WO2020137235A1 - Vehicle air-conditioning device - Google Patents

Vehicle air-conditioning device Download PDF

Info

Publication number
WO2020137235A1
WO2020137235A1 PCT/JP2019/044845 JP2019044845W WO2020137235A1 WO 2020137235 A1 WO2020137235 A1 WO 2020137235A1 JP 2019044845 W JP2019044845 W JP 2019044845W WO 2020137235 A1 WO2020137235 A1 WO 2020137235A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
target
heat
refrigerant
mode
Prior art date
Application number
PCT/JP2019/044845
Other languages
French (fr)
Japanese (ja)
Inventor
孝史 青木
竜 宮腰
耕平 山下
雄満 山崎
洪銘 張
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Priority to CN201980083916.9A priority Critical patent/CN113195272A/en
Publication of WO2020137235A1 publication Critical patent/WO2020137235A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • the present invention relates to a heat pump type air conditioner that air-conditions a passenger compartment of a vehicle.
  • a heat exchanger for cooling the battery is provided so that the battery can be cooled by circulating the refrigerant circulating in the refrigerant circuit to the heat exchanger.
  • a vehicle air conditioner having a plurality of evaporators for example, it is necessary to cool the temperature-controlled object from an operating state in which the refrigerant is evaporated by a heat absorber (evaporator) to air-condition the vehicle interior. Then, when the operation state in which the refrigerant flows through the target heat exchanger for temperature control (evaporator) also occurs, the heat exchange paths including them increase, so the capacity of the compressor (target rotation speed) becomes insufficient. As a result, the temperature of the air blown into the vehicle interior becomes high, and the cooling of the temperature-controlled object is delayed.
  • a heat absorber evaporator
  • the target rotation speed of the compressor is, for example, a feedforward operation calculated by a feedforward calculation based on the target temperature of the heat absorber when cooling the vehicle interior.
  • the feedback operation amount calculated by the feedback calculation based on the target temperature and the actual temperature of the heat absorber Therefore, if a certain amount of time has passed after the transition, it is possible to satisfy the target temperature by the feedback operation amount, but the responsiveness is low.
  • the present invention has been made to solve the above-mentioned conventional technical problems, and it is possible to reduce the capacity (target rotation speed) of the compressor when the operating state in which the number of evaporators that evaporate the refrigerant increases increases. It is an object of the present invention to provide a vehicle air conditioner that is avoided and has improved responsiveness.
  • the vehicle air conditioner of the present invention includes at least a compressor for compressing a refrigerant, a plurality of evaporators for evaporating the refrigerant, and a control device to air-condition the vehicle interior, and the control device is at least , Having a first operating state for evaporating the refrigerant in the evaporator and a second operating state for evaporating the refrigerant in a larger number of evaporators than in the first operating state, and being cooled by the evaporator or by it
  • the target rotation speed of the compressor is calculated by the feedforward calculation based on the target temperature of the target, and the feedforward operation amount calculated by the feedforward calculation is larger in the second operating state than in the first operating state. It is characterized in that it is corrected in the direction of
  • the control device calculates the feedback operation amount of the target rotation speed of the compressor by feedback calculation based on the temperature of the evaporator or the target cooled by the evaporator and the target temperature.
  • the target rotational speed of the compressor is determined based on a value calculated by adding the feedforward operation amount and the feedback operation amount.
  • a vehicle air conditioner according to a third aspect of the present invention is mounted on a vehicle by evaporating the refrigerant and a heat absorber as an evaporator for cooling the air supplied to the vehicle compartment in each of the above inventions.
  • the heat exchanger for the temperature controlled object as an evaporator for cooling the temperature controlled object, the valve device for the heat absorber for controlling the flow of the refrigerant to the heat absorber, and the heat exchanger for the temperature controlled object The temperature controlled object valve device for controlling the flow of the refrigerant is provided, and the control device opens one of the heat absorber valve device and the temperature controlled object valve device in the first operating state, and opens the other.
  • the valve device for heat absorber and the valve device for temperature adjustment are opened in the second operating state.
  • the refrigerant is evaporated in the heat absorber and the heat exchanger for temperature adjustment.
  • the control device opens the temperature-controlled object valve device, and based on the temperature of the heat-controlled object heat exchanger or the temperature of the object cooled by the heat exchanger. Controlling the number of revolutions of the compressor and closing the heat absorber valve device Cooling target cooling (single) mode, and opening the valve device for temperature control target, and cooling by the heat exchanger for temperature control target or it Controls the rotation speed of the compressor based on the temperature of the target, and controls the opening and closing of the valve device for the heat absorber based on the temperature of the heat absorber. Has a temperature controlled target cooling (priority) + air conditioning mode.
  • cooling (priority) + air conditioning mode it is calculated by a feedforward calculation based on the target temperature of the heat exchanger to be temperature controlled or the target to be cooled by the heat exchanger to be temperature controlled, rather than the cooling (single) mode to be temperature controlled.
  • the feature is that correction is performed in the direction of increasing the feedforward operation amount.
  • the control device cools the temperature-controlled object (single) when the heat absorber valve device is opened in the temperature-controlled object cooling (priority)+air conditioning mode. It is characterized in that the amount of feedforward operation calculated by the feedforward calculation based on the target temperature of the heat exchanger to be temperature controlled or the target to be cooled by it is corrected to be larger than that in the mode.
  • a vehicle air conditioner according to a sixth aspect of the present invention is the vehicle air conditioner according to the fourth or fifth aspect, wherein the control device controls the temperature of the object to be cooled (priority) + the temperature of the object cooled by the heat absorber in the air conditioning mode. And a correction value for correcting the feedforward manipulated variable based on the target temperature of the heat absorber.
  • the control device opens the valve device for the heat absorber, controls the rotation speed of the compressor based on the temperature of the heat absorber, Air conditioning (single) mode to close the valve device for temperature control, open the valve device for heat absorber, control the rotation speed of the compressor based on the temperature of the heat absorber, heat exchanger for temperature control or by it It has an air conditioning (priority) + temperature controlled target cooling mode that controls opening and closing of the temperature controlled target valve device based on the temperature of the target to be cooled.
  • this air conditioning (priority) + temperature controlled target cooling mode It is characterized in that the feedforward operation amount calculated by the feedforward calculation based on the target temperature of the heat absorber is corrected to be larger than that in the air conditioning (single) mode.
  • control device is in an air conditioning (single) mode when the temperature controlled object valve device is opened in the air conditioning (priority) + temperature controlled object cooling mode. It is characterized in that the feedforward operation amount calculated by the feedforward calculation based on the target temperature of the heat absorber is increased.
  • the control device uses the heat exchanger for the temperature controlled object in the air conditioning (priority) + temperature controlled target cooling mode. It is characterized in that a correction value for correcting the feedforward manipulated variable is calculated based on the temperature of the object to be cooled and the target temperature thereof.
  • a compressor for compressing a refrigerant, a plurality of evaporators for evaporating the refrigerant, and a vehicle air-conditioning apparatus for air-conditioning a vehicle compartment which is provided with at least a control device, wherein at least the control device evaporates.
  • An evaporator or an object to be cooled by the evaporator which has a first operating state in which the refrigerant is evaporated in the evaporator and a second operating state in which the refrigerant is evaporated in a number of evaporators greater than the first operating state.
  • a direction in which the target rotation speed of the compressor is calculated by a feedforward calculation based on the target temperature and the feedforward operation amount calculated by the feedforward calculation is made larger in the second operating state than in the first operating state. Since the correction is made in step 1, the shortage of the compressor capacity (target speed) at the time of switching from the first operating state to the second operating state can be promptly resolved, and responsiveness is improved to improve reliability. With this, it becomes possible to improve the marketability.
  • the control device calculates the feedback manipulated variable of the target rotational speed of the compressor by feedback calculation based on the temperature of the evaporator or the object cooled by the evaporator and the target temperature, and also feedforward If the target rotation speed of the compressor is determined based on the value obtained by adding the operation amount and the feedback operation amount, the target rotation speed of the compressor will change as time elapses after switching to the second operating state. The number will change without any problem in the direction of converging the temperature of the evaporator or the object cooled by it to the target temperature.
  • a heat absorber as an evaporator for evaporating the refrigerant to cool the air supplied to the vehicle interior, and evaporating the refrigerant to cool the temperature-controlled object mounted on the vehicle.
  • a heat exchanger for temperature control as an evaporator for, a valve device for heat absorber that controls the flow of refrigerant to the heat absorber, and a temperature control that controls the flow of refrigerant to the heat exchanger for temperature control
  • a valve device for temperature control is provided, and in the first operating state, the control device opens either one of the valve device for heat absorber and the valve device for temperature control target, and closes the other to close the heat absorber and the controlled device.
  • the valve device for heat absorber and the valve device for temperature control target are opened to thereby absorb heat and heat. If the heat exchanger for conditioning is used to evaporate the refrigerant, the interior of the vehicle is air-conditioned and the temperature-controlled object is cooled in the first operating state, and the vehicle is air-conditioned in the second operating state.
  • the temperature control target can be cooled, and the switching between the first operating state and the second operating state can be smoothly performed.
  • the first operating state in which the refrigerant evaporates in the heat absorber or the heat exchanger for temperature adjustment is switched to the second operating state in which the refrigerant evaporates in both the heat absorber and the heat exchanger for temperature adjustment.
  • the compressor capacity target speed
  • the control device opens the valve device for the temperature controlled object, and controls the rotation speed of the compressor based on the temperature of the heat exchanger for the temperature controlled object or the object cooled by the heat exchanger. Then, the temperature control target cooling (single) mode in which the heat absorber valve device is closed, and the temperature control target valve device is opened, and compression is performed based on the temperature of the heat control target heat exchanger or the temperature of the target cooled by it.
  • the control device opens the valve device for the temperature controlled object, and controls the rotation speed of the compressor based on the temperature of the heat exchanger for the temperature controlled object or the object cooled by the heat exchanger.
  • the temperature control target cooling (single) mode in which the heat absorber valve device is closed, and the temperature control target valve device is opened, and compression is performed based on the temperature of the heat control target heat exchanger or the temperature of the target cooled by it.
  • the temperature controlled cooling (priority)+air conditioning mode rather than the temperature controlled cooling (single) mode. If the feedforward operation amount calculated by the feedforward calculation is corrected so as to be increased, the temperature of the heat exchanger to be temperature-controlled when the valve device for the heat absorber is opened or the temperature of the object to be cooled by the heat exchanger is adjusted. It is possible to maintain the followability of the rotational speed control of the compressor based on the above, and also to secure the quick response of the vehicle interior air conditioning. Further, even when the heat absorber valve device is closed, it is possible to avoid the inconvenience (so-called overshoot) in which the object to be temperature-controlled is excessively cooled by maintaining the followability of the rotation speed control of the compressor. Become.
  • the control device opens the heat absorber valve device in the temperature-controlled cooling (priority)+air conditioning mode as in the invention of claim 5, the temperature is controlled more than in the temperature-controlled cooling (single) mode. If the feedforward operation amount calculated by the feedforward calculation based on the target temperature of the heat exchanger for adjustment or the object cooled by it is corrected in the direction of increasing it, the heat absorber valve device can be opened or closed depending on whether the heat exchanger valve device is opened or closed. The feedforward manipulated variable can be finely corrected.
  • the control device determines the feedforward manipulated variable based on the temperature of the target cooled by the heat absorber and the target temperature of the heat absorber. If the correction value to be corrected is calculated, the feedforward operation amount can be accurately corrected according to the load on the heat absorber.
  • the control device opens the heat absorber valve device, controls the rotation speed of the compressor based on the temperature of the heat absorber, and closes the temperature-controlled object valve device. And open the valve device for the heat absorber, control the rotation speed of the compressor based on the temperature of the heat absorber, and for the temperature-controlled target based on the temperature of the heat-controlled target heat exchanger or the target cooled by it.
  • the air conditioner (priority) + controlled cooling mode for controlling the valve device is provided, only the air conditioning in the passenger compartment is performed in the air conditioning (single) mode, and in the air conditioning (priority) + controlled cooling mode for controlled temperature. It becomes possible to cool the temperature-controlled object while preferentially performing the air conditioning in the vehicle compartment.
  • the feedforward operation amount calculated by the feedforward calculation based on the target temperature of the heat absorber is corrected to be larger than that in the air conditioning (single) mode.
  • the control device opens the temperature control target valve device in the air conditioning (priority)+temperature control target cooling mode as in the invention of claim 8
  • the heat absorber of the heat absorber is operated more than in the air conditioning (single) mode. If the feedforward operation amount calculated by the feedforward calculation based on the target temperature is corrected in the direction of increasing it, the feedforward operation amount can be finely corrected according to the opening/closing of the valve device for the temperature-controlled object.
  • the control device feeds the temperature of the target cooled by the target heat exchanger for temperature controlled and the target temperature thereof.
  • the correction value for correcting the forward operation amount the feedforward operation amount can be accurately corrected according to the load of the heat exchanger for temperature adjustment.
  • FIG. 4 It is a block diagram of the vehicle air conditioner explaining the cooling mode by the heat pump controller of the control apparatus of FIG. It is a block diagram of the air conditioning apparatus for vehicles explaining the air conditioning (priority) + battery cooling mode and battery cooling (priority) + air conditioning mode by the heat pump controller of the control apparatus of FIG. It is a block diagram of the vehicle air conditioning apparatus explaining the battery cooling (single) mode by the heat pump controller of the control apparatus of FIG. It is a block diagram of the vehicle air conditioner explaining the defrost mode by the heat pump controller of the control apparatus of FIG. It is a control block diagram regarding compressor control of the heat pump controller of the control device of FIG. FIG. 4 is another control block diagram related to compressor control of the heat pump controller of the control device in FIG. 2.
  • FIG. 7 is yet another control block diagram related to compressor control of the heat pump controller of the control device in FIG. 2. It is a figure explaining the control at the time of switching of battery cooling (single) mode and battery cooling (priority) + air conditioning mode by the heat pump controller of the control apparatus of FIG. It is a figure explaining the control at the time of switching of cooling mode and air conditioning (priority) + battery cooling mode by the heat pump controller of the control apparatus of FIG.
  • FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 of an embodiment of the present invention.
  • a vehicle of an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and electric power charged in a battery 55 mounted in the vehicle is used as a traveling motor (electric motor). (Not shown) to drive and run, and the compressor 2 described later of the vehicle air conditioner 1 of the present invention is also driven by the electric power supplied from the battery 55. ..
  • EV electric vehicle
  • an engine internal combustion engine
  • electric motor traveling motor
  • the vehicle air conditioner 1 of the embodiment is a heating mode, a dehumidification heating mode, a dehumidification cooling mode, a cooling mode, and a defrosting mode in a heat pump operation using the refrigerant circuit R in an electric vehicle that cannot be heated by engine waste heat.
  • the air conditioning (priority)+battery cooling mode, the battery cooling (priority)+air conditioning mode, and the battery cooling (single) mode are switched and executed to perform air conditioning in the vehicle compartment and temperature control of the battery 55. It is a thing.
  • the cooling mode is an example of the air conditioning (single) mode in the present invention
  • the battery cooling (single) mode is an example of the temperature controlled target cooling (single) mode in the present invention.
  • an embodiment of the air conditioning (priority)+battery cooling mode in the present invention is the air conditioning (priority)+temperature controlled target cooling mode
  • battery cooling (priority)+air conditioning mode is the temperature controlled target cooling (priority)+ in the present invention. This is an example of the air conditioning mode.
  • the present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and a running motor.
  • the vehicle to which the vehicle air conditioner 1 of the embodiment is applied is one in which the battery 55 can be charged from an external charger (quick charger or normal charger). Further, the battery 55, the traveling motor, the inverter controlling the same, and the like described above are the objects of temperature adjustment mounted on the vehicle according to the present invention. In the following embodiments, the battery 55 will be described as an example.
  • the vehicle air conditioner 1 of the embodiment is for performing air conditioning (heating, cooling, dehumidification, and ventilation) of a vehicle interior of an electric vehicle, and an electric compressor 2 for compressing a refrigerant, and a vehicle interior.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 2 is provided in the air flow passage 3 of the HVAC unit 10 through which air is ventilated and circulated, flows through the muffler 5 and the refrigerant pipe 13G, and radiates this refrigerant into the vehicle interior.
  • the radiator 4 (releasing the heat of the refrigerant), the outdoor expansion valve 6 including a motor-operated valve (electronic expansion valve) that decompresses and expands the refrigerant during heating, the radiator that radiates the refrigerant during cooling, and the refrigerant during heating
  • An outdoor heat exchanger 7 for exchanging heat between the refrigerant and the outside air so as to function as an evaporator that absorbs heat (absorbs heat into the refrigerant)
  • an indoor expansion valve 8 including a mechanical expansion valve for decompressing and expanding the refrigerant.
  • a heat absorber 9 as an evaporator that is provided in the air flow passage 3 to absorb (evaporate) the refrigerant from the inside and outside of the vehicle during cooling and dehumidifying, and an accumulator 12 and the like are sequentially connected by a refrigerant pipe 13 to form a refrigerant circuit.
  • R is configured.
  • the outdoor expansion valve 6 decompresses and expands the refrigerant flowing out of the radiator 4 and flowing into the outdoor heat exchanger 7, and can be fully closed. Further, in the embodiment, the indoor expansion valve 8 using a mechanical expansion valve decompresses and expands the refrigerant flowing into the heat absorber 9, and adjusts the degree of superheat of the refrigerant in the heat absorber 9.
  • the outdoor heat exchanger 7 is provided with an outdoor blower 15.
  • the outdoor blower 15 exchanges heat between the outdoor air and the refrigerant by forcibly ventilating the outdoor air through the outdoor heat exchanger 7, whereby the outdoor air is discharged even while the vehicle is stopped (that is, the vehicle speed is 0 km/h).
  • the heat exchanger 7 is configured to ventilate outside air.
  • the outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 sequentially on the refrigerant downstream side, and the refrigerant pipe 13A on the refrigerant outlet side of the outdoor heat exchanger 7 is used when the refrigerant flows to the heat absorber 9.
  • the refrigerant pipe 13B on the outlet side of the supercooling unit 16 is connected to the receiver dryer unit 14 via an electromagnetic valve 17 (for cooling) as an open/close valve, and the check valve 18, the indoor expansion valve 8 and the heat absorption It is connected to the refrigerant inlet side of the heat absorber 9 through an electromagnetic valve 35 (for cabin) as a device valve device in order.
  • the receiver dryer unit 14 and the supercooling unit 16 structurally form a part of the outdoor heat exchanger 7.
  • the check valve 18 is configured such that the direction of the indoor expansion valve 8 is the forward direction.
  • the indoor expansion valve 8 and the solenoid valve 35 are expansion valves with solenoid valves.
  • the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched into a refrigerant pipe 13D, and the branched refrigerant pipe 13D is passed through an electromagnetic valve 21 (for heating) as an opening/closing valve opened during heating. It is connected to the refrigerant pipe 13C on the refrigerant outlet side of the heat absorber 9 so as to communicate therewith.
  • the refrigerant pipe 13C is connected to the inlet side of the accumulator 12, and the outlet side of the accumulator 12 is connected to the refrigerant pipe 13K on the refrigerant suction side of the compressor 2.
  • a strainer 19 is connected to the refrigerant pipe 13E on the refrigerant outlet side of the radiator 4, and this refrigerant pipe 13E is connected to the refrigerant pipes 13J and 13F before the outdoor expansion valve 6 (refrigerant upstream side).
  • One of the branched and branched refrigerant pipes 13J is connected to the refrigerant inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.
  • the other branched refrigerant pipe 13F is connected to the refrigerant downstream side of the check valve 18 and the refrigerant upstream side of the indoor expansion valve 8 via an electromagnetic valve 22 (for dehumidification) as an opening/closing valve that is opened during dehumidification. It is connected to the located refrigerant pipe 13B.
  • the refrigerant pipe 13F is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve 18, and the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve are connected. It becomes a bypass circuit that bypasses 18. Further, a solenoid valve 20 as an opening/closing valve for bypass is connected in parallel to the outdoor expansion valve 6.
  • the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with respective intake ports of an outside air intake port and an inside air intake port (represented by the intake port 25 in FIG. 1).
  • a suction switching damper 26 is provided at 25 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation) which is the air inside the vehicle compartment and the outside air (outside air introduction) which is the air outside the vehicle compartment.
  • an indoor blower (blower fan) 27 for feeding the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26, an indoor blower (blower fan) 27 for feeding the introduced inside air or outside air to the air flow passage 3 is provided.
  • the intake switching damper 26 of the embodiment opens and closes the outside air intake port and the inside air intake port of the intake port 25 at an arbitrary ratio to reduce the ratio of the outside air and the inside air flowing into the heat absorber 9 of the air flow passage 3 to 0. It is configured so that it can be adjusted between 100% and 100%.
  • the inside/outside air ratio RECrate means the ratio of inside air to the air flowing into the heat absorber 9 of the air flow passage 3.
  • an auxiliary heater 23 as an auxiliary heating device including a PTC heater (electric heater) is provided in the embodiment, and passes through the radiator 4. It is possible to heat the air supplied to the passenger compartment. Further, in the air flow passage 3 on the air upstream side of the radiator 4, the air (inside air or outside air) flowing into the air flow passage 3 and passing through the heat absorber 9 is radiated. An air mix damper 28 that adjusts the ratio of ventilation to the device 4 and the auxiliary heater 23 is provided.
  • blower outlet 29 is provided with blower outlet switching dampers 31 for controlling the blowout of air from the blower outlets.
  • the vehicle air conditioner 1 includes an equipment temperature adjusting device 61 for adjusting the temperature of the battery 55 by circulating a heat medium in the battery 55 (object to be temperature adjusted).
  • a device temperature adjusting device 61 of the embodiment includes a circulation pump 62 as a circulating device for circulating a heat medium in the battery 55, and a refrigerant-heat medium heat exchanger as a heat exchanger for a temperature-controlled object which is an evaporator. 64 and a heat medium heater 63 as a heating device, and the battery 55 and the battery 55 are annularly connected by a heat medium pipe 66.
  • the inlet of the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64 is connected to the discharge side of the circulation pump 62, and the outlet of this heat medium passage 64A is connected to the inlet of the heat medium heater 63.
  • the outlet of the heat medium heating heater 63 is connected to the inlet of the battery 55, and the outlet of the battery 55 is connected to the suction side of the circulation pump 62.
  • the heat medium used in the device temperature adjusting device 61 for example, water, a refrigerant such as HFO-1234yf, a liquid such as coolant, or a gas such as air can be adopted.
  • water is used as the heat medium.
  • the heat medium heating heater 63 is composed of an electric heater such as a PTC heater. Further, it is assumed that a jacket structure is provided around the battery 55 so that a heat medium can flow in a heat exchange relationship with the battery 55, for example.
  • the heat medium discharged from the circulation pump 62 flows into the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64.
  • the heat medium exiting the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heating heater 63, and if the heat medium heating heater 63 is generating heat, the heat medium heating heater 63 is heated there, and then the battery. 55, where the heat medium exchanges heat with the battery 55.
  • the heat medium that has exchanged heat with the battery 55 is sucked into the circulation pump 62 and circulated in the heat medium pipe 66.
  • a branch pipe 67 as a branch circuit is provided in the refrigerant pipe 13B located on the refrigerant downstream side of the connecting portion between the refrigerant pipe 13F and the refrigerant pipe 13B of the refrigerant circuit R and on the refrigerant upstream side of the indoor expansion valve 8.
  • auxiliary expansion valve 68 which is a mechanical expansion valve in the embodiment, and an electromagnetic valve (for chiller) 69 as a valve device for the temperature-controlled object are sequentially provided.
  • the auxiliary expansion valve 68 decompresses and expands the refrigerant flowing into the later-described refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64, and adjusts the degree of superheat of the refrigerant in the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64.
  • the auxiliary expansion valve 68 and the solenoid valve 69 are also expansion valves with solenoid valves.
  • the other end of the branch pipe 67 is connected to the refrigerant flow passage 64B of the refrigerant-heat medium heat exchanger 64, and one end of the refrigerant pipe 71 is connected to the outlet of the refrigerant flow passage 64B.
  • the other end is connected to the refrigerant pipe 13C on the refrigerant upstream side (refrigerant upstream side of the accumulator 12) from the confluence with the refrigerant pipe 13D.
  • the auxiliary expansion valve 68, the electromagnetic valve 69, the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, and the like also form a part of the refrigerant circuit R and, at the same time, a part of the device temperature adjusting device 61. It will be.
  • the solenoid valve 69 When the solenoid valve 69 is open, the refrigerant (a part or all of the refrigerant) discharged from the outdoor heat exchanger 7 flows into the branch pipe 67, the pressure is reduced by the auxiliary expansion valve 68, and then the refrigerant is passed through the solenoid valve 69. -The refrigerant flows into the refrigerant channel 64B of the heat medium heat exchanger 64 and evaporates there. The refrigerant absorbs heat from the heat medium flowing through the heat medium passage 64A in the process of flowing through the refrigerant passage 64B, and then is sucked into the compressor 2 through the refrigerant pipe 13K through the refrigerant pipe 71, the refrigerant pipe 13C, and the accumulator 12.
  • FIG. 2 shows a block diagram of the control device 11 of the vehicle air conditioner 1 of the embodiment.
  • the control device 11 includes an air-conditioning controller 45 and a heat pump controller 32 each of which includes a microcomputer, which is an example of a computer including a processor, and these include a CAN (Controller Area Network) and a LIN (Local Interconnect Network). Is connected to the vehicle communication bus 65 that constitutes the. Further, the compressor 2 and the auxiliary heater 23, the circulation pump 62 and the heat medium heating heater 63 are also connected to the vehicle communication bus 65, and the air conditioning controller 45, the heat pump controller 32, the compressor 2, the auxiliary heater 23, the circulation pump 62 and the heat generator. The medium heater 63 is configured to send and receive data via the vehicle communication bus 65.
  • the vehicle communication bus 65 includes a vehicle controller 72 (ECU) that controls the entire vehicle including traveling, a battery controller (BMS: Battery Management System) 73 that controls the charging and discharging of the battery 55, and a GPS navigation device 74.
  • the vehicle controller 72, the battery controller 73, and the GPS navigation device 74 are also configured by a microcomputer that is an example of a computer including a processor.
  • the air conditioning controller 45 and the heat pump controller 32 that configure the control device 11 connect the vehicle communication bus 65 to each other. Information (data) is transmitted/received to/from the vehicle controller 72, the battery controller 73, and the GPS navigation device 74 via these.
  • the air conditioning controller 45 is a higher-level controller that controls the vehicle interior air conditioning.
  • the inputs of the air conditioning controller 45 are an outside air temperature sensor 33 that detects the outside air temperature Tam of the vehicle and an outside air humidity that detects outside air humidity.
  • a sensor 34 an HVAC suction temperature sensor 36 for detecting the temperature of the air sucked into the air flow passage 3 from the suction port 25 and flowing into the heat absorber 9, and an inside air temperature for detecting the air temperature (inside air temperature Tin) in the vehicle interior.
  • An air conditioning operation unit 53 for performing an air conditioning setting operation in the vehicle interior such as temperature and operation mode switching and displaying information is connected.
  • 53A in the figure is a display as a display output device provided in the air conditioning operation unit 53.
  • the output of the air conditioning controller 45 is connected to the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, and the outlet switching damper 31, which are connected to the air conditioning controller 45. Controlled by.
  • the heat pump controller 32 is a controller that mainly controls the refrigerant circuit R, and the heat pump controller 32 has an input that radiates heat to detect the refrigerant inlet temperature Tcxin of the radiator 4 (which is also the refrigerant temperature discharged from the compressor 2 ).
  • Radiator pressure sensor 47 for detecting the refrigerant pressure (pressure of radiator 4; radiator pressure Pci), and heat absorber temperature sensor for detecting temperature of heat absorber 9 (refrigerant temperature of heat absorber 9: heat absorber temperature Te) 48, an outdoor heat exchanger temperature sensor 49 for detecting the refrigerant temperature at the outlet of the outdoor heat exchanger 7 (refrigerant evaporation temperature of the outdoor heat exchanger 7: outdoor heat exchanger temperature TXO), and the temperature of the auxiliary heater 23.
  • Outputs of the auxiliary heater temperature sensors 50A (driver's seat side) and 50B (passenger seat side) are connected.
  • the output of the heat pump controller 32 includes the outdoor expansion valve 6, the solenoid valve 22 (for dehumidification), the solenoid valve 17 (for cooling), the solenoid valve 21 (for heating), the solenoid valve 20 (for bypass), and the solenoid valve 35.
  • the electromagnetic valves (for the cabin) and the electromagnetic valve 69 (for the chiller) are connected, and they are controlled by the heat pump controller 32.
  • the compressor 2, the auxiliary heater 23, the circulation pump 62, and the heat medium heating heater 63 each have a built-in controller, and in the embodiment, the controller of the compressor 2, the auxiliary heater 23, the circulation pump 62, and the heat medium heating heater 63. Transmits and receives data to and from the heat pump controller 32 via the vehicle communication bus 65, and is controlled by the heat pump controller 32.
  • the circulation pump 62 and the heat medium heating heater 63 that form the device temperature adjusting device 61 may be controlled by the battery controller 73.
  • the battery controller 73 includes a heat medium temperature sensor 76 for detecting the temperature (heat medium temperature Tw) of the heat medium on the inlet side of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 of the device temperature adjusting device 61.
  • a battery temperature sensor 77 that detects the temperature of the battery 55 (temperature of the battery 55 itself: battery temperature Tcell).
  • the remaining amount of the battery 55 (the amount of stored electricity), the information on the charging of the battery 55 (the information that the battery is being charged, the charging completion time, the remaining charging time, etc.), the heat medium temperature Tw, the battery temperature Tcell, and the battery
  • the amount of heat generated by 55 (calculated by the battery controller 73 from the amount of energization) is transmitted from the battery controller 73 to the air conditioning controller 45 and the vehicle controller 72 via the vehicle communication bus 65.
  • the information about the charging completion time and the remaining charging time when the battery 55 is charged is information supplied from an external charger such as a quick charger. Further, the output Mpower of the traveling motor is transmitted from the vehicle controller 72 to the heat pump controller 32 and the air conditioning controller 45.
  • the heat pump controller 32 and the air conditioning controller 45 send and receive data to and from each other via the vehicle communication bus 65, and control each device based on the output of each sensor and the setting input by the air conditioning operation unit 53.
  • the voltage (BLV) of 27, the information from the battery controller 73, the information from the GPS navigation device 74, and the output of the air conditioning operation unit 53 are transmitted from the air conditioning controller 45 to the heat pump controller 32 via the vehicle communication bus 65, and the heat pump It is configured to be used for control by the controller 32.
  • the heat pump controller 32 also transmits data (information) regarding the control of the refrigerant circuit R to the air conditioning controller 45 via the vehicle communication bus 65.
  • the control device 11 controls the heating mode, the dehumidification heating mode, the dehumidification cooling mode, the cooling mode, and the air conditioning (priority)+battery cooling mode, and the battery cooling.
  • Each battery cooling operation of (priority)+air conditioning mode and battery cooling (single) mode and defrosting mode are switched and executed. These are shown in FIG.
  • the battery 55 is not charged in the embodiment, and the ignition of the vehicle is performed. This is executed when (IGN) is turned on and the air conditioning switch of the air conditioning operating unit 53 is turned on. However, it is executed even when the ignition is OFF during remote operation (pre-air conditioning, etc.). Further, even when the battery 55 is being charged, there is no battery cooling request, and the process is executed when the air conditioning switch is ON.
  • each battery cooling operation in the battery cooling (priority)+air conditioning mode and the battery cooling (single) mode is executed, for example, when the plug of the quick charger (external power source) is connected and the battery 55 is being charged. It is something.
  • the battery cooling (single) mode is executed when the air conditioning switch is OFF and there is a battery cooling request (such as when traveling at a high outside temperature) other than during charging of the battery 55.
  • the heat pump controller 32 operates the circulation pump 62 of the device temperature adjusting device 61 when the ignition is turned on, or when the battery 55 is being charged even when the ignition is turned off. It is assumed that the heat medium is circulated in the heat medium pipe 66 as indicated by broken lines in FIGS. 4 to 10. Further, although not shown in FIG. 3, the heat pump controller 32 of the embodiment also executes a battery heating mode for heating the battery 55 by causing the heat medium heating heater 63 of the device temperature adjusting device 61 to generate heat.
  • FIG. 4 shows how the refrigerant flows in the refrigerant circuit R in the heating mode (solid arrow).
  • the heat pump controller 32 opens the solenoid valve 21 and the solenoid valve 17 , The solenoid valve 20, the solenoid valve 22, the solenoid valve 35, and the solenoid valve 69 are closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air and condensed and liquefied.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4, and then reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15 (heat absorption). That is, the refrigerant circuit R serves as a heat pump.
  • the low-temperature refrigerant that has exited the outdoor heat exchanger 7 reaches the refrigerant pipe 13C via the refrigerant pipes 13A and 13D, the solenoid valve 21, and further enters the accumulator 12 via this refrigerant pipe 13C, where it is gas-liquid separated.
  • the circulation of sucking the gas refrigerant into the compressor 2 from the refrigerant pipe 13K is repeated.
  • the air heated by the radiator 4 is blown out from the air outlet 29, so that the interior of the vehicle is heated.
  • the heat pump controller 32 calculates a target heater temperature TCO (of the radiator 4) calculated from a target outlet temperature TAO, which will be described later, which is a target temperature of air blown into the vehicle interior (a target value of the temperature of air blown into the vehicle interior).
  • the target radiator pressure PCO is calculated from the target temperature), and the rotational speed of the compressor 2 is based on the target radiator pressure PCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47.
  • the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. As a result, the vehicle interior is heated without any trouble even when the outside temperature is low.
  • FIG. 5 shows how the refrigerant flows in the refrigerant circuit R in the dehumidifying and heating mode (solid arrow).
  • the heat pump controller 32 opens the solenoid valve 21, the solenoid valve 22, and the solenoid valve 35, and closes the solenoid valve 17, the solenoid valve 20, and the solenoid valve 69.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air and condensed and liquefied.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4, a part of it enters the refrigerant pipe 13J through the refrigerant pipe 13E and reaches the outdoor expansion valve 6.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15 (heat absorption).
  • the low-temperature refrigerant that has exited the outdoor heat exchanger 7 reaches the refrigerant pipe 13C via the refrigerant pipes 13A and 13D and the solenoid valve 21, enters the accumulator 12 via this refrigerant pipe 13C, and is separated into gas and liquid there. After that, the circulation in which the gas refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K is repeated.
  • the rest of the condensed refrigerant flowing through the radiator pipe 13E via the radiator 4 is diverted, and the diverted refrigerant flows into the refrigerant pipe 13F via the solenoid valve 22 and reaches the refrigerant pipe 13B.
  • the refrigerant reaches the indoor expansion valve 8, is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates.
  • the water in the air blown from the indoor blower 27 is condensed and attached to the heat absorber 9 due to the heat absorbing action of the refrigerant generated in the heat absorber 9, so that the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 flows out to the refrigerant pipe 13C, joins the refrigerant from the refrigerant pipe 13D (refrigerant from the outdoor heat exchanger 7), and then is sucked into the compressor 2 from the refrigerant pipe 13K via the accumulator 12. Repeat the cycle.
  • the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4 and the auxiliary heater 23 (when heat is generated), so that dehumidification and heating of the vehicle interior is performed.
  • the heat pump controller 32 rotates the compressor 2 based on the target radiator pressure PCO calculated from the target heater temperature TCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. Number, or controls the number of revolutions of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is its target value. .. At this time, the heat pump controller 32 selects the lower one of the compressor target rotation speeds (the lower one of TGNCh and TGNCc described later) obtained from either calculation depending on the radiator pressure Pci or the heat absorber temperature Te. To control the compressor 2. Further, the valve opening degree of the outdoor expansion valve 6 is controlled based on the heat absorber temperature Te.
  • the heat pump controller 32 complements the shortage with the heat generated by the auxiliary heater 23. .. As a result, the vehicle interior is dehumidified and heated even when the outside temperature is low.
  • FIG. 6 shows how the refrigerant flows in the refrigerant circuit R in the dehumidifying and cooling mode (solid arrow).
  • the heat pump controller 32 opens the solenoid valve 17 and the solenoid valve 35, and closes the solenoid valve 20, the solenoid valve 21, the solenoid valve 22, and the solenoid valve 69.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by air, and is condensed and liquefied.
  • the refrigerant exiting the radiator 4 reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J, and then passes through the outdoor expansion valve 6 controlled to open more (a region of a larger valve opening) than the heating mode or the dehumidifying and heating mode. It flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 is condensed by being cooled there by traveling or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant discharged from the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the electromagnetic valve 17, the receiver dryer unit 14, and the supercooling unit 16, and reaches the indoor expansion valve 8 via the check valve 18.
