JPH05272837A - Compression absorption composite heat pump - Google Patents

Compression absorption composite heat pump

Info

Publication number
JPH05272837A
JPH05272837A JP6861092A JP6861092A JPH05272837A JP H05272837 A JPH05272837 A JP H05272837A JP 6861092 A JP6861092 A JP 6861092A JP 6861092 A JP6861092 A JP 6861092A JP H05272837 A JPH05272837 A JP H05272837A
Authority
JP
Japan
Prior art keywords
heat
refrigerant
generator
condenser
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6861092A
Other languages
Japanese (ja)
Inventor
Minoru Morita
稔 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP6861092A priority Critical patent/JPH05272837A/en
Publication of JPH05272837A publication Critical patent/JPH05272837A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To reduce the temperature of a generator through the increase of refrigerant density of the generator and perform effective utilization of the exhaust gas heat of a prime mover required for vaporization of a refrigerant in the generator by a method wherein vapor from a vaporizer is compressed in an absorber by means of an intermediate mechanical compressor, and the absorber is operated by means of the pressures of the generator and the vaporizer. CONSTITUTION:Concentrated ammonia liquid is fed from an absorber 4 to a generator 1 through a heat-exchanger 5 with the aid of a circulating pump 6 and vaporized by means of an exhaust heat, and the vaporized ammonia liquid is guided to a condenser 2 and condensed by a cooler 102. Vapor generated from a vaporizer 3 by means of a main compressor 20 is guided to the condenser 2 with the aid of a prime mover 30, heat is removed by the vaporizer 3 and a heat of condensation is removed by means of the condenser 2. Exhaust heat used for drive of a mechanical compressor has heat which is reduced through the feed of it to the generator 1 by means of a line 33. Meanwhile, in cooling water of the prime mover, since ammonia concentration is increased by the intermediate condenser 2 and thus a vaporizing temperature is low, heat is sufficiently received by a low temperature heating source and a quantity of heat can be effectively utilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】各産業の製造工程から出る工場の
排水、あるいは下水処理場からの処理水、海および河川
等の熱源から冷温水を製造するヒートポンプに関わる。
[Industrial field of application] This relates to heat pumps that produce cold and hot water from the wastewater of factories produced from the manufacturing processes of each industry, the treated water from sewage treatment plants, and heat sources such as the sea and rivers.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】機械式圧
縮機を動かす原動機の排気を吸収式冷凍機の加熱源とし
て用いる場合、最も好ましい熱効率向上の方法は、発生
器、凝縮器、蒸発器および吸収器の4基より成る吸収式
ヒートポンプの中の蒸発器からの冷媒を機械圧縮機によ
って圧縮し、これを凝縮器へ送り、吸収式ヒートポンプ
のシステムの中に従来型の圧縮機によるヒートポンプの
システムを組込むことによって圧縮機の熱量はすべて凝
縮器により系外へ取り出す。この際利用できる冷媒は、
フロン、アンモニアが主であり、吸収剤としては水、蒸
気圧の低い有機溶剤の組合せが有効である。
When the exhaust gas of a prime mover that drives a mechanical compressor is used as a heat source for an absorption refrigerating machine, the most preferable method for improving the thermal efficiency is a generator, a condenser and an evaporator. And the refrigerant from the evaporator in the absorption heat pump consisting of four units is compressed by the mechanical compressor and sent to the condenser, and in the system of the absorption heat pump, the heat pump of the conventional compressor is used. By incorporating the system, all the heat of the compressor is taken out of the system by the condenser. The refrigerant that can be used at this time is
Freon and ammonia are mainly used, and as an absorbent, a combination of water and an organic solvent having a low vapor pressure is effective.

【0003】上記複合システムをコ・ジェネレーション
により運転する場合、用いる原動機の種類によって排熱
の発生の方法が異なる、すなわちガスエンジンを用いる
場合には、ガスエンジンからの排気およびガスエンジン
を冷却して加温された温水の2通りである。この前者は
排気ガスとして前記温度500℃前後の物を熱回収して
180ないし190℃で空中へ排気する。一方、通常ガ
スエンジンで、100KW程度の小型のものでの排熱
は、ガスエンジン冷却水のみで約50%の熱量を回収し
ており、この回収率をさらに上げる必要がある。大型に
なれば、ガスエンジン冷却水による排熱回収率は低く、
30〜50%となり、排ガスで20〜30%の回収を行
うことになる。本発明は冷却水のみ、また両者の有効利
用に関するもので、通常の吸収式ヒートポンプの発生器
の温度よりも低い温度で運転を行わせる。
When the above complex system is operated by cogeneration, the method of generating exhaust heat differs depending on the type of prime mover used, that is, when a gas engine is used, the exhaust gas from the gas engine and the gas engine are cooled. There are two ways of heated warm water. The former heat-recovers an object having a temperature of about 500 ° C. as exhaust gas and exhausts it into the air at 180 to 190 ° C. On the other hand, the exhaust heat of a normal gas engine of a small size of about 100 kW recovers about 50% of the amount of heat only by the gas engine cooling water, and it is necessary to further increase the recovery rate. The larger the size, the lower the exhaust heat recovery rate due to the gas engine cooling water,
It becomes 30 to 50%, and 20 to 30% of exhaust gas will be recovered. The present invention relates to cooling water only and effective use of both, and operates at a temperature lower than the temperature of the generator of an ordinary absorption heat pump.

