JPH06281288A - Absorption type refrigerator using waste heat - Google Patents
Absorption type refrigerator using waste heatInfo
- Publication number
- JPH06281288A JPH06281288A JP5067873A JP6787393A JPH06281288A JP H06281288 A JPH06281288 A JP H06281288A JP 5067873 A JP5067873 A JP 5067873A JP 6787393 A JP6787393 A JP 6787393A JP H06281288 A JPH06281288 A JP H06281288A
- Authority
- JP
- Japan
- Prior art keywords
- heat source
- temperature regenerator
- heat
- high temperature
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 20
- 239000002918 waste heat Substances 0.000 title description 4
- 239000000446 fuel Substances 0.000 claims abstract description 23
- 238000005057 refrigeration Methods 0.000 claims abstract description 7
- 238000001514 detection method Methods 0.000 claims 1
- 239000000243 solution Substances 0.000 description 19
- 239000003507 refrigerant Substances 0.000 description 11
- 239000006096 absorbing agent Substances 0.000 description 7
- 239000000498 cooling water Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 4
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
- Y02A30/274—Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Abstract
(57)【要約】
【目的】排熱を熱源とする高温再生器および燃料を直焚
燃焼させて熱源とする高温再生器を備える吸収式冷凍機
において、立上がり特性の向上を図る。
【構成】排熱を熱源とする高温再生器(34A)および
燃料を直接燃焼させて熱源とする高温再生器(34B)
を備えるとともに、吸収媒体を排熱を熱源とする高温再
生器(34A)および燃料を直接燃焼させて熱源とする
高温再生器(34B)に直列に供給して冷凍サイクルを
構成し、前記燃料を直接燃焼させて熱源とする高温再生
器(34A)に温度又は圧力を検出する検出手段(5
0,51)を設け、前記燃料を直接燃焼させて熱源とす
る高温再生器(34A)には前記燃料を直接燃焼させて
熱源とする高温再生器(34B)の温度又は圧力が所定
値以上となった場合に入熱を遮断又は制限する制御装置
(60)を設ける。
【効果】本発明により、立上がり特性に優れ、コストパ
ーフォーマンスに優れた排熱利用吸収式冷凍機が得られ
る。
(57) [Abstract] [Purpose] To improve start-up characteristics in an absorption refrigerator having a high-temperature regenerator that uses exhaust heat as a heat source and a high-temperature regenerator that burns fuel directly as a heat source. [Structure] A high temperature regenerator (34A) that uses exhaust heat as a heat source and a high temperature regenerator (34B) that directly burns fuel as a heat source.
And the absorption medium is supplied in series to a high temperature regenerator (34A) that uses exhaust heat as a heat source and a high temperature regenerator (34B) that directly burns fuel to serve as a heat source to form a refrigeration cycle, Detecting means (5) for detecting temperature or pressure in a high temperature regenerator (34A) that is directly burned to serve as a heat source.
0, 51) are provided, and the temperature or pressure of the high temperature regenerator (34B) that directly burns the fuel and serves as the heat source is set to a predetermined value or higher in the high temperature regenerator (34A) that directly burns the fuel and serves as the heat source. A control device (60) for shutting off or limiting the heat input when the temperature becomes low is provided. [Effect] According to the present invention, it is possible to obtain an absorption heat type refrigerator utilizing exhaust heat, which has excellent start-up characteristics and cost performance.
Description
【0001】[0001]
【産業上の利用分野】本発明は、排熱を利用する吸収式
冷凍機に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerator utilizing waste heat.
【0002】[0002]
【従来の技術】従来技術では、二熱源によって駆動され
る吸収式冷凍機は、一般的には二熱源同時100%入力
を禁止した制御を行なっている。なお、この種のものと
して関連するものに例えば特開平3−25262号公報
が挙げられる。2. Description of the Related Art In the prior art, an absorption chiller driven by two heat sources is generally controlled by prohibiting simultaneous 100% input of the two heat sources. Note that, for example, Japanese Patent Laid-Open No. 3-25262 can be cited as a related example of this type.
【0003】[0003]
【発明が解決しようとする課題】上記従来の冷凍機の最
大能力は常に100%以下であるのに対して吸収式冷凍
機そのものは二つの高温再生器を内蔵するため保有吸収
媒体が増加して、その加熱、濃縮に時間がかかり、能力
の立上がりが悪くなるなど応答性に劣り、使い勝手に問
題があった。The maximum capacity of the above-mentioned conventional refrigerating machine is always 100% or less, whereas the absorption refrigerating machine itself has two built-in high temperature regenerators, so that the absorption medium held therein increases. However, it took a long time to heat and concentrate the solution, resulting in poor responsiveness such as poor ability to start up, and there was a problem in usability.
【0004】又、バックアップとなる燃料を直接燃焼さ
せる熱源は排熱のない場合にのみ使用されるため稼動率
が低く、吸収式冷凍機としてのコストパーフォーマンス
が低くなる欠点があった。Further, since the heat source for directly burning the backup fuel is used only when there is no exhaust heat, the operating rate is low and the cost performance of the absorption refrigerator is low.
【0005】本発明は二熱源駆動吸収式冷凍機のバック
アップ熱源の活用度を高めて、立上がり特性を向上さ
せ、使い勝手のよい排熱利用吸収式冷凍機を提供するこ
とにある。It is an object of the present invention to provide an absorption refrigerating machine utilizing exhaust heat which enhances the utilization of the backup heat source of the dual heat source driving absorption refrigerating machine and improves the starting characteristics.
【0006】[0006]
【課題を解決するための手段】上記目的は、高温再生
器、低温再生器、凝縮器、蒸発器、溶液熱交換器を配管
接続してなる排熱利用吸収式冷凍機において、排熱を熱
源とする高温再生器および燃料を直接燃焼させて熱源と
する高温再生器を備えるとともに冷凍サイクルを、吸収
媒体を排熱を熱源とする高温再生器および燃料を直接燃
焼させて熱源とする高温再生器に直列に供給して冷凍サ
イクルを構成し、前記燃料を直接燃焼させて熱源とする
高温再生器に温度又は圧力の検出手段を設け、前記燃料
を直接燃焼させて熱源とする高温再生器には前記燃料を
直接燃焼させて熱源とする高温再生器の温度又は圧力が
所定値以上となった場合に入熱を遮断又は制限する制御
手段を設けることによって、達成される。SUMMARY OF THE INVENTION The above object is to provide an exhaust heat absorption type refrigerating machine in which a high temperature regenerator, a low temperature regenerator, a condenser, an evaporator, and a solution heat exchanger are connected by piping, and the exhaust heat is used as a heat source. And a high temperature regenerator that directly burns fuel as a heat source, and a refrigeration cycle, a high temperature regenerator that uses an absorption medium as a heat source and a high temperature regenerator that directly burns fuel as a heat source. Is provided in series to form a refrigeration cycle, a temperature or pressure detecting means is provided in a high temperature regenerator that directly burns the fuel to be a heat source, and a high temperature regenerator that directly burns the fuel to be a heat source is This is achieved by providing control means for cutting off or limiting the heat input when the temperature or pressure of the high temperature regenerator, which directly burns the fuel and serves as a heat source, exceeds a predetermined value.
【0007】[0007]
【作用】冷凍機の起動時、冷水出口温度が高いと排熱お
よび燃料を直接燃焼させる熱源からの入熱量が定格の2
00%となり、過渡的に過大熱となって能力が増大し、
冷凍機の冷水出口温度は急激に低下し、所定温度以下で
燃料を直接燃焼させることを停止し、排熱熱源のみの運
転状態へ移行する。ここで、冷凍機の運転条件として、
起動時の冷却水温度が高いと、燃料を直接燃焼させる熱
源および排熱の200%入力時、温度条件、圧力条件が
より高温、高圧側へ移動し、吸収媒体の濃縮が進むこと
も圧力が上昇して冷凍機の運転継続上好しい状態ではな
くなる可能性がある。このような場合、燃料を直接燃焼
させて熱源とする高温再生器の温度が所定値以上の場
合、又は圧力を検出して所定値以上の場合、燃料を直接
燃焼させる熱源の停止を行なうことにより、吸収式冷凍
機の保護がはかれる。[Function] When the chilled water outlet temperature is high at the time of starting the refrigerator, the heat input from the exhaust heat and the heat source for directly burning the fuel is rated 2
00%, transiently overheated and the capacity increased,
The chilled water outlet temperature of the refrigerator sharply drops, the direct combustion of the fuel is stopped below a predetermined temperature, and the operating state of only the exhaust heat source is entered. Here, as the operating conditions of the refrigerator,
When the temperature of the cooling water at startup is high, when the heat source that directly burns the fuel and 200% of the exhaust heat is input, the temperature conditions and pressure conditions move to higher temperatures and higher pressures, and the concentration of the absorption medium proceeds and the pressure also increases. There is a possibility that the temperature will rise and it will not be in a favorable condition for the continuous operation of the refrigerator. In such a case, if the temperature of the high temperature regenerator, which burns the fuel directly as a heat source, is higher than a predetermined value, or if the pressure is detected and is higher than the predetermined value, stop the heat source that directly burns the fuel. , The absorption refrigerator is protected.
【0008】[0008]
【実施例】本発明の実施例を図1に示す。冷房運転サイ
クルにおいて、吸収器30で冷媒(水)により稀釈され
た稀溶液が溶液ポンプ31によって低温溶液熱交換器3
2、高温溶液熱交換器33を経て排熱を熱源とする高温
再生器(以下排熱熱源高温再生器という)34Aへ送り
込まれ、そこで加熱されて冷媒が蒸発し濃縮された後、
燃料を直接燃焼させて熱源とする高温再生器(以下直焚
熱源高温再生器という)34Bへ流下してさらに加熱濃
縮されると同時に冷媒蒸気が発生する。また、低温溶液
熱交換器32の出口から分岐して低温再生器35へ送り
込まれた稀溶液は、高温再生器34A,34Bから発生
した冷媒蒸気と熱交換して、二次冷媒蒸気を発生し濃縮
される。排熱熱源高温再生器34Aおよび直焚熱源高温
再生器34Bで濃縮された濃溶液は、高温溶液熱交換器
33を経て低温再生器35で濃縮された溶液と共に低温
溶液熱交換器32を通過し、これら溶液熱交換器32、
33で顕熱を稀溶液に与えた後吸収器30内に散布され
る。一方、排熱熱源高温再生器34Aおよび直焚熱源高
温再生器34B及び低温再生器35で発生した冷媒蒸気
の各々は、低温再生器35及び凝縮器36で凝縮され、
冷媒液となって蒸発器37内に流下する。ここで冷媒は
冷媒スプレイポンプ38によって蒸発器内に散布され、
冷水配管41内の冷水から蒸発熱を得て蒸発し、蒸発器
37と吸収器30とを連絡する蒸気通路を経て吸収器内
の散布濃溶液に吸収される。吸収器30で発生した冷媒
の凝縮熱は、冷却水配管40を循環する冷却水によって
取り除かれる。なお、冷却水は吸収器30を経て前述の
凝縮器36を循環し、低温再生器35で発生した冷媒蒸
気の凝縮熱を奪ったのち、図示しない冷却塔でこれらの
凝縮熱を外気に放出し、冷却される。また、上述の冷房
サイクルは、排熱熱源高温再生器34A及び直焚熱源高
温再生器34Bの両高温再生器に入熱がある場合である
が、各高温再生器単独に入熱されるサイクルについても
基本的には同様なサイクルが形成される。FIG. 1 shows an embodiment of the present invention. In the cooling operation cycle, the diluted solution diluted with the refrigerant (water) in the absorber 30 is converted into the low temperature solution heat exchanger 3 by the solution pump 31.
2. After passing through the high temperature solution heat exchanger 33 to a high temperature regenerator (hereinafter referred to as a waste heat heat source high temperature regenerator) 34A using exhaust heat as a heat source, after being heated there, the refrigerant is evaporated and concentrated,
Refrigerant vapor is generated at the same time as it flows down to a high temperature regenerator (hereinafter referred to as a direct-burning heat source high temperature regenerator) 34B that directly burns fuel as a heat source and is further heated and concentrated. Further, the dilute solution branched from the outlet of the low temperature solution heat exchanger 32 and sent to the low temperature regenerator 35 exchanges heat with the refrigerant vapor generated from the high temperature regenerators 34A and 34B to generate secondary refrigerant vapor. Concentrated. The concentrated solution concentrated in the exhaust heat heat source high temperature regenerator 34A and the direct heat source high temperature regenerator 34B passes through the high temperature solution heat exchanger 33 and the low temperature regenerator 35 together with the solution concentrated in the low temperature solution heat exchanger 32. , These solution heat exchangers 32,
Sensible heat is applied to the dilute solution at 33 and then dispersed in the absorber 30. On the other hand, each of the refrigerant vapors generated in the exhaust heat source high temperature regenerator 34A, the direct heat source high temperature regenerator 34B and the low temperature regenerator 35 is condensed in the low temperature regenerator 35 and the condenser 36,
It becomes a refrigerant liquid and flows down into the evaporator 37. Here, the refrigerant is sprayed into the evaporator by the refrigerant spray pump 38,
Evaporation heat is obtained from the cold water in the cold water pipe 41 to evaporate, and is absorbed by the spray concentrated solution in the absorber via the vapor passage that connects the evaporator 37 and the absorber 30. The heat of condensation of the refrigerant generated in the absorber 30 is removed by the cooling water circulating in the cooling water pipe 40. The cooling water passes through the absorber 30 and circulates through the above-described condenser 36 to remove the heat of condensation of the refrigerant vapor generated in the low-temperature regenerator 35, and then discharges the heat of condensation to the outside in a cooling tower (not shown). , Cooled. In the cooling cycle described above, heat is input to both the high temperature regenerators of the exhaust heat heat source high temperature regenerator 34A and the direct heating heat source high temperature regenerator 34B. Basically a similar cycle is formed.
【0009】図2は臭化リチウム水溶液のデューリング
線図上に上述の冷凍サイクルを示した場合で、横軸を温
度、縦軸を圧力として、パラメータに溶液濃度として、
サイクルAが、排熱熱源又は直焚熱源単独駆動の場合を
示し、両熱源駆動の場合はサイクルBとなる。両熱源駆
動の場合には、単独熱源駆動の場合に比べて加熱量が2
倍となるため、高温再生器34A、34B、凝縮器35
の高圧側のサイクル温度、圧力は高くなり、臭化リチウ
ム水溶液の結晶線に近づくとともに、圧力(高温再生
器)も大気圧を越えるようになる。したがって、このよ
うな状態を継続して運転することは冷凍機にとって好し
くなく、入熱制限が必要である。本発明では、図1に示
すように、直焚熱源高温再生器34Bのに配置した温度
検出器50又は圧力検出器51からの信号を制御装置6
0に入力し、所定の温度又は圧力になったら、制御装置
60によって弁61を操作して直焚熱源高温再生器34
Bの入熱を遮断するか又は制限する。したがって、上述
の高温、高圧条件下での運転を回避することができる。FIG. 2 shows a case where the refrigeration cycle described above is shown on a Duhring diagram of an aqueous solution of lithium bromide, where the horizontal axis is temperature, the vertical axis is pressure, and the solution concentration is the parameter.
Cycle A shows the case where the exhaust heat source or the direct heating source is driven alone, and the cycle B is the case where both the heat sources are driven. In the case of driving with both heat sources, the heating amount is 2 compared with the case of driving with a single heat source.
Since it doubles, high temperature regenerators 34A, 34B, condenser 35
The cycle temperature and pressure on the high-pressure side of (1) increase, approaching the crystal line of the aqueous solution of lithium bromide, and the pressure (high temperature regenerator) also exceeds atmospheric pressure. Therefore, it is not preferable for the refrigerator to continuously operate in such a state, and heat input limitation is necessary. In the present invention, as shown in FIG. 1, a signal from the temperature detector 50 or the pressure detector 51 arranged in the direct-fired heat source high temperature regenerator 34B is supplied to the controller 6 as a signal.
0, and when the temperature or pressure reaches a predetermined value, the controller 61 operates the valve 61 to operate the direct heat source high temperature regenerator 34.
Block or limit the heat input to B. Therefore, it is possible to avoid the operation under the high temperature and high pressure conditions described above.
【0010】一般に冷却塔の能力は単独熱源運転時に対
応したものとなるので、冷却水水温が高い場合には、2
00%入熱時、圧力検出器51が作動して入熱制限が行
なわれ、低冷却水温運転時には、冷却塔の能力が高まる
ので圧力は低く押えられ、温度検出器50が作動して入
熱制限が行なわれる。このように冷凍機は自らの有する
入熱源を最大限活動して立上げ時間を短くすることがで
きる。Generally, the capacity of the cooling tower corresponds to the operation of a single heat source, so when the temperature of the cooling water is high, 2
When the heat input is 00%, the pressure detector 51 operates to limit the heat input, and during low cooling water temperature operation, the capacity of the cooling tower increases, so the pressure is held low, and the temperature detector 50 operates to input heat. Restrictions are enforced. As described above, the refrigerator can make the maximum activation of its own heat input source and shorten the startup time.
【0011】以上、本発明の実施例を説明したが、本発
明の実施例は上述の冷凍サイクルの他、他のいかなる吸
収冷凍サイクルの場合にも同様に適用できるものである
ことは明らかである。Although the embodiments of the present invention have been described above, it is obvious that the embodiments of the present invention can be similarly applied to any other absorption refrigeration cycle other than the above refrigeration cycle. .
【0012】[0012]
【発明の効果】本発明によれば、使い勝手がよく、コス
トパーフォーマンスに優れた排熱利用吸収式冷凍機が得
られる。According to the present invention, it is possible to obtain a waste heat absorption type refrigerating machine which is easy to use and excellent in cost performance.
【0013】[0013]
【図1】本発明の実施例を示すフローシートである。FIG. 1 is a flow sheet showing an example of the present invention.
【図2】本発明の実施例におけるサイクルを説明するグ
ラフである。FIG. 2 is a graph illustrating a cycle in the example of the present invention.
30…吸収器、31…溶液ポンプ、32…低温溶液熱交
換器、33…高温溶液熱交換器、34A…排熱を熱源と
する高温再生器、34B…燃料を直焚燃焼させて熱源と
する高温再生器、35…低温再生器、36…凝縮器、4
0…冷水配管、41…冷却水配管、50…温度検出器、
51…圧力検出器、60…制御装置 61…弁30 ... Absorber, 31 ... Solution pump, 32 ... Low-temperature solution heat exchanger, 33 ... High-temperature solution heat exchanger, 34A ... High-temperature regenerator using exhaust heat as a heat source, 34B ... Directly burn fuel to use as a heat source High temperature regenerator, 35 ... Low temperature regenerator, 36 ... Condenser, 4
0 ... Cold water piping, 41 ... Cooling water piping, 50 ... Temperature detector,
51 ... Pressure detector, 60 ... Control device 61 ... Valve
フロントページの続き (72)発明者 町沢 健司 茨城県土浦市神立町603番地 株式会社日 立製作所土浦工場内 (72)発明者 藁谷 至誠 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 大澤 亙 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 須藤 勇 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 中尾 正喜 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内Front Page Continuation (72) Kenji Machizawa, Inventor Kenjimachi, Tsuchiura City, Ibaraki Prefecture, 603 Kuchitari, Tsuchiura Plant, Ltd. Incorporated (72) Inventor Yasushi Osawa 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph Telephone Co., Ltd. (72) Inventor Isamu Sudo 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Co., Ltd. (72) Inventor Masayoshi Nakao 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation
Claims (1)
器、溶液熱交換器を配管接続してなる排熱利用吸収式冷
凍機において、排熱を熱源とする高温再生器および燃料
を直接燃焼させて熱源とする高温再生器を備えるととも
に、吸収媒体を排熱を熱源とする高温再生器および燃料
を直接燃焼させて熱源とする高温再生器に直列に供給し
て冷凍サイクルを構成し、前記燃料を直接燃焼させて熱
源とする高温再生器に温度又は圧力を検出する検出手段
を設け、前記燃料を直接燃焼させて熱源とする高温再生
器には前記燃料を直接燃焼させて熱源とする高温再生器
の温度又は圧力が所定値以上となった場合に入熱を遮断
又は制限する制御手段を設けたことを特徴とする排熱利
用吸収式冷凍機。1. An exhaust heat utilization absorption refrigerating machine comprising a high temperature regenerator, a low temperature regenerator, a condenser, an evaporator and a solution heat exchanger connected in a pipe, wherein a high temperature regenerator using exhaust heat as a heat source and a fuel are used. A refrigeration cycle is configured by providing a high-temperature regenerator that burns directly as a heat source and supplies the absorption medium in series to a high-temperature regenerator that uses exhaust heat as a heat source and a high-temperature regenerator that burns fuel directly as a heat source. A high temperature regenerator that burns the fuel directly as a heat source is provided with detection means for detecting temperature or pressure, and a high temperature regenerator that burns the fuel directly as a heat source burns the fuel directly to form a heat source. An exhaust heat utilization absorption refrigerator, which is provided with control means for cutting off or limiting heat input when the temperature or pressure of the high temperature regenerator exceeds a predetermined value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5067873A JPH06281288A (en) | 1993-03-26 | 1993-03-26 | Absorption type refrigerator using waste heat |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5067873A JPH06281288A (en) | 1993-03-26 | 1993-03-26 | Absorption type refrigerator using waste heat |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06281288A true JPH06281288A (en) | 1994-10-07 |
Family
ID=13357480
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5067873A Pending JPH06281288A (en) | 1993-03-26 | 1993-03-26 | Absorption type refrigerator using waste heat |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06281288A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005066558A1 (en) * | 2003-12-31 | 2005-07-21 | Utc Power, Llc. | Efficient control for smoothly and rapidly starting up an absorption solution system |
US7143592B2 (en) | 2003-02-07 | 2006-12-05 | Yazaki Corporation | Absorption chiller-heater |
JP2008082645A (en) * | 2006-09-28 | 2008-04-10 | Sanyo Electric Co Ltd | Absorption type refrigerating apparatus |
JP2008089225A (en) * | 2006-09-29 | 2008-04-17 | Sanyo Electric Co Ltd | Absorption type refrigerating device |
JP2009198142A (en) * | 2008-02-25 | 2009-09-03 | Aisin Seiki Co Ltd | Heat utilization device |
JP2014035139A (en) * | 2012-08-09 | 2014-02-24 | Hitachi Appliances Inc | Cold heat generation system utilizing sunlight heat |
ES2584172A1 (en) * | 2015-03-23 | 2016-09-26 | Universidad De Extremadura | Refrigerator of residual heats (Machine-translation by Google Translate, not legally binding) |
-
1993
- 1993-03-26 JP JP5067873A patent/JPH06281288A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7143592B2 (en) | 2003-02-07 | 2006-12-05 | Yazaki Corporation | Absorption chiller-heater |
WO2005066558A1 (en) * | 2003-12-31 | 2005-07-21 | Utc Power, Llc. | Efficient control for smoothly and rapidly starting up an absorption solution system |
JP2008082645A (en) * | 2006-09-28 | 2008-04-10 | Sanyo Electric Co Ltd | Absorption type refrigerating apparatus |
JP2008089225A (en) * | 2006-09-29 | 2008-04-17 | Sanyo Electric Co Ltd | Absorption type refrigerating device |
JP2009198142A (en) * | 2008-02-25 | 2009-09-03 | Aisin Seiki Co Ltd | Heat utilization device |
JP2014035139A (en) * | 2012-08-09 | 2014-02-24 | Hitachi Appliances Inc | Cold heat generation system utilizing sunlight heat |
ES2584172A1 (en) * | 2015-03-23 | 2016-09-26 | Universidad De Extremadura | Refrigerator of residual heats (Machine-translation by Google Translate, not legally binding) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3883838B2 (en) | Absorption refrigerator | |
KR20020035770A (en) | Absorbed refrigerator | |
JPH06281288A (en) | Absorption type refrigerator using waste heat | |
US6550272B2 (en) | Absorption chiller/absorption chiller-heater having safety device | |
JPH05272837A (en) | Compression absorption composite heat pump | |
JP4315855B2 (en) | Absorption refrigerator | |
US5216891A (en) | Solution flows in direct expansion lithium bromide air conditioner/heater | |
JP2772868B2 (en) | Absorption refrigerator | |
JPH05256535A (en) | Sorption heat pump system | |
JPH05280825A (en) | Absorption heat pump | |
KR100493598B1 (en) | Absorption Type Refrigerator | |
JP4100462B2 (en) | Heat utilization system | |
JP2005300047A (en) | Heat exchanger system and absorption refrigerating machine using the same | |
JP7534162B2 (en) | Absorption refrigeration system and absorption refrigeration machine | |
JP2821724B2 (en) | Single double effect absorption refrigerator | |
JP4141025B2 (en) | Operation method of absorption chiller / heater | |
JP2000088391A (en) | Absorption refrigerator | |
JP3219529B2 (en) | Absorption refrigerator | |
JP4282225B2 (en) | Absorption refrigerator | |
JPH0783530A (en) | Water and lithium bromide absorption refrigerator | |
JPH09229510A (en) | Absorption refrigenerating machine | |
JPH02140564A (en) | Controlling method for absorption refrigerator | |
JP3735744B2 (en) | Cooling operation control method for absorption air conditioner | |
JPS6022253B2 (en) | absorption refrigerator | |
KR0136049Y1 (en) | Absorption Cooler |