WO2018147039A1 - Vehicle air-conditioning device - Google Patents

Vehicle air-conditioning device Download PDF

Info

Publication number
WO2018147039A1
WO2018147039A1 PCT/JP2018/001480 JP2018001480W WO2018147039A1 WO 2018147039 A1 WO2018147039 A1 WO 2018147039A1 JP 2018001480 W JP2018001480 W JP 2018001480W WO 2018147039 A1 WO2018147039 A1 WO 2018147039A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heat
refrigerant
temperature
compressor
Prior art date
Application number
PCT/JP2018/001480
Other languages
French (fr)
Japanese (ja)
Inventor
竜 宮腰
耕平 山下
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Priority to DE112018000713.8T priority Critical patent/DE112018000713T5/en
Publication of WO2018147039A1 publication Critical patent/WO2018147039A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00835Damper doors, e.g. position control
    • B60H1/00849Damper doors, e.g. position control for selectively commanding the induction of outside or inside air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3213Control means therefor for increasing the efficiency in a vehicle heat pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • B60H2001/3261Cooling devices information from a variable is obtained related to temperature of the air at an evaporating unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/327Cooling devices output of a control signal related to a compressing unit
    • B60H2001/3272Cooling devices output of a control signal related to a compressing unit to control the revolving speed of a compressor

Definitions

  • the present invention relates to a vehicle air conditioner that air-conditions the interior of a vehicle, and more particularly to a device that can adjust the ratio of outside air and inside air flowing into an air flow passage.
  • Hybrid vehicles and electric vehicles have come into widespread use due to the emergence of environmental problems in recent years.
  • an electric compressor that compresses and discharges the refrigerant
  • a heat absorber that is provided in the air flow passage and absorbs the refrigerant
  • the heat absorber A heat radiator that dissipates heat from the refrigerant provided in the air flow passage on the downstream side of the air, and an outdoor heat exchanger that dissipates or absorbs heat from the refrigerant provided outside the passenger compartment, and discharges the refrigerant discharged from the compressor
  • the refrigerant discharged from the compressor is radiated in the radiator, and the radiated refrigerant is absorbed in the heat absorber and the outdoor heat exchanger.
  • the discharged refrigerant is radiated in the outdoor heat exchanger, which executes switching the various operating modes such as a cooling mode to heat absorption have been developed in the heat sink (e.g., see Patent Document 1).
  • a suction switching damper is provided on the air upstream side of the heat absorber, and outside air is introduced into the air flow passage by the suction switching damper (outside air introduction mode) or inside air (air in the vehicle interior) is introduced. Whether or not (inside air circulation mode) is switched, an apparatus capable of adjusting the ratio of outside air and inside air introduced into the air flow passage (air mix chamber) has been developed (for example, see Patent Document 2). .
  • JP 2014-94673 A Japanese Patent Laid-Open No. 10-166845
  • the present invention has been made to solve the conventional technical problem, and performs stable air-conditioning control of the passenger compartment even when the ratio of outside air and inside air flowing into the air flow passage changes.
  • An object of the present invention is to provide a vehicle air conditioner that can perform the above-described operation.
  • An air conditioner for a vehicle includes a compressor that compresses a refrigerant, an air flow passage through which air supplied to the vehicle interior flows, and air that absorbs heat from the refrigerant and supplies the refrigerant to the vehicle interior.
  • a heat absorber for cooling the vehicle an outdoor heat exchanger provided outside the vehicle interior, a suction switching damper capable of adjusting the ratio of the outside air flowing into the air flow passage and the inside air which is the air inside the vehicle interior, and a control device.
  • control device causes the refrigerant discharged from the compressor to flow through the outdoor heat exchanger, dissipates heat in the outdoor heat exchanger, decompresses the dissipated refrigerant, and then absorbs heat in the heat absorber.
  • the control device executes the operation mode, and the control device estimates the heat sink suction air temperature Tevain, which is the temperature of the air flowing into the heat sink, based on the ratio of the outside air and the inside air adjusted by the suction switching damper.
  • Tevain the heat sink suction air temperature
  • the control device performs an F of the target rotational speed of the compressor by feedforward calculation based on at least a target heat absorber temperature TEO that is a target value of the temperature Te of the heat absorber.
