WO2022038951A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2022038951A1
WO2022038951A1 PCT/JP2021/027188 JP2021027188W WO2022038951A1 WO 2022038951 A1 WO2022038951 A1 WO 2022038951A1 JP 2021027188 W JP2021027188 W JP 2021027188W WO 2022038951 A1 WO2022038951 A1 WO 2022038951A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
refrigerant
air
compressor
supercooling degree
Prior art date
Application number
PCT/JP2021/027188
Other languages
French (fr)
Japanese (ja)
Inventor
康太 武市
憲彦 榎本
祐一 加見
大輝 加藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112021004336.6T priority Critical patent/DE112021004336T5/en
Publication of WO2022038951A1 publication Critical patent/WO2022038951A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • B60H2001/3257Cooling devices information from a variable is obtained related to temperature of the refrigerant at a compressing unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • B60H2001/326Cooling devices information from a variable is obtained related to temperature of the refrigerant at a condensing unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • B60H2001/3263Cooling devices information from a variable is obtained related to temperature of the refrigerant at an evaporating unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/3285Cooling devices output of a control signal related to an expansion unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series

Definitions

  • the present disclosure is suitable for use in an air conditioner that dehumidifies and heats an air-conditioned space with respect to a refrigeration cycle device.
  • Patent Document 1 discloses a refrigeration cycle device applied to a vehicle air conditioner for dehumidifying and heating a vehicle interior, which is an air conditioning target space.
  • the refrigeration cycle device of Patent Document 1 includes a plurality of heat exchange units such as an indoor condenser, an outdoor heat exchanger, and an indoor evaporator.
  • the indoor condenser is a heating unit that heats the blown air blown into the vehicle interior by using the discharged refrigerant discharged from the compressor as a heat source.
  • the refrigeration cycle apparatus of Patent Document 1 includes a first decompression unit for reducing the pressure of the refrigerant flowing out of the indoor condenser and a second decompression unit for reducing the pressure of the refrigerant flowing out of the outdoor heat exchanger.
  • the heating capacity of the blown air in the indoor condenser is adjusted by changing the throttle opening of the first decompression section and the throttle opening of the second decompression section in the dehumidifying / heating mode. is doing.
  • the throttle opening of the first decompression unit is changed in order to adjust the heating capacity of the blown air in the indoor condenser.
  • the throttle opening of the first decompression unit is reduced. Therefore, as the heating capacity of the blown air in the indoor condenser is improved, the degree of supercooling of the refrigerant on the outlet side of the indoor condenser tends to increase.
  • the refrigerating cycle apparatus of the first aspect of the present disclosure includes a compressor, a heating unit, a first decompression unit, an outdoor heat exchange unit, a second decompression unit, and an indoor evaporation unit.
  • a target supercooling degree determination unit, a supercooling degree estimation unit, and a first decompression control unit are provided.
  • the compressor compresses and discharges the refrigerant.
  • the heating unit heats the blown air blown to the air-conditioned space using the refrigerant discharged from the compressor as a heat source.
  • the first decompression unit decompresses the refrigerant flowing out of the heating unit.
  • the outdoor heat exchange unit exchanges heat between the refrigerant flowing out from the first decompression unit and the outside air.
  • the second decompression unit decompresses the refrigerant flowing out from the outdoor heat exchange unit.
  • the indoor evaporating unit evaporates the refrigerant decompressed by the second decompression unit to cool the blown air before being heated by the heating unit.
  • the target supercooling degree determining unit determines the target supercooling degree of the refrigerant flowing into the first decompression unit.
  • the supercooling degree estimation unit estimates the supercooling degree of the refrigerant flowing into the first decompression unit.
  • the first decompression control unit controls the operation of the first decompression unit.
  • the first decompression control unit controls the operation of the first decompression unit so that the supercooling degree estimated by the supercooling degree estimation unit is equal to or less than the target supercooling degree.
  • the first decompression control unit controls the operation of the first decompression unit so that the supercooling degree becomes equal to or less than the target supercooling degree. Therefore, it is possible to prevent the degree of supercooling of the refrigerant flowing out of the heating section and flowing into the first decompression section from becoming unnecessarily high.
  • the degree of supercooling of the refrigerant on the outlet side of the heating unit can be appropriately adjusted.
  • the refrigerating cycle apparatus includes a compressor, a heating unit, a first decompression unit, an outdoor heat exchange unit, a second decompression unit, an indoor evaporation unit, and a target supercooling degree. It includes a determination unit, a lower limit area calculation unit, and a first decompression control unit.
  • the compressor compresses and discharges the refrigerant.
  • the heating unit heats the blown air blown to the air-conditioned space using the refrigerant discharged from the compressor as a heat source.
  • the first decompression unit decompresses the refrigerant flowing out of the heating unit.
  • the outdoor heat exchange unit exchanges heat between the refrigerant flowing out from the first decompression unit and the outside air.
  • the second decompression unit decompresses the refrigerant flowing out from the outdoor heat exchange unit.
  • the indoor evaporating unit evaporates the refrigerant decompressed by the second decompression unit to cool the blown air before being heated by the heating unit.
  • the target supercooling degree determining unit determines the target supercooling degree of the refrigerant flowing into the first decompression unit.
  • the lower limit area calculation unit calculates the lower limit throttle passage area of the first decompression unit where the supercooling degree of the refrigerant flowing into the first decompression unit is the target supercooling degree.
  • the first decompression control unit controls the operation of the first decompression unit.
  • the first decompression control unit controls the operation of the first decompression unit so that the throttle passage area of the first decompression unit is equal to or larger than the lower limit throttle passage area.
  • the first decompression control unit controls the operation of the first decompression unit so that the throttle passage area of the first decompression unit is equal to or larger than the lower limit throttle passage area, so that the supercooling degree is equal to or less than the target supercooling degree. Can be. Therefore, it is possible to prevent the degree of supercooling of the refrigerant flowing out of the heating section and flowing into the first decompression section from becoming unnecessarily high.
  • the degree of supercooling of the refrigerant on the outlet side of the heating unit can be appropriately adjusted.
  • the refrigeration cycle device 10 is applied to the vehicle air conditioner 1 shown in the overall configuration diagram of FIG.
  • the refrigeration cycle device 10 adjusts the temperature of the blown air blown into the vehicle interior, which is the space to be air-conditioned, in the vehicle air-conditioning device 1.
  • the vehicle air conditioner 1 includes a refrigeration cycle device 10, an indoor air conditioner unit 30, a control device 40, and the like.
  • the refrigeration cycle apparatus 10 uses an HFO-based refrigerant (specifically, R1234yf) as the refrigerant.
  • the refrigeration cycle device 10 constitutes a steam compression type subcritical refrigeration cycle in which the pressure of the high-pressure refrigerant discharged from the compressor 11 does not exceed the critical pressure of the refrigerant.
  • Refrigerating machine oil (specifically, PAG oil) for lubricating the compressor 11 is mixed in the refrigerant. Some of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • the compressor 11 sucks in the refrigerant in the refrigerating cycle device 10, compresses it, and discharges it.
  • the compressor 11 is arranged in the vehicle bonnet, which is an auxiliary machine room on the front side of the vehicle room.
  • the compressor 11 is an electric compressor that rotationally drives a fixed-capacity compression mechanism having a fixed discharge capacity by an electric motor.
  • the number of revolutions (that is, the refrigerant discharge capacity) of the compressor 11 is controlled by a control signal output from the control device 40 described later.
  • the refrigerant inlet side of the indoor condenser 12 is connected to the discharge port of the compressor 11.
  • the indoor condenser 12 is arranged in the casing 31 of the indoor air conditioning unit 30, which will be described later.
  • the indoor condenser 12 is a heat exchange unit that exchanges heat between the high-pressure refrigerant discharged from the compressor 11 and the blown air, and dissipates the heat of the high-pressure refrigerant to the blown air.
  • the indoor condenser 12 is a heating unit that heats the blown air using the high-temperature and high-pressure discharged refrigerant discharged from the compressor 11 as a heat source.
  • the inlet side of the heating expansion valve 13 is connected to the refrigerant outlet of the indoor condenser 12.
  • the heating expansion valve 13 is a first decompression unit that depressurizes the refrigerant flowing out of the indoor condenser 12.
  • the heating expansion valve 13 is an electrically variable type having a valve body portion that changes the opening degree of the throttle passage (that is, the valve opening degree) and an electric actuator (specifically, a stepping motor) that displaces the valve body portion. It is an aperture mechanism.
  • the operation of the heating expansion valve 13 is controlled by a control signal (specifically, a control pulse) output from the control device 40.
  • the heating expansion valve 13 has a fully open function in which the valve body portion fully opens the valve opening so as to function as a mere refrigerant passage without exerting a flow rate adjusting action and a refrigerant depressurizing action.
  • the refrigerant inlet side of the outdoor heat exchanger 14 is connected to the outlet of the heating expansion valve 13.
  • the outdoor heat exchanger 14 is an outdoor heat exchange unit that exchanges heat between the refrigerant flowing out from the heating expansion valve 13 and the outside air blown from an outside air fan (not shown).
  • the outdoor heat exchanger 14 is arranged on the front side in the vehicle bonnet. Therefore, when the vehicle is running, the running wind that has flowed into the vehicle bonnet through the grill can be applied to the outdoor heat exchanger 14.
  • the inlet side of the receiver 15 is connected to the refrigerant outlet of the outdoor heat exchanger 14.
  • the receiver 15 is a liquid storage unit on the high pressure side having a gas-liquid separation function.
  • the receiver 15 separates the gas and liquid of the refrigerant flowing out from the heat exchange unit that functions as a condenser that condenses the refrigerant in the refrigeration cycle device 10. Further, the receiver 15 causes a part of the separated liquid phase refrigerant to flow out to the downstream side, and stores the remaining liquid phase refrigerant as the surplus refrigerant in the cycle.
  • the inlet side of the cooling expansion valve 16 is connected to the outlet of the receiver 15.
  • the cooling expansion valve 16 is a second pressure reducing unit that reduces the pressure of the refrigerant flowing out of the receiver 15.
  • the basic configuration of the cooling expansion valve 16 is the same as that of the heating expansion valve 13.
  • the refrigerant inlet side of the indoor evaporator 17 is connected to the outlet of the cooling expansion valve 16.
  • the indoor evaporator 17 is arranged in the casing 31 of the indoor air conditioning unit 30.
  • the indoor evaporator 17 is a heat exchange unit that evaporates the low-pressure refrigerant decompressed by the cooling expansion valve 16 by exchanging heat with the blown air blown from the indoor blower 32. Further, the indoor evaporator 17 is an indoor evaporation unit that cools the blown air by evaporating the low-pressure refrigerant to exert an endothermic action.
  • the suction port side of the compressor 11 is connected to the refrigerant outlet of the indoor evaporator 17.
  • the indoor air conditioning unit 30 is a unit in which various components are integrated in the vehicle air-conditioning device 1 in order to blow out appropriately temperature-controlled blown air to an appropriate place in the vehicle interior.
  • the indoor air conditioning unit 30 is arranged inside the instrument panel (that is, the instrument panel) at the front of the vehicle interior.
  • the indoor air conditioning unit 30 has a casing 31 that forms an air passage for blown air.
  • An indoor blower 32, an indoor evaporator 17, an indoor condenser 12, and the like are arranged in an air passage formed in the casing 31.
  • the casing 31 is made of a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength.
  • An inside / outside air switching device 33 is arranged on the most upstream side of the blast air flow of the casing 31.
  • the inside / outside air switching device 33 switches and introduces the inside air (that is, the vehicle interior air) and the outside air (that is, the vehicle interior outside air) into the casing 31.
  • the operation of the electric actuator for driving the inside / outside air switching device 33 is controlled by the control signal output from the control device 40.
  • An indoor blower 32 is arranged on the downstream side of the blower air flow of the inside / outside air switching device 33.
  • the indoor blower 32 is a blower unit that blows the air sucked through the inside / outside air switching device 33 toward the vehicle interior.
  • the indoor blower 32 is an electric blower that drives a centrifugal multi-blade fan with an electric motor.
  • the rotation speed (that is, the blowing capacity) of the indoor blower 32 is controlled by the control voltage output from the control device 40.
  • the indoor evaporator 17 and the indoor condenser 12 are arranged in order from the upstream side with respect to the blown air flow. That is, the indoor evaporator 17 is arranged on the upstream side of the blown air flow with respect to the indoor condenser 12.
  • a cold air bypass passage 35 is formed in the casing 31 to allow the blown air that has passed through the indoor evaporator 17 to bypass the indoor condenser 12 and flow to the downstream side.
  • the air mix door 34 is arranged on the downstream side of the blown air flow of the indoor evaporator 17 and on the upstream side of the blown air flow of the indoor condenser 12.
  • the air mix door 34 adjusts the air volume ratio between the air volume of the blown air passing through the indoor condenser 12 and the air volume of the blown air passing through the cold air bypass passage 35.
  • the operation of the electric actuator for driving the air mix door 34 is controlled by the control signal output from the control device 40.
  • the blown air heated by the indoor condenser 12 and the blown air that has passed through the cold air bypass passage 35 and are not heated by the indoor condenser 12 are mixed.
  • Space 36 is provided. Further, an opening hole (not shown) for blowing out the blown air (air-conditioned air) mixed in the mixing space 36 into the vehicle interior is arranged at the most downstream portion of the blown air flow of the casing 31.
  • the temperature of the conditioned air mixed in the mixing space 36 is adjusted by adjusting the air volume ratio between the air volume passing through the indoor condenser 12 and the air volume passing through the cold air bypass passage 35 by the air mix door 34. Can be done. Then, the temperature of the blown air blown from each opening hole into the vehicle interior can be adjusted.
  • the opening holes As the opening holes, a face opening hole, a foot opening hole, and a defroster opening hole (none of which are shown) are provided.
  • the face opening hole is an opening hole for blowing air-conditioned air toward the upper body of the occupant in the vehicle interior.
  • the foot opening hole is an opening hole for blowing air-conditioned air toward the feet of the occupant.
  • the defroster opening hole is an opening hole for blowing air conditioning air toward the inner side surface of the front window glass of the vehicle.
  • An outlet mode switching door (not shown) is arranged on the upstream side of these opening holes.
  • the blowing mode switching door switches the opening hole for blowing out the conditioned air by opening and closing each opening hole.
  • the operation of the electric actuator for driving the blowout mode switching door is controlled by the control signal output from the control device 40.
  • the control device 40 includes a well-known microcomputer including a CPU, ROM, RAM, and the like, and peripheral circuits thereof.
  • the control device 40 performs various calculations and processes based on the control program stored in the ROM, and controls the operation of various controlled target devices 11, 13, 16, 32, 33, 34, etc. connected to the output side. ..
  • various sensors used for air conditioning control are connected to the input side of the control device 40.
  • Various sensors include an inside temperature sensor 41a, an outside temperature sensor 41b, a solar radiation amount sensor 41c, a high pressure temperature sensor 41d, a high pressure pressure sensor 41e, a low pressure temperature sensor 41f, a low pressure pressure sensor 41g, and an air conditioning air temperature sensor 41h.
  • the internal air temperature sensor 41a is an internal air temperature detection unit that detects the internal air temperature Tr, which is the temperature inside the vehicle.
  • the outside air temperature sensor 41b is an outside air temperature detection unit that detects the outside air temperature Tam, which is the temperature outside the vehicle interior.
  • the solar radiation amount sensor 41c is a solar radiation amount detection unit that detects the solar radiation amount As irradiated to the vehicle interior.
  • the high-pressure temperature sensor 41d is a high-pressure temperature detection unit that detects the discharge temperature Td of the discharged refrigerant discharged from the compressor 11.
  • the high-pressure pressure sensor 41e is a high-pressure pressure detection unit that detects the discharge pressure Pd of the discharge refrigerant discharged from the compressor 11.
  • the high pressure temperature sensor 41d and the high pressure pressure sensor 41e are also used to detect an abnormal rise in the discharge temperature Td or the discharge pressure Pd.
  • the control device 40 detects an abnormal rise in the discharge temperature Td or the discharge pressure Pd, the control device 40 stops the compressor 11 to perform compressor protection control for protecting the compressor 11.
  • the low pressure temperature sensor 41f is a low pressure temperature detection unit that detects the suction temperature Ts of the suction refrigerant sucked into the compressor 11.
  • the low pressure pressure sensor 41g is a low pressure pressure detection unit that detects the suction pressure Ps of the suction refrigerant sucked into the compressor 11.
  • the low-pressure temperature sensor 41f of the present embodiment specifically detects the temperature of the outer surface of the refrigerant pipe from the refrigerant outlet of the indoor evaporator 17 to the suction port of the compressor 11.
  • an evaporator temperature detection unit that detects the evaporator temperature Tefin, which is the temperature of the heat exchange fin temperature of the indoor evaporator 17, may be adopted.
  • the air-conditioned air temperature sensor 41h is an air-conditioned air temperature detection unit that detects the air blown air temperature TAV blown out from the mixing space 36 into the vehicle interior.
  • an operation panel 42 arranged near the instrument panel in the front part of the vehicle interior is connected to the input side of the control device 40, and operation signals from various operation switches provided on the operation panel 42 are input.
  • the various operation switches provided on the operation panel 42 include an auto switch, an air conditioner switch, an air volume setting switch, and a temperature setting switch.
  • the auto switch is an automatic control requesting unit for requesting that the occupant set or cancel the automatic control operation of the vehicle air conditioner 1.
  • the air conditioner switch is a cooling requesting unit for requiring the occupant to cool the blown air with the indoor evaporator 17.
  • the air volume setting switch is an air volume setting unit in which the occupant manually sets the air volume of the indoor blower 32.
  • the temperature setting switch is a temperature setting unit in which the occupant sets the target temperature Tset in the vehicle interior.
  • control device 40 of the present embodiment is integrally configured with a control unit that controls various controlled devices connected to the output side of the control device 40. Therefore, a configuration (that is, hardware and software) that controls the operation of each controlled device constitutes a control unit that controls the operation of each controlled device.
  • the configuration for controlling the rotation speed of the compressor 11 is the compressor control unit 40a.
  • the configuration for controlling the operation of the heating expansion valve 13 is the first decompression control unit 40b.
  • the configuration for controlling the operation of the cooling expansion valve 16 is the second decompression control unit 40c.
  • the operation mode is switched for proper air conditioning in the vehicle interior. Specifically, in the vehicle air conditioner 1, the cooling mode and the dehumidifying / heating mode can be switched. The operation mode is switched by executing the control program stored in the control device 40.
  • the control program is executed when the auto switch is turned on while the air conditioner switch of the operation panel 42 is turned on.
  • the operation mode is determined based on the target blowout temperature TAO, the detection signals of various sensors, and the operation signal of the operation panel 42.
  • the target blowout temperature TAO is the target temperature of the blown air blown into the vehicle interior.
  • TAO Kset x Tset-Kr x Tr-Kam x Tam-Ks x As + C ... (F1)
  • Tset is the vehicle interior set temperature set by the temperature setting switch. Tr is the vehicle interior temperature detected by the inside air sensor. Tam is the temperature outside the vehicle interior detected by the outside air sensor. As is the amount of solar radiation detected by the solar radiation sensor.
  • Kset, Kr, Kam, and Ks are control gains, and C is a correction constant.
  • control state of various controlled devices is determined according to the determined operation mode. Then, the control device 40 outputs a control signal or a control voltage to various control target devices so that the control state determined by the control program can be obtained.
  • control program the detection signal and the operation signal are read, the target blowout temperature TAO is calculated, and the control state of various controlled devices is determined at each predetermined control cycle until the vehicle air conditioner 1 is requested to be stopped. , Repeat control routines such as outputting control signals to various controlled devices. Each operation mode will be described below.
  • Cooling mode In the cooling mode, the control state of various controlled devices is determined as described below.
  • the refrigerant discharge capacity is determined so that the suction temperature Ts detected by the low pressure temperature sensor 41f approaches the target evaporator temperature TEO.
  • the target evaporator temperature TEO is determined based on the target blowout temperature TAO with reference to a control map stored in advance in the control device 40.
  • the target evaporator temperature TEO is lowered as the target blowout temperature TAO is lowered. Further, the target evaporator temperature TEO is determined to be a value within a range that does not cause frost formation in the indoor evaporator 17.
  • the heating expansion valve 13 is determined to be fully open. Further, for the expansion valve 16 for cooling, the throttle opening is determined so that the superheat degree SH of the outlet side refrigerant of the indoor evaporator 17 approaches the predetermined standard superheat degree KSH (3 ° C. in this embodiment). To.
  • the degree of superheat SH is calculated using the suction temperature Ts detected by the low pressure temperature sensor 41f and the suction pressure Ps detected by the low pressure pressure sensor 41g.
  • the blower capacity is determined based on the target blowout temperature TAO with reference to the control map stored in the control device 40 in advance.
  • the control map the amount of air blown is maximized when the target blowout temperature TAO is in the extremely low temperature region or extremely high temperature region, and the amount of air blown gradually increases from the extremely low temperature region or extremely high temperature region to the intermediate temperature region.
  • the ventilation capacity is determined so that it decreases.
  • the ventilation path on the indoor condenser 12 side is fully closed and the cold air bypass passage 35 is fully opened.
  • the opening degree of the air mix door 34 may be determined so that the blown air temperature TAV detected by the air conditioning air temperature sensor 41h approaches the target blown temperature TAO.
  • the discharged refrigerant discharged from the compressor 11 flows into the indoor condenser 12.
  • the air mix door 34 closes the ventilation path on the indoor condenser 12 side, the refrigerant flowing into the indoor condenser 12 flows out from the indoor condenser 12 with almost no heat exchange with the blown air. do.
  • the refrigerant flowing out of the indoor condenser 12 flows into the outdoor heat exchanger 14 via the fully opened heating expansion valve 13.
  • the refrigerant flowing into the outdoor heat exchanger 14 dissipates heat to the outside air and condenses.
  • the refrigerant flowing out of the outdoor heat exchanger 14 flows into the receiver 15 and is separated into gas and liquid.
  • the liquid phase refrigerant flowing out of the receiver 15 flows into the cooling expansion valve 16 and is depressurized.
  • the throttle opening of the cooling expansion valve 16 is determined so that the superheat degree SH of the outlet-side refrigerant of the indoor evaporator 17 approaches the reference superheat degree KSH.
  • the refrigerant decompressed by the cooling expansion valve 16 flows into the indoor evaporator 17.
  • the refrigerant flowing into the indoor evaporator 17 absorbs heat from the blown air and evaporates. As a result, the blown air is cooled. The refrigerant flowing out of the indoor evaporator 17 is sucked into the compressor 11 and compressed again.
  • the indoor air conditioning unit 30 in the cooling mode, the blown air cooled by the indoor evaporator 17 is blown into the vehicle interior. As a result, cooling of the passenger compartment is realized.
  • (B) Dehumidifying / heating mode In the dehumidifying / heating mode, the control state of various controlled devices is determined as follows. The compressor 11 and the indoor blower 32 are determined in the same manner as in the cooling mode.
  • the throttle opening of the heating expansion valve 13 is determined by executing the control flow shown in FIG.
  • the control flow shown in FIG. 3 is executed as a subroutine of the main routine of the control program. Further, each control step shown in the flowchart of FIG. 3 or the like is a function realization unit of the control device 40.
  • step S1 of FIG. 3 the target supercooling degree SCO of the refrigerant flowing out of the indoor condenser 12 and flowing into the heating expansion valve 13, that is, the refrigerant on the outlet side of the indoor condenser 12 is determined. Therefore, step S1 is a target supercooling degree determination unit.
  • step S1 the target supercooling degree SCO is determined with reference to the control map stored in advance in the control device 40 based on the inlet-side pressure P1 of the refrigerant flowing into the heating expansion valve 13. do.
  • the target supercooling degree SCO is determined so that the coefficient of performance (that is, COP) of the cycle becomes a maximum value.
  • the inlet side pressure P1 a value obtained by subtracting the pressure loss generated when the refrigerant passes through the indoor condenser 12 from the discharge pressure Pd detected by the high pressure pressure sensor 41e can be used.
  • the discharge pressure Pd is adopted as the inlet side pressure P1.
  • step S2 the degree of supercooling SC1 of the refrigerant flowing out of the indoor condenser 12 and flowing into the heating expansion valve 13 is estimated. Therefore, step S2 is a supercooling degree estimation unit.
  • the degree of supercooling SC1 is estimated using the refrigerant discharge flow rate Gr (mass flow rate) of the compressor 11, the throttle passage area A of the heating expansion valve 13, the discharge pressure Pd, and the outside temperature Tam.
  • the refrigerant discharge flow rate Gr of the compressor 11 can be calculated from the suction density ⁇ cin of the suction refrigerant sucked into the compressor 11, the rotation speed of the compressor 11, the discharge capacity of the compressor 11, and the volumetric efficiency of the compressor 11. can.
  • the suction density ⁇ cin can be determined from the suction temperature Ts and the suction pressure Ps based on the physical properties of the refrigerant.
  • the rotation speed of the compressor 11 can be determined from the control signal output from the control device 40 to the compressor 11.
  • the discharge capacity of the compressor 11 and the volumetric efficiency of the compressor 11 can be grasped from the specifications of the compressor 11, test data, and the like.
  • the throttle passage area A of the heating expansion valve 13 is determined based on the specifications of the heating expansion valve 13 and the control signal (specifically, the control pulse) output from the control device 40 to the heating expansion valve 13. Can be done.
  • the discharge pressure Pd is used to determine the inlet side pressure P1 as in the target supercooling degree determination unit.
  • the outside air temperature Tam is used to determine the outlet pressure P2 of the refrigerant flowing out from the heating expansion valve 13.
  • the outlet side pressure P2 is equivalent to the saturation pressure of the refrigerant in the outdoor heat exchanger 14 connected to the outlet side of the heating expansion valve 13, and the temperature of the refrigerant in the outdoor heat exchanger 14 is substantially equivalent to the outside temperature Tam. Become. Therefore, the saturation pressure of the refrigerant at the outside air temperature Tam can be adopted as the outlet side pressure P2.
  • step S2 the inlet-side density ⁇ in of the refrigerant flowing into the heating expansion valve 13 is calculated using the following mathematical formula F2.
  • ⁇ in Gr 2 / (2 ⁇ (P1-P2) ⁇ A 2 )... (F2)
  • the inlet-side density ⁇ in and the supercooling degree SC1 are correlated as shown in FIG. Therefore, the supercooling degree SC1 can be estimated by calculating the inlet-side density ⁇ in by the mathematical formula F2.
  • step S3 it is determined whether or not the supercooling degree SC1 estimated in step S2 is larger than the target supercooling degree SCO determined in step S1. Therefore, step S3 is a supercooling degree determining unit for determining whether or not the supercooling degree SC1 is larger than the target supercooling degree SCO.
  • step S3 If it is determined in step S3 that the supercooling degree SC1 is not larger than the target supercooling degree SCO, that is, if the supercooling degree SC1 is equal to or less than the target supercooling degree SCO, the process proceeds to step S4. move on. On the other hand, if it is determined in step S3 that the supercooling degree SC1 is larger than the target supercooling degree SCO, the process proceeds to step S5.
  • step S4 the blowout temperature control is executed and the process returns to the main routine.
