JP4187563B2 - Ammonia absorption refrigerator - Google Patents

Ammonia absorption refrigerator Download PDF

Info

Publication number
JP4187563B2
JP4187563B2 JP2003091094A JP2003091094A JP4187563B2 JP 4187563 B2 JP4187563 B2 JP 4187563B2 JP 2003091094 A JP2003091094 A JP 2003091094A JP 2003091094 A JP2003091094 A JP 2003091094A JP 4187563 B2 JP4187563 B2 JP 4187563B2
Authority
JP
Japan
Prior art keywords
ammonia
regenerator
absorber
water mixed
mixed medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003091094A
Other languages
Japanese (ja)
Other versions
JP2004301345A (en
Inventor
洋 藤本
利雄 西田
幸男 平中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2003091094A priority Critical patent/JP4187563B2/en
Publication of JP2004301345A publication Critical patent/JP2004301345A/en
Application granted granted Critical
Publication of JP4187563B2 publication Critical patent/JP4187563B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸収冷凍機の蒸発器で蒸発されたアンモニア蒸気を圧縮機で吸収器に供給するように構成したアンモニア吸収冷凍機に関する。
【0002】
【従来の技術】
この種のアンモニア吸収冷凍機としては、従来、特許文献1に開示されているものがあった。
この従来例によれば、圧縮機を駆動するタービンの作動媒体として、吸収器からのアンモニア−水系混合媒体の溶液を用い、そのアンモニア−水系混合媒体の溶液の供給ラインの途中箇所に排ガスボイラを介装し、アンモニア−水系混合媒体の溶液をガスエンジン排ガスにより蒸発させるように構成している。
【0003】
タービンおよび圧縮機から排出されるアンモニア−水系混合媒体のガスを吸収器に供給し、その途中において、熱交換器により、吸収器から再生器に供給されるアンモニア−水系混合媒体の溶液と熱交換し、タービンおよび圧縮機から排出されるアンモニア−水系混合媒体のガスの熱を回収して排熱回収効率を高め、蒸発器から冷熱を取り出す上での成績係数を高くできるように構成している。
【0004】
【特許文献1】
特開2002−48426号公報(図1)
【0005】
【発明が解決しようとする課題】
しかしながら、タービンに供給される吸収器からのアンモニア−水系混合媒体の溶液は、アンモニアガスを吸収した溶液であるため、アンモニア濃度が高く、タービンから排出されるガスのアンモニア濃度も高い。
【0006】
このようなアンモニア濃度の高いガスの凝縮温度は低く、吸収器から再生器に供給されるアンモニア−水系混合媒体の溶液との熱交換によって凝縮されるガス量が少なくなり、アンモニア−水系混合媒体の溶液に回収される熱はほとんどが顕熱での回収となり、熱回収量が少なくなり、蒸発器から冷熱を取り出す上での成績係数を高くする点で改善の余地があった。
【0007】
本発明は、このような事情に鑑みてなされたものであって、タービンに供給する作動媒体に改良を加え、蒸発器から冷熱を取り出す上での成績係数を高くできるようにすることを目的とする。
【0008】
【課題を解決するための手段】
本発明は、上述のような目的を達成するために、
アンモニアを冷媒、水を吸収剤とするアンモニア−水系混合媒体を収容するとともにエンジン冷却水の加熱により冷媒を蒸発分離する再生器と、
前記再生器に接続されて前記再生器で蒸発分離させた冷媒を導入して凝縮液化する凝縮器と、
前記再生器に接続されて前記再生器から供給される冷媒蒸発後の吸収剤に冷媒を吸収して前記再生器に戻す吸収器と、
前記凝縮器および前記吸収器に接続されて前記凝縮器からの冷媒液を蒸発する蒸発器と、
前記蒸発器に付設されて前記蒸発器で得られる冷熱を取出す冷熱取り出し手段と、