  • F / F manipulated variable TGNCcff is calculated
  • F / B manipulated variable TGNCcfb of the target rotational speed of the compressor is calculated by feedback calculation based on the temperature Te of the heat absorber and the target heat absorber temperature TEO, and these F / F manipulated variable TGNCcff and
  • the target rotation speed TGNCc of the compressor is calculated, and the F / F operation amount TGNCcf is corrected based on the heat sink intake air temperature Tevain.
  • the air conditioner for a vehicle is provided on the leeward side of the heat absorber with respect to the air flow in the air flow passage in each of the above-described inventions, and dissipates the refrigerant to be supplied from the air flow passage to the vehicle interior.
  • the first operation mode includes a radiator for heating air, and the first operation mode is such that the refrigerant discharged from the compressor flows from the radiator to the outdoor heat exchanger and is radiated by the outdoor heat exchanger, and the radiated refrigerant.
  • the cooling mode in which the heat is absorbed by the heat absorber and / or the refrigerant discharged from the compressor flows from the radiator to the outdoor heat exchanger to dissipate the heat by the radiator and the outdoor heat exchanger.
  • the refrigerant is decompressed and then absorbed by a heat absorber.
  • a vehicle air conditioner according to a fourth aspect of the present invention is provided on the leeward side of the heat absorber with respect to the air flow in the air flow passage in each of the above-described inventions, and dissipates the refrigerant to be supplied from the air flow passage to the vehicle interior.
  • a radiator for heating the air a bypass device for allowing the refrigerant discharged from the compressor to flow directly into the outdoor heat exchanger without flowing to the radiator, and air supplied to the vehicle interior from the air flow passage
  • An auxiliary heating device for heating is provided, and in the first operation mode, the refrigerant discharged from the compressor is radiated by flowing it through the outdoor heat exchanger by the bypass device, and after the decompressed refrigerant is depressurized, The maximum cooling mode to absorb heat and / or the refrigerant discharged from the compressor flows to the outdoor heat exchanger by the bypass device to dissipate the heat, and after the decompressed refrigerant is depressurized, the heat absorber absorbs heat and assists.
  • a vehicle air conditioner includes a compressor that compresses a refrigerant, an air flow passage through which air to be supplied to the vehicle interior flows, and air that absorbs heat from the refrigerant and supplies the refrigerant to the vehicle interior.
  • a refrigerant discharged from a compressor is caused to flow through a radiator to dissipate heat, and after the decompressed refrigerant is decompressed, a heating mode is performed in which heat is absorbed by an outdoor heat exchanger.
  • the required heating capacity TGQ which is the required heating capacity of the radiator. It calculates and controls the rotation speed of a compressor based on this required heating capacity TGQ.
  • the control device calculates an F / F manipulated variable TGNChff at a target rotational speed of the compressor by a feedforward calculation based on at least the required heating capacity TGQ.
  • An air conditioner for a vehicle includes a compressor for compressing a refrigerant, an air flow passage through which air supplied to the vehicle interior flows, and air supplied to the vehicle interior from the air flow passage by absorbing the heat of the refrigerant.
  • a radiator for heating the air supplied to the vehicle interior from the air flow path by dissipating the refrigerant, provided on the leeward side of the heat sink with respect to the air flow in the air flow path
  • an outdoor heat exchanger provided outside the vehicle interior, an outdoor expansion valve for reducing the pressure of the refrigerant flowing into the outdoor heat exchanger, and a series circuit of the outdoor heat exchanger and the outdoor expansion valve.
  • Refrigerant discharged from the compressor by the control device Dissipate heat with a radiator, divide the radiated refrigerant, partly flow from the bypass circuit to the indoor expansion valve, depressurize with the indoor expansion valve, flow into the heat absorber, and absorb the heat with the heat absorber The remainder is decompressed by the outdoor expansion valve, and then flows into the outdoor heat exchanger, and a dehumidifying heating mode is performed in which heat is absorbed by the outdoor heat exchanger.
  • the control device is adjusted by a suction switching damper.
  • the vehicle air conditioner according to an eighth aspect of the present invention is the air conditioning apparatus for a vehicle according to the present invention, wherein the control device performs a target valve opening degree of the outdoor expansion valve by feedforward calculation based on at least a target heat absorber temperature TEO that is a target value of the temperature Te of the heat absorber.
