used, the liquid phase side contains more high boiling point refrigerant, and the gas phase side contains more low boiling point refrigerant. Reference numeral 4 denotes a second condenser connected to the top of the gas-liquid separator 3, that is, the gas phase part, in order to liquefy the gas-phase components, and its outlet merges with the liquid phase outlet of the gas-liquid separator 3. . 5 is a throttle device, 6 is an evaporator, and 7 is an accumulator, the outlet of which is connected to the suction port of the compressor 1.

ここで、被加熱流体は凝縮器2,4において、
第2凝縮器4と第1凝縮器2の順にかつそれぞれ
の凝縮器において対向流とする如く熱交換させ
る。
Here, the fluid to be heated is in the condensers 2 and 4.
Heat is exchanged in the order of the second condenser 4 and the first condenser 2 so as to create counterflow in each condenser.

次に上記した実施例の作用を、第2図に示した
一定圧力における低沸点冷媒濃度対温度のグラフ
で説明する。なお第2図においては、説明の都合
上、一定の凝縮圧力と蒸発圧力のグラフを上下に
並べて配置している。第2図上に示したa〜h点
は、第1図における実施例のa〜h点における圧
力・温度・濃度に対応している。すなわち、点a
〜bは第1凝縮器2の凝縮過程であり、非共沸混
合冷媒を用いているため、温度低下が見られる。
点c及びdは気液分離器3で分離される気相及び
液相の状態点である。点c〜eは第2凝縮器4の
凝縮過程であり、低沸点冷媒をより多く含んでい
るため、第1凝縮器2と同一の凝縮圧力でありな
がら、より近い温度レベルの温度低下が起こる。
点f〜gは絞り装置5の膨張過程であり、凝縮圧
力から蒸発圧力への圧力低下と共に、温度低下を
もたらすことができる。点g〜hは蒸発器6の蒸
発過程であり、凝縮器2,4とは逆に温度上昇が
見られる。点h〜aは圧縮機1による圧縮過程で
あり、冷媒は蒸発圧力から凝縮圧力まで圧縮され
る。
Next, the operation of the above-described embodiment will be explained with reference to the graph of low boiling point refrigerant concentration versus temperature at constant pressure shown in FIG. In FIG. 2, for convenience of explanation, graphs of constant condensation pressure and evaporation pressure are arranged vertically. Points a to h shown in the upper part of FIG. 2 correspond to the pressure, temperature, and concentration at points a to h of the example in FIG. That is, point a
-b is the condensation process of the first condenser 2, and since a non-azeotropic mixed refrigerant is used, a decrease in temperature is observed.
Points c and d are state points of the gas phase and liquid phase separated by the gas-liquid separator 3. Points c to e are the condensation process of the second condenser 4, which contains more low-boiling point refrigerant, so the temperature decreases to a temperature level closer to that of the first condenser 2, although the condensation pressure is the same as that of the first condenser 2. .
Points f to g are the expansion process of the expansion device 5, which can bring about a pressure drop from the condensing pressure to the evaporation pressure, as well as a temperature drop. Points g to h are the evaporation process of the evaporator 6, and a temperature rise is observed in contrast to the condensers 2 and 4. Points h to a are the compression process by the compressor 1, in which the refrigerant is compressed from evaporation pressure to condensation pressure.

従つて本発明の特徴とするところは、第2図上
部の破線で示した如く、被加熱流体が非共沸混合
冷媒と対向流となる様に、点e―c―b―aの順
に冷媒と熱交換させることによつて、広い温度範
囲で被加熱流体と冷媒の温度差を小さくすること
が可能となり、不可逆損失を減少させることがで
きるものである。特に点c〜eの凝縮過程を有効
に熱回収するわけであるから、前記した熱ポンプ
給湯装置の如き大きな沸点差の冷媒の組合せを求
める必要がなく、約30〜100degの沸点差の冷媒
の組合せが好適となり、フロン類の中でこれらの
組合せを見つけることはより容易となるものであ
る。また点dは飽和液の状態であるものの、第2
凝縮器4はその出口点eが過冷却となり、かつ高
圧液の合流点fも過冷却となる如く構成すること
は容易な設計上の問題となるため、絞り装置5に
おける不安定流動や騒音を防止するため、絞り装
置5の入口において過冷却をもたらすための特別
なサイクル内熱交換器(図示せず)等を設ける必
要がないという利点を有するものである。
Therefore, the feature of the present invention is that, as shown by the broken line in the upper part of FIG. By exchanging heat with the refrigerant, it is possible to reduce the temperature difference between the heated fluid and the refrigerant over a wide temperature range, thereby reducing irreversible loss. In particular, since heat is effectively recovered from the condensation process at points ce to e, there is no need to find a combination of refrigerants with a large boiling point difference as in the heat pump water heater described above, and it is not necessary to find a combination of refrigerants with a boiling point difference of about 30 to 100 degrees. Combinations become preferred, and it becomes easier to find these combinations among fluorocarbons. Also, although point d is in a saturated liquid state, the second
It is an easy design problem to configure the condenser 4 so that its outlet point e is supercooled and the confluence point f of the high-pressure liquid is also supercooled. This has the advantage that there is no need to provide a special in-cycle heat exchanger (not shown) or the like to bring about supercooling at the inlet of the throttling device 5 in order to prevent this.