前記蒸発器内の冷媒を吸引して前記吸収器に加圧供給する圧縮機と、
前記圧縮機に連動連結されるタービンと、
前記タービンに供給するアンモニア−水系混合媒体をガスエンジン排ガスにより蒸発させる排ガスボイラとを備えたアンモニア吸収冷凍機において、
前記再生器から前記吸収器にアンモニア−水系混合媒体の溶液を戻す戻し管と前記排ガスボイラとを接続する配管と、
前記タービンから排出されるアンモニア−水系混合媒体のガスの熱を前記吸収器から前記再生器に供給されるアンモニア−水系混合媒体の溶液に回収する熱交換器を備えて構成する。
【0009】
(作用・効果)
本発明のアンモニア吸収冷凍機の構成によれば、タービンの作動媒体として、再生器から吸収器に戻すアンモニア−水系混合媒体を用いるように、アンモニア−水系混合媒体の溶液を戻す戻し管と排ガスボイラとを接続する。
したがって、再生器から吸収器に戻すアンモニア濃度の低いアンモニア−水系混合媒体をタービンの作動媒体に用いるから、タービンから排出されるアンモニア−水系混合媒体のガスにおけるアンモニア濃度を低くできる。このため、そのアンモニア−水系混合媒体のガスの凝縮温度を高くでき、吸収器から再生器に供給されるアンモニア−水系混合媒体の溶液に熱交換によって熱を回収させる際に、凝縮されるガス量を増加でき、アンモニア−水系混合媒体の溶液に凝縮潜熱として回収することができ、熱回収量を大幅に増加できて、蒸発器から冷熱を取り出す上での成績係数を高くできる。
【0010】
【発明の実施の形態】
次に、本発明の実施例を図面に基づいて詳細に説明する。
図1は、本発明に係るアンモニア吸収冷凍機の実施例を示す概略構成図であり、ガスエンジンのエンジン冷却部の出口と入口とにわたってエンジン冷却水(ジャケット冷却水)を循環する循環配管1が、吸収冷凍機を構成する再生器2に接続されている。再生器2には、ガスエンジンからのエンジン冷却後のエンジン冷却水(温度85〜95℃)によって蒸発可能なアンモニアを冷媒とし、かつ、水を吸収剤としたアンモニア−水系混合媒体が収容されている。
【0011】
再生器2には、水を分離したアンモニア蒸気を供給するように凝縮器3が連通接続され、再生器2に戻し管4を介して吸収器5が接続されるとともに、凝縮器3に第1の配管6を介して蒸発器7が接続され、更に、吸収器5と蒸発器7とが第2の配管8(後述する第4の配管17をも一部含む)を介して連通接続され、アンモニア吸収冷凍機が構成されている。
【0012】
凝縮器3では、再生器2で蒸発した冷媒を凝縮液化し、その液化した冷媒を蒸発器7に戻すようになっている。
蒸発器7では、吸収器5における吸収剤による冷媒の吸収に伴い、冷媒が蒸発するようになっている。
【0013】
吸収器5から再生器2にわたって、第1の溶液ポンプ9を介装した第3の配管10が接続されている。この第3の配管10と戻し管4との間に第1の熱交換器11が設けられ、再生器2に戻す液化したアンモニア−水系混合媒体の溶液を、再生器2から吸収器5に流すアンモニア−水系混合媒体の溶液によって加熱するようになっている。
【0014】
戻し管4の第1の熱交換器11と吸収器5との間に、第2の溶液ポンプ12を介装した分岐配管13が接続され、この分岐配管13と、ガスエンジンからの排ガスを流すガス配管14とにわたって排ガスボイラ15が設けられている。これにより、再生器2から吸収器5に戻すアンモニア濃度の低い液化したアンモニア−水系混合媒体の溶液の一部をガスエンジンからの排気ガスからの伝熱により加熱し、高温高圧の蒸気を発生させるように構成されている。
【0015】
分岐配管13にタービン16が接続されるとともに、そのタービン16と吸収器5とが第4の配管17を介して接続され、吸収冷凍機の作動媒体であるアンモニア−水系混合媒体の高温高圧の蒸気によってタービン16を駆動するとともに、タービン16から排出される蒸気を吸収器5に戻すように構成されている。
【0016】
タービン16に伝動軸18を介して圧縮機19が連動連結されるとともに、この圧縮機19が第2の配管8に設けられている。第1の配管6の途中箇所に第2の熱交換器20と第3の熱交換器21とが設けられ、この第2および第3の熱交換器20,21で熱交換可能に、吸収器12と圧縮機19とを接続する第2の配管8が設けられ、圧縮機19によって蒸発器7内の蒸気を吸引して吸収器5に加圧供給するとともに、凝縮器3から蒸発器7に供給されるアンモニア−水系混合媒体の溶液を冷却するようになっている。
【0017】
タービン16および圧縮機19からのアンモニア−水系混合媒体のガスを吸収器5に供給する第4の配管17と第3の配管10とにわたって第4の熱交換器22が設けられ、タービン16および圧縮機19から排出されて吸収器5に供給するアンモニア−水系混合媒体のガスの熱を、吸収器5から再生器2に供給されるアンモニア−水系混合媒体の溶液に回収させるように構成されている。