  • F / F manipulated variable TGECCVteff is calculated, and F / B manipulated variable TGECCVtefb of the target valve opening degree of the outdoor expansion valve is calculated by feedback calculation based on the temperature Te of the heat absorber and the target heat absorber temperature TEO, and these F / F
  • the target valve opening TGECCVte of the outdoor expansion valve is calculated, and at the same time, the target rotational speed F of the compressor is calculated by feedforward calculation based on at least the target heat absorber temperature TEO.
  • the F / B manipulated variable TGNCcfb of the target rotational speed of the compressor is calculated by feedback calculation based on O, and the target rotational speed TGNCc of the compressor is obtained by adding the F / F manipulated variable TGNCcff and the F / B manipulated variable TGNCcfb.
  • the F / F manipulated variable TGECCVteff and / or the F / F manipulated variable TGNCcff is corrected based on the heat sink suction air temperature Tevain.
  • the vehicle air conditioner according to a ninth aspect of the present invention is characterized in that, in each of the above inventions, the control device calculates the heat sink intake air temperature Tevain by a first-order lag calculation based on a ratio of outside air to inside air.
  • the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air supplied to the vehicle interior from the air flow passage by absorbing the refrigerant are cooled.
  • the first operation mode in which the refrigerant discharged from the compressor is caused to flow through the outdoor heat exchanger and radiated by the outdoor heat exchanger, and the radiated refrigerant is decompressed and then absorbed by the heat absorber.
  • the control device estimates the heat sink suction air temperature Tevain, which is the temperature of the air flowing into the heat sink, based on the ratio of the outside air and the inside air adjusted by the suction switching damper.
  • Tevain the temperature of the air flowing into the heat sink
  • the outside air and the inside air are Responds quickly to load fluctuations due to changes in the ratio, realizes air-conditioning capacity without excess and deficiency, and successfully converges the cabin temperature to the target value, improving both comfort and energy saving To be able to.
  • the control device calculates the F / F manipulated variable TGNCcff of the target rotational speed of the compressor by feedforward calculation based on at least the target heat absorber temperature TEO which is the target value of the heat absorber temperature Te.
  • the F / B manipulated variable TGNCcfb of the target rotational speed of the compressor is calculated by feedback calculation based on the heat absorber temperature Te and the target heat absorber temperature TEO, and these F / F manipulated variable TGNCcff and F / B manipulated variable TGNCcfb
  • the target rotational speed TGNCc of the compressor is calculated by adding the F / F manipulated variable TGNCcff based on the heat sink suction air temperature Tevain, the ratio of the outside air to the inside air has changed.
  • the cooling / dehumidifying capability of the heat absorber can be accurately controlled in response to the load fluctuation accompanying the change.
  • a suction switching damper capable of adjusting the ratio of the outside air flowing into the air flow passage and the inside air, which is the air in the passenger compartment, and a control device.
  • the control device allows discharge from the compressor.
  • a vehicle air conditioner that executes a heating mode in which the discharged refrigerant is caused to flow through a radiator to radiate heat, and the radiated refrigerant is decompressed and then absorbed by an outdoor heat exchanger
  • the control device is adjusted by a suction switching damper Ratio of outside air to inside air
  • Tevain which is the temperature of the air flowing into the heat sink
  • Tevain the required heating capacity TGQ, which is the required heating capacity of the radiator
  • the calculation and the rotation speed of the compressor is controlled based on the required heating capacity TGQ, even when the ratio of the outside air and the inside air flowing into the air flow passage is changed by the suction switching damper, Thus, the heat sink intake air temperature Tevain is estimated, the required heating capacity TGQ is calculated based on the estimated temperature, and the rotational speed of the compressor can be controlled.
  • the required heating capacity TGQ is calculated based on the estimated temperature, and the rotational speed of the compressor can be controlled.
  • it responds quickly to load fluctuations due to changes in the ratio of outside air to inside air, realizes heating capacity without excess and deficiency, and successfully converges the temperature in the passenger compartment to the target value. It is possible to improve both comfort and energy saving.
  • the control device calculates the F / F manipulated variable TGNChff of the target rotational speed of the compressor by feedforward calculation based on at least the required heating capacity TGQ, and based on the high pressure and the target value.
  • the F / B operation amount TGNChfb of the target rotation speed of the compressor is calculated by feedback calculation, and the target rotation number TGNCh of the compressor is calculated by adding the F / F operation amount TGNChff and the F / B operation amount TGNChfb. If it does in this way, it will become possible to respond to the load fluctuation accompanying change of the ratio of outside air and inside air quickly, and to control the heating capability by a radiator precisely.