  • the throttle opening of the heating expansion valve 13 is controlled so that the blowout air temperature TAV approaches the target blowout temperature TAO.
  • the heating expansion valve when the blowout air temperature TAV is lower than the target blowout temperature TAO, the heating expansion valve is in a range where the temperature of the refrigerant flowing into the outdoor heat exchanger 14 is higher than the outside air temperature Tam.
  • the throttle opening of 13 is reduced. Further, when the blowing air temperature TAV is higher than the target blowing temperature TAO, the throttle opening degree of the heating expansion valve 13 is expanded.
  • the blowout temperature control the amount of heat exchange between the refrigerant and the outside air in the outdoor heat exchanger 14 is adjusted, and the amount of heat radiated from the refrigerant in the indoor condenser 12 to the blown air, that is, the blown air in the indoor condenser 12.
  • the heating capacity of the can be adjusted.
  • step S5 the throttle opening of the heating expansion valve 13 is expanded by a predetermined amount, and the process returns to the main routine.
  • the degree of supercooling SC1 of the refrigerant flowing out of the indoor condenser 12 and flowing into the heating expansion valve 13, that is, the refrigerant on the outlet side of the indoor condenser 12 is lowered.
  • the throttle opening of the cooling expansion valve 16 is controlled in the same manner as in the cooling mode.
  • the heating expansion valve 13 is in a throttled state in which the refrigerant decompressing action is exerted, so that the throttle opening of the cooling expansion valve 16 is larger than that in the cooling mode.
  • the ventilation passage on the indoor condenser 12 side is fully opened and the cold air bypass passage 35 is fully closed.
  • the opening degree of the air mix door 34 may be determined so that the blown air temperature TAV approaches the target blown temperature TAO, as in the cooling mode.
  • the air mix door 34 opens the ventilation path on the indoor condenser 12 side, so that the refrigerant flowing into the indoor condenser 12 dissipates heat to the blown air passing through the indoor evaporator 17 and condenses. (Points a5 to b5 in FIG. 5). As a result, the blown air that has passed through the indoor evaporator 17 is heated.
  • the refrigerant flowing out of the indoor condenser 12 flows into the heating expansion valve 13 and is depressurized (points b5 to c5 in FIG. 5).
  • the throttle opening of the heating expansion valve 13 is such that at least the supercooling degree SC1 of the refrigerant (point b5 in FIG. 5) flowing out of the indoor condenser 12 and flowing into the heating expansion valve 13 is the target supercooling degree. It is adjusted to be less than or equal to SCO.
  • the throttle opening of the heating expansion valve 13 is blown out in a range where the supercooling degree SC1 of the refrigerant flowing out of the indoor condenser 12 and flowing into the heating expansion valve 13 is equal to or less than the target supercooling degree SCO.
  • the air temperature TAV is adjusted to approach the target blowout temperature TAO.
  • the refrigerant decompressed by the heating expansion valve 13 flows into the outdoor heat exchanger 14.
  • the refrigerant flowing into the outdoor heat exchanger 14 dissipates heat to the outside air and condenses (points c5 to d5 in FIG. 5).
  • the refrigerant flowing out of the outdoor heat exchanger 14 flows into the receiver 15 and is separated into gas and liquid.
  • the liquid phase refrigerant (point d5 in FIG. 5) flowing out from the receiver 15 flows into the expansion valve 16 for cooling and is depressurized (points d5 to e5 in FIG. 5).
  • the throttle opening of the cooling expansion valve 16 is determined so that the superheat degree SH of the outlet-side refrigerant (point f5 in FIG. 5) of the indoor evaporator 17 approaches the reference superheat degree KSH.
  • the refrigerant decompressed by the cooling expansion valve 16 flows into the indoor evaporator 17.
  • the refrigerant flowing into the indoor evaporator 17 absorbs heat from the blown air and evaporates (points e5 to f5 in FIG. 5). As a result, the blown air is cooled and dehumidified. The refrigerant flowing out of the indoor evaporator 17 is sucked into the compressor 11 and compressed again (points f5 to a5 in FIG. 5).
  • the blown air cooled by the indoor evaporator 17 and dehumidified is reheated by the indoor condenser 12 and blown out into the vehicle interior.
  • dehumidifying and heating of the vehicle interior is realized.
  • the vehicle air conditioner 1 of the present embodiment it is possible to realize cooling and dehumidifying heating in the vehicle interior.
  • the outlet temperature control for changing the throttle opening of the heating expansion valve 13 is executed.
  • the throttle opening of the heating expansion valve 13 is reduced when the heating capacity of the blown air in the indoor condenser 12 is improved. Therefore, as the heating capacity of the indoor condenser 12 is improved, the supercooling degree SC1 is likely to increase.
  • the supercooling degree SC1 is unnecessarily increased, a temperature distribution will occur in the blown air heated by the indoor condenser 12, and it may not be possible to realize comfortable dehumidifying and heating in the vehicle interior. be. Further, if the supercooling degree SC1 greatly exceeds the target supercooling degree SCO, the COP also decreases.
  • the supercooling degree SC1 estimated in step S2 is heated so as to be equal to or less than the target supercooling degree SCO determined in step S1.
  • the throttle opening of the expansion valve 13 is controlled. Therefore, it is possible to prevent the degree of supercooling SC1 of the refrigerant flowing out of the indoor condenser 12 and flowing into the heating expansion valve 13 from becoming unnecessarily large.
  • the supercooling degree SC1 of the refrigerant on the outlet side of the indoor condenser 12 which is a heating unit can be appropriately adjusted.
  • comfortable dehumidifying and heating of the vehicle interior can be realized, and a decrease in COP can be suppressed.
  • the refrigerant discharge flow rate Gr of the compressor 11, the throttle passage area A of the heating expansion valve 13, the inlet side pressure P1, and the outside temperature Tam are used to use the supercooling degree SC1. Is estimated. Therefore, as described using the mathematical formula F2, the supercooling degree SC1 can be estimated accurately.
  • the parameters used to estimate the supercooling degree SC1 can be detected by the detector essential for blowout temperature control and compressor protection control. Therefore, in the supercooling degree estimation unit of the present embodiment, it is not necessary to add a new detection unit in order to estimate the supercooling degree SC1.
  • the supercooling degree estimation unit of the present embodiment estimates the supercooling degree SC1, even if the refrigerant actually flowing into the heating expansion valve 13 is in a gas-liquid two-phase state having a dryness. , The operation in the dehumidifying and heating mode can be continued.
  • step S11 of FIG. 6 the target supercooling degree SCO is determined as in the first embodiment. Therefore, step S11 is a target supercooling degree determination unit.
  • step S12 the lower limit throttle passage area Amin of the heating expansion valve 13 is calculated.
  • the lower limit throttle passage area Amin is the throttle passage area of the heating expansion valve 13 in which the supercooling degree SC1 of the refrigerant flowing into the heating expansion valve 13 is the target supercooling degree SCO. Therefore, step S12 is a lower limit area calculation unit.
  • step S12 the target supercooling degree SCO, the refrigerant discharge flow rate Gr of the compressor 11, the discharge pressure Pd, and the outside temperature Tam are used to calculate the lower limit throttle passage area Amin, and the minimum throttle passage area is calculated. Calculate Amin.
  • the refrigerant discharge flow rate Gr of the compressor 11 can be obtained in the same manner as in the first embodiment.
  • the discharge pressure Pd is used to determine the inlet side pressure P1 as in the first embodiment.
  • the outside air temperature Tam is used to determine the outlet side pressure P2 as in the first embodiment.
  • step S12 the lower limit throttle passage area Amin is calculated by the following mathematical formula F3.
  • Amin Gr / ⁇ max ⁇ ( ⁇ max / (2 ⁇ (P1-P2))) 1/2... (F3)
  • ⁇ max is the inlet-side density of the refrigerant flowing into the heating expansion valve 13 at the target supercooling degree SCO. ⁇ max can be determined using FIG. 4 described in the first embodiment.
  • the mathematical formula F3 is a modified number of the mathematical formula F2 described in the first embodiment. That is, the lower limit area calculation unit calculates the lower limit throttle passage area Amin using the same formula as the supercooling degree estimation unit of the first embodiment.
  • step S13 it is determined whether or not the throttle passage area A of the actual heating expansion valve 13 is smaller than the lower limit throttle passage area Amin determined in step S12. Therefore, step S13 is a throttle passage area determination unit for determining whether or not the throttle passage area A is smaller than the lower limit throttle passage area Amin.
  • step S13 If it is determined in step S13 that the throttle passage area A is not smaller than the lower limit throttle passage area Amin, that is, if the throttle passage area A is equal to or larger than the lower limit throttle passage area Amin, the process proceeds to step S14. move on. On the other hand, if it is determined in step S13 that the throttle passage area A is smaller than the lower limit throttle passage area Amin, the process proceeds to step S15.
  • step S14 the blowout temperature control is executed and the process returns to the main routine, as in step S4 of the first embodiment. Further, in step S15, as in step S5 of the first embodiment, the throttle opening degree of the heating expansion valve 13 is expanded by a predetermined amount, and the process returns to the main routine.
  • the configuration and operation of the other refrigeration cycle device 10 and the vehicle air conditioner 1 are the same as those in the first embodiment. Therefore, also in the vehicle air conditioner 1 of the present embodiment, cooling and dehumidifying heating of the vehicle interior can be realized as in the first embodiment.
  • the throttle opening of the heating expansion valve 13 is controlled so that the throttle passage area A is equal to or larger than the lower limit throttle passage area Amin in the dehumidifying / heating mode. According to this, the supercooling degree SC1 can be set to the target supercooling degree SCO or less. Therefore, the same effect as that of the first embodiment can be obtained.
  • the supercooling degree SC1 of the refrigerant on the outlet side of the indoor condenser 12 which is a heating unit can be appropriately adjusted.
  • the electric heater 37 is located downstream of the blown air flow of the indoor condenser 12 in the indoor air conditioner unit 30 with respect to the first embodiment. Is placed.
  • the electric heater 37 supplementarily heats the blown air when the heating capacity of the refrigerating cycle device 10 alone cannot raise the blown air temperature TAV to the target blown temperature TAO in the dehumidifying and heating mode. It is an auxiliary heating part.
  • As the electric heater 37 a PTC heater or the like that generates heat by being supplied with electric power can be adopted.
  • the calorific value of the electric heater 37 is controlled by the control voltage output from the control device 40.
  • a suction temperature sensor 41i is connected to the input side of the control device 40 of the present embodiment as a sensor used for air conditioning control.
  • the suction temperature sensor 41i is a suction temperature detection unit that detects the suction air temperature Tein of the suction air flowing into the indoor evaporator 17 via the inside / outside air switching device 33.
  • the refrigerant discharge flow rate Gr of the compressor 11 the discharge temperature Td, the discharge pressure Pd, the air flow rate Airf (mass flow rate) of the indoor blower 32, the suction air temperature Ten, and the electric heater
  • the supercooling degree SC1 is estimated using the heating amount Qh of 37.
  • the refrigerant discharge flow rate Gr of the compressor 11 can be calculated in the same manner as in the first embodiment. Further, the air volume Airf of the indoor blower 32 can be determined from the specifications of the indoor blower 32 and the control voltage output from the control device 40 to the indoor blower 32. The heating amount Qh of the electric heater 37 can be determined based on the specifications of the electric heater 37 and the amount of electric power supplied from the control device 40 to the electric heater 37.
  • the supercooling degree estimation unit of the present embodiment calculates the outlet-side enthalpy Hcout of the outlet-side refrigerant of the indoor condenser 12 based on the following mathematical formulas F4 to F6.
  • Qc Qex + Qh ... (F4)
  • Qc ⁇ ain ⁇ Airfc ⁇ Air ⁇ (TAV-Tein)... (F5)
  • Qex Gr ⁇ (Hcin-Hcout) ... (F6)
  • Qc is the total heating amount of the blast air (that is, the total heat absorption amount of the blast air).
  • Qex is the amount of heat dissipated to the blown air of the refrigerant condensed by the indoor condenser 12.
  • ⁇ air is the density of the suction air.
  • the density of air in a predetermined reference state for example, 25 ° C., 101.3 kPa
  • Air is the specific heat of air in the reference state.
  • Airfc is the amount of air blown air passing through the indoor condenser 12 on the indoor condenser side.
  • the air mix door 34 completely closes the cold air bypass passage 35, so that the air volume Airfc on the indoor condenser side is the same as the air volume Airf.
  • the indoor condenser side is according to the opening ratio between the opening degree of the ventilation passage on the indoor condenser 12 side and the opening degree of the cold air bypass passage 35.
  • the air volume Airfc may be determined.
  • Hcin is the inlet-side enthalpy of the inlet-side refrigerant of the indoor condenser 12.
  • the inlet-side enthalpy Hcin can be determined from the discharge temperature Td and the discharge pressure Pd based on the physical characteristics of the refrigerant.
  • the exit-side enthalpy Hcout can be calculated using the formulas F4 to F6. Then, based on the outlet-side enthalpy Hcout and the discharge pressure Pd, the degree of supercooling SC1 of the refrigerant flowing out of the indoor condenser 12 and flowing into the heating expansion valve 13 can be estimated.
  • the refrigerant flowing out of the indoor condenser 12 and flowing into the heating expansion valve 13 is in a gas-liquid two-phase state, the dryness can be estimated.
  • the configuration and operation of the other refrigeration cycle device 10 and the vehicle air conditioner 1 are the same as those in the first embodiment. Therefore, also in the vehicle air conditioner 1 of the present embodiment, cooling and dehumidifying heating of the vehicle interior can be realized as in the first embodiment. Further, the refrigerating cycle apparatus 10 of the present embodiment can also obtain the same effect as that of the first embodiment.
  • the supercooling degree SC1 of the refrigerant on the outlet side of the indoor condenser 12 which is a heating unit can be appropriately adjusted.
  • the vehicle air conditioner 1 of the present embodiment includes an electric heater 37 for heating the blown air as an auxiliary heating unit.
  • an electric heater 37 for heating the blown air as an auxiliary heating unit.
  • the refrigerant discharge flow rate Gr of the compressor 11 the discharge temperature Td, the discharge pressure Pd, the air flow rate Airf of the indoor blower 32, the suction air temperature Ten, and the heating amount of the electric heater 37.
  • the degree of supercooling SC1 is estimated using Qh. Therefore, as described using the formulas F4 to F6, the supercooling degree SC1 can be estimated accurately only by adding the suction temperature sensor 41i.
  • the supercooling degree estimation unit of the present embodiment is also effective when applied to the refrigeration cycle device 10 not provided with the electric heater 37.
  • the heating amount Qh of the electric heater 37 may be set to 0.
  • the refrigerating cycle apparatus 10a shown in FIG. 8 in which the configuration of the heating unit is changed with respect to the refrigerating cycle apparatus 10 described in the first embodiment will be described.
  • the refrigeration cycle device 10a is applied to the vehicle air conditioner 1 similar to the first embodiment.
  • the heating unit of the refrigeration cycle device 10a has a water-refrigerant heat exchanger 121, a heater core 53 arranged in the heat medium circuit 50, and the like.
  • the heat medium circuit 50 is a heat medium circulation circuit that circulates a heat medium.
  • an ethylene glycol aqueous solution is used as the heat medium.
  • a water passage of the water refrigerant heat exchanger 121, a heat medium pump 51, an electric heater 52, a heater core 53, and the like are arranged.
  • the water refrigerant heat exchanger 121 is a heat dissipation unit that exchanges heat between the high pressure refrigerant discharged from the compressor 11 and the heat medium to dissipate the heat of the high pressure refrigerant to the blown air.
  • a so-called countercurrent type heat exchanger is adopted as the water refrigerant heat exchanger 121.
  • the flow direction of the refrigerant flowing through the refrigerant passage and the flow direction of the heat medium flowing through the heat medium passage are opposite to each other.
  • the heat medium pump 51 is a heat medium pumping unit that pumps the heat medium flowing out of the heater core 53 to the water refrigerant heat exchanger 121.
  • the heat medium pump 51 is an electric water pump that rotationally drives an impeller (that is, an impeller) with an electric motor.
  • the rotation speed (that is, the pumping capacity) of the heat medium pump 51 is controlled by the control voltage output from the control device 40.
  • the electric heater 52 heats the heat medium flowing out of the water refrigerant heat exchanger 121.
  • the electric heater 52 cannot raise the blown air temperature TAV of the blown air to the target blown temperature TAO only by the heating capacity of the refrigerating cycle device 10 in the dehumidifying and heating mode, the blown air through the heat medium It is an auxiliary heating part that auxiliaryly heats.
  • a PTC heater or the like having the same configuration as the electric heater 37 for blown air can be adopted.
  • the heater core 53 is a heat exchange unit for heating that heats the blown air by exchanging heat between the heat medium flowing out from the water refrigerant heat exchanger 121 and the blown air.
  • the heater core 53 is arranged in the indoor air conditioning unit 30 in the same manner as the indoor condenser 12.
  • a heat medium temperature sensor 41j is connected to the input side of the control device 40 of the present embodiment as a sensor for air conditioning control.
  • the heat medium temperature sensor 41j is an inlet side heat medium temperature detection unit that detects the heater core inlet side heat medium temperature Twin of the heat medium flowing into the heater core 53.
  • the refrigerant discharge flow rate Gr of the compressor 11 the discharge temperature Td, the discharge pressure Pd, the heat medium flow rate LQf (mass flow rate) pressure-fed from the heat medium pump 51, and the heater core inlet side.
  • the degree of supercooling SC1 is estimated using the heat medium temperature Twin, the air flow rate Airf of the indoor blower 32, the suction temperature Ts, and the heating amount Qh2 of the electric heater 52.
  • the supercooling degree SC1 of the present embodiment is the supercooling degree of the refrigerant flowing out from the water refrigerant heat exchanger 121 forming the heating portion and flowing into the heating expansion valve 13.
  • the refrigerant discharge flow rate Gr of the compressor 11 can be calculated in the same manner as in the first embodiment. Further, the discharge temperature Td and the discharge pressure Pd are used to determine the inlet-side enthalpy Hwcin of the inlet-side refrigerant of the water-refrigerant heat exchanger 121, as in the third embodiment.
  • the heat medium flow rate LQf of the heat medium pump 51 can be determined from the specifications of the heat medium pump 51 and the control voltage output from the control device 40 to the heat medium pump 51.
  • the air volume Airf of the indoor blower 32 can be determined in the same manner as in the third embodiment.
  • the suction temperature Ts is used to determine the cooling air temperature Tae that is cooled by the indoor evaporator 17 and flows into the heater core 53.
  • the cooling air temperature Tae may be a value obtained by subtracting the degree of superheat (3 ° C. in this embodiment) of the refrigerant on the outlet side of the indoor evaporator 17 from the suction temperature Ts.
  • the heating amount Qh2 of the electric heater 52 can be determined based on the specifications of the electric heater 52 and the amount of electric power output from the control device 40 to the electric heater 52.
  • the supercooling degree estimation unit of the present embodiment estimates the outlet-side enthalpy Hwcout of the outlet-side refrigerant of the water-refrigerant heat exchanger 121 based on the following mathematical formulas F7 to F9.
  • Qwr Qwex + Qh2 ... (F7)
  • Qwr f (LQf, Twin, Airfh, Tae) ...
  • Qwex Gr ⁇ (Hwcin-Hwcout) ... (F9)
  • Qwr is the amount of heat radiated from the heat medium to the blown air by the heater core 53.
  • Qwex is the amount of heat released from the refrigerant condensed in the water refrigerant heat exchanger 121 to the heat medium.
  • Airfh is the air volume on the heater core side of the blown air passing through the heater core 53.
  • the air mix door 34 completely closes the cold air bypass passage 35, so that the air volume Airfh on the heater core side is the same as the air volume Airf.
  • the air volume Airfh on the heater core side is determined according to the opening ratio between the opening degree of the ventilation passage on the heater core 53 side and the opening degree of the cold air bypass passage 35. do it.
  • Qwr is determined based on the heat medium flow rate LQf, the heater core inlet side heat medium temperature Twin, the heater core side air volume Airfh, and the cooling air temperature Tae. That is, the amount of heat exchange between the refrigerant and the heat medium in the heater core 53 is determined based on the temperature and air volume of the refrigerant flowing into the heater core 53, the temperature and air volume of the heat medium flowing into the heater core 53, and the heat exchange performance of the heater core 53. can do.
  • the water refrigerant heat exchanger is referred to in advance based on the heat medium flow rate LQf, the heater core inlet side heat medium temperature Twin, the heater core side air volume Airfh, and the cooling air temperature Tae.
  • the amount of heat released from the refrigerant condensed at 121 to the heat medium is determined.
  • the heat exchange performance of the heater core 53 can be grasped from the specifications of the heater core 53, test data, and the like.
  • the exit-side enthalpy Hwcout can be calculated using the formulas F7 to F9. Then, based on the outlet-side enthalpy Hwcout and the discharge pressure Pd, the degree of supercooling SC1 of the refrigerant flowing out of the heater core 53 and flowing into the heating expansion valve 13 can be estimated. Of course, if the refrigerant flowing out of the heater core 53 and flowing into the heating expansion valve 13 is in a gas-liquid two-phase state, the dryness can be estimated.
  • the configuration and operation of the other refrigeration cycle device 10a are the same as those of the refrigeration cycle device 10 of the first embodiment. Therefore, also in the vehicle air conditioner 1 of the present embodiment, cooling and dehumidifying heating of the vehicle interior can be realized as in the first embodiment. Further, the refrigerating cycle apparatus 10a of the present embodiment can also obtain the same effect as that of the first embodiment.
  • the supercooling degree SC1 of the refrigerant on the outlet side of the water refrigerant heat exchanger 121 forming the heating portion can be appropriately adjusted. As a result, it is possible to suppress a decrease in COP of the refrigeration cycle device 10.
  • the vehicle air conditioner 1 of the present embodiment includes an electric heater 52 that heats a heat medium as an auxiliary heating unit. Therefore, in order to adjust the supercooling degree SC1 to the target supercooling degree SCO or less, the heat medium can be heated by the electric heater 52 when the throttle opening of the heating expansion valve 13 cannot be reduced. As a result, comfortable dehumidifying and heating can be realized by raising the blown air temperature TAV until the blown air temperature TAO is reached.
  • the refrigerant discharge flow rate Gr of the compressor 11 the discharge temperature Td, the discharge pressure Pd, the heat medium flow rate LQf of the heat medium pump 51, the heat medium temperature Twin on the heater core inlet side, and the indoor blower.
  • the degree of supercooling SC1 is estimated using the air flow amount Airf of 32, the suction temperature Ts, and the heating amount Qh2 of the electric heater 52. Therefore, as described using the mathematical formulas F7 to F9, the supercooling degree SC1 can be estimated accurately only by adding the heat medium temperature sensor 41j.
  • the supercooling degree estimation unit of the present embodiment is effective even when applied to the refrigeration cycle device 10a not provided with the electric heater 52.
  • the heating amount Qh2 of the electric heater 52 may be set to 0.
  • a countercurrent type heat exchanger is adopted as the water refrigerant heat exchanger 121.
  • the flow direction of the refrigerant flowing through the refrigerant passage and the flow direction of the heat medium flowing through the heat medium passage are opposite to each other. Therefore, as shown in FIG. 9, the temperatures of the refrigerant and the heat medium change.
  • the thick solid line shows the temperature change of the refrigerant
  • the thick broken line shows the temperature change of the heat medium.
  • the heater core outlet side heat medium temperature Twout of the heat medium flowing out from the heater core 53 and flowing into the heat medium passage is compared with the water refrigerant outlet side refrigerant temperature Tdout of the refrigerant flowing out from the refrigerant passage. It will be a close value. Further, the heat medium temperature Twout on the outlet side of the heater core becomes a value lower than the refrigerant temperature Tdout on the outlet side of the water refrigerant.
  • the heater core outlet side heat medium temperature Twout is the water refrigerant outlet side refrigerant temperature Tdout
  • the supercooling degree SC1 that is larger than the actual value, that is, the supercooling degree SCO1 on the worst crossing side. can.
  • the discharge pressure Pd the heat medium flow rate LQf pressure-fed from the heat medium pump 51, the heat medium temperature Twin on the heater core inlet side, the air flow amount Airf of the indoor blower 32, and the suction temperature Ts are set. It is used to estimate the degree of supercooling SC1.
  • the air volume Airf is used to determine the air volume Airfh on the heater core side, as in the fourth embodiment.
  • the suction temperature Ts is used to determine the cooling air temperature Tae, as in the fourth embodiment.
  • the configuration and operation of the other refrigeration cycle device 10a are the same as those in the fourth embodiment. Therefore, also in the vehicle air conditioner 1 of the present embodiment, cooling and dehumidifying heating of the vehicle interior can be realized as in the fourth embodiment. Further, the refrigerating cycle apparatus 10a of the present embodiment can also obtain the same effect as that of the fourth embodiment.
  • the supercooling degree SC1 of the refrigerant on the outlet side of the water refrigerant heat exchanger 121 forming the heating portion can be appropriately adjusted.
  • the heater core outlet side heat medium temperature Twout is used as the water refrigerant outlet side refrigerant temperature Tdout
  • the present invention is not limited to this.
  • a value obtained by adding a predetermined value to the heater core outlet side heat medium temperature Twout may be used as the water refrigerant outlet side refrigerant temperature Tdout.
  • the circuit configuration of the refrigeration cycle device according to the present disclosure is not limited to the configuration of the refrigeration cycle devices 10 and 10a disclosed in the above-described embodiment.
  • it may be a refrigerating cycle device configured so that the refrigerant circuit can be switched, and a refrigerating cycle device in which the same refrigerant circuit as the above-described embodiment is formed in a predetermined operation mode may be used. Then, when the refrigerant circuit is switched to the same as that of the above-described embodiment, the same effect as that of the above-mentioned embodiment can be obtained by performing the same control as that of the above-mentioned embodiment.
  • the receiver 15 is connected to the refrigerant outlet of the outdoor heat exchanger 14 , but the present invention is not limited to this.
  • the receiver 15 is abolished and the refrigerant flow path from the refrigerant outlet of the indoor evaporator 17 to the suction port of the compressor 11 An accumulator may be placed in.
  • the accumulator separates the gas and liquid of the refrigerant flowing out from the indoor evaporator 17 and causes the separated gas phase refrigerant to flow out to the suction port side of the compressor 11, and the separated liquid phase refrigerant is used as the surplus refrigerant in the cycle. It is a liquid storage part on the low pressure side that stores.
  • the outdoor heat exchanger 14 may function as an evaporator for evaporating the refrigerant when the outlet temperature is controlled in the dehumidification / heating mode.
  • Each component of the refrigeration cycle devices 10 and 10a is not limited to the components disclosed in the above-described embodiment.
  • the compressor 11 an engine-driven compressor driven by a rotational driving force transmitted from an internal combustion engine (that is, an engine) may be adopted.
  • the refrigerant discharge flow rate Gr can be calculated by considering the engine speed, the discharge capacity, the operating rate, and the like.
  • the minimum detection unit is added to the detection unit essential for the blowout temperature control and the compressor protection control has been described, but the addition of the detection unit has been described. Is not limited to this.
  • a flow rate sensor as a flow rate detection unit for directly detecting the refrigerant discharge flow rate Gr (mass flow rate) of the compressor 11 may be added.
  • R1234yf is adopted as the refrigerant of the refrigeration cycle devices 10 and 10a
  • the present invention is not limited to this.
  • R134a, R600a, R410A, R404A, R32, R407C and the like may be adopted.
  • a mixed refrigerant or the like in which a plurality of these refrigerants are mixed may be adopted.
  • an example in which an ethylene glycol aqueous solution is used as a heat medium has been described, but the present invention is not limited to this.
  • a solution containing dimethylpolysiloxane, a nanofluid or the like, an antifreeze solution, an aqueous liquid medium containing alcohol or the like, or a liquid medium containing oil or the like may be adopted.
  • control modes of the refrigeration cycle devices 10 and 10a are not limited to the control modes disclosed in the above-described embodiment.
  • the target supercooling degree determining unit of the first to third embodiments may determine the target supercooling degree SCO capable of suppressing the temperature distribution generated in the blown air.
  • the target supercooling degree SCO may be determined such that the temperature difference obtained by subtracting the minimum temperature from the maximum temperature of the blown air after passing through the indoor condenser 12 or the heater core 53 is equal to or less than a predetermined reference temperature difference.
  • the heating unit of the refrigeration cycle apparatus 10 described in the first and second embodiments various constituent devices arranged in the water-refrigerant heat exchanger 121 and the heat medium circuit 50 described in the fourth embodiment are adopted. May be good.
  • the supercooling degree estimation unit described in the first embodiment or the lower limit area calculation unit described in the second embodiment may be applied to the refrigeration cycle apparatus 10a described in the fourth embodiment.

Abstract

Provided is a refrigeration cycle device comprising a heating unit (12, 121, 50), a first decompression unit (13), an outdoor heat-exchange unit (14), a second decompression unit (16), and an indoor evaporation unit (17). The heating unit (12, 121, 50) heats air to be blown. The first decompression unit (13) decompresses a refrigerant flowing out from the heating unit (12, 121, 50). The outdoor heat-exchange unit (14) performs heat exchange between the refrigerant flowing out from the first decompression unit (13) and outside air. The second decompression unit (16) decompresses the refrigerant flowing out from the outdoor heat-exchange unit (14). The indoor evaporation unit (17) cools the air to be blown before said air is heated at the heating unit (12, 121, 50). A first decompression control unit (40b) controls the operation of the first decompression unit (13) such that the supercooling degree (SC1) of the refrigerant flowing into the first decompression unit (13) is a target supercooling degree (SCO) or less.

Description

冷凍サイクル装置Refrigeration cycle device 関連出願の相互参照Cross-reference of related applications
 本出願は、2020年8月20日に出願された日本特許出願2020-139066号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2020-139066 filed on August 20, 2020, and the contents of the description are incorporated herein by reference.
 本開示は、冷凍サイクル装置に関し、空調対象空間の除湿暖房を行う空調装置に用いて好適である。 The present disclosure is suitable for use in an air conditioner that dehumidifies and heats an air-conditioned space with respect to a refrigeration cycle device.
 従来、特許文献1に、空調対象空間である車室内の除湿暖房を行う車両用空調装置に適用された冷凍サイクル装置が開示されている。 Conventionally, Patent Document 1 discloses a refrigeration cycle device applied to a vehicle air conditioner for dehumidifying and heating a vehicle interior, which is an air conditioning target space.
 特許文献1の冷凍サイクル装置は、室内凝縮器、室外熱交換器、室内蒸発器といった複数の熱交換部を備えている。室内凝縮器は、圧縮機から吐出された吐出冷媒を熱源として車室内へ送風される送風空気を加熱する加熱部である。さらに、特許文献1の冷凍サイクル装置は、室内凝縮器から流出した冷媒を減圧させる第1減圧部、および室外熱交換器から流出した冷媒を減圧させる第2減圧部を備えている。 The refrigeration cycle device of Patent Document 1 includes a plurality of heat exchange units such as an indoor condenser, an outdoor heat exchanger, and an indoor evaporator. The indoor condenser is a heating unit that heats the blown air blown into the vehicle interior by using the discharged refrigerant discharged from the compressor as a heat source. Further, the refrigeration cycle apparatus of Patent Document 1 includes a first decompression unit for reducing the pressure of the refrigerant flowing out of the indoor condenser and a second decompression unit for reducing the pressure of the refrigerant flowing out of the outdoor heat exchanger.
 特許文献1の冷凍サイクル装置では、車室内の除湿暖房を行う除湿暖房モード時に、3つの熱交換部を、冷媒流れ上流側から、室内凝縮器、室外熱交換器、室内蒸発器の順に直列に接続する冷媒回路に切り替える。そして、特許文献1の車両用空調装置では、室内蒸発器にて冷却されて除湿された送風空気を、室内凝縮器にて再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を実現している。 In the refrigeration cycle device of Patent Document 1, in the dehumidifying / heating mode for dehumidifying / heating the vehicle interior, three heat exchange units are connected in series in the order of the indoor condenser, the outdoor heat exchanger, and the indoor evaporator from the upstream side of the refrigerant flow. Switch to the refrigerant circuit to be connected. In the vehicle air conditioner of Patent Document 1, dehumidifying and heating of the vehicle interior is realized by reheating the blown air cooled and dehumidified by the indoor evaporator with the indoor condenser and blowing it into the vehicle interior. is doing.
 さらに、特許文献1の冷凍サイクル装置では、除湿暖房モード時に、第1減圧部の絞り開度および第2減圧部の絞り開度を変化させることによって、室内凝縮器における送風空気の加熱能力を調整している。 Further, in the refrigeration cycle apparatus of Patent Document 1, the heating capacity of the blown air in the indoor condenser is adjusted by changing the throttle opening of the first decompression section and the throttle opening of the second decompression section in the dehumidifying / heating mode. is doing.
特許第5585549号公報Japanese Patent No. 5585549
 ところで、特許文献1の冷凍サイクル装置では、除湿暖房モード時に、室内凝縮器における送風空気の加熱能力を調整するために、第1減圧部の絞り開度を変化させる。例えば、室内凝縮器における送風空気の加熱能力を向上させる際には、第1減圧部の絞り開度を縮小させる。このため、室内凝縮器における送風空気の加熱能力を向上させるに伴って、室内凝縮器の出口側冷媒の過冷却度が増加しやすくなる。 By the way, in the refrigerating cycle device of Patent Document 1, in the dehumidifying and heating mode, the throttle opening of the first decompression unit is changed in order to adjust the heating capacity of the blown air in the indoor condenser. For example, when improving the heating capacity of the blown air in the indoor condenser, the throttle opening of the first decompression unit is reduced. Therefore, as the heating capacity of the blown air in the indoor condenser is improved, the degree of supercooling of the refrigerant on the outlet side of the indoor condenser tends to increase.
 ところが、室内凝縮器の出口側冷媒の過冷却度が不必要に大きくなってしまうと、室内凝縮器にて加熱された送風空気に温度分布が生じてしまい、車室内の快適な除湿暖房を実現できなくなってしまう。また、室内凝縮器の出口側冷媒の過冷却度が不必要に大きくなってしまうと、サイクルの成績係数(すなわち、COP)が低下してしまう可能性もある。 However, if the degree of supercooling of the refrigerant on the outlet side of the indoor condenser becomes unnecessarily large, a temperature distribution will occur in the blown air heated by the indoor condenser, realizing comfortable dehumidification and heating in the vehicle interior. I can't do it. Further, if the degree of supercooling of the refrigerant on the outlet side of the indoor condenser becomes unnecessarily large, the coefficient of performance of the cycle (that is, COP) may decrease.
 本開示は、上記点に鑑み、加熱部の出口側冷媒の過冷却度を適切に調整可能な冷凍サイクル装置を提供することを目的とする。 In view of the above points, it is an object of the present disclosure to provide a refrigerating cycle apparatus capable of appropriately adjusting the degree of supercooling of the refrigerant on the outlet side of the heating unit.
 上記目的を達成するため、本開示の第1の態様の冷凍サイクル装置は、圧縮機と、加熱部と、第1減圧部と、室外熱交換部と、第2減圧部と、室内蒸発部と、目標過冷却度決定部と、過冷却度推定部と、第1減圧制御部と、を備える。 In order to achieve the above object, the refrigerating cycle apparatus of the first aspect of the present disclosure includes a compressor, a heating unit, a first decompression unit, an outdoor heat exchange unit, a second decompression unit, and an indoor evaporation unit. A target supercooling degree determination unit, a supercooling degree estimation unit, and a first decompression control unit are provided.
 圧縮機は、冷媒を圧縮して吐出する。加熱部は、圧縮機から吐出された冷媒を熱源として空調対象空間へ送風される送風空気を加熱する。第1減圧部は、加熱部から流出した冷媒を減圧させる。室外熱交換部は、第1減圧部から流出した冷媒と外気とを熱交換させる。第2減圧部は、室外熱交換部から流出した冷媒を減圧させる。室内蒸発部は、第2減圧部にて減圧された冷媒を蒸発させて、加熱部にて加熱される前の送風空気を冷却する。目標過冷却度決定部は、第1減圧部へ流入する冷媒の目標過冷却度を決定する。過冷却度推定部は、第1減圧部へ流入する冷媒の過冷却度を推定する。第1減圧制御部は、第1減圧部の作動を制御する。 The compressor compresses and discharges the refrigerant. The heating unit heats the blown air blown to the air-conditioned space using the refrigerant discharged from the compressor as a heat source. The first decompression unit decompresses the refrigerant flowing out of the heating unit. The outdoor heat exchange unit exchanges heat between the refrigerant flowing out from the first decompression unit and the outside air. The second decompression unit decompresses the refrigerant flowing out from the outdoor heat exchange unit. The indoor evaporating unit evaporates the refrigerant decompressed by the second decompression unit to cool the blown air before being heated by the heating unit. The target supercooling degree determining unit determines the target supercooling degree of the refrigerant flowing into the first decompression unit. The supercooling degree estimation unit estimates the supercooling degree of the refrigerant flowing into the first decompression unit. The first decompression control unit controls the operation of the first decompression unit.
 さらに、第1減圧制御部は、過冷却度推定部によって推定された前記過冷却度が、目標過冷却度以下となるように第1減圧部の作動を制御する。 Further, the first decompression control unit controls the operation of the first decompression unit so that the supercooling degree estimated by the supercooling degree estimation unit is equal to or less than the target supercooling degree.
 これによれば、過冷却度が目標過冷却度以下となるように、第1減圧制御部が第1減圧部の作動を制御する。従って、加熱部から流出して第1減圧部へ流入する冷媒の過冷却度が不必要に大きくなってしまうことを抑制することができる。 According to this, the first decompression control unit controls the operation of the first decompression unit so that the supercooling degree becomes equal to or less than the target supercooling degree. Therefore, it is possible to prevent the degree of supercooling of the refrigerant flowing out of the heating section and flowing into the first decompression section from becoming unnecessarily high.
 すなわち、第1の態様の冷凍サイクル装置によれば、加熱部の出口側冷媒の過冷却度を適切に調整することができる。 That is, according to the refrigerating cycle device of the first aspect, the degree of supercooling of the refrigerant on the outlet side of the heating unit can be appropriately adjusted.
 また、本開示の第2の態様の冷凍サイクル装置は、圧縮機と、加熱部と、第1減圧部と、室外熱交換部と、第2減圧部と、室内蒸発部と、目標過冷却度決定部と、下限面積算定部と、第1減圧制御部と、を備える。 Further, the refrigerating cycle apparatus according to the second aspect of the present disclosure includes a compressor, a heating unit, a first decompression unit, an outdoor heat exchange unit, a second decompression unit, an indoor evaporation unit, and a target supercooling degree. It includes a determination unit, a lower limit area calculation unit, and a first decompression control unit.
 圧縮機は、冷媒を圧縮して吐出する。加熱部は、圧縮機から吐出された冷媒を熱源として空調対象空間へ送風される送風空気を加熱する。第1減圧部は、加熱部から流出した冷媒を減圧させる。室外熱交換部は、第1減圧部から流出した冷媒と外気とを熱交換させる。第2減圧部は、室外熱交換部から流出した冷媒を減圧させる。室内蒸発部は、第2減圧部にて減圧された冷媒を蒸発させて、加熱部にて加熱される前の送風空気を冷却する。目標過冷却度決定部は、第1減圧部へ流入する冷媒の目標過冷却度を決定する。下限面積算定部は、第1減圧部へ流入する冷媒の過冷却度が目標過冷却度となる第1減圧部の下限絞り通路面積を算定する。第1減圧制御部は、第1減圧部の作動を制御する。 The compressor compresses and discharges the refrigerant. The heating unit heats the blown air blown to the air-conditioned space using the refrigerant discharged from the compressor as a heat source. The first decompression unit decompresses the refrigerant flowing out of the heating unit. The outdoor heat exchange unit exchanges heat between the refrigerant flowing out from the first decompression unit and the outside air. The second decompression unit decompresses the refrigerant flowing out from the outdoor heat exchange unit. The indoor evaporating unit evaporates the refrigerant decompressed by the second decompression unit to cool the blown air before being heated by the heating unit. The target supercooling degree determining unit determines the target supercooling degree of the refrigerant flowing into the first decompression unit. The lower limit area calculation unit calculates the lower limit throttle passage area of the first decompression unit where the supercooling degree of the refrigerant flowing into the first decompression unit is the target supercooling degree. The first decompression control unit controls the operation of the first decompression unit.
 さらに、第1減圧制御部は、第1減圧部の絞り通路面積が、下限絞り通路面積以上となるように第1減圧部の作動を制御する。 Further, the first decompression control unit controls the operation of the first decompression unit so that the throttle passage area of the first decompression unit is equal to or larger than the lower limit throttle passage area.
 これによれば、第1減圧部の絞り通路面積が下限絞り通路面積以上となるように、第1減圧制御部が第1減圧部の作動を制御するので、過冷却度を目標過冷却度以下とすることができる。従って、加熱部から流出して第1減圧部へ流入する冷媒の過冷却度が不必要に大きくなってしまうことを抑制することができる。 According to this, the first decompression control unit controls the operation of the first decompression unit so that the throttle passage area of the first decompression unit is equal to or larger than the lower limit throttle passage area, so that the supercooling degree is equal to or less than the target supercooling degree. Can be. Therefore, it is possible to prevent the degree of supercooling of the refrigerant flowing out of the heating section and flowing into the first decompression section from becoming unnecessarily high.
 すなわち、第2の態様の冷凍サイクル装置によれば、加熱部の出口側冷媒の過冷却度を適切に調整することができる。 That is, according to the refrigerating cycle device of the second aspect, the degree of supercooling of the refrigerant on the outlet side of the heating unit can be appropriately adjusted.
第1実施形態の車両用空調装置の全体構成図である。It is an overall block diagram of the vehicle air conditioner of 1st Embodiment. 第1実施形態の車両用空調装置の電気制御部を示すブロック図である。It is a block diagram which shows the electric control part of the air-conditioning apparatus for a vehicle of 1st Embodiment. 第1実施形態の車両用空調装置の制御フローの一部を示すフローチャートである。It is a flowchart which shows a part of the control flow of the air conditioner for a vehicle of 1st Embodiment. 冷媒の過冷却度と密度との関係を示すグラフである。It is a graph which shows the relationship between the supercooling degree of a refrigerant, and the density. 第1実施形態の冷凍サイクル装置の除湿暖房モード時における冷媒の状態の変化を示すモリエル線図である。It is a Moriel diagram which shows the change of the state of the refrigerant in the dehumidifying heating mode of the refrigerating cycle apparatus of 1st Embodiment. 第2実施形態の車両用空調装置の制御フローの一部を示すフローチャートである。It is a flowchart which shows a part of the control flow of the air conditioner for a vehicle of 2nd Embodiment. 第3実施形態の車両用空調装置の全体構成図である。It is an overall block diagram of the vehicle air conditioner of 3rd Embodiment. 第4実施形態の車両用空調装置の全体構成図である。It is an overall block diagram of the vehicle air conditioner of 4th Embodiment. 水冷媒熱交換器における冷媒および熱媒体の温度変化を示すグラフである。It is a graph which shows the temperature change of a refrigerant and a heat medium in a water refrigerant heat exchanger.
 以下に、図面を参照しながら本開示を実施するための複数の実施形態を説明する。各実施形態において先行する実施形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各実施形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の実施形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示していなくとも実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of embodiments for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, the same reference numerals may be given to the parts corresponding to the matters described in the preceding embodiments, and duplicate explanations may be omitted. When only a part of the configuration is described in each embodiment, other embodiments described above can be applied to the other parts of the configuration. Not only the combination of the parts that clearly indicate that the combination is possible in each embodiment, but also the partial combination of the embodiments even if the combination is not specified if there is no problem in the combination. Is also possible.
 (第1実施形態)
 図1~図5を用いて、本開示に係る冷凍サイクル装置10の第1実施形態を説明する。冷凍サイクル装置10は、図1の全体構成図に示す車両用空調装置1に適用されている。冷凍サイクル装置10は、車両用空調装置1において、空調対象空間である車室内へ送風される送風空気の温度を調整する。車両用空調装置1は、冷凍サイクル装置10、室内空調ユニット30、制御装置40等を備えている。
(First Embodiment)
A first embodiment of the refrigeration cycle apparatus 10 according to the present disclosure will be described with reference to FIGS. 1 to 5. The refrigeration cycle device 10 is applied to the vehicle air conditioner 1 shown in the overall configuration diagram of FIG. The refrigeration cycle device 10 adjusts the temperature of the blown air blown into the vehicle interior, which is the space to be air-conditioned, in the vehicle air-conditioning device 1. The vehicle air conditioner 1 includes a refrigeration cycle device 10, an indoor air conditioner unit 30, a control device 40, and the like.
 冷凍サイクル装置10では、冷媒としてHFO系冷媒(具体的には、R1234yf)を採用している。冷凍サイクル装置10は、圧縮機11から吐出された高圧冷媒の圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。冷媒には、圧縮機11を潤滑するための冷凍機油(具体的には、PAGオイル)が混入されている。冷凍機油の一部は、冷媒とともにサイクルを循環している。 The refrigeration cycle apparatus 10 uses an HFO-based refrigerant (specifically, R1234yf) as the refrigerant. The refrigeration cycle device 10 constitutes a steam compression type subcritical refrigeration cycle in which the pressure of the high-pressure refrigerant discharged from the compressor 11 does not exceed the critical pressure of the refrigerant. Refrigerating machine oil (specifically, PAG oil) for lubricating the compressor 11 is mixed in the refrigerant. Some of the refrigerating machine oil circulates in the cycle together with the refrigerant.
 圧縮機11は、冷凍サイクル装置10において、冷媒を吸入し、圧縮して吐出する。圧縮機11は、車室の前方側の補機室である車両ボンネット内に配置されている。圧縮機11は、吐出容量が固定された固定容量型の圧縮機構を電動モータにて回転駆動する電動圧縮機である。圧縮機11は、後述する制御装置40から出力される制御信号によって、回転数(すなわち、冷媒吐出能力)が制御される。 The compressor 11 sucks in the refrigerant in the refrigerating cycle device 10, compresses it, and discharges it. The compressor 11 is arranged in the vehicle bonnet, which is an auxiliary machine room on the front side of the vehicle room. The compressor 11 is an electric compressor that rotationally drives a fixed-capacity compression mechanism having a fixed discharge capacity by an electric motor. The number of revolutions (that is, the refrigerant discharge capacity) of the compressor 11 is controlled by a control signal output from the control device 40 described later.
 圧縮機11の吐出口には、室内凝縮器12の冷媒入口側が接続されている。室内凝縮器12は、後述する室内空調ユニット30のケーシング31内に配置されている。室内凝縮器12は、圧縮機11から吐出された高圧冷媒と送風空気とを熱交換させて、高圧冷媒の有する熱を送風空気へ放熱させる熱交換部である。さらに、室内凝縮器12は、圧縮機11から吐出された高温高圧の吐出冷媒を熱源として送風空気を加熱する加熱部である。 The refrigerant inlet side of the indoor condenser 12 is connected to the discharge port of the compressor 11. The indoor condenser 12 is arranged in the casing 31 of the indoor air conditioning unit 30, which will be described later. The indoor condenser 12 is a heat exchange unit that exchanges heat between the high-pressure refrigerant discharged from the compressor 11 and the blown air, and dissipates the heat of the high-pressure refrigerant to the blown air. Further, the indoor condenser 12 is a heating unit that heats the blown air using the high-temperature and high-pressure discharged refrigerant discharged from the compressor 11 as a heat source.
 室内凝縮器12の冷媒出口には、暖房用膨張弁13の入口側が接続されている。暖房用膨張弁13は、室内凝縮器12から流出した冷媒を減圧させる第1減圧部である。 The inlet side of the heating expansion valve 13 is connected to the refrigerant outlet of the indoor condenser 12. The heating expansion valve 13 is a first decompression unit that depressurizes the refrigerant flowing out of the indoor condenser 12.
 暖房用膨張弁13は、絞り通路の開度(すなわち、弁開度)を変化させる弁体部、および弁体部を変位させる電動アクチュエータ(具体的には、ステッピングモータ)を有する電動式の可変絞り機構である。暖房用膨張弁13は、制御装置40から出力される制御信号(具体的には、制御パルス)によって、その作動が制御される。 The heating expansion valve 13 is an electrically variable type having a valve body portion that changes the opening degree of the throttle passage (that is, the valve opening degree) and an electric actuator (specifically, a stepping motor) that displaces the valve body portion. It is an aperture mechanism. The operation of the heating expansion valve 13 is controlled by a control signal (specifically, a control pulse) output from the control device 40.
 暖房用膨張弁13は、弁体部が弁開度を全開にすることで流量調整作用および冷媒減圧作用を殆ど発揮することなく単なる冷媒通路として機能する全開機能を有している。 The heating expansion valve 13 has a fully open function in which the valve body portion fully opens the valve opening so as to function as a mere refrigerant passage without exerting a flow rate adjusting action and a refrigerant depressurizing action.
 暖房用膨張弁13の出口には、室外熱交換器14の冷媒入口側が接続されている。室外熱交換器14は、暖房用膨張弁13から流出した冷媒と、図示しない外気ファンから送風された外気とを熱交換させる室外熱交換部である。室外熱交換器14は、車両ボンネット内の前方側に配置されている。このため、車両走行時には、グリルを介して車両ボンネット内へ流入した走行風を室外熱交換器14に当てることができる。 The refrigerant inlet side of the outdoor heat exchanger 14 is connected to the outlet of the heating expansion valve 13. The outdoor heat exchanger 14 is an outdoor heat exchange unit that exchanges heat between the refrigerant flowing out from the heating expansion valve 13 and the outside air blown from an outside air fan (not shown). The outdoor heat exchanger 14 is arranged on the front side in the vehicle bonnet. Therefore, when the vehicle is running, the running wind that has flowed into the vehicle bonnet through the grill can be applied to the outdoor heat exchanger 14.
 室外熱交換器14の冷媒出口には、レシーバ15の入口側が接続されている。レシーバ15は、気液分離機能を有する高圧側の貯液部である。レシーバ15は、冷凍サイクル装置10において、冷媒を凝縮させる凝縮器として機能する熱交換部から流出した冷媒の気液を分離する。さらに、レシーバ15は、分離された液相冷媒の一部を下流側に流出させ、残余の液相冷媒をサイクルの余剰冷媒として蓄える。 The inlet side of the receiver 15 is connected to the refrigerant outlet of the outdoor heat exchanger 14. The receiver 15 is a liquid storage unit on the high pressure side having a gas-liquid separation function. The receiver 15 separates the gas and liquid of the refrigerant flowing out from the heat exchange unit that functions as a condenser that condenses the refrigerant in the refrigeration cycle device 10. Further, the receiver 15 causes a part of the separated liquid phase refrigerant to flow out to the downstream side, and stores the remaining liquid phase refrigerant as the surplus refrigerant in the cycle.
 レシーバ15の出口には、冷房用膨張弁16の入口側が接続されている。冷房用膨張弁16は、レシーバ15から流出した冷媒を減圧させる第2減圧部である。冷房用膨張弁16の基本的構成は、暖房用膨張弁13と同様である。 The inlet side of the cooling expansion valve 16 is connected to the outlet of the receiver 15. The cooling expansion valve 16 is a second pressure reducing unit that reduces the pressure of the refrigerant flowing out of the receiver 15. The basic configuration of the cooling expansion valve 16 is the same as that of the heating expansion valve 13.
 冷房用膨張弁16の出口には、室内蒸発器17の冷媒入口側が接続されている。室内蒸発器17は、室内空調ユニット30のケーシング31内に配置されている。室内蒸発器17は、冷房用膨張弁16にて減圧された低圧冷媒を、室内送風機32から送風された送風空気と熱交換させて蒸発させる熱交換部である。さらに、室内蒸発器17は、低圧冷媒を蒸発させて吸熱作用を発揮させることによって、送風空気を冷却する室内蒸発部である。室内蒸発器17の冷媒出口には、圧縮機11の吸入口側が接続されている。 The refrigerant inlet side of the indoor evaporator 17 is connected to the outlet of the cooling expansion valve 16. The indoor evaporator 17 is arranged in the casing 31 of the indoor air conditioning unit 30. The indoor evaporator 17 is a heat exchange unit that evaporates the low-pressure refrigerant decompressed by the cooling expansion valve 16 by exchanging heat with the blown air blown from the indoor blower 32. Further, the indoor evaporator 17 is an indoor evaporation unit that cools the blown air by evaporating the low-pressure refrigerant to exert an endothermic action. The suction port side of the compressor 11 is connected to the refrigerant outlet of the indoor evaporator 17.
 次に、室内空調ユニット30について説明する。室内空調ユニット30は、車両用空調装置1において、適切に温度調整された送風空気を車室内の適切な箇所へ吹き出すために各種構成機器を一体化させたユニットである。室内空調ユニット30は、車室内最前部の計器盤(すなわち、インストルメントパネル)の内側に配置されている。 Next, the indoor air conditioning unit 30 will be described. The indoor air-conditioning unit 30 is a unit in which various components are integrated in the vehicle air-conditioning device 1 in order to blow out appropriately temperature-controlled blown air to an appropriate place in the vehicle interior. The indoor air conditioning unit 30 is arranged inside the instrument panel (that is, the instrument panel) at the front of the vehicle interior.
 室内空調ユニット30は、送風空気の空気通路を形成するケーシング31を有している。ケーシング31内に形成された空気通路には、室内送風機32、室内蒸発器17、室内凝縮器12等が配置されている。ケーシング31は、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて形成されている。 The indoor air conditioning unit 30 has a casing 31 that forms an air passage for blown air. An indoor blower 32, an indoor evaporator 17, an indoor condenser 12, and the like are arranged in an air passage formed in the casing 31. The casing 31 is made of a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength.
 ケーシング31の送風空気流れ最上流側には、内外気切替装置33が配置されている。内外気切替装置33は、ケーシング31内へ内気(すなわち、車室内空気)と外気(すなわち、車室外空気)とを切替導入する。内外気切替装置33の駆動用の電動アクチュエータは、制御装置40から出力される制御信号によって、その作動が制御される。 An inside / outside air switching device 33 is arranged on the most upstream side of the blast air flow of the casing 31. The inside / outside air switching device 33 switches and introduces the inside air (that is, the vehicle interior air) and the outside air (that is, the vehicle interior outside air) into the casing 31. The operation of the electric actuator for driving the inside / outside air switching device 33 is controlled by the control signal output from the control device 40.
 内外気切替装置33の送風空気流れ下流側には、室内送風機32が配置されている。室内送風機32は、内外気切替装置33を介して吸入した空気を車室内へ向けて送風する送風部である。室内送風機32は、遠心多翼ファンを電動モータにて駆動する電動送風機である。室内送風機32は、制御装置40から出力される制御電圧によって、回転数(すなわち、送風能力)が制御される。 An indoor blower 32 is arranged on the downstream side of the blower air flow of the inside / outside air switching device 33. The indoor blower 32 is a blower unit that blows the air sucked through the inside / outside air switching device 33 toward the vehicle interior. The indoor blower 32 is an electric blower that drives a centrifugal multi-blade fan with an electric motor. The rotation speed (that is, the blowing capacity) of the indoor blower 32 is controlled by the control voltage output from the control device 40.
 室内送風機32の送風空気流れ下流側には、室内蒸発器17と室内凝縮器12が、送風空気流れに対して、上流側から順に配置されている。つまり、室内蒸発器17は、室内凝縮器12よりも、送風空気流れ上流側に配置されている。ケーシング31内には、室内蒸発器17を通過した送風空気を、室内凝縮器12を迂回させて下流側へ流す冷風バイパス通路35が形成されている。 On the downstream side of the blown air flow of the indoor blower 32, the indoor evaporator 17 and the indoor condenser 12 are arranged in order from the upstream side with respect to the blown air flow. That is, the indoor evaporator 17 is arranged on the upstream side of the blown air flow with respect to the indoor condenser 12. A cold air bypass passage 35 is formed in the casing 31 to allow the blown air that has passed through the indoor evaporator 17 to bypass the indoor condenser 12 and flow to the downstream side.
 室内蒸発器17の送風空気流れ下流側であって、かつ、室内凝縮器12の送風空気流れ上流側には、エアミックスドア34が配置されている。エアミックスドア34は、室内凝縮器12を通過させる送風空気の風量と冷風バイパス通路35を通過させる送風空気の風量との風量割合を調整する。エアミックスドア34の駆動用の電動アクチュエータは、制御装置40から出力される制御信号によって、その作動が制御される。 The air mix door 34 is arranged on the downstream side of the blown air flow of the indoor evaporator 17 and on the upstream side of the blown air flow of the indoor condenser 12. The air mix door 34 adjusts the air volume ratio between the air volume of the blown air passing through the indoor condenser 12 and the air volume of the blown air passing through the cold air bypass passage 35. The operation of the electric actuator for driving the air mix door 34 is controlled by the control signal output from the control device 40.