  • the refrigerant is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates. Due to the heat absorbing action at this time, the moisture in the air blown out from the indoor blower 27 is condensed and attached to the heat absorber 9, and the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is repeatedly circulated by being sucked into the compressor 2 from the refrigerant pipe 13K via the refrigerant pipe 13C.
  • the air cooled and dehumidified by the heat absorber 9 is reheated (has a lower heating capacity than that during dehumidification heating) in the process of passing through the radiator 4 and the auxiliary heater 23 (when heat is generated). As a result, the dehumidifying and cooling of the vehicle interior is performed.
  • the heat pump controller 32 absorbs heat based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is the target temperature of the heat absorber 9 (target value of the heat absorber temperature Te).
  • the rotation speed of the compressor 2 is controlled so that the device temperature Te becomes the target heat absorber temperature TEO, and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47 and the target radiator pressure PCO.
  • the reheat amount required by the radiator 4 (reheating) Amount Based on (the target value of the radiator pressure Pci), by controlling the valve opening of the outdoor expansion valve 6 so that the radiator pressure Pci becomes the target radiator pressure PCO, the reheat amount required by the radiator 4 (reheating) Amount).
  • the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. To do. As a result, dehumidifying and cooling are performed without excessively reducing the temperature inside the vehicle compartment.
  • FIG. 7 shows how the refrigerant flows in the refrigerant circuit R in the cooling mode (solid arrow).
  • the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, and the solenoid valve 35, and closes the solenoid valve 21, the solenoid valve 22, and the solenoid valve 69.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the auxiliary heater 23 is not energized.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the airflow passage 3 is ventilated through the radiator 4, since the proportion thereof is small (only for reheating (reheating) during cooling), it almost only passes through here, and the radiator 4
  • the discharged refrigerant reaches the refrigerant pipe 13J through the refrigerant pipe 13E.
  • the electromagnetic valve 20 is opened, the refrigerant passes through the electromagnetic valve 20 and flows into the outdoor heat exchanger 7 as it is, and is cooled by the traveling air or the outside air ventilated by the outdoor blower 15 to be condensed and liquefied. To do.
  • the refrigerant discharged from the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16, and reaches the indoor expansion valve 8 via the check valve 18.
  • the refrigerant is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates. Due to the heat absorbing action at this time, the air blown out from the indoor blower 27 and exchanging heat with the heat absorber 9 is cooled.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is sucked into the compressor 2 via the refrigerant pipe 13K.
  • the air cooled by the heat absorber 9 is blown into the vehicle interior from the air outlet 29, so that the vehicle interior is cooled.
  • the heat pump controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • Air conditioning (priority) + battery cooling mode air conditioning (priority) + temperature controlled cooling mode
  • the air conditioning (priority)+battery cooling mode will be described with reference to FIG. FIG. 8 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in the air conditioning (priority)+battery cooling mode.
  • the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, the solenoid valve 35, and the solenoid valve 69, and closes the solenoid valves 21 and 22.
  • the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the auxiliary heater 23 is not energized in this operation mode.
  • the heat medium heater 63 is not energized.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the airflow passage 3 is ventilated through the radiator 4, since the proportion thereof is small (only for reheating (reheating) during cooling), it almost only passes through here, and the radiator 4
  • the discharged refrigerant reaches the refrigerant pipe 13J through the refrigerant pipe 13E.
  • the electromagnetic valve 20 is opened, the refrigerant passes through the electromagnetic valve 20 and flows into the outdoor heat exchanger 7 as it is, and is cooled by the traveling air or the outside air ventilated by the outdoor blower 15 to be condensed and liquefied. To do.
  • the refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16.
  • the refrigerant flowing into the refrigerant pipe 13B is split after passing through the check valve 18, and one of the refrigerant flows through the refrigerant pipe 13B as it is to reach the indoor expansion valve 8.
  • the refrigerant flowing into the indoor expansion valve 8 is decompressed there, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates. Due to the heat absorbing action at this time, the air blown out from the indoor blower 27 and exchanging heat with the heat absorber 9 is cooled.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is sucked into the compressor 2 via the refrigerant pipe 13K.
  • the air cooled by the heat absorber 9 is blown into the vehicle interior from the air outlet 29, so that the vehicle interior is cooled.
  • the rest of the refrigerant that has passed through the check valve 18 is split, flows into the branch pipe 67, and reaches the auxiliary expansion valve 68.
  • the refrigerant is decompressed, then flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 via the electromagnetic valve 69, and evaporates there. At this time, it exerts an endothermic effect.
  • the refrigerant evaporated in the refrigerant flow path 64B repeats the circulation in which the refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K through the refrigerant pipe 71, the refrigerant pipe 13C and the accumulator 12 in sequence (indicated by a solid arrow in FIG. 8).
  • the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 66, and the refrigerant flow passage is there.
  • the heat medium exchanges heat with the refrigerant that evaporates in 64B and absorbs heat to cool the heat medium.
  • the heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heater 63.
  • the heat medium heater 63 does not generate heat in this operation mode, the heat medium passes through as it is to the battery 55 and exchanges heat with the battery 55. As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 is repeatedly circulated by being sucked into the circulation pump 62 (indicated by a dashed arrow in FIG. 8 ).
  • the heat pump controller 32 maintains the electromagnetic valve 35 in the open state, and will be described later based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • the rotation speed of the compressor 2 is controlled as described above.
  • the solenoid valve 69 is controlled to open/close as follows based on the temperature of the heat medium detected by the heat medium temperature sensor 76 (heat medium temperature Tw: transmitted from the battery controller 73).
  • the heat medium temperature Tw is used as an index indicating the temperature of the battery 55 to be temperature-controlled in the embodiment (hereinafter the same).
  • the heat pump controller 32 sets an upper limit value TUL and a lower limit value TLL with a predetermined temperature difference above and below a predetermined target heat medium temperature TWO as a target value of the heat medium temperature Tw. Then, when the heat medium temperature Tw increases due to heat generation of the battery 55 or the like from the state where the solenoid valve 69 is closed and rises to the upper limit value TUL (when it exceeds the upper limit value TUL or becomes equal to or more than the upper limit value TUL). In the following case, the same), the solenoid valve 69 is opened.
  • the refrigerant flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 and evaporates to cool the heat medium flowing through the heat medium channel 64A, so that the battery 55 is cooled by the cooled heat medium. To be done.
  • the solenoid valve 69 is closed. After that, the solenoid valve 69 is repeatedly opened and closed as described above to control the heat medium temperature Tw to the target heat medium temperature TWO while prioritizing the cooling of the vehicle compartment, and the battery 55 is cooled.
  • the heat pump controller 32 calculates the above-mentioned target outlet temperature TAO from the following formula (I).
  • This target outlet temperature TAO is a target value of the temperature of the air blown into the vehicle compartment from the outlet 29.
  • TAO (Tset-Tin) ⁇ K+Tbal(f(Tset, SUN, Tam)) ..(I)
  • Tset is the set temperature in the vehicle compartment set by the air conditioning operation unit 53
  • Tin is the temperature of the vehicle interior air detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is the set temperature Tset
  • the solar radiation sensor 51 detects the temperature.
  • the target outlet temperature TAO is higher as the outside air temperature Tam is lower, and is decreased as the outside air temperature Tam is increased.
  • the heat pump controller 32 selects one of the above air conditioning operations based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target outlet temperature TAO at the time of startup.
  • the target outlet temperature TAO in response to operating conditions such as the outside air temperature Tam, the target outlet temperature TAO, the heat medium temperature Tw and the battery temperature Tcell, environmental conditions, changes in setting conditions, and a battery cooling request (mode transition request) from the battery controller 73.
  • the air conditioning operation is selected and switched.
  • Battery cooling (priority) + air conditioning mode (cooling subject to temperature adjustment (priority) + air conditioning mode)
  • the operation during charging of the battery 55 will be described. For example, when the plug for charging a quick charger (external power source) is connected and the battery 55 is being charged (these information is transmitted from the battery controller 73), the ignition (IGN) of the vehicle is turned on/off. Regardless of the above, if there is a battery cooling request and the air conditioning switch of the air conditioning operation unit 53 is turned on, the heat pump controller 32 executes battery cooling (priority)+air conditioning mode. The way the refrigerant flows in the refrigerant circuit R in the battery cooling (priority)+air conditioning mode is the same as in the air conditioning (priority)+battery cooling mode shown in FIG.
  • the heat pump controller 32 keeps the electromagnetic valve 69 open, and the heat detected by the heat medium temperature sensor 76 (transmitted from the battery controller 73) is detected.
  • the rotation speed of the compressor 2 is controlled based on the medium temperature Tw as described later.
  • the solenoid valve 35 is controlled to open and close as follows based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • the heat pump controller 32 sets an upper limit value TeUL and a lower limit value TeLL with a predetermined temperature difference above and below a predetermined target heat sink temperature TEO as a target value of the heat sink temperature Te. Then, when the heat absorber temperature Te rises from the state where the solenoid valve 35 is closed and rises to the upper limit value TeUL (when it exceeds the upper limit value TeUL or becomes equal to or higher than the upper limit value TeUL. The same applies hereinafter). , The solenoid valve 35 is opened. As a result, the refrigerant flows into the heat absorber 9 and evaporates to cool the air flowing through the air flow passage 3.
  • the solenoid valve 35 is closed. Thereafter, such opening/closing of the electromagnetic valve 35 is repeated to give priority to the cooling of the battery 55, and the heat absorber temperature Te is controlled to the target heat absorber temperature TEO to cool the vehicle interior.
  • Battery cooling (independent) mode controlled cooling target (independent) mode
  • the heat pump controller 32 executes the battery cooling (single) mode. However, it is executed when the air conditioning switch is OFF and there is a battery cooling request (eg, when traveling at a high outside air temperature) other than during charging of the battery 55.
  • FIG. 9 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in the battery cooling (single) mode.
  • the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, and the solenoid valve 69, and closes the solenoid valve 21, the solenoid valve 22, and the solenoid valve 35.
  • the compressor 2 and the outdoor blower 15 are operated.
  • the indoor blower 27 is not operated and the auxiliary heater 23 is not energized. Further, the heat medium heater 63 is not energized in this operation mode.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is not ventilated to the radiator 4, it passes only here, and the refrigerant exiting the radiator 4 reaches the refrigerant pipe 13J via the refrigerant pipe 13E. At this time, since the electromagnetic valve 20 is open, the refrigerant passes through the electromagnetic valve 20, flows into the outdoor heat exchanger 7 as it is, and is cooled by air by the outside air ventilated by the outdoor blower 15 to be condensed and liquefied.
  • the refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16. After passing through the check valve 18, all of the refrigerant flowing into the refrigerant pipe 13B flows into the branch pipe 67 and reaches the auxiliary expansion valve 68. Here, the refrigerant is decompressed, then flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 via the electromagnetic valve 69, and evaporates there. At this time, it exerts an endothermic effect.
  • the refrigerant evaporated in the refrigerant flow path 64B repeats the circulation in which the refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K through the refrigerant pipe 71, the refrigerant pipe 13C and the accumulator 12 in sequence (shown by a solid arrow in FIG. 9).
  • the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 66, and the refrigerant flow passage is there.
  • the heat medium is cooled by being absorbed by the refrigerant evaporated in 64B.
  • the heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heater 63.
  • the heat medium heater 63 does not generate heat in this operation mode, the heat medium passes through as it is to the battery 55 and exchanges heat with the battery 55. As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 is repeatedly circulated by being sucked into the circulation pump 62 (shown by a dashed arrow in FIG. 9 ).
  • the heat pump controller 32 cools the battery 55 by controlling the rotation speed of the compressor 2 as described later based on the heat medium temperature Tw detected by the heat medium temperature sensor 76.
  • FIG. 10 shows how the refrigerant flows in the refrigerant circuit R in the defrosting mode (solid arrow).
  • the refrigerant evaporates in the outdoor heat exchanger 7 and absorbs heat from the outside air to reach a low temperature, so that the moisture in the outside air adheres to the outside heat exchanger 7 as frost.
  • the heat pump controller 32 puts the refrigerant circuit R into the heating mode described above and fully opens the outdoor expansion valve 6. Then, the compressor 2 is operated, the high-temperature refrigerant discharged from the compressor 2 is caused to flow into the outdoor heat exchanger 7 via the radiator 4 and the outdoor expansion valve 6, and the frost formation on the outdoor heat exchanger 7 is prevented. Thaw ( Figure 10). Then, the heat pump controller 32 defrosts the outdoor heat exchanger 7 when the outdoor heat exchanger temperature TXO detected by the outdoor heat exchanger temperature sensor 49 becomes higher than a predetermined defrosting end temperature (for example, +3° C.). Is completed and the defrosting mode is terminated.
  • a predetermined defrosting end temperature for example, +3° C.
  • the heat pump controller 32 executes the battery heating mode when the air conditioning operation is executed or when the battery 55 is charged. In this battery heating mode, the heat pump controller 32 operates the circulation pump 62 and energizes the heat medium heating heater 63. The solenoid valve 69 is closed.
  • the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 through the heat medium pipe 66, and passes therethrough to reach the heat medium heater 63.
  • the heat medium heating heater 63 is generating heat, the heat medium is heated by the heat medium heating heater 63 and its temperature rises, and then reaches the battery 55 and exchanges heat with the battery 55. Thereby, the battery 55 is heated, and the heat medium after heating the battery 55 is sucked into the circulation pump 62 and repeats circulation.
  • the heat pump controller 32 controls the energization of the heat medium heating heater 63 based on the heat medium temperature Tw detected by the heat medium temperature sensor 76 to set the heat medium temperature Tw to the predetermined target heat medium temperature. Adjust to TWO and heat battery 55.
  • the target rotation speed of the compressor 2 (compressor target rotation speed) TGNCcb is calculated based on the heat medium temperature Tw by the control block diagram of FIG. To do.
  • FIG. 11 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCh of the compressor 2 based on the radiator pressure Pci.
  • the F/F operation amount TGNChff of the compressor target rotation speed is calculated.
  • the heater temperature Thp is the air temperature (estimated value) on the leeward side of the radiator 4, and the radiator pressure Pci detected by the radiator pressure sensor 47 and the refrigerant outlet of the radiator 4 detected by the radiator outlet temperature sensor 44. It is calculated (estimated) from the temperature Tci.
  • the degree of supercooling SC is calculated from the refrigerant inlet temperature Tcxin and the refrigerant outlet temperature Tci of the radiator 4 detected by the radiator inlet temperature sensor 43 and the radiator outlet temperature sensor 44.
  • the target radiator pressure PCO is calculated by the target value calculation unit 79 based on the target supercooling degree TGSC and the target heater temperature TCO. Further, the F/B (feedback) manipulated variable calculation unit 81 calculates the F/B manipulated variable TGNChfb of the compressor target rotational speed by PID calculation or PI calculation based on the target radiator pressure PCO and the radiator pressure Pci. Then, the F/F operation amount TGNChff calculated by the F/F operation amount calculation unit 78 and the F/B operation amount TGNChfb calculated by the F/B operation amount calculation unit 81 are added by the adder 82 to obtain a limit setting unit as TGNCh00. 83 is input.
  • the control lower limit speed ECNpdLimLo and the upper limit speed ECNpdLimHi are set to TGNCh0, and then the compressor OFF control unit 84 is used to determine the target compressor speed TGNCh.
  • the heat pump controller 32 controls the operation of the compressor 2 by the compressor target rotation speed TGNCh calculated based on the radiator pressure Pci.
  • the compressor OFF control unit 84 determines that the compressor target rotation speed TGNCh becomes the above-described lower limit rotation speed ECNpdLimLo, and the radiator pressure Pci is the predetermined upper limit value PUL and lower limit value PLL set above and below the target radiator pressure PCO. If the state of rising to the upper limit value PUL (a state of exceeding the upper limit value PUL, or a state of becoming equal to or more than the upper limit value PUL. The same applies hereinafter) continues for a predetermined time th1, the compressor 2 is stopped and compression is performed. The machine enters the ON-OFF mode that controls the ON-OFF of the machine 2.
  • the compressor 2 In the ON-OFF mode of the compressor 2, when the radiator pressure Pci drops to the lower limit value PLL (when it falls below the lower limit value PLL or becomes less than or equal to the lower limit value PLL.
  • the compressor 2 is started to operate the compressor target rotation speed TGNCh as the lower limit rotation speed ECNpdLimLo, and when the radiator pressure Pci rises to the upper limit value PUL in that state, the compressor 2 is stopped again. That is, the operation (ON) and the stop (OFF) of the compressor 2 at the lower limit rotation speed ECNpdLimLo are repeated.
  • the compressor 2 When the radiator pressure Pci decreases to the lower limit value PUL and the compressor 2 is started, and the radiator pressure Pci does not become higher than the lower limit value PUL for a predetermined time th2, the compressor 2 is turned on and off. Is completed and the normal mode is restored.
  • FIG. 12 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCc of the compressor 2 based on the heat absorber temperature Te.
  • the F/F (feed forward) operation amount calculation unit 86 of the heat pump controller 32 determines the outside air temperature Tam, the air volume Ga of the air flowing through the air flow passage 3 (the blower voltage BLV of the indoor blower 27 may be used), and the heat absorber temperature.
  • the F/F operation amount (feedforward operation amount) TGNCcff0 of the compressor target rotation speed is calculated based on the target heat absorber temperature TEO which is the target value of Te.
  • a predetermined correction value TGNCchos is added by the adder 101 to the F/F operation amount TGNCcff0 calculated by the F/F operation amount calculation unit 86, and then the F/F operation amount TGNCcff is determined.
  • the correction value TGNCchos will be described in detail later.
  • the F/B manipulated variable calculation unit 87 calculates the F/B manipulated variable (feedback manipulated variable) TGNCcfb of the compressor target rotation speed by PID calculation or PI calculation based on the target heat absorber temperature TEO and the heat absorber temperature Te. Then, the F/F manipulated variable TGNCcff output from the adder 101 and the F/B manipulated variable TGNCcfb calculated by the F/B manipulated variable calculator 87 are added by the adder 88 and input to the limit setting unit 89 as TGNCc00. It
  • the lower limit speed TGNCcLimLo for control and the upper limit speed TGNCcLimHi are set to TGNCc0, and then the compressor OFF control unit 91 is used to determine the target compressor speed TGNCc.
  • the heat pump controller 32 controls the operation of the compressor 2 with the compressor target rotation speed TGNCc calculated based on the heat absorber temperature Te.
  • the compressor OFF control unit 91 determines that the compressor target rotation speed TGNCc becomes the above-described lower limit rotation speed TGNCcLimLo, and the heat absorber temperature Te is set between the upper limit value TeUL and the lower limit value TeLL set above and below the target heat absorber temperature TEO.
  • the compressor 2 is stopped and the ON-OFF mode in which the compressor 2 is ON-OFF controlled is entered.
  • the compressor 2 In the ON-OFF mode of the compressor 2 in this case, when the heat absorber temperature Te rises to the upper limit value TeUL, the compressor 2 is started and the compressor target rotation speed TGNCc is operated as the lower limit rotation speed TGNCcLimLo, and the state is maintained. When the heat absorber temperature Te has dropped to the lower limit TeLL, the compressor 2 is stopped again. That is, the operation (ON) and the stop (OFF) of the compressor 2 at the lower limit rotation speed TGNCcLimLo are repeated. Then, after the heat absorber temperature Te rises to the upper limit TeUL and the compressor 2 is started, if the heat absorber temperature Te does not become lower than the upper limit TeUL for a predetermined time tc2, the compressor 2 in this case is turned on. -Ends the OFF mode and returns to the normal mode.
  • FIG. 13 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCcb of the compressor 2 based on the heat medium temperature Tw.
  • the F/F (feed forward) operation amount calculation unit 92 of the heat pump controller 32 calculates the outside air temperature Tam, the output (%) of the outdoor blower 15, the battery temperature Tcell, and the heat medium flow rate Gw (in the device temperature adjusting device 61).
  • a predetermined correction value TGNCcbhos is added by the adder 106 to the F/F operation amount TGNCcbff0 calculated by the F/F operation amount calculation unit 92, and then determined as the F/F operation amount TGNCcbff.
  • the correction value TGNCcbhos will be described in detail later.
  • the F/B operation amount calculation unit 93 calculates the F/B operation amount (feedback operation amount) TGNCcbfb of the compressor target rotation speed by PID calculation or PI calculation based on the target heat medium temperature TWO and the heat medium temperature Tw. Then, the F/F operation amount TGNCcbff output from the adder 106 and the F/B operation amount TGNCcbfb calculated by the F/B operation amount calculation unit 93 are added by the adder 94 and input to the limit setting unit 96 as TGNCcb00. It
  • the lower limit speed TGNCcbLimLo for control and the upper limit speed TGNCcbLimHi are set to TGNCcb0, and then the compressor OFF control unit 97 is used to determine the target compressor speed TGNCcb.
  • the heat pump controller 32 controls the operation of the compressor 2 with the compressor target rotation speed TGNCcb calculated based on the heat medium temperature Tw.
  • the compressor OFF control unit 97 determines that the compressor target rotation speed TGNCcb becomes the above-described lower limit rotation speed TGNCcbLimLo, and the heat medium temperature Tw is set between the upper limit value TUL and the lower limit value TLL set above and below the target heat medium temperature TWO.
  • the compressor 2 is stopped and the ON-OFF mode for controlling the ON-OFF of the compressor 2 is entered.
  • the cooling mode (air conditioning (single) mode) and the battery cooling (single) mode (temperature controlled target cooling (single) mode) are set as the first operating state in the present invention, and air conditioning (priority)+battery
  • the cooling mode (air conditioning (priority)+controlled cooling target temperature mode) and battery cooling (priority)+air conditioning mode (cooling controlled target temperature (priority)+air conditioning mode) are the second operating states in the present invention.
  • the battery cooling (single) mode When the battery cooling (single) mode is shifted to the battery cooling (priority)+air conditioning mode, the heat exchange paths including them increase, so that the capacity (target speed) of the compressor 2 becomes insufficient. The cooling of the battery 55 is delayed, and the temperature of the air blown into the vehicle interior becomes high. In addition, when the air-conditioning (priority)+battery cooling mode is switched from the cooling mode, the temperature of the air blown into the vehicle compartment also becomes high, which causes discomfort to the user and delays the cooling of the battery 55. Come to do.
  • the heat pump controller 32 corrects the battery cooling (priority)+air conditioning mode in the direction of increasing the F/F operation amount TGNCcbff as compared with the case of the battery cooling (single) mode, and air conditioning (priority)+battery cooling.
  • the F/F operation amount TGNCcff is corrected to be larger than that in the cooling mode.
  • TGNCcbffhos1 K1 ⁇ (Tein-TEO) ⁇ Ga ⁇ Cpa ⁇ a ⁇ SW ⁇ 1.16 ..(II)
  • Tein is the temperature of the air flowing into the heat absorber 9
  • TEO is the target heat absorber temperature
  • Ga is the air volume of the air flowing through the air flow passage 3, both of which are input to the correction value computing unit 107 for cooperation.
  • K1 is a coefficient
  • Cpa is a steady specific heat of air
  • ⁇ a is a specific gravity of air
  • SW is an air volume ratio by the air mix damper 28.
  • the heat pump controller 32 calculates and estimates the temperature Tein of the air flowing into the heat absorber 9 using the following equations (III) and (IV) based on the inside/outside air ratio RECrate.
  • INTL2 is a calculation cycle (constant)
  • Tau2 is a time constant of the first-order delay
  • Tein0 is a steady value of the temperature Tein of the air flowing into the heat absorber 9 in the steady state before the first-order delay calculation
  • Teinz is flowing into the heat absorber 9. It is the previous value of the temperature of the air, which is to be maintained.
  • Tam is the outside air temperature
  • Tin is the inside air temperature
  • E1 is an adjustment error (correction term) due to the structural variation of the suction switching damper 26 and the variation of the stop position
  • H1 is the amount of heat received from the indoor blower 27 (heat generation during operation The amount by which the air is heated by the indoor blower 27: offset).
  • the correction value calculation unit 107 for cooperation calculates the correction value TGNccbhos1 for cooperation based on the difference (Tein-TEO) between the temperature Tein of the air flowing into the heat absorber 9 and the target heat absorber temperature TEO which is the target temperature of the heat absorber 9.
  • Tein-TEO the difference between the temperature Tein of the air flowing into the heat absorber 9 and the target heat absorber temperature TEO which is the target temperature of the heat absorber 9.
  • the temperature Tein of the air flowing into the heat absorber 9 is the temperature of the object to be cooled by the heat absorber 9
  • the target heat absorber temperature TEO is the target temperature of the temperature of the heat absorber 9
  • the correction value for cooperation TGNCcbhos1 is The higher the temperature Tein of the air flowing into the heat absorber 9 is higher than the target heat absorber temperature TEO, the higher the temperature.
  • the coordination correction value TGNCcbhos1 calculated by the coordination correction value calculation unit 107 is input to the switch 109.
  • the operation state determination unit 108 of this embodiment whether the vehicle air conditioner 1 is in the battery cooling (single) mode (first operation state) or battery cooling (priority)+air conditioning mode (second operation state). Is input, and in the battery cooling (single) mode, the operating state determination unit 108 switches the switch 109 to the non-correction (0) side.
  • the correction value TGNCcbhos of no correction (0) is output from the switch 109 and input to the adder 106, so that the F/F operation amount calculation unit 92 calculates the F value.
  • the /F operation amount TGNCcbff0 is not corrected and is directly input to the adder 94 as the F/F operation amount TGNCcbff.
  • the operating state determination unit 108 switches the switch 109 to the correction value for cooperation TGNCcbhos1. Therefore, in the battery cooling (priority)+air-conditioning mode, the correction value TGNCcbhos1 for cooperation is output from the switch 109 as the correction value TGNCcbhos and input to the adder 106, and is calculated by the F/F operation amount calculation unit 92. The value obtained by adding the correction value for cooperation TGNCcbhos1 to the F/F operation amount TGNCcbff0 is input to the adder 94 as the F/F operation amount TGNCcbff.
  • FIG. 14 shows the operation mode (operating state)
  • the second stage from the top shows the state of the solenoid valve 69
  • the third stage from the top shows the state of the solenoid valve 35.
  • the second stage from the bottom shows the value of the F/F manipulated variable TGNCcbff output from the adder 106
  • the bottom stage shows the change of the compressor target rotation speed TGNCcb.
  • X1 is the offset amount by the correction value for cooperation TGNCcbhos1
  • X2 is the change by the F/B operation amount TGNCcbfb calculated by the F/B operation amount calculation unit 93 after the operation mode is switched.
  • the F/F operation amount calculation unit 92 is more than in the battery cooling (single) mode (first operating state). Since the F/F operation amount TGNCcbff calculated by is corrected in the direction of increasing it, the capacity of the compressor 2 when the battery cooling (single) mode is switched to the battery cooling (priority)+air conditioning mode (compression It becomes possible to quickly solve the shortage of the machine target rotation speed TGNCcb), improve the responsiveness, and improve the reliability and the marketability.
  • the heat pump controller 32 determines the target compressor rotation speed TGNCcb based on the value obtained by adding the F/F operation amount TGNCcbff and the F/B operation amount TGNCcbfb calculated by the F/B operation amount calculation unit 93, the battery cooling is performed. After switching to (priority)+air-conditioning mode, the target compressor rotation speed TGNCcb changes in a direction in which the heat medium temperature Tw converges to the target heat medium temperature TWO without any trouble as time passes.
  • the followability of the rotation speed control of the compressor 2 based on the heat medium temperature Tw when the solenoid valve 35 is opened can be maintained, and the responsiveness of the vehicle interior air conditioning can be secured. Further, even when the electromagnetic valve 35 is closed, it is possible to maintain the followability of the rotation speed control of the compressor 2 and avoid the disadvantage that the battery 55 is excessively cooled (so-called overshoot).
  • the heat pump controller 32 sets the temperature Tein of the air flowing into the heat absorber 9 and the target heat absorber temperature TEO, which are the temperatures to be cooled by the heat absorber 9. Since the correction value for cooperation TGNCcbhos1 for correcting the F/F operation amount TGNCcbff is calculated based on this, the F/F operation amount TGNCcbff can be accurately corrected according to the load of the heat absorber 9. ..
  • the F/F operation amount TGNCcbff is corrected by setting the battery cooling (single) mode as the first operating state in the present invention and the battery cooling (priority)+air conditioning mode as the second operating state in the present invention.
  • the present invention is not limited to this, and the state in which the solenoid valve 35 is closed in the battery cooling (priority)+air conditioning mode is the first operating state in the present invention, and the state in which the solenoid valve 35 is open is the second operating state in the present invention.
  • the F/F operation amount TGNCcbff may be corrected as the operating state.
  • the vehicle air conditioner 1 is in the battery cooling (priority)+air conditioning mode and the electromagnetic valve 35 is closed (first operating state) or the electromagnetic valve 35 is opened in the operating state determination unit 108. Is being input (second operating state).
  • the operating state determination unit 108 switches the switch 109 to the non-correction (0) side. Therefore, in the battery cooling (priority)+air conditioning mode, when the solenoid valve 35 is closed, the correction value TGNCcbhos of no correction (0) is output from the switch 109 and is input to the adder 106.
  • the F/F manipulated variable TGNCcbff0 calculated by the manipulated variable calculator 92 is not corrected and is directly input to the adder 94 as the F/F manipulated variable TGNCcbff.
  • the operation state determination unit 108 treats the battery cooling (single) mode and other air conditioning operations in the battery cooling (priority)+air conditioning mode in the same manner as when the solenoid valve 35 is closed.
  • the operating state determination unit 108 switches the switch 109 to the cooperation correction value TGNCcbhos1 side. Therefore, when the solenoid valve 35 is opened in the battery cooling (priority)+air conditioning mode, the correction value TGNCcbhos1 for cooperation is output from the switch 109 as the correction value TGNCcbhos and is input to the adder 106, so the F/F operation is performed. A value obtained by adding the correction value for cooperation TGNCcbhos1 to the F/F operation amount TGNCcbff0 calculated by the amount calculation unit 92 is input to the adder 94 as the F/F operation amount TGNCcbff.
  • the F/F operation amount calculation unit 92 calculates F/F more than in the battery cooling (single) mode. If the F operation amount TGNCcbff is corrected in the direction of increasing it, the F/F operation amount TGNCcbff can be finely corrected according to the opening/closing of the solenoid valve 35.
  • TGNCcffhos1 K2 ⁇ (Tw-TWO) ⁇ Gw ⁇ Cpw ⁇ w ⁇ 4.186 ⁇ 10 3 ⁇ 16.7 ..(V)
  • Tw is the heat medium temperature
  • TWO is the target heat medium temperature
  • Gw is the flow rate of the heat medium in the device temperature adjusting device 61, both of which are input to the correction value calculation unit for cooperation 102.
  • K2 is a coefficient
  • Cpw is a steady specific heat of the heat medium
  • ⁇ w is a specific gravity of the heat medium.
  • the correction value calculation unit for cooperation 102 uses the heat medium temperature Tw that is the temperature of the heat medium on the inlet side of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 and the target heat medium temperature TWO that is the target temperature thereof.
  • the correction value for cooperation TGNCchos1 is calculated based on the difference (Tw-TWO). Since the heat medium temperature Tw is the temperature of the object cooled by the refrigerant-heat medium heat exchanger 64, and the target heat medium temperature TWO is the target temperature thereof, the correction value for coordination TGNCchos1 is the heat medium temperature Tw. The higher the heating medium temperature TWO, the larger the temperature.
  • the cooperation correction value TGNCchos1 calculated by the cooperation correction value calculation unit 102 is input to the switch 104.
  • the correction value TGNchos without correction (0) is output from the switcher 104 and input to the adder 101, so that the F/F operation amount calculated by the F/F operation amount calculation unit 86 is calculated.
  • the TGNCcff0 is not corrected and is directly input to the adder 88 as the F/F manipulated variable TGNCcff.
  • the operating state determination unit 103 switches the switch 104 to the correction value for cooperation TGNChos1 side. Therefore, in the air-conditioning (priority)+battery cooling mode, the switch correction value TGNCchos1 is output as the correction value TGNCchos from the switch 104 and is input to the adder 101, so that the F/F operation amount calculation unit 86 calculates the correction value. A value obtained by adding the correction value TGNchos1 for cooperation to the F/F operation amount TGNCcff0 is input to the adder 88 as the F/F operation amount TGNCcff.
  • FIG. 15 shows the operation mode (operating state)
  • the second stage from the top shows the state of the solenoid valve 35
  • the third stage from the top shows the state of the solenoid valve 69.
  • the second stage from the bottom shows the value of the F/F manipulated variable TGNCcff output from the adder 101
  • the bottom stage shows the change of the compressor target rotational speed TGNCc.
  • X3 is the offset amount by the correction value for cooperation TGNCchos1
  • X4 is the change by the F/B operation amount TGNCcfb calculated by the F/B operation amount calculation unit 87 after the operation mode is switched.
  • the F/F manipulated variable calculating unit 86 calculates more than in the cooling mode (first operating state). Since the correction is made in the direction of increasing the F/F operation amount TGNCcff, the capacity of the compressor 2 (compressor target rotation speed TGNCc) at the time of switching from the cooling mode to the air conditioning (priority)+battery cooling mode is insufficient. It will be possible to solve it promptly, improve responsiveness, and improve reliability and marketability.
  • the heat pump controller 32 determines the target compressor rotation speed TGNCc based on a value obtained by adding the F/F operation amount TGNCcff and the F/B operation amount TGNCcfb calculated by the F/B operation amount calculation unit 87, the air conditioning ( After switching to the (priority)+battery cooling mode, the target compressor rotation speed TGNCc changes without any problem in the direction in which the heat absorber temperature Te converges to the target heat absorber temperature TEO as time passes.
  • the followability of the rotation speed control of the compressor 2 based on the heat absorber temperature Te when the solenoid valve 69 is opened can be maintained, and the responsiveness of the cooling of the battery 55 can be secured. Further, even when the solenoid valve 69 is closed, it is possible to maintain the followability of the rotation speed control of the compressor 2 and avoid the inconvenience (so-called overshoot) in which the vehicle interior is excessively cooled.
  • the heat pump controller 32 is based on the heat medium temperature Tw and the target heat medium temperature TWO which are the temperatures to be cooled by the refrigerant-heat medium heat exchanger 64 in the air conditioning (priority)+battery cooling mode. Since the correction value TGNCchos1 for correction that corrects the F/F operation amount TGNCcff is calculated, the F/F operation amount TGNCcff can be accurately corrected according to the load of the refrigerant-heat medium heat exchanger 64. become able to.
  • the vehicle air conditioner 1 is in the air conditioning (priority)+battery cooling mode and the electromagnetic valve 69 is closed (first operating state) or the electromagnetic valve 69 is opened in the operating state determination unit 103. Is being input (second operating state).
  • the solenoid valve 69 is closed in the air conditioning (priority)+battery cooling mode
  • the operating state determination unit 103 switches the switch 104 to the no correction (0) side. Therefore, in the air conditioning (priority)+battery cooling mode, when the solenoid valve 69 is closed, the switcher 104 outputs the correction value TGNchos without correction (0) and inputs it to the adder 101.
  • the F/F manipulated variable TGNCcff0 calculated by the manipulated variable calculator 86 is not corrected and is directly input to the adder 88 as the F/F manipulated variable TGNCcff.
  • the operation state determination unit 103 treats the air conditioning operation other than the cooling mode in the same manner as in the air conditioning (priority)+battery cooling mode and the electromagnetic valve 69 is closed.
  • the operating state determination unit 103 switches the switch 104 to the cooperation correction value TGNchos1 side. Therefore, when the solenoid valve 69 is opened in the air conditioning (priority)+battery cooling mode, the switching correction value TGNchos1 is output as the correction value TGNChos from the switch 104 and is input to the adder 101. Therefore, the F/F operation is performed. A value obtained by adding the correction value TGNCchos1 for cooperation to the F/F operation amount TGNCcff0 calculated by the amount calculation unit 86 is input to the adder 88 as the F/F operation amount TGNCcff.
  • the F/F operation amount TGNCcff calculated by the F/F operation amount calculation unit 86 is higher than that in the cooling mode. If the correction is performed in the direction of increasing, the F/F operation amount TGNCcff can be finely corrected according to the opening/closing of the solenoid valve 69.
  • the heat medium temperature Tw is adopted as the temperature of the object to be cooled by the refrigerant-heat medium heat exchanger 64 in the above-described embodiment
  • the battery temperature Tcell may be adopted.
  • the heat medium is circulated to adjust the temperature of the battery 55, but the present invention is not limited to this, and the refrigerant and the battery 55 (object to be temperature adjusted) may be directly heat-exchanged.
  • the rotation speed of the compressor 2 may be controlled by the temperature of the refrigerant-heat medium heat exchanger 64 in the battery cooling (single) mode or the battery cooling (priority)+air conditioning mode.
  • a vehicle capable of cooling the battery 55 while cooling the vehicle interior in the air conditioning (priority)+battery cooling mode and the battery cooling (priority)+air conditioning mode for simultaneously cooling the vehicle interior and cooling the battery 55
  • the cooling of the battery 55 is not limited to during cooling, but other air conditioning operation, for example, the above-described dehumidifying and heating mode and cooling of the battery 55 may be performed simultaneously.
  • the dehumidifying and heating mode also becomes the air conditioning (single) mode in the present invention
  • the solenoid valve 69 is opened, and a part of the refrigerant flowing toward the heat absorber 9 via the refrigerant pipe 13F is caused to flow into the branch pipe 67, and the refrigerant-heat medium. It will flow to the heat exchanger 64.
  • the electromagnetic valve 35 is the heat absorber valve device and the electromagnetic valve 69 is the temperature controlled valve device.
  • the indoor expansion valve 8 and the auxiliary expansion valve 68 are electrically closed valves, Therefore, the solenoid valves 35 and 69 are not necessary, the indoor expansion valve 8 serves as the heat absorber valve device of the present invention, and the auxiliary expansion valve 68 serves as the temperature controlled valve device.
  • the heat absorber 9 and the refrigerant-heat medium heat exchanger 64 are the evaporators of the present invention, but the inventions of claims 1 and 2 are not limited to this, and, for example, the air supplied to the passenger compartment.
  • another evaporator e.g., an evaporator for a rear seat
  • a vehicle air conditioner equipped with an evaporator for cooling the vehicle.
  • the operating state in which the refrigerant is evaporated by either the main evaporator or another evaporator (evaporator for rear seat, etc.) becomes the first operating state in the present invention, and the refrigerant is discharged by both evaporators.
  • the second operating state is the operating state in which the is evaporated.
  • the invention of claim 1 and claim 2 is a vehicle air provided with another evaporator (evaporator for rear seat, etc.) in addition to the heat absorber 9 and the refrigerant-heat medium heat exchanger 64 of the embodiment. It is also effective as a harmony device.
  • the operating state in which the refrigerant is evaporated by the heat absorber 9 and another evaporator (evaporator for rear seat, etc.) is the first operating state in the present invention.
  • the operation state in which the heat absorber 9, another evaporator (evaporator for rear seat, etc.) and the refrigerant-heat medium heat exchanger 64 evaporate the refrigerant is the second operation state in the present invention.
  • the present invention has been described with the vehicle air conditioner 1 having each operation mode such as the heating mode, the dehumidification heating mode, the dehumidification cooling mode, the cooling mode, and the air conditioning (priority)+battery cooling mode.
  • the present invention is also effective for a vehicle air conditioner capable of executing, for example, a cooling mode, an air conditioning (priority)+battery cooling mode, a battery cooling (priority)+air conditioning mode, and a battery cooling (single) mode. ..