なお第1図の実施例においては、第1及び第2
の凝縮器2,4を別々のものとして説明したが、
一体とした構成とすることにより、簡素な機器を
作り上げることができるばかりでなく、蒸発器6
においても被冷却流体と対向流に熱交換させるこ
とにより不可逆損失を減少させ、冷房等の用途に
供することも可能となるものである。
In the embodiment shown in FIG. 1, the first and second
Although the condensers 2 and 4 were explained as separate units,
By having an integrated configuration, not only can a simple device be constructed, but also the evaporator 6
Also, by exchanging heat with the fluid to be cooled in a counterflow, irreversible loss can be reduced, and it can be used for purposes such as air conditioning.

また本発明になる熱ポンプ装置の被加熱流体を
給湯等の高温度レベルで利用する際には、機器の
耐圧等の観点から見て、非共沸混合冷媒の組合せ
としては、クロロジフルオロメタン(フロン22、
沸点−41℃)とそれより沸点の大きなフロン、好
ましくは約30〜100degの沸点差のフロン、さら
に機器の負圧をさけるために好ましくは約40〜
80degの沸点差のフロン、具体的には1,2―ジ
クロロテトラフルオロエタン(フロン114、沸点
4℃)、ジクロロフルオロメタン(フロン21、沸
点9℃)、トリクロロフルオロメタン(フロン11、
沸点24℃)等が好適となるものである。
Furthermore, when the heated fluid of the heat pump device of the present invention is used at a high temperature level such as for hot water supply, from the viewpoint of pressure resistance of the equipment, etc., the combination of non-azeotropic refrigerants should be chlorodifluoromethane ( Freon 22,
(boiling point -41℃) and a higher boiling point, preferably with a boiling point difference of about 30 to 100 degrees, and preferably about 40 to 100 degrees to avoid negative pressure in the equipment.
Freon with a boiling point difference of 80deg, specifically 1,2-dichlorotetrafluoroethane (Freon 114, boiling point 4℃), dichlorofluoromethane (Freon 21, boiling point 9℃), trichlorofluoromethane (Freon 11,
(boiling point: 24°C) is preferred.

以上説明した如く本発明になる熱ポンプ装置
は、非共沸混合冷媒を用いた冷凍サイクルにおい
て、圧縮機、第1凝縮器、気液分離器、第2凝縮
器、絞り装置、蒸発器等から成り、第2凝縮器に
は気液分離器で分離される低沸点冷媒を多く含む
成分を流入させ被加熱流体は第2凝縮器と第1凝
縮器の順にかつそれぞれの凝縮器で対向流となる
如く熱交換させる如く構成することによつて、比
較的簡単な構成で高効率で省エネルギ化をはかる
ものであり、特に被加熱流体を給湯等の高温度レ
ベルで利用する際には非共沸混合冷媒の組合せが
より容易になる等の効果も合せ有するものであ
る。
As explained above, the heat pump device according to the present invention can be used in a refrigeration cycle using a non-azeotropic mixed refrigerant, from a compressor, a first condenser, a gas-liquid separator, a second condenser, a throttling device, an evaporator, etc. The component containing a large amount of low boiling point refrigerant separated by the gas-liquid separator is introduced into the second condenser, and the fluid to be heated flows in the second condenser and first condenser in that order, and in each condenser, flows in counterflow. By configuring the system to allow heat exchange, it is possible to achieve high efficiency and energy saving with a relatively simple configuration, and especially when the fluid to be heated is used at a high temperature level such as for hot water supply, it is possible to achieve high efficiency and energy saving. This also has the effect of making it easier to combine boiling refrigerants.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の熱ポンプ装置の一
実施例に関する回路構成図、第2図は第1図に示
す熱ポンプ装置の各状態点を説明するための低沸
点冷媒濃度対温度の特性図である。 1…圧縮機、2…第1凝縮器、3…気液分離
器、4…第2凝縮器、5…絞り装置、6…蒸発
器。
FIG. 1 is a circuit diagram of an embodiment of a heat pump device according to an embodiment of the present invention, and FIG. 2 is a diagram showing a low boiling point refrigerant concentration versus temperature for explaining each state point of the heat pump device shown in FIG. FIG. DESCRIPTION OF SYMBOLS 1... Compressor, 2... First condenser, 3... Gas-liquid separator, 4... Second condenser, 5... Throttle device, 6... Evaporator.