 室内凝縮器12の送風空気流れ下流側には、室内凝縮器12にて加熱された送風空気と冷風バイパス通路35を通過して室内凝縮器12にて加熱されていない送風空気とを混合させる混合空間36が設けられている。さらに、ケーシング31の送風空気流れ最下流部には、混合空間36にて混合された送風空気(空調風)を、車室内へ吹き出す図示しない開口穴が配置されている。 On the downstream side of the blown air flow of the indoor condenser 12, the blown air heated by the indoor condenser 12 and the blown air that has passed through the cold air bypass passage 35 and are not heated by the indoor condenser 12 are mixed. Space 36 is provided. Further, an opening hole (not shown) for blowing out the blown air (air-conditioned air) mixed in the mixing space 36 into the vehicle interior is arranged at the most downstream portion of the blown air flow of the casing 31.
 従って、エアミックスドア34が室内凝縮器12を通過させる風量と冷風バイパス通路35を通過させる風量との風量割合を調整することによって、混合空間36にて混合される空調風の温度を調整することができる。そして、各開口穴から車室内へ吹き出される送風空気の温度を調整することができる。 Therefore, the temperature of the conditioned air mixed in the mixing space 36 is adjusted by adjusting the air volume ratio between the air volume passing through the indoor condenser 12 and the air volume passing through the cold air bypass passage 35 by the air mix door 34. Can be done. Then, the temperature of the blown air blown from each opening hole into the vehicle interior can be adjusted.
 開口穴としては、フェイス開口穴、フット開口穴、及びデフロスタ開口穴(いずれも図示せず)が設けられている。フェイス開口穴は、車室内の乗員の上半身に向けて空調風を吹き出すための開口穴である。フット開口穴は、乗員の足元に向けて空調風を吹き出すための開口穴である。デフロスタ開口穴は、車両前面窓ガラス内側面に向けて空調風を吹き出すための開口穴である。 As the opening holes, a face opening hole, a foot opening hole, and a defroster opening hole (none of which are shown) are provided. The face opening hole is an opening hole for blowing air-conditioned air toward the upper body of the occupant in the vehicle interior. The foot opening hole is an opening hole for blowing air-conditioned air toward the feet of the occupant. The defroster opening hole is an opening hole for blowing air conditioning air toward the inner side surface of the front window glass of the vehicle.
 これらの開口穴の上流側には、図示しない吹出モード切替ドアが配置されている。吹出モード切替ドアは、各開口穴を開閉することによって、空調風を吹き出す開口穴を切り替える。吹出モード切替ドア駆動用の電動アクチュエータは、制御装置40から出力される制御信号によって、その作動が制御される。 An outlet mode switching door (not shown) is arranged on the upstream side of these opening holes. The blowing mode switching door switches the opening hole for blowing out the conditioned air by opening and closing each opening hole. The operation of the electric actuator for driving the blowout mode switching door is controlled by the control signal output from the control device 40.
 次に、図2を用いて、車両用空調装置1の電気制御部の概要について説明する。制御装置40は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。制御装置40は、ROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種制御対象機器11、13、16、32、33、34等の作動を制御する。 Next, the outline of the electric control unit of the vehicle air conditioner 1 will be described with reference to FIG. The control device 40 includes a well-known microcomputer including a CPU, ROM, RAM, and the like, and peripheral circuits thereof. The control device 40 performs various calculations and processes based on the control program stored in the ROM, and controls the operation of various controlled target devices 11, 13, 16, 32, 33, 34, etc. connected to the output side. ..
 制御装置40の入力側には、図2に示すように、空調制御に用いられる各種センサが接続されている。各種センサには、内気温センサ41a、外気温センサ41b、日射量センサ41c、高圧温度センサ41d、高圧圧力センサ41e、低圧温度センサ41f、低圧圧力センサ41g、空調風温度センサ41hが含まれる。 As shown in FIG. 2, various sensors used for air conditioning control are connected to the input side of the control device 40. Various sensors include an inside temperature sensor 41a, an outside temperature sensor 41b, a solar radiation amount sensor 41c, a high pressure temperature sensor 41d, a high pressure pressure sensor 41e, a low pressure temperature sensor 41f, a low pressure pressure sensor 41g, and an air conditioning air temperature sensor 41h.
 内気温センサ41aは、車室内の温度である内気温Trを検出する内気温検出部である。外気温センサ41bは、車室外の温度である外気温Tamを検出する外気温検出部である。日射量センサ41cは、車室内へ照射される日射量Asを検出する日射量検出部である。 The internal air temperature sensor 41a is an internal air temperature detection unit that detects the internal air temperature Tr, which is the temperature inside the vehicle. The outside air temperature sensor 41b is an outside air temperature detection unit that detects the outside air temperature Tam, which is the temperature outside the vehicle interior. The solar radiation amount sensor 41c is a solar radiation amount detection unit that detects the solar radiation amount As irradiated to the vehicle interior.
 高圧温度センサ41dは、圧縮機11から吐出された吐出冷媒の吐出温度Tdを検出する高圧温度検出部である。高圧圧力センサ41eは、圧縮機11から吐出された吐出冷媒の吐出圧力Pdを検出する高圧圧力検出部である。 The high-pressure temperature sensor 41d is a high-pressure temperature detection unit that detects the discharge temperature Td of the discharged refrigerant discharged from the compressor 11. The high-pressure pressure sensor 41e is a high-pressure pressure detection unit that detects the discharge pressure Pd of the discharge refrigerant discharged from the compressor 11.
 高圧温度センサ41dおよび高圧圧力センサ41eは、吐出温度Tdあるいは吐出圧力Pdの異常上昇を検知するためにも用いられる。制御装置40は、吐出温度Tdあるいは吐出圧力Pdの異常上昇を検知した際には、圧縮機11を停止させることによって、圧縮機11の保護を図る圧縮機保護制御を行う。 The high pressure temperature sensor 41d and the high pressure pressure sensor 41e are also used to detect an abnormal rise in the discharge temperature Td or the discharge pressure Pd. When the control device 40 detects an abnormal rise in the discharge temperature Td or the discharge pressure Pd, the control device 40 stops the compressor 11 to perform compressor protection control for protecting the compressor 11.
 低圧温度センサ41fは、圧縮機11へ吸入される吸入冷媒の吸入温度Tsを検出する低圧温度検出部である。低圧圧力センサ41gは、圧縮機11へ吸入される吸入冷媒の吸入圧力Psを検出する低圧圧力検出部である。 The low pressure temperature sensor 41f is a low pressure temperature detection unit that detects the suction temperature Ts of the suction refrigerant sucked into the compressor 11. The low pressure pressure sensor 41g is a low pressure pressure detection unit that detects the suction pressure Ps of the suction refrigerant sucked into the compressor 11.
 本実施形態の低圧温度センサ41fは、具体的に、室内蒸発器17の冷媒出口から圧縮機11の吸入口へ至る冷媒配管の外表面の温度を検出している。低圧温度センサとして、室内蒸発器17の熱交換フィン温度の温度である蒸発器温度Tefinを検出する蒸発器温度検出部を採用してもよい。 The low-pressure temperature sensor 41f of the present embodiment specifically detects the temperature of the outer surface of the refrigerant pipe from the refrigerant outlet of the indoor evaporator 17 to the suction port of the compressor 11. As the low-pressure temperature sensor, an evaporator temperature detection unit that detects the evaporator temperature Tefin, which is the temperature of the heat exchange fin temperature of the indoor evaporator 17, may be adopted.
 空調風温度センサ41hは、混合空間36から車室内へ吹き出される吹出空気温度TAVを検出する空調風温度検出部である。 The air-conditioned air temperature sensor 41h is an air-conditioned air temperature detection unit that detects the air blown air temperature TAV blown out from the mixing space 36 into the vehicle interior.
 さらに、制御装置40の入力側には、車室内前部の計器盤付近に配置された操作パネル42が接続され、操作パネル42に設けられた各種操作スイッチからの操作信号が入力される。操作パネル42に設けられた各種操作スイッチとしては、具体的に、オートスイッチ、エアコンスイッチ、風量設定スイッチ、温度設定スイッチ等がある。 Further, an operation panel 42 arranged near the instrument panel in the front part of the vehicle interior is connected to the input side of the control device 40, and operation signals from various operation switches provided on the operation panel 42 are input. Specific examples of the various operation switches provided on the operation panel 42 include an auto switch, an air conditioner switch, an air volume setting switch, and a temperature setting switch.
 オートスイッチは、乗員が車両用空調装置1の自動制御運転を設定あるいは解除することを要求するための自動制御要求部である。エアコンスイッチは、乗員が室内蒸発器17で送風空気の冷却を行うことを要求するための冷却要求部である。風量設定スイッチは、乗員が室内送風機32の風量をマニュアル設定する風量設定部である。温度設定スイッチは、乗員が車室内の目標温度Tsetを設定する温度設定部である。 The auto switch is an automatic control requesting unit for requesting that the occupant set or cancel the automatic control operation of the vehicle air conditioner 1. The air conditioner switch is a cooling requesting unit for requiring the occupant to cool the blown air with the indoor evaporator 17. The air volume setting switch is an air volume setting unit in which the occupant manually sets the air volume of the indoor blower 32. The temperature setting switch is a temperature setting unit in which the occupant sets the target temperature Tset in the vehicle interior.
 また、本実施形態の制御装置40は、その出力側に接続された各種制御対象機器を制御する制御部が一体に構成されたものである。従って、それぞれの制御対象機器の作動を制御する構成(すなわち、ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御部を構成している。 Further, the control device 40 of the present embodiment is integrally configured with a control unit that controls various controlled devices connected to the output side of the control device 40. Therefore, a configuration (that is, hardware and software) that controls the operation of each controlled device constitutes a control unit that controls the operation of each controlled device.
 例えば、制御装置40のうち、圧縮機11の回転数を制御する構成は、圧縮機制御部40aである。また、制御装置40のうち、暖房用膨張弁13の作動を制御する構成は、第1減圧制御部40bである。また、制御装置40のうち、冷房用膨張弁16の作動を制御する構成は、第2減圧制御部40cである。 For example, among the control devices 40, the configuration for controlling the rotation speed of the compressor 11 is the compressor control unit 40a. Further, among the control devices 40, the configuration for controlling the operation of the heating expansion valve 13 is the first decompression control unit 40b. Further, among the control devices 40, the configuration for controlling the operation of the cooling expansion valve 16 is the second decompression control unit 40c.
 次に、上記構成の本実施形態の車両用空調装置1の作動について説明する。車両用空調装置1では、車室内の適切な空調のために運転モードを切り替える。具体的には、車両用空調装置1では、冷房モードおよび除湿暖房モードを切り替えることができる。運転モードの切り替えは、制御装置40に記憶されている制御プログラムが実行されることによって行われる。 Next, the operation of the vehicle air conditioner 1 of the present embodiment having the above configuration will be described. In the vehicle air conditioner 1, the operation mode is switched for proper air conditioning in the vehicle interior. Specifically, in the vehicle air conditioner 1, the cooling mode and the dehumidifying / heating mode can be switched. The operation mode is switched by executing the control program stored in the control device 40.
 制御プログラムは、操作パネル42のエアコンスイッチが投入された状態で、オートスイッチが投入されると実行される。制御プログラムでは、目標吹出温度TAO、各種センサの検出信号、および操作パネル42の操作信号に基づいて、運転モードを決定する。目標吹出温度TAOは、車室内へ送風される送風空気の目標温度である。 The control program is executed when the auto switch is turned on while the air conditioner switch of the operation panel 42 is turned on. In the control program, the operation mode is determined based on the target blowout temperature TAO, the detection signals of various sensors, and the operation signal of the operation panel 42. The target blowout temperature TAO is the target temperature of the blown air blown into the vehicle interior.
 目標吹出温度TAOは、以下数式F1によって算出される。
TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×As+C…(F1)
 なお、Tsetは温度設定スイッチによって設定された車室内設定温度である。Trは内気センサによって検出された車室内温度である。Tamは外気センサによって検出された車室外温度である。Asは日射センサによって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
The target blowout temperature TAO is calculated by the following formula F1.
TAO = Kset x Tset-Kr x Tr-Kam x Tam-Ks x As + C ... (F1)
In addition, Tset is the vehicle interior set temperature set by the temperature setting switch. Tr is the vehicle interior temperature detected by the inside air sensor. Tam is the temperature outside the vehicle interior detected by the outside air sensor. As is the amount of solar radiation detected by the solar radiation sensor. Kset, Kr, Kam, and Ks are control gains, and C is a correction constant.
 さらに、制御プログラムでは、決定された運転モードに応じて、各種制御対象機器の制御状態を決定する。そして、制御装置40は、制御プログラムにて決定された制御状態が得られるように、各種制御対象機器へ制御信号あるいは制御電圧を出力する。 Furthermore, in the control program, the control state of various controlled devices is determined according to the determined operation mode. Then, the control device 40 outputs a control signal or a control voltage to various control target devices so that the control state determined by the control program can be obtained.
 そして、制御プログラムでは、車両用空調装置1の停止が要求されるまで、所定の制御周期毎に、検出信号および操作信号の読み込み、目標吹出温度TAOを算出、各種制御対象機器の制御状態の決定、各種制御対象機器へ制御信号等の出力といった制御ルーチンを繰り返す。以下に、各運転モードについて説明する。 Then, in the control program, the detection signal and the operation signal are read, the target blowout temperature TAO is calculated, and the control state of various controlled devices is determined at each predetermined control cycle until the vehicle air conditioner 1 is requested to be stopped. , Repeat control routines such as outputting control signals to various controlled devices. Each operation mode will be described below.
 (a)冷房モード
 冷房モードでは、以下に説明するように各種制御対象機器の制御状態が決定される。圧縮機11については、低圧温度センサ41fによって検出された吸入温度Tsが目標蒸発器温度TEOに近づくように、冷媒吐出能力が決定される。目標蒸発器温度TEOは、目標吹出温度TAOに基づいて、予め制御装置40に記憶されている制御マップを参照して決定される。
(A) Cooling mode In the cooling mode, the control state of various controlled devices is determined as described below. For the compressor 11, the refrigerant discharge capacity is determined so that the suction temperature Ts detected by the low pressure temperature sensor 41f approaches the target evaporator temperature TEO. The target evaporator temperature TEO is determined based on the target blowout temperature TAO with reference to a control map stored in advance in the control device 40.
 制御マップでは、目標吹出温度TAOの低下に伴って、目標蒸発器温度TEOを低下させる。さらに、目標蒸発器温度TEOは、室内蒸発器17に着霜を生じさせない範囲の値に決定される。 In the control map, the target evaporator temperature TEO is lowered as the target blowout temperature TAO is lowered. Further, the target evaporator temperature TEO is determined to be a value within a range that does not cause frost formation in the indoor evaporator 17.
 また、暖房用膨張弁13については、全開状態となるように決定される。また、冷房用膨張弁16については、室内蒸発器17の出口側冷媒の過熱度SHが予め定めた基準過熱度KSH(本実施形態では、3℃)に近づくように、絞り開度が決定される。過熱度SHは、低圧温度センサ41fによって検出された吸入温度Ts、および低圧圧力センサ41gによって検出された吸入圧力Psを用いて算定される。 Further, the heating expansion valve 13 is determined to be fully open. Further, for the expansion valve 16 for cooling, the throttle opening is determined so that the superheat degree SH of the outlet side refrigerant of the indoor evaporator 17 approaches the predetermined standard superheat degree KSH (3 ° C. in this embodiment). To. The degree of superheat SH is calculated using the suction temperature Ts detected by the low pressure temperature sensor 41f and the suction pressure Ps detected by the low pressure pressure sensor 41g.
 また、室内送風機32については、目標吹出温度TAOに基づいて、予め制御装置40に記憶されている制御マップを参照して送風能力が決定される。制御マップでは、目標吹出温度TAOが極低温域あるいは極高温域となっている際に送風量が最大となり、極低温域あるいは極高温域から中間温度域に向かうに伴って、送風量が徐々に減少するように、送風能力が決定される。 Further, for the indoor blower 32, the blower capacity is determined based on the target blowout temperature TAO with reference to the control map stored in the control device 40 in advance. In the control map, the amount of air blown is maximized when the target blowout temperature TAO is in the extremely low temperature region or extremely high temperature region, and the amount of air blown gradually increases from the extremely low temperature region or extremely high temperature region to the intermediate temperature region. The ventilation capacity is determined so that it decreases.
 また、エアミックスドア用の電動アクチュエータについては、室内凝縮器12側の通風路を全閉とし、冷風バイパス通路35を全開とするように決定される。冷房モードでは、エアミックスドア34の開度については、空調風温度センサ41hによって検出された吹出空気温度TAVが目標吹出温度TAOに近づくように決定してもよい。 Regarding the electric actuator for the air mix door, it is decided that the ventilation path on the indoor condenser 12 side is fully closed and the cold air bypass passage 35 is fully opened. In the cooling mode, the opening degree of the air mix door 34 may be determined so that the blown air temperature TAV detected by the air conditioning air temperature sensor 41h approaches the target blown temperature TAO.
 従って、冷房モードの冷凍サイクル装置10では、圧縮機11から吐出された吐出冷媒が、室内凝縮器12へ流入する。冷房モードでは、エアミックスドア34が、室内凝縮器12側の通風路を閉じているので、室内凝縮器12へ流入した冷媒は、殆ど送風空気と熱交換することなく、室内凝縮器12から流出する。 Therefore, in the refrigerating cycle device 10 in the cooling mode, the discharged refrigerant discharged from the compressor 11 flows into the indoor condenser 12. In the cooling mode, since the air mix door 34 closes the ventilation path on the indoor condenser 12 side, the refrigerant flowing into the indoor condenser 12 flows out from the indoor condenser 12 with almost no heat exchange with the blown air. do.
 室内凝縮器12から流出した冷媒は、全開となっている暖房用膨張弁13を介して、室外熱交換器14へ流入する。室外熱交換器14へ流入した冷媒は、外気へ放熱して凝縮する。室外熱交換器14から流出した冷媒は、レシーバ15へ流入して、気液分離される。 The refrigerant flowing out of the indoor condenser 12 flows into the outdoor heat exchanger 14 via the fully opened heating expansion valve 13. The refrigerant flowing into the outdoor heat exchanger 14 dissipates heat to the outside air and condenses. The refrigerant flowing out of the outdoor heat exchanger 14 flows into the receiver 15 and is separated into gas and liquid.
 レシーバ15から流出した液相冷媒は、冷房用膨張弁16へ流入して減圧される。この際、冷房用膨張弁16の絞り開度は、室内蒸発器17の出口側冷媒の過熱度SHが基準過熱度KSHに近づくように決定される。冷房用膨張弁16にて減圧された冷媒は、室内蒸発器17へ流入する。 The liquid phase refrigerant flowing out of the receiver 15 flows into the cooling expansion valve 16 and is depressurized. At this time, the throttle opening of the cooling expansion valve 16 is determined so that the superheat degree SH of the outlet-side refrigerant of the indoor evaporator 17 approaches the reference superheat degree KSH. The refrigerant decompressed by the cooling expansion valve 16 flows into the indoor evaporator 17.
 室内蒸発器17へ流入した冷媒は、送風空気から吸熱して蒸発する。これにより、送風空気が冷却される。室内蒸発器17から流出した冷媒は、圧縮機11へ吸入されて再び圧縮される。 The refrigerant flowing into the indoor evaporator 17 absorbs heat from the blown air and evaporates. As a result, the blown air is cooled. The refrigerant flowing out of the indoor evaporator 17 is sucked into the compressor 11 and compressed again.
 冷房モードの室内空調ユニット30では、室内蒸発器17にて冷却された送風空気が車室内へ吹き出される。これにより、車室内の冷房が実現される。 In the indoor air conditioning unit 30 in the cooling mode, the blown air cooled by the indoor evaporator 17 is blown into the vehicle interior. As a result, cooling of the passenger compartment is realized.
 (b)除湿暖房モード
 除湿暖房モードでは、以下のように各種制御対象機器の制御状態が決定される。圧縮機11、室内送風機32については、冷房モードと同様に決定される。
(B) Dehumidifying / heating mode In the dehumidifying / heating mode, the control state of various controlled devices is determined as follows. The compressor 11 and the indoor blower 32 are determined in the same manner as in the cooling mode.
 また、暖房用膨張弁13の絞り開度については、図3に示す制御フローが実行されることによって決定される。図3に示す制御フローは、制御プログラムのメインルーチンのサブルーチンとして実行される。また、図3等のフローチャートに示された各制御ステップは、それぞれ制御装置40が有する機能実現部である。 Further, the throttle opening of the heating expansion valve 13 is determined by executing the control flow shown in FIG. The control flow shown in FIG. 3 is executed as a subroutine of the main routine of the control program. Further, each control step shown in the flowchart of FIG. 3 or the like is a function realization unit of the control device 40.
 まず、図3のステップS1では、室内凝縮器12から流出して暖房用膨張弁13へ流入する冷媒、すなわち室内凝縮器12の出口側冷媒の目標過冷却度SCOを決定する。従って、ステップS1は、目標過冷却度決定部である。 First, in step S1 of FIG. 3, the target supercooling degree SCO of the refrigerant flowing out of the indoor condenser 12 and flowing into the heating expansion valve 13, that is, the refrigerant on the outlet side of the indoor condenser 12 is determined. Therefore, step S1 is a target supercooling degree determination unit.
 具体的には、ステップS1では、暖房用膨張弁13へ流入する冷媒の入口側圧力P1に基づいて、予め制御装置40に記憶されている制御マップを参照して、目標過冷却度SCOを決定する。制御マップでは、サイクルの成績係数(すなわち、COP)が極大値となるように、目標過冷却度SCOを決定する。 Specifically, in step S1, the target supercooling degree SCO is determined with reference to the control map stored in advance in the control device 40 based on the inlet-side pressure P1 of the refrigerant flowing into the heating expansion valve 13. do. In the control map, the target supercooling degree SCO is determined so that the coefficient of performance (that is, COP) of the cycle becomes a maximum value.
 入口側圧力P1は、高圧圧力センサ41eによって検出された吐出圧力Pdから、冷媒が室内凝縮器12を通過する際に生じる圧力損失を減算した値を用いることができる。本実施形態では、吐出圧力Pdに対する圧力損失の割合が比較的小さいことから、入口側圧力P1として吐出圧力Pdを採用している。 For the inlet side pressure P1, a value obtained by subtracting the pressure loss generated when the refrigerant passes through the indoor condenser 12 from the discharge pressure Pd detected by the high pressure pressure sensor 41e can be used. In the present embodiment, since the ratio of the pressure loss to the discharge pressure Pd is relatively small, the discharge pressure Pd is adopted as the inlet side pressure P1.
 次に、ステップS2では、室内凝縮器12から流出して暖房用膨張弁13へ流入する冷媒の過冷却度SC1を推定する。従って、ステップS2は、過冷却度推定部である。ステップS2では、圧縮機11の冷媒吐出流量Gr(質量流量)、暖房用膨張弁13の絞り通路面積A、吐出圧力Pd、および外気温Tamを用いて、過冷却度SC1を推定する。 Next, in step S2, the degree of supercooling SC1 of the refrigerant flowing out of the indoor condenser 12 and flowing into the heating expansion valve 13 is estimated. Therefore, step S2 is a supercooling degree estimation unit. In step S2, the degree of supercooling SC1 is estimated using the refrigerant discharge flow rate Gr (mass flow rate) of the compressor 11, the throttle passage area A of the heating expansion valve 13, the discharge pressure Pd, and the outside temperature Tam.
 圧縮機11の冷媒吐出流量Grは、圧縮機11へ吸入される吸入冷媒の吸入密度ρcin、圧縮機11の回転数、圧縮機11の吐出容量、および圧縮機11の体積効率から算定することができる。 The refrigerant discharge flow rate Gr of the compressor 11 can be calculated from the suction density ρcin of the suction refrigerant sucked into the compressor 11, the rotation speed of the compressor 11, the discharge capacity of the compressor 11, and the volumetric efficiency of the compressor 11. can.
 吸入密度ρcinは、吸入温度Tsおよび吸入圧力Psから、冷媒の物性に基づいて決定することができる。圧縮機11の回転数は、制御装置40から圧縮機11へ出力される制御信号から決定することができる。圧縮機11の吐出容量および圧縮機11の体積効率は、圧縮機11の仕様および試験データ等から把握しておくことができる。 The suction density ρcin can be determined from the suction temperature Ts and the suction pressure Ps based on the physical properties of the refrigerant. The rotation speed of the compressor 11 can be determined from the control signal output from the control device 40 to the compressor 11. The discharge capacity of the compressor 11 and the volumetric efficiency of the compressor 11 can be grasped from the specifications of the compressor 11, test data, and the like.
 暖房用膨張弁13の絞り通路面積Aは、暖房用膨張弁13の仕様および制御装置40から暖房用膨張弁13へ出力される制御信号(具体的には、制御パルス)に基づいて決定することができる。 The throttle passage area A of the heating expansion valve 13 is determined based on the specifications of the heating expansion valve 13 and the control signal (specifically, the control pulse) output from the control device 40 to the heating expansion valve 13. Can be done.
 吐出圧力Pdは、目標過冷却度決定部と同様に、入口側圧力P1を決定するために用いられる。 The discharge pressure Pd is used to determine the inlet side pressure P1 as in the target supercooling degree determination unit.
 外気温Tamは、暖房用膨張弁13から流出した冷媒の出口側圧力P2を決定するために用いられる。出口側圧力P2は、暖房用膨張弁13の出口側に接続された室外熱交換器14における冷媒の飽和圧力と同等であり、室外熱交換器14における冷媒の温度は外気温Tamと略同等となる。従って、出口側圧力P2として、外気温Tamにおける冷媒の飽和圧力を採用することができる。 The outside air temperature Tam is used to determine the outlet pressure P2 of the refrigerant flowing out from the heating expansion valve 13. The outlet side pressure P2 is equivalent to the saturation pressure of the refrigerant in the outdoor heat exchanger 14 connected to the outlet side of the heating expansion valve 13, and the temperature of the refrigerant in the outdoor heat exchanger 14 is substantially equivalent to the outside temperature Tam. Become. Therefore, the saturation pressure of the refrigerant at the outside air temperature Tam can be adopted as the outlet side pressure P2.
 そして、ステップS2では、以下数式F2を用いて、暖房用膨張弁13へ流入する冷媒の入口側密度ρinを算定する。
ρin=Gr2/(2×(P1-P2)×A2)…(F2)
 入口側密度ρinと過冷却度SC1は、図4に示すように相関している。従って、数式F2によって入口側密度ρinを算定することで、過冷却度SC1を推定することができる。
Then, in step S2, the inlet-side density ρin of the refrigerant flowing into the heating expansion valve 13 is calculated using the following mathematical formula F2.
ρin = Gr 2 / (2 × (P1-P2) × A 2 )… (F2)
The inlet-side density ρin and the supercooling degree SC1 are correlated as shown in FIG. Therefore, the supercooling degree SC1 can be estimated by calculating the inlet-side density ρin by the mathematical formula F2.
 次に、ステップS3では、ステップS2で推定された過冷却度SC1が、ステップS1で決定された目標過冷却度SCOよりも大きくなっているか否かを判定する。従って、ステップS3は、過冷却度SC1が目標過冷却度SCOよりも大きくなっているか否かを判定する過冷却度判定部である。 Next, in step S3, it is determined whether or not the supercooling degree SC1 estimated in step S2 is larger than the target supercooling degree SCO determined in step S1. Therefore, step S3 is a supercooling degree determining unit for determining whether or not the supercooling degree SC1 is larger than the target supercooling degree SCO.
 ステップS3にて、過冷却度SC1が目標過冷却度SCOよりも大きくなっていないと判定された場合、すなわち、過冷却度SC1が目標過冷却度SCO以下となっている場合は、ステップS4へ進む。一方、ステップS3にて、過冷却度SC1が目標過冷却度SCOよりも大きくなっていると判定された場合は、ステップS5へ進む。 If it is determined in step S3 that the supercooling degree SC1 is not larger than the target supercooling degree SCO, that is, if the supercooling degree SC1 is equal to or less than the target supercooling degree SCO, the process proceeds to step S4. move on. On the other hand, if it is determined in step S3 that the supercooling degree SC1 is larger than the target supercooling degree SCO, the process proceeds to step S5.
 ステップS4では、吹出温度制御を実行して、メインルーチンへ戻る。吹出温度制御では、吹出空気温度TAVが目標吹出温度TAOに近づくように、暖房用膨張弁13の絞り開度を制御する。 In step S4, the blowout temperature control is executed and the process returns to the main routine. In the blowout temperature control, the throttle opening of the heating expansion valve 13 is controlled so that the blowout air temperature TAV approaches the target blowout temperature TAO.
 具体的には、吹出空気温度TAVが目標吹出温度TAOよりも低くなっている際には、室外熱交換器14へ流入する冷媒の温度が外気温Tamよりも高くなる範囲で、暖房用膨張弁13の絞り開度を縮小させる。また、吹出空気温度TAVが目標吹出温度TAOよりも高くなっている際には、暖房用膨張弁13の絞り開度を拡大させる。 Specifically, when the blowout air temperature TAV is lower than the target blowout temperature TAO, the heating expansion valve is in a range where the temperature of the refrigerant flowing into the outdoor heat exchanger 14 is higher than the outside air temperature Tam. The throttle opening of 13 is reduced. Further, when the blowing air temperature TAV is higher than the target blowing temperature TAO, the throttle opening degree of the heating expansion valve 13 is expanded.
 これにより、吹出温度制御では、室外熱交換器14における冷媒と外気との熱交換量を調整して、室内凝縮器12における冷媒から送風空気への放熱量、すなわち、室内凝縮器12における送風空気の加熱能力を調整することができる。 As a result, in the blowout temperature control, the amount of heat exchange between the refrigerant and the outside air in the outdoor heat exchanger 14 is adjusted, and the amount of heat radiated from the refrigerant in the indoor condenser 12 to the blown air, that is, the blown air in the indoor condenser 12. The heating capacity of the can be adjusted.
 ステップS5では、暖房用膨張弁13の絞り開度を予め定めた所定量拡大させて、メインルーチンへ戻る。室内凝縮器12から流出して暖房用膨張弁13へ流入する冷媒、すなわち室内凝縮器12の出口側冷媒の過冷却度SC1を低下させる。 In step S5, the throttle opening of the heating expansion valve 13 is expanded by a predetermined amount, and the process returns to the main routine. The degree of supercooling SC1 of the refrigerant flowing out of the indoor condenser 12 and flowing into the heating expansion valve 13, that is, the refrigerant on the outlet side of the indoor condenser 12 is lowered.
 また、除湿暖房モードでは、冷房用膨張弁16の絞り開度を冷房モードと同様に制御する。除湿暖房モードでは、暖房用膨張弁13が冷媒減圧作用を発揮する絞り状態となるため、冷房用膨張弁16の絞り開度は、冷房モードよりも大きくなる。 Further, in the dehumidifying / heating mode, the throttle opening of the cooling expansion valve 16 is controlled in the same manner as in the cooling mode. In the dehumidifying and heating mode, the heating expansion valve 13 is in a throttled state in which the refrigerant decompressing action is exerted, so that the throttle opening of the cooling expansion valve 16 is larger than that in the cooling mode.
 また、除湿暖房モードでは、エアミックスドア用の電動アクチュエータについては、室内凝縮器12側の通風路を全開とし、冷風バイパス通路35を全閉とするように決定される。エアミックスドア34の開度については、冷房モードと同様に、吹出空気温度TAVが目標吹出温度TAOに近づくように決定してもよい。 Further, in the dehumidifying / heating mode, for the electric actuator for the air mix door, it is determined that the ventilation passage on the indoor condenser 12 side is fully opened and the cold air bypass passage 35 is fully closed. The opening degree of the air mix door 34 may be determined so that the blown air temperature TAV approaches the target blown temperature TAO, as in the cooling mode.
 従って、冷凍サイクル装置10では、図5のモリエル線図に示すように、圧縮機11から吐出された吐出冷媒(図5のa5点)が、室内凝縮器12へ流入する。除湿暖房モードでは、エアミックスドア34が、室内凝縮器12側の通風路を開いているので、室内凝縮器12へ流入した冷媒は、室内蒸発器17を通過した送風空気に放熱して凝縮する(図5のa5点からb5点)。これにより、室内蒸発器17を通過した送風空気が加熱される。 Therefore, in the refrigeration cycle device 10, as shown in the Moriel diagram of FIG. 5, the discharged refrigerant (point a5 in FIG. 5) discharged from the compressor 11 flows into the indoor condenser 12. In the dehumidifying / heating mode, the air mix door 34 opens the ventilation path on the indoor condenser 12 side, so that the refrigerant flowing into the indoor condenser 12 dissipates heat to the blown air passing through the indoor evaporator 17 and condenses. (Points a5 to b5 in FIG. 5). As a result, the blown air that has passed through the indoor evaporator 17 is heated.
 室内凝縮器12から流出した冷媒は、暖房用膨張弁13へ流入して減圧される(図5のb5点からc5点)。この際、暖房用膨張弁13の絞り開度は、少なくとも室内凝縮器12から流出して暖房用膨張弁13へ流入する冷媒(図5のb5点)の過冷却度SC1が、目標過冷却度SCO以下となるように調整される。 The refrigerant flowing out of the indoor condenser 12 flows into the heating expansion valve 13 and is depressurized (points b5 to c5 in FIG. 5). At this time, the throttle opening of the heating expansion valve 13 is such that at least the supercooling degree SC1 of the refrigerant (point b5 in FIG. 5) flowing out of the indoor condenser 12 and flowing into the heating expansion valve 13 is the target supercooling degree. It is adjusted to be less than or equal to SCO.
 さらに、暖房用膨張弁13の絞り開度は、室内凝縮器12から流出して暖房用膨張弁13へ流入する冷媒の過冷却度SC1が目標過冷却度SCO以下となっている範囲では、吹出空気温度TAVが目標吹出温度TAOに近づくように調整される。暖房用膨張弁13にて減圧された冷媒は、室外熱交換器14へ流入する。室外熱交換器14へ流入した冷媒は、外気へ放熱して凝縮する(図5のc5点からd5点)。 Further, the throttle opening of the heating expansion valve 13 is blown out in a range where the supercooling degree SC1 of the refrigerant flowing out of the indoor condenser 12 and flowing into the heating expansion valve 13 is equal to or less than the target supercooling degree SCO. The air temperature TAV is adjusted to approach the target blowout temperature TAO. The refrigerant decompressed by the heating expansion valve 13 flows into the outdoor heat exchanger 14. The refrigerant flowing into the outdoor heat exchanger 14 dissipates heat to the outside air and condenses (points c5 to d5 in FIG. 5).
 室外熱交換器14から流出した冷媒は、レシーバ15へ流入して、気液分離される。レシーバ15から流出した液相冷媒(図5のd5点)は、冷房用膨張弁16へ流入して減圧される(図5のd5点からe5点)。この際、冷房用膨張弁16の絞り開度は、室内蒸発器17の出口側冷媒(図5のf5点)の過熱度SHが基準過熱度KSHに近づくように決定される。冷房用膨張弁16にて減圧された冷媒は、室内蒸発器17へ流入する。 The refrigerant flowing out of the outdoor heat exchanger 14 flows into the receiver 15 and is separated into gas and liquid. The liquid phase refrigerant (point d5 in FIG. 5) flowing out from the receiver 15 flows into the expansion valve 16 for cooling and is depressurized (points d5 to e5 in FIG. 5). At this time, the throttle opening of the cooling expansion valve 16 is determined so that the superheat degree SH of the outlet-side refrigerant (point f5 in FIG. 5) of the indoor evaporator 17 approaches the reference superheat degree KSH. The refrigerant decompressed by the cooling expansion valve 16 flows into the indoor evaporator 17.
 室内蒸発器17へ流入した冷媒は、送風空気から吸熱して蒸発する(図5のe5点からf5点)。これにより、送風空気が冷却されて除湿される。室内蒸発器17から流出した冷媒は、圧縮機11へ吸入されて再び圧縮される(図5のf5点からa5点)。 The refrigerant flowing into the indoor evaporator 17 absorbs heat from the blown air and evaporates (points e5 to f5 in FIG. 5). As a result, the blown air is cooled and dehumidified. The refrigerant flowing out of the indoor evaporator 17 is sucked into the compressor 11 and compressed again (points f5 to a5 in FIG. 5).
 除湿暖房モードの室内空調ユニット30では、室内蒸発器17にて冷却されて除湿された送風空気が室内凝縮器12にて再加熱されて、車室内へ吹き出される。これにより、車室内の除湿暖房が実現される。 In the indoor air conditioning unit 30 in the dehumidifying / heating mode, the blown air cooled by the indoor evaporator 17 and dehumidified is reheated by the indoor condenser 12 and blown out into the vehicle interior. As a result, dehumidifying and heating of the vehicle interior is realized.
 以上の如く、本実施形態の車両用空調装置1によれば、車室内の冷房および除湿暖房を実現することができる。 As described above, according to the vehicle air conditioner 1 of the present embodiment, it is possible to realize cooling and dehumidifying heating in the vehicle interior.
 ここで、冷凍サイクル装置10では、除湿暖房モード時に、室内凝縮器12における送風空気の加熱能力を調整するために、暖房用膨張弁13の絞り開度を変化させる吹出温度制御を実行する。吹出温度制御では、室内凝縮器12における送風空気の加熱能力を向上させる際に、暖房用膨張弁13の絞り開度を縮小させる。このため、室内凝縮器12における加熱能力を向上させるに伴って、過冷却度SC1も増加しやすくなる。 Here, in the refrigerating cycle device 10, in the dehumidifying and heating mode, in order to adjust the heating capacity of the blown air in the indoor condenser 12, the outlet temperature control for changing the throttle opening of the heating expansion valve 13 is executed. In the blowout temperature control, the throttle opening of the heating expansion valve 13 is reduced when the heating capacity of the blown air in the indoor condenser 12 is improved. Therefore, as the heating capacity of the indoor condenser 12 is improved, the supercooling degree SC1 is likely to increase.
 ところが、過冷却度SC1が不必要に増加してしまうと、室内凝縮器12にて加熱された送風空気に温度分布が生じてしまい、車室内の快適な除湿暖房を実現できなくなってしまうことがある。さらに、過冷却度SC1が目標過冷却度SCOを大きく上回ってしまうと、COPも低下してしまう。 However, if the supercooling degree SC1 is unnecessarily increased, a temperature distribution will occur in the blown air heated by the indoor condenser 12, and it may not be possible to realize comfortable dehumidifying and heating in the vehicle interior. be. Further, if the supercooling degree SC1 greatly exceeds the target supercooling degree SCO, the COP also decreases.
 これに対して、本実施形態の冷凍サイクル装置10では、除湿暖房モード時に、ステップS2にて推定した過冷却度SC1が、ステップS1にて決定した目標過冷却度SCO以下となるように、暖房用膨張弁13の絞り開度を制御する。従って、室内凝縮器12から流出して暖房用膨張弁13へ流入する冷媒の過冷却度SC1が不必要に大きくなってしまうことを抑制することができる。 On the other hand, in the refrigerating cycle apparatus 10 of the present embodiment, in the dehumidifying and heating mode, the supercooling degree SC1 estimated in step S2 is heated so as to be equal to or less than the target supercooling degree SCO determined in step S1. The throttle opening of the expansion valve 13 is controlled. Therefore, it is possible to prevent the degree of supercooling SC1 of the refrigerant flowing out of the indoor condenser 12 and flowing into the heating expansion valve 13 from becoming unnecessarily large.
 すなわち、本実施形態の冷凍サイクル装置10によれば、加熱部である室内凝縮器12の出口側冷媒の過冷却度SC1を適切に調整することができる。その結果、車室内の快適な除湿暖房を実現することができるとともに、COPの低下を抑制することができる。 That is, according to the refrigerating cycle device 10 of the present embodiment, the supercooling degree SC1 of the refrigerant on the outlet side of the indoor condenser 12 which is a heating unit can be appropriately adjusted. As a result, comfortable dehumidifying and heating of the vehicle interior can be realized, and a decrease in COP can be suppressed.
 また、本実施形態の過冷却度推定部では、圧縮機11の冷媒吐出流量Gr、暖房用膨張弁13の絞り通路面積A、入口側圧力P1、および外気温Tamを用いて、過冷却度SC1を推定している。従って、数式F2を用いて説明したように、過冷却度SC1を精度良く推定することができる。 Further, in the supercooling degree estimation unit of the present embodiment, the refrigerant discharge flow rate Gr of the compressor 11, the throttle passage area A of the heating expansion valve 13, the inlet side pressure P1, and the outside temperature Tam are used to use the supercooling degree SC1. Is estimated. Therefore, as described using the mathematical formula F2, the supercooling degree SC1 can be estimated accurately.
 さらに、過冷却度SC1を推定するために用いられるパラメータは、吹出温度制御および圧縮機保護制御のために必須の検出部によって検知することができる。従って、本実施形態の過冷却度推定部では、過冷却度SC1を推定するために新たな検出部を追加する必要がない。 Furthermore, the parameters used to estimate the supercooling degree SC1 can be detected by the detector essential for blowout temperature control and compressor protection control. Therefore, in the supercooling degree estimation unit of the present embodiment, it is not necessary to add a new detection unit in order to estimate the supercooling degree SC1.
 また、本実施形態の過冷却度推定部では、過冷却度SC1を推定しているので、実際に暖房用膨張弁13へ流入する冷媒が乾き度を有する気液二相状態になっていても、除湿暖房モードでの運転を継続することができる。 Further, since the supercooling degree estimation unit of the present embodiment estimates the supercooling degree SC1, even if the refrigerant actually flowing into the heating expansion valve 13 is in a gas-liquid two-phase state having a dryness. , The operation in the dehumidifying and heating mode can be continued.
 (第2実施形態)
 本実施形態では、第1実施形態に対して、除湿暖房モードにおける暖房用膨張弁13の制御態様を、図6のフローチャートに示すように変更した例を説明する。
(Second Embodiment)
In this embodiment, an example in which the control mode of the heating expansion valve 13 in the dehumidifying and heating mode is changed as shown in the flowchart of FIG. 6 will be described with respect to the first embodiment.
 具体的には、図6のステップS11では、第1実施形態と同様に目標過冷却度SCOを決定する。従って、ステップS11は、目標過冷却度決定部である。 Specifically, in step S11 of FIG. 6, the target supercooling degree SCO is determined as in the first embodiment. Therefore, step S11 is a target supercooling degree determination unit.
 次に、ステップS12では、暖房用膨張弁13の下限絞り通路面積Aminを算定する。下限絞り通路面積Aminは、暖房用膨張弁13へ流入する冷媒の過冷却度SC1が目標過冷却度SCOとなる暖房用膨張弁13の絞り通路面積である。従って、ステップS12は、下限面積算定部である。 Next, in step S12, the lower limit throttle passage area Amin of the heating expansion valve 13 is calculated. The lower limit throttle passage area Amin is the throttle passage area of the heating expansion valve 13 in which the supercooling degree SC1 of the refrigerant flowing into the heating expansion valve 13 is the target supercooling degree SCO. Therefore, step S12 is a lower limit area calculation unit.
 具体的には、ステップS12では、下限絞り通路面積Aminの算定には、目標過冷却度SCO、圧縮機11の冷媒吐出流量Gr、吐出圧力Pd、および外気温Tamを用いて、最小絞り通路面積Aminを算定する。圧縮機11の冷媒吐出流量Grは、第1実施形態と同様に求めることができる。吐出圧力Pdは、第1実施形態と同様に、入口側圧力P1を決定するために用いられる。外気温Tamは、第1実施形態と同様に、出口側圧力P2を決定するために用いられる。 Specifically, in step S12, the target supercooling degree SCO, the refrigerant discharge flow rate Gr of the compressor 11, the discharge pressure Pd, and the outside temperature Tam are used to calculate the lower limit throttle passage area Amin, and the minimum throttle passage area is calculated. Calculate Amin. The refrigerant discharge flow rate Gr of the compressor 11 can be obtained in the same manner as in the first embodiment. The discharge pressure Pd is used to determine the inlet side pressure P1 as in the first embodiment. The outside air temperature Tam is used to determine the outlet side pressure P2 as in the first embodiment.
 そして、ステップS12では、以下数式F3により、下限絞り通路面積Aminを算定する。
Amin=Gr/ρmax×(ρmax/(2×(P1-P2)))1/2…(F3)
 なお、ρmaxは、目標過冷却度SCOにおける暖房用膨張弁13へ流入する冷媒の入口側密度である。ρmaxは、第1実施形態で説明した図4を用いて決定することができる。
Then, in step S12, the lower limit throttle passage area Amin is calculated by the following mathematical formula F3.
Amin = Gr / ρmax × ( ρmax / (2 × (P1-P2))) 1/2… (F3)
Note that ρmax is the inlet-side density of the refrigerant flowing into the heating expansion valve 13 at the target supercooling degree SCO. ρmax can be determined using FIG. 4 described in the first embodiment.
 なお、数式F3は、第1実施形態で説明した数式F2を変形した数である。つまり、下限面積算定部では、第1実施形態の過冷却度推定部と同等の式を用いて、下限絞り通路面積Aminを算定している。 The mathematical formula F3 is a modified number of the mathematical formula F2 described in the first embodiment. That is, the lower limit area calculation unit calculates the lower limit throttle passage area Amin using the same formula as the supercooling degree estimation unit of the first embodiment.
 次に、ステップS13では、実際の暖房用膨張弁13の絞り通路面積Aが、ステップS12で決定された下限絞り通路面積Aminよりも小さくなっている否かを判定する。従って、ステップS13は、絞り通路面積Aが、下限絞り通路面積Aminよりも小さくなっている否かを判定する絞り通路面積判定部である。 Next, in step S13, it is determined whether or not the throttle passage area A of the actual heating expansion valve 13 is smaller than the lower limit throttle passage area Amin determined in step S12. Therefore, step S13 is a throttle passage area determination unit for determining whether or not the throttle passage area A is smaller than the lower limit throttle passage area Amin.
 ステップS13にて、絞り通路面積Aが下限絞り通路面積Aminよりも小さくなっていないと判定された場合、すなわち、絞り通路面積Aが下限絞り通路面積Amin以上になっている場合は、ステップS14へ進む。一方、ステップS13にて、絞り通路面積Aが下限絞り通路面積Aminよりも小さくなっていると判定された場合は、ステップS15へ進む。 If it is determined in step S13 that the throttle passage area A is not smaller than the lower limit throttle passage area Amin, that is, if the throttle passage area A is equal to or larger than the lower limit throttle passage area Amin, the process proceeds to step S14. move on. On the other hand, if it is determined in step S13 that the throttle passage area A is smaller than the lower limit throttle passage area Amin, the process proceeds to step S15.
 ステップS14では、第1実施形態のステップS4と同様に、吹出温度制御を実行してメインルーチンへ戻る。また、ステップS15では、第1実施形態のステップS5と同様に、暖房用膨張弁13の絞り開度を予め定めた所定量拡大させて、メインルーチンへ戻る。 In step S14, the blowout temperature control is executed and the process returns to the main routine, as in step S4 of the first embodiment. Further, in step S15, as in step S5 of the first embodiment, the throttle opening degree of the heating expansion valve 13 is expanded by a predetermined amount, and the process returns to the main routine.
 その他の冷凍サイクル装置10および車両用空調装置1の構成および作動は、第1実施形態と同様である。従って、本実施形態の車両用空調装置1においても、第1実施形態と同様に、車室内の冷房および除湿暖房を実現することができる。 The configuration and operation of the other refrigeration cycle device 10 and the vehicle air conditioner 1 are the same as those in the first embodiment. Therefore, also in the vehicle air conditioner 1 of the present embodiment, cooling and dehumidifying heating of the vehicle interior can be realized as in the first embodiment.
 さらに、本実施形態の冷凍サイクル装置10では、除湿暖房モード時に、絞り通路面積Aが下限絞り通路面積Amin以上となるように、暖房用膨張弁13の絞り開度を制御している。これによれば、過冷却度SC1を目標過冷却度SCO以下とすることができる。従って、第1実施形態と同様の効果を得ることができる。 Further, in the refrigerating cycle device 10 of the present embodiment, the throttle opening of the heating expansion valve 13 is controlled so that the throttle passage area A is equal to or larger than the lower limit throttle passage area Amin in the dehumidifying / heating mode. According to this, the supercooling degree SC1 can be set to the target supercooling degree SCO or less. Therefore, the same effect as that of the first embodiment can be obtained.
 すなわち、本実施形態の冷凍サイクル装置10においても、加熱部である室内凝縮器12の出口側冷媒の過冷却度SC1を適切に調整することができる。 That is, even in the refrigerating cycle device 10 of the present embodiment, the supercooling degree SC1 of the refrigerant on the outlet side of the indoor condenser 12 which is a heating unit can be appropriately adjusted.
 (第3実施形態)
 本実施形態の車両用空調装置1では、第1実施形態に対して、図7の全体構成図に示すように、室内空調ユニット30内の室内凝縮器12の送風空気流れ下流側に電気ヒータ37が配置されている。
(Third Embodiment)
In the vehicle air conditioner 1 of the present embodiment, as shown in the overall configuration diagram of FIG. 7, the electric heater 37 is located downstream of the blown air flow of the indoor condenser 12 in the indoor air conditioner unit 30 with respect to the first embodiment. Is placed.
 電気ヒータ37は、除湿暖房モード時に、冷凍サイクル装置10の加熱能力のみでは、送風空気の吹出空気温度TAVを目標吹出温度TAOとなるまで上昇させることができない場合に、送風空気を補助的に加熱する補助加熱部である。電気ヒータ37としては、電力を供給されることによって発熱するPTCヒータ等を採用することができる。電気ヒータ37の発熱量は、制御装置40から出力される制御電圧によって制御される。 The electric heater 37 supplementarily heats the blown air when the heating capacity of the refrigerating cycle device 10 alone cannot raise the blown air temperature TAV to the target blown temperature TAO in the dehumidifying and heating mode. It is an auxiliary heating part. As the electric heater 37, a PTC heater or the like that generates heat by being supplied with electric power can be adopted. The calorific value of the electric heater 37 is controlled by the control voltage output from the control device 40.
 さらに、本実施形態の制御装置40の入力側には、空調制御に用いられるセンサとして、吸込温度センサ41iが接続されている。吸込温度センサ41iは、内外気切替装置33を介して、室内蒸発器17へ流入する吸込空気の吸込空気温度Teinを検出する吸込温度検出部である。 Further, a suction temperature sensor 41i is connected to the input side of the control device 40 of the present embodiment as a sensor used for air conditioning control. The suction temperature sensor 41i is a suction temperature detection unit that detects the suction air temperature Tein of the suction air flowing into the indoor evaporator 17 via the inside / outside air switching device 33.
 また、本実施形態の過冷却度推定部では、圧縮機11の冷媒吐出流量Gr、吐出温度Td、吐出圧力Pd、室内送風機32の送風量Airf(質量流量)、吸込空気温度Tein、および電気ヒータ37の加熱量Qhを用いて、過冷却度SC1を推定する。 Further, in the supercooling degree estimation unit of the present embodiment, the refrigerant discharge flow rate Gr of the compressor 11, the discharge temperature Td, the discharge pressure Pd, the air flow rate Airf (mass flow rate) of the indoor blower 32, the suction air temperature Ten, and the electric heater The supercooling degree SC1 is estimated using the heating amount Qh of 37.
 圧縮機11の冷媒吐出流量Grは、第1実施形態と同様に算定することができる。また、室内送風機32の送風量Airfは、室内送風機32の仕様および制御装置40から室内送風機32へ出力される制御電圧から決定することができる。電気ヒータ37の加熱量Qhは、電気ヒータ37の仕様および制御装置40から電気ヒータ37へ供給される電力量に基づいて決定することができる。 The refrigerant discharge flow rate Gr of the compressor 11 can be calculated in the same manner as in the first embodiment. Further, the air volume Airf of the indoor blower 32 can be determined from the specifications of the indoor blower 32 and the control voltage output from the control device 40 to the indoor blower 32. The heating amount Qh of the electric heater 37 can be determined based on the specifications of the electric heater 37 and the amount of electric power supplied from the control device 40 to the electric heater 37.
 そして、本実施形態の過冷却度推定部では、以下数式F4~F6に基づいて、室内凝縮器12の出口側冷媒の出口側エンタルピHcoutを算定する。
Qc=Qex+Qh…(F4)
Qc=ρain×Airfc×Cair×(TAV-Tein)…(F5)
Qex=Gr×(Hcin-Hcout)…(F6)
 ここで、Qcは、送風空気の総加熱量(すなわち、送風空気の総吸熱量)である。Qexは、室内凝縮器12にて凝縮する冷媒の送風空気への放熱量である。
Then, the supercooling degree estimation unit of the present embodiment calculates the outlet-side enthalpy Hcout of the outlet-side refrigerant of the indoor condenser 12 based on the following mathematical formulas F4 to F6.
Qc = Qex + Qh ... (F4)
Qc = ρain × Airfc × Air × (TAV-Tein)… (F5)
Qex = Gr × (Hcin-Hcout) ... (F6)
Here, Qc is the total heating amount of the blast air (that is, the total heat absorption amount of the blast air). Qex is the amount of heat dissipated to the blown air of the refrigerant condensed by the indoor condenser 12.
 また、ρairは、吸込空気の密度である。本実施形態では、吸込空気の密度として、予め定めた基準状態(例えば、25℃、101.3kPa)における空気の密度を採用している。また、Cairは、基準状態における空気の比熱である。 Also, ρair is the density of the suction air. In this embodiment, the density of air in a predetermined reference state (for example, 25 ° C., 101.3 kPa) is adopted as the density of the suction air. Further, Air is the specific heat of air in the reference state.
 また、Airfcは、室内凝縮器12を通過する送風空気の室内凝縮器側風量である。本実施形態の除湿暖房モードでは、エアミックスドア34が冷風バイパス通路35を全閉とするので、室内凝縮器側風量Airfcは、送風量Airfと同じとなる。エアミックスドア34が、冷風バイパス通路35を開いている際には、室内凝縮器12側の通風路の開度と冷風バイパス通路35の開度との開度比に応じて、室内凝縮器側風量Airfcを決定すればよい。 Further, Airfc is the amount of air blown air passing through the indoor condenser 12 on the indoor condenser side. In the dehumidifying / heating mode of the present embodiment, the air mix door 34 completely closes the cold air bypass passage 35, so that the air volume Airfc on the indoor condenser side is the same as the air volume Airf. When the air mix door 34 opens the cold air bypass passage 35, the indoor condenser side is according to the opening ratio between the opening degree of the ventilation passage on the indoor condenser 12 side and the opening degree of the cold air bypass passage 35. The air volume Airfc may be determined.
 また、Hcinは、室内凝縮器12の入口側冷媒の入口側エンタルピである。入口側エンタルピHcinは、吐出温度Tdおよび吐出圧力Pdから、冷媒の物性に基づいて決定することができる。 Hcin is the inlet-side enthalpy of the inlet-side refrigerant of the indoor condenser 12. The inlet-side enthalpy Hcin can be determined from the discharge temperature Td and the discharge pressure Pd based on the physical characteristics of the refrigerant.
 従って、本実施形態の過冷却度推定部では、数式F4~F6を用いて、出口側エンタルピHcoutを算定することができる。そして、出口側エンタルピHcoutおよび吐出圧力Pdに基づいて、室内凝縮器12から流出して暖房用膨張弁13へ流入する冷媒の過冷却度SC1を推定することができる。もちろん、室内凝縮器12から流出して暖房用膨張弁13へ流入する冷媒が気液二相状態であれば、乾き度を推定することもできる。 Therefore, in the supercooling degree estimation unit of the present embodiment, the exit-side enthalpy Hcout can be calculated using the formulas F4 to F6. Then, based on the outlet-side enthalpy Hcout and the discharge pressure Pd, the degree of supercooling SC1 of the refrigerant flowing out of the indoor condenser 12 and flowing into the heating expansion valve 13 can be estimated. Of course, if the refrigerant flowing out of the indoor condenser 12 and flowing into the heating expansion valve 13 is in a gas-liquid two-phase state, the dryness can be estimated.
 その他の冷凍サイクル装置10および車両用空調装置1の構成および作動は、第1実施形態と同様である。従って、本実施形態の車両用空調装置1においても、第1実施形態と同様に、車室内の冷房および除湿暖房を実現することができる。さらに、本実施形態の冷凍サイクル装置10においても、第1実施形態と同様の効果を得ることができる。 The configuration and operation of the other refrigeration cycle device 10 and the vehicle air conditioner 1 are the same as those in the first embodiment. Therefore, also in the vehicle air conditioner 1 of the present embodiment, cooling and dehumidifying heating of the vehicle interior can be realized as in the first embodiment. Further, the refrigerating cycle apparatus 10 of the present embodiment can also obtain the same effect as that of the first embodiment.
 すなわち、本実施形態の冷凍サイクル装置10においても、加熱部である室内凝縮器12の出口側冷媒の過冷却度SC1を適切に調整することができる。 That is, even in the refrigerating cycle device 10 of the present embodiment, the supercooling degree SC1 of the refrigerant on the outlet side of the indoor condenser 12 which is a heating unit can be appropriately adjusted.
 また、本実施形態の車両用空調装置1では、補助加熱部としての送風空気を加熱する電気ヒータ37を備えている。これによれば、過冷却度SC1を目標過冷却度SCO以下に調整するために、暖房用膨張弁13の絞り開度を縮小させることができない場合に、電気ヒータ37によって送風空気を加熱することができる。その結果、吹出空気温度TAVを目標吹出温度TAOとなるまで上昇させて快適な除湿暖房を実現することができる。 Further, the vehicle air conditioner 1 of the present embodiment includes an electric heater 37 for heating the blown air as an auxiliary heating unit. According to this, in order to adjust the supercooling degree SC1 to the target supercooling degree SCO or less, when the throttle opening of the heating expansion valve 13 cannot be reduced, the blown air is heated by the electric heater 37. Can be done. As a result, comfortable dehumidifying and heating can be realized by raising the blown air temperature TAV until the blown air temperature TAO is reached.
 また、本実施形態の過冷却度推定部では、圧縮機11の冷媒吐出流量Gr、吐出温度Td、吐出圧力Pd、室内送風機32の送風量Airf、吸込空気温度Tein、および電気ヒータ37の加熱量Qhを用いて、過冷却度SC1を推定する。従って、数式F4~F6を用いて説明したように、吸込温度センサ41iを追加するだけで、過冷却度SC1を精度良く推定することができる。 Further, in the supercooling degree estimation unit of the present embodiment, the refrigerant discharge flow rate Gr of the compressor 11, the discharge temperature Td, the discharge pressure Pd, the air flow rate Airf of the indoor blower 32, the suction air temperature Ten, and the heating amount of the electric heater 37. The degree of supercooling SC1 is estimated using Qh. Therefore, as described using the formulas F4 to F6, the supercooling degree SC1 can be estimated accurately only by adding the suction temperature sensor 41i.
 また、本実施形態の過冷却度推定部は、電気ヒータ37を備えていない冷凍サイクル装置10に適用しても有効である。その場合は、電気ヒータ37の加熱量Qhを0とすればよい。 Further, the supercooling degree estimation unit of the present embodiment is also effective when applied to the refrigeration cycle device 10 not provided with the electric heater 37. In that case, the heating amount Qh of the electric heater 37 may be set to 0.
 (第4実施形態)
 本実施形態では、第1実施形態で説明した冷凍サイクル装置10に対して、加熱部の構成を変更した図8に示す冷凍サイクル装置10aについて説明する。冷凍サイクル装置10aは、第1実施形態と同様の車両用空調装置1に適用されている。冷凍サイクル装置10aの加熱部は、水冷媒熱交換器121および熱媒体回路50に配置されたヒータコア53等を有している。
(Fourth Embodiment)
In this embodiment, the refrigerating cycle apparatus 10a shown in FIG. 8 in which the configuration of the heating unit is changed with respect to the refrigerating cycle apparatus 10 described in the first embodiment will be described. The refrigeration cycle device 10a is applied to the vehicle air conditioner 1 similar to the first embodiment. The heating unit of the refrigeration cycle device 10a has a water-refrigerant heat exchanger 121, a heater core 53 arranged in the heat medium circuit 50, and the like.