Abstract

[Problem] To provide a vehicle air-conditioning device that has improved responsiveness by avoiding a shortage of compressor capacity (target rotational speed) when shifting to an operation state in which the number of evaporators for evaporating a refrigerant increases. [Solution] The present invention has a first operation state in which the refrigerant is evaporated by a heat absorber 9 or a refrigerant-heat medium heat exchanger 64 and a second operation state in which the refrigerant is evaporated by both. The target rotational speed of the compressor 2 is calculated by F/F calculation based on the target heat absorber temperature TEO for the heat absorber temperature Te and the target heat medium temperature TWO for the heat medium temperature Tw, and in the second operation state, correction is performed in a direction in which the F/F operation amount calculated by the F/F calculation becomes larger than in the first operation state.

Description

車両用空気調和装置Vehicle air conditioner
 本発明は、車両の車室内を空調するヒートポンプ方式の空気調和装置に関するものである。 The present invention relates to a heat pump type air conditioner that air-conditions a passenger compartment of a vehicle.
 近年の環境問題の顕在化から、車両に搭載されたバッテリから供給される電力で走行用モータを駆動する電気自動車やハイブリッド自動車等の車両が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、圧縮機と、放熱器と、吸熱器(蒸発器)と、室外熱交換器が接続された冷媒回路を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において蒸発(吸熱)させることで暖房し、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器において蒸発(吸熱)させることで冷房する等して車室内を空調するものが開発されている(例えば、特許文献1参照)。 Due to the emergence of environmental problems in recent years, vehicles such as electric vehicles and hybrid vehicles that drive a traveling motor with electric power supplied from a battery mounted on the vehicle have become popular. Then, as an air conditioner applicable to such a vehicle, a compressor, a radiator, a heat absorber (evaporator), and a refrigerant circuit to which an outdoor heat exchanger is connected are provided, and the discharge from the compressor is performed. The generated refrigerant is radiated in the radiator, and the refrigerant radiated in this radiator is heated by evaporating (absorbing) heat in the outdoor heat exchanger, and the refrigerant discharged from the compressor is radiated in the outdoor heat exchanger to absorb heat. A device for air-conditioning the inside of a vehicle by evaporating (absorbing heat) in a container to cool it has been developed (for example, see Patent Document 1).
 一方、例えばバッテリは充放電による自己発熱等で高温となった環境下で使用されると性能が低下すると共に、劣化が進行し、やがては作動不良を起こして破損する危険性がある。そこで、バッテリを冷却するための熱交換器(蒸発器)を設け、冷媒回路を循環する冷媒をこの熱交換器に循環させることでバッテリを冷却することができるようにしたものも開発されている(例えば、特許文献2、特許文献3参照)。 On the other hand, for example, if a battery is used in an environment where it becomes hot due to self-heating due to charging/discharging, its performance deteriorates and deterioration progresses, which may eventually lead to malfunction and damage. Therefore, a heat exchanger (evaporator) for cooling the battery is provided so that the battery can be cooled by circulating the refrigerant circulating in the refrigerant circuit to the heat exchanger. (See, for example, Patent Documents 2 and 3).
特開2016-64704号公報JP, 2016-64704, A 特許第5860360号公報Japanese Patent No. 5860360 特許第5860361号公報Japanese Patent No. 5860361
 上記のように、複数の蒸発器を有する車両用空気調和装置では、例えば、吸熱器(蒸発器)で冷媒を蒸発させて車室内を空調している運転状態から被温調対象の冷却が必要となって被温調対象用熱交換器(蒸発器)にも冷媒を流す運転状態に移行した場合、それらを含む熱交換の経路が増えるため、圧縮機の能力(目標回転数)が不足する状態となり、車室内に吹き出される空気の温度が高くなってしまうと共に、被温調対象の冷却も遅延するようになる。 As described above, in a vehicle air conditioner having a plurality of evaporators, for example, it is necessary to cool the temperature-controlled object from an operating state in which the refrigerant is evaporated by a heat absorber (evaporator) to air-condition the vehicle interior. Then, when the operation state in which the refrigerant flows through the target heat exchanger for temperature control (evaporator) also occurs, the heat exchange paths including them increase, so the capacity of the compressor (target rotation speed) becomes insufficient. As a result, the temperature of the air blown into the vehicle interior becomes high, and the cooling of the temperature-controlled object is delayed.
 また、被温調対象用熱交換器(蒸発器)に冷媒を流す運転状態から車室内の冷房を必要となって吸熱器(蒸発器)にも冷媒を流す運転状態に移行した場合も、圧縮機の能力(目標回転数)が不足する状態となるため、車室内の空調が遅延すると共に、被温調対象の冷却能力も低下し、何れの場合にも使用者に不快感を与え、被温調対象の冷却にも支障を来す問題があった。 In addition, when the operation state in which the refrigerant flows through the heat exchanger for temperature control (evaporator) changes to the operation state in which the vehicle interior needs to be cooled and the refrigerant also flows through the heat absorber (evaporator), Since the capacity of the machine (target speed) becomes insufficient, air conditioning in the vehicle interior is delayed, and the cooling capacity of the temperature-controlled object also decreases. There was also a problem that it interfered with the cooling of the temperature control target.
 ここで、圧縮機の目標回転数は前述した特許文献1にも記載されているように、例えば車室内を冷房する場合には吸熱器の目標温度に基づくフィードフォワード演算によって算出されるフィードフォワード操作量と、目標温度と実際の吸熱器の温度に基づくフィードバック演算によって算出されるフィードバック操作量で決定される。従って、移行後、或る程度時間が経過すれば、フィードバック操作量により目標とする温度を満足することは可能だが、即応性は低いものとなる。 Here, as described in Patent Document 1 described above, the target rotation speed of the compressor is, for example, a feedforward operation calculated by a feedforward calculation based on the target temperature of the heat absorber when cooling the vehicle interior. And the feedback operation amount calculated by the feedback calculation based on the target temperature and the actual temperature of the heat absorber. Therefore, if a certain amount of time has passed after the transition, it is possible to satisfy the target temperature by the feedback operation amount, but the responsiveness is low.
 本発明は、係る従来の技術的課題を解決するために成されたものであり、冷媒を蒸発させる蒸発器の数が増える運転状態に移行した際の圧縮機の能力(目標回転数)不足を回避して、即応性を向上させた車両用空気調和装置を提供することを目的とする。 The present invention has been made to solve the above-mentioned conventional technical problems, and it is possible to reduce the capacity (target rotation speed) of the compressor when the operating state in which the number of evaporators that evaporate the refrigerant increases increases. It is an object of the present invention to provide a vehicle air conditioner that is avoided and has improved responsiveness.
 本発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、冷媒を蒸発させるための複数の蒸発器と、制御装置を少なくとも備えて車室内を空調するものであって、制御装置は少なくとも、蒸発器にて冷媒を蒸発させる第1の運転状態と、この第1の運転状態より多い数の蒸発器にて冷媒を蒸発させる第2の運転状態を有し、蒸発器又はそれにより冷却される対象の目標温度に基づくフィードフォワード演算により圧縮機の目標回転数を算出すると共に、第2の運転状態において、第1の運転状態よりも、フィードフォワード演算により算出されるフィードフォワード操作量を大きくする方向で補正することを特徴とする。 The vehicle air conditioner of the present invention includes at least a compressor for compressing a refrigerant, a plurality of evaporators for evaporating the refrigerant, and a control device to air-condition the vehicle interior, and the control device is at least , Having a first operating state for evaporating the refrigerant in the evaporator and a second operating state for evaporating the refrigerant in a larger number of evaporators than in the first operating state, and being cooled by the evaporator or by it The target rotation speed of the compressor is calculated by the feedforward calculation based on the target temperature of the target, and the feedforward operation amount calculated by the feedforward calculation is larger in the second operating state than in the first operating state. It is characterized in that it is corrected in the direction of
 請求項2の発明の車両用空気調和装置は、上記発明において制御装置は、蒸発器又はそれにより冷却される対象の温度と目標温度に基づくフィードバック演算により圧縮機の目標回転数のフィードバック操作量を算出すると共に、フィードフォワード操作量とフィードバック操作量を加算した値に基づいて圧縮機の目標回転数を決定することを特徴とする。 In the vehicle air conditioner according to a second aspect of the present invention, in the above-mentioned invention, the control device calculates the feedback operation amount of the target rotation speed of the compressor by feedback calculation based on the temperature of the evaporator or the target cooled by the evaporator and the target temperature. The target rotational speed of the compressor is determined based on a value calculated by adding the feedforward operation amount and the feedback operation amount.
 請求項3の発明の車両用空気調和装置は、上記各発明において冷媒を蒸発させて車室内に供給する空気を冷却するための蒸発器としての吸熱器と、冷媒を蒸発させて車両に搭載された被温調対象を冷却するための蒸発器としての被温調対象用熱交換器と、吸熱器への冷媒の流通を制御する吸熱器用弁装置と、被温調対象用熱交換器への冷媒の流通を制御する被温調対象用弁装置を備え、制御装置は、第1の運転状態において、吸熱器用弁装置と被温調対象用弁装置のうちの何れか一方を開き、他方を閉じることにより、吸熱器と被温調対象用熱交換器のうちの何れか一方で冷媒を蒸発させると共に、第2の運転状態においては、吸熱器用弁装置と被温調対象用弁装置を開くことにより、吸熱器及び被温調対象用熱交換器で冷媒を蒸発させることを特徴とする。 A vehicle air conditioner according to a third aspect of the present invention is mounted on a vehicle by evaporating the refrigerant and a heat absorber as an evaporator for cooling the air supplied to the vehicle compartment in each of the above inventions. The heat exchanger for the temperature controlled object as an evaporator for cooling the temperature controlled object, the valve device for the heat absorber for controlling the flow of the refrigerant to the heat absorber, and the heat exchanger for the temperature controlled object The temperature controlled object valve device for controlling the flow of the refrigerant is provided, and the control device opens one of the heat absorber valve device and the temperature controlled object valve device in the first operating state, and opens the other. By closing, the refrigerant is evaporated in either the heat absorber or the heat exchanger for temperature adjustment, and the valve device for heat absorber and the valve device for temperature adjustment are opened in the second operating state. Thus, the refrigerant is evaporated in the heat absorber and the heat exchanger for temperature adjustment.
 請求項4の発明の車両用空気調和装置は、上記発明において制御装置は、被温調対象用弁装置を開き、被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、吸熱器用弁装置を閉じる被温調対象冷却(単独)モードと、被温調対象用弁装置を開き、被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、吸熱器の温度に基づいて吸熱器用弁装置を開閉制御する被温調対象冷却(優先)+空調モードを有し、この被温調対象冷却(優先)+空調モードのなかで、被温調対象冷却(単独)モードよりも、被温調対象用熱交換器又はそれにより冷却される対象の目標温度に基づくフィードフォワード演算により算出されるフィードフォワード操作量を大きくする方向で補正することを特徴とする。 In the vehicle air conditioner according to a fourth aspect of the present invention, in the above-mentioned invention, the control device opens the temperature-controlled object valve device, and based on the temperature of the heat-controlled object heat exchanger or the temperature of the object cooled by the heat exchanger. Controlling the number of revolutions of the compressor and closing the heat absorber valve device Cooling target cooling (single) mode, and opening the valve device for temperature control target, and cooling by the heat exchanger for temperature control target or it Controls the rotation speed of the compressor based on the temperature of the target, and controls the opening and closing of the valve device for the heat absorber based on the temperature of the heat absorber. Has a temperature controlled target cooling (priority) + air conditioning mode. In the cooling (priority) + air conditioning mode, it is calculated by a feedforward calculation based on the target temperature of the heat exchanger to be temperature controlled or the target to be cooled by the heat exchanger to be temperature controlled, rather than the cooling (single) mode to be temperature controlled The feature is that correction is performed in the direction of increasing the feedforward operation amount.
 請求項5の発明の車両用空気調和装置は、上記発明において制御装置は、被温調対象冷却(優先)+空調モードにおいて、吸熱器用弁装置を開いたとき、被温調対象冷却(単独)モードよりも、被温調対象用熱交換器又はそれにより冷却される対象の目標温度に基づくフィードフォワード演算により算出されるフィードフォワード操作量を大きくする方向で補正することを特徴とする。 In the vehicle air conditioner according to a fifth aspect of the present invention, in the above invention, the control device cools the temperature-controlled object (single) when the heat absorber valve device is opened in the temperature-controlled object cooling (priority)+air conditioning mode. It is characterized in that the amount of feedforward operation calculated by the feedforward calculation based on the target temperature of the heat exchanger to be temperature controlled or the target to be cooled by it is corrected to be larger than that in the mode.
 請求項6の発明の車両用空気調和装置は、請求項4又は請求項5の発明において制御装置は、被温調対象冷却(優先)+空調モードにおいては、吸熱器により冷却される対象の温度と吸熱器の目標温度に基づいてフィードフォワード操作量を補正する補正値を算出することを特徴とする。 A vehicle air conditioner according to a sixth aspect of the present invention is the vehicle air conditioner according to the fourth or fifth aspect, wherein the control device controls the temperature of the object to be cooled (priority) + the temperature of the object cooled by the heat absorber in the air conditioning mode. And a correction value for correcting the feedforward manipulated variable based on the target temperature of the heat absorber.
 請求項7の発明の車両用空気調和装置は、請求項3乃至請求項6の発明において制御装置は、吸熱器用弁装置を開き、吸熱器の温度に基づいて圧縮機の回転数を制御し、被温調対象用弁装置を閉じる空調(単独)モードと、吸熱器用弁装置を開き、吸熱器の温度に基づいて圧縮機の回転数を制御し、被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて被温調対象用弁装置を開閉制御する空調(優先)+被温調対象冷却モードを有し、この空調(優先)+被温調対象冷却モードのなかで、空調(単独)モードよりも、吸熱器の目標温度に基づくフィードフォワード演算により算出されるフィードフォワード操作量を大きくする方向で補正することを特徴とする。 In the vehicle air conditioner of the invention of claim 7, in the invention of claims 3 to 6, the control device opens the valve device for the heat absorber, controls the rotation speed of the compressor based on the temperature of the heat absorber, Air conditioning (single) mode to close the valve device for temperature control, open the valve device for heat absorber, control the rotation speed of the compressor based on the temperature of the heat absorber, heat exchanger for temperature control or by it It has an air conditioning (priority) + temperature controlled target cooling mode that controls opening and closing of the temperature controlled target valve device based on the temperature of the target to be cooled. Among this air conditioning (priority) + temperature controlled target cooling mode It is characterized in that the feedforward operation amount calculated by the feedforward calculation based on the target temperature of the heat absorber is corrected to be larger than that in the air conditioning (single) mode.
 請求項8の発明の車両用空気調和装置は、上記発明において制御装置は、空調(優先)+被温調対象冷却モードにおいて、被温調対象用弁装置を開いたとき、空調(単独)モードよりも、吸熱器の目標温度に基づくフィードフォワード演算により算出されるフィードフォワード操作量を大きくする方向で補正することを特徴とする。 In the vehicle air conditioner of the invention of claim 8, in the above invention, the control device is in an air conditioning (single) mode when the temperature controlled object valve device is opened in the air conditioning (priority) + temperature controlled object cooling mode. It is characterized in that the feedforward operation amount calculated by the feedforward calculation based on the target temperature of the heat absorber is increased.
 請求項9の発明の車両用空気調和装置は、請求項7又は請求項8の発明において制御装置は、空調(優先)+被温調対象冷却モードにおいては、被温調対象用熱交換器により冷却される対象の温度とその目標温度に基づいてフィードフォワード操作量を補正する補正値を算出することを特徴とする。 In the vehicle air conditioner of the invention of claim 9, in the invention of claim 7 or claim 8, the control device uses the heat exchanger for the temperature controlled object in the air conditioning (priority) + temperature controlled target cooling mode. It is characterized in that a correction value for correcting the feedforward manipulated variable is calculated based on the temperature of the object to be cooled and the target temperature thereof.
 本発明によれば、冷媒を圧縮する圧縮機と、冷媒を蒸発させるための複数の蒸発器と、制御装置を少なくとも備えて車室内を空調する車両用空気調和装置において、制御装置が少なくとも、蒸発器にて冷媒を蒸発させる第1の運転状態と、この第1の運転状態より多い数の蒸発器にて冷媒を蒸発させる第2の運転状態を有し、蒸発器又はそれにより冷却される対象の目標温度に基づくフィードフォワード演算により圧縮機の目標回転数を算出すると共に、第2の運転状態において、第1の運転状態よりも、フィードフォワード演算により算出されるフィードフォワード操作量を大きくする方向で補正するようにしたので、第1の運転状態から第2の運転状態に切り換わったときの圧縮機の能力(目標回転数)不足を迅速に解消し、即応性を向上させて、信頼性と商品性の改善を図ることができるようになる。 According to the present invention, a compressor for compressing a refrigerant, a plurality of evaporators for evaporating the refrigerant, and a vehicle air-conditioning apparatus for air-conditioning a vehicle compartment, which is provided with at least a control device, wherein at least the control device evaporates. An evaporator or an object to be cooled by the evaporator, which has a first operating state in which the refrigerant is evaporated in the evaporator and a second operating state in which the refrigerant is evaporated in a number of evaporators greater than the first operating state. A direction in which the target rotation speed of the compressor is calculated by a feedforward calculation based on the target temperature and the feedforward operation amount calculated by the feedforward calculation is made larger in the second operating state than in the first operating state. Since the correction is made in step 1, the shortage of the compressor capacity (target speed) at the time of switching from the first operating state to the second operating state can be promptly resolved, and responsiveness is improved to improve reliability. With this, it becomes possible to improve the marketability.
 この場合、請求項2の発明の如く制御装置が、蒸発器又はそれにより冷却される対象の温度と目標温度に基づくフィードバック演算により圧縮機の目標回転数のフィードバック操作量を算出すると共に、フィードフォワード操作量とフィードバック操作量を加算した値に基づいて圧縮機の目標回転数を決定するようにすれば、第2の運転状態に切り換わった後、時間が経過するに応じて圧縮機の目標回転数は蒸発器又はそれにより冷却される対象の温度を目標温度に収束させる方向に支障無く変化することになる。 In this case, the control device according to the second aspect of the present invention calculates the feedback manipulated variable of the target rotational speed of the compressor by feedback calculation based on the temperature of the evaporator or the object cooled by the evaporator and the target temperature, and also feedforward If the target rotation speed of the compressor is determined based on the value obtained by adding the operation amount and the feedback operation amount, the target rotation speed of the compressor will change as time elapses after switching to the second operating state. The number will change without any problem in the direction of converging the temperature of the evaporator or the object cooled by it to the target temperature.
 例えば、請求項3の発明の如く冷媒を蒸発させて車室内に供給する空気を冷却するための蒸発器としての吸熱器と、冷媒を蒸発させて車両に搭載された被温調対象を冷却するための蒸発器としての被温調対象用熱交換器と、吸熱器への冷媒の流通を制御する吸熱器用弁装置と、被温調対象用熱交換器への冷媒の流通を制御する被温調対象用弁装置を設け、制御装置が、第1の運転状態において、吸熱器用弁装置と被温調対象用弁装置のうちの何れか一方を開き、他方を閉じることにより、吸熱器と被温調対象用熱交換器のうちの何れか一方で冷媒を蒸発させると共に、第2の運転状態においては、吸熱器用弁装置と被温調対象用弁装置を開くことにより、吸熱器及び被温調対象用熱交換器で冷媒を蒸発させるようにすれば、第1の運転状態では車室内の空調と被温調対象の冷却をそれぞれ行い、第2の運転状態では車室内を空調しながら被温調対象の冷却を行うことができるようになると共に、第1の運転状態と第2の運転状態の切り換えも円滑に実行することができるようになる。 For example, as in the third aspect of the invention, a heat absorber as an evaporator for evaporating the refrigerant to cool the air supplied to the vehicle interior, and evaporating the refrigerant to cool the temperature-controlled object mounted on the vehicle. A heat exchanger for temperature control as an evaporator for, a valve device for heat absorber that controls the flow of refrigerant to the heat absorber, and a temperature control that controls the flow of refrigerant to the heat exchanger for temperature control A valve device for temperature control is provided, and in the first operating state, the control device opens either one of the valve device for heat absorber and the valve device for temperature control target, and closes the other to close the heat absorber and the controlled device. While evaporating the refrigerant in any one of the heat exchangers for temperature control, in the second operating state, the valve device for heat absorber and the valve device for temperature control target are opened to thereby absorb heat and heat. If the heat exchanger for conditioning is used to evaporate the refrigerant, the interior of the vehicle is air-conditioned and the temperature-controlled object is cooled in the first operating state, and the vehicle is air-conditioned in the second operating state. The temperature control target can be cooled, and the switching between the first operating state and the second operating state can be smoothly performed.
 そして、吸熱器又は被温調対象用熱交換器で冷媒が蒸発する第1の運転状態から、吸熱器と被温調対象用熱交換器の双方で冷媒が蒸発する第2の運転状態に切り換えた場合の圧縮機の能力(目標回転数)不足を、迅速且つ円滑に解消することができるようになる。 Then, the first operating state in which the refrigerant evaporates in the heat absorber or the heat exchanger for temperature adjustment is switched to the second operating state in which the refrigerant evaporates in both the heat absorber and the heat exchanger for temperature adjustment. In this case, it is possible to quickly and smoothly eliminate the shortage of the compressor capacity (target speed).
 また、請求項4の発明の如く制御装置が、被温調対象用弁装置を開き、被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、吸熱器用弁装置を閉じる被温調対象冷却(単独)モードと、被温調対象用弁装置を開き、被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、吸熱器の温度に基づいて吸熱器用弁装置を開閉制御する被温調対象冷却(優先)+空調モードを有するようにすれば、被温調対象冷却(単独)モードでは被温調対象のみの冷却を行い、被温調対象冷却(優先)+空調モードでは被温調対象を優先的に冷却しながら車室内の空調も行うことができるようになる。 Further, as in the invention of claim 4, the control device opens the valve device for the temperature controlled object, and controls the rotation speed of the compressor based on the temperature of the heat exchanger for the temperature controlled object or the object cooled by the heat exchanger. Then, the temperature control target cooling (single) mode in which the heat absorber valve device is closed, and the temperature control target valve device is opened, and compression is performed based on the temperature of the heat control target heat exchanger or the temperature of the target cooled by it. By controlling the number of rotations of the machine and controlling the heat absorber valve device to open and close based on the temperature of the heat absorber, there is a temperature controlled cooling (priority) + air conditioning mode. In this case, only the temperature-controlled object is cooled, and in the temperature-controlled object cooling (priority)+air-conditioning mode, the vehicle interior can be air-conditioned while the temperature-controlled object is preferentially cooled.
 そして、この被温調対象冷却(優先)+空調モードのなかで、被温調対象冷却(単独)モードよりも、被温調対象用熱交換器又はそれにより冷却される対象の目標温度に基づくフィードフォワード演算により算出されるフィードフォワード操作量を大きくする方向で補正するようにすれば、吸熱器用弁装置を開いたときの被温調対象用熱交換器又はそれにより冷却される対象の温度に基づく圧縮機の回転数制御の追従性を維持し、且つ、車室内空調の即応性も確保することができるようになる。また、吸熱器用弁装置を閉じたときにも、圧縮機の回転数制御の追従性を維持して被温調対象が過剰に冷却される不都合(所謂オーバーシュート)も回避することができるようになる。 Based on the target temperature of the heat exchanger to be temperature controlled or the target to be cooled by the heat exchanger to be temperature controlled, in the temperature controlled cooling (priority)+air conditioning mode, rather than the temperature controlled cooling (single) mode. If the feedforward operation amount calculated by the feedforward calculation is corrected so as to be increased, the temperature of the heat exchanger to be temperature-controlled when the valve device for the heat absorber is opened or the temperature of the object to be cooled by the heat exchanger is adjusted. It is possible to maintain the followability of the rotational speed control of the compressor based on the above, and also to secure the quick response of the vehicle interior air conditioning. Further, even when the heat absorber valve device is closed, it is possible to avoid the inconvenience (so-called overshoot) in which the object to be temperature-controlled is excessively cooled by maintaining the followability of the rotation speed control of the compressor. Become.
 この場合、請求項5の発明の如く制御装置が、被温調対象冷却(優先)+空調モードにおいて、吸熱器用弁装置を開いたとき、被温調対象冷却(単独)モードよりも、被温調対象用熱交換器又はそれにより冷却される対象の目標温度に基づくフィードフォワード演算により算出されるフィードフォワード操作量を大きくする方向で補正するようにすれば、吸熱器用弁装置の開閉に応じて細かくフィードフォワード操作量を補正することができるようになる。 In this case, when the control device opens the heat absorber valve device in the temperature-controlled cooling (priority)+air conditioning mode as in the invention of claim 5, the temperature is controlled more than in the temperature-controlled cooling (single) mode. If the feedforward operation amount calculated by the feedforward calculation based on the target temperature of the heat exchanger for adjustment or the object cooled by it is corrected in the direction of increasing it, the heat absorber valve device can be opened or closed depending on whether the heat exchanger valve device is opened or closed. The feedforward manipulated variable can be finely corrected.
 また、請求項6の発明の如く制御装置が、被温調対象冷却(優先)+空調モードにおいては、吸熱器により冷却される対象の温度と吸熱器の目標温度に基づいてフィードフォワード操作量を補正する補正値を算出するようにすれば、吸熱器の負荷に応じてフィードフォワード操作量を精度良く補正することができるようになる。 In the temperature controlled target cooling (priority)+air conditioning mode, the control device determines the feedforward manipulated variable based on the temperature of the target cooled by the heat absorber and the target temperature of the heat absorber. If the correction value to be corrected is calculated, the feedforward operation amount can be accurately corrected according to the load on the heat absorber.
 また、請求項7の発明の如く制御装置が、吸熱器用弁装置を開き、吸熱器の温度に基づいて圧縮機の回転数を制御し、被温調対象用弁装置を閉じる空調(単独)モードと、吸熱器用弁装置を開き、吸熱器の温度に基づいて圧縮機の回転数を制御し、被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて被温調対象用弁装置を開閉制御する空調(優先)+被温調対象冷却モードを有するようにすれば、空調(単独)モードでは車室内の空調のみを行い、空調(優先)+被温調対象冷却モードでは車室内の空調を優先的に行いながら被温調対象の冷却も行うことができるようになる。 In the air conditioning (independent) mode, the control device opens the heat absorber valve device, controls the rotation speed of the compressor based on the temperature of the heat absorber, and closes the temperature-controlled object valve device. And open the valve device for the heat absorber, control the rotation speed of the compressor based on the temperature of the heat absorber, and for the temperature-controlled target based on the temperature of the heat-controlled target heat exchanger or the target cooled by it. If the air conditioner (priority) + controlled cooling mode for controlling the valve device is provided, only the air conditioning in the passenger compartment is performed in the air conditioning (single) mode, and in the air conditioning (priority) + controlled cooling mode for controlled temperature. It becomes possible to cool the temperature-controlled object while preferentially performing the air conditioning in the vehicle compartment.
 そして、この空調(優先)+被温調対象冷却モードのなかで、空調(単独)モードよりも、吸熱器の目標温度に基づくフィードフォワード演算により算出されるフィードフォワード操作量を大きくする方向で補正するようにすれば、被温調対象用弁装置を開いたときの吸熱器の温度に基づく圧縮機の回転数制御の追従性を維持し、且つ、被温調対象の冷却の即応性も確保することができるようになる。また、被温調対象用弁装置を閉じたときにも、圧縮機の回転数制御の追従性を維持して車室内が過剰に冷房される不都合(所謂オーバーシュート)も回避することができるようになる。 Then, in the air conditioning (priority) + temperature controlled cooling mode, the feedforward operation amount calculated by the feedforward calculation based on the target temperature of the heat absorber is corrected to be larger than that in the air conditioning (single) mode. By doing so, the followability of the rotational speed control of the compressor based on the temperature of the heat absorber when the valve device for temperature controlled objects is opened is maintained, and at the same time, the responsiveness of cooling of the temperature controlled object is also secured. You will be able to. Further, even when the valve device for the temperature controlled object is closed, it is possible to avoid the inconvenience (so-called overshoot) in which the vehicle interior is excessively cooled by maintaining the followability of the rotation speed control of the compressor. become.
 この場合、請求項8の発明の如く制御装置が、空調(優先)+被温調対象冷却モードにおいて、被温調対象用弁装置を開いたとき、空調(単独)モードよりも、吸熱器の目標温度に基づくフィードフォワード演算により算出されるフィードフォワード操作量を大きくする方向で補正するようにすれば、被温調対象用弁装置の開閉に応じて細かくフィードフォワード操作量を補正することができるようになる。 In this case, when the control device opens the temperature control target valve device in the air conditioning (priority)+temperature control target cooling mode as in the invention of claim 8, the heat absorber of the heat absorber is operated more than in the air conditioning (single) mode. If the feedforward operation amount calculated by the feedforward calculation based on the target temperature is corrected in the direction of increasing it, the feedforward operation amount can be finely corrected according to the opening/closing of the valve device for the temperature-controlled object. Like
 また、請求項9の発明の如く制御装置が、空調(優先)+被温調対象冷却モードにおいては、被温調対象用熱交換器により冷却される対象の温度とその目標温度に基づいてフィードフォワード操作量を補正する補正値を算出するようにすれば、被温調対象用熱交換器の負荷に応じてフィードフォワード操作量を精度良く補正することができるようになる。 In the air conditioning (priority)+controlled cooling target temperature mode, the control device feeds the temperature of the target cooled by the target heat exchanger for temperature controlled and the target temperature thereof. By calculating the correction value for correcting the forward operation amount, the feedforward operation amount can be accurately corrected according to the load of the heat exchanger for temperature adjustment.
本発明を適用した一実施形態の車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles of one Embodiment to which this invention is applied. 図1の車両用空気調和装置の制御装置の電気回路のブロック図である。It is a block diagram of an electric circuit of a control device of an air harmony device for vehicles of Drawing 1. 図2の制御装置が実行する運転モードを説明する図である。It is a figure explaining the driving mode which the control apparatus of FIG. 2 performs. 図2の制御装置のヒートポンプコントローラによる暖房モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles explaining the heating mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる除湿暖房モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles explaining the dehumidification heating mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる除湿冷房モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the vehicle air conditioner explaining the dehumidification cooling mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる冷房モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the vehicle air conditioner explaining the cooling mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる空調(優先)+バッテリ冷却モードとバッテリ冷却(優先)+空調モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles explaining the air conditioning (priority) + battery cooling mode and battery cooling (priority) + air conditioning mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによるバッテリ冷却(単独)モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the vehicle air conditioning apparatus explaining the battery cooling (single) mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる除霜モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the vehicle air conditioner explaining the defrost mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラの圧縮機制御に関する制御ブロック図である。It is a control block diagram regarding compressor control of the heat pump controller of the control device of FIG. 図2の制御装置のヒートポンプコントローラの圧縮機制御に関するもう一つの制御ブロック図である。FIG. 4 is another control block diagram related to compressor control of the heat pump controller of the control device in FIG. 2. 図2の制御装置のヒートポンプコントローラの圧縮機制御に関する更にもう一つの制御ブロック図である。FIG. 7 is yet another control block diagram related to compressor control of the heat pump controller of the control device in FIG. 2. 図2の制御装置のヒートポンプコントローラによるバッテリ冷却(単独)モードとバッテリ冷却(優先)+空調モードの切り換え時の制御を説明する図である。It is a figure explaining the control at the time of switching of battery cooling (single) mode and battery cooling (priority) + air conditioning mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる冷房モードと空調(優先)+バッテリ冷却モードの切り換え時の制御を説明する図である。It is a figure explaining the control at the time of switching of cooling mode and air conditioning (priority) + battery cooling mode by the heat pump controller of the control apparatus of FIG.
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。図1は本発明の一実施形態の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、車両に搭載されているバッテリ55に充電された電力を走行用モータ(電動モータ。図示せず)に供給することで駆動し、走行するものであり、本発明の車両用空気調和装置1の後述する圧縮機2も、バッテリ55から供給される電力で駆動されるものとする。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 of an embodiment of the present invention. A vehicle of an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and electric power charged in a battery 55 mounted in the vehicle is used as a traveling motor (electric motor). (Not shown) to drive and run, and the compressor 2 described later of the vehicle air conditioner 1 of the present invention is also driven by the electric power supplied from the battery 55. ..
 即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路Rを用いたヒートポンプ運転により暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、除霜モード、空調(優先)+バッテリ冷却モード、バッテリ冷却(優先)+空調モード、及び、バッテリ冷却(単独)モードの各運転モードを切り換えて実行することで車室内の空調やバッテリ55の温調を行うものである。 That is, the vehicle air conditioner 1 of the embodiment is a heating mode, a dehumidification heating mode, a dehumidification cooling mode, a cooling mode, and a defrosting mode in a heat pump operation using the refrigerant circuit R in an electric vehicle that cannot be heated by engine waste heat. , The air conditioning (priority)+battery cooling mode, the battery cooling (priority)+air conditioning mode, and the battery cooling (single) mode are switched and executed to perform air conditioning in the vehicle compartment and temperature control of the battery 55. It is a thing.
 このうち、冷房モードが本発明における空調(単独)モードの実施例、バッテリ冷却(単独)モードが本発明における被温調対象冷却(単独)モードの実施例である。また、空調(優先)+バッテリ冷却モードが本発明における空調(優先)+被温調対象冷却モードの実施例、バッテリ冷却(優先)+空調モードが本発明における被温調対象冷却(優先)+空調モードの実施例となる。 Among these, the cooling mode is an example of the air conditioning (single) mode in the present invention, and the battery cooling (single) mode is an example of the temperature controlled target cooling (single) mode in the present invention. Further, an embodiment of the air conditioning (priority)+battery cooling mode in the present invention is the air conditioning (priority)+temperature controlled target cooling mode, battery cooling (priority)+air conditioning mode is the temperature controlled target cooling (priority)+ in the present invention. This is an example of the air conditioning mode.
 尚、車両としては電気自動車に限らず、エンジンと走行用モータを供用する所謂ハイブリッド自動車にも本発明は有効である。また、実施例の車両用空気調和装置1を適用する車両は外部の充電器(急速充電器や普通充電器)からバッテリ55に充電可能とされているものである。更に、前述したバッテリ55や走行用モータ、それを制御するインバータ等が本発明における車両に搭載された被温調対象となるが、以下の実施例ではバッテリ55を例に採り上げて説明する。 The present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and a running motor. The vehicle to which the vehicle air conditioner 1 of the embodiment is applied is one in which the battery 55 can be charged from an external charger (quick charger or normal charger). Further, the battery 55, the traveling motor, the inverter controlling the same, and the like described above are the objects of temperature adjustment mounted on the vehicle according to the present invention. In the following embodiments, the battery 55 will be described as an example.
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内の空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒がマフラー5と冷媒配管13Gを介して流入し、この冷媒を車室内に放熱(冷媒の熱を放出)させる放熱器4と、暖房時に冷媒を減圧膨張させる電動弁(電子膨張弁)から成る室外膨張弁6と、冷房時には冷媒を放熱させる放熱器として機能し、暖房時には冷媒を吸熱(冷媒に熱を吸収)させる蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる機械式膨張弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱(蒸発)させる蒸発器としての吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。 The vehicle air conditioner 1 of the embodiment is for performing air conditioning (heating, cooling, dehumidification, and ventilation) of a vehicle interior of an electric vehicle, and an electric compressor 2 for compressing a refrigerant, and a vehicle interior. The high-temperature and high-pressure refrigerant discharged from the compressor 2 is provided in the air flow passage 3 of the HVAC unit 10 through which air is ventilated and circulated, flows through the muffler 5 and the refrigerant pipe 13G, and radiates this refrigerant into the vehicle interior. The radiator 4 (releasing the heat of the refrigerant), the outdoor expansion valve 6 including a motor-operated valve (electronic expansion valve) that decompresses and expands the refrigerant during heating, the radiator that radiates the refrigerant during cooling, and the refrigerant during heating An outdoor heat exchanger 7 for exchanging heat between the refrigerant and the outside air so as to function as an evaporator that absorbs heat (absorbs heat into the refrigerant), and an indoor expansion valve 8 including a mechanical expansion valve for decompressing and expanding the refrigerant. And a heat absorber 9 as an evaporator that is provided in the air flow passage 3 to absorb (evaporate) the refrigerant from the inside and outside of the vehicle during cooling and dehumidifying, and an accumulator 12 and the like are sequentially connected by a refrigerant pipe 13 to form a refrigerant circuit. R is configured.
 そして、室外膨張弁6は放熱器4から出て室外熱交換器7に流入する冷媒を減圧膨張させると共に、全閉も可能とされている。また、実施例では機械式膨張弁が使用された室内膨張弁8は、吸熱器9に流入する冷媒を減圧膨張させると共に、吸熱器9における冷媒の過熱度を調整する。 The outdoor expansion valve 6 decompresses and expands the refrigerant flowing out of the radiator 4 and flowing into the outdoor heat exchanger 7, and can be fully closed. Further, in the embodiment, the indoor expansion valve 8 using a mechanical expansion valve decompresses and expands the refrigerant flowing into the heat absorber 9, and adjusts the degree of superheat of the refrigerant in the heat absorber 9.
 尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。 The outdoor heat exchanger 7 is provided with an outdoor blower 15. The outdoor blower 15 exchanges heat between the outdoor air and the refrigerant by forcibly ventilating the outdoor air through the outdoor heat exchanger 7, whereby the outdoor air is discharged even while the vehicle is stopped (that is, the vehicle speed is 0 km/h). The heat exchanger 7 is configured to ventilate outside air.
 また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7の冷媒出口側の冷媒配管13Aは、吸熱器9に冷媒を流す際に開放される開閉弁としての電磁弁17(冷房用)を介してレシーバドライヤ部14に接続され、過冷却部16の出口側の冷媒配管13Bは逆止弁18、室内膨張弁8、及び、吸熱器用弁装置としての電磁弁35(キャビン用)を順次介して吸熱器9の冷媒入口側に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成している。また、逆止弁18は室内膨張弁8の方向が順方向とされている。更に、実施例では室内膨張弁8と電磁弁35は電磁弁付き膨張弁にて構成している。 Further, the outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 sequentially on the refrigerant downstream side, and the refrigerant pipe 13A on the refrigerant outlet side of the outdoor heat exchanger 7 is used when the refrigerant flows to the heat absorber 9. The refrigerant pipe 13B on the outlet side of the supercooling unit 16 is connected to the receiver dryer unit 14 via an electromagnetic valve 17 (for cooling) as an open/close valve, and the check valve 18, the indoor expansion valve 8 and the heat absorption It is connected to the refrigerant inlet side of the heat absorber 9 through an electromagnetic valve 35 (for cabin) as a device valve device in order. The receiver dryer unit 14 and the supercooling unit 16 structurally form a part of the outdoor heat exchanger 7. Further, the check valve 18 is configured such that the direction of the indoor expansion valve 8 is the forward direction. Furthermore, in the embodiment, the indoor expansion valve 8 and the solenoid valve 35 are expansion valves with solenoid valves.
 また、室外熱交換器7から出た冷媒配管13Aは冷媒配管13Dに分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される開閉弁としての電磁弁21(暖房用)を介して吸熱器9の冷媒出口側の冷媒配管13Cに連通接続されている。そして、この冷媒配管13Cがアキュムレータ12の入口側に接続され、アキュムレータ12の出口側は圧縮機2の冷媒吸込側の冷媒配管13Kに接続されている。 Further, the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched into a refrigerant pipe 13D, and the branched refrigerant pipe 13D is passed through an electromagnetic valve 21 (for heating) as an opening/closing valve opened during heating. It is connected to the refrigerant pipe 13C on the refrigerant outlet side of the heat absorber 9 so as to communicate therewith. The refrigerant pipe 13C is connected to the inlet side of the accumulator 12, and the outlet side of the accumulator 12 is connected to the refrigerant pipe 13K on the refrigerant suction side of the compressor 2.
 更に、放熱器4の冷媒出口側の冷媒配管13Eにはストレーナ19が接続されており、更に、この冷媒配管13Eは室外膨張弁6の手前(冷媒上流側)で冷媒配管13Jと冷媒配管13Fに分岐し、分岐した一方の冷媒配管13Jが室外膨張弁6を介して室外熱交換器7の冷媒入口側に接続されている。また、分岐した他方の冷媒配管13Fは除湿時に開放される開閉弁としての電磁弁22(除湿用)を介し、逆止弁18の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Bに連通接続されている。 Further, a strainer 19 is connected to the refrigerant pipe 13E on the refrigerant outlet side of the radiator 4, and this refrigerant pipe 13E is connected to the refrigerant pipes 13J and 13F before the outdoor expansion valve 6 (refrigerant upstream side). One of the branched and branched refrigerant pipes 13J is connected to the refrigerant inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6. The other branched refrigerant pipe 13F is connected to the refrigerant downstream side of the check valve 18 and the refrigerant upstream side of the indoor expansion valve 8 via an electromagnetic valve 22 (for dehumidification) as an opening/closing valve that is opened during dehumidification. It is connected to the located refrigerant pipe 13B.
 これにより、冷媒配管13Fは室外膨張弁6、室外熱交換器7及び逆止弁18の直列回路に対して並列に接続されたかたちとなり、室外膨張弁6、室外熱交換器7及び逆止弁18をバイパスするバイパス回路となる。また、室外膨張弁6にはバイパス用の開閉弁としての電磁弁20が並列に接続されている。 As a result, the refrigerant pipe 13F is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve 18, and the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve are connected. It becomes a bypass circuit that bypasses 18. Further, a solenoid valve 20 as an opening/closing valve for bypass is connected in parallel to the outdoor expansion valve 6.
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環)と、車室外の空気である外気(外気導入)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。 Further, the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with respective intake ports of an outside air intake port and an inside air intake port (represented by the intake port 25 in FIG. 1). A suction switching damper 26 is provided at 25 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation) which is the air inside the vehicle compartment and the outside air (outside air introduction) which is the air outside the vehicle compartment. Further, on the air downstream side of the suction switching damper 26, an indoor blower (blower fan) 27 for feeding the introduced inside air or outside air to the air flow passage 3 is provided.
 尚、実施例の吸込切換ダンパ26は、吸込口25の外気吸込口と内気吸込口を任意の比率で開閉することにより、空気流通路3の吸熱器9に流入する外気と内気の比率を0~100%の間で調整することができるように構成されている。本出願では吸込切換ダンパ26により調整される外気と内気の比率を内外気比率RECrateと称し、この内外気比率RECrate=1のときに内気が100%、外気が0%の内気循環モードとなり、内外気比率RECrate=0のときに外気が100%、内気が0%の外気導入モードとなる。そして、0<内外気比率RECrate<1のときに0%<内気<100%、且つ、100%>外気>0%の内外気中間位置となる。即ち、本出願において内外気比率RECrateは空気流通路3の吸熱器9に流入する空気のうちの内気の割合を意味する。 The intake switching damper 26 of the embodiment opens and closes the outside air intake port and the inside air intake port of the intake port 25 at an arbitrary ratio to reduce the ratio of the outside air and the inside air flowing into the heat absorber 9 of the air flow passage 3 to 0. It is configured so that it can be adjusted between 100% and 100%. In the present application, the ratio of the outside air to the inside air adjusted by the suction switching damper 26 is referred to as the inside/outside air ratio RECrate, and when this inside/outside air ratio RECrate=1, the inside air is in the inside air circulation mode with 100% inside air and 0% outside air. When the air ratio RECrate=0, the outside air introduction mode is set in which the outside air is 100% and the inside air is 0%. When 0<inside/outside air ratio RECrate<1, 0%<inside air<100%, and 100%>outside air>0%, which is an inside/outside air intermediate position. That is, in the present application, the inside/outside air ratio RECrate means the ratio of inside air to the air flowing into the heat absorber 9 of the air flow passage 3.
 また、放熱器4の風下側(空気下流側)における空気流通路3内には、実施例ではPTCヒータ(電気ヒータ)から成る補助加熱装置としての補助ヒータ23が設けられ、放熱器4を経て車室内に供給される空気を加熱することが可能とされている。更に、放熱器4の空気上流側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を放熱器4及び補助ヒータ23に通風する割合を調整するエアミックスダンパ28が設けられている。 Further, in the air flow passage 3 on the leeward side (air downstream side) of the radiator 4, an auxiliary heater 23 as an auxiliary heating device including a PTC heater (electric heater) is provided in the embodiment, and passes through the radiator 4. It is possible to heat the air supplied to the passenger compartment. Further, in the air flow passage 3 on the air upstream side of the radiator 4, the air (inside air or outside air) flowing into the air flow passage 3 and passing through the heat absorber 9 is radiated. An air mix damper 28 that adjusts the ratio of ventilation to the device 4 and the auxiliary heater 23 is provided.
 更にまた、放熱器4の空気下流側における空気流通路3には、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口からの空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。 Furthermore, in the air flow passage 3 on the air downstream side of the radiator 4, FOOT (foot), VENT (vent), and DEF (def) outlets (represented by the outlet 29 in FIG. 1 as a representative) are provided. The blower outlet 29 is provided with blower outlet switching dampers 31 for controlling the blowout of air from the blower outlets.
 更に、車両用空気調和装置1は、バッテリ55(被温調対象)に熱媒体を循環させて当該バッテリ55の温度を調整するための機器温度調整装置61を備えている。実施例の機器温度調整装置61は、バッテリ55に熱媒体を循環させるための循環装置としての循環ポンプ62と、蒸発器である被温調対象用熱交換器としての冷媒-熱媒体熱交換器64と、加熱装置としての熱媒体加熱ヒータ63を備え、それらとバッテリ55が熱媒体配管66にて環状に接続されている。 Further, the vehicle air conditioner 1 includes an equipment temperature adjusting device 61 for adjusting the temperature of the battery 55 by circulating a heat medium in the battery 55 (object to be temperature adjusted). A device temperature adjusting device 61 of the embodiment includes a circulation pump 62 as a circulating device for circulating a heat medium in the battery 55, and a refrigerant-heat medium heat exchanger as a heat exchanger for a temperature-controlled object which is an evaporator. 64 and a heat medium heater 63 as a heating device, and the battery 55 and the battery 55 are annularly connected by a heat medium pipe 66.
 実施例の場合、循環ポンプ62の吐出側に冷媒-熱媒体熱交換器64の熱媒体流路64Aの入口が接続され、この熱媒体流路64Aの出口は熱媒体加熱ヒータ63の入口に接続されている。この熱媒体加熱ヒータ63の出口がバッテリ55の入口に接続され、バッテリ55の出口が循環ポンプ62の吸込側に接続されている。 In the case of the embodiment, the inlet of the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64 is connected to the discharge side of the circulation pump 62, and the outlet of this heat medium passage 64A is connected to the inlet of the heat medium heater 63. Has been done. The outlet of the heat medium heating heater 63 is connected to the inlet of the battery 55, and the outlet of the battery 55 is connected to the suction side of the circulation pump 62.
 この機器温度調整装置61で使用される熱媒体としては、例えば水、HFO-1234yfのような冷媒、クーラント等の液体、空気等の気体が採用可能である。尚、実施例では水を熱媒体として採用している。また、熱媒体加熱ヒータ63はPTCヒータ等の電気ヒータから構成されている。更に、バッテリ55の周囲には例えば熱媒体が当該バッテリ55と熱交換関係で流通可能なジャケット構造が施されているものとする。 As the heat medium used in the device temperature adjusting device 61, for example, water, a refrigerant such as HFO-1234yf, a liquid such as coolant, or a gas such as air can be adopted. In the embodiment, water is used as the heat medium. The heat medium heating heater 63 is composed of an electric heater such as a PTC heater. Further, it is assumed that a jacket structure is provided around the battery 55 so that a heat medium can flow in a heat exchange relationship with the battery 55, for example.
 そして、循環ポンプ62が運転されると、循環ポンプ62から吐出された熱媒体は冷媒-熱媒体熱交換器64の熱媒体流路64Aに流入する。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は熱媒体加熱ヒータ63に至り、当該熱媒体加熱ヒータ63が発熱されている場合にはそこで加熱された後、バッテリ55に至り、熱媒体はそこでバッテリ55と熱交換する。そして、このバッテリ55と熱交換した熱媒体が循環ポンプ62に吸い込まれることで熱媒体配管66内を循環される。 When the circulation pump 62 is operated, the heat medium discharged from the circulation pump 62 flows into the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64. The heat medium exiting the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heating heater 63, and if the heat medium heating heater 63 is generating heat, the heat medium heating heater 63 is heated there, and then the battery. 55, where the heat medium exchanges heat with the battery 55. The heat medium that has exchanged heat with the battery 55 is sucked into the circulation pump 62 and circulated in the heat medium pipe 66.
 一方、冷媒回路Rの冷媒配管13Fと冷媒配管13Bとの接続部の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Bには、分岐回路としての分岐配管67の一端が接続されている。この分岐配管67には実施例では機械式の膨張弁から構成された補助膨張弁68と、被温調対象用弁装置としての電磁弁(チラー用)69が順次設けられている。補助膨張弁68は冷媒-熱媒体熱交換器64の後述する冷媒流路64Bに流入する冷媒を減圧膨張させると共に、冷媒-熱媒体熱交換器64の冷媒流路64Bにおける冷媒の過熱度を調整する。尚、実施例では補助膨張弁68と電磁弁69も電磁弁付き膨張弁にて構成している。 On the other hand, in the refrigerant pipe 13B located on the refrigerant downstream side of the connecting portion between the refrigerant pipe 13F and the refrigerant pipe 13B of the refrigerant circuit R and on the refrigerant upstream side of the indoor expansion valve 8, a branch pipe 67 as a branch circuit is provided. One end is connected. In the branch pipe 67, an auxiliary expansion valve 68, which is a mechanical expansion valve in the embodiment, and an electromagnetic valve (for chiller) 69 as a valve device for the temperature-controlled object are sequentially provided. The auxiliary expansion valve 68 decompresses and expands the refrigerant flowing into the later-described refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64, and adjusts the degree of superheat of the refrigerant in the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64. To do. In the embodiment, the auxiliary expansion valve 68 and the solenoid valve 69 are also expansion valves with solenoid valves.
 そして、分岐配管67の他端は冷媒-熱媒体熱交換器64の冷媒流路64Bに接続されており、この冷媒流路64Bの出口には冷媒配管71の一端が接続され、冷媒配管71の他端は冷媒配管13Dとの合流点より冷媒上流側(アキュムレータ12の冷媒上流側)の冷媒配管13Cに接続されている。そして、これら補助膨張弁68や電磁弁69、冷媒-熱媒体熱交換器64の冷媒流路64B等も冷媒回路Rの一部を構成すると同時に、機器温度調整装置61の一部をも構成することになる。 The other end of the branch pipe 67 is connected to the refrigerant flow passage 64B of the refrigerant-heat medium heat exchanger 64, and one end of the refrigerant pipe 71 is connected to the outlet of the refrigerant flow passage 64B. The other end is connected to the refrigerant pipe 13C on the refrigerant upstream side (refrigerant upstream side of the accumulator 12) from the confluence with the refrigerant pipe 13D. The auxiliary expansion valve 68, the electromagnetic valve 69, the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, and the like also form a part of the refrigerant circuit R and, at the same time, a part of the device temperature adjusting device 61. It will be.
 電磁弁69が開いている場合、室外熱交換器7から出た冷媒(一部又は全ての冷媒)は分岐配管67に流入し、補助膨張弁68で減圧された後、電磁弁69を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して、そこで蒸発する。冷媒は冷媒流路64Bを流れる過程で熱媒体流路64Aを流れる熱媒体から吸熱した後、冷媒配管71、冷媒配管13C、アキュムレータ12を経て冷媒配管13Kから圧縮機2に吸い込まれることになる。 When the solenoid valve 69 is open, the refrigerant (a part or all of the refrigerant) discharged from the outdoor heat exchanger 7 flows into the branch pipe 67, the pressure is reduced by the auxiliary expansion valve 68, and then the refrigerant is passed through the solenoid valve 69. -The refrigerant flows into the refrigerant channel 64B of the heat medium heat exchanger 64 and evaporates there. The refrigerant absorbs heat from the heat medium flowing through the heat medium passage 64A in the process of flowing through the refrigerant passage 64B, and then is sucked into the compressor 2 through the refrigerant pipe 13K through the refrigerant pipe 71, the refrigerant pipe 13C, and the accumulator 12.
 次に、図2は実施例の車両用空気調和装置1の制御装置11のブロック図を示している。制御装置11は、何れもプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成された空調コントローラ45及びヒートポンプコントローラ32から構成されており、これらがCAN(Controller Area Network)やLIN(Local Interconnect Network)を構成する車両通信バス65に接続されている。また、圧縮機2と補助ヒータ23、循環ポンプ62と熱媒体加熱ヒータ63も車両通信バス65に接続され、これら空調コントローラ45、ヒートポンプコントローラ32、圧縮機2、補助ヒータ23、循環ポンプ62及び熱媒体加熱ヒータ63が車両通信バス65を介してデータの送受信を行うように構成されている。 Next, FIG. 2 shows a block diagram of the control device 11 of the vehicle air conditioner 1 of the embodiment. The control device 11 includes an air-conditioning controller 45 and a heat pump controller 32 each of which includes a microcomputer, which is an example of a computer including a processor, and these include a CAN (Controller Area Network) and a LIN (Local Interconnect Network). Is connected to the vehicle communication bus 65 that constitutes the. Further, the compressor 2 and the auxiliary heater 23, the circulation pump 62 and the heat medium heating heater 63 are also connected to the vehicle communication bus 65, and the air conditioning controller 45, the heat pump controller 32, the compressor 2, the auxiliary heater 23, the circulation pump 62 and the heat generator. The medium heater 63 is configured to send and receive data via the vehicle communication bus 65.
 更に、車両通信バス65には走行を含む車両全般の制御を司る車両コントローラ72(ECU)と、バッテリ55の充放電の制御を司るバッテリコントローラ(BMS:Battery Management system)73と、GPSナビゲーション装置74が接続されている。車両コントローラ72やバッテリコントローラ73、GPSナビゲーション装置74もプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成されており、制御装置11を構成する空調コントローラ45とヒートポンプコントローラ32は、車両通信バス65を介してこれら車両コントローラ72やバッテリコントローラ73、GPSナビゲーション装置74と情報(データ)の送受信を行う構成とされている。 Further, the vehicle communication bus 65 includes a vehicle controller 72 (ECU) that controls the entire vehicle including traveling, a battery controller (BMS: Battery Management System) 73 that controls the charging and discharging of the battery 55, and a GPS navigation device 74. Are connected. The vehicle controller 72, the battery controller 73, and the GPS navigation device 74 are also configured by a microcomputer that is an example of a computer including a processor. The air conditioning controller 45 and the heat pump controller 32 that configure the control device 11 connect the vehicle communication bus 65 to each other. Information (data) is transmitted/received to/from the vehicle controller 72, the battery controller 73, and the GPS navigation device 74 via these.
 空調コントローラ45は、車両の車室内空調の制御を司る上位のコントローラであり、この空調コントローラ45の入力には、車両の外気温度Tamを検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれて吸熱器9に流入する空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気温度(内気温度Tin)を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、車室内に吹き出される空気の温度を検出する吹出温度センサ41と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速VSP)を検出するための車速センサ52の各出力と、車室内の設定温度や運転モードの切り換え等の車室内の空調設定操作や情報の表示を行うための空調操作部53が接続されている。尚、図中53Aはこの空調操作部53に設けられた表示出力装置としてのディスプレイである。 The air conditioning controller 45 is a higher-level controller that controls the vehicle interior air conditioning. The inputs of the air conditioning controller 45 are an outside air temperature sensor 33 that detects the outside air temperature Tam of the vehicle and an outside air humidity that detects outside air humidity. A sensor 34, an HVAC suction temperature sensor 36 for detecting the temperature of the air sucked into the air flow passage 3 from the suction port 25 and flowing into the heat absorber 9, and an inside air temperature for detecting the air temperature (inside air temperature Tin) in the vehicle interior. A sensor 37, an inside air humidity sensor 38 that detects the humidity of the air in the passenger compartment, an indoor CO 2 concentration sensor 39 that detects the carbon dioxide concentration in the passenger compartment, and an outlet temperature that detects the temperature of the air blown into the passenger compartment. Each output of the sensor 41, the photosensor type solar radiation sensor 51 for detecting the amount of solar radiation into the vehicle interior, the vehicle speed sensor 52 for detecting the moving speed (vehicle speed VSP) of the vehicle, and the setting of the vehicle interior An air conditioning operation unit 53 for performing an air conditioning setting operation in the vehicle interior such as temperature and operation mode switching and displaying information is connected. Incidentally, 53A in the figure is a display as a display output device provided in the air conditioning operation unit 53.
 また、空調コントローラ45の出力には、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31が接続され、それらは空調コントローラ45により制御される。 Further, the output of the air conditioning controller 45 is connected to the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, and the outlet switching damper 31, which are connected to the air conditioning controller 45. Controlled by.
 ヒートポンプコントローラ32は、主に冷媒回路Rの制御を司るコントローラであり、このヒートポンプコントローラ32の入力には、放熱器4の冷媒入口温度Tcxin(圧縮機2の吐出冷媒温度でもある)を検出する放熱器入口温度センサ43と、放熱器4の冷媒出口温度Tciを検出する放熱器出口温度センサ44と、圧縮機2の吸込冷媒温度Tsを検出する吸込温度センサ46と、放熱器4の冷媒出口側の冷媒圧力(放熱器4の圧力:放熱器圧力Pci)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9の冷媒温度:吸熱器温度Te)を検出する吸熱器温度センサ48と、室外熱交換器7の出口の冷媒温度(室外熱交換器7の冷媒蒸発温度:室外熱交換器温度TXO)を検出する室外熱交換器温度センサ49と、補助ヒータ23の温度を検出する補助ヒータ温度センサ50A(運転席側)及び50B(助手席側)の各出力が接続されている。 The heat pump controller 32 is a controller that mainly controls the refrigerant circuit R, and the heat pump controller 32 has an input that radiates heat to detect the refrigerant inlet temperature Tcxin of the radiator 4 (which is also the refrigerant temperature discharged from the compressor 2 ). The inlet temperature sensor 43, the radiator outlet temperature sensor 44 that detects the refrigerant outlet temperature Tci of the radiator 4, the suction temperature sensor 46 that detects the suction refrigerant temperature Ts of the compressor 2, and the refrigerant outlet side of the radiator 4. Radiator pressure sensor 47 for detecting the refrigerant pressure (pressure of radiator 4; radiator pressure Pci), and heat absorber temperature sensor for detecting temperature of heat absorber 9 (refrigerant temperature of heat absorber 9: heat absorber temperature Te) 48, an outdoor heat exchanger temperature sensor 49 for detecting the refrigerant temperature at the outlet of the outdoor heat exchanger 7 (refrigerant evaporation temperature of the outdoor heat exchanger 7: outdoor heat exchanger temperature TXO), and the temperature of the auxiliary heater 23. Outputs of the auxiliary heater temperature sensors 50A (driver's seat side) and 50B (passenger seat side) are connected.
 また、ヒートポンプコントローラ32の出力には、室外膨張弁6、電磁弁22(除湿用)、電磁弁17(冷房用)、電磁弁21(暖房用)、電磁弁20(バイパス用)、電磁弁35(キャビン用)及び電磁弁69(チラー用)の各電磁弁が接続され、それらはヒートポンプコントローラ32により制御される。尚、圧縮機2、補助ヒータ23、循環ポンプ62及び熱媒体加熱ヒータ63はそれぞれコントローラを内蔵しており、実施例では圧縮機2や補助ヒータ23、循環ポンプ62や熱媒体加熱ヒータ63のコントローラは車両通信バス65を介してヒートポンプコントローラ32とデータの送受信を行い、このヒートポンプコントローラ32によって制御される。 The output of the heat pump controller 32 includes the outdoor expansion valve 6, the solenoid valve 22 (for dehumidification), the solenoid valve 17 (for cooling), the solenoid valve 21 (for heating), the solenoid valve 20 (for bypass), and the solenoid valve 35. The electromagnetic valves (for the cabin) and the electromagnetic valve 69 (for the chiller) are connected, and they are controlled by the heat pump controller 32. The compressor 2, the auxiliary heater 23, the circulation pump 62, and the heat medium heating heater 63 each have a built-in controller, and in the embodiment, the controller of the compressor 2, the auxiliary heater 23, the circulation pump 62, and the heat medium heating heater 63. Transmits and receives data to and from the heat pump controller 32 via the vehicle communication bus 65, and is controlled by the heat pump controller 32.
 尚、機器温度調整装置61を構成する循環ポンプ62や熱媒体加熱ヒータ63はバッテリコントローラ73により制御されるようにしてもよい。また、このバッテリコントローラ73には機器温度調整装置61の冷媒-熱媒体熱交換器64の熱媒体流路64Aの入口側の熱媒体の温度(熱媒体温度Tw)を検出する熱媒体温度センサ76と、バッテリ55の温度(バッテリ55自体の温度:バッテリ温度Tcell)を検出するバッテリ温度センサ77の出力が接続されている。そして、実施例ではバッテリ55の残量(蓄電量)やバッテリ55の充電に関する情報(充電中であることの情報や充電完了時間、残充電時間等)、熱媒体温度Twやバッテリ温度Tcell、バッテリ55の発熱量(通電量等からバッテリコントローラ73が算出)等はバッテリコントローラ73から車両通信バス65を介して空調コントローラ45や車両コントローラ72に送信される。バッテリ55の充電時における充電完了時間や残充電時間に関する情報は、急速充電器等の外部の充電器から供給される情報である。また、車両コントローラ72からは走行用モータの出力Mpowerがヒートポンプコントローラ32や空調コントローラ45に送信される。 The circulation pump 62 and the heat medium heating heater 63 that form the device temperature adjusting device 61 may be controlled by the battery controller 73. Further, the battery controller 73 includes a heat medium temperature sensor 76 for detecting the temperature (heat medium temperature Tw) of the heat medium on the inlet side of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 of the device temperature adjusting device 61. And an output of a battery temperature sensor 77 that detects the temperature of the battery 55 (temperature of the battery 55 itself: battery temperature Tcell). In the embodiment, the remaining amount of the battery 55 (the amount of stored electricity), the information on the charging of the battery 55 (the information that the battery is being charged, the charging completion time, the remaining charging time, etc.), the heat medium temperature Tw, the battery temperature Tcell, and the battery The amount of heat generated by 55 (calculated by the battery controller 73 from the amount of energization) is transmitted from the battery controller 73 to the air conditioning controller 45 and the vehicle controller 72 via the vehicle communication bus 65. The information about the charging completion time and the remaining charging time when the battery 55 is charged is information supplied from an external charger such as a quick charger. Further, the output Mpower of the traveling motor is transmitted from the vehicle controller 72 to the heat pump controller 32 and the air conditioning controller 45.
 ヒートポンプコントローラ32と空調コントローラ45は車両通信バス65を介して相互にデータの送受信を行い、各センサの出力や空調操作部53にて入力された設定に基づき、各機器を制御するものであるが、この場合の実施例では外気温度センサ33、外気湿度センサ34、HVAC吸込温度センサ36、内気温度センサ37、内気湿度センサ38、室内CO2濃度センサ39、吹出温度センサ41、日射センサ51、車速センサ52、空気流通路3に流入して当該空気流通路3内を流通する空気の風量Ga(空調コントローラ45が算出)、エアミックスダンパ28による風量割合SW(空調コントローラ45が算出)、室内送風機27の電圧(BLV)、前述したバッテリコントローラ73からの情報、GPSナビゲーション装置74からの情報、空調操作部53の出力は空調コントローラ45から車両通信バス65を介してヒートポンプコントローラ32に送信され、ヒートポンプコントローラ32による制御に供される構成とされている。 The heat pump controller 32 and the air conditioning controller 45 send and receive data to and from each other via the vehicle communication bus 65, and control each device based on the output of each sensor and the setting input by the air conditioning operation unit 53. In the embodiment in this case, the outside air temperature sensor 33, the outside air humidity sensor 34, the HVAC intake temperature sensor 36, the inside air temperature sensor 37, the inside air humidity sensor 38, the indoor CO 2 concentration sensor 39, the blowout temperature sensor 41, the solar radiation sensor 51, the vehicle speed. The sensor 52, the air volume Ga of the air flowing into the air flow passage 3 and flowing in the air flow passage 3 (calculated by the air conditioning controller 45), the air flow rate SW by the air mix damper 28 (calculated by the air conditioning controller 45), the indoor blower The voltage (BLV) of 27, the information from the battery controller 73, the information from the GPS navigation device 74, and the output of the air conditioning operation unit 53 are transmitted from the air conditioning controller 45 to the heat pump controller 32 via the vehicle communication bus 65, and the heat pump It is configured to be used for control by the controller 32.
 また、ヒートポンプコントローラ32からも冷媒回路Rの制御に関するデータ(情報)が車両通信バス65を介して空調コントローラ45に送信される。尚、前述したエアミックスダンパ28による風量割合SWは、0≦SW≦1の範囲で空調コントローラ45が算出する。そして、SW=1のときはエアミックスダンパ28により、吸熱器9を経た空気の全てが放熱器4及び補助ヒータ23に通風されることになる。 The heat pump controller 32 also transmits data (information) regarding the control of the refrigerant circuit R to the air conditioning controller 45 via the vehicle communication bus 65. The air volume ratio SW by the air mix damper 28 described above is calculated by the air conditioning controller 45 in the range of 0≦SW≦1. Then, when SW=1, all of the air that has passed through the heat absorber 9 is ventilated by the radiator 4 and the auxiliary heater 23 by the air mix damper 28.
 以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。この実施例では制御装置11(空調コントローラ45、ヒートポンプコントローラ32)は、暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、及び、空調(優先)+バッテリ冷却モードの各空調運転と、バッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モードの各バッテリ冷却運転と、除霜モードを切り換えて実行する。これらが図3に示されている。 Next, the operation of the vehicle air conditioner 1 of the embodiment having the above configuration will be described. In this embodiment, the control device 11 (the air conditioning controller 45, the heat pump controller 32) controls the heating mode, the dehumidification heating mode, the dehumidification cooling mode, the cooling mode, and the air conditioning (priority)+battery cooling mode, and the battery cooling. Each battery cooling operation of (priority)+air conditioning mode and battery cooling (single) mode and defrosting mode are switched and executed. These are shown in FIG.
 このうち、暖房モードと、除湿暖房モードと、除湿冷房モードと、冷房モードと、空調(優先)+バッテリ冷却モードの各空調運転は、実施例ではバッテリ55を充電しておらず、車両のイグニッション(IGN)がONされ、空調操作部53の空調スイッチがONされている場合に実行されるものである。但し、リモート運転時(プレ空調等)にはイグニッションがOFFの場合にも実行される。また、バッテリ55を充電中でもバッテリ冷却要求が無く、空調スイッチがONされているときは実行される。一方、バッテリ冷却(優先)+空調モードと、バッテリ冷却(単独)モードの各バッテリ冷却運転は、例えば急速充電器(外部電源)のプラグを接続し、バッテリ55に充電しているときに実行されるものである。但し、バッテリ冷却(単独)モードは、バッテリ55の充電中以外にも、空調スイッチがOFFで、バッテリ冷却要求があった場合(高外気温で走行時等)には実行される。 Among these, in each of the air conditioning operations of the heating mode, the dehumidification heating mode, the dehumidification cooling mode, the cooling mode, and the air conditioning (priority)+battery cooling mode, the battery 55 is not charged in the embodiment, and the ignition of the vehicle is performed. This is executed when (IGN) is turned on and the air conditioning switch of the air conditioning operating unit 53 is turned on. However, it is executed even when the ignition is OFF during remote operation (pre-air conditioning, etc.). Further, even when the battery 55 is being charged, there is no battery cooling request, and the process is executed when the air conditioning switch is ON. On the other hand, each battery cooling operation in the battery cooling (priority)+air conditioning mode and the battery cooling (single) mode is executed, for example, when the plug of the quick charger (external power source) is connected and the battery 55 is being charged. It is something. However, the battery cooling (single) mode is executed when the air conditioning switch is OFF and there is a battery cooling request (such as when traveling at a high outside temperature) other than during charging of the battery 55.
 また、実施例ではヒートポンプコントローラ32は、イグニッションがONされているときや、イグニッションがOFFされていてもバッテリ55が充電中であるときは、機器温度調整装置61の循環ポンプ62を運転し、図4~図10に破線で示す如く熱媒体配管66内に熱媒体を循環させるものとする。更に、図3には示していないが、実施例のヒートポンプコントローラ32は、機器温度調整装置61の熱媒体加熱ヒータ63を発熱させることでバッテリ55を加熱するバッテリ加熱モードも実行する。 In addition, in the embodiment, the heat pump controller 32 operates the circulation pump 62 of the device temperature adjusting device 61 when the ignition is turned on, or when the battery 55 is being charged even when the ignition is turned off. It is assumed that the heat medium is circulated in the heat medium pipe 66 as indicated by broken lines in FIGS. 4 to 10. Further, although not shown in FIG. 3, the heat pump controller 32 of the embodiment also executes a battery heating mode for heating the battery 55 by causing the heat medium heating heater 63 of the device temperature adjusting device 61 to generate heat.
 (1)暖房モード
 先ず、図4を参照しながら暖房モードについて説明する。尚、各機器の制御はヒートポンプコントローラ32と空調コントローラ45の協働により実行されるものであるが、以下の説明ではヒートポンプコントローラ32を制御主体とし、簡略化して説明する。図4には暖房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。ヒートポンプコントローラ32により(オートモード)或いは空調コントローラ45の空調操作部53へのマニュアルの空調設定操作(マニュアルモード)により暖房モードが選択されると、ヒートポンプコントローラ32は電磁弁21を開き、電磁弁17、電磁弁20、電磁弁22、電磁弁35、電磁弁69を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
(1) Heating Mode First, the heating mode will be described with reference to FIG. The control of each device is executed by the cooperation of the heat pump controller 32 and the air conditioning controller 45, but in the following description, the heat pump controller 32 will be the control main body and will be briefly described. FIG. 4 shows how the refrigerant flows in the refrigerant circuit R in the heating mode (solid arrow). When the heating mode is selected by the heat pump controller 32 (auto mode) or the manual air conditioning setting operation (manual mode) to the air conditioning operation unit 53 of the air conditioning controller 45, the heat pump controller 32 opens the solenoid valve 21 and the solenoid valve 17 , The solenoid valve 20, the solenoid valve 22, the solenoid valve 35, and the solenoid valve 69 are closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air and condensed and liquefied.
 放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13E、13Jを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15により通風される外気中から熱を汲み上げる(吸熱)。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13D、電磁弁21を経て冷媒配管13Cに至り、更にこの冷媒配管13Cを経てアキュムレータ12に入り、そこで気液分離された後、冷媒配管13Kからガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。 The refrigerant liquefied in the radiator 4 exits the radiator 4, and then reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7. The refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15 (heat absorption). That is, the refrigerant circuit R serves as a heat pump. Then, the low-temperature refrigerant that has exited the outdoor heat exchanger 7 reaches the refrigerant pipe 13C via the refrigerant pipes 13A and 13D, the solenoid valve 21, and further enters the accumulator 12 via this refrigerant pipe 13C, where it is gas-liquid separated. After that, the circulation of sucking the gas refrigerant into the compressor 2 from the refrigerant pipe 13K is repeated. The air heated by the radiator 4 is blown out from the air outlet 29, so that the interior of the vehicle is heated.
 ヒートポンプコントローラ32は、車室内に吹き出される空気の目標温度(車室内に吹き出される空気の温度の目標値)である後述する目標吹出温度TAOから算出される目標ヒータ温度TCO(放熱器4の目標温度)から目標放熱器圧力PCOを算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、放熱器出口温度センサ44が検出する放熱器4の冷媒出口温度Tci及び放熱器圧力センサ47が検出する放熱器圧力Pciに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度を制御する。 The heat pump controller 32 calculates a target heater temperature TCO (of the radiator 4) calculated from a target outlet temperature TAO, which will be described later, which is a target temperature of air blown into the vehicle interior (a target value of the temperature of air blown into the vehicle interior). The target radiator pressure PCO is calculated from the target temperature), and the rotational speed of the compressor 2 is based on the target radiator pressure PCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. And controlling the valve opening of the outdoor expansion valve 6 based on the refrigerant outlet temperature Tci of the radiator 4 detected by the radiator outlet temperature sensor 44 and the radiator pressure Pci detected by the radiator pressure sensor 47, The degree of supercooling of the refrigerant at the outlet of the radiator 4 is controlled.
 また、ヒートポンプコントローラ32は、必要とされる暖房能力に対して放熱器4による暖房能力(加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、低外気温時等にも車室内を支障無く暖房する。 Further, when the heating capacity (heating capacity) of the radiator 4 is insufficient with respect to the required heating capacity, the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. As a result, the vehicle interior is heated without any trouble even when the outside temperature is low.
 (2)除湿暖房モード
 次に、図5を参照しながら除湿暖房モードについて説明する。図5は除湿暖房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。除湿暖房モードでは、ヒートポンプコントローラ32は電磁弁21、電磁弁22、電磁弁35を開き、電磁弁17、電磁弁20、電磁弁69は閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
(2) Dehumidification Heating Mode Next, the dehumidification heating mode will be described with reference to FIG. FIG. 5 shows how the refrigerant flows in the refrigerant circuit R in the dehumidifying and heating mode (solid arrow). In the dehumidifying and heating mode, the heat pump controller 32 opens the solenoid valve 21, the solenoid valve 22, and the solenoid valve 35, and closes the solenoid valve 17, the solenoid valve 20, and the solenoid valve 69. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air and condensed and liquefied.
 放熱器4内で液化した冷媒は放熱器4を出た後、冷媒配管13Eを経て一部は冷媒配管13Jに入り、室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15により通風される外気中から熱を汲み上げる(吸熱)。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13D、電磁弁21を経て冷媒配管13Cに至り、この冷媒配管13Cを経てアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。 After the refrigerant liquefied in the radiator 4 exits the radiator 4, a part of it enters the refrigerant pipe 13J through the refrigerant pipe 13E and reaches the outdoor expansion valve 6. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7. The refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15 (heat absorption). Then, the low-temperature refrigerant that has exited the outdoor heat exchanger 7 reaches the refrigerant pipe 13C via the refrigerant pipes 13A and 13D and the solenoid valve 21, enters the accumulator 12 via this refrigerant pipe 13C, and is separated into gas and liquid there. After that, the circulation in which the gas refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K is repeated.
 一方、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の残りは分流され、この分流された冷媒が電磁弁22を経て冷媒配管13Fに流入し、冷媒配管13Bに至る。次に、冷媒は室内膨張弁8に至り、この室内膨張弁8にて減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときに吸熱器9で生じる冷媒の吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。 On the other hand, the rest of the condensed refrigerant flowing through the radiator pipe 13E via the radiator 4 is diverted, and the diverted refrigerant flows into the refrigerant pipe 13F via the solenoid valve 22 and reaches the refrigerant pipe 13B. Next, the refrigerant reaches the indoor expansion valve 8, is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates. At this time, the water in the air blown from the indoor blower 27 is condensed and attached to the heat absorber 9 due to the heat absorbing action of the refrigerant generated in the heat absorber 9, so that the air is cooled and dehumidified.
 吸熱器9で蒸発した冷媒は、冷媒配管13Cに出て冷媒配管13Dからの冷媒(室外熱交換器7からの冷媒)と合流した後、アキュムレータ12を経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4や補助ヒータ23(発熱している場合)を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。 The refrigerant evaporated in the heat absorber 9 flows out to the refrigerant pipe 13C, joins the refrigerant from the refrigerant pipe 13D (refrigerant from the outdoor heat exchanger 7), and then is sucked into the compressor 2 from the refrigerant pipe 13K via the accumulator 12. Repeat the cycle. The air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4 and the auxiliary heater 23 (when heat is generated), so that dehumidification and heating of the vehicle interior is performed.
 ヒートポンプコントローラ32は、実施例では目標ヒータ温度TCOから算出される目標放熱器圧力PCOと放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御するか、又は、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数を制御する。このとき、ヒートポンプコントローラ32は放熱器圧力Pciによるか吸熱器温度Teによるか、何れかの演算から得られる圧縮機目標回転数の低い方(後述するTGNChとTGNCcのうちの低い方)を選択して圧縮機2を制御する。また、吸熱器温度Teに基づいて室外膨張弁6の弁開度を制御する。 In the embodiment, the heat pump controller 32 rotates the compressor 2 based on the target radiator pressure PCO calculated from the target heater temperature TCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. Number, or controls the number of revolutions of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is its target value. .. At this time, the heat pump controller 32 selects the lower one of the compressor target rotation speeds (the lower one of TGNCh and TGNCc described later) obtained from either calculation depending on the radiator pressure Pci or the heat absorber temperature Te. To control the compressor 2. Further, the valve opening degree of the outdoor expansion valve 6 is controlled based on the heat absorber temperature Te.
 また、ヒートポンプコントローラ32は、この除湿暖房モードにおいても必要とされる暖房能力に対して放熱器4による暖房能力(加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、低外気温時等にも車室内を支障無く除湿暖房する。 Further, when the heating capacity by the radiator 4 (heating capacity) is insufficient with respect to the heating capacity required also in the dehumidifying and heating mode, the heat pump controller 32 complements the shortage with the heat generated by the auxiliary heater 23. .. As a result, the vehicle interior is dehumidified and heated even when the outside temperature is low.
 (3)除湿冷房モード
 次に、図6を参照しながら除湿冷房モードについて説明する。図6は除湿冷房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。除湿冷房モードでは、ヒートポンプコントローラ32は電磁弁17、及び、電磁弁35を開き、電磁弁20、電磁弁21、電磁弁22、及び、電磁弁69を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
(3) Dehumidifying and Cooling Mode Next, the dehumidifying and cooling mode will be described with reference to FIG. FIG. 6 shows how the refrigerant flows in the refrigerant circuit R in the dehumidifying and cooling mode (solid arrow). In the dehumidifying and cooling mode, the heat pump controller 32 opens the solenoid valve 17 and the solenoid valve 35, and closes the solenoid valve 20, the solenoid valve 21, the solenoid valve 22, and the solenoid valve 69. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by air, and is condensed and liquefied.
 放熱器4を出た冷媒は冷媒配管13E、13Jを経て室外膨張弁6に至り、暖房モードや除湿暖房モードよりも開き気味(大きい弁開度の領域)で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入り、逆止弁18を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着し、空気は冷却され、且つ、除湿される。 The refrigerant exiting the radiator 4 reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J, and then passes through the outdoor expansion valve 6 controlled to open more (a region of a larger valve opening) than the heating mode or the dehumidifying and heating mode. It flows into the outdoor heat exchanger 7. The refrigerant that has flowed into the outdoor heat exchanger 7 is condensed by being cooled there by traveling or by the outside air ventilated by the outdoor blower 15. The refrigerant discharged from the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the electromagnetic valve 17, the receiver dryer unit 14, and the supercooling unit 16, and reaches the indoor expansion valve 8 via the check valve 18. The refrigerant is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates. Due to the heat absorbing action at this time, the moisture in the air blown out from the indoor blower 27 is condensed and attached to the heat absorber 9, and the air is cooled and dehumidified.
 吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこを経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4や補助ヒータ23(発熱している場合)を通過する過程で再加熱(除湿暖房時よりも加熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。 The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is repeatedly circulated by being sucked into the compressor 2 from the refrigerant pipe 13K via the refrigerant pipe 13C. The air cooled and dehumidified by the heat absorber 9 is reheated (has a lower heating capacity than that during dehumidification heating) in the process of passing through the radiator 4 and the auxiliary heater 23 (when heat is generated). As a result, the dehumidifying and cooling of the vehicle interior is performed.
 ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)と吸熱器9の目標温度(吸熱器温度Teの目標値)である目標吸熱器温度TEOに基づき、吸熱器温度Teを目標吸熱器温度TEOにするように圧縮機2の回転数を制御すると共に、放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)と目標放熱器圧力PCO(放熱器圧力Pciの目標値)に基づき、放熱器圧力Pciを目標放熱器圧力PCOにするように室外膨張弁6の弁開度を制御することで放熱器4による必要なリヒート量(再加熱量)を得る。 The heat pump controller 32 absorbs heat based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is the target temperature of the heat absorber 9 (target value of the heat absorber temperature Te). The rotation speed of the compressor 2 is controlled so that the device temperature Te becomes the target heat absorber temperature TEO, and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47 and the target radiator pressure PCO. Based on (the target value of the radiator pressure Pci), by controlling the valve opening of the outdoor expansion valve 6 so that the radiator pressure Pci becomes the target radiator pressure PCO, the reheat amount required by the radiator 4 (reheating) Amount).
 また、ヒートポンプコントローラ32は、この除湿冷房モードにおいても必要とされる暖房能力に対して放熱器4による暖房能力(再加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、車室内の温度を下げ過ぎること無く、除湿冷房する。 Further, when the heating capacity (reheating capacity) by the radiator 4 is insufficient with respect to the heating capacity required also in the dehumidifying and cooling mode, the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. To do. As a result, dehumidifying and cooling are performed without excessively reducing the temperature inside the vehicle compartment.
 (4)冷房モード(空調(単独)モード)
 次に、図7を参照しながら冷房モードについて説明する。図7は冷房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。冷房モードでは、ヒートポンプコントローラ32は電磁弁17、電磁弁20、及び、電磁弁35を開き、電磁弁21、電磁弁22、及び、電磁弁69を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。尚、補助ヒータ23には通電されない。
(4) Cooling mode (air conditioning (single) mode)
Next, the cooling mode will be described with reference to FIG. FIG. 7 shows how the refrigerant flows in the refrigerant circuit R in the cooling mode (solid arrow). In the cooling mode, the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, and the solenoid valve 35, and closes the solenoid valve 21, the solenoid valve 22, and the solenoid valve 69. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23. The auxiliary heater 23 is not energized.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒート(再加熱)のみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。このとき電磁弁20は開放されているので冷媒は電磁弁20を通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮液化する。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Although the air in the airflow passage 3 is ventilated through the radiator 4, since the proportion thereof is small (only for reheating (reheating) during cooling), it almost only passes through here, and the radiator 4 The discharged refrigerant reaches the refrigerant pipe 13J through the refrigerant pipe 13E. At this time, since the electromagnetic valve 20 is opened, the refrigerant passes through the electromagnetic valve 20 and flows into the outdoor heat exchanger 7 as it is, and is cooled by the traveling air or the outside air ventilated by the outdoor blower 15 to be condensed and liquefied. To do.
 室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入り、逆止弁18を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときの吸熱作用で室内送風機27から吹き出されて吸熱器9と熱交換する空気は冷却される。 The refrigerant discharged from the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16, and reaches the indoor expansion valve 8 via the check valve 18. The refrigerant is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates. Due to the heat absorbing action at this time, the air blown out from the indoor blower 27 and exchanging heat with the heat absorber 9 is cooled.
 吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこから冷媒配管13Kを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房モードにおいては、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて圧縮機2の回転数を制御する。 The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is sucked into the compressor 2 via the refrigerant pipe 13K. The air cooled by the heat absorber 9 is blown into the vehicle interior from the air outlet 29, so that the vehicle interior is cooled. In this cooling mode, the heat pump controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
 (5)空調(優先)+バッテリ冷却モード(空調(優先)+被温調対象冷却モード)
 次に、図8を参照しながら空調(優先)+バッテリ冷却モードについて説明する。図8は空調(優先)+バッテリ冷却モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。空調(優先)+バッテリ冷却モードでは、ヒートポンプコントローラ32は電磁弁17、電磁弁20、電磁弁35、及び、電磁弁69を開き、電磁弁21、及び、電磁弁22を閉じる。
(5) Air conditioning (priority) + battery cooling mode (air conditioning (priority) + temperature controlled cooling mode)
Next, the air conditioning (priority)+battery cooling mode will be described with reference to FIG. FIG. 8 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in the air conditioning (priority)+battery cooling mode. In the air conditioning (priority)+battery cooling mode, the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, the solenoid valve 35, and the solenoid valve 69, and closes the solenoid valves 21 and 22.
 そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。尚、この運転モードでは補助ヒータ23には通電されない。また、熱媒体加熱ヒータ63にも通電されない。 Then, the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23. Incidentally, the auxiliary heater 23 is not energized in this operation mode. Also, the heat medium heater 63 is not energized.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒート(再加熱)のみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。このとき電磁弁20は開放されているので冷媒は電磁弁20を通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮液化する。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Although the air in the airflow passage 3 is ventilated through the radiator 4, since the proportion thereof is small (only for reheating (reheating) during cooling), it almost only passes through here, and the radiator 4 The discharged refrigerant reaches the refrigerant pipe 13J through the refrigerant pipe 13E. At this time, since the electromagnetic valve 20 is opened, the refrigerant passes through the electromagnetic valve 20 and flows into the outdoor heat exchanger 7 as it is, and is cooled by the traveling air or the outside air ventilated by the outdoor blower 15 to be condensed and liquefied. To do.
 室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入る。この冷媒配管13Bに流入した冷媒は、逆止弁18を経た後に分流され、一方はそのまま冷媒配管13Bを流れて室内膨張弁8に至る。この室内膨張弁8に流入した冷媒はそこで減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときの吸熱作用で室内送風機27から吹き出されて吸熱器9と熱交換する空気は冷却される。 The refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16. The refrigerant flowing into the refrigerant pipe 13B is split after passing through the check valve 18, and one of the refrigerant flows through the refrigerant pipe 13B as it is to reach the indoor expansion valve 8. The refrigerant flowing into the indoor expansion valve 8 is decompressed there, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates. Due to the heat absorbing action at this time, the air blown out from the indoor blower 27 and exchanging heat with the heat absorber 9 is cooled.
 吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこから冷媒配管13Kを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。 The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is sucked into the compressor 2 via the refrigerant pipe 13K. The air cooled by the heat absorber 9 is blown into the vehicle interior from the air outlet 29, so that the vehicle interior is cooled.
 他方、逆止弁18を経た冷媒の残りは分流され、分岐配管67に流入して補助膨張弁68に至る。ここで冷媒は減圧された後、電磁弁69を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入し、そこで蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管71、冷媒配管13C及びアキュムレータ12を順次経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す(図8に実線矢印で示す)。 On the other hand, the rest of the refrigerant that has passed through the check valve 18 is split, flows into the branch pipe 67, and reaches the auxiliary expansion valve 68. Here, the refrigerant is decompressed, then flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 via the electromagnetic valve 69, and evaporates there. At this time, it exerts an endothermic effect. The refrigerant evaporated in the refrigerant flow path 64B repeats the circulation in which the refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K through the refrigerant pipe 71, the refrigerant pipe 13C and the accumulator 12 in sequence (indicated by a solid arrow in FIG. 8).
 一方、循環ポンプ62が運転されているので、この循環ポンプ62から吐出された熱媒体が熱媒体配管66内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒と熱交換し、吸熱されて熱媒体は冷却される。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は、熱媒体加熱ヒータ63に至る。但し、この運転モードでは熱媒体加熱ヒータ63は発熱されないので、熱媒体はそのまま通過してバッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は冷却されると共に、バッテリ55を冷却した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す(図8に破線矢印で示す)。 On the other hand, since the circulation pump 62 is operating, the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 66, and the refrigerant flow passage is there. The heat medium exchanges heat with the refrigerant that evaporates in 64B and absorbs heat to cool the heat medium. The heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heater 63. However, since the heat medium heater 63 does not generate heat in this operation mode, the heat medium passes through as it is to the battery 55 and exchanges heat with the battery 55. As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 is repeatedly circulated by being sucked into the circulation pump 62 (indicated by a dashed arrow in FIG. 8 ).
 この空調(優先)+バッテリ冷却モードにおいては、ヒートポンプコントローラ32は電磁弁35を開いた状態を維持し、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて後述する如く圧縮機2の回転数を制御する。また、実施例では熱媒体温度センサ76が検出する熱媒体の温度(熱媒体温度Tw:バッテリコントローラ73から送信される)に基づき、電磁弁69を以下の如く開閉制御する。尚、熱媒体温度Twは、実施例における被温調対象であるバッテリ55の温度を示す指標として採用している(以下、同じ)。 In this air conditioning (priority)+battery cooling mode, the heat pump controller 32 maintains the electromagnetic valve 35 in the open state, and will be described later based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48. The rotation speed of the compressor 2 is controlled as described above. In the embodiment, the solenoid valve 69 is controlled to open/close as follows based on the temperature of the heat medium detected by the heat medium temperature sensor 76 (heat medium temperature Tw: transmitted from the battery controller 73). The heat medium temperature Tw is used as an index indicating the temperature of the battery 55 to be temperature-controlled in the embodiment (hereinafter the same).
 即ち、ヒートポンプコントローラ32は、熱媒体温度Twの目標値としての所定の目標熱媒体温度TWOの上下に所定の温度差を有して上限値TULと下限値TLLを設定する。そして、電磁弁69を閉じている状態からバッテリ55の発熱等により熱媒体温度Twが高くなり、上限値TULまで上昇した場合(上限値TULを上回った場合、又は、上限値TUL以上となった場合。以下、同じ)、電磁弁69を開放する。これにより、冷媒は冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して蒸発し、熱媒体流路64Aを流れる熱媒体を冷却するので、この冷却された熱媒体によりバッテリ55は冷却される。 That is, the heat pump controller 32 sets an upper limit value TUL and a lower limit value TLL with a predetermined temperature difference above and below a predetermined target heat medium temperature TWO as a target value of the heat medium temperature Tw. Then, when the heat medium temperature Tw increases due to heat generation of the battery 55 or the like from the state where the solenoid valve 69 is closed and rises to the upper limit value TUL (when it exceeds the upper limit value TUL or becomes equal to or more than the upper limit value TUL). In the following case, the same), the solenoid valve 69 is opened. As a result, the refrigerant flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 and evaporates to cool the heat medium flowing through the heat medium channel 64A, so that the battery 55 is cooled by the cooled heat medium. To be done.
 その後、熱媒体温度Twが下限値TLLまで低下した場合(下限値TLLを下回った場合、又は、下限値TLL以下となった場合。以下、同じ)、電磁弁69を閉じる。以後、このような電磁弁69の開閉を繰り返して、車室内の冷房を優先しながら、熱媒体温度Twを目標熱媒体温度TWOに制御し、バッテリ55の冷却を行う。 After that, when the heat medium temperature Tw drops to the lower limit value TLL (when it falls below the lower limit value TLL or becomes lower than the lower limit value TLL. The same applies hereinafter), the solenoid valve 69 is closed. After that, the solenoid valve 69 is repeatedly opened and closed as described above to control the heat medium temperature Tw to the target heat medium temperature TWO while prioritizing the cooling of the vehicle compartment, and the battery 55 is cooled.
 (6)空調運転の切り換え
 ヒートポンプコントローラ32は下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、吹出口29から車室内に吹き出される空気の温度の目標値である。
 TAO=(Tset-Tin)×K+Tbal(f(Tset、SUN、Tam))
                                   ・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する車室内空気の温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
(6) Switching of air conditioning operation The heat pump controller 32 calculates the above-mentioned target outlet temperature TAO from the following formula (I). This target outlet temperature TAO is a target value of the temperature of the air blown into the vehicle compartment from the outlet 29.
TAO=(Tset-Tin)×K+Tbal(f(Tset, SUN, Tam))
..(I)
Here, Tset is the set temperature in the vehicle compartment set by the air conditioning operation unit 53, Tin is the temperature of the vehicle interior air detected by the inside air temperature sensor 37, K is a coefficient, Tbal is the set temperature Tset, and the solar radiation sensor 51 detects the temperature. It is a balance value calculated from the amount of solar radiation SUN to be performed and the outside air temperature Tam detected by the outside air temperature sensor 33. Then, in general, the target outlet temperature TAO is higher as the outside air temperature Tam is lower, and is decreased as the outside air temperature Tam is increased.
 そして、ヒートポンプコントローラ32は起動時には外気温度センサ33が検出する外気温度Tamと目標吹出温度TAOとに基づいて上記各空調運転のうちの何れかの空調運転を選択する。また、起動後は外気温度Tamや目標吹出温度TAO、熱媒体温度Twやバッテリ温度Tcell等の運転条件や環境条件、設定条件の変化、バッテリコントローラ73からのバッテリ冷却要求(モード移行要求)に応じ、前記各空調運転を選択して切り換えていく。 Then, the heat pump controller 32 selects one of the above air conditioning operations based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target outlet temperature TAO at the time of startup. In addition, after the start, in response to operating conditions such as the outside air temperature Tam, the target outlet temperature TAO, the heat medium temperature Tw and the battery temperature Tcell, environmental conditions, changes in setting conditions, and a battery cooling request (mode transition request) from the battery controller 73. The air conditioning operation is selected and switched.
 (7)バッテリ冷却(優先)+空調モード(被温調対象冷却(優先)+空調モード)
 次に、バッテリ55の充電中の動作について説明する。例えば急速充電器(外部電源)の充電用のプラグが接続され、バッテリ55が充電されているときに(これらの情報はバッテリコントローラ73から送信される)、車両のイグニッション(IGN)のON/OFFに拘わらず、バッテリ冷却要求があり、空調操作部53の空調スイッチがONされた場合、ヒートポンプコントローラ32はバッテリ冷却(優先)+空調モードを実行する。このバッテリ冷却(優先)+空調モードにおける冷媒回路Rの冷媒の流れ方は、図8に示した空調(優先)+バッテリ冷却モードの場合と同様である。
(7) Battery cooling (priority) + air conditioning mode (cooling subject to temperature adjustment (priority) + air conditioning mode)
Next, the operation during charging of the battery 55 will be described. For example, when the plug for charging a quick charger (external power source) is connected and the battery 55 is being charged (these information is transmitted from the battery controller 73), the ignition (IGN) of the vehicle is turned on/off. Regardless of the above, if there is a battery cooling request and the air conditioning switch of the air conditioning operation unit 53 is turned on, the heat pump controller 32 executes battery cooling (priority)+air conditioning mode. The way the refrigerant flows in the refrigerant circuit R in the battery cooling (priority)+air conditioning mode is the same as in the air conditioning (priority)+battery cooling mode shown in FIG.
 但し、このバッテリ冷却(優先)+空調モードの場合、実施例ではヒートポンプコントローラ32は電磁弁69を開いた状態に維持し、熱媒体温度センサ76(バッテリコントローラ73から送信される)が検出する熱媒体温度Twに基づいて後述する如く圧縮機2の回転数を制御する。また、実施例では吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づき、電磁弁35を以下の如く開閉制御する。 However, in the case of this battery cooling (priority)+air conditioning mode, in the embodiment, the heat pump controller 32 keeps the electromagnetic valve 69 open, and the heat detected by the heat medium temperature sensor 76 (transmitted from the battery controller 73) is detected. The rotation speed of the compressor 2 is controlled based on the medium temperature Tw as described later. In the embodiment, the solenoid valve 35 is controlled to open and close as follows based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
 即ち、ヒートポンプコントローラ32は、吸熱器温度Teの目標値としての所定の目標吸熱器温度TEOの上下に所定の温度差を有して上限値TeULと下限値TeLLを設定する。そして、電磁弁35を閉じている状態から吸熱器温度Teが高くなり、上限値TeULまで上昇した場合(上限値TeULを上回った場合、又は、上限値TeUL以上となった場合。以下、同じ)、電磁弁35を開放する。これにより、冷媒は吸熱器9に流入して蒸発し、空気流通路3を流通する空気を冷却する。 That is, the heat pump controller 32 sets an upper limit value TeUL and a lower limit value TeLL with a predetermined temperature difference above and below a predetermined target heat sink temperature TEO as a target value of the heat sink temperature Te. Then, when the heat absorber temperature Te rises from the state where the solenoid valve 35 is closed and rises to the upper limit value TeUL (when it exceeds the upper limit value TeUL or becomes equal to or higher than the upper limit value TeUL. The same applies hereinafter). , The solenoid valve 35 is opened. As a result, the refrigerant flows into the heat absorber 9 and evaporates to cool the air flowing through the air flow passage 3.
 その後、吸熱器温度Teが下限値TeLLまで低下した場合(下限値TeLLを下回った場合、又は、TeLL以下となった場合。以下、同じ)、電磁弁35を閉じる。以後、このような電磁弁35の開閉を繰り返して、バッテリ55の冷却を優先しながら、吸熱器温度Teを目標吸熱器温度TEOに制御し、車室内の冷房を行う。 After that, when the heat absorber temperature Te drops to the lower limit value TeLL (when it falls below the lower limit value TeLL or when it falls below TeLL. The same applies hereinafter), the solenoid valve 35 is closed. Thereafter, such opening/closing of the electromagnetic valve 35 is repeated to give priority to the cooling of the battery 55, and the heat absorber temperature Te is controlled to the target heat absorber temperature TEO to cool the vehicle interior.
 (8)バッテリ冷却(単独)モード(被温調対象冷却(単独)モード)
 次に、イグニッションのON/OFFに拘わらず、空調操作部53の空調スイッチがOFFされた状態で、急速充電器の充電用のプラグが接続され、バッテリ55が充電されているとき、バッテリ冷却要求があった場合、ヒートポンプコントローラ32はバッテリ冷却(単独)モードを実行する。但し、バッテリ55の充電中以外にも、空調スイッチがOFFで、バッテリ冷却要求があった場合(高外気温で走行時等)には実行される。図9はこのバッテリ冷却(単独)モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。バッテリ冷却(単独)モードでは、ヒートポンプコントローラ32は電磁弁17、電磁弁20、及び、電磁弁69を開き、電磁弁21、電磁弁22、及び、電磁弁35を閉じる。
(8) Battery cooling (independent) mode (controlled cooling target (independent) mode)
Next, regardless of whether the ignition is ON or OFF, when the air conditioning switch of the air conditioning operation unit 53 is OFF, the charging plug of the quick charger is connected, and the battery 55 is charged, the battery cooling request is issued. If there is, the heat pump controller 32 executes the battery cooling (single) mode. However, it is executed when the air conditioning switch is OFF and there is a battery cooling request (eg, when traveling at a high outside air temperature) other than during charging of the battery 55. FIG. 9 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in the battery cooling (single) mode. In the battery cooling (single) mode, the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, and the solenoid valve 69, and closes the solenoid valve 21, the solenoid valve 22, and the solenoid valve 35.
 そして、圧縮機2、及び、室外送風機15を運転する。尚、室内送風機27は運転されず、補助ヒータ23にも通電されない。また、この運転モードでは熱媒体加熱ヒータ63も通電されない。 Then, the compressor 2 and the outdoor blower 15 are operated. The indoor blower 27 is not operated and the auxiliary heater 23 is not energized. Further, the heat medium heater 63 is not energized in this operation mode.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されないので、ここは通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。このとき、電磁弁20は開放されているので冷媒は電磁弁20を通過し、そのまま室外熱交換器7に流入し、そこで室外送風機15により通風される外気によって空冷され、凝縮液化する。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is not ventilated to the radiator 4, it passes only here, and the refrigerant exiting the radiator 4 reaches the refrigerant pipe 13J via the refrigerant pipe 13E. At this time, since the electromagnetic valve 20 is open, the refrigerant passes through the electromagnetic valve 20, flows into the outdoor heat exchanger 7 as it is, and is cooled by air by the outside air ventilated by the outdoor blower 15 to be condensed and liquefied.
 室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入る。この冷媒配管13Bに流入した冷媒は、逆止弁18を経た後、全てが分岐配管67に流入して補助膨張弁68に至る。ここで冷媒は減圧された後、電磁弁69を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入し、そこで蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管71、冷媒配管13C及びアキュムレータ12を順次経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す(図9に実線矢印で示す)。 The refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16. After passing through the check valve 18, all of the refrigerant flowing into the refrigerant pipe 13B flows into the branch pipe 67 and reaches the auxiliary expansion valve 68. Here, the refrigerant is decompressed, then flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 via the electromagnetic valve 69, and evaporates there. At this time, it exerts an endothermic effect. The refrigerant evaporated in the refrigerant flow path 64B repeats the circulation in which the refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K through the refrigerant pipe 71, the refrigerant pipe 13C and the accumulator 12 in sequence (shown by a solid arrow in FIG. 9).
 一方、循環ポンプ62が運転されているので、この循環ポンプ62から吐出された熱媒体が熱媒体配管66内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒により吸熱され、熱媒体は冷却されるようになる。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は、熱媒体加熱ヒータ63に至る。但し、この運転モードでは熱媒体加熱ヒータ63は発熱されないので、熱媒体はそのまま通過してバッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は冷却されると共に、バッテリ55を冷却した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す(図9に破線矢印で示す)。 On the other hand, since the circulation pump 62 is operating, the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 66, and the refrigerant flow passage is there. The heat medium is cooled by being absorbed by the refrigerant evaporated in 64B. The heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heater 63. However, since the heat medium heater 63 does not generate heat in this operation mode, the heat medium passes through as it is to the battery 55 and exchanges heat with the battery 55. As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 is repeatedly circulated by being sucked into the circulation pump 62 (shown by a dashed arrow in FIG. 9 ).
 このバッテリ冷却(単独)モードにおいても、ヒートポンプコントローラ32は熱媒体温度センサ76が検出する熱媒体温度Twに基づいて後述する如く圧縮機2の回転数を制御することにより、バッテリ55を冷却する。 Even in this battery cooling (single) mode, the heat pump controller 32 cools the battery 55 by controlling the rotation speed of the compressor 2 as described later based on the heat medium temperature Tw detected by the heat medium temperature sensor 76.
 (9)除霜モード
 次に、図10を参照しながら室外熱交換器7の除霜モードについて説明する。図10は除霜モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。前述した如く暖房モードでは、室外熱交換器7では冷媒が蒸発し、外気から吸熱して低温となるため、室外熱交換器7には外気中の水分が霜となって付着する。
(9) Defrost Mode Next, the defrost mode of the outdoor heat exchanger 7 will be described with reference to FIG. 10. FIG. 10 shows how the refrigerant flows in the refrigerant circuit R in the defrosting mode (solid arrow). As described above, in the heating mode, the refrigerant evaporates in the outdoor heat exchanger 7 and absorbs heat from the outside air to reach a low temperature, so that the moisture in the outside air adheres to the outside heat exchanger 7 as frost.
 そこで、ヒートポンプコントローラ32は室外熱交換器温度センサ49が検出する室外熱交換器温度TXO(室外熱交換器7における冷媒蒸発温度)と、室外熱交換器7の無着霜時における冷媒蒸発温度TXObaseとの差ΔTXO(=TXObase-TXO)を算出しており、室外熱交換器温度TXOが無着霜時における冷媒蒸発温度TXObaseより低下して、その差ΔTXOが所定値以上に拡大した状態が所定時間継続した場合、室外熱交換器7に着霜しているものと判定して所定の着霜フラグをセットする。 Therefore, the heat pump controller 32 detects the outdoor heat exchanger temperature TXO detected by the outdoor heat exchanger temperature sensor 49 (refrigerant evaporation temperature in the outdoor heat exchanger 7) and the refrigerant evaporation temperature TXObase when the outdoor heat exchanger 7 is not frosted. And a difference ΔTXO (=TXObase−TXO) is calculated, and it is determined that the outdoor heat exchanger temperature TXO is lower than the refrigerant evaporation temperature TXObase during non-frosting, and the difference ΔTXO is increased to a predetermined value or more. When the time has continued, it is determined that the outdoor heat exchanger 7 is frosted, and a predetermined frosting flag is set.
 そして、この着霜フラグがセットされており、空調操作部53の空調スイッチがOFFされた状態で、急速充電器に充電用のプラグが接続され、バッテリ55が充電されるとき、ヒートポンプコントローラ32は以下の如く室外熱交換器7の除霜モードを実行する。 When the frost flag is set and the air conditioning switch of the air conditioning operating unit 53 is turned off, the charging plug is connected to the quick charger and the battery 55 is charged, the heat pump controller 32 The defrosting mode of the outdoor heat exchanger 7 is executed as follows.
 ヒートポンプコントローラ32はこの除霜モードでは、冷媒回路Rを前述した暖房モードの状態とした上で、室外膨張弁6の弁開度を全開とする。そして、圧縮機2を運転し、当該圧縮機2から吐出された高温の冷媒を放熱器4、室外膨張弁6を経て室外熱交換器7に流入させ、当該室外熱交換器7の着霜を融解させる(図10)。そして、ヒートポンプコントローラ32は室外熱交換器温度センサ49が検出する室外熱交換器温度TXOが所定の除霜終了温度(例えば、+3℃等)より高くなった場合、室外熱交換器7の除霜が完了したものとして除霜モードを終了する。 In this defrosting mode, the heat pump controller 32 puts the refrigerant circuit R into the heating mode described above and fully opens the outdoor expansion valve 6. Then, the compressor 2 is operated, the high-temperature refrigerant discharged from the compressor 2 is caused to flow into the outdoor heat exchanger 7 via the radiator 4 and the outdoor expansion valve 6, and the frost formation on the outdoor heat exchanger 7 is prevented. Thaw (Figure 10). Then, the heat pump controller 32 defrosts the outdoor heat exchanger 7 when the outdoor heat exchanger temperature TXO detected by the outdoor heat exchanger temperature sensor 49 becomes higher than a predetermined defrosting end temperature (for example, +3° C.). Is completed and the defrosting mode is terminated.
 (10)バッテリ加熱モード
 また、空調運転を実行しているとき、或いは、バッテリ55を充電しているとき、ヒートポンプコントローラ32はバッテリ加熱モードを実行する。このバッテリ加熱モードでは、ヒートポンプコントローラ32は循環ポンプ62を運転し、熱媒体加熱ヒータ63に通電する。尚、電磁弁69は閉じる。
(10) Battery Heating Mode Further, the heat pump controller 32 executes the battery heating mode when the air conditioning operation is executed or when the battery 55 is charged. In this battery heating mode, the heat pump controller 32 operates the circulation pump 62 and energizes the heat medium heating heater 63. The solenoid valve 69 is closed.
 これにより、循環ポンプ62から吐出された熱媒体は熱媒体配管66内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこを通過して熱媒体加熱ヒータ63に至る。このとき熱媒体加熱ヒータ63は発熱されているので、熱媒体は熱媒体加熱ヒータ63により加熱されて温度上昇した後、バッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は加熱されると共に、バッテリ55を加熱した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す。 As a result, the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 through the heat medium pipe 66, and passes therethrough to reach the heat medium heater 63. At this time, since the heat medium heating heater 63 is generating heat, the heat medium is heated by the heat medium heating heater 63 and its temperature rises, and then reaches the battery 55 and exchanges heat with the battery 55. Thereby, the battery 55 is heated, and the heat medium after heating the battery 55 is sucked into the circulation pump 62 and repeats circulation.
 このバッテリ加熱モードにおいては、ヒートポンプコントローラ32は熱媒体温度センサ76が検出する熱媒体温度Twに基づいて熱媒体加熱ヒータ63の通電を制御することにより、熱媒体温度Twを所定の目標熱媒体温度TWOに調整し、バッテリ55を加熱する。 In this battery heating mode, the heat pump controller 32 controls the energization of the heat medium heating heater 63 based on the heat medium temperature Tw detected by the heat medium temperature sensor 76 to set the heat medium temperature Tw to the predetermined target heat medium temperature. Adjust to TWO and heat battery 55.
 (11)ヒートポンプコントローラ32による圧縮機2の制御
 また、ヒートポンプコントローラ32は、暖房モードでは放熱器圧力Pciに基づき、図11の制御ブロック図により圧縮機2の目標回転数(圧縮機目標回転数)TGNChを算出し、除湿冷房モード、冷房モード、空調(優先)+バッテリ冷却モードでは、吸熱器温度Teに基づき、図12の制御ブロック図により圧縮機2の目標回転数(圧縮機目標回転数)TGNCcを算出する。尚、除湿暖房モードでは圧縮機目標回転数TGNChと圧縮機目標回転数TGNCcのうちの低い方向を選択する。また、バッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モードでは、熱媒体温度Twに基づき、図13の制御ブロック図により圧縮機2の目標回転数(圧縮機目標回転数)TGNCcbを算出する。
(11) Control of Compressor 2 by Heat Pump Controller 32 Further, the heat pump controller 32 is based on the radiator pressure Pci in the heating mode, and the target rotation speed of the compressor 2 (compressor target rotation speed) is shown in the control block diagram of FIG. The TGNCh is calculated, and in the dehumidifying cooling mode, the cooling mode, and the air conditioning (priority)+battery cooling mode, the target rotation speed of the compressor 2 (compressor target rotation speed) based on the heat absorber temperature Te according to the control block diagram of FIG. Calculate TGNCc. In the dehumidifying and heating mode, the lower direction of the compressor target speed TGNCh and the compressor target speed TGNc is selected. In the battery cooling (priority)+air conditioning mode and the battery cooling (single) mode, the target rotation speed of the compressor 2 (compressor target rotation speed) TGNCcb is calculated based on the heat medium temperature Tw by the control block diagram of FIG. To do.
 (11-1)放熱器圧力Pciに基づく圧縮機目標回転数TGNChの算出
 先ず、図11を用いて放熱器圧力Pciに基づく圧縮機2の制御について詳述する。図11は放熱器圧力Pciに基づいて圧縮機2の目標回転数(圧縮機目標回転数)TGNChを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F(フィードフォワード)操作量演算部78は外気温度センサ33から得られる外気温度Tamと、室内送風機27のブロワ電圧BLVと、SW=(TAO-Te)/(Thp-Te)で得られるエアミックスダンパ28による風量割合SWと、放熱器4の出口における冷媒の過冷却度SCの目標値である目標過冷却度TGSCと、ヒータ温度Thpの目標値である前述した目標ヒータ温度TCOと、放熱器4の圧力の目標値である目標放熱器圧力PCOに基づいて圧縮機目標回転数のF/F操作量TGNChffを算出する。
(11-1) Calculation of Compressor Target Rotational Speed TGNCh Based on Radiator Pressure Pci First, the control of the compressor 2 based on the radiator pressure Pci will be described in detail with reference to FIG. FIG. 11 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCh of the compressor 2 based on the radiator pressure Pci. The F/F (feed forward) manipulated variable calculation unit 78 of the heat pump controller 32 uses the outside air temperature Tam obtained from the outside air temperature sensor 33, the blower voltage BLV of the indoor blower 27, and SW=(TAO-Te)/(Thp-Te). ) The air flow rate SW by the air mix damper 28, the target supercooling degree TGSC which is the target value of the supercooling degree SC of the refrigerant at the outlet of the radiator 4, and the above-mentioned target heater which is the target value of the heater temperature Thp. Based on the temperature TCO and the target radiator pressure PCO which is the target value of the pressure of the radiator 4, the F/F operation amount TGNChff of the compressor target rotation speed is calculated.
 尚、ヒータ温度Thpは放熱器4の風下側の空気温度(推定値)であり、放熱器圧力センサ47が検出する放熱器圧力Pciと放熱器出口温度センサ44が検出する放熱器4の冷媒出口温度Tciから算出(推定)する。また、過冷却度SCは放熱器入口温度センサ43と放熱器出口温度センサ44が検出する放熱器4の冷媒入口温度Tcxinと冷媒出口温度Tciから算出される。 The heater temperature Thp is the air temperature (estimated value) on the leeward side of the radiator 4, and the radiator pressure Pci detected by the radiator pressure sensor 47 and the refrigerant outlet of the radiator 4 detected by the radiator outlet temperature sensor 44. It is calculated (estimated) from the temperature Tci. The degree of supercooling SC is calculated from the refrigerant inlet temperature Tcxin and the refrigerant outlet temperature Tci of the radiator 4 detected by the radiator inlet temperature sensor 43 and the radiator outlet temperature sensor 44.
 前記目標放熱器圧力PCOは上記目標過冷却度TGSCと目標ヒータ温度TCOに基づいて目標値演算部79が算出する。更に、F/B(フィードバック)操作量演算部81はこの目標放熱器圧力PCOと放熱器圧力Pciに基づくPID演算若しくはPI演算により圧縮機目標回転数のF/B操作量TGNChfbを算出する。そして、F/F操作量演算部78が算出したF/F操作量TGNChffとF/B操作量演算部81が算出したF/B操作量TGNChfbは加算器82で加算され、TGNCh00としてリミット設定部83に入力される。 The target radiator pressure PCO is calculated by the target value calculation unit 79 based on the target supercooling degree TGSC and the target heater temperature TCO. Further, the F/B (feedback) manipulated variable calculation unit 81 calculates the F/B manipulated variable TGNChfb of the compressor target rotational speed by PID calculation or PI calculation based on the target radiator pressure PCO and the radiator pressure Pci. Then, the F/F operation amount TGNChff calculated by the F/F operation amount calculation unit 78 and the F/B operation amount TGNChfb calculated by the F/B operation amount calculation unit 81 are added by the adder 82 to obtain a limit setting unit as TGNCh00. 83 is input.
 リミット設定部83では制御上の下限回転数ECNpdLimLoと上限回転数ECNpdLimHiのリミットが付けられてTGNCh0とされた後、圧縮機OFF制御部84を経て圧縮機目標回転数TGNChとして決定される。通常モードではヒートポンプコントローラ32は、この放熱器圧力Pciに基づいて算出された圧縮機目標回転数TGNChにより圧縮機2の運転を制御する。 In the limit setting unit 83, the control lower limit speed ECNpdLimLo and the upper limit speed ECNpdLimHi are set to TGNCh0, and then the compressor OFF control unit 84 is used to determine the target compressor speed TGNCh. In the normal mode, the heat pump controller 32 controls the operation of the compressor 2 by the compressor target rotation speed TGNCh calculated based on the radiator pressure Pci.
 尚、圧縮機OFF制御部84は、圧縮機目標回転数TGNChが上述した下限回転数ECNpdLimLoとなり、放熱器圧力Pciが目標放熱器圧力PCOの上下に設定された所定の上限値PULと下限値PLLのうちの上限値PULまで上昇した状態(上限値PULを上回った状態、又は、上限値PUL以上となった状態。以下、同じ)が所定時間th1継続した場合、圧縮機2を停止させて圧縮機2をON-OFF制御するON-OFFモードに入る。 The compressor OFF control unit 84 determines that the compressor target rotation speed TGNCh becomes the above-described lower limit rotation speed ECNpdLimLo, and the radiator pressure Pci is the predetermined upper limit value PUL and lower limit value PLL set above and below the target radiator pressure PCO. If the state of rising to the upper limit value PUL (a state of exceeding the upper limit value PUL, or a state of becoming equal to or more than the upper limit value PUL. The same applies hereinafter) continues for a predetermined time th1, the compressor 2 is stopped and compression is performed. The machine enters the ON-OFF mode that controls the ON-OFF of the machine 2.
 この圧縮機2のON-OFFモードでは、放熱器圧力Pciが下限値PLLまで低下した場合(下限値PLLを下回った場合、又は、下限値PLL以下となった場合。以下、同じ)、圧縮機2を起動して圧縮機目標回転数TGNChを下限回転数ECNpdLimLoとして運転し、その状態で放熱器圧力Pciが上限値PULまで上昇した場合は圧縮機2を再度停止させる。即ち、下限回転数ECNpdLimLoでの圧縮機2の運転(ON)と、停止(OFF)を繰り返す。そして、放熱器圧力Pciが下限値PULまで低下し、圧縮機2を起動した後、放熱器圧力Pciが下限値PULより高くならない状態が所定時間th2継続した場合、圧縮機2のON-OFFモードを終了し、通常モードに復帰するものである。 In the ON-OFF mode of the compressor 2, when the radiator pressure Pci drops to the lower limit value PLL (when it falls below the lower limit value PLL or becomes less than or equal to the lower limit value PLL. The same applies hereinafter), the compressor 2 is started to operate the compressor target rotation speed TGNCh as the lower limit rotation speed ECNpdLimLo, and when the radiator pressure Pci rises to the upper limit value PUL in that state, the compressor 2 is stopped again. That is, the operation (ON) and the stop (OFF) of the compressor 2 at the lower limit rotation speed ECNpdLimLo are repeated. When the radiator pressure Pci decreases to the lower limit value PUL and the compressor 2 is started, and the radiator pressure Pci does not become higher than the lower limit value PUL for a predetermined time th2, the compressor 2 is turned on and off. Is completed and the normal mode is restored.
 (11-2)吸熱器温度Teに基づく圧縮機目標回転数TGNCcの算出
 次に、図12を用いて吸熱器温度Teに基づく圧縮機2の制御について詳述する。図12は吸熱器温度Teに基づいて圧縮機2の目標回転数(圧縮機目標回転数)TGNCcを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F(フィードフォワード)操作量演算部86は外気温度Tamと、空気流通路3内を流通する空気の風量Ga(室内送風機27のブロワ電圧BLVでもよい)と、吸熱器温度Teの目標値である目標吸熱器温度TEOに基づいて圧縮機目標回転数のF/F操作量(フィードフォワード操作量)TGNCcff0を算出する。
(11-2) Calculation of Compressor Target Rotational Speed TGNCc Based on Heat Absorber Temperature Te Next, the control of the compressor 2 based on the heat absorber temperature Te will be described in detail with reference to FIG. FIG. 12 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCc of the compressor 2 based on the heat absorber temperature Te. The F/F (feed forward) operation amount calculation unit 86 of the heat pump controller 32 determines the outside air temperature Tam, the air volume Ga of the air flowing through the air flow passage 3 (the blower voltage BLV of the indoor blower 27 may be used), and the heat absorber temperature. The F/F operation amount (feedforward operation amount) TGNCcff0 of the compressor target rotation speed is calculated based on the target heat absorber temperature TEO which is the target value of Te.
 このF/F操作量演算部86が算出したF/F操作量TGNCcff0には、加算器101で所定の補正値TGNCchosが加算された後、F/F操作量TGNCcffとして決定される。尚、補正値TGNCchosについては後に詳述する。 A predetermined correction value TGNCchos is added by the adder 101 to the F/F operation amount TGNCcff0 calculated by the F/F operation amount calculation unit 86, and then the F/F operation amount TGNCcff is determined. The correction value TGNCchos will be described in detail later.
 また、F/B操作量演算部87は目標吸熱器温度TEOと吸熱器温度Teに基づくPID演算若しくはPI演算により圧縮機目標回転数のF/B操作量(フィードバック操作量)TGNCcfbを算出する。そして、加算器101から出力されるF/F操作量TGNCcffとF/B操作量演算部87が算出したF/B操作量TGNCcfbは加算器88で加算され、TGNCc00としてリミット設定部89に入力される。 Further, the F/B manipulated variable calculation unit 87 calculates the F/B manipulated variable (feedback manipulated variable) TGNCcfb of the compressor target rotation speed by PID calculation or PI calculation based on the target heat absorber temperature TEO and the heat absorber temperature Te. Then, the F/F manipulated variable TGNCcff output from the adder 101 and the F/B manipulated variable TGNCcfb calculated by the F/B manipulated variable calculator 87 are added by the adder 88 and input to the limit setting unit 89 as TGNCc00. It
 リミット設定部89では制御上の下限回転数TGNCcLimLoと上限回転数TGNCcLimHiのリミットが付けられてTGNCc0とされた後、圧縮機OFF制御部91を経て圧縮機目標回転数TGNCcとして決定される。通常モードではヒートポンプコントローラ32は、この吸熱器温度Teに基づいて算出された圧縮機目標回転数TGNCcにより圧縮機2の運転を制御する。 In the limit setting unit 89, the lower limit speed TGNCcLimLo for control and the upper limit speed TGNCcLimHi are set to TGNCc0, and then the compressor OFF control unit 91 is used to determine the target compressor speed TGNCc. In the normal mode, the heat pump controller 32 controls the operation of the compressor 2 with the compressor target rotation speed TGNCc calculated based on the heat absorber temperature Te.
 尚、圧縮機OFF制御部91は、圧縮機目標回転数TGNCcが上述した下限回転数TGNCcLimLoとなり、吸熱器温度Teが目標吸熱器温度TEOの上下に設定された上限値TeULと下限値TeLLのうちの下限値TeLLまで低下した状態が所定時間tc1継続した場合、圧縮機2を停止させて圧縮機2をON-OFF制御するON-OFFモードに入る。 The compressor OFF control unit 91 determines that the compressor target rotation speed TGNCc becomes the above-described lower limit rotation speed TGNCcLimLo, and the heat absorber temperature Te is set between the upper limit value TeUL and the lower limit value TeLL set above and below the target heat absorber temperature TEO. When the state in which the lower limit value TeLL has decreased to the predetermined time tc1 continues for a predetermined time tc1, the compressor 2 is stopped and the ON-OFF mode in which the compressor 2 is ON-OFF controlled is entered.
 この場合の圧縮機2のON-OFFモードでは、吸熱器温度Teが上限値TeULまで上昇した場合、圧縮機2を起動して圧縮機目標回転数TGNCcを下限回転数TGNCcLimLoとして運転し、その状態で吸熱器温度Teが下限値TeLLまで低下した場合は圧縮機2を再度停止させる。即ち、下限回転数TGNCcLimLoでの圧縮機2の運転(ON)と、停止(OFF)を繰り返す。そして、吸熱器温度Teが上限値TeULまで上昇し、圧縮機2を起動した後、吸熱器温度Teが上限値TeULより低くならない状態が所定時間tc2継続した場合、この場合の圧縮機2のON-OFFモードを終了し、通常モードに復帰するものである。 In the ON-OFF mode of the compressor 2 in this case, when the heat absorber temperature Te rises to the upper limit value TeUL, the compressor 2 is started and the compressor target rotation speed TGNCc is operated as the lower limit rotation speed TGNCcLimLo, and the state is maintained. When the heat absorber temperature Te has dropped to the lower limit TeLL, the compressor 2 is stopped again. That is, the operation (ON) and the stop (OFF) of the compressor 2 at the lower limit rotation speed TGNCcLimLo are repeated. Then, after the heat absorber temperature Te rises to the upper limit TeUL and the compressor 2 is started, if the heat absorber temperature Te does not become lower than the upper limit TeUL for a predetermined time tc2, the compressor 2 in this case is turned on. -Ends the OFF mode and returns to the normal mode.
 (11-3)熱媒体温度Twに基づく圧縮機目標回転数TGNCcbの算出
 次に、図13を用いて熱媒体温度Twに基づく圧縮機2の制御について詳述する。図13は熱媒体温度Twに基づいて圧縮機2の目標回転数(圧縮機目標回転数)TGNCcbを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F(フィードフォワード)操作量演算部92は外気温度Tamと、室外送風機15の出力(%)と、バッテリ温度Tcellと、機器温度調整装置61内の熱媒体の流量Gw(循環ポンプ62の出力から算出される)と、熱媒体温度Twの目標値である目標熱媒体温度TWOに基づいて圧縮機目標回転数のF/F(フィードフォワード操作量)操作量TGNCcbff0を算出する。
(11-3) Calculation of Compressor Target Rotational Speed TGNCcb Based on Heat Medium Temperature Tw Next, the control of the compressor 2 based on the heat medium temperature Tw will be described in detail with reference to FIG. 13. FIG. 13 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCcb of the compressor 2 based on the heat medium temperature Tw. The F/F (feed forward) operation amount calculation unit 92 of the heat pump controller 32 calculates the outside air temperature Tam, the output (%) of the outdoor blower 15, the battery temperature Tcell, and the heat medium flow rate Gw (in the device temperature adjusting device 61). (Calculated from the output of the circulation pump 62) and the target heat medium temperature TWO that is the target value of the heat medium temperature Tw, and the F/F (feedforward manipulated variable) manipulated variable TGNCcbff0 of the compressor target rotation speed is calculated. ..
 このF/F操作量演算部92が算出したF/F操作量TGNCcbff0には、加算器106で所定の補正値TGNCcbhosが加算された後、F/F操作量TGNCcbffとして決定される。尚、補正値TGNCcbhosについては後に詳述する。 A predetermined correction value TGNCcbhos is added by the adder 106 to the F/F operation amount TGNCcbff0 calculated by the F/F operation amount calculation unit 92, and then determined as the F/F operation amount TGNCcbff. The correction value TGNCcbhos will be described in detail later.
 また、F/B操作量演算部93は目標熱媒体温度TWOと熱媒体温度Twに基づくPID演算若しくはPI演算により圧縮機目標回転数のF/B操作量(フィードバック操作量)TGNCcbfbを算出する。そして、加算器106から出力されるF/F操作量TGNCcbffとF/B操作量演算部93が算出したF/B操作量TGNCcbfbは加算器94で加算され、TGNCcb00としてリミット設定部96に入力される。 Also, the F/B operation amount calculation unit 93 calculates the F/B operation amount (feedback operation amount) TGNCcbfb of the compressor target rotation speed by PID calculation or PI calculation based on the target heat medium temperature TWO and the heat medium temperature Tw. Then, the F/F operation amount TGNCcbff output from the adder 106 and the F/B operation amount TGNCcbfb calculated by the F/B operation amount calculation unit 93 are added by the adder 94 and input to the limit setting unit 96 as TGNCcb00. It
 リミット設定部96では制御上の下限回転数TGNCcbLimLoと上限回転数TGNCcbLimHiのリミットが付けられてTGNCcb0とされた後、圧縮機OFF制御部97を経て圧縮機目標回転数TGNCcbとして決定される。通常モードではヒートポンプコントローラ32は、この熱媒体温度Twに基づいて算出された圧縮機目標回転数TGNCcbにより圧縮機2の運転を制御する。 In the limit setting unit 96, the lower limit speed TGNCcbLimLo for control and the upper limit speed TGNCcbLimHi are set to TGNCcb0, and then the compressor OFF control unit 97 is used to determine the target compressor speed TGNCcb. In the normal mode, the heat pump controller 32 controls the operation of the compressor 2 with the compressor target rotation speed TGNCcb calculated based on the heat medium temperature Tw.
 尚、圧縮機OFF制御部97は、圧縮機目標回転数TGNCcbが上述した下限回転数TGNCcbLimLoとなり、熱媒体温度Twが目標熱媒体温度TWOの上下に設定された上限値TULと下限値TLLのうちの下限値TLLまで低下した状態が所定時間tcb1継続した場合、圧縮機2を停止させて圧縮機2のON-OFF制御するON-OFFモードに入る。 It should be noted that the compressor OFF control unit 97 determines that the compressor target rotation speed TGNCcb becomes the above-described lower limit rotation speed TGNCcbLimLo, and the heat medium temperature Tw is set between the upper limit value TUL and the lower limit value TLL set above and below the target heat medium temperature TWO. When the lower limit value TLL has continued for a predetermined time tcb1, the compressor 2 is stopped and the ON-OFF mode for controlling the ON-OFF of the compressor 2 is entered.
 この場合の圧縮機2のON-OFFモードでは、熱媒体温度Twが上限値TULまで上昇した場合、圧縮機2を起動して圧縮機目標回転数TGNCcbを下限回転数TGNCcbLimLoとして運転し、その状態で熱媒体温度Twが下限値TLLまで低下した場合は圧縮機2を再度停止させる。即ち、下限回転数TGNCcbLimLoでの圧縮機2の運転(ON)と、停止(OFF)を繰り返す。そして、熱媒体温度Twが上限値TULまで上昇し、圧縮機2を起動した後、熱媒体温度Twが上限値TULより低くならない状態が所定時間tcb2継続した場合、この場合の圧縮機2のON-OFFモードを終了し、通常モードに復帰するものである。 In the ON-OFF mode of the compressor 2 in this case, when the heat medium temperature Tw rises to the upper limit value TUL, the compressor 2 is started and the compressor target rotation speed TGNCcb is operated as the lower limit rotation speed TGNCcbLimLo, and the state is maintained. When the heat medium temperature Tw falls to the lower limit value TLL, the compressor 2 is stopped again. That is, the operation (ON) and the stop (OFF) of the compressor 2 at the lower limit rotation speed TGNCcbLimLo are repeated. Then, after the heat medium temperature Tw rises to the upper limit value TUL and the compressor 2 is started, the state in which the heat medium temperature Tw does not become lower than the upper limit value TUL continues for a predetermined time tcb2, and the compressor 2 in this case is turned on. -Ends the OFF mode and returns to the normal mode.
 (12)ヒートポンプコントローラ32によるF/F(フィードフォワード)操作量の補正制御
 次に、図12~図15を参照しながらヒートポンプコントローラ32が実行する冷房モード(空調(単独)モード)と空調(優先)+バッテリ冷却モード(空調(優先)+被温調対象冷却モード)におけるF/F操作量の補正制御、及び、バッテリ冷却(単独)モード(被温調対象冷却(単独)モード)とバッテリ冷却(優先)+空調モード(被温調対象冷却(優先)+空調モード)におけるF/F操作量の補正制御の一例について説明する。
(12) Correction Control of F/F (Feed Forward) Operation Quantity by Heat Pump Controller 32 Next, with reference to FIGS. 12 to 15, the cooling mode (air conditioning (single) mode) and air conditioning (priority) executed by the heat pump controller 32. ) + Battery cooling mode (air conditioning (priority) + temperature controlled cooling mode) correction control of F/F operation amount, battery cooling (single) mode (temperature controlled cooling (single) mode) and battery cooling An example of the correction control of the F/F operation amount in (priority)+air conditioning mode (cooling subject to temperature adjustment (priority)+air conditioning mode) will be described.
 尚、この実施例では冷房モード(空調(単独)モード)とバッテリ冷却(単独)モード(被温調対象冷却(単独)モード)を本発明における第1の運転状態とし、空調(優先)+バッテリ冷却モード(空調(優先)+被温調対象冷却モード)とバッテリ冷却(優先)+空調モード(被温調対象冷却(優先)+空調モード)を本発明における第2の運転状態とする。 In this embodiment, the cooling mode (air conditioning (single) mode) and the battery cooling (single) mode (temperature controlled target cooling (single) mode) are set as the first operating state in the present invention, and air conditioning (priority)+battery The cooling mode (air conditioning (priority)+controlled cooling target temperature mode) and battery cooling (priority)+air conditioning mode (cooling controlled target temperature (priority)+air conditioning mode) are the second operating states in the present invention.
 前述したバッテリ冷却(単独)モードからバッテリ冷却(優先)+空調モードに移行した場合は、それらを含む熱交換の経路が増えるため、圧縮機2の能力(目標回転数)が不足する状態となり、バッテリ55の冷却が遅延し、車室内に吹き出される空気の温度が高くなってしまう。また、冷房モードから空調(優先)+バッテリ冷却モードに移行した場合も同様に車室内に吹き出される空気の温度が高くなってしまい、使用者に不快感を与えると共に、バッテリ55の冷却も遅延するようになる。 When the battery cooling (single) mode is shifted to the battery cooling (priority)+air conditioning mode, the heat exchange paths including them increase, so that the capacity (target speed) of the compressor 2 becomes insufficient. The cooling of the battery 55 is delayed, and the temperature of the air blown into the vehicle interior becomes high. In addition, when the air-conditioning (priority)+battery cooling mode is switched from the cooling mode, the temperature of the air blown into the vehicle compartment also becomes high, which causes discomfort to the user and delays the cooling of the battery 55. Come to do.
 そこで、ヒートポンプコントローラ32はこの実施例ではバッテリ冷却(優先)+空調モードではバッテリ冷却(単独)モードの場合よりもF/F操作量TGNCcbffを大きくする方向で補正し、空調(優先)+バッテリ冷却モードでは冷房モードの場合よりもF/F操作量TGNCcffを大きくする方向で補正する。次に、具体的な手順について説明する。 Therefore, in this embodiment, the heat pump controller 32 corrects the battery cooling (priority)+air conditioning mode in the direction of increasing the F/F operation amount TGNCcbff as compared with the case of the battery cooling (single) mode, and air conditioning (priority)+battery cooling. In the mode, the F/F operation amount TGNCcff is corrected to be larger than that in the cooling mode. Next, a specific procedure will be described.
 (12-1)ヒートポンプコントローラ32によるF/F操作量TGNCcbffの補正制御(その1)
 次に、図13と図14を参照しながらバッテリ冷却(単独)モードとバッテリ冷却(優先)+空調モードでのF/F操作量TGNCcbffの補正制御について説明する。図13中のヒートポンプコントローラ32の協調用補正値演算部107は、下記式(II)を用いてF/F操作量TGNCcbffの協調用補正値TGNCcbhos1を算出する。
 TGNCcbffhos1=K1×(Tein-TEO)×Ga×Cpa×γa×SW×1.16
                                  ・・(II)
 ここで、Teinは吸熱器9に流入する空気の温度、TEOは目標吸熱器温度、Gaは空気流通路3内を流通する空気の風量であり、何れも協調用補正値演算部107に入力される。K1は係数、Cpaは空気の定常比熱、γaは空気の比重、SWはエアミックスダンパ28による風量割合である。
(12-1) Correction control of F/F operation amount TGNCcbff by heat pump controller 32 (Part 1)
Next, correction control of the F/F operation amount TGNCcbff in the battery cooling (single) mode and the battery cooling (priority)+air conditioning mode will be described with reference to FIGS. 13 and 14. The cooperation correction value calculation unit 107 of the heat pump controller 32 in FIG. 13 calculates the cooperation correction value TGNCcbhos1 of the F/F operation amount TGNCcbff using the following formula (II).
TGNCcbffhos1=K1×(Tein-TEO)×Ga×Cpa×γa×SW×1.16
..(II)
Here, Tein is the temperature of the air flowing into the heat absorber 9, TEO is the target heat absorber temperature, and Ga is the air volume of the air flowing through the air flow passage 3, both of which are input to the correction value computing unit 107 for cooperation. It K1 is a coefficient, Cpa is a steady specific heat of air, γa is a specific gravity of air, and SW is an air volume ratio by the air mix damper 28.
 ここで、実施例の場合、空気流通路3に流通される空気の外気と内気の比率(内外気比率RECrate)が変化すると、吸熱器9に流入する空気の温度(吸熱器9に流入する空気の温度Tein)が変化する。そこで、ヒートポンプコントローラ32は、内外気比率RECrateに基づき、下記式(III)、(IV)を用いて、吸熱器9に流入する空気の温度Teinを算出し、推定する。
 Tein=(INTL2×Tein0+Tau2×Teinz)/(Tau2+INTL2)
                                 ・・(III)
 Tein0=Tam×(1-RECrate×E1)+Tin×RECrate×E1+H1
                                  ・・(IV)
 ここで、INTL2は演算周期(定数)、Tau2は一次遅れの時定数、Tein0は一次遅れ演算前の定常状態における吸熱器9に流入する空気の温度Teinの定常値、Teinzは吸熱器9に流入する空気の温度Teinの前回値である。また、Tamは外気温度、Tinは内気温度、E1は吸込切換ダンパ26の構造的バラツキや停止位置のバラツキに伴う調整誤差(補正項)、H1は室内送風機27からの受熱量(運転して発熱する室内送風機27により空気が加熱される量:オフセット)である。
Here, in the case of the embodiment, when the ratio of the outside air to the inside air (inside/outside air ratio RECrate) of the air flowing through the air flow passage 3 changes, the temperature of the air flowing into the heat absorber 9 (the air flowing into the heat absorber 9) Temperature Tein) changes. Therefore, the heat pump controller 32 calculates and estimates the temperature Tein of the air flowing into the heat absorber 9 using the following equations (III) and (IV) based on the inside/outside air ratio RECrate.
Tein=(INTL2×Tein0+Tau2×Teinz)/(Tau2+INTL2)
..(III)
Tein0=Tam×(1-RECrate×E1)+Tin×RECrate×E1+H1
..(IV)
Here, INTL2 is a calculation cycle (constant), Tau2 is a time constant of the first-order delay, Tein0 is a steady value of the temperature Tein of the air flowing into the heat absorber 9 in the steady state before the first-order delay calculation, and Teinz is flowing into the heat absorber 9. It is the previous value of the temperature of the air, which is to be maintained. Further, Tam is the outside air temperature, Tin is the inside air temperature, E1 is an adjustment error (correction term) due to the structural variation of the suction switching damper 26 and the variation of the stop position, and H1 is the amount of heat received from the indoor blower 27 (heat generation during operation The amount by which the air is heated by the indoor blower 27: offset).
 即ち、協調用補正値演算部107は吸熱器9に流入する空気の温度Teinと吸熱器9の目標温度である目標吸熱器温度TEOとの差(Tein-TEO)に基づいて協調用補正値TGNCcbhos1を算出する。そして、吸熱器9に流入する空気の温度Teinは吸熱器9により冷却される対象の温度であり、目標吸熱器温度TEOは吸熱器9の温度の目標温度であるので、協調用補正値TGNCcbhos1は吸熱器9に流入する空気の温度Teinが目標吸熱器温度TEOより高い程、大きくなる。 That is, the correction value calculation unit 107 for cooperation calculates the correction value TGNccbhos1 for cooperation based on the difference (Tein-TEO) between the temperature Tein of the air flowing into the heat absorber 9 and the target heat absorber temperature TEO which is the target temperature of the heat absorber 9. To calculate. The temperature Tein of the air flowing into the heat absorber 9 is the temperature of the object to be cooled by the heat absorber 9, and the target heat absorber temperature TEO is the target temperature of the temperature of the heat absorber 9, so the correction value for cooperation TGNCcbhos1 is The higher the temperature Tein of the air flowing into the heat absorber 9 is higher than the target heat absorber temperature TEO, the higher the temperature.
 この協調用補正値演算部107で算出された協調用補正値TGNCcbhos1は切換器109に入力される。この切換器109には補正無しの値(=0)も入力されており、切換器109は運転状態判定部108により切り換えられ、協調用補正値TGNCcbhos1か補正無し(0)の何れかを補正値TGNCcbhosとして出力する。この実施例の運転状態判定部108には車両用空気調和装置1がバッテリ冷却(単独)モード(第1の運転状態)であるか、バッテリ冷却(優先)+空調モード(第2の運転状態)であるかが入力されており、バッテリ冷却(単独)モードである場合、運転状態判定部108は切換器109を補正無し(0)側に切り換える。従って、バッテリ冷却(単独)モードのときには、切換器109から補正無し(0)の補正値TGNCcbhosが出力され、加算器106に入力されるので、F/F操作量演算部92で算出されたF/F操作量TGNCcbff0は補正されずにそのままF/F操作量TGNCcbffとして加算器94に入力されることになる。 The coordination correction value TGNCcbhos1 calculated by the coordination correction value calculation unit 107 is input to the switch 109. A value without correction (=0) is also input to the switch 109, and the switch 109 is switched by the operating state determination unit 108, and either the correction value for cooperation TGNCcbhos1 or no correction (0) is a correction value. Output as TGNCcbhos. In the operation state determination unit 108 of this embodiment, whether the vehicle air conditioner 1 is in the battery cooling (single) mode (first operation state) or battery cooling (priority)+air conditioning mode (second operation state). Is input, and in the battery cooling (single) mode, the operating state determination unit 108 switches the switch 109 to the non-correction (0) side. Therefore, in the battery cooling (single) mode, the correction value TGNCcbhos of no correction (0) is output from the switch 109 and input to the adder 106, so that the F/F operation amount calculation unit 92 calculates the F value. The /F operation amount TGNCcbff0 is not corrected and is directly input to the adder 94 as the F/F operation amount TGNCcbff.
 他方、バッテリ冷却(優先)+空調モードである場合、運転状態判定部108は切換器109を協調用補正値TGNCcbhos1側に切り換える。従って、バッテリ冷却(優先)+空調モードのときには、切換器109から協調用補正値TGNCcbhos1が補正値TGNCcbhosとして出力され、加算器106に入力されるので、F/F操作量演算部92で算出されたF/F操作量TGNCcbff0に協調用補正値TGNCcbhos1が加算された値がF/F操作量TGNCcbffとして加算器94に入力されることになる。 On the other hand, in the battery cooling (priority)+air conditioning mode, the operating state determination unit 108 switches the switch 109 to the correction value for cooperation TGNCcbhos1. Therefore, in the battery cooling (priority)+air-conditioning mode, the correction value TGNCcbhos1 for cooperation is output from the switch 109 as the correction value TGNCcbhos and input to the adder 106, and is calculated by the F/F operation amount calculation unit 92. The value obtained by adding the correction value for cooperation TGNCcbhos1 to the F/F operation amount TGNCcbff0 is input to the adder 94 as the F/F operation amount TGNCcbff.
 この様子が図14に示されている。図14の最上段は運転モード(運転状態)を示しており、上から二段目は電磁弁69の状態を示し、上から三段目は電磁弁35の状態を示している。また、下から二段目は加算器106から出力されるF/F操作量TGNCcbffの値を示しており、最下段は圧縮機目標回転数TGNCcbの変化を示している。図中X1が協調用補正値TGNCcbhos1によるオフセット分であり、X2は運転モードが切り換わった後に、F/B操作量演算部93により算出されるF/B操作量TGNCcbfbによる変化を示している。 This is shown in Figure 14. The uppermost stage of FIG. 14 shows the operation mode (operating state), the second stage from the top shows the state of the solenoid valve 69, and the third stage from the top shows the state of the solenoid valve 35. The second stage from the bottom shows the value of the F/F manipulated variable TGNCcbff output from the adder 106, and the bottom stage shows the change of the compressor target rotation speed TGNCcb. In the figure, X1 is the offset amount by the correction value for cooperation TGNCcbhos1, and X2 is the change by the F/B operation amount TGNCcbfb calculated by the F/B operation amount calculation unit 93 after the operation mode is switched.
 このように、この実施例ではバッテリ冷却(優先)+空調モード(第2の運転状態)においては、バッテリ冷却(単独)モード(第1の運転状態)よりも、F/F操作量演算部92により算出されるF/F操作量TGNCcbffを大きくする方向で補正するようにしたので、バッテリ冷却(単独)モードからバッテリ冷却(優先)+空調モードに切り換わったときの圧縮機2の能力(圧縮機目標回転数TGNCcb)不足を迅速に解消し、即応性を向上させて、信頼性と商品性の改善を図ることができるようになる。 As described above, in this embodiment, in the battery cooling (priority)+air conditioning mode (second operating state), the F/F operation amount calculation unit 92 is more than in the battery cooling (single) mode (first operating state). Since the F/F operation amount TGNCcbff calculated by is corrected in the direction of increasing it, the capacity of the compressor 2 when the battery cooling (single) mode is switched to the battery cooling (priority)+air conditioning mode (compression It becomes possible to quickly solve the shortage of the machine target rotation speed TGNCcb), improve the responsiveness, and improve the reliability and the marketability.
 また、ヒートポンプコントローラ32はF/F操作量TGNCcbffとF/B操作量演算部93が算出したF/B操作量TGNCcbfbを加算した値に基づいて目標圧縮機回転数TGNCcbを決定するので、バッテリ冷却(優先)+空調モードに切り換わった後、時間が経過するに応じて目標圧縮機回転数TGNCcbは熱媒体温度Twを目標熱媒体温度TWOに収束させる方向に支障無く変化することになる。 Further, since the heat pump controller 32 determines the target compressor rotation speed TGNCcb based on the value obtained by adding the F/F operation amount TGNCcbff and the F/B operation amount TGNCcbfb calculated by the F/B operation amount calculation unit 93, the battery cooling is performed. After switching to (priority)+air-conditioning mode, the target compressor rotation speed TGNCcb changes in a direction in which the heat medium temperature Tw converges to the target heat medium temperature TWO without any trouble as time passes.
 また、電磁弁35を開いたときの熱媒体温度Twに基づく圧縮機2の回転数制御の追従性を維持し、且つ、車室内空調の即応性も確保することができるようになる。更に、電磁弁35を閉じたときにも、圧縮機2の回転数制御の追従性を維持してバッテリ55が過剰に冷却される不都合(所謂オーバーシュート)も回避することができるようになる。 Further, the followability of the rotation speed control of the compressor 2 based on the heat medium temperature Tw when the solenoid valve 35 is opened can be maintained, and the responsiveness of the vehicle interior air conditioning can be secured. Further, even when the electromagnetic valve 35 is closed, it is possible to maintain the followability of the rotation speed control of the compressor 2 and avoid the disadvantage that the battery 55 is excessively cooled (so-called overshoot).
 また、実施例ではヒートポンプコントローラ32が、バッテリ冷却(優先)+空調モードにおいては、吸熱器9により冷却される対象の温度である吸熱器9に流入する空気の温度Teinと目標吸熱器温度TEOに基づいてF/F操作量TGNCcbffを補正する協調用補正値TGNCcbhos1を算出するようにしているので、吸熱器9の負荷に応じてF/F操作量TGNCcbffを精度良く補正することができるようになる。 Further, in the embodiment, in the battery cooling (priority)+air conditioning mode, the heat pump controller 32 sets the temperature Tein of the air flowing into the heat absorber 9 and the target heat absorber temperature TEO, which are the temperatures to be cooled by the heat absorber 9. Since the correction value for cooperation TGNCcbhos1 for correcting the F/F operation amount TGNCcbff is calculated based on this, the F/F operation amount TGNCcbff can be accurately corrected according to the load of the heat absorber 9. ..
 (12-2)ヒートポンプコントローラ32によるF/F操作量TGNCcbffの補正制御(その2)
 尚、上記実施例ではバッテリ冷却(単独)モードを本発明における第1の運転状態、バッテリ冷却(優先)+空調モードを本発明における第2の運転状態としてF/F操作量TGNCcbffの補正を行ったが、それに限らず、バッテリ冷却(優先)+空調モードにおいて電磁弁35が閉じている状態を本発明における第1の運転状態とし、電磁弁35が開いている状態を本発明における第2の運転状態としてF/F操作量TGNCcbffを補正するようにしてもよい。
(12-2) Correction control of F/F operation amount TGNCcbff by heat pump controller 32 (Part 2)
In the above embodiment, the F/F operation amount TGNCcbff is corrected by setting the battery cooling (single) mode as the first operating state in the present invention and the battery cooling (priority)+air conditioning mode as the second operating state in the present invention. However, the present invention is not limited to this, and the state in which the solenoid valve 35 is closed in the battery cooling (priority)+air conditioning mode is the first operating state in the present invention, and the state in which the solenoid valve 35 is open is the second operating state in the present invention. The F/F operation amount TGNCcbff may be corrected as the operating state.
 その場合は、運転状態判定部108に車両用空気調和装置1がバッテリ冷却(優先)+空調モードであって、電磁弁35が閉じている(第1の運転状態)か、電磁弁35が開いている(第2の運転状態)かが入力されることになる。そして、バッテリ冷却(優先)+空調モードにおいて電磁弁35が閉じている場合、運転状態判定部108は切換器109を補正無し(0)側に切り換える。従って、バッテリ冷却(優先)+空調モードにおいて、電磁弁35が閉じているときには、切換器109から補正無し(0)の補正値TGNCcbhosが出力され、加算器106に入力されるので、F/F操作量演算部92で算出されたF/F操作量TGNCcbff0は補正されずにそのままF/F操作量TGNCcbffとして加算器94に入力されることになる。尚、運転状態判定部108はバッテリ冷却(単独)モードや他の空調運転もバッテリ冷却(優先)+空調モードであって電磁弁35が閉じている状態と同様に扱う。 In that case, the vehicle air conditioner 1 is in the battery cooling (priority)+air conditioning mode and the electromagnetic valve 35 is closed (first operating state) or the electromagnetic valve 35 is opened in the operating state determination unit 108. Is being input (second operating state). When the electromagnetic valve 35 is closed in the battery cooling (priority)+air conditioning mode, the operating state determination unit 108 switches the switch 109 to the non-correction (0) side. Therefore, in the battery cooling (priority)+air conditioning mode, when the solenoid valve 35 is closed, the correction value TGNCcbhos of no correction (0) is output from the switch 109 and is input to the adder 106. The F/F manipulated variable TGNCcbff0 calculated by the manipulated variable calculator 92 is not corrected and is directly input to the adder 94 as the F/F manipulated variable TGNCcbff. The operation state determination unit 108 treats the battery cooling (single) mode and other air conditioning operations in the battery cooling (priority)+air conditioning mode in the same manner as when the solenoid valve 35 is closed.
 他方、バッテリ冷却(優先)+空調モードであって、電磁弁35が開いた場合、運転状態判定部108は切換器109を協調用補正値TGNCcbhos1側に切り換える。従って、バッテリ冷却(優先)+空調モードにおいて電磁弁35が開いているときには、切換器109から協調用補正値TGNCcbhos1が補正値TGNCcbhosとして出力され、加算器106に入力されるので、F/F操作量演算部92で算出されたF/F操作量TGNCcbff0に協調用補正値TGNCcbhos1が加算された値がF/F操作量TGNCcbffとして加算器94に入力されることになる。 On the other hand, in the battery cooling (priority)+air conditioning mode and the solenoid valve 35 is opened, the operating state determination unit 108 switches the switch 109 to the cooperation correction value TGNCcbhos1 side. Therefore, when the solenoid valve 35 is opened in the battery cooling (priority)+air conditioning mode, the correction value TGNCcbhos1 for cooperation is output from the switch 109 as the correction value TGNCcbhos and is input to the adder 106, so the F/F operation is performed. A value obtained by adding the correction value for cooperation TGNCcbhos1 to the F/F operation amount TGNCcbff0 calculated by the amount calculation unit 92 is input to the adder 94 as the F/F operation amount TGNCcbff.
 このように、ヒートポンプコントローラ32が、バッテリ冷却(優先)+空調モードにおいて、電磁弁35を開いたとき、バッテリ冷却(単独)モードよりも、F/F操作量演算部92により算出されるF/F操作量TGNCcbffを大きくする方向で補正するようにすれば、電磁弁35の開閉に応じて細かくF/F操作量TGNCcbffを補正することができるようになる。 In this way, when the heat pump controller 32 opens the solenoid valve 35 in the battery cooling (priority)+air conditioning mode, the F/F operation amount calculation unit 92 calculates F/F more than in the battery cooling (single) mode. If the F operation amount TGNCcbff is corrected in the direction of increasing it, the F/F operation amount TGNCcbff can be finely corrected according to the opening/closing of the solenoid valve 35.
 (12-3)ヒートポンプコントローラ32によるF/F操作量TGNCcffの補正制御(その1)
 先ず、図12と図15を参照しながら冷房モードと空調(優先)+バッテリ冷却モードでのF/F操作量TGNCcffの補正制御の一例について説明する。図12中のヒートポンプコントローラ32の協調用補正値演算部102は、下記式(V)を用いてF/F操作量TGNCcffの協調用補正値TGNCchos1を算出する。
 TGNCcffhos1=K2×(Tw-TWO)×Gw×Cpw×γw×4.186×103×16.7
                                   ・・(V)
 ここで、Twは熱媒体温度、TWOは目標熱媒体温度、Gwは機器温度調整装置61内の熱媒体の流量であり、何れも協調用補正値演算部102に入力される。K2は係数、Cpwは熱媒体の定常比熱、γwは熱媒体の比重である。即ち、協調用補正値演算部102は冷媒-熱媒体熱交換器64の熱媒体流路64Aの入口側の熱媒体の温度である熱媒体温度Twとその目標温度である目標熱媒体温度TWOとの差(Tw-TWO)に基づいて協調用補正値TGNCchos1を算出する。そして、熱媒体温度Twは冷媒-熱媒体熱交換器64により冷却される対象の温度であり、目標熱媒体温度TWOはその目標温度であるので、協調用補正値TGNCchos1は熱媒体温度Twが目標熱媒体温度TWOより高い程、大きくなる。
(12-3) Correction control of F/F operation amount TGNCcff by heat pump controller 32 (Part 1)
First, an example of correction control of the F/F operation amount TGNCcff in the cooling mode and the air conditioning (priority)+battery cooling mode will be described with reference to FIGS. 12 and 15. The coordination correction value calculation unit 102 of the heat pump controller 32 in FIG. 12 calculates the coordination correction value TGNchos1 of the F/F operation amount TGNCcff using the following formula (V).
TGNCcffhos1=K2×(Tw-TWO)×Gw×Cpw×γw×4.186×10 3 ×16.7
..(V)
Here, Tw is the heat medium temperature, TWO is the target heat medium temperature, and Gw is the flow rate of the heat medium in the device temperature adjusting device 61, both of which are input to the correction value calculation unit for cooperation 102. K2 is a coefficient, Cpw is a steady specific heat of the heat medium, and γw is a specific gravity of the heat medium. That is, the correction value calculation unit for cooperation 102 uses the heat medium temperature Tw that is the temperature of the heat medium on the inlet side of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 and the target heat medium temperature TWO that is the target temperature thereof. The correction value for cooperation TGNCchos1 is calculated based on the difference (Tw-TWO). Since the heat medium temperature Tw is the temperature of the object cooled by the refrigerant-heat medium heat exchanger 64, and the target heat medium temperature TWO is the target temperature thereof, the correction value for coordination TGNCchos1 is the heat medium temperature Tw. The higher the heating medium temperature TWO, the larger the temperature.
 この協調用補正値演算部102で算出された協調用補正値TGNCchos1は切換器104に入力される。この切換器104には補正無しの値(=0)も入力されており、切換器104は運転状態判定部103により切り換えられ、協調用補正値TGNCchos1か補正無し(0)の何れかを補正値TGNCchosとして出力する。この実施例の運転状態判定部103には車両用空気調和装置1が冷房モード(第1の運転状態)であるか、空調(優先)+バッテリ冷却モード(第2の運転状態)であるかが入力されており、冷房モードである場合、運転状態判定部103は切換器104を補正無し(0)側に切り換える。従って、冷房モードのときには、切換器104から補正無し(0)の補正値TGNCchosが出力され、加算器101に入力されるので、F/F操作量演算部86で算出されたF/F操作量TGNCcff0は補正されずにそのままF/F操作量TGNCcffとして加算器88に入力されることになる。 The cooperation correction value TGNCchos1 calculated by the cooperation correction value calculation unit 102 is input to the switch 104. A value without correction (=0) is also input to the switch 104, and the switch 104 is switched by the operating state determination unit 103, and either the correction value for coordination TGNchos1 or no correction (0) is a correction value. Output as TGNCchos. Whether the vehicle air conditioner 1 is in the cooling mode (first operating state) or in the air conditioning (priority)+battery cooling mode (second operating state) is displayed in the operating state determination unit 103 of this embodiment. If it is input and the cooling mode is set, the operating state determination unit 103 switches the switch 104 to the non-correction (0) side. Therefore, in the cooling mode, the correction value TGNchos without correction (0) is output from the switcher 104 and input to the adder 101, so that the F/F operation amount calculated by the F/F operation amount calculation unit 86 is calculated. The TGNCcff0 is not corrected and is directly input to the adder 88 as the F/F manipulated variable TGNCcff.
 他方、空調(優先)+バッテリ冷却モードである場合、運転状態判定部103は切換器104を協調用補正値TGNCchos1側に切り換える。従って、空調(優先)+バッテリ冷却モードのときには、切換器104から協調用補正値TGNCchos1が補正値TGNCchosとして出力され、加算器101に入力されるので、F/F操作量演算部86で算出されたF/F操作量TGNCcff0に協調用補正値TGNCchos1が加算された値がF/F操作量TGNCcffとして加算器88に入力されることになる。 On the other hand, in the case of the air conditioning (priority)+battery cooling mode, the operating state determination unit 103 switches the switch 104 to the correction value for cooperation TGNChos1 side. Therefore, in the air-conditioning (priority)+battery cooling mode, the switch correction value TGNCchos1 is output as the correction value TGNCchos from the switch 104 and is input to the adder 101, so that the F/F operation amount calculation unit 86 calculates the correction value. A value obtained by adding the correction value TGNchos1 for cooperation to the F/F operation amount TGNCcff0 is input to the adder 88 as the F/F operation amount TGNCcff.
 この様子が図15に示されている。図15の最上段は運転モード(運転状態)を示しており、上から二段目は電磁弁35の状態を示し、上から三段目は電磁弁69の状態を示している。また、下から二段目は加算器101から出力されるF/F操作量TGNCcffの値を示しており、最下段は圧縮機目標回転数TGNCcの変化を示している。図中X3が協調用補正値TGNCchos1によるオフセット分であり、X4は運転モードが切り換わった後に、F/B操作量演算部87により算出されるF/B操作量TGNCcfbによる変化を示している。 This is shown in Figure 15. The uppermost stage of FIG. 15 shows the operation mode (operating state), the second stage from the top shows the state of the solenoid valve 35, and the third stage from the top shows the state of the solenoid valve 69. Further, the second stage from the bottom shows the value of the F/F manipulated variable TGNCcff output from the adder 101, and the bottom stage shows the change of the compressor target rotational speed TGNCc. In the figure, X3 is the offset amount by the correction value for cooperation TGNCchos1, and X4 is the change by the F/B operation amount TGNCcfb calculated by the F/B operation amount calculation unit 87 after the operation mode is switched.
 このように、この実施例では空調(優先)+バッテリ冷却モード(第2の運転状態)においては、冷房モード(第1の運転状態)よりも、F/F操作量演算部86により算出されるF/F操作量TGNCcffを大きくする方向で補正するようにしたので、冷房モードから空調(優先)+バッテリ冷却モードに切り換わったときの圧縮機2の能力(圧縮機目標回転数TGNCc)不足を迅速に解消し、即応性を向上させて、信頼性と商品性の改善を図ることができるようになる。 As described above, in this embodiment, in the air conditioning (priority)+battery cooling mode (second operating state), the F/F manipulated variable calculating unit 86 calculates more than in the cooling mode (first operating state). Since the correction is made in the direction of increasing the F/F operation amount TGNCcff, the capacity of the compressor 2 (compressor target rotation speed TGNCc) at the time of switching from the cooling mode to the air conditioning (priority)+battery cooling mode is insufficient. It will be possible to solve it promptly, improve responsiveness, and improve reliability and marketability.
 また、ヒートポンプコントローラ32はF/F操作量TGNCcffとF/B操作量演算部87が算出したF/B操作量TGNCcfbを加算した値に基づいて目標圧縮機回転数TGNCcを決定するので、空調(優先)+バッテリ冷却モードに切り換わった後、時間が経過するに応じて目標圧縮機回転数TGNCcは吸熱器温度Teを目標吸熱器温度TEOに収束させる方向に支障無く変化することになる。 Further, since the heat pump controller 32 determines the target compressor rotation speed TGNCc based on a value obtained by adding the F/F operation amount TGNCcff and the F/B operation amount TGNCcfb calculated by the F/B operation amount calculation unit 87, the air conditioning ( After switching to the (priority)+battery cooling mode, the target compressor rotation speed TGNCc changes without any problem in the direction in which the heat absorber temperature Te converges to the target heat absorber temperature TEO as time passes.
 また、電磁弁69を開いたときの吸熱器温度Teに基づく圧縮機2の回転数制御の追従性を維持し、且つ、バッテリ55の冷却の即応性も確保することができるようになる。更に、電磁弁69を閉じたときにも、圧縮機2の回転数制御の追従性を維持して車室内が過剰に冷房される不都合(所謂オーバーシュート)も回避することができるようになる。 Further, the followability of the rotation speed control of the compressor 2 based on the heat absorber temperature Te when the solenoid valve 69 is opened can be maintained, and the responsiveness of the cooling of the battery 55 can be secured. Further, even when the solenoid valve 69 is closed, it is possible to maintain the followability of the rotation speed control of the compressor 2 and avoid the inconvenience (so-called overshoot) in which the vehicle interior is excessively cooled.
 また、実施例ではヒートポンプコントローラ32が、空調(優先)+バッテリ冷却モードにおいては、冷媒-熱媒体熱交換器64により冷却される対象の温度である熱媒体温度Twと目標熱媒体温度TWOに基づいてF/F操作量TGNCcffを補正する協調用補正値TGNCchos1を算出するようにしているので、冷媒-熱媒体熱交換器64の負荷に応じてF/F操作量TGNCcffを精度良く補正することができるようになる。 Further, in the embodiment, the heat pump controller 32 is based on the heat medium temperature Tw and the target heat medium temperature TWO which are the temperatures to be cooled by the refrigerant-heat medium heat exchanger 64 in the air conditioning (priority)+battery cooling mode. Since the correction value TGNCchos1 for correction that corrects the F/F operation amount TGNCcff is calculated, the F/F operation amount TGNCcff can be accurately corrected according to the load of the refrigerant-heat medium heat exchanger 64. become able to.
 (12-4)ヒートポンプコントローラ32によるF/F操作量TGNCcffの補正制御(その2)
 尚、上記実施例では冷房モードを本発明における第1の運転状態、空調(優先)+バッテリ冷却モードを本発明における第2の運転状態としてF/F操作量TGNCcffの補正を行ったが、それに限らず、空調(優先)+バッテリ冷却モードにおいて電磁弁69が閉じている状態を本発明における第1の運転状態とし、電磁弁69が開いている状態を本発明における第2の運転状態としてF/F操作量TGNCcffを補正するようにしてもよい。
(12-4) Correction control of F/F operation amount TGNCcff by heat pump controller 32 (Part 2)
In the above embodiment, the F/F operation amount TGNCcff was corrected with the cooling mode as the first operating state in the present invention and the air conditioning (priority)+battery cooling mode as the second operating state in the present invention. Not limited to this, in the air conditioning (priority)+battery cooling mode, the state in which the solenoid valve 69 is closed is the first operating state in the present invention, and the state in which the solenoid valve 69 is open is the second operating state in the present invention. The /F operation amount TGNCcff may be corrected.
 その場合は、運転状態判定部103に車両用空気調和装置1が空調(優先)+バッテリ冷却モードであって、電磁弁69が閉じている(第1の運転状態)か、電磁弁69が開いている(第2の運転状態)かが入力されることになる。そして、空調(優先)+バッテリ冷却モードにおいて電磁弁69が閉じている場合、運転状態判定部103は切換器104を補正無し(0)側に切り換える。従って、空調(優先)+バッテリ冷却モードにおいて、電磁弁69が閉じているときには、切換器104から補正無し(0)の補正値TGNCchosが出力され、加算器101に入力されるので、F/F操作量演算部86で算出されたF/F操作量TGNCcff0は補正されずにそのままF/F操作量TGNCcffとして加算器88に入力されることになる。尚、運転状態判定部103は冷房モード他の空調運転も空調(優先)+バッテリ冷却モードであって電磁弁69が閉じている状態と同様に扱う。 In that case, the vehicle air conditioner 1 is in the air conditioning (priority)+battery cooling mode and the electromagnetic valve 69 is closed (first operating state) or the electromagnetic valve 69 is opened in the operating state determination unit 103. Is being input (second operating state). When the solenoid valve 69 is closed in the air conditioning (priority)+battery cooling mode, the operating state determination unit 103 switches the switch 104 to the no correction (0) side. Therefore, in the air conditioning (priority)+battery cooling mode, when the solenoid valve 69 is closed, the switcher 104 outputs the correction value TGNchos without correction (0) and inputs it to the adder 101. The F/F manipulated variable TGNCcff0 calculated by the manipulated variable calculator 86 is not corrected and is directly input to the adder 88 as the F/F manipulated variable TGNCcff. The operation state determination unit 103 treats the air conditioning operation other than the cooling mode in the same manner as in the air conditioning (priority)+battery cooling mode and the electromagnetic valve 69 is closed.
 他方、空調(優先)+バッテリ冷却モードであって、電磁弁69が開いた場合、運転状態判定部103は切換器104を協調用補正値TGNCchos1側に切り換える。従って、空調(優先)+バッテリ冷却モードにおいて電磁弁69が開いているときには、切換器104から協調用補正値TGNCchos1が補正値TGNCchosとして出力され、加算器101に入力されるので、F/F操作量演算部86で算出されたF/F操作量TGNCcff0に協調用補正値TGNCchos1が加算された値がF/F操作量TGNCcffとして加算器88に入力されることになる。 On the other hand, in the air conditioning (priority)+battery cooling mode and when the solenoid valve 69 is opened, the operating state determination unit 103 switches the switch 104 to the cooperation correction value TGNchos1 side. Therefore, when the solenoid valve 69 is opened in the air conditioning (priority)+battery cooling mode, the switching correction value TGNchos1 is output as the correction value TGNChos from the switch 104 and is input to the adder 101. Therefore, the F/F operation is performed. A value obtained by adding the correction value TGNCchos1 for cooperation to the F/F operation amount TGNCcff0 calculated by the amount calculation unit 86 is input to the adder 88 as the F/F operation amount TGNCcff.
 このように、ヒートポンプコントローラ32が、空調(優先)+バッテリ冷却モードにおいて、電磁弁69を開いたとき、冷房モードよりも、F/F操作量演算部86により算出されるF/F操作量TGNCcffを大きくする方向で補正するようにすれば、電磁弁69の開閉に応じて細かくF/F操作量TGNCcffを補正することができるようになる。 Thus, when the heat pump controller 32 opens the solenoid valve 69 in the air conditioning (priority)+battery cooling mode, the F/F operation amount TGNCcff calculated by the F/F operation amount calculation unit 86 is higher than that in the cooling mode. If the correction is performed in the direction of increasing, the F/F operation amount TGNCcff can be finely corrected according to the opening/closing of the solenoid valve 69.
 尚、前述した実施例では熱媒体温度Twを冷媒-熱媒体熱交換器64により冷却される対象の温度として採用したが、バッテリ温度Tcellを採用してもよい。また、実施例では熱媒体を循環させてバッテリ55の温調を行うようにしたが、それに限らず、冷媒とバッテリ55(被温調対象)を直接熱交換させるようにしてもよい。その場合には、バッテリ冷却(単独)モードやバッテリ冷却(優先)+空調モードにおいて、冷媒-熱媒体熱交換器64の温度で圧縮機2の回転数を制御するようにしてもよい。 Although the heat medium temperature Tw is adopted as the temperature of the object to be cooled by the refrigerant-heat medium heat exchanger 64 in the above-described embodiment, the battery temperature Tcell may be adopted. Further, in the embodiment, the heat medium is circulated to adjust the temperature of the battery 55, but the present invention is not limited to this, and the refrigerant and the battery 55 (object to be temperature adjusted) may be directly heat-exchanged. In that case, the rotation speed of the compressor 2 may be controlled by the temperature of the refrigerant-heat medium heat exchanger 64 in the battery cooling (single) mode or the battery cooling (priority)+air conditioning mode.
 また、実施例では車室内の冷房とバッテリ55の冷却を同時に行う空調(優先)+バッテリ冷却モードとバッテリ冷却(優先)+空調モードで車室内を冷房しながらバッテリ55を冷却することができる車両用空気調和装置1で説明したが、バッテリ55の冷却は冷房中に限らず、他の空調運転、例えば前述した除湿暖房モードとバッテリ55の冷却を同時に行うようにしてもよい。その場合には除湿暖房モードも本発明における空調(単独)モードとなり、電磁弁69を開き、冷媒配管13Fを経て吸熱器9に向かう冷媒の一部を分岐配管67に流入させ、冷媒-熱媒体熱交換器64に流すことになる。 Further, in the embodiment, a vehicle capable of cooling the battery 55 while cooling the vehicle interior in the air conditioning (priority)+battery cooling mode and the battery cooling (priority)+air conditioning mode for simultaneously cooling the vehicle interior and cooling the battery 55 Although the air conditioning apparatus 1 has been described, the cooling of the battery 55 is not limited to during cooling, but other air conditioning operation, for example, the above-described dehumidifying and heating mode and cooling of the battery 55 may be performed simultaneously. In that case, the dehumidifying and heating mode also becomes the air conditioning (single) mode in the present invention, the solenoid valve 69 is opened, and a part of the refrigerant flowing toward the heat absorber 9 via the refrigerant pipe 13F is caused to flow into the branch pipe 67, and the refrigerant-heat medium. It will flow to the heat exchanger 64.
 更に、実施例では電磁弁35を吸熱器用弁装置、電磁弁69を被温調対象用弁装置としたが、室内膨張弁8や補助膨張弁68を全閉可能な電動弁にて構成した場合には、各電磁弁35や69は不要となり、室内膨張弁8が本発明における吸熱器用弁装置となり、補助膨張弁68が被温調対象用弁装置となる。 Further, in the embodiment, the electromagnetic valve 35 is the heat absorber valve device and the electromagnetic valve 69 is the temperature controlled valve device. However, when the indoor expansion valve 8 and the auxiliary expansion valve 68 are electrically closed valves, Therefore, the solenoid valves 35 and 69 are not necessary, the indoor expansion valve 8 serves as the heat absorber valve device of the present invention, and the auxiliary expansion valve 68 serves as the temperature controlled valve device.
 更にまた、実施例では吸熱器9と冷媒-熱媒体熱交換器64を本発明における蒸発器としたが、請求項1及び請求項2の発明はそれに限らず、例えば車室内に供給される空気を冷却するメインの蒸発器(実施例の吸熱器9)の他に、もう一つの蒸発器(リアシート用蒸発器等、車室内の他の箇所の冷房、若しくは、車室外の車両の他の箇所を冷却するための蒸発器)を備えた車両用空気調和装置にも有効である。 Furthermore, in the embodiment, the heat absorber 9 and the refrigerant-heat medium heat exchanger 64 are the evaporators of the present invention, but the inventions of claims 1 and 2 are not limited to this, and, for example, the air supplied to the passenger compartment. In addition to the main evaporator (heat absorber 9 of the embodiment) that cools the vehicle, another evaporator (e.g., an evaporator for a rear seat) is used to cool other parts of the vehicle interior or other parts of the vehicle outside the vehicle interior. It is also effective for a vehicle air conditioner equipped with an evaporator for cooling the vehicle.
 その場合、メインの蒸発器と、もう一つの蒸発器(リアシート用蒸発器等)のうちの何れかで冷媒を蒸発させる運転状態が本発明における第1の運転状態となり、双方の蒸発器で冷媒を蒸発させる運転状態が第2の運転状態となる。 In that case, the operating state in which the refrigerant is evaporated by either the main evaporator or another evaporator (evaporator for rear seat, etc.) becomes the first operating state in the present invention, and the refrigerant is discharged by both evaporators. The second operating state is the operating state in which the is evaporated.
 また、請求項1及び請求項2の発明は、実施例の吸熱器9と冷媒-熱媒体熱交換器64に加えて、もう一つの蒸発器(リアシート用蒸発器等)を設けた車両用空気調和装置にも有効である。その場合には、実施例と上記の組み合わせの他に、例えば、吸熱器9と、もう一つの蒸発器(リアシート用蒸発器等)で冷媒を蒸発させる運転状態が本発明における第1の運転状態となり、吸熱器9と、もう一つの蒸発器(リアシート用蒸発器等)と、冷媒-熱媒体熱交換器64で冷媒を蒸発させる運転状態が本発明における第2の運転状態となる。 In addition, the invention of claim 1 and claim 2 is a vehicle air provided with another evaporator (evaporator for rear seat, etc.) in addition to the heat absorber 9 and the refrigerant-heat medium heat exchanger 64 of the embodiment. It is also effective as a harmony device. In that case, in addition to the combination of the embodiment and the above, for example, the operating state in which the refrigerant is evaporated by the heat absorber 9 and another evaporator (evaporator for rear seat, etc.) is the first operating state in the present invention. Thus, the operation state in which the heat absorber 9, another evaporator (evaporator for rear seat, etc.) and the refrigerant-heat medium heat exchanger 64 evaporate the refrigerant is the second operation state in the present invention.
 更に、実施例で説明した冷媒回路Rの構成や数値はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。更にまた、実施例では暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、空調(優先)+バッテリ冷却モード等の各運転モードを有する車両用空気調和装置1で本発明を説明したが、それに限らず、例えば冷房モード、空調(優先)+バッテリ冷却モード、バッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モードを実行可能とされた車両用空気調和装置にも本発明は有効である。 Furthermore, it goes without saying that the configuration and numerical values of the refrigerant circuit R described in the embodiments are not limited to those and can be changed without departing from the spirit of the present invention. Furthermore, in the embodiment, the present invention has been described with the vehicle air conditioner 1 having each operation mode such as the heating mode, the dehumidification heating mode, the dehumidification cooling mode, the cooling mode, and the air conditioning (priority)+battery cooling mode. Not limited to this, the present invention is also effective for a vehicle air conditioner capable of executing, for example, a cooling mode, an air conditioning (priority)+battery cooling mode, a battery cooling (priority)+air conditioning mode, and a battery cooling (single) mode. ..
 1 車両用空気調和装置
 2 圧縮機
 3 空気流通路
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器(蒸発器)
 11 制御装置
 32 ヒートポンプコントローラ(制御装置の一部を構成)
 35 電磁弁(吸熱器用弁装置)
 45 空調コントローラ(制御装置の一部を構成)
 55 バッテリ(被温調対象)
 61 機器温度調整装置
 64 冷媒-熱媒体熱交換器(蒸発器、被温調対象用熱交換器)
 68 補助膨張弁
 69 電磁弁(被温調対象用弁装置)
 72 車両コントローラ
 73 バッテリコントローラ
 77 バッテリ温度センサ
 76 熱媒体温度センサ
 R 冷媒回路
1 Vehicle Air Conditioner 2 Compressor 3 Air Flow Path 4 Radiator 6 Outdoor Expansion Valve 7 Outdoor Heat Exchanger 8 Indoor Expansion Valve 9 Heat Absorber (Evaporator)
11 control device 32 heat pump controller (constituting a part of control device)
35 Solenoid valve (Valve device for heat absorber)
45 Air conditioning controller (constituting a part of control device)
55 Battery (for temperature control)
61 Equipment temperature adjusting device 64 Refrigerant-heat medium heat exchanger (evaporator, heat exchanger for temperature controlled)
68 Auxiliary expansion valve 69 Solenoid valve (valve device for temperature controlled objects)
72 Vehicle Controller 73 Battery Controller 77 Battery Temperature Sensor 76 Heat Medium Temperature Sensor R Refrigerant Circuit

Claims (9)

  1.  冷媒を圧縮する圧縮機と、
     冷媒を蒸発させるための複数の蒸発器と、
     制御装置を少なくとも備えて車室内を空調する車両用空気調和装置において、
     前記制御装置は少なくとも、
     前記蒸発器にて冷媒を蒸発させる第1の運転状態と、
     該第1の運転状態より多い数の前記蒸発器にて冷媒を蒸発させる第2の運転状態を有し、
     前記蒸発器又はそれにより冷却される対象の目標温度に基づくフィードフォワード演算により前記圧縮機の目標回転数を算出すると共に、
     前記第2の運転状態において、前記第1の運転状態よりも、前記フィードフォワード演算により算出されるフィードフォワード操作量を大きくする方向で補正することを特徴とする車両用空気調和装置。
    A compressor for compressing the refrigerant,
    A plurality of evaporators for evaporating the refrigerant,
    In a vehicle air conditioner that includes at least a control device to air-condition the vehicle interior,
    The controller is at least
    A first operating state in which the evaporator evaporates the refrigerant;
    A second operating state in which the refrigerant is evaporated in a larger number of the evaporators than in the first operating state,
    While calculating the target rotation speed of the compressor by a feedforward calculation based on the target temperature of the evaporator or the object cooled by it,
    In the second operating state, the vehicle air conditioner is characterized in that the feedforward operation amount calculated by the feedforward calculation is corrected to be larger than that in the first operating state.
  2.  前記制御装置は、前記蒸発器又はそれにより冷却される対象の温度と前記目標温度に基づくフィードバック演算により前記圧縮機の目標回転数のフィードバック操作量を算出すると共に、
     前記フィードフォワード操作量と前記フィードバック操作量を加算した値に基づいて前記圧縮機の目標回転数を決定することを特徴とする請求項1に記載の車両用空気調和装置。
    The control device calculates a feedback operation amount of a target rotation speed of the compressor by feedback calculation based on the temperature of the evaporator or a target cooled by the evaporator and the target temperature,
    The vehicle air conditioner according to claim 1, wherein the target rotation speed of the compressor is determined based on a value obtained by adding the feedforward operation amount and the feedback operation amount.
  3.  冷媒を蒸発させて前記車室内に供給する空気を冷却するための前記蒸発器としての吸熱器と、
     冷媒を蒸発させて車両に搭載された被温調対象を冷却するための前記蒸発器としての被温調対象用熱交換器と、
     前記吸熱器への冷媒の流通を制御する吸熱器用弁装置と、
     前記被温調対象用熱交換器への冷媒の流通を制御する被温調対象用弁装置を備え、
     前記制御装置は、
     前記第1の運転状態において、前記吸熱器用弁装置と前記被温調対象用弁装置のうちの何れか一方を開き、他方を閉じることにより、前記吸熱器と前記被温調対象用熱交換器のうちの何れか一方で冷媒を蒸発させると共に、
     前記第2の運転状態においては、前記吸熱器用弁装置と前記被温調対象用弁装置を開くことにより、前記吸熱器及び前記被温調対象用熱交換器で冷媒を蒸発させることを特徴とする請求項1又は請求項2に記載の車両用空気調和装置。
    A heat absorber as the evaporator for evaporating a refrigerant to cool the air supplied to the vehicle interior,
    A heat exchanger for temperature control as the evaporator for evaporating the refrigerant to cool the temperature control target mounted on the vehicle,
    A heat absorber valve device for controlling the flow of the refrigerant to the heat absorber,
    A temperature controlled target valve device for controlling the flow of the refrigerant to the temperature controlled heat exchanger,
    The control device is
    In the first operating state, by opening either one of the heat absorber valve device and the temperature control target valve device, and closing the other, the heat absorber and the temperature control target heat exchanger. While evaporating the refrigerant with either of the
    In the second operating state, the refrigerant is evaporated in the heat absorber and the heat exchanger for temperature control by opening the valve device for heat absorber and the valve device for temperature control. The vehicle air conditioner according to claim 1 or 2.
  4.  前記制御装置は、
     前記被温調対象用弁装置を開き、前記被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて前記圧縮機の回転数を制御し、前記吸熱器用弁装置を閉じる被温調対象冷却(単独)モードと、
     前記被温調対象用弁装置を開き、前記被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて前記圧縮機の回転数を制御し、前記吸熱器の温度に基づいて前記吸熱器用弁装置を開閉制御する被温調対象冷却(優先)+空調モードを有し、
     該被温調対象冷却(優先)+空調モードのなかで、前記被温調対象冷却(単独)モードよりも、前記被温調対象用熱交換器又はそれにより冷却される対象の目標温度に基づくフィードフォワード演算により算出されるフィードフォワード操作量を大きくする方向で補正することを特徴とする請求項3に記載の車両用空気調和装置。
    The control device is
    The temperature control target valve device is opened, the rotation speed of the compressor is controlled based on the temperature of the temperature control target heat exchanger or the target cooled by it, and the heat absorber valve device is closed. Temperature control target cooling (single) mode,
    Open the temperature control target valve device, to control the rotation speed of the compressor based on the temperature of the temperature control target heat exchanger or the object cooled by it, based on the temperature of the heat absorber Has a temperature controlled cooling (priority) + air conditioning mode for controlling the opening and closing of the heat absorber valve device,
    In the temperature controlled cooling (priority)+air conditioning mode, based on the target temperature of the heat controlled target heat exchanger or the target cooled by the heat controlled target cooling (single) mode The vehicular air conditioner according to claim 3, wherein the feedforward operation amount calculated by the feedforward calculation is corrected in a direction of increasing it.
  5.  前記制御装置は、
     前記被温調対象冷却(優先)+空調モードにおいて、前記吸熱器用弁装置を開いたとき、前記被温調対象冷却(単独)モードよりも、前記被温調対象用熱交換器又はそれにより冷却される対象の目標温度に基づくフィードフォワード演算により算出されるフィードフォワード操作量を大きくする方向で補正することを特徴とする請求項4に記載の車両用空気調和装置。
    The control device is
    In the temperature controlled cooling (priority)+air conditioning mode, when the heat absorber valve device is opened, the temperature controlled heat exchanger or the heat controlled cooling target is cooled more than in the temperature controlled cooling (single) mode. The vehicle air conditioner according to claim 4, wherein the feedforward operation amount calculated by the feedforward calculation based on the target temperature of the target to be corrected is corrected in the direction of increasing it.
  6.  前記制御装置は、
     前記被温調対象冷却(優先)+空調モードにおいては、前記吸熱器により冷却される対象の温度と前記吸熱器の目標温度に基づいて前記フィードフォワード操作量を補正する補正値を算出することを特徴とする請求項4又は請求項5に記載の車両用空気調和装置。
    The control device is
    In the temperature controlled target cooling (priority)+air conditioning mode, a correction value for correcting the feedforward manipulated variable is calculated based on the temperature of the target cooled by the heat absorber and the target temperature of the heat absorber. The vehicle air conditioner according to claim 4, wherein the air conditioner is a vehicle air conditioner.
  7.  前記制御装置は、
     前記吸熱器用弁装置を開き、前記吸熱器の温度に基づいて前記圧縮機の回転数を制御し、前記被温調対象用弁装置を閉じる空調(単独)モードと、
     前記吸熱器用弁装置を開き、前記吸熱器の温度に基づいて前記圧縮機の回転数を制御し、前記被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて前記被温調対象用弁装置を開閉制御する空調(優先)+被温調対象冷却モードを有し、
     該空調(優先)+被温調対象冷却モードのなかで、前記空調(単独)モードよりも、前記吸熱器の目標温度に基づくフィードフォワード演算により算出されるフィードフォワード操作量を大きくする方向で補正することを特徴とする請求項3乃至請求項6のうちの何れかに記載の車両用空気調和装置。
    The control device is
    An air conditioning (single) mode in which the valve device for the heat absorber is opened, the rotation speed of the compressor is controlled based on the temperature of the heat absorber, and the valve device for temperature controlled object is closed.
    The heat absorber valve device is opened, the rotation speed of the compressor is controlled based on the temperature of the heat absorber, and the temperature is controlled based on the temperature of the temperature control target heat exchanger or the target cooled by the heat control target heat exchanger. It has an air conditioning (priority) + controlled temperature controlled cooling mode that controls the valve device for temperature control
    Correction in the direction of increasing the feedforward operation amount calculated by the feedforward calculation based on the target temperature of the heat absorber in the air conditioning (priority)+controlled cooling mode under the temperature control (single) mode The vehicle air conditioner according to any one of claims 3 to 6, wherein:
  8.  前記制御装置は、
     前記空調(優先)+被温調対象冷却モードにおいて、前記被温調対象用弁装置を開いたとき、前記空調(単独)モードよりも、前記吸熱器の目標温度に基づくフィードフォワード演算により算出されるフィードフォワード操作量を大きくする方向で補正することを特徴とする請求項7に記載の車両用空気調和装置。
    The control device is
    In the air conditioning (priority) + temperature controlled cooling mode, when the temperature controlled valve device is opened, it is calculated by a feedforward calculation based on the target temperature of the heat absorber rather than the air conditioning (single) mode. The vehicle air conditioner according to claim 7, wherein the feedforward operation amount is corrected in a direction in which the feedforward operation amount is increased.
  9.  前記制御装置は、
     前記空調(優先)+被温調対象冷却モードにおいては、前記被温調対象用熱交換器により冷却される対象の温度とその目標温度に基づいて前記フィードフォワード操作量を補正する補正値を算出することを特徴とする請求項7又は請求項8に記載の車両用空気調和装置。
    The control device is
    In the air conditioning (priority)+controlled temperature controlled cooling mode, a correction value for correcting the feedforward manipulated variable is calculated based on the temperature of the target cooled by the controlled heat exchanger and the target temperature thereof. The vehicle air conditioner according to claim 7 or 8, wherein
PCT/JP2019/044845 2018-12-25 2019-11-15 Vehicle air-conditioning device WO2020137235A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980083916.9A CN113195272A (en) 2018-12-25 2019-11-15 Air conditioner for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-241547 2018-12-25
JP2018241547A JP7233915B2 (en) 2018-12-25 2018-12-25 Vehicle air conditioner

Publications (1)

Publication Number Publication Date
WO2020137235A1 true WO2020137235A1 (en) 2020-07-02

Family

ID=71126481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044845 WO2020137235A1 (en) 2018-12-25 2019-11-15 Vehicle air-conditioning device

Country Status (3)

Country Link
JP (1) JP7233915B2 (en)
CN (1) CN113195272A (en)
WO (1) WO2020137235A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022038951A1 (en) * 2020-08-20 2022-02-24 株式会社デンソー Refrigeration cycle device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012030663A (en) * 2010-07-29 2012-02-16 Mitsubishi Motors Corp Control device for air conditioning system for vehicle
JP2013151231A (en) * 2012-01-25 2013-08-08 Denso Corp Vehicle air-conditioning system
JP2013180722A (en) * 2012-03-05 2013-09-12 Denso Corp Air conditioner for vehicle
WO2018147039A1 (en) * 2017-02-07 2018-08-16 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air-conditioning device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124387A (en) * 1999-10-26 2001-05-11 Sanden Corp Air-conditioning device for vehicle
KR20130064382A (en) * 2011-12-08 2013-06-18 현대자동차주식회사 Heat pump system for electric vehicle and control method thereof
JP6073653B2 (en) * 2012-11-09 2017-02-01 サンデンホールディングス株式会社 Air conditioner for vehicles
JP6174414B2 (en) * 2013-08-07 2017-08-02 サンデンホールディングス株式会社 Air conditioner for vehicles
JP6645377B2 (en) 2016-08-02 2020-02-14 株式会社デンソー Air conditioning control device, air conditioning control method
JP6642857B2 (en) * 2016-10-18 2020-02-12 本田技研工業株式会社 Vehicle air conditioner
JP6948146B2 (en) 2017-04-18 2021-10-13 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner
JP2018203069A (en) * 2017-06-05 2018-12-27 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012030663A (en) * 2010-07-29 2012-02-16 Mitsubishi Motors Corp Control device for air conditioning system for vehicle
JP2013151231A (en) * 2012-01-25 2013-08-08 Denso Corp Vehicle air-conditioning system
JP2013180722A (en) * 2012-03-05 2013-09-12 Denso Corp Air conditioner for vehicle
WO2018147039A1 (en) * 2017-02-07 2018-08-16 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air-conditioning device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022038951A1 (en) * 2020-08-20 2022-02-24 株式会社デンソー Refrigeration cycle device
JP2022035027A (en) * 2020-08-20 2022-03-04 株式会社デンソー Refrigeration cycle device
JP7331806B2 (en) 2020-08-20 2023-08-23 株式会社デンソー refrigeration cycle equipment

Also Published As

Publication number Publication date
JP2020100363A (en) 2020-07-02
CN113195272A (en) 2021-07-30
JP7233915B2 (en) 2023-03-07

Similar Documents

Publication Publication Date Title
JP7300264B2 (en) Vehicle air conditioner
JP2019038352A (en) Air conditioner for vehicle
WO2020075446A1 (en) Vehicle air conditioning device
WO2020129494A1 (en) Vehicle air conditioning device
WO2020153032A1 (en) Vehicle battery temperature adjusting device, and vehicle air conditioning device provided with same
WO2020218268A1 (en) Vehicle control system
WO2020129495A1 (en) Vehicle air conditioning device
WO2020110508A1 (en) Vehicle battery temperature adjustment apparatus and vehicle air-conditioner equipped with same
WO2020129493A1 (en) Vehicle air-conditioning apparatus
WO2020137235A1 (en) Vehicle air-conditioning device
CN112384392A (en) Air conditioner for vehicle
JP7221650B2 (en) Vehicle air conditioner
WO2020166274A1 (en) Vehicle air conditioner
WO2020100410A1 (en) Vehicle air-conditioning device
JP7387520B2 (en) Vehicle air conditioner
JP7280689B2 (en) Vehicle air conditioner
WO2022064944A1 (en) Air conditioner for vehicle
WO2020179492A1 (en) Vehicle air conditioner
WO2020100524A1 (en) Vehicle air-conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905750

Country of ref document: EP

Kind code of ref document: A1