Claims (1)

【特許請求の範囲】 1 非共沸混合冷媒を用い、圧縮機、第1凝縮
器、気液分離器の気相部、第2凝縮器、絞り装置
および蒸発器を順に環状に接続し、前記気液分離
器の液相部を前記第2凝縮器の出口側と前記絞り
装置との間に接続して冷凍サイクルを形成し、被
加熱流体を第2凝縮器、第1凝縮器の順でかつそ
れぞれの凝縮器で対向流となるように熱交換さ
せ、第2凝縮器と第1凝縮器を近接した熱ポンプ
装置。 2 第1及び第2凝縮器を一体として構成した特
許請求の範囲第1項記載の熱ポンプ装置。 3 非共沸混合冷凍の組合せとしてクロロジフル
オロメタンとそれより沸点の大きな第2のフロン
を混合した特許請求の範囲第1項または第2項に
記載の熱ポンプ装置。
[Claims] 1. Using a non-azeotropic mixed refrigerant, a compressor, a first condenser, a gas phase part of a gas-liquid separator, a second condenser, a throttle device, and an evaporator are connected in order in an annular manner, The liquid phase part of the gas-liquid separator is connected between the outlet side of the second condenser and the expansion device to form a refrigeration cycle, and the heated fluid is passed through the second condenser and then the first condenser. A heat pump device in which the second condenser and the first condenser are placed close to each other, and the second condenser and the first condenser are arranged in close proximity to each other so as to exchange heat so as to have counterflow in each condenser. 2. The heat pump device according to claim 1, wherein the first and second condensers are integrated. 3. The heat pump device according to claim 1 or 2, wherein chlorodifluoromethane and a second fluorocarbon having a higher boiling point are mixed as a non-azeotropic refrigeration combination.
JP20438081A 1981-12-16 1981-12-16 Heat pump device Granted JPS58104466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20438081A JPS58104466A (en) 1981-12-16 1981-12-16 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20438081A JPS58104466A (en) 1981-12-16 1981-12-16 Heat pump device

Publications (2)

Publication Number Publication Date
JPS58104466A JPS58104466A (en) 1983-06-21
JPS6353456B2 true JPS6353456B2 (en) 1988-10-24

Family

ID=16489562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20438081A Granted JPS58104466A (en) 1981-12-16 1981-12-16 Heat pump device

Country Status (1)

Country Link
JP (1) JPS58104466A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3026083U (en) * 1995-12-20 1996-07-02 大喜商事株式会社 Collapsible leg work floor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4273470B2 (en) * 1998-12-25 2009-06-03 三菱電機株式会社 Refrigeration apparatus and method for increasing capacity of refrigeration apparatus
FR2950071B1 (en) 2009-09-11 2012-02-03 Arkema France TERNARY COMPOSITIONS FOR LOW CAPACITY REFRIGERATION
FR2950070B1 (en) 2009-09-11 2011-10-28 Arkema France TERNARY COMPOSITIONS FOR HIGH CAPACITY REFRIGERATION
FR2950069B1 (en) 2009-09-11 2011-11-25 Arkema France USE OF TERNARY COMPOSITIONS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3026083U (en) * 1995-12-20 1996-07-02 大喜商事株式会社 Collapsible leg work floor

Also Published As

Publication number Publication date
JPS58104466A (en) 1983-06-21

Similar Documents

Publication Publication Date Title
US7669428B2 (en) Vortex tube refrigeration systems and methods
CN106196681A (en) Middle fractional condensation type self-cascade refrigeration system system and refrigeration plant
CN109883077A (en) Refrigeration system and refrigeration equipment
JPS6353456B2 (en)
JPS63308084A (en) Operation medium mixture
JP2000304380A (en) Heat exchanger
US4476694A (en) Absorption cooling and heating system
JPH05272837A (en) Compression absorption composite heat pump
JPH0731093Y2 (en) Refrigeration equipment
JPS63238367A (en) Refrigeration cycle device
JP3466018B2 (en) Liquid phase separation type absorption refrigeration system
JP3256856B2 (en) Refrigeration system
JPH07198222A (en) Heat pump including reverse rectifying part
JP3785737B2 (en) Refrigeration equipment
JPS58104467A (en) Heat pump device
JPS6246781B2 (en)
CN106196883A (en) A kind of gas liquefaction equipment
SU802737A2 (en) Refrigerating plant facet mirrors
JP2574545B2 (en) Refrigeration cycle device
JP3674974B2 (en) Water cooler
JPH01139683A (en) Working medium mixture
JPH0212344B2 (en)
JPS586376A (en) Absorption type air conditioner
JPH01312365A (en) Cooling and heating device
JPS6058380B2 (en) heat pump equipment