 熱媒体回路50は、熱媒体を循環させる熱媒体循環回路である。熱媒体回路50では、熱媒体として、エチレングリコール水溶液が採用されている。熱媒体回路50には、水冷媒熱交換器121の水通路、熱媒体ポンプ51、電気ヒータ52、ヒータコア53等が配置されている。 The heat medium circuit 50 is a heat medium circulation circuit that circulates a heat medium. In the heat medium circuit 50, an ethylene glycol aqueous solution is used as the heat medium. In the heat medium circuit 50, a water passage of the water refrigerant heat exchanger 121, a heat medium pump 51, an electric heater 52, a heater core 53, and the like are arranged.
 水冷媒熱交換器121は、圧縮機11から吐出された高圧冷媒と、熱媒体とを熱交換させて、高圧冷媒の有する熱を送風空気へ放熱させる放熱部である。本実施形態では、水冷媒熱交換器121として、いわゆる対向流型の熱交換器を採用している。対向流型の熱交換器では、冷媒通路を流通する冷媒の流れ方向と熱媒体通路を流通する熱媒体の流れ方向が逆方向となる。 The water refrigerant heat exchanger 121 is a heat dissipation unit that exchanges heat between the high pressure refrigerant discharged from the compressor 11 and the heat medium to dissipate the heat of the high pressure refrigerant to the blown air. In this embodiment, a so-called countercurrent type heat exchanger is adopted as the water refrigerant heat exchanger 121. In the countercurrent type heat exchanger, the flow direction of the refrigerant flowing through the refrigerant passage and the flow direction of the heat medium flowing through the heat medium passage are opposite to each other.
 熱媒体ポンプ51は、ヒータコア53から流出した熱媒体を水冷媒熱交換器121へ圧送する熱媒体圧送部である。熱媒体ポンプ51は、羽根車(すなわち、インペラ)を電動モータにて回転駆動する電動水ポンプである。熱媒体ポンプ51は、制御装置40から出力される制御電圧によって、回転数(すなわち、圧送能力)が制御される。 The heat medium pump 51 is a heat medium pumping unit that pumps the heat medium flowing out of the heater core 53 to the water refrigerant heat exchanger 121. The heat medium pump 51 is an electric water pump that rotationally drives an impeller (that is, an impeller) with an electric motor. The rotation speed (that is, the pumping capacity) of the heat medium pump 51 is controlled by the control voltage output from the control device 40.
 電気ヒータ52は、水冷媒熱交換器121から流出した熱媒体を加熱する。電気ヒータ52は、除湿暖房モード時に、冷凍サイクル装置10の加熱能力のみでは、送風空気の吹出空気温度TAVを目標吹出温度TAOとなるまで上昇させることができない場合に、熱媒体を介して送風空気を補助的に加熱する補助加熱部である。電気ヒータ52は、送風空気用の電気ヒータ37と同様の構成のPTCヒータ等を採用することができる。 The electric heater 52 heats the heat medium flowing out of the water refrigerant heat exchanger 121. When the electric heater 52 cannot raise the blown air temperature TAV of the blown air to the target blown temperature TAO only by the heating capacity of the refrigerating cycle device 10 in the dehumidifying and heating mode, the blown air through the heat medium It is an auxiliary heating part that auxiliaryly heats. As the electric heater 52, a PTC heater or the like having the same configuration as the electric heater 37 for blown air can be adopted.
 ヒータコア53は、水冷媒熱交換器121から流出した熱媒体と送風空気とを熱交換させて、送風空気を加熱する加熱用の熱交換部である。ヒータコア53は、室内空調ユニット30内に室内凝縮器12と同様に配置されている。 The heater core 53 is a heat exchange unit for heating that heats the blown air by exchanging heat between the heat medium flowing out from the water refrigerant heat exchanger 121 and the blown air. The heater core 53 is arranged in the indoor air conditioning unit 30 in the same manner as the indoor condenser 12.
 さらに、本実施形態の制御装置40の入力側には、空調制御用のセンサとして、熱媒体温度センサ41jが接続されている。熱媒体温度センサ41jは、ヒータコア53へ流入する熱媒体のヒータコア入口側熱媒体温度Twinを検出する入口側熱媒体温度検出部である。 Further, a heat medium temperature sensor 41j is connected to the input side of the control device 40 of the present embodiment as a sensor for air conditioning control. The heat medium temperature sensor 41j is an inlet side heat medium temperature detection unit that detects the heater core inlet side heat medium temperature Twin of the heat medium flowing into the heater core 53.
 また、本実施形態の過冷却度推定部では、圧縮機11の冷媒吐出流量Gr、吐出温度Td、吐出圧力Pd、熱媒体ポンプ51から圧送される熱媒体流量LQf(質量流量)、ヒータコア入口側熱媒体温度Twin、室内送風機32の送風量Airf、吸入温度Ts、および電気ヒータ52の加熱量Qh2を用いて、過冷却度SC1を推定する。 Further, in the supercooling degree estimation unit of the present embodiment, the refrigerant discharge flow rate Gr of the compressor 11, the discharge temperature Td, the discharge pressure Pd, the heat medium flow rate LQf (mass flow rate) pressure-fed from the heat medium pump 51, and the heater core inlet side. The degree of supercooling SC1 is estimated using the heat medium temperature Twin, the air flow rate Airf of the indoor blower 32, the suction temperature Ts, and the heating amount Qh2 of the electric heater 52.
 本実施形態の過冷却度SC1は、加熱部を形成する水冷媒熱交換器121から流出して暖房用膨張弁13へ流入する冷媒の過冷却度となる。 The supercooling degree SC1 of the present embodiment is the supercooling degree of the refrigerant flowing out from the water refrigerant heat exchanger 121 forming the heating portion and flowing into the heating expansion valve 13.
 圧縮機11の冷媒吐出流量Gr、第1実施形態と同様に算定することができる。また、吐出温度Tdおよび吐出圧力Pdは、第3実施形態と同様に、水冷媒熱交換器121の入口側冷媒の入口側エンタルピHwcinを決定するために用いられる。熱媒体ポンプ51の熱媒体流量LQfは、熱媒体ポンプ51の仕様および制御装置40から熱媒体ポンプ51へ出力される制御電圧から決定することができる。 The refrigerant discharge flow rate Gr of the compressor 11 can be calculated in the same manner as in the first embodiment. Further, the discharge temperature Td and the discharge pressure Pd are used to determine the inlet-side enthalpy Hwcin of the inlet-side refrigerant of the water-refrigerant heat exchanger 121, as in the third embodiment. The heat medium flow rate LQf of the heat medium pump 51 can be determined from the specifications of the heat medium pump 51 and the control voltage output from the control device 40 to the heat medium pump 51.
 室内送風機32の送風量Airfは、第3実施形態と同様に決定することができる。吸入温度Tsは、室内蒸発器17にて冷却されてヒータコア53へ流入する冷却空気温度Tae決定するために用いられる。具体的には、冷却空気温度Taeは、吸入温度Tsに室内蒸発器17の出口側冷媒の過熱度(本実施形態では、3℃)を減算した値とすればよい。 The air volume Airf of the indoor blower 32 can be determined in the same manner as in the third embodiment. The suction temperature Ts is used to determine the cooling air temperature Tae that is cooled by the indoor evaporator 17 and flows into the heater core 53. Specifically, the cooling air temperature Tae may be a value obtained by subtracting the degree of superheat (3 ° C. in this embodiment) of the refrigerant on the outlet side of the indoor evaporator 17 from the suction temperature Ts.
 電気ヒータ52の加熱量Qh2は、電気ヒータ52の仕様および制御装置40から電気ヒータ52へ出力される電力量に基づいて決定することができる。 The heating amount Qh2 of the electric heater 52 can be determined based on the specifications of the electric heater 52 and the amount of electric power output from the control device 40 to the electric heater 52.
 そして、本実施形態の過冷却度推定部では、以下数式F7~F9に基づいて、水冷媒熱交換器121の出口側冷媒の出口側エンタルピHwcoutを推定する。
Qwr=Qwex+Qh2…(F7)
Qwr=f(LQf,Twin,Airfh,Tae)…(F8)
Qwex=Gr×(Hwcin-Hwcout)…(F9)
 ここで、Qwrは、ヒータコア53にて熱媒体が送風空気へ放熱する放熱量である。Qwexは、水冷媒熱交換器121にて凝縮する冷媒の熱媒体への放熱量である。
Then, the supercooling degree estimation unit of the present embodiment estimates the outlet-side enthalpy Hwcout of the outlet-side refrigerant of the water-refrigerant heat exchanger 121 based on the following mathematical formulas F7 to F9.
Qwr = Qwex + Qh2 ... (F7)
Qwr = f (LQf, Twin, Airfh, Tae) ... (F8)
Qwex = Gr × (Hwcin-Hwcout) ... (F9)
Here, Qwr is the amount of heat radiated from the heat medium to the blown air by the heater core 53. Qwex is the amount of heat released from the refrigerant condensed in the water refrigerant heat exchanger 121 to the heat medium.
 また、Airfhは、ヒータコア53を通過する送風空気のヒータコア側風量である。本実施形態の除湿暖房モードでは、エアミックスドア34が冷風バイパス通路35を全閉とするので、ヒータコア側風量Airfhは、送風量Airfと同じとなる。エアミックスドア34が、冷風バイパス通路35を開いている際には、ヒータコア53側の通風路の開度と冷風バイパス通路35の開度との開度比に応じて、ヒータコア側風量Airfhを決定すればよい。 Further, Airfh is the air volume on the heater core side of the blown air passing through the heater core 53. In the dehumidifying and heating mode of the present embodiment, the air mix door 34 completely closes the cold air bypass passage 35, so that the air volume Airfh on the heater core side is the same as the air volume Airf. When the air mix door 34 opens the cold air bypass passage 35, the air volume Airfh on the heater core side is determined according to the opening ratio between the opening degree of the ventilation passage on the heater core 53 side and the opening degree of the cold air bypass passage 35. do it.
 また、数式F8では、Qwrが、熱媒体流量LQf、ヒータコア入口側熱媒体温度Twin、ヒータコア側風量Airfh、および冷却空気温度Taeに基づいて決定されることを示している。つまり、ヒータコア53における冷媒と熱媒体の熱交換量は、ヒータコア53へ流入する冷媒の温度および風量、ヒータコア53へ流入する熱媒体の温度および風量、並びに、ヒータコア53の熱交換性能に基づいて決定することができる。 Further, in the formula F8, it is shown that Qwr is determined based on the heat medium flow rate LQf, the heater core inlet side heat medium temperature Twin, the heater core side air volume Airfh, and the cooling air temperature Tae. That is, the amount of heat exchange between the refrigerant and the heat medium in the heater core 53 is determined based on the temperature and air volume of the refrigerant flowing into the heater core 53, the temperature and air volume of the heat medium flowing into the heater core 53, and the heat exchange performance of the heater core 53. can do.
 そこで、本実施形態では、熱媒体流量LQf、ヒータコア入口側熱媒体温度Twin、ヒータコア側風量Airfh、冷却空気温度Taeに基づいて、予め記憶されている制御マップを参照して、水冷媒熱交換器121にて凝縮する冷媒の熱媒体への放熱量を決定している。ヒータコア53の熱交換性能は、ヒータコア53の仕様および試験データ等から把握しておくことができる。 Therefore, in the present embodiment, the water refrigerant heat exchanger is referred to in advance based on the heat medium flow rate LQf, the heater core inlet side heat medium temperature Twin, the heater core side air volume Airfh, and the cooling air temperature Tae. The amount of heat released from the refrigerant condensed at 121 to the heat medium is determined. The heat exchange performance of the heater core 53 can be grasped from the specifications of the heater core 53, test data, and the like.
 従って、本実施形態では、数式F7~F9を用いて、出口側エンタルピHwcoutを算定することができる。そして、出口側エンタルピHwcoutおよび吐出圧力Pdに基づいて、ヒータコア53から流出して暖房用膨張弁13へ流入する冷媒の過冷却度SC1を推定することができる。もちろん、ヒータコア53から流出して暖房用膨張弁13へ流入する冷媒が気液二相状態であれば、乾き度を推定することもできる。 Therefore, in the present embodiment, the exit-side enthalpy Hwcout can be calculated using the formulas F7 to F9. Then, based on the outlet-side enthalpy Hwcout and the discharge pressure Pd, the degree of supercooling SC1 of the refrigerant flowing out of the heater core 53 and flowing into the heating expansion valve 13 can be estimated. Of course, if the refrigerant flowing out of the heater core 53 and flowing into the heating expansion valve 13 is in a gas-liquid two-phase state, the dryness can be estimated.
 その他の冷凍サイクル装置10aの構成および作動は、第1実施形態の冷凍サイクル装置10と同様である。従って、本実施形態の車両用空調装置1においても、第1実施形態と同様に、車室内の冷房および除湿暖房を実現することができる。さらに、本実施形態の冷凍サイクル装置10aにおいても、第1実施形態と同様の効果を得ることができる。 The configuration and operation of the other refrigeration cycle device 10a are the same as those of the refrigeration cycle device 10 of the first embodiment. Therefore, also in the vehicle air conditioner 1 of the present embodiment, cooling and dehumidifying heating of the vehicle interior can be realized as in the first embodiment. Further, the refrigerating cycle apparatus 10a of the present embodiment can also obtain the same effect as that of the first embodiment.
 すなわち、本実施形態の冷凍サイクル装置10においても、加熱部を形成する水冷媒熱交換器121の出口側冷媒の過冷却度SC1を適切に調整することができる。その結果、冷凍サイクル装置10のCOPの低下を抑制することができる。 That is, even in the refrigerating cycle device 10 of the present embodiment, the supercooling degree SC1 of the refrigerant on the outlet side of the water refrigerant heat exchanger 121 forming the heating portion can be appropriately adjusted. As a result, it is possible to suppress a decrease in COP of the refrigeration cycle device 10.
 また、本実施形態の車両用空調装置1では、補助加熱部としての熱媒体を加熱する電気ヒータ52を備えている。従って、過冷却度SC1を目標過冷却度SCO以下に調整するために、暖房用膨張弁13の絞り開度を縮小させることができない場合に、電気ヒータ52によって熱媒体を加熱することができる。その結果、吹出空気温度TAVを目標吹出温度TAOとなるまで上昇させて快適な除湿暖房を実現することができる。 Further, the vehicle air conditioner 1 of the present embodiment includes an electric heater 52 that heats a heat medium as an auxiliary heating unit. Therefore, in order to adjust the supercooling degree SC1 to the target supercooling degree SCO or less, the heat medium can be heated by the electric heater 52 when the throttle opening of the heating expansion valve 13 cannot be reduced. As a result, comfortable dehumidifying and heating can be realized by raising the blown air temperature TAV until the blown air temperature TAO is reached.
 また、本実施形態の過冷却度推定部では、圧縮機11の冷媒吐出流量Gr、吐出温度Td、吐出圧力Pd、熱媒体ポンプ51の熱媒体流量LQf、ヒータコア入口側熱媒体温度Twin、室内送風機32の送風量Airf、吸入温度Ts、および電気ヒータ52の加熱量Qh2を用いて、過冷却度SC1を推定する。従って、数式F7~F9を用いて説明したように、熱媒体温度センサ41jを追加するだけで、過冷却度SC1を精度良く推定することができる。 Further, in the supercooling degree estimation unit of the present embodiment, the refrigerant discharge flow rate Gr of the compressor 11, the discharge temperature Td, the discharge pressure Pd, the heat medium flow rate LQf of the heat medium pump 51, the heat medium temperature Twin on the heater core inlet side, and the indoor blower. The degree of supercooling SC1 is estimated using the air flow amount Airf of 32, the suction temperature Ts, and the heating amount Qh2 of the electric heater 52. Therefore, as described using the mathematical formulas F7 to F9, the supercooling degree SC1 can be estimated accurately only by adding the heat medium temperature sensor 41j.
 また、本実施形態の過冷却度推定部は、電気ヒータ52を備えていない冷凍サイクル装置10aに適用しても有効である。その場合は、電気ヒータ52の加熱量Qh2を0とすればよい。 Further, the supercooling degree estimation unit of the present embodiment is effective even when applied to the refrigeration cycle device 10a not provided with the electric heater 52. In that case, the heating amount Qh2 of the electric heater 52 may be set to 0.
 (第5実施形態)
 本実施形態では、第4実施形態に対して、過冷却度推定部における過冷却度SC1の推定態様を変更した例を説明する。
(Fifth Embodiment)
In this embodiment, an example in which the estimation mode of the supercooling degree SC1 in the supercooling degree estimation unit is changed with respect to the fourth embodiment will be described.
 第4実施形態で説明したように、冷凍サイクル装置10aでは、水冷媒熱交換器121として、対向流型の熱交換器を採用している。対向流型の熱交換器では、冷媒通路を流通する冷媒の流れ方向と熱媒体通路を流通する熱媒体の流れ方向が逆方向となる。このため、図9に示すように、冷媒と熱媒体の温度が変化する。図9では、太実線で冷媒の温度変化を示し、太破線で熱媒体の温度変化を示している。 As described in the fourth embodiment, in the refrigerating cycle apparatus 10a, a countercurrent type heat exchanger is adopted as the water refrigerant heat exchanger 121. In the countercurrent type heat exchanger, the flow direction of the refrigerant flowing through the refrigerant passage and the flow direction of the heat medium flowing through the heat medium passage are opposite to each other. Therefore, as shown in FIG. 9, the temperatures of the refrigerant and the heat medium change. In FIG. 9, the thick solid line shows the temperature change of the refrigerant, and the thick broken line shows the temperature change of the heat medium.
 従って、水冷媒熱交換器121では、ヒータコア53から流出して熱媒体通路へ流入する熱媒体のヒータコア出口側熱媒体温度Twoutが、冷媒通路から流出する冷媒の水冷媒出口側冷媒温度Tdoutに比較的近い値となる。さらに、ヒータコア出口側熱媒体温度Twoutが、水冷媒出口側冷媒温度Tdoutよりも低い値になる。 Therefore, in the water refrigerant heat exchanger 121, the heater core outlet side heat medium temperature Twout of the heat medium flowing out from the heater core 53 and flowing into the heat medium passage is compared with the water refrigerant outlet side refrigerant temperature Tdout of the refrigerant flowing out from the refrigerant passage. It will be a close value. Further, the heat medium temperature Twout on the outlet side of the heater core becomes a value lower than the refrigerant temperature Tdout on the outlet side of the water refrigerant.
 そのため、ヒータコア出口側熱媒体温度Twoutを水冷媒出口側冷媒温度Tdoutと仮定すれば、実際の値よりも大きな値となる過冷却度SC1、すなわち最悪交差側の過冷却度SCO1を推定することができる。 Therefore, assuming that the heater core outlet side heat medium temperature Twout is the water refrigerant outlet side refrigerant temperature Tdout, it is possible to estimate the supercooling degree SC1 that is larger than the actual value, that is, the supercooling degree SCO1 on the worst crossing side. can.
 そこで、本実施形態の過冷却度推定部では、吐出圧力Pd、熱媒体ポンプ51から圧送される熱媒体流量LQf、ヒータコア入口側熱媒体温度Twin、室内送風機32の送風量Airf、吸入温度Tsを用いて、過冷却度SC1を推定する。送風量Airfは、第4実施形態と同様に、ヒータコア側風量Airfhを決定するために用いられる。吸入温度Tsは、第4実施形態と同様に、冷却空気温度Taeを決定するために用いられる。 Therefore, in the supercooling degree estimation unit of the present embodiment, the discharge pressure Pd, the heat medium flow rate LQf pressure-fed from the heat medium pump 51, the heat medium temperature Twin on the heater core inlet side, the air flow amount Airf of the indoor blower 32, and the suction temperature Ts are set. It is used to estimate the degree of supercooling SC1. The air volume Airf is used to determine the air volume Airfh on the heater core side, as in the fourth embodiment. The suction temperature Ts is used to determine the cooling air temperature Tae, as in the fourth embodiment.
 そして、第4実施形態の数式F8と同様に、熱媒体流量LQf、ヒータコア入口側熱媒体温度Twin、ヒータコア側風量Airfh、冷却空気温度Taeに基づいて、予め記憶されている制御マップを参照して、ヒータコア出口側熱媒体温度Twoutを決定する。さらに、ヒータコア出口側熱媒体温度Twoutおよび吐出圧力Pdに基づいて、水冷媒熱交換器121から流出して暖房用膨張弁13へ流入する冷媒の過冷却度SC1を推定する。 Then, as in the equation F8 of the fourth embodiment, refer to the control map stored in advance based on the heat medium flow rate LQf, the heater core inlet side heat medium temperature Twin, the heater core side air volume Airfh, and the cooling air temperature Tae. , Determines the heat medium temperature Twout on the outlet side of the heater core. Further, based on the heater core outlet side heat medium temperature Twout and the discharge pressure Pd, the supercooling degree SC1 of the refrigerant flowing out of the water refrigerant heat exchanger 121 and flowing into the heating expansion valve 13 is estimated.
 その他の冷凍サイクル装置10aの構成および作動は、第4実施形態と同様である。従って、本実施形態の車両用空調装置1においても、第4実施形態と同様に、車室内の冷房および除湿暖房を実現することができる。さらに、本実施形態の冷凍サイクル装置10aにおいても、第4実施形態と同様の効果を得ることができる。 The configuration and operation of the other refrigeration cycle device 10a are the same as those in the fourth embodiment. Therefore, also in the vehicle air conditioner 1 of the present embodiment, cooling and dehumidifying heating of the vehicle interior can be realized as in the fourth embodiment. Further, the refrigerating cycle apparatus 10a of the present embodiment can also obtain the same effect as that of the fourth embodiment.
 すなわち、本実施形態の冷凍サイクル装置10においても、加熱部を形成する水冷媒熱交換器121の出口側冷媒の過冷却度SC1を適切に調整することができる。 That is, even in the refrigerating cycle device 10 of the present embodiment, the supercooling degree SC1 of the refrigerant on the outlet side of the water refrigerant heat exchanger 121 forming the heating portion can be appropriately adjusted.
 なお、本実施形態の過冷却度推定部では、ヒータコア出口側熱媒体温度Twoutを水冷媒出口側冷媒温度Tdoutとして用いた例を説明したが、これに限定されない。例えば、ヒータコア出口側熱媒体温度Twoutに対して予め定めた所定を加算した値を水冷媒出口側冷媒温度Tdoutとしてもよい。 In the supercooling degree estimation unit of the present embodiment, an example in which the heater core outlet side heat medium temperature Twout is used as the water refrigerant outlet side refrigerant temperature Tdout has been described, but the present invention is not limited to this. For example, a value obtained by adding a predetermined value to the heater core outlet side heat medium temperature Twout may be used as the water refrigerant outlet side refrigerant temperature Tdout.
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。 The present disclosure is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present disclosure.
 本開示に係る冷凍サイクル装置の回路構成は、上述の実施形態に開示された冷凍サイクル装置10、10aの構成に限定されない。 The circuit configuration of the refrigeration cycle device according to the present disclosure is not limited to the configuration of the refrigeration cycle devices 10 and 10a disclosed in the above-described embodiment.
 例えば、冷媒回路を切替可能に構成された冷凍サイクル装置であって、所定の運転モード時に、上述の実施形態と同様の冷媒回路が形成される冷凍サイクル装置であってもよい。そして、上述の実施形態と同様の冷媒回路へ切り替えられた際に、上述の実施形態と同様の制御を行うことで、上述の実施形態と同様の効果を得ることができる。 For example, it may be a refrigerating cycle device configured so that the refrigerant circuit can be switched, and a refrigerating cycle device in which the same refrigerant circuit as the above-described embodiment is formed in a predetermined operation mode may be used. Then, when the refrigerant circuit is switched to the same as that of the above-described embodiment, the same effect as that of the above-mentioned embodiment can be obtained by performing the same control as that of the above-mentioned embodiment.
 また、上述の実施形態では、室外熱交換器14の冷媒出口に、レシーバ15を接続した例を説明したが、これに限定されない。例えば、第3~第5実施形態で説明した過冷却度推定部を備える冷凍サイクル装置では、レシーバ15を廃止して、室内蒸発器17の冷媒出口から圧縮機11の吸入口へ至る冷媒流路にアキュムレータを配置してもよい。 Further, in the above-described embodiment, an example in which the receiver 15 is connected to the refrigerant outlet of the outdoor heat exchanger 14 has been described, but the present invention is not limited to this. For example, in the refrigerating cycle apparatus provided with the supercooling degree estimation unit described in the third to fifth embodiments, the receiver 15 is abolished and the refrigerant flow path from the refrigerant outlet of the indoor evaporator 17 to the suction port of the compressor 11 An accumulator may be placed in.
 アキュムレータは、室内蒸発器17から流出した冷媒の気液を分離して、分離された気相冷媒を圧縮機11の吸入口側へ流出させるとともに、分離された液相冷媒をサイクルの余剰冷媒として蓄える低圧側の貯液部である。アキュムレータを備える冷凍サイクル装置では、除湿暖房モードの吹出温度制御時に、室外熱交換器14を、冷媒を蒸発させる蒸発器として機能させてもよい。 The accumulator separates the gas and liquid of the refrigerant flowing out from the indoor evaporator 17 and causes the separated gas phase refrigerant to flow out to the suction port side of the compressor 11, and the separated liquid phase refrigerant is used as the surplus refrigerant in the cycle. It is a liquid storage part on the low pressure side that stores. In the refrigeration cycle device including the accumulator, the outdoor heat exchanger 14 may function as an evaporator for evaporating the refrigerant when the outlet temperature is controlled in the dehumidification / heating mode.
 冷凍サイクル装置10、10aの各構成機器は、上述の実施形態に開示された構成機器に限定されない。 Each component of the refrigeration cycle devices 10 and 10a is not limited to the components disclosed in the above-described embodiment.
 例えば、圧縮機11として、内燃機関(すなわち、エンジン)から伝達される回転駆動力によって駆動されるエンジン駆動式の圧縮機を採用してもよい。エンジン駆動式の圧縮機では、エンジン回転数、吐出容量、あるいは、稼働率等を考慮することによって、冷媒吐出流量Grを算定することができる。 For example, as the compressor 11, an engine-driven compressor driven by a rotational driving force transmitted from an internal combustion engine (that is, an engine) may be adopted. In an engine-driven compressor, the refrigerant discharge flow rate Gr can be calculated by considering the engine speed, the discharge capacity, the operating rate, and the like.
 また、上述の第3~第5実施形態では、吹出温度制御および圧縮機保護制御のために必須の検出部に対して、最小限の検出部を追加した例を説明したが、検出部の追加はこれに限定されない。例えば、圧縮機11の冷媒吐出流量Gr(質量流量)を直接検出するための流量検出部としての流量センサを追加してもよい。 Further, in the above-mentioned third to fifth embodiments, an example in which the minimum detection unit is added to the detection unit essential for the blowout temperature control and the compressor protection control has been described, but the addition of the detection unit has been described. Is not limited to this. For example, a flow rate sensor as a flow rate detection unit for directly detecting the refrigerant discharge flow rate Gr (mass flow rate) of the compressor 11 may be added.
 また、上述の実施形態では、冷凍サイクル装置10、10aの冷媒として、R1234yfを採用した例を説明したが、これに限定されない。例えば、R134a、R600a、R410A、R404A、R32、R407C等を採用してもよい。または、これらのうち複数の冷媒を混合させた混合冷媒等を採用してもよい。 Further, in the above-described embodiment, an example in which R1234yf is adopted as the refrigerant of the refrigeration cycle devices 10 and 10a has been described, but the present invention is not limited to this. For example, R134a, R600a, R410A, R404A, R32, R407C and the like may be adopted. Alternatively, a mixed refrigerant or the like in which a plurality of these refrigerants are mixed may be adopted.
 また、上述の実施形態では、熱媒体として、エチレングリコール水溶液を採用した例を説明したが、これに限定されない。例えば、ジメチルポリシロキサン、あるいはナノ流体等を含む溶液、不凍液、アルコール等を含む水系の液媒体、オイル等を含む液媒体を採用してもよい。 Further, in the above-described embodiment, an example in which an ethylene glycol aqueous solution is used as a heat medium has been described, but the present invention is not limited to this. For example, a solution containing dimethylpolysiloxane, a nanofluid or the like, an antifreeze solution, an aqueous liquid medium containing alcohol or the like, or a liquid medium containing oil or the like may be adopted.
 冷凍サイクル装置10、10aの制御態様は、上述の実施形態に開示された制御態様に限定されない。 The control modes of the refrigeration cycle devices 10 and 10a are not limited to the control modes disclosed in the above-described embodiment.
 例えば、第1~第3実施形態の目標過冷却度決定部が、送風空気に生じる温度分布を抑制可能な目標過冷却度SCOを決定するようになっていてもよい。具体的には、室内凝縮器12あるいはヒータコア53通過後の送風空気の最高温度から最低温度を減算した温度差が予め定めた基準温度差以下となる目標過冷却度SCOを決定すればよい。 For example, the target supercooling degree determining unit of the first to third embodiments may determine the target supercooling degree SCO capable of suppressing the temperature distribution generated in the blown air. Specifically, the target supercooling degree SCO may be determined such that the temperature difference obtained by subtracting the minimum temperature from the maximum temperature of the blown air after passing through the indoor condenser 12 or the heater core 53 is equal to or less than a predetermined reference temperature difference.
 上記各実施形態に開示された手段は、実施可能な範囲で適宜組み合わせてもよい。 The means disclosed in each of the above embodiments may be appropriately combined to the extent practicable.
 例えば、第1、第2実施形態で説明した冷凍サイクル装置10の加熱部として、第4実施形態で説明した水冷媒熱交換器121および熱媒体回路50に配置された各種構成機器を採用してもよい。換言すると、第4実施形態で説明した冷凍サイクル装置10aに、第1実施形態で説明した過冷却度推定部、あるいは第2実施形態で説明した下限面積算定部を適用してもよい。 For example, as the heating unit of the refrigeration cycle apparatus 10 described in the first and second embodiments, various constituent devices arranged in the water-refrigerant heat exchanger 121 and the heat medium circuit 50 described in the fourth embodiment are adopted. May be good. In other words, the supercooling degree estimation unit described in the first embodiment or the lower limit area calculation unit described in the second embodiment may be applied to the refrigeration cycle apparatus 10a described in the fourth embodiment.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described in accordance with the examples, it is understood that the present disclosure is not limited to the examples and structures. The present disclosure also includes various variations and variations within a uniform range. In addition, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are within the scope and scope of the present disclosure.