  • the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air supplied to the vehicle interior from the air flow passage by absorbing the refrigerant are cooled.
  • a heat sink a heat dissipator provided on the lee side of the heat sink with respect to the air flow in the air flow path, for radiating the refrigerant and heating the air supplied from the air flow path to the vehicle interior, and the exterior of the vehicle interior
  • An outdoor heat exchanger provided in the outdoor heat exchanger, an outdoor expansion valve for decompressing the refrigerant flowing into the outdoor heat exchanger, a bypass circuit connected in parallel to the series circuit of the outdoor heat exchanger and the outdoor expansion valve,
  • An indoor expansion valve that depressurizes the refrigerant flowing into the heat absorber, a suction switching damper that can adjust the ratio of the outside air flowing into the air flow passage and the inside air that is the air in the vehicle interior, and a control device.
  • the refrigerant discharged from the compressor is released by a radiator.
  • the refrigerant that has dissipated the heat is diverted, and part of the refrigerant flows from the bypass circuit to the indoor expansion valve. After the pressure is reduced by the indoor expansion valve, the refrigerant flows into the heat absorber and absorbs heat by the heat absorber, and the rest is expanded outdoors.
  • the control device In a vehicle air conditioner that executes a dehumidifying heating mode in which the pressure is reduced by a valve and then flows into an outdoor heat exchanger and heat is absorbed by the outdoor heat exchanger, the control device is configured to control the outside air and the inside air that are adjusted by the suction switching damper.
  • the heat sink suction air temperature Tevain which is the temperature of the air flowing into the heat sink
  • the valve opening and / or compression of the outdoor expansion valve based on the estimated heat sink suction air temperature Tevain Since the rotation speed of the machine is controlled, even when the ratio of the outside air and the inside air flowing into the air flow passage is changed by the suction switching damper, the heat sink suction air temperature T is changed based on the ratio. Estimating a vain, the valve opening degree of the outdoor expansion valve, and / or, it is possible to control the rotational speed of the compressor.
  • the control device performs the F / F manipulated variable of the target valve opening degree of the outdoor expansion valve by the feedforward calculation based on at least the target heat absorber temperature TEO that is the target value of the heat absorber temperature Te.
  • TGECCVteff is calculated
  • F / B manipulated variable TGECCVtefb of the target valve opening of the outdoor expansion valve is calculated by feedback calculation based on the temperature Te of the heat absorber and the target heat absorber temperature TEO.
  • the target valve opening degree TGECCVte of the outdoor expansion valve is calculated
  • the F / F operation amount TGNCcff of the target rotation speed of the compressor is calculated by feedforward calculation based on at least the target heat absorber temperature TEO And for feedback calculation based on the endothermic temperature Te and the target endothermic temperature TEO
  • the load fluctuation accompanying the change in the ratio between the outside air and the inside air can be quickly achieved.
  • the ratio between the outside air and the inside air changes, it takes some time until it is reflected in the heat sink intake air temperature Tevain. That is, even if the ratio between the outside air and the inside air changes, the heat sink intake air temperature Tevain does not change immediately.
  • control device calculates the heat sink intake air temperature Tevain by the first-order lag calculation based on the ratio of the outside air and the inside air as in the invention of claim 9, it matches the change in the actual heat sink intake air temperature Tevain.
  • the rotational speed of the compressor and the valve opening degree of the outdoor expansion valve can be controlled.
  • FIG. 10 is a control block diagram related to outdoor expansion valve control in a dehumidifying and heating mode by a heat pump controller in the case of FIG. 9.
  • FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention.
  • a vehicle according to an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and travels by driving an electric motor for traveling with electric power charged in a battery. Yes (both not shown), the vehicle air conditioner 1 of the present invention is also driven by the power of the battery.
  • EV electric vehicle
  • an engine internal combustion engine
  • the vehicle air conditioner 1 of the embodiment performs a heating mode by a heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat, and further includes a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode, Each operation mode of the MAX cooling mode (maximum cooling mode) and the auxiliary heater single mode is selectively executed.
  • the dehumidifying and heating mode, the dehumidifying and cooling mode, the cooling mode, and the MAX cooling mode are the first operation modes in the present application.