【0004】原動機としてガスタービンを用いる場合に
は排熱は排気ガスのみであり、この排気ガスの有効利用
のためには前記複合システムの中に低温で熱回収できる
システムを構ずる必要がある。具体的には発生器の温度
を下げることによりガスタービンの排熱を吸収させるこ
とが必要である。従来の方法では発生器の温度は110
℃以上であるが熱回収のためには70℃〜80℃が好ま
しい。
When a gas turbine is used as a prime mover, exhaust heat is exhaust gas only, and in order to effectively utilize this exhaust gas, it is necessary to construct a system capable of recovering heat at a low temperature in the complex system. Specifically, it is necessary to absorb the exhaust heat of the gas turbine by lowering the temperature of the generator. In the conventional method, the temperature of the generator is 110
Although the temperature is higher than or equal to ℃, 70 to 80 ℃ is preferable for heat recovery.

【0005】従来、冷水を得る場合にはリチュームブロ
マイド系の場合には発生器の温度は90ないし120℃
前後であるが、温水を製造することができない。従って
フロン系およびアンモニア系の作動流体を用いる場合に
は発生器の温度は110ないし140℃前後であり、ガ
スエンジンより出る冷却水による加温ができない。ま
た、ガスタービンの場合でも完全な熱回収からはほど遠
いことになる。
Conventionally, the temperature of the generator is 90 to 120 ° C. in the case of the lithium bromide system when cold water is obtained.
Before and after, hot water cannot be produced. Therefore, when a CFC-based or ammonia-based working fluid is used, the temperature of the generator is around 110 to 140 ° C., and it cannot be heated by the cooling water discharged from the gas engine. Even in the case of a gas turbine, it is far from perfect heat recovery.

【0006】ガスエンジンの場合にはガスエンジンの冷
却を水で行い、1kg/cm2 の圧力の蒸気を発生させ
る方法もあった。ボイラーとしての取扱いを受けるため
小型、あるいは中形プラントにおいてはその操作に難点
があるため一般化していない。
In the case of a gas engine, there is also a method of cooling the gas engine with water to generate steam having a pressure of 1 kg / cm 2 . Since it is handled as a boiler, it has not been generalized because it is difficult to operate in small or medium-sized plants.

【0007】[0007]

【課題を解決するための手段とその作用】本発明による
圧縮・吸収複合式ヒートポンプは、冷媒と、冷媒を吸収
する吸収液と、その内部で冷媒と吸収液を接触させ吸収
液に冷媒を吸収させる吸収器と、その内部で冷媒を吸収
した吸収液を加熱して吸収液から冷媒を蒸発させる発生
器と、その内部で蒸発した冷媒を外部の第一の流体との
熱交換作用により冷却し冷媒を液化させ且つ第一の流体
を加熱する凝縮器と、その内部で液化した冷媒を外部の
第二の流体との熱交換作用により加熱し冷媒を気化させ
且つ第二の流体を冷却する蒸発器と、蒸発器から凝縮器
へ気化した冷媒を流す第一の圧縮機と、第一の圧縮機を
駆動する原動機とを有し、原動機の排気熱、ガス及び加
温した冷却水を発生器における吸収液の加熱に用い、蒸
発器から吸収器へ冷媒を流す。蒸発器よりのベーパー
(吸収冷凍システムをさせるに必要な量)を吸収器へ第
二の(中間)機械的圧縮機を用いて圧縮し、吸収器を発
生器と蒸発器の圧力で運転することにより、発生器の冷
媒濃度を上げることにより発生器の温度を低下すること
ができる。一方、発生器の圧力を低くして発生器および
凝縮器の設計圧力を低めることで設備費の低下を図る。
The combined compression and absorption heat pump according to the present invention includes a refrigerant, an absorbing liquid that absorbs the refrigerant, and the refrigerant and the absorbing liquid that are in contact with each other to absorb the refrigerant into the absorbing liquid. An absorber for heating, a generator for heating the absorbing liquid that has absorbed the refrigerant inside to evaporate the refrigerant from the absorbing liquid, and a refrigerant that has evaporated inside for cooling the refrigerant by heat exchange with the external first fluid. A condenser that liquefies the refrigerant and heats the first fluid, and an evaporator that heats the refrigerant liquefied inside by a heat exchange action with the external second fluid to vaporize the refrigerant and cool the second fluid. A compressor, a first compressor for flowing the vaporized refrigerant from the evaporator to the condenser, and a prime mover for driving the first compressor, and generate exhaust heat of the prime mover, gas, and heated cooling water. Used to heat the absorbing liquid in the Flow medium. Compressing the vapor from the evaporator (the amount needed to run the absorption refrigeration system) into the absorber using a second (intermediate) mechanical compressor and operating the absorber at generator and evaporator pressures Thus, the temperature of the generator can be lowered by increasing the refrigerant concentration of the generator. On the other hand, by lowering the pressure of the generator to lower the design pressure of the generator and the condenser, the equipment cost is reduced.

【0008】[0008]

【実施例】図1に本発明によるシステムの一実施例の構
成を示す。吸収式ヒートポンプの発生器1、凝縮器2、
蒸発器3、吸収器4、濃厚液熱交換器5、濃厚液ポンプ
6がもうけられ、発生器1には排ガス加熱器101およ
び冷却水加熱器105が設けられ、凝縮器2、蒸発器3
および吸収器4にはそれぞれ熱交換器102,103お
よび104が取付けられている。また過冷却器7を備え
る圧縮機20は原動機30によって駆動され、また中間
圧縮機21は同様に原動機30によって駆動される。原
動機には燃料を供給し、その排ガスは発生器に繋がり、
原動機の冷却水は同様に発生器と原動機との間を循環す
る。図2における本発明のもう一つの実施例におけるよ
うに作動流体を凝縮器2へ循環する場合には、稀薄液ポ
ンプ22と稀薄液熱交換器23をもうける。
FIG. 1 shows the configuration of an embodiment of the system according to the present invention. Absorption heat pump generator 1, condenser 2,
An evaporator 3, an absorber 4, a concentrated liquid heat exchanger 5, and a concentrated liquid pump 6 are provided, an exhaust gas heater 101 and a cooling water heater 105 are provided in the generator 1, and a condenser 2, an evaporator 3 are provided.
Heat exchangers 102, 103 and 104 are attached to the absorber 4 and the absorber 4, respectively. The compressor 20 including the subcooler 7 is driven by the prime mover 30, and the intermediate compressor 21 is also driven by the prime mover 30. Fuel is supplied to the prime mover, and its exhaust gas is connected to the generator,
The prime mover cooling water likewise circulates between the generator and the prime mover. When circulating the working fluid to the condenser 2 as in another embodiment of the invention in FIG. 2, a lean liquid pump 22 and a lean liquid heat exchanger 23 are provided.

【0009】水−アンモニア系を作動流体とした場合の
本実施例の動作を図1により説明する。発生器1には原
動機30よりの排ガス加熱器101が取付けてあり、同
様にジャケットの加温された冷却水による加熱器105
が取付けられている。発生器1には吸収器2より濃厚ア
ンモニア液を循環ポンプ6によって熱交換器5を経て供
給され、ここで前記の排熱によって濃厚アンモニア液は
蒸発され、これが凝縮器2に導かれ冷却器102によっ
て凝縮され、一部は過冷却器7を経て蒸発器3に供給さ
れ、そこではブラインによる加熱器103により加温さ
れて一部は循環圧縮機21によって吸収器4に供給さ
れ、そこでは発生器1よりの稀薄アンモニア液と混合さ
れて吸収熱を発生するため、この吸収熱を104の冷却
器によって取り去り、凝縮を行う。主圧縮機の吐出口を
吸収器4に接続し、蒸発器3からの冷媒を吸収器4に送
っても良い。
The operation of this embodiment when a water-ammonia system is used as the working fluid will be described with reference to FIG. An exhaust gas heater 101 from a prime mover 30 is attached to the generator 1, and a heater 105 for heating the cooling water of the jacket is also provided.
Is installed. The concentrated ammonia liquid is supplied to the generator 1 from the absorber 2 by the circulation pump 6 via the heat exchanger 5, where the exhausted heat causes the concentrated ammonia liquid to evaporate, which is guided to the condenser 2 and the cooler 102. Is partially condensed and is partially supplied to the evaporator 3 through the subcooler 7, where it is heated by the heater 103 by brine and partially supplied to the absorber 4 by the circulation compressor 21, where it is generated. Since it is mixed with the dilute ammonia solution from the vessel 1 to generate heat of absorption, this heat of absorption is removed by the cooler 104 and condensed. The discharge port of the main compressor may be connected to the absorber 4 and the refrigerant from the evaporator 3 may be sent to the absorber 4.

【0010】以上のようにして吸収ヒートポンプのシス
テムが完結する。一方、主圧縮機20によって蒸発器3
のベーパーは原動機30によって駆動され凝縮器2に導
かれ、蒸発器3による熱の除去、凝縮器2による凝縮熱
の除去の2つを行うことができる。コ・ジェネレーショ
ンの重要な点はヒートポンプを機械的圧縮機によって行
い、その駆動に用いられた排熱、すなわち燃焼ガスはラ
イン33によって前記のごとく発生器1に送ることで温
度が低くなって熱回収がし易い。一方、原動機の冷却水
は、中間圧縮機により前述の原理によって前記のアンモ
ニア濃度は高く、従って、蒸発温度は低いために低温の
加熱源、すなわち80ないし90℃の温度でも十分熱を
受けとることができる。以上のようにして本システムの
熱負荷は供給した熱量の約35%を、機械圧縮機また原
動機の排熱で利用し、すなわち全熱量の35ないし50
%の熱量を吸収式ヒートポンプに有効に利用できる。
尚、本システムを蒸発温度3〜4℃、凝縮温度80℃の
ような温度の高い温水を得る場合には、純粋な冷媒を凝
縮させる圧力が高くなるので、蒸発液を凝縮器2と蒸発
器3の間を循環させることにより、凝縮器2の圧力を低
下させていることが可能である。その例として、水−ア
ンモニア系では純粋なアンモニアは凝縮圧力は35kg
/cm2 であるが、アンモニア濃度は80%の液を循環
させれば、凝縮圧力は15〜20kg/cm2 となり、
経済的な装置が設計可能である。
The absorption heat pump system is completed as described above. On the other hand, the evaporator 3 by the main compressor 20
The vapor of 1 is driven by the prime mover 30 and guided to the condenser 2, and can perform two of the heat removal by the evaporator 3 and the heat removal by the condenser 2. The important point of co-generation is that the heat pump is driven by a mechanical compressor, and the exhaust heat used to drive it, that is, the combustion gas, is sent to the generator 1 by the line 33 as described above, so that the temperature is lowered and the heat is recovered. Easy to peel off. On the other hand, the cooling water of the prime mover has a high ammonia concentration due to the above-mentioned principle due to the intermediate compressor, and therefore has a low evaporation temperature, so that it can sufficiently receive heat even at a low temperature heating source, that is, at a temperature of 80 to 90 ° C. it can. As described above, the heat load of this system uses about 35% of the supplied heat amount as exhaust heat of the mechanical compressor or the prime mover, that is, 35 to 50% of the total heat amount.
% Heat quantity can be effectively used for absorption heat pump.
In addition, when the system is used to obtain hot water having a high evaporation temperature of 3 to 4 ° C. and a condensing temperature of 80 ° C., the pressure for condensing the pure refrigerant becomes high, so that the evaporating liquid is condensed with the condenser 2 and the evaporator. It is possible that the pressure in the condenser 2 is lowered by circulating the pressure in the condenser 3. As an example, in the water-ammonia system, pure ammonia has a condensation pressure of 35 kg.
/ Cm 2 , but if the ammonia concentration of 80% liquid is circulated, the condensation pressure becomes 15 to 20 kg / cm 2 ,
Economical equipment can be designed.

【0011】本システムで用いる作動流体は水−アンモ
ニア系のように冷媒と吸収剤が気液平衡を持つもの、フ
ロンと他の有機溶媒によって構成される比較的気液平衡
の少ないもの、あるいは水−リチュームブロマイド系の
ように気液平衡のないもののいづれを用いてもよい。
The working fluid used in this system is one in which the refrigerant and the absorbent have a vapor-liquid equilibrium, such as a water-ammonia system, one having a relatively small vapor-liquid equilibrium composed of CFCs and other organic solvents, or water. -Either one having no vapor-liquid equilibrium such as the lithium bromide system may be used.

【0012】公称出力100KWのガスエンジンによっ
て駆動されているアンモニア圧縮機は、吐出圧力15な
いし20kg/cm2 Gであり、発生器は70m2 でガ
スエンジンの冷却水89〜95℃熱量166000Kc
alを受け入れまた低温加熱器は20m2 の伝熱面積を
持っている。デ・スーパーヒーターは5.0m2 、凝縮
器は50m2 、同様に蒸発器は50m2 であり、吸収器
の伝熱面積は65m2である。アンモニア濃厚熱交は1
4m2 であり、循環ポンプ1600リットル/hr、吐
出圧力10ないし15kg/cm2 である。中間圧縮機
は27KWの圧縮機で吐出流量400kg/hrで吐出
圧力10kg/cm2 Gである。また、過冷却器の伝熱
面積は4m2 である。以上の設備を用い、凝縮器の凝縮
温度を40℃で蒸発器の温度を3℃、吸収器での凝縮温
度を40℃とした場合の結果を表1のA欄に示す。ま
た、蒸発温度3℃、凝縮器および吸収器の凝縮温度50
℃の場合の加温に用いる場合の例の数値を表1のB欄に
示す。C欄には蒸発温度−10℃の場合の温水製造につ
いての運転結果を示す。中間圧縮機を設けない場合に
は、発生器の蒸発温度はA、BおよびCに対して、約1
00℃、110℃および142℃となり、原動機の排熱
を利用できない。
An ammonia compressor driven by a gas engine having a nominal output of 100 kW has a discharge pressure of 15 to 20 kg / cm 2 G, a generator of 70 m 2 and a cooling water of the gas engine of 89 to 95 ° C. and a calorific value of 166000 Kc.
The low temperature heater accepts al and has a heat transfer area of 20 m 2 . The de-super heater is 5.0 m 2 , the condenser is 50 m 2 , the evaporator is also 50 m 2 , and the heat transfer area of the absorber is 65 m 2 . Ammonia rich heat exchange is 1
The flow rate is 4 m 2 , the circulation pump is 1600 liter / hr, and the discharge pressure is 10 to 15 kg / cm 2 . The intermediate compressor is a 27 KW compressor with a discharge flow rate of 400 kg / hr and a discharge pressure of 10 kg / cm 2 G. The heat transfer area of the supercooler is 4 m 2 . The column A of Table 1 shows the results when the condensation temperature of the condenser was 40 ° C., the temperature of the evaporator was 3 ° C., and the condensation temperature of the absorber was 40 ° C. using the above equipment. Also, the evaporation temperature is 3 ° C. and the condensation temperature of the condenser and the absorber is 50.
Numerical values of an example when used for heating in the case of ° C are shown in the column B of Table 1. Column C shows the operation results for hot water production at an evaporation temperature of -10 ° C. If no intermediate compressor is provided, the evaporation temperature of the generator is about 1 for A, B and C.
The temperature is 00 ° C, 110 ° C, and 142 ° C, and the exhaust heat of the prime mover cannot be used.

【0013】[0013]

【表1】 (1)圧力:〔kgf/cm2 〕絶体 (2)循環量:〔kg/hr〕(吸収器/凝縮器〕 (3)温度:〔℃〕 (4)13A都市ガス:Nm3 /hr (5)熱量:×103 Kcal/hr[Table 1] (1) Pressure: [kgf / cm 2 ] absolute (2) Circulation: [kg / hr] (absorber / condenser) (3) Temperature: [° C] (4) 13A city gas: Nm 3 / hr (5) Calorie: × 10 3 Kcal / hr

【0014】(1)A点の吸収器はEの蒸発器と同じ圧
力で運転されていれば、濃度C1に対応して発生器の温
度は決定される。 (2)今A点で運転されている吸収器の圧力を中間圧縮
機によって昇圧して凝縮させれば、濃度はC1であり、
その濃度に対応する発生器内の濃度も上昇し、発生器の
蒸発温度は低下する。このようにして、温度が下がれ
ば、80℃前後の冷却水を用いて発生器が運転できる。
また、発生器での蒸発濃度が高いために、アンモニア−
水系のように気液平衡のある作動流体でも還流の必要が
ない。精留塔や分縮器、還流の必要がなく、熱効率が向
上し、設備費も安くなる。 (3)凝縮器および吸収器の温度が50℃を越える場合
には、凝縮器の圧力は20kg/cm2 を越す場合があ
り、このような時には蒸発器と凝縮器の間に循環流を作
ることによって吸収器および発生器の圧力を下げること
ができ、機械設計上非常に有利になり、経済的なシステ
ムを提供することができる。
(1) If the absorber at point A is operated at the same pressure as the evaporator at E, the temperature of the generator is determined according to the concentration C1. (2) If the pressure of the absorber currently operating at point A is increased by an intermediate compressor and condensed, the concentration is C1,
The concentration in the generator corresponding to that concentration also increases and the evaporation temperature of the generator decreases. In this way, if the temperature drops, the generator can be operated using cooling water of around 80 ° C.
In addition, due to the high evaporation concentration in the generator, ammonia-
It is not necessary to recirculate even a working fluid with vapor-liquid equilibrium such as an aqueous system. There is no need for a rectification column, a dephlegmator, or reflux, improving thermal efficiency and reducing equipment costs. (3) When the temperature of the condenser and the absorber exceeds 50 ° C, the pressure of the condenser may exceed 20 kg / cm 2 , and in such a case, a circulating flow is created between the evaporator and the condenser. As a result, the pressure of the absorber and the generator can be reduced, which is very advantageous in mechanical design and can provide an economical system.

【0015】図4に示される、最も単純な構造を有する
本発明による実施例においては、発生器1、凝縮器2、
蒸発器3、吸収器4、熱交換器5、循環ポンプ6、熱交
換器23、循環ポンプ22より成る吸収式ヒートポンプ
において、蒸発器3と吸収器4との間に圧縮機21を設
けたシステムである。このヒートポンプで利用される二
作動流体(冷媒と吸収剤)は冷媒が気発性であり、かつ
機械圧縮がしやすい冷媒が好ましい。
In the embodiment according to the invention having the simplest construction, which is shown in FIG. 4, a generator 1, a condenser 2,
An absorption heat pump including an evaporator 3, an absorber 4, a heat exchanger 5, a circulation pump 6, a heat exchanger 23, and a circulation pump 22 in which a compressor 21 is provided between the evaporator 3 and the absorber 4. Is. The two working fluids (refrigerant and absorbent) used in this heat pump are preferably refrigerants that are gas-evolving and easily mechanically compressed.

【0016】二作動流体として水−アンモニア系を使用
した場合、蒸発器3の蒸発温度3℃で7℃の冷水および
凝縮器2および吸収器4の温度を60℃で運転して温水
55℃を作る冷水および温水の同時製造設備の運転能力
110JRTの設備について次の操作で運転できる。発
生器1の温度90ないし100℃、圧力10(kgf/
cm2 ,a)、凝縮器2の温度60℃、圧力10(kg
f/cm2 ,a)、蒸発器3の温度3℃、圧力1.5
(kgf/cm2 ,a)、吸収器4の温度60℃、圧力
4.5(kgf/cm2 ,a)であり、蒸発液の凝縮へ
の循環液濃度は50ないし52wet%で、循環量4.
0トン/hrであった。この際用いた循環圧縮機は圧縮
比3.0で駆動動力は25.0KWであった。この蒸発
液の循環のない場合には、発生器と凝縮器の操作圧力は
26ないし27(kgf/cm2 ,a)となり、比率は
高くなる。尚、本再生器への入熱量は195,000
(Kcal/hr)であった。
When a water-ammonia system is used as the two working fluids, the cold water of 7 ° C. at the evaporation temperature of 3 ° C. of the evaporator 3 and the temperature of the condenser 2 and the absorber 4 are operated at 60 ° C. A facility with an operating capacity of 110 JRT for simultaneous production facility of cold water and hot water to be produced can be operated by the following operations. The temperature of the generator 1 is 90 to 100 ° C., the pressure is 10 (kgf /
cm 2 , a), the temperature of the condenser 2 is 60 ° C, the pressure is 10 (kg)
f / cm 2 , a), evaporator 3 temperature 3 ° C., pressure 1.5
(Kgf / cm 2 , a), the temperature of the absorber 4 is 60 ° C., the pressure is 4.5 (kgf / cm 2 , a), the circulating liquid concentration for condensing the evaporative liquid is 50 to 52 wet%, and the circulating amount is 4.
It was 0 ton / hr. The circulation compressor used at this time had a compression ratio of 3.0 and a driving power of 25.0 KW. Without this circulation of the evaporating liquid, the operating pressure of the generator and the condenser would be 26 to 27 (kgf / cm 2 , a) and the ratio would be high. The heat input to this regenerator is 195,000.
(Kcal / hr).