Claims (9)

  1.  冷媒を圧縮して吐出する圧縮機(11)と、
     前記圧縮機から吐出された前記冷媒を熱源として空調対象空間へ送風される送風空気を加熱する加熱部(12、121、50)と、
     前記加熱部から流出した前記冷媒を減圧させる第1減圧部(13)と、
     前記第1減圧部から流出した前記冷媒と外気とを熱交換させる室外熱交換部(14)と、
     前記室外熱交換部から流出した前記冷媒を減圧させる第2減圧部(16)と、
     前記第2減圧部にて減圧された前記冷媒を蒸発させて、前記加熱部にて加熱される前の前記送風空気を冷却する室内蒸発部(17)と、
     前記第1減圧部へ流入する前記冷媒の目標過冷却度(SCO)を決定する目標過冷却度決定部(S1)と、
     前記第1減圧部へ流入する前記冷媒の過冷却度(SC1)を推定する過冷却度推定部(S2)と、
     前記第1減圧部の作動を制御する第1減圧制御部(40b)と、を備え、
     前記第1減圧制御部は、前記過冷却度推定部によって推定された前記過冷却度(SC1)が、前記目標過冷却度(SCO)以下となるように前記第1減圧部の作動を制御する冷凍サイクル装置。
    A compressor (11) that compresses and discharges the refrigerant,
    A heating unit (12, 121, 50) that heats the blown air blown to the air-conditioned space using the refrigerant discharged from the compressor as a heat source.
    A first decompression unit (13) that depressurizes the refrigerant flowing out of the heating unit, and
    An outdoor heat exchange unit (14) that exchanges heat between the refrigerant flowing out of the first decompression unit and the outside air.
    A second decompression unit (16) that depressurizes the refrigerant flowing out of the outdoor heat exchange unit, and
    An indoor evaporation unit (17) that evaporates the refrigerant decompressed by the second decompression unit and cools the blown air before being heated by the heating unit.
    A target supercooling degree determining unit (S1) for determining a target supercooling degree (SCO) of the refrigerant flowing into the first decompression unit, and a target supercooling degree determining unit (S1).
    A supercooling degree estimation unit (S2) that estimates the supercooling degree (SC1) of the refrigerant flowing into the first decompression unit, and a supercooling degree estimation unit (S2).
    A first decompression control unit (40b) for controlling the operation of the first decompression unit is provided.
    The first decompression control unit controls the operation of the first decompression unit so that the supercooling degree (SC1) estimated by the supercooling degree estimation unit is equal to or less than the target supercooling degree (SCO). Refrigeration cycle equipment.
  2.  前記過冷却度推定部は、前記圧縮機の冷媒吐出流量(Gr)、前記第1減圧部の開度(A)、前記圧縮機から吐出された前記冷媒の吐出圧力(Pd)、および外気温(Tam)を用いて、前記過冷却度(SC1)を推定する請求項1に記載の冷凍サイクル装置。 The supercooling degree estimation unit includes the refrigerant discharge flow rate (Gr) of the compressor, the opening degree (A) of the first decompression unit, the discharge pressure (Pd) of the refrigerant discharged from the compressor, and the outside temperature. The refrigeration cycle apparatus according to claim 1, wherein the degree of supercooling (SC1) is estimated using (Tam).
  3.  さらに、前記送風空気を送風する送風部(32)を備え、
     前記加熱部は、前記圧縮機から吐出された前記冷媒と前記送風空気とを熱交換させる室内凝縮器(12)を有し、
     前記過冷却度推定部は、前記圧縮機の冷媒吐出流量(Gr)、前記圧縮機から吐出された前記冷媒の吐出温度(Td)、前記圧縮機から吐出された前記冷媒の吐出圧力(Pd)、前記送風部の送風量(Airf)、および前記室内蒸発部へ流入する前記送風空気の吸込空気温度(Tein)を用いて、前記過冷却度(SC1)を推定する請求項1に記載の冷凍サイクル装置。
    Further, a blower unit (32) for blowing the blown air is provided.
    The heating unit has an indoor condenser (12) that exchanges heat between the refrigerant discharged from the compressor and the blown air.
    The supercooling degree estimation unit includes the refrigerant discharge flow rate (Gr) of the compressor, the discharge temperature (Td) of the refrigerant discharged from the compressor, and the discharge pressure (Pd) of the refrigerant discharged from the compressor. The refrigeration according to claim 1, wherein the degree of supercooling (SC1) is estimated using the air volume (Airf) of the air blower unit and the suction air temperature (Tein) of the air blown air flowing into the indoor evaporative unit. Cycle device.
  4.  さらに、前記送風空気を送風する送風部(32)を備え、
     前記加熱部は、前記圧縮機から吐出された前記冷媒と熱媒体とを熱交換させる水冷媒熱交換器(121)、前記水冷媒熱交換器にて加熱された前記熱媒体と前記送風空気とを熱交換させるヒータコア(53)、および前記水冷媒熱交換器(121)にて加熱された前記熱媒体を前記ヒータコアへ圧送する熱媒体圧送部(51)を有し、
     前記過冷却度推定部は、前記圧縮機の冷媒吐出流量(Gr)、前記圧縮機から吐出された前記冷媒の吐出温度(Td)、前記圧縮機から吐出された前記冷媒の吐出圧力(Pd)、前記熱媒体圧送部の熱媒体流量(LQf)、前記ヒータコアへ流入する前記熱媒体のヒータコア入口側熱媒体温度(Twin)、前記送風部の送風量(Airf)、前記圧縮機へ吸入される前記冷媒の吸入温度(Ts)を用いて、前記過冷却度(SC1)を推定する請求項1に記載の冷凍サイクル装置。
    Further, a blower unit (32) for blowing the blown air is provided.
    The heating unit includes a water refrigerant heat exchanger (121) that exchanges heat between the refrigerant discharged from the compressor and the heat medium, the heat medium heated by the water refrigerant heat exchanger, and the blown air. It has a heater core (53) for heat exchange, and a heat medium pressure feeding unit (51) for pressure-feeding the heat medium heated by the water refrigerant heat exchanger (121) to the heater core.
    The supercooling degree estimation unit includes the refrigerant discharge flow rate (Gr) of the compressor, the discharge temperature (Td) of the refrigerant discharged from the compressor, and the discharge pressure (Pd) of the refrigerant discharged from the compressor. , The heat medium flow rate (LQf) of the heat medium pressure feeding section, the heater core inlet side heat medium temperature (Twin) of the heat medium flowing into the heater core, the air volume of the blowing section (Airf), and being sucked into the compressor. The refrigeration cycle apparatus according to claim 1, wherein the degree of supercooling (SC1) is estimated using the suction temperature (Ts) of the refrigerant.
  5.  さらに、前記送風空気を送風する送風部(32)を備え、
     前記加熱部は、前記圧縮機から吐出された前記冷媒と熱媒体とを熱交換させる水冷媒熱交換器(121)、前記水冷媒熱交換器にて加熱された前記熱媒体と前記送風空気とを熱交換させるヒータコア(53)、および前記水冷媒熱交換器(121)にて加熱された前記熱媒体を前記ヒータコアへ圧送する熱媒体圧送部(51)を有し、
     前記水冷媒熱交換器は、冷媒通路を流通する前記冷媒の流れ方向と熱媒体通路を流通する前記熱媒体の流れ方向が逆方向となる対向流型の熱交換器であり、
     前記過冷却度推定部は、前記圧縮機から吐出された前記冷媒の吐出圧力(Pd)、前記熱媒体圧送部の熱媒体流量(LQf)、前記ヒータコアへ流入する前記熱媒体のヒータコア入口側熱媒体温度(Twin)、前記送風部の送風量(Airf)、前記圧縮機へ吸入される前記冷媒の吸入温度(Ts)を用いて、前記過冷却度(SC1)を推定する請求項1に記載の冷凍サイクル装置。
    Further, a blower unit (32) for blowing the blown air is provided.
    The heating unit includes a water refrigerant heat exchanger (121) that exchanges heat between the refrigerant discharged from the compressor and the heat medium, the heat medium heated by the water refrigerant heat exchanger, and the blown air. It has a heater core (53) for heat exchange, and a heat medium pressure feeding unit (51) for pressure-feeding the heat medium heated by the water refrigerant heat exchanger (121) to the heater core.
    The water-refrigerant heat exchanger is a counter-flow type heat exchanger in which the flow direction of the refrigerant flowing through the refrigerant passage and the flow direction of the heat medium flowing through the heat medium passage are opposite to each other.
    The supercooling degree estimation unit includes the discharge pressure (Pd) of the refrigerant discharged from the compressor, the heat medium flow rate (LQf) of the heat medium pressure feeding unit, and the heater core inlet side heat of the heat medium flowing into the heater core. The first aspect of claim 1, wherein the degree of supercooling (SC1) is estimated using the medium temperature (Twin), the amount of air blown by the blower unit (Airf), and the suction temperature (Ts) of the refrigerant sucked into the compressor. Refrigeration cycle equipment.
  6.  冷媒を圧縮して吐出する圧縮機(11)と、
     前記圧縮機から吐出された前記冷媒を熱源として空調対象空間へ送風される送風空気を加熱する加熱部(12、121、50)と、
     前記加熱部から流出した前記冷媒を減圧させる第1減圧部(13)と、
     前記第1減圧部から流出した前記冷媒と外気とを熱交換させる室外熱交換部(14)と、
     前記室外熱交換部から流出した前記冷媒を減圧させる第2減圧部(16)と、
     前記第2減圧部にて減圧された前記冷媒を蒸発させて、前記加熱部にて加熱される前の前記送風空気を冷却する室内蒸発部(17)と、
     前記第1減圧部へ流入する前記冷媒の目標過冷却度(SCO)を決定する目標過冷却度決定部(S11)と、
     前記第1減圧部へ流入する前記冷媒の過冷却度(SC1)が前記目標過冷却度(SCO)となる前記第1減圧部の下限絞り通路面積(Amin)を算定する下限面積算定部(S12)と、
     前記第1減圧部の作動を制御する第1減圧制御部(40b)と、を備え、
     前記第1減圧制御部は、前記第1減圧部の絞り通路面積(A)が、前記下限絞り通路面積(Amin)以上となるように前記第1減圧部の作動を制御する冷凍サイクル装置。
    A compressor (11) that compresses and discharges the refrigerant,
    A heating unit (12, 121, 50) that heats the blown air blown to the air-conditioned space using the refrigerant discharged from the compressor as a heat source.
    A first decompression unit (13) that depressurizes the refrigerant flowing out of the heating unit, and
    An outdoor heat exchange unit (14) that exchanges heat between the refrigerant flowing out of the first decompression unit and the outside air.
    A second decompression unit (16) that depressurizes the refrigerant flowing out of the outdoor heat exchange unit, and
    An indoor evaporation unit (17) that evaporates the refrigerant decompressed by the second decompression unit and cools the blown air before being heated by the heating unit.
    A target supercooling degree determining unit (S11) for determining a target supercooling degree (SCO) of the refrigerant flowing into the first decompression unit, and a target supercooling degree determining unit (S11).
    The lower limit area calculation unit (S12) for calculating the lower limit throttle passage area (Amin) of the first decompression unit where the supercooling degree (SC1) of the refrigerant flowing into the first decompression unit becomes the target supercooling degree (SCO). )When,
    A first decompression control unit (40b) for controlling the operation of the first decompression unit is provided.
    The first decompression control unit is a refrigeration cycle device that controls the operation of the first decompression unit so that the throttle passage area (A) of the first decompression unit is equal to or larger than the lower limit throttle passage area (Amin).
  7.  前記下限面積算定部は、前記目標過冷却度(SCO)、前記圧縮機の冷媒吐出流量(Gr)、前記第1減圧部へ流入する冷媒の入口側圧力(P1)、および前記第1減圧部から流出した冷媒の出口側圧力(P2)を用いて、前記下限絞り通路面積(Amin)を算定する請求項6に記載の冷凍サイクル装置。 The lower limit area calculation unit includes the target supercooling degree (SCO), the refrigerant discharge flow rate (Gr) of the compressor, the inlet side pressure (P1) of the refrigerant flowing into the first decompression unit, and the first decompression unit. The refrigerating cycle apparatus according to claim 6, wherein the lower limit throttle passage area (Amin) is calculated by using the outlet side pressure (P2) of the refrigerant flowing out from.
  8.  前記下限面積算定部は、前記入口側圧力として、前記圧縮機から吐出された前記冷媒の吐出圧力(Pd)を用いる請求項7に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 7, wherein the lower limit area calculation unit uses the discharge pressure (Pd) of the refrigerant discharged from the compressor as the inlet side pressure.
  9.  前記下限面積算定部は、前記出口側圧力として、外気温(Tam)を用いて決定された値を用いる請求項7または8に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 7 or 8, wherein the lower limit area calculation unit uses a value determined by using the outside air temperature (Tam) as the outlet side pressure.
PCT/JP2021/027188 2020-08-20 2021-07-20 Refrigeration cycle device WO2022038951A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112021004336.6T DE112021004336T5 (en) 2020-08-20 2021-07-20 refrigeration cycle device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-139066 2020-08-20
JP2020139066A JP7331806B2 (en) 2020-08-20 2020-08-20 refrigeration cycle equipment