【0018】
蒸発器7に、冷熱取り出し手段としての、冷凍用媒体(例えば、ブライン)を取り出す冷凍用媒体取り出し管23が付設され、この冷凍用媒体取り出し管23が保冷庫や空調用ファンコイルユニットなどの冷却用熱源(図示せず)に導入されるようになっている。
【0019】
凝縮器3と再生器2とが、第3の溶液ポンプ24を介装した第5の配管25を介して接続され、再生器2の上部で整流作用を行えるようになっている。
凝縮器3および吸収器5には、クーリングタワーからの冷却水を供給する冷却管24が通されている。
【0020】
上記構成により、タービン16の作動媒体として、再生器2から吸収器5に戻すアンモニア濃度の低いアンモニア−水系混合媒体の溶液を用い、タービン16から排出されるアンモニア−水系混合媒体のガスにおけるアンモニア濃度を低くし、そのアンモニア−水系混合媒体のガスの凝縮温度を高くして、吸収器5から再生器2に供給されるアンモニア−水系混合媒体の溶液との熱交換によって凝縮されるガス量を増加し、アンモニア−水系混合媒体の溶液に凝縮潜熱として回収し、熱回収量を大幅に増加できる。
【0021】
次に、上記実施例と従来例との成績係数についての比較実験結果について説明する。
ガスエンジンからの排ガスによる入熱量とエンジン冷却水による入熱量との合計に対する、冷凍用媒体取り出し管23から取り出される取り出し熱量による成績係数を、所定の冷凍用媒体の取り出し温度ごと(4℃間隔)に求めてプロットしたところ、図2の冷熱の取り出し温度と成績係数との相関のグラフに示す結果が得られた。
上記結果から、−20℃に近い温度まで、本発明例のものAの方が、従来例のものBよりも高い成績係数を得ることができ、かつ、取り出し温度が高くなる程高い成績係数を得ることができることが明らかであった。
【0022】
上述実施例の排ガスやエンジン冷却水の排出熱源としてのガスエンジンとしては、汎用のガスエンジンやディーゼルガスエンジンやスターリングガスエンジンなど各種のガスエンジンを用いることができる。
【0023】
【発明の効果】
以上説明したように、本発明のアンモニア吸収冷凍機によれば、再生器から吸収器に戻すアンモニア濃度の低いアンモニア−水系混合媒体をタービンの作動媒体に用いるから、タービンから排出されるアンモニア−水系混合媒体のガスにおけるアンモニア濃度を低くできる。このため、そのアンモニア−水系混合媒体のガスの凝縮温度を高くでき、吸収器から再生器に供給されるアンモニア−水系混合媒体の溶液に熱交換によって熱を回収させる際に、凝縮されるガス量を増加でき、アンモニア−水系混合媒体の溶液に凝縮潜熱として回収することができ、熱回収量を大幅に増加できて、蒸発器から冷熱を取り出す上での成績係数を高くできる。
【図面の簡単な説明】
【図1】本発明に係るアンモニア吸収冷凍機の実施例を示す概略構成図である。
【図2】冷熱の取り出し温度と成績係数との相関のグラフである。
【符号の説明】
2…再生器
3…凝縮器
4…戻し管
5…吸収器
7…蒸発器
13…分岐配管(配管)
15…排ガスボイラ
16…タービン
19…圧縮機
22…第4の熱交換器(熱交換器)
23…冷凍用媒体取り出し管(冷熱取り出し手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ammonia absorption refrigerator configured to supply ammonia vapor evaporated by an evaporator of an absorption refrigerator to the absorber using a compressor.
[0002]
[Prior art]
Conventionally, this type of ammonia absorption refrigerator has been disclosed in Patent Document 1.
According to this conventional example, an ammonia-water mixed medium solution from an absorber is used as a working medium of a turbine that drives a compressor, and an exhaust gas boiler is provided at a midpoint of the ammonia-water mixed medium solution supply line. It is configured so that the ammonia-water mixed medium solution is evaporated by the gas engine exhaust gas.
[0003]
The gas of the ammonia-water mixed medium discharged from the turbine and the compressor is supplied to the absorber, and in the middle of the heat exchange with the solution of the ammonia-water mixed medium supplied from the absorber to the regenerator by the heat exchanger. In addition, the heat of the ammonia-water mixed medium gas discharged from the turbine and the compressor is recovered to improve the exhaust heat recovery efficiency, and the coefficient of performance for extracting the cold heat from the evaporator can be increased. .
[0004]
[Patent Document 1]
Japanese Patent Laying-Open No. 2002-48426 (FIG. 1)
[0005]
[Problems to be solved by the invention]
However, since the ammonia-water mixed medium solution from the absorber supplied to the turbine is a solution that has absorbed ammonia gas, the ammonia concentration is high and the ammonia concentration of the gas discharged from the turbine is also high.
[0006]
The condensation temperature of such a high ammonia concentration gas is low, the amount of gas condensed by heat exchange with the solution of the ammonia-water mixed medium supplied from the absorber to the regenerator is reduced, and the ammonia-water mixed medium Most of the heat recovered in the solution was recovered by sensible heat, the amount of heat recovered was small, and there was room for improvement in terms of increasing the coefficient of performance for extracting cold heat from the evaporator.
[0007]
This invention is made in view of such a situation, Comprising: It aims at making it possible to improve the coefficient of performance in taking out cold heat from an evaporator by improving the working medium supplied to a turbine. To do.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides
A regenerator that contains an ammonia-water mixed medium containing ammonia as a refrigerant and water as an absorbent and evaporates and separates the refrigerant by heating engine cooling water;
A condenser connected to the regenerator to introduce a refrigerant evaporated and separated by the regenerator to condense and liquefy;
An absorber that is connected to the regenerator and absorbs the refrigerant in the absorbent after evaporation of the refrigerant supplied from the regenerator and returns it to the regenerator;
An evaporator connected to the condenser and the absorber to evaporate a refrigerant liquid from the condenser;
A cold heat extracting means attached to the evaporator to extract the cold heat obtained by the evaporator;
A compressor that sucks the refrigerant in the evaporator and pressurizes and supplies it to the absorber;
A turbine coupled to the compressor;
In an ammonia absorption refrigerator having an exhaust gas boiler for evaporating an ammonia-water mixed medium supplied to the turbine by gas engine exhaust gas,
A pipe connecting the return pipe for returning the solution of the ammonia-water mixed medium from the regenerator to the absorber and the exhaust gas boiler;
A heat exchanger is provided that recovers the heat of the ammonia-water mixed medium gas discharged from the turbine into a solution of the ammonia-water mixed medium supplied from the absorber to the regenerator.
[0009]
(Action / Effect)
According to the configuration of the ammonia absorption refrigerator of the present invention, the return pipe and the exhaust gas boiler for returning the solution of the ammonia-water mixed medium so that the ammonia-water mixed medium returned from the regenerator to the absorber is used as the turbine working medium. And connect.
Therefore, since the ammonia-water mixed medium having a low ammonia concentration returned from the regenerator to the absorber is used as the turbine working medium, the ammonia concentration in the gas of the ammonia-water mixed medium discharged from the turbine can be lowered. For this reason, the condensation temperature of the gas of the ammonia-water mixed medium can be increased, and the amount of gas condensed when the heat of the ammonia-water mixed medium solution supplied from the absorber to the regenerator is recovered by heat exchange. Can be recovered as a latent heat of condensation in the ammonia-water mixed medium solution, the amount of heat recovery can be greatly increased, and the coefficient of performance for taking out the cold heat from the evaporator can be increased.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing an embodiment of an ammonia absorption refrigerator according to the present invention, in which a circulation pipe 1 for circulating engine cooling water (jacket cooling water) is provided between an outlet and an inlet of an engine cooling unit of a gas engine. The regenerator 2 constituting the absorption refrigerator is connected. The regenerator 2 contains an ammonia-water mixed medium in which ammonia that can be evaporated by engine cooling water (temperature 85 to 95 ° C.) after cooling from the gas engine is used as a refrigerant and water is used as an absorbent. Yes.
[0011]
A condenser 3 is connected to the regenerator 2 so as to supply ammonia vapor from which water has been separated, and an absorber 5 is connected to the regenerator 2 via a return pipe 4. The evaporator 7 is connected via the pipe 6, and the absorber 5 and the evaporator 7 are connected in communication via the second pipe 8 (including a part of the fourth pipe 17 described later), An ammonia absorption refrigerator is configured.
[0012]
In the condenser 3, the refrigerant evaporated in the regenerator 2 is condensed and liquefied, and the liquefied refrigerant is returned to the evaporator 7.
In the evaporator 7, the refrigerant evaporates as the refrigerant is absorbed by the absorbent in the absorber 5.
[0013]
A third pipe 10 including a first solution pump 9 is connected from the absorber 5 to the regenerator 2. A first heat exchanger 11 is provided between the third pipe 10 and the return pipe 4, and the liquefied ammonia-water mixed medium solution returned to the regenerator 2 is caused to flow from the regenerator 2 to the absorber 5. Heating is performed by a solution of an ammonia-water mixed medium.
[0014]
A branch pipe 13 having a second solution pump 12 interposed is connected between the first heat exchanger 11 and the absorber 5 of the return pipe 4, and this branch pipe 13 and the exhaust gas from the gas engine flow. An exhaust gas boiler 15 is provided across the gas pipe 14. Thereby, a part of the solution of the liquefied ammonia-water mixed medium having a low ammonia concentration returned from the regenerator 2 to the absorber 5 is heated by heat transfer from the exhaust gas from the gas engine to generate high-temperature and high-pressure steam. It is configured as follows.
[0015]
A turbine 16 is connected to the branch pipe 13, and the turbine 16 and the absorber 5 are connected via a fourth pipe 17, and high-temperature and high-pressure steam of an ammonia-water mixed medium that is a working medium of the absorption refrigerator. Is configured to drive the turbine 16 and return the steam discharged from the turbine 16 to the absorber 5.
[0016]
A compressor 19 is linked to the turbine 16 via a transmission shaft 18, and the compressor 19 is provided in the second pipe 8. A second heat exchanger 20 and a third heat exchanger 21 are provided in the middle of the first pipe 6, and the second and third heat exchangers 20 and 21 can exchange heat with each other. A second pipe 8 is provided to connect the compressor 12 and the compressor 19, and the vapor in the evaporator 7 is sucked by the compressor 19 and supplied to the absorber 5 under pressure, and from the condenser 3 to the evaporator 7. The supplied ammonia-water mixed medium solution is cooled.
[0017]
A fourth heat exchanger 22 is provided across the fourth pipe 17 and the third pipe 10 for supplying the gas of the ammonia-water mixed medium from the turbine 16 and the compressor 19 to the absorber 5. The heat of the ammonia-water mixed medium gas discharged from the machine 19 and supplied to the absorber 5 is recovered in the ammonia-water mixed medium solution supplied from the absorber 5 to the regenerator 2. .
[0018]
The evaporator 7 is provided with a refrigeration medium take-out pipe 23 for taking out a refrigeration medium (for example, brine) as a cold heat take-out means, and this refrigeration medium take-out pipe 23 is used for cooling a cold storage, an air conditioning fan coil unit, or the like. It is introduced into a heat source (not shown).
[0019]
The condenser 3 and the regenerator 2 are connected via a fifth pipe 25 having a third solution pump 24 interposed therebetween, so that the rectifying action can be performed at the upper part of the regenerator 2.
A cooling pipe 24 that supplies cooling water from the cooling tower is passed through the condenser 3 and the absorber 5.
[0020]
With the above configuration, the ammonia concentration in the gas of the ammonia-water mixed medium discharged from the turbine 16 is obtained by using the ammonia-water mixed medium solution having a low ammonia concentration returned from the regenerator 2 to the absorber 5 as the working medium of the turbine 16. And the condensation temperature of the ammonia-water mixed medium gas is increased, and the amount of gas condensed by heat exchange with the ammonia-water mixed medium solution supplied from the absorber 5 to the regenerator 2 is increased. In addition, it is recovered as a latent heat of condensation in the ammonia-water mixed medium solution, and the amount of heat recovery can be greatly increased.
[0021]
Next, the results of a comparative experiment on the coefficient of performance between the above example and the conventional example will be described.
The coefficient of performance by the amount of heat taken out from the freezing medium take-out pipe 23 with respect to the total amount of heat input by the exhaust gas from the gas engine and the amount of heat inputted by the engine cooling water is determined for each predetermined freezing medium take-out temperature (at intervals of 4 ° C.). As a result, the results shown in the graph of the correlation between the cold heat extraction temperature and the coefficient of performance in FIG. 2 were obtained.
From the above results, up to a temperature close to −20 ° C., the example A of the present invention can obtain a higher coefficient of performance than the example B of the conventional example, and the coefficient of performance increases as the take-out temperature increases. It was clear that it could be obtained.
[0022]
Various gas engines, such as a general-purpose gas engine, a diesel gas engine, and a Stirling gas engine, can be used as a gas engine as an exhaust heat source of exhaust gas and engine cooling water in the above-described embodiments.
[0023]
【The invention's effect】
As described above, according to the ammonia absorption refrigerator of the present invention, the ammonia-water mixed medium having a low ammonia concentration returned from the regenerator to the absorber is used as the turbine working medium. Therefore, the ammonia-water system discharged from the turbine is used. The ammonia concentration in the gas of the mixed medium can be lowered. For this reason, the condensation temperature of the gas of the ammonia-water mixed medium can be increased, and the amount of gas condensed when the heat of the ammonia-water mixed medium solution supplied from the absorber to the regenerator is recovered by heat exchange. Can be recovered as a latent heat of condensation in the ammonia-water mixed medium solution, the amount of heat recovery can be greatly increased, and the coefficient of performance for taking out the cold heat from the evaporator can be increased.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of an ammonia absorption refrigerator according to the present invention.
FIG. 2 is a graph showing a correlation between a cold heat extraction temperature and a coefficient of performance.
[Explanation of symbols]
2 ... regenerator 3 ... condenser 4 ... return pipe 5 ... absorber 7 ... evaporator 13 ... branch pipe (pipe)
15 ... Exhaust gas boiler 16 ... Turbine 19 ... Compressor 22 ... Fourth heat exchanger (heat exchanger)
23 ... Freezing medium take-out pipe (cold heat take-out means)

Claims (1)

アンモニアを冷媒、水を吸収剤とするアンモニア−水系混合媒体を収容するとともにエンジン冷却水の加熱により冷媒を蒸発分離する再生器と、
前記再生器に接続されて前記再生器で蒸発分離させた冷媒を導入して凝縮液化する凝縮器と、
前記再生器に接続されて前記再生器から供給される冷媒蒸発後の吸収剤に冷媒を吸収して前記再生器に戻す吸収器と、
前記凝縮器および前記吸収器に接続されて前記凝縮器からの冷媒液を蒸発する蒸発器と、
前記蒸発器に付設されて前記蒸発器で得られる冷熱を取出す冷熱取り出し手段と、
前記蒸発器内の冷媒を吸引して前記吸収器に加圧供給する圧縮機と、
前記圧縮機に連動連結されるタービンと、
前記タービンに供給するアンモニア−水系混合媒体をガスエンジン排ガスにより蒸発させる排ガスボイラとを備えたアンモニア吸収冷凍機において、
前記再生器から前記吸収器にアンモニア−水系混合媒体の溶液を戻す戻し管と前記排ガスボイラとを接続する配管と、
前記タービンから排出されるアンモニア−水系混合媒体のガスの熱を前記吸収器から前記再生器に供給されるアンモニア−水系混合媒体の溶液に回収する熱交換器を備えたことを特徴とするアンモニア吸収冷凍機。
A regenerator that contains an ammonia-water mixed medium containing ammonia as a refrigerant and water as an absorbent and evaporates and separates the refrigerant by heating engine cooling water;
A condenser connected to the regenerator to introduce a refrigerant evaporated and separated by the regenerator to condense and liquefy;
An absorber that is connected to the regenerator and absorbs the refrigerant in the absorbent after evaporation of the refrigerant supplied from the regenerator and returns it to the regenerator;
An evaporator connected to the condenser and the absorber to evaporate a refrigerant liquid from the condenser;
A cold heat extracting means attached to the evaporator to extract the cold heat obtained by the evaporator;
A compressor that sucks the refrigerant in the evaporator and pressurizes and supplies it to the absorber;
A turbine coupled to the compressor;
In an ammonia absorption refrigerator having an exhaust gas boiler for evaporating an ammonia-water mixed medium supplied to the turbine by gas engine exhaust gas,
A pipe connecting the return pipe for returning the solution of the ammonia-water mixed medium from the regenerator to the absorber and the exhaust gas boiler;
Ammonia absorption comprising a heat exchanger for recovering the heat of the ammonia-water mixed medium gas discharged from the turbine into an ammonia-water mixed medium solution supplied from the absorber to the regenerator. refrigerator.
JP2003091094A 2003-03-28 2003-03-28 Ammonia absorption refrigerator Expired - Fee Related JP4187563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003091094A JP4187563B2 (en) 2003-03-28 2003-03-28 Ammonia absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003091094A JP4187563B2 (en) 2003-03-28 2003-03-28 Ammonia absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2004301345A JP2004301345A (en) 2004-10-28
JP4187563B2 true JP4187563B2 (en) 2008-11-26

Family

ID=33404552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003091094A Expired - Fee Related JP4187563B2 (en) 2003-03-28 2003-03-28 Ammonia absorption refrigerator

Country Status (1)

Country Link
JP (1) JP4187563B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104006573A (en) * 2014-05-12 2014-08-27 中国五环工程有限公司 Combined ammonia compression refrigeration technology and system
CN104006570A (en) * 2014-06-05 2014-08-27 中国科学院工程热物理研究所 Direct and reverse cycle coupling based absorption and compression combined type refrigerating system and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103528264B (en) * 2012-07-03 2015-06-24 中国科学院工程热物理研究所 Combined type refrigeration system and method based on coupling between direct cycle and reverse cycle
CN103161528B (en) * 2013-03-07 2014-12-03 中国科学院工程热物理研究所 Work and coldness co-production system and method of recovering working medium effective ingredient refrigeration
CN107238228B (en) * 2017-06-09 2019-12-13 东南大学 refrigerating cycle system combining ammonia water absorption and injection and operation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104006573A (en) * 2014-05-12 2014-08-27 中国五环工程有限公司 Combined ammonia compression refrigeration technology and system
CN104006573B (en) * 2014-05-12 2016-03-02 中国五环工程有限公司 Combined type ammonia compression refrigeration technique and system
CN104006570A (en) * 2014-06-05 2014-08-27 中国科学院工程热物理研究所 Direct and reverse cycle coupling based absorption and compression combined type refrigerating system and method
CN104006570B (en) * 2014-06-05 2016-10-19 中国科学院工程热物理研究所 Absorption based on forward and reverse cycle coupling-compression combined formula refrigeration system and method

Also Published As

Publication number Publication date
JP2004301345A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
JP6441511B2 (en) Multistage plate-type evaporative absorption refrigeration apparatus and method
US2548508A (en) Thermal system
US20100293973A1 (en) Combined cycle exhaust powered turbine inlet air chilling
JP3769347B2 (en) Gas turbine intake air cooling system
JP4187562B2 (en) Ammonia absorption heat pump
JP2005315127A (en) Gas turbine
JP4187563B2 (en) Ammonia absorption refrigerator
CN106642681A (en) Air-energy water heater circulation system and operating method thereof
JP2010116855A (en) Gas turbine plant and method for increasing output thereof
JP5389366B2 (en) Steam compression / absorption hybrid refrigerator
JP3865346B2 (en) Absorption chiller / heater
CN108507219A (en) A kind of compound two-stage type lithium bromide absorption type heat pump and working method
JP2001174098A (en) Waste heat absorption refrigerating machine
KR101271189B1 (en) Intake air cooling system for ship
JP4005884B2 (en) Ammonia absorption refrigerator
JP3290464B2 (en) Combined refrigeration equipment
CN101187510A (en) Triple effect absorption type refrigeration system
JPH05272837A (en) Compression absorption composite heat pump
JP2005147447A (en) Ammonia-water non-azeotropic mixture medium circulation system
KR100827569B1 (en) Absorption refrigerating apparatus with heat pump
CN218379971U (en) Flue gas waste heat recovery system
JPH02106665A (en) Cogeneration system utilizing absorbing type heat pump cycle
JP4265714B2 (en) Waste heat absorption refrigerator
JPH06185830A (en) Absorption type refrigerator, cold/warm water machine and heat pump provided with steam turbine and compressor at absorber
KR200288609Y1 (en) Ammonia absorbtion- type refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140919

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees