JPH01234761A - Double-effect multi-stage pressure type absorption type refrigerator and system therefor - Google Patents

Double-effect multi-stage pressure type absorption type refrigerator and system therefor

Info

Publication number
JPH01234761A
JPH01234761A JP5832088A JP5832088A JPH01234761A JP H01234761 A JPH01234761 A JP H01234761A JP 5832088 A JP5832088 A JP 5832088A JP 5832088 A JP5832088 A JP 5832088A JP H01234761 A JPH01234761 A JP H01234761A
Authority
JP
Japan
Prior art keywords
absorbent
temperature
refrigerant vapor
low
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5832088A
Other languages
Japanese (ja)
Other versions
JPH0760031B2 (en
Inventor
Yasuo Koseki
小関 康雄
Sankichi Takahashi
燦吉 高橋
Katsuya Ebara
江原 勝也
Akira Yamada
章 山田
Hideaki Kurokawa
秀昭 黒川
Isao Okochi
大河内 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63058320A priority Critical patent/JPH0760031B2/en
Publication of JPH01234761A publication Critical patent/JPH01234761A/en
Publication of JPH0760031B2 publication Critical patent/JPH0760031B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To cool air directly, and to reduce the corrosion of materials by carrying out the manupulation of concentrating an absorbent through a low-temperature regenerator and a condenser under a plurality of different pressures and then by carrying out the manupulation of diluting the absorbent through an absorber and an evaporator under a plurality of different pressures and further by carrying out the manupulation of concentrating the absorbent through a high-temperature regenerator and the low-temperature regenerator under a plurality of different pressures. CONSTITUTION:A diluted absorbent 20 is concentrated at the high pressure part 1a and the low pressure part 1b of a high-temperature regenerator to be sent to the high pressure part 2a of a low-temperature regenerator as an intermediate absorbent 21. Refrigerant vapor 30a is sent to the high pressure part 2a of the low-temperature regenerator and refrigerant vapor 30b to the low pressure part 2b thereof, as respective heating sources. The intermediate absorbent 21 is concentrated at the high pressure part 2a and low pressure part 2b of the low-temperature regenerator to be converted into a rich absorbent 22 and sent to the low pressure part 4b of an absorber. Refrigerant vapor 31a and refrigerant vapor 31b are condensed at the high pressure part 3a and the low pressure part 3b of a condenser, respectively. A refrigerant 31 is sent to the high pressure part 5a and low pressure part 5b of an evaporator together with a refrigerant 30. The rich absorbent 22 absorbs refrigerant vapor 32b at the low pressure part 4b and refrigerant vapor 32a at the high pressure part 4a of the absorber to be diluted. Thus, said rich absorbent 22 is converted into the diluted absorbent 20 to be sent to the high pressure part 1a again after preheated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は二重効用吸収冷凍サイクルとその装置に係り、
特に器内最高圧力を大気圧以下のもとて冷却温度を上げ
るに好適な、多段圧力型二重効用吸収冷凍サイクルとそ
の装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a dual-effect absorption refrigeration cycle and its device;
In particular, the present invention relates to a multi-pressure double-effect absorption refrigeration cycle and its device, which are suitable for raising the cooling temperature by keeping the maximum internal pressure below atmospheric pressure.

〔従来の技術〕[Conventional technology]

従来の二重効用吸収冷凍の基本サイクルは例えば特開昭
62−108973号に記載のように、第7図のごとく
基本的には高温再生器1.低温再生器2゜凝縮器3.吸
収器4.蒸発器5、そして2つの熱回収器6,7の7要
素からなり、前記5要素は、各器内とも同一圧力下で操
作される。つまり、高温再生器1で希薄吸収剤20を加
熱し、冷媒30を蒸発させ中間濃度まで濃縮し、中間吸
収剤21として高温熱回収器7で熱交換した後高温再生
器より圧力の低い低温再生器2へ送られる。そこで高温
再生器1が発生した冷媒蒸気30で中間吸収剤21が加
熱され、冷媒蒸気31が発生し、中間吸収剤21は濃縮
され、濃厚吸収剤22として低温熱回収器6で熱交換し
た後、さらに器内圧力が低い吸収器4へ送られる。一方
低温再生器2で発生した冷媒蒸気31は、凝縮器3で冷
却し、凝縮する。又高温再生器1で発生した冷媒蒸気3
oは低温再生器2の中間吸収剤21に加熱に用いられ、
冷媒蒸気30は冷却凝縮し、液相の冷媒30となり、凝
縮器3からの冷媒31と共に蒸発器5へ送られる。吸収
器4へ送られた濃厚吸収剤22はそこで冷却されるため
、器内の水蒸気が吸収剤に吸収されて圧力が低下する。
The basic cycle of conventional dual-effect absorption refrigeration is, for example, as described in JP-A-62-108973, and basically consists of a high temperature regenerator 1. Low temperature regenerator 2° condenser 3. Absorber 4. It consists of seven elements: an evaporator 5 and two heat recovery units 6 and 7, and the five elements are operated under the same pressure inside each vessel. In other words, the dilute absorbent 20 is heated in the high-temperature regenerator 1, the refrigerant 30 is evaporated and concentrated to an intermediate concentration, and after heat exchange in the high-temperature heat recovery device 7 as the intermediate absorbent 21, the low-temperature regeneration is performed at a lower pressure than the high-temperature regenerator. Sent to vessel 2. There, the intermediate absorbent 21 is heated by the refrigerant vapor 30 generated by the high-temperature regenerator 1, generating refrigerant vapor 31, and the intermediate absorbent 21 is concentrated, and after heat exchange in the low-temperature heat recovery device 6 as a concentrated absorbent 22. , and is further sent to the absorber 4 where the internal pressure is low. On the other hand, refrigerant vapor 31 generated in the low-temperature regenerator 2 is cooled and condensed in the condenser 3. In addition, refrigerant vapor 3 generated in the high-temperature regenerator 1
o is used for heating the intermediate absorbent 21 of the low temperature regenerator 2,
The refrigerant vapor 30 is cooled and condensed to become a liquid phase refrigerant 30, which is sent to the evaporator 5 together with the refrigerant 31 from the condenser 3. Since the concentrated absorbent 22 sent to the absorber 4 is cooled there, the water vapor inside the absorber is absorbed by the absorbent and the pressure decreases.

−力吸収器に連通した蒸発器5も圧力が下がるため、ポ
ンプ41で循環している冷媒32(冷媒30と31が混
合したもの)が蒸発し、その蒸発潜熱により、蒸発器5
が冷却され、器内に設置した伝熱管50より冷水が得ら
れる。蒸発器5で発生した冷媒蒸気32は吸収器4で濃
厚吸収剤22に吸収され、吸収剤が希釈され、希薄吸収
剤20となって、ポンプ40により、低温熱回収器6と
高温熱回収器7で予熱され、再び高温再生器1へもどさ
れる。吸収器4と凝縮器3を冷却し、昇温した冷却水9
は冷却塔8で冷され再び使用される。次に水/臭化リチ
ウム水溶液を冷媒/吸収剤を例にとり、第8図のデュリ
ング線図を用いてサイクルを説明する。横軸が温度縦軸
が水蒸気圧を示す。第7図に対応して説明すると、高温
再生器1で希薄吸収剤が大気圧(P=760ovnHg
)温度154℃で加熱され濃度が57%から59.5%
まで濃縮され中間吸収剤21となる(図中■)。そこで
発生した冷媒蒸気30は低温再生器2の伝熱管52で冷
却凝縮する(■)。中間吸収剤21が器内圧カフ5ni
nHgの低温再生器2で冷媒蒸気30で加熱され(温度
94℃)、濃度が59.5%から62%まで濃縮され濃
厚吸収剤22となる(■)。発生した冷媒蒸気31は凝
縮器3 (P=75.T=45)で冷却凝縮する(■)
。低温再生器2(■)と凝縮器3(■)の冷媒30.3
1は蒸発器5へ送られ、そこで器内圧力6.2nmHg
 で蒸発し4℃が得られる(■)。−力発生した冷媒蒸
気32は吸収器4で濃厚吸収剤22に吸収される(■)
- Since the pressure of the evaporator 5 connected to the force absorber also decreases, the refrigerant 32 (a mixture of refrigerants 30 and 31) circulating by the pump 41 evaporates, and the latent heat of evaporation causes the evaporator 5 to evaporate.
is cooled, and cold water is obtained from the heat transfer tube 50 installed in the vessel. The refrigerant vapor 32 generated in the evaporator 5 is absorbed by the concentrated absorbent 22 in the absorber 4, and the absorbent is diluted to become the diluted absorbent 20. 7 and returned to the high temperature regenerator 1 again. Cooling water 9 that cools the absorber 4 and the condenser 3 and has a raised temperature
is cooled in the cooling tower 8 and used again. Next, a cycle will be explained using a Duhring diagram in FIG. 8, taking water/lithium bromide aqueous solution as an example of a refrigerant/absorbent. The horizontal axis shows temperature and the vertical axis shows water vapor pressure. To explain this in conjunction with FIG.
) heated at a temperature of 154°C and the concentration ranges from 57% to 59.5%
It is concentrated to an intermediate absorbent 21 (■ in the figure). The refrigerant vapor 30 generated there is cooled and condensed in the heat transfer tube 52 of the low temperature regenerator 2 (■). The intermediate absorbent 21 is the internal pressure cuff 5ni.
It is heated with refrigerant vapor 30 in the nHg low temperature regenerator 2 (temperature 94° C.) and concentrated from 59.5% to 62% to become a concentrated absorbent 22 (■). The generated refrigerant vapor 31 is cooled and condensed in the condenser 3 (P=75.T=45) (■)
. Refrigerant 30.3 in low temperature regenerator 2 (■) and condenser 3 (■)
1 is sent to the evaporator 5, where the internal pressure is 6.2 nmHg.
It evaporates at 4°C to obtain a temperature of 4°C (■). - The generated refrigerant vapor 32 is absorbed by the concentrated absorbent 22 in the absorber 4 (■)
.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術である二重効用吸収冷凍サイクルは、吸収
剤の濃縮に必要な熱エネルギーは高温再生器1からのみ
供給し吸収剤の濃縮に用いた後。
In the conventional dual-effect absorption refrigeration cycle described above, the thermal energy necessary for concentrating the absorbent is supplied only from the high-temperature regenerator 1 and used for concentrating the absorbent.

低温再生器2での吸収剤濃縮の加熱源として、高温再生
器で発生する冷媒蒸気30の凝縮熱を再び利用するため
、−型動用に比べ、必要熱エネルギーが約半分になり省
エネルギーである。
Since the heat of condensation of the refrigerant vapor 30 generated in the high-temperature regenerator is reused as the heat source for concentrating the absorbent in the low-temperature regenerator 2, the required thermal energy is about half that of the - type operation, resulting in energy savings.

その反面、第8図でわかるごとく、高温再生器で発生す
る冷媒蒸気の凝縮熱(■の点)を利用して、低温再生器
を加熱(■の点)するため、低温再生器の加熱温度が高
温再生工程力によって決まり、それにより、冷熱4°C
(■)を発生させるたメツ冷却温度(■、■)が決まっ
てしまう。吸収冷凍サイクルは圧縮冷凍サイクルに比べ
操作圧力が大気圧以下(高圧容器でない)の特長があり
、大気圧以下運転が要求される。従って、冷熱4℃を得
て、かつ器内圧力が大気圧以下(■、■の圧力)で二重
効用吸収冷凍サイクルを運転するには、原理的に凝縮器
3(■)と吸収器4(■)の冷却温度の上限が制限され
1通常38℃以下である。
On the other hand, as shown in Figure 8, the heating temperature of the low temperature regenerator is is determined by the high temperature regeneration process power, which results in a cooling temperature of 4°C.
The cooling temperature (■, ■) that caused (■) to occur is determined. Compared to compression refrigeration cycles, absorption refrigeration cycles have the advantage that the operating pressure is below atmospheric pressure (they are not high-pressure vessels), and are required to operate at below atmospheric pressure. Therefore, in order to obtain cold heat of 4°C and operate a dual-effect absorption refrigeration cycle with an internal pressure below atmospheric pressure (pressure of ■, ■), in principle, condenser 3 (■) and absorber 4 The upper limit of the cooling temperature in (■) is limited and is usually 38°C or less.

その冷却源として冷却塔8を用いた低温冷却水9を用い
る必要があり、空気での直接冷却が困難であるため、冷
却塔の設備コスト、及び冷却水の水質管理の点に問題が
ある。また吸収冷凍サイクルでは吸収剤の濃縮に用いた
熱エネルギーはすへて凝縮器と吸収器の冷却熱として排
出されるが、その温度が低いため、再利用は困難等の課
題があった。
It is necessary to use low-temperature cooling water 9 using a cooling tower 8 as the cooling source, and since direct cooling with air is difficult, there are problems in terms of equipment cost of the cooling tower and quality control of the cooling water. In addition, in the absorption refrigeration cycle, the thermal energy used to concentrate the absorbent is exhausted as cooling heat for the condenser and absorber, but its low temperature makes it difficult to reuse.

また用いる吸収剤は一般に無機電解質の濃厚水溶液のた
め、材料への腐食性が大きく、腐食性は吸収剤の濃度が
高い程、温度が高い程激しくなる。
Furthermore, since the absorbent used is generally a concentrated aqueous solution of an inorganic electrolyte, it is highly corrosive to the material, and the corrosivity becomes more severe as the concentration of the absorbent increases and the temperature increases.

一般に二重効用吸収冷凍サイクルは、−型動用に比へ吸
収剤の再生濃度(60→62%)及び温度(94→15
4°C)共に高く、材料腐食の防止が実用面での課題で
ある。
In general, a dual-effect absorption refrigeration cycle has a ratio of regeneration concentration of absorbent (60 → 62%) and temperature (94 → 15%) to the type of operation.
4°C), and prevention of material corrosion is a practical issue.

本発明の第1の目的は、器内最高圧力を大気圧以下の状
態で従来技術の欠点である。凝縮器及び吸収器の冷却温
度を上げ、空気による直接冷却(空冷化)と冷却熱の回
収を可能にし、また第2の目的は、高温再生器での加熱
温度を極力下げ。
The first object of the present invention is to overcome the drawbacks of the prior art when the maximum internal pressure is below atmospheric pressure. The cooling temperature of the condenser and absorber is increased to enable direct cooling with air (air cooling) and recovery of cooling heat.The second purpose is to lower the heating temperature in the high temperature regenerator as much as possible.

材料防食に対し有利にすることにある。The purpose is to make the material advantageous for corrosion protection.

〔課題を解決するための手段〕 上記の第1の目的は、大気圧以下を達成するには基本的
には低温再生器と凝縮器での吸収剤の濃縮操作を複数の
異なる圧力のもとで行うことであり、さらに、吸収器と
蒸発器の吸収剤の希釈操作を複数の異なる圧力のもとで
行うことにより冷却温度をさらに上げられる。第2の目
的は、高温再生器と低温再生器での吸収剤の濃縮操作を
複数の異なる圧力下のもとで行うことにより達成される
[Means for solving the problem] The first objective is to achieve below atmospheric pressure by basically concentrating the absorbent in the low-temperature regenerator and condenser under multiple different pressures. Furthermore, the cooling temperature can be further increased by diluting the absorbent in the absorber and evaporator under a plurality of different pressures. The second objective is achieved by performing the absorbent concentration operations in the high-temperature regenerator and the low-temperature regenerator under a plurality of different pressures.

〔作用〕[Effect]

第2図の実線を用いて本発明のポイントを2段圧を例に
とり説明する。まず器内最高圧力を大気圧以下で凝縮器
の冷却温度を上昇するには、低温再生器と凝縮器をそれ
ぞれ2つしこ区切り、2段階に吸収剤を濃縮(再生と凝
縮)することにより。
The main points of the present invention will be explained using the solid line in FIG. 2, taking two-stage pressure as an example. First, in order to raise the cooling temperature of the condenser while keeping the maximum internal pressure below atmospheric pressure, the low-temperature regenerator and the condenser are separated into two, and the absorbent is concentrated in two stages (regeneration and condensation). .

器内圧力を上昇させる(■→■′)。それにより凝縮器
の圧力も上がり、凝縮(冷却)温度が上昇できる(■→
■′)。次に吸収器の冷却温度の上昇は、吸収器と蒸発
器をそれぞれ2つに区切り、2段階に吸収剤を希釈(吸
収と蒸発)することにより、吸収器の冷却温度が上昇で
きる(■→■′)。
Increase the pressure inside the vessel (■→■′). This increases the pressure in the condenser and allows the condensation (cooling) temperature to rise (■→
■′). Next, the cooling temperature of the absorber can be increased by dividing the absorber and evaporator into two parts and diluting the absorbent in two stages (absorption and evaporation) (■→ ■′).

以上の作用により、二重効用吸収冷凍サイクルの冷却(
凝縮器と吸収器)温度が上昇できる。吸収剤の濃縮に必
要な加熱温度を下げるには、高温再生器と低温再生器の
冷媒凝縮部をそれぞれ2つに区切り、2段階で吸収剤を
濃縮(再生と凝縮)することにより、高温再生器の加熱
温度が下がる(■→■′)。
Due to the above actions, the cooling of the dual-effect absorption refrigeration cycle (
condenser and absorber) temperature can be increased. In order to lower the heating temperature required for concentrating the absorbent, the refrigerant condensing sections of the high-temperature regenerator and the low-temperature regenerator are each divided into two parts, and the absorbent is concentrated in two stages (regeneration and condensation). The heating temperature of the vessel decreases (■→■′).

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図及び第2図(図中の点
線は従来のサイクルを示す)を用し)で詳細に説明する
。第1図は本発明の基本的システムで2膜圧カニ重効用
吸収冷凍システムであり。
Hereinafter, one embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2 (the dotted lines in the figures indicate conventional cycles). FIG. 1 shows the basic system of the present invention, which is a double membrane pressure double-effect absorption refrigeration system.

従来システム(第7図)との相異が、高温再生器が高圧
部1aと低圧部1bに、低温再生器も高圧部2aと低圧
部2bに、凝縮器も高圧部3aと低圧部3b、吸収器も
高圧部4aと低圧部4bに、蒸発器も高圧部5aと低圧
部5bに区切られた点にある。
The difference from the conventional system (Fig. 7) is that the high-temperature regenerator has a high-pressure section 1a and a low-pressure section 1b, the low-temperature regenerator has a high-pressure section 2a and a low-pressure section 2b, and the condenser has a high-pressure section 3a and a low-pressure section 3b. The absorber is also divided into a high pressure section 4a and a low pressure section 4b, and the evaporator is also divided into a high pressure section 5a and a low pressure section 5b.

希薄吸収剤20は高温再生器の高圧部1aに入り加熱濃
縮され(■′)、さらに低圧部1bで加熱濃縮され(■
#)中間吸収剤21として、高温熱回収器7で冷却され
た後、低温再生器の高圧部2aへ送られる。高温再生器
の高圧部1aで発生した冷媒蒸気30aは低温再生器の
高圧部2aの加熱源として、低圧部1bで発生した冷媒
蒸気30bは低温再生器の低圧部2bの加熱源として送
られる。低温再生器の高圧部2aで中間吸収剤21が加
熱濃縮され(■′)、さらに低圧部2bで加熱濃縮され
(■#)濃厚吸収剤22となって。
The dilute absorbent 20 enters the high-pressure section 1a of the high-temperature regenerator and is heated and concentrated (■'), and further heated and concentrated in the low-pressure section 1b (■
#) After being cooled in the high-temperature heat recovery device 7 as the intermediate absorbent 21, it is sent to the high-pressure section 2a of the low-temperature regenerator. Refrigerant vapor 30a generated in the high pressure section 1a of the high temperature regenerator is sent as a heat source for the high pressure section 2a of the low temperature regenerator, and refrigerant vapor 30b generated in the low pressure section 1b is sent as a heat source for the low pressure section 2b of the low temperature regenerator. The intermediate absorbent 21 is heated and concentrated in the high pressure section 2a of the low-temperature regenerator (■'), and further heated and concentrated in the low pressure section 2b (■#) to become a concentrated absorbent 22.

低温熱回収器6で冷却された後、吸収器の低圧部4bへ
送られる。低温再生器の高圧部2a、低圧部2bで発生
した冷媒蒸気31a、31bはそれぞれ、凝縮器の高圧
部3a(■′)、低圧部3b(■)へ送られ、冷却凝縮
する。そこで凝縮した冷媒31は、低温再生器の加熱側
で凝縮した冷媒30と共に蒸発器へ送られ、ポンプ41
しこより、蒸発器の高圧部5aと低圧部5bへ循環させ
る。
After being cooled in the low-temperature heat recovery device 6, it is sent to the low-pressure section 4b of the absorber. Refrigerant vapors 31a and 31b generated in the high-pressure section 2a and low-pressure section 2b of the low-temperature regenerator are sent to the high-pressure section 3a (■') and low-pressure section 3b (■) of the condenser, respectively, where they are cooled and condensed. The refrigerant 31 condensed there is sent to the evaporator together with the refrigerant 30 condensed on the heating side of the low temperature regenerator, and pump 41
From there, it is circulated to the high pressure section 5a and low pressure section 5b of the evaporator.

一方濃厚吸収剤22は吸収器の低圧部4bで、蒸発器低
圧部5bで発生(■)した冷媒蒸気32bを吸収し希釈
され(■′)、さらに高圧部4aへ送られ、そこで蒸発
器高圧部5aで発生(■′)シた冷媒蒸気32aを吸収
して希釈し、希薄吸収剤20となる。希薄吸収剤20は
ポンプ40により低温熱回収器6と高温熱回収器7で予
熱された後、高温再生器の高圧部1aへ再び送られる。
On the other hand, the concentrated absorbent 22 is diluted (■') in the low pressure section 4b of the absorber by absorbing the refrigerant vapor 32b generated (■) in the evaporator low pressure section 5b, and is further sent to the high pressure section 4a, where the evaporator high pressure The refrigerant vapor 32a generated (■') in the section 5a is absorbed and diluted to become a dilute absorbent 20. After the dilute absorbent 20 is preheated by the pump 40 in the low-temperature heat recovery device 6 and the high-temperature heat recovery device 7, it is sent again to the high-pressure section 1a of the high-temperature regenerator.

以上、本発明を2段圧方式で説明したが、2段に限定さ
れるものではない。また本発明は吸収冷凍サイクルで説
明したが、同原理である吸収ヒートポンプサイクルにそ
のまま適用できる。
Although the present invention has been described above using a two-stage pressure system, it is not limited to two stages. Further, although the present invention has been explained using an absorption refrigeration cycle, it can be directly applied to an absorption heat pump cycle based on the same principle.

次に本発明の効果をさらしこ向上させた他の実施例を示
す水蒸気圧線図を第3図(図中の点線は従来サイクルを
示す)に示す。器内最大圧力を大気圧以下でかつさらに
冷却温度を上げるには、各要素を異なる圧力下(多段圧
力)で行うと共に、温度に対する圧力勾配の大きい吸収
剤を用いると効果が増大する。
Next, a water vapor pressure diagram showing another embodiment in which the effects of the present invention are significantly improved is shown in FIG. 3 (the dotted line in the figure indicates the conventional cycle). In order to keep the maximum internal pressure below atmospheric pressure and further raise the cooling temperature, the effect will be increased if each element is subjected to different pressures (multi-stage pressure) and an absorbent with a large pressure gradient with respect to temperature is used.

圧力勾配の大きい吸収剤として臭化リチウム−塩化カル
シウム2混合系、臭化リチウム−塩化カルシウム−塩化
マグネシウム3混合系、塩化リチウム−塩化カルシウム
2混合系、塩化リチウム−塩化カルシウム−塩化マグネ
シウム3混合系の水溶液等、リチウム、カルシウム、マ
グネシウムのハロゲン物がある。第3図のごとく高圧力
勾配の混合吸収剤(CaCQ2/MgCQz/LiCQ
=11/3/1)を用いて冷熱4℃を発生すると、冷却
温度が45℃(■′→■〜、■→■″、■→■′″)と
6℃向上し、また高温再生器の加熱温度が147℃(■
→■′)と7℃低下できる。
As absorbents with large pressure gradients, lithium bromide-calcium chloride 2-mix system, lithium bromide-calcium chloride-magnesium chloride 3-mix system, lithium chloride-calcium chloride 2-mix system, lithium chloride-calcium chloride-magnesium chloride 3-mix system There are halogenated substances such as lithium, calcium, and magnesium, such as aqueous solutions of As shown in Figure 3, a mixed absorbent with a high pressure gradient (CaCQ2/MgCQz/LiCQ
= 11/3/1) to generate cold heat of 4°C, the cooling temperature increases by 6°C to 45°C (■'→■~, ■→■'', ■→■'''), and the high temperature regenerator heating temperature is 147℃ (■
→■') and can be lowered by 7℃.

第4図に本発明により冷熱温熱同時発生可能な吸収冷暖
房機の実施例を示す。吸収冷凍機本体の蒸発器5からの
冷水100を冷風発生器110の冷却源として用い冷風
120を発生させると同時に、凝縮器3.吸収器4から
発生する高温冷却水200を温風発生器210の加熱源
として用い温風220を発生させるようにする。また本
実施例では、冷熱/温熱需要のアンバランスを温熱蓄熱
槽300の設置により防止している。またアンバランス
防止に冷熱蓄熱槽を設置してもよい。
FIG. 4 shows an embodiment of an absorption air conditioner capable of simultaneously generating cooling and heating according to the present invention. The cold water 100 from the evaporator 5 of the absorption refrigerator main body is used as a cooling source for the cold air generator 110 to generate cold air 120, and at the same time, the condenser 3. The high temperature cooling water 200 generated from the absorber 4 is used as a heating source for the hot air generator 210 to generate hot air 220. Further, in this embodiment, an imbalance between cold/heat demand is prevented by installing a heat storage tank 300. Additionally, a cold/heat storage tank may be installed to prevent imbalance.

第5図に本発明を用いてビルや地域に集中して熱を供給
するシステムの他実施例を示す。熱供給は一般に冷熱と
して冷房、温熱として暖房と給湯があり、給湯は50〜
80℃必要である。本実施例では、第4図の同様に暖房
、冷房を行なうと共に、さらに他のヒートポンプ(例え
ば圧縮式ヒートポンプ)500を組合せたものである。
FIG. 5 shows another embodiment of a system that supplies heat in a concentrated manner to a building or area using the present invention. Heat supply generally includes air conditioning as cold energy, heating and hot water supply as hot energy, and hot water supply is 50~
80°C is required. In this embodiment, heating and cooling are performed in the same manner as shown in FIG. 4, and another heat pump (for example, a compression heat pump) 500 is also combined.

つまり、吸収器4と凝縮器3の高温冷却水(40℃程度
)200の1部を圧縮式ヒートポンプの蒸発器510の
加熱源に用で、圧縮機530を介してヒートポンプし、
凝縮器520よりより高温(50〜80°C)を発生さ
せ、給湯600の加熱源や、温風発生器210へ送り、
起動時の急速暖房に用いる。
That is, a part of the high temperature cooling water (approximately 40°C) 200 of the absorber 4 and condenser 3 is used as a heat source for the evaporator 510 of the compression heat pump, and is heat pumped through the compressor 530.
A higher temperature (50 to 80°C) is generated from the condenser 520 and sent to the heating source of the hot water supply 600 and the hot air generator 210.
Used for rapid heating at startup.

第6図に本発明による空冷式二重効用吸収冷凍機の実施
例を示す。ファン710で空気700を直接吸収器4と
凝縮器3へ送り冷却する。外気温度は夏季は30℃前後
であり、吸収器、凝縮器の熱交換器能力及び送風量等を
考慮すると冷熱発生温度を7℃以下にするには吸収器又
は凝縮器の最低温度は38℃となり、それ以上では、吸
収器。
FIG. 6 shows an embodiment of an air-cooled dual-effect absorption refrigerator according to the present invention. A fan 710 sends air 700 directly to the absorber 4 and condenser 3 for cooling. The outside air temperature is around 30℃ in summer, and considering the heat exchange capacity of the absorber and condenser, the air flow rate, etc., the minimum temperature of the absorber or condenser is 38℃ to keep the cold generation temperature below 7℃. Above that, it becomes an absorber.

凝縮器が大型化すると共に送風量も増大し現実的ではな
い0本発明のごとく、吸収器、低温再生器等を多段圧力
にすると、最低温度を38℃以上にできる(第2図では
43℃、第3図では45℃)ようになる。
As the condenser becomes larger, the amount of air blown also increases, which is not practical.If the absorber, low-temperature regenerator, etc. are set to multi-stage pressure as in the present invention, the minimum temperature can be increased to 38°C or higher (43°C in Figure 2). , 45°C in Figure 3).

以上本実施例では、冷却水を吸収器と凝縮器をシリーズ
に接続しているが、用途によりその逆でも、パラレル又
は単独送水にしてもよい。
In this embodiment, the absorber and condenser for cooling water are connected in series, but depending on the application, the water may be fed in the reverse direction, in parallel, or individually.

〔発明の効果〕 ゛ 本発明によれば、器内最高圧力を大気圧以下で二重効用
吸収冷凍サイクルの冷却温度が上げられることにより(
第2図の実施例では39°Cを43℃)、空気直接冷却
を可能とすることにより冷却塔が不要になり、設備費の
低減がはかられ、又冷却熱の再利用が可能となるため省
エネ効果が大きい。又吸収剤の再生温度が低下できるこ
とにより(第2図の実施例では154℃を150℃)、
吸収剤による材料腐食が軽減される効果を有する。
[Effects of the Invention] According to the present invention, by raising the cooling temperature of the dual-effect absorption refrigeration cycle while keeping the maximum internal pressure below atmospheric pressure,
In the example shown in Fig. 2, 39°C to 43°C). By enabling direct air cooling, a cooling tower is not required, reducing equipment costs and making it possible to reuse cooling heat. Therefore, the energy saving effect is large. Also, since the regeneration temperature of the absorbent can be lowered (from 154°C to 150°C in the example shown in Figure 2),
It has the effect of reducing material corrosion caused by the absorbent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本的な実施例となる2段圧二重効用
吸収冷凍システム、第2図は第1図の冷凍サイクルを説
明する水蒸気圧線図、第3図は圧力勾配の大きい吸収剤
を用いた本発明の他の実施例を示す水蒸気圧線図、第4
図は、温熱冷熱発生可能な本発明の他実施例、第5図は
、他のヒートポンプと組合せた本発明の他の実施例、第
6図は空冷式を可能とした本発明の他の実施例、第7図
は従来の二重効用吸収冷凍システム、第8図が現状サイ
クルを説明する水蒸気圧線図。 1a・・・高温再生器高圧部、1b・・・高温再生器低
圧部、2a・・・低温再生器高圧部、2b・・・低温再
生器低圧部、3a・・・凝縮器高圧部、3b・・・凝縮
器低圧部、4a・・・吸収器高圧部、4b・・・吸収器
低圧部、第1 口 第Z 区 温度 [′C〕 第3 図 り渡  〔・C〕 第ば 第5 区 6θ0 茶乙区 第’7rfJ 草8 口 =h/a  〔’c〕
Fig. 1 shows a two-stage pressure dual-effect absorption refrigeration system which is a basic embodiment of the present invention, Fig. 2 shows a water vapor pressure diagram explaining the refrigeration cycle shown in Fig. 1, and Fig. 3 shows a large pressure gradient. Water vapor pressure diagram showing another embodiment of the present invention using an absorbent, No. 4
The figure shows another embodiment of the present invention capable of generating hot and cold heat, FIG. 5 shows another embodiment of the present invention combined with another heat pump, and FIG. 6 shows another embodiment of the present invention capable of air cooling. For example, Fig. 7 is a conventional dual-effect absorption refrigeration system, and Fig. 8 is a water vapor pressure diagram explaining the current cycle. 1a... High temperature regenerator high pressure section, 1b... High temperature regenerator low pressure section, 2a... Low temperature regenerator high pressure section, 2b... Low temperature regenerator low pressure section, 3a... Condenser high pressure section, 3b ...Condenser low pressure section, 4a...Absorber high pressure section, 4b...Absorber low pressure section, 1st port Z section temperature ['C] 3rd passage [・C] 5th section 6θ0 Chaotsu-ku No. 7 rfJ Kusa 8 mouth=h/a ['c]

Claims (1)

【特許請求の範囲】 1、高温再生器、低温再生器、凝縮器、蒸発器及び吸収
器からなる二重効用式吸収式冷凍機において、前記低温
再生器と前記凝縮器を複数の異なる圧力室に分離したこ
とを特徴とする二重効用多段圧式吸収式冷凍機。 2、特許請求の範囲第1項記載の二重効用多段圧式吸収
式冷凍機において、前記高温再生器、蒸発器及び吸収器
を複数の異なる圧力室に分離したことを特徴とする二重
効用多段圧式吸収式冷凍機。 3、希薄吸収剤を加熱し冷媒を蒸発させ中間濃度に濃縮
する高温再生器、該高温再生器で発生した冷媒蒸気で前
記中間濃度の吸収剤を加熱し高濃度の吸収剤と冷媒蒸気
を発生する低温再生器該低温再生器と同一器内圧力に保
持され該低温再生器で発生した冷媒蒸気を凝縮する凝縮
器、該凝縮器で発生した凝縮液を蒸発する蒸発器、該蒸
発器と同一器内圧力に保持され該蒸発器で発生した冷媒
蒸気を前記高濃度の吸収剤に吸収する吸収器及び該吸収
器で発生した希薄吸収剤を前記高温再生器に供給する手
段からなる二重効用吸収式冷凍機において、前記低温再
生器と前記凝縮器を複数の異なる圧力室に分離したこと
を特徴とする二重効用多段圧式吸収式冷凍機。 4、特許請求の範囲第3項記載の二重効用多段圧式吸収
式冷凍機において、前記高温再生器、蒸発器及び吸収器
を複数の異なる圧力室に分離したことを特徴とする二重
効用多段圧式吸収式冷凍機。 5、希薄吸収剤を加熱し冷媒を蒸発させ中間濃度に濃縮
する高温再生器、複数の異なる圧力室に分離され前記高
温再生器で発生した冷媒蒸気で前記中間濃度の吸収剤を
加熱し高濃度の吸収剤と冷媒蒸気を発生する低温再生器
、複数の異なる圧力室に形成され該低温再生器で発生し
た冷媒蒸気を凝縮する凝縮器、該凝縮器で発生した凝縮
液を蒸発する蒸発器、該蒸発器と同一器内圧力に保持さ
れ該蒸発器で発生した冷媒蒸気を前記高濃度吸収剤に吸
収する吸収器及び該吸収器で発生した希薄吸収剤を前記
高温再生器に供給する手段からなることを特徴とする二
重効用多段圧式吸収式冷凍機。 6、特許請求の範囲第5項記載の二重効用多段圧式吸収
式冷凍機において、前記高温再生器、蒸発器及び吸収器
を複数の異なる圧力室に分離したことを特徴とする二重
効用多段圧式吸収式冷凍機。 7、希薄吸収剤を加熱し冷媒を蒸発させ中間濃度に濃縮
する高温再生工程、前記高温再生工程で発生した冷媒蒸
気で前記中間濃度の吸収剤を加熱し高濃度の吸収剤と冷
媒蒸気を発生する低温再生工程、該低温再生工程で発生
した冷媒蒸気を凝縮する凝縮工程、該凝縮工程で発生し
た凝縮液を蒸発する蒸発工程、該蒸発工程で発生した冷
媒蒸気を前記高濃度吸収剤に吸収する吸収工程及び該吸
収工程で発生した希薄吸収剤を前記高温再生工程に供給
する希薄吸収剤供給工程からなり、前記低温再生工程と
凝縮工程での中間濃度の吸収剤の濃縮工程を複数の異な
る器内圧力のもとで行うことを特徴とする二重効用多段
圧式吸収式冷凍機システム。 8、特許請求の範囲第7項記載の二重効用多段圧式吸収
式冷凍システムにおいて、前記高温再生工程、蒸発工程
及び吸収工程を複数の異なる器内圧力のもとで行うこと
を特徴とする二重効用多段圧式吸収式冷凍システム。 9、特許請求の範囲第3項記載の二重効用多段圧式吸収
式冷凍機において、吸収剤として温度に対する圧力の勾
配の大きいものを用いたことを特徴とする二重効用多段
圧式吸収式冷凍機。 10、特許請求の範囲第7項記載の二重効用多段圧式吸
収式冷凍機システムにおいて、吸収剤として温度に対す
る圧力の勾配の大きいものを用いたことを特徴とする二
重効用多段圧式吸収式冷凍機システム。 11、希薄吸収剤を加熱し冷媒を蒸発させ中間濃度に濃
縮する高温再生工程、前記高温再生工程で発生した冷媒
蒸気で前記中間濃度の吸収剤を加熱し高濃度の吸収剤と
冷媒蒸気を発生する低温再生工程、該低温再生工程で発
生した冷媒蒸気を凝縮する凝縮工程、該凝縮工程で発生
した凝縮液を蒸発する蒸発工程、該蒸発工程で発生した
冷媒蒸気を前記高濃度の吸収剤に吸収する吸収工程及び
該吸収工程で発生した希薄吸収剤を前記高温再生工程に
供給する希薄吸収剤供給工程からなり、前記低温再生工
程と凝縮工程での中間濃度の吸収剤の濃縮工程を複数の
異なる器内圧力のもとで行い、前記凝縮工程及び前記吸
収工程の少なくとも一方から温熱を回収することを特徴
とする温熱発生型吸収式冷凍システム。 12、希薄吸収剤を加熱し冷媒を蒸発させ中間濃度に濃
縮する高温再生工程、前記高温再生工程で発生した冷媒
蒸気で前記中間濃度の吸収剤を加熱し高濃度の吸収剤と
冷媒蒸気を発生する低温再生工程、該低温再生工程で発
生した冷媒蒸気を凝縮する凝縮工程、該凝縮工程で発生
した凝縮液を蒸発する蒸発工程、該蒸発工程で発生した
冷媒蒸気を前記高濃度の吸収剤に吸収する吸収工程及び
該吸収工程で発生した希薄吸収剤を前記高温再生工程に
供給する希薄吸収剤供給工程からなり、前記低温再生工
程と凝縮工程での中間濃度吸収剤の濃縮工程を複数の異
なる器内圧力のもとで行い、前記蒸発工程で冷熱を回収
し、前記凝縮工程及び前記吸収工程の少なくとも一方か
ら温熱を回収することを特徴とする温熱発生型吸収式冷
凍システム。 13、希薄吸収剤を加熱し冷媒を蒸発させ中間濃度に濃
縮する高温再生工程、前記高温再生工程で発生した冷媒
蒸気で前記中間濃度の吸収剤を加熱し高濃度の吸収剤と
冷媒蒸気を発生する低温再生工程、該低温再生工程で発
生した冷媒蒸気を凝縮する凝縮工程、該凝縮工程で発生
した凝縮液を蒸発する蒸発工程、該蒸発工程で発生した
冷媒蒸気を前記高濃度の吸収剤に吸収する吸収工程及び
該吸収工程で発生した希薄吸収剤を前記高温再生工程に
供給する希薄吸収剤供給工程からなり、前記低温再生工
程と凝縮工程での中間濃度の吸収剤の濃縮工程を複数の
異なる器内圧力のもとで行い、前記蒸発工程の最低温度
を7℃以下とし、前記吸収工程と凝縮工程の最低温度を
38℃以上としたことを特徴とする温熱発生型吸収式冷
凍システム。
[Claims] 1. In a dual-effect absorption refrigerator comprising a high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, and an absorber, the low-temperature regenerator and the condenser are connected to a plurality of different pressure chambers. A dual-effect multi-stage pressure absorption chiller characterized by separate parts. 2. A dual-effect multi-stage pressure absorption refrigerator according to claim 1, characterized in that the high-temperature regenerator, evaporator, and absorber are separated into a plurality of different pressure chambers. Pressure absorption refrigerator. 3. A high-temperature regenerator that heats the dilute absorbent to evaporate the refrigerant and concentrate it to an intermediate concentration; the refrigerant vapor generated in the high-temperature regenerator heats the intermediate-concentration absorbent to generate a high-concentration absorbent and refrigerant vapor. A condenser that is maintained at the same internal pressure as the low-temperature regenerator and condenses the refrigerant vapor generated in the low-temperature regenerator, an evaporator that evaporates the condensate generated in the condenser, and an evaporator that is the same as the evaporator. A double-effect absorber that is maintained at an internal pressure and absorbs refrigerant vapor generated in the evaporator into the high-concentration absorbent, and a means for supplying the dilute absorbent generated in the absorber to the high-temperature regenerator. 1. A dual-effect multi-pressure absorption refrigerating machine, characterized in that the low temperature regenerator and the condenser are separated into a plurality of different pressure chambers. 4. A dual-effect multi-stage pressure absorption refrigerator according to claim 3, characterized in that the high-temperature regenerator, evaporator, and absorber are separated into a plurality of different pressure chambers. Pressure absorption refrigerator. 5. A high-temperature regenerator that heats the dilute absorbent to evaporate the refrigerant and concentrate it to an intermediate concentration; the refrigerant vapor generated in the high-temperature regenerator is separated into a plurality of different pressure chambers, and heats the intermediate-concentration absorbent to achieve a high concentration. a low-temperature regenerator that generates absorbent and refrigerant vapor; a condenser that is formed in a plurality of different pressure chambers and condenses the refrigerant vapor generated in the low-temperature regenerator; and an evaporator that evaporates the condensed liquid generated in the condenser. An absorber that is maintained at the same internal pressure as the evaporator and absorbs refrigerant vapor generated in the evaporator into the high-concentration absorbent, and means for supplying the dilute absorbent generated in the absorber to the high-temperature regenerator. A dual-effect multi-stage pressure absorption chiller characterized by: 6. The dual-effect multi-stage pressure absorption refrigerator according to claim 5, characterized in that the high-temperature regenerator, evaporator, and absorber are separated into a plurality of different pressure chambers. Pressure absorption refrigerator. 7. High-temperature regeneration step in which the dilute absorbent is heated to evaporate the refrigerant and concentrated to an intermediate concentration; the intermediate-concentration absorbent is heated with the refrigerant vapor generated in the high-temperature regeneration step to generate high-concentration absorbent and refrigerant vapor. a low-temperature regeneration step in which the refrigerant vapor generated in the low-temperature regeneration step is condensed, an evaporation step in which the condensate generated in the condensation step is evaporated, and the refrigerant vapor generated in the evaporation step is absorbed into the high concentration absorbent. and a dilute absorbent supply step in which the dilute absorbent generated in the absorption step is supplied to the high temperature regeneration step, and the concentration step of the intermediate concentration absorbent in the low temperature regeneration step and the condensation step is performed in a plurality of different ways. A dual-effect, multi-stage pressure absorption chiller system that operates under internal pressure. 8. The dual-effect multi-pressure absorption refrigeration system according to claim 7, characterized in that the high temperature regeneration step, evaporation step and absorption step are performed under a plurality of different internal pressures. Heavy-effect multi-pressure absorption refrigeration system. 9. A dual-effect multi-stage pressure absorption refrigerating machine according to claim 3, characterized in that an absorbent having a large pressure gradient with respect to temperature is used as an absorbent. . 10. A dual-effect multi-stage pressure absorption refrigerating machine system according to claim 7, characterized in that an absorbent having a large pressure gradient with respect to temperature is used as the absorbent. machine system. 11. High-temperature regeneration step in which the dilute absorbent is heated to evaporate the refrigerant and concentrated to an intermediate concentration; the intermediate-concentration absorbent is heated with the refrigerant vapor generated in the high-temperature regeneration step to generate high-concentration absorbent and refrigerant vapor. a condensation step to condense the refrigerant vapor generated in the low-temperature regeneration step, an evaporation step to evaporate the condensate generated in the condensation step, and a refrigerant vapor generated in the evaporation step to the high concentration absorbent. It consists of an absorption step of absorbing and a dilute absorbent supply step of supplying the dilute absorbent generated in the absorption step to the high temperature regeneration step, and a plurality of steps of concentrating the intermediate concentration absorbent in the low temperature regeneration step and the condensation step. A heat generation type absorption refrigeration system, characterized in that heat generation is performed under different internal pressures and heat is recovered from at least one of the condensation step and the absorption step. 12. High-temperature regeneration step in which the dilute absorbent is heated to evaporate the refrigerant and concentrated to an intermediate concentration; the intermediate-concentration absorbent is heated with the refrigerant vapor generated in the high-temperature regeneration step to generate high-concentration absorbent and refrigerant vapor. a condensation step to condense the refrigerant vapor generated in the low-temperature regeneration step, an evaporation step to evaporate the condensate generated in the condensation step, and a refrigerant vapor generated in the evaporation step to the high concentration absorbent. It consists of an absorption step in which the absorbent is absorbed and a dilute absorbent supply step in which the dilute absorbent generated in the absorption step is supplied to the high temperature regeneration step, and the concentration step of the intermediate concentration absorbent in the low temperature regeneration step and the condensation step is A heat generation type absorption refrigeration system, characterized in that the heating is carried out under internal pressure, cold heat is recovered in the evaporation process, and warm heat is recovered from at least one of the condensation process and the absorption process. 13. High-temperature regeneration step in which the dilute absorbent is heated to evaporate the refrigerant and concentrated to an intermediate concentration; the intermediate-concentration absorbent is heated with the refrigerant vapor generated in the high-temperature regeneration step to generate high-concentration absorbent and refrigerant vapor. a condensation step to condense the refrigerant vapor generated in the low-temperature regeneration step, an evaporation step to evaporate the condensate generated in the condensation step, and a refrigerant vapor generated in the evaporation step to the high concentration absorbent. It consists of an absorption step of absorbing and a dilute absorbent supply step of supplying the dilute absorbent generated in the absorption step to the high temperature regeneration step, and a plurality of steps of concentrating the intermediate concentration absorbent in the low temperature regeneration step and the condensation step. A heat generating absorption refrigeration system characterized in that the evaporation step is performed under different internal pressures, the minimum temperature of the evaporation step is 7° C. or lower, and the minimum temperature of the absorption step and the condensation step is 38° C. or higher.
JP63058320A 1988-03-14 1988-03-14 Double-effect multistage pressure absorption refrigerator and its system Expired - Lifetime JPH0760031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63058320A JPH0760031B2 (en) 1988-03-14 1988-03-14 Double-effect multistage pressure absorption refrigerator and its system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63058320A JPH0760031B2 (en) 1988-03-14 1988-03-14 Double-effect multistage pressure absorption refrigerator and its system

Publications (2)

Publication Number Publication Date
JPH01234761A true JPH01234761A (en) 1989-09-20
JPH0760031B2 JPH0760031B2 (en) 1995-06-28

Family

ID=13080983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63058320A Expired - Lifetime JPH0760031B2 (en) 1988-03-14 1988-03-14 Double-effect multistage pressure absorption refrigerator and its system

Country Status (1)

Country Link
JP (1) JPH0760031B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04139359A (en) * 1990-09-29 1992-05-13 Osaka Gas Co Ltd Absorption refrigerator
JP2007278572A (en) * 2006-04-05 2007-10-25 Daikin Ind Ltd Absorption type refrigerating device
JP2011190943A (en) * 2010-03-12 2011-09-29 Kawasaki Thermal Engineering Co Ltd Refrigerating/air conditioning method and device
JP2012202589A (en) * 2011-03-24 2012-10-22 Hitachi Appliances Inc Absorption heat pump apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620970A (en) * 1979-07-28 1981-02-27 Ebara Mfg Water cooling*heater
JPS5627876A (en) * 1979-08-16 1981-03-18 Ebara Mfg Absorption refrigerating equipment
JPS58150754U (en) * 1982-04-03 1983-10-08 ダイキン工業株式会社 absorption refrigerator
JPS59208368A (en) * 1983-05-02 1984-11-26 ゲオルク・アレフエルト Heat pump
JPS62225869A (en) * 1986-03-26 1987-10-03 三洋電機株式会社 Multiple effect absorption refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620970A (en) * 1979-07-28 1981-02-27 Ebara Mfg Water cooling*heater
JPS5627876A (en) * 1979-08-16 1981-03-18 Ebara Mfg Absorption refrigerating equipment
JPS58150754U (en) * 1982-04-03 1983-10-08 ダイキン工業株式会社 absorption refrigerator
JPS59208368A (en) * 1983-05-02 1984-11-26 ゲオルク・アレフエルト Heat pump
JPS62225869A (en) * 1986-03-26 1987-10-03 三洋電機株式会社 Multiple effect absorption refrigerator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04139359A (en) * 1990-09-29 1992-05-13 Osaka Gas Co Ltd Absorption refrigerator
JP2007278572A (en) * 2006-04-05 2007-10-25 Daikin Ind Ltd Absorption type refrigerating device
JP2011190943A (en) * 2010-03-12 2011-09-29 Kawasaki Thermal Engineering Co Ltd Refrigerating/air conditioning method and device
JP2012202589A (en) * 2011-03-24 2012-10-22 Hitachi Appliances Inc Absorption heat pump apparatus

Also Published As

Publication number Publication date
JPH0760031B2 (en) 1995-06-28

Similar Documents

Publication Publication Date Title
JPH01137170A (en) Method and device for absorbing heat
US9239177B2 (en) Hybrid absorption-compression chiller
US5127234A (en) Combined absorption cooling/heating
KR19990022970A (en) Compression and Absorption Hybrid Heat Pump
GB2166534A (en) Absorption refrigeration system
JPH01234761A (en) Double-effect multi-stage pressure type absorption type refrigerator and system therefor
CN113418320B (en) Device for raising low-temperature heat source temperature and application method thereof
JPH03152362A (en) Absorption refrigerator
KR100981672B1 (en) Two-stage driven hot water absorption chiller
JPH05272837A (en) Compression absorption composite heat pump
JPH07198222A (en) Heat pump including reverse rectifying part
JP2008020094A (en) Absorption type heat pump device
JPH05280825A (en) Absorption heat pump
JPS62218773A (en) Cold and heat accumulator
JPH04116352A (en) Absorption cooler/heater
JP4184196B2 (en) Hybrid absorption heat pump system
JP2000274860A (en) Heat pump cycle type absorption refrigerating and heating simultaneously taking-out machine and method
JPS5832301B2 (en) absorption refrigerator
JP5711680B2 (en) Absorption refrigerator
KR100234062B1 (en) Ammonia absorber cycle
JPH05223389A (en) Fuel cell-refrigerator integral system and controlling method therefor
JP3429906B2 (en) Absorption refrigerator
JP2007192432A (en) Hot water storage system
JP3785737B2 (en) Refrigeration equipment
JPS6122225B2 (en)