Publications (1)

Publication Number Publication Date
WO2022038951A1 true WO2022038951A1 (en) 2022-02-24

Family

ID=80350345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027188 WO2022038951A1 (en) 2020-08-20 2021-07-20 Refrigeration cycle device

Country Status (3)

Country Link
JP (1) JP7331806B2 (en)
DE (1) DE112021004336T5 (en)
WO (1) WO2022038951A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272837A (en) * 1992-03-26 1993-10-22 Tsukishima Kikai Co Ltd Compression absorption composite heat pump
JP5585549B2 (en) * 2011-07-16 2014-09-10 株式会社デンソー Air conditioner
WO2017212562A1 (en) * 2016-06-08 2017-12-14 三菱電機株式会社 Air-conditioning system
JP2020060304A (en) * 2018-10-05 2020-04-16 株式会社デンソー Refrigeration cycle device
WO2020137235A1 (en) * 2018-12-25 2020-07-02 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air-conditioning device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7212859B2 (en) 2019-02-28 2023-01-26 日東紡績株式会社 Water-repellent coating composition and method of use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272837A (en) * 1992-03-26 1993-10-22 Tsukishima Kikai Co Ltd Compression absorption composite heat pump
JP5585549B2 (en) * 2011-07-16 2014-09-10 株式会社デンソー Air conditioner
WO2017212562A1 (en) * 2016-06-08 2017-12-14 三菱電機株式会社 Air-conditioning system
JP2020060304A (en) * 2018-10-05 2020-04-16 株式会社デンソー Refrigeration cycle device
WO2020137235A1 (en) * 2018-12-25 2020-07-02 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air-conditioning device

Also Published As

Publication number Publication date
DE112021004336T5 (en) 2023-06-01
JP7331806B2 (en) 2023-08-23
JP2022035027A (en) 2022-03-04

Similar Documents

Publication Publication Date Title
US10889163B2 (en) Heat pump system
JP6794964B2 (en) Refrigeration cycle equipment
JP6332193B2 (en) Air conditioner for vehicles
JP6277888B2 (en) Refrigeration cycle equipment
US8984903B2 (en) Refrigerant cycle device
CN107531128B (en) Air conditioner for vehicle
JP5935625B2 (en) Refrigeration cycle controller
JP6711258B2 (en) Refrigeration cycle equipment
JP2018091536A (en) Refrigeration cycle device
WO2013145537A1 (en) Air conditioner device for vehicle
JP6711249B2 (en) Vehicle air conditioner
JP6390431B2 (en) Refrigeration cycle equipment
JP7294075B2 (en) refrigeration cycle equipment
WO2017187790A1 (en) Coolant quantity insufficiency sensing device and refrigeration cycle device
JP2005233535A (en) Air conditioner
JP6375796B2 (en) Refrigeration cycle equipment
JP6544287B2 (en) Air conditioner
JP6583246B2 (en) Electronic control unit
JP6601307B2 (en) Refrigeration cycle equipment
WO2022038951A1 (en) Refrigeration cycle device
JP6369237B2 (en) Air conditioner
WO2023074322A1 (en) Heat pump cycle device
WO2023106020A1 (en) Heat pump cycle device
JP6897185B2 (en) Air conditioner
WO2023047981A1 (en) Heat pump cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21858100

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21858100

Country of ref document: EP

Kind code of ref document: A1