【0017】[0017]

【発明の効果】以上説明したごとく、水−アンモニア系
を用いた場合中間圧縮機をおくことによって発生器の蒸
発温度は60ないし80℃の範囲に押さえることが自由
にできる。従って、ガスエンジンの冷却水を発生器の加
温に使うことができ、従来望まれていた効率の良いガス
エンジンを利用して機械圧縮式ヒートポンプを作動さ
せ、一方、残りの熱量をすべて吸収式ヒートポンプシス
テムの熱源として利用できるので、効率のよいコ・ジェ
ネレーションによる温冷水製造設備を提供できる。
As described above, when the water-ammonia system is used, the evaporation temperature of the generator can be freely controlled within the range of 60 to 80 ° C. by providing the intermediate compressor. Therefore, the cooling water of the gas engine can be used to heat the generator, and the mechanical compression heat pump can be operated using the highly efficient gas engine that has been desired so far, while the remaining heat quantity can be absorbed. Since it can be used as a heat source for a heat pump system, it is possible to provide an efficient hot and cold water production facility by co-generation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるヒートポンプの一実施例の概略
図。
FIG. 1 is a schematic view of an embodiment of a heat pump according to the present invention.

【図2】本発明によるヒートポンプのもう一つの実施例
の概略図。
FIG. 2 is a schematic view of another embodiment of the heat pump according to the present invention.

【図3】ヒートポンプサイクルにおける、作動流体(冷
媒)の圧力と温度の状態を示す線図であり、(a)部
は、中間圧縮機を設けた場合を示し、(b)部は、蒸発
液を循環させる場合を示す。
FIG. 3 is a diagram showing pressure and temperature states of a working fluid (refrigerant) in a heat pump cycle, where (a) shows a case where an intermediate compressor is provided, and (b) shows evaporative liquid. The case of circulating is shown.

【図4】本発明によるもう一つの実施例を示す概略図。FIG. 4 is a schematic view showing another embodiment according to the present invention.

【符号の説明】[Explanation of symbols]

1 発生器 2 凝縮器 3 蒸発器 4 吸収器 5 熱交換器 6 循環ポンプ 20 圧縮機 21 圧縮機 30 原動機 1 Generator 2 Condenser 3 Evaporator 4 Absorber 5 Heat Exchanger 6 Circulation Pump 20 Compressor 21 Compressor 30 Motor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮・吸収複合式ヒートポンプであり、
冷媒と、冷媒を吸収する吸収液と、その内部で冷媒と吸
収液を接触させ吸収液に冷媒を吸収させる吸収器と、そ
の内部で冷媒を吸収した吸収液を加熱して吸収液から冷
媒を蒸発させる発生器と、その内部で蒸発した冷媒を外
部の第一の流体との熱交換作用により冷却し冷媒を液化
させ且つ第一の流体を加熱する凝縮器と、その内部で凝
縮した冷媒を外部の第二の流体との熱交換作用により加
熱し冷媒を気化させ且つ第二の流体を冷却する蒸発器
と、蒸発器で発生した気化冷媒を吸収器に送る第一の圧
縮機とを有するヒートポンプ。
1. A compression / absorption combined heat pump,
Refrigerant, an absorbing liquid that absorbs the refrigerant, an absorber that absorbs the refrigerant in the absorbing liquid by contacting the refrigerant with the absorbing liquid inside the absorber, and heat the absorbing liquid that has absorbed the refrigerant inside the absorber to remove the refrigerant from the absorbing liquid. A generator that evaporates, a condenser that cools the refrigerant that has evaporated inside by a heat exchange action with an external first fluid to liquefy the refrigerant and heat the first fluid, and a refrigerant that condensed inside It has an evaporator that heats by a heat exchange action with an external second fluid to vaporize the refrigerant and cools the second fluid, and a first compressor that sends the vaporized refrigerant generated in the evaporator to the absorber. heat pump.
【請求項2】 請求項1に記載の圧縮・吸収複合式ヒー
トポンプであり、第二の圧縮機は、蒸発器から凝縮器に
気化冷媒を送る圧縮・吸収複合式ヒートポンプ。
2. The combined compression / absorption heat pump according to claim 1, wherein the second compressor sends the vaporized refrigerant from the evaporator to the condenser.
【請求項3】 請求項1に記載の圧縮・吸収複合式ヒー
トポンプであり、蒸発器で気化しなかった液状態の冷媒
を凝縮器に送るポンプを更に有する、圧縮・吸収複合式
ヒートポンプ。
3. The combined compression / absorption heat pump according to claim 1, further comprising a pump for sending a liquid state refrigerant that has not been vaporized in the evaporator to the condenser.
【請求項4】 請求項1に記載の圧縮・吸収複合式ヒー
トポンプであり、第一の圧縮機は原動機により駆動さ
れ、原動機の排気熱を発生器における吸収液の蒸発に用
いる圧縮・吸収複合式ヒートポンプ。
4. The combined compression / absorption type heat pump according to claim 1, wherein the first compressor is driven by a prime mover, and exhaust heat of the prime mover is used for evaporation of an absorbing liquid in a generator. heat pump.
JP6861092A 1992-03-26 1992-03-26 Compression absorption composite heat pump Pending JPH05272837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6861092A JPH05272837A (en) 1992-03-26 1992-03-26 Compression absorption composite heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6861092A JPH05272837A (en) 1992-03-26 1992-03-26 Compression absorption composite heat pump

Publications (1)

Publication Number Publication Date
JPH05272837A true JPH05272837A (en) 1993-10-22

Family

ID=13378713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6861092A Pending JPH05272837A (en) 1992-03-26 1992-03-26 Compression absorption composite heat pump

Country Status (1)

Country Link
JP (1) JPH05272837A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960034935A (en) * 1995-03-31 1996-10-24 이해규 Absorption / compression mixing cycle freezer
US7104062B2 (en) * 2001-09-07 2006-09-12 Peugeot Citroen Automobiles, S.A. Device for thermally controlling the intake air of the internal combustion engine of a motor vehicle
JP2007225191A (en) * 2006-02-23 2007-09-06 Osaka Gas Co Ltd Compound heat pump system
JP2007263482A (en) * 2006-03-29 2007-10-11 Osaka Gas Co Ltd Composite heat pump system
CN103398501A (en) * 2013-07-29 2013-11-20 中国科学院理化技术研究所 Composite refrigeration system with main refrigeration system pre-cooling by heat driven absorption refrigerating
WO2022038951A1 (en) * 2020-08-20 2022-02-24 株式会社デンソー Refrigeration cycle device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960034935A (en) * 1995-03-31 1996-10-24 이해규 Absorption / compression mixing cycle freezer
US7104062B2 (en) * 2001-09-07 2006-09-12 Peugeot Citroen Automobiles, S.A. Device for thermally controlling the intake air of the internal combustion engine of a motor vehicle
JP2007225191A (en) * 2006-02-23 2007-09-06 Osaka Gas Co Ltd Compound heat pump system
JP2007263482A (en) * 2006-03-29 2007-10-11 Osaka Gas Co Ltd Composite heat pump system
CN103398501A (en) * 2013-07-29 2013-11-20 中国科学院理化技术研究所 Composite refrigeration system with main refrigeration system pre-cooling by heat driven absorption refrigerating
CN103398501B (en) * 2013-07-29 2015-06-10 中国科学院理化技术研究所 Composite refrigeration system with main refrigeration system pre-cooling by heat driven absorption refrigerating
WO2022038951A1 (en) * 2020-08-20 2022-02-24 株式会社デンソー Refrigeration cycle device
JP2022035027A (en) * 2020-08-20 2022-03-04 株式会社デンソー Refrigeration cycle device

Similar Documents

Publication Publication Date Title
US20040237527A1 (en) Exhaust heat recovery system
WO1996034236A1 (en) Refrigerant enhancer-absorbent concentrator and turbo-charged absorption chiller
JPH05272837A (en) Compression absorption composite heat pump
JP2007263482A (en) Composite heat pump system
JP2004190885A (en) Absorption compression refrigerating machine and refrigerating system
JP5389366B2 (en) Steam compression / absorption hybrid refrigerator
EP0897516A1 (en) Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump
JP4187563B2 (en) Ammonia absorption refrigerator
JPH06281288A (en) Absorption type refrigerator using waste heat
JPS6187908A (en) Combined device of power generation, refrigeration, and heat pump cycle
JPH05280825A (en) Absorption heat pump
JP3290464B2 (en) Combined refrigeration equipment
JPH05256535A (en) Sorption heat pump system
JPH0754211B2 (en) Co-generation system using absorption heat pump cycle
JP4100462B2 (en) Heat utilization system
JP2005147447A (en) Ammonia-water non-azeotropic mixture medium circulation system
JP2000055496A (en) Absorption type water chiller/heater
JPH07198222A (en) Heat pump including reverse rectifying part
JP2004069276A (en) Waste heat recovering cooling system
JP3785737B2 (en) Refrigeration equipment
JPH01234761A (en) Double-effect multi-stage pressure type absorption type refrigerator and system therefor
JPH094939A (en) Refrigerating device
JP4282818B2 (en) Combined cooling system and combined cooling method
JP3986633B2 (en) Heat utilization system
JPH06213526A (en) Complex heat pump