  • the present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles that run on an engine. Needless to say.
  • the vehicle air conditioner 1 performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and includes an electric compressor 2 that compresses refrigerant, outside air, and a vehicle.
  • a high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G and is radiated to dissipate the refrigerant in the air flow passage 3 of the HVAC unit 10 through which indoor air is vented / circulated.
  • a radiator 4 for heating the air supplied to the room
  • an outdoor expansion valve 6 pressure reducing device composed of an electric valve that decompresses and expands the refrigerant during heating
  • a heat radiator provided outside the vehicle compartment and for cooling.
  • An outdoor heat exchanger 7 that performs heat exchange between the refrigerant and the outside air to function as an evaporator during heating
  • an indoor expansion valve 8 (decompression device) that includes an electric valve that decompresses and expands the refrigerant, and air It is provided in the flow passage 3 and during cooling
  • a heat sink 9 for cooling the air supplying coolant to the vehicle interior by heat absorption when fine dehumidification, the accumulator 12 and the like are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed.
  • the radiator 4 is arranged on the leeward side (air downstream side) of the heat absorber 9 with respect to the air flow in the air flow passage 3.
  • the refrigerant circuit R is filled with a predetermined amount of refrigerant and lubricating oil.
  • the outdoor heat exchanger 7 is provided with an outdoor blower 15.
  • the outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing outside air through the outdoor heat exchanger 7, so that the outdoor air blower 15 can also be used outdoors even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). It is comprised so that external air may be ventilated by the heat exchanger 7.
  • the outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 sequentially on the downstream side of the refrigerant, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is received via an electromagnetic valve 17 opened during cooling.
  • the refrigerant pipe 13 ⁇ / b> B connected to the dryer unit 14 and on the outlet side of the supercooling unit 16 is connected to the inlet side of the heat absorber 9 via the indoor expansion valve 8.
  • the receiver dryer part 14 and the supercooling part 16 structurally constitute a part of the outdoor heat exchanger 7.
  • the refrigerant pipe 13B between the subcooling section 16 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C on the outlet side of the heat absorber 9, and constitutes an internal heat exchanger 19 together.
  • the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that has exited the heat absorber 9.
  • the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched into a refrigerant pipe 13D, and this branched refrigerant pipe 13D is downstream of the internal heat exchanger 19 via an electromagnetic valve 21 opened during heating.
  • the refrigerant pipe 13C is connected in communication.
  • the refrigerant pipe 13 ⁇ / b> C is connected to the accumulator 12, and the accumulator 12 is connected to the refrigerant suction side of the compressor 2.
  • the refrigerant pipe 13E on the outlet side of the radiator 4 is connected to the inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.
  • a refrigerant pipe 13G between the discharge side of the compressor 2 and the inlet side of the radiator 4 is provided with a solenoid valve 30 (which constitutes a flow path switching device) that is closed during dehumidification heating and MAX cooling described later. Yes.
  • the refrigerant pipe 13G is branched into a bypass pipe 35 on the upstream side of the electromagnetic valve 30, and the bypass pipe 35 is opened by the electromagnetic valve 40 (which also constitutes a flow path switching device) during dehumidifying heating and MAX cooling.
  • Bypass pipe 45, solenoid valve 30 and solenoid valve 40 constitute bypass device 45.
  • the bypass device 45 is configured by the bypass pipe 35, the electromagnetic valve 30, and the electromagnetic valve 40, the dehumidifying heating mode or the MAX for allowing the refrigerant discharged from the compressor 2 to directly flow into the outdoor heat exchanger 7 as will be described later. Switching between the cooling mode and the heating mode in which the refrigerant discharged from the compressor 2 flows into the radiator 4, the dehumidifying cooling mode, and the cooling mode can be performed smoothly.
  • the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of the outside air suction port 25A and the inside air suction port 25B, and the outside air, which is air outside the passenger compartment, is formed from the outside air suction port 25A.
  • the inside air that is sucked in and the inside air that is the air in the passenger compartment is sucked from the inside air inlet 25B.
  • a suction switching damper 26 is provided in the air flow passage 3, and outside air and inside air sucked from the suction ports 25 ⁇ / b> A and 25 ⁇ / b> B are supplied to the air flow passage 3 on the air downstream side of the suction switching damper 26.
  • An indoor blower (blower fan) 27 is provided.
  • the suction switching damper 26 opens and closes the outside air suction port 25A and the inside air suction port 25B at an arbitrary ratio so that the ratio between the outside air and the inside air flowing into the heat absorber 9 of the air flow passage 3 is between 0 and 100%.
  • the ratio of the outside air to the inside air adjusted by the suction switching damper 26 is referred to as an inside / outside air ratio RECrate.
  • this inside / outside air ratio RECrate 1
  • the inside air circulation mode is set to 100% inside air and 0% outside air.
  • the inside / outside air ratio RECrate 0
  • the outside air introduction mode is set in which the outside air is 100% and the inside air is 0%.
  • 0 ⁇ inside / outside air ratio RECrate ⁇ 1 the inside / outside air intermediate position is 0% ⁇ inside air ⁇ 100% and 100%> outside air> 0%.
  • the inside / outside air ratio RECrate means the ratio of the inside air in the air flowing into the heat absorber 9 of the air flow passage 3.
  • the suction switching damper 26 is controlled by an air conditioning controller 20 described later, and the inside air circulation mode, the outside air introduction mode, and the inside / outside air intermediate position are selected by an auto mode described later or a manual operation (manual mode) to the air conditioning operation unit 53.
  • the internal air circulation mode is selected when the cooling load during cooling down is large, or when an outside air odor such as a city area is anxious, and the defroster switch ( The outside air introduction mode is selected in conjunction with the air conditioning operation unit 53 (to be described later).
  • the inside / outside air intermediate position is selected when both reducing the heating load during heating and preventing window fogging.
  • 23 is an auxiliary heater as an auxiliary heating device provided in the vehicle air conditioner 1 of the embodiment.
  • the auxiliary heater 23 of the embodiment is composed of a PTC heater (electric heater), and is located on the windward side (upstream side of the air) of the radiator 4 with respect to the air flow of the airflow passage 3 and the heat absorber 9. It is provided in the air flow passage 3 on the leeward side (air downstream side).
  • the auxiliary heater 23 is energized and generates heat, the air in the air flow passage 3 before flowing into the radiator 4 through the heat absorber 9 is heated.
  • the auxiliary heater 23 serves as a so-called heater core, which heats or complements the passenger compartment.
  • the air flow passage 3 on the leeward side (air downstream side) from the heat absorber 9 of the HVAC unit 10 is partitioned by a partition wall 10A, and a heating heat exchange passage 3A and a bypass passage 3B that bypasses it are formed.
  • the radiator 4 and the auxiliary heater 23 described above are disposed in the heating heat exchange passage 3A.
  • the air (inside air or outside air) in the air flow passage 3 after flowing into the air flow passage 3 and passing through the heat absorber 9 is supplemented into the air flow passage 3 on the windward side of the auxiliary heater 23.
  • Air mix dampers 28Dr and 28As are provided for adjusting the rate of ventilation through the heating heat exchange passage 3A in which the heater 23 and the radiator 4 are disposed.
  • the HVAC unit 10 on the leeward side of the radiator 4 is formed with FOOT (foot) outlets 29A, VENT (vent) outlets 29B, and DEF (def) outlets 29C.
  • the FOOT air outlet 29A is an air outlet for blowing air under the feet in the passenger compartment, and is at the lowest position.
  • the VENT outlet 29B is an outlet for blowing out air near the driver's chest and face in the passenger compartment, and is located above the FOOT outlet 29A.
  • the DEF air outlet 29C is an air outlet for blowing air to the inner surface of the windshield of the vehicle, and is located at the highest position above the other air outlets 29A and 29B.
  • the FOOT air outlet 29A, the VENT air outlet 29B, and the DEF air outlet 29C are respectively provided with a FOOT air outlet damper 31A, a VENT air outlet damper 31B, and a DEF air outlet damper 31C that control the amount of air blown out. It has been.
  • independent left and right air-conditioning control can be performed at the driver's seat and the passenger seat of the vehicle, and the inside of the air flow passage 3 provided with the radiator 4 and the auxiliary heater 23 is provided.
  • the air mix damper 28Dr described above is an air mix damper for the driver's seat (right) and is provided in the right air flow passage 3, and the air mix damper 28As is an air mix damper for the passenger seat (left).
  • the left air flow passage 3 is provided.
  • the FOOT air outlet damper 31A, the VENT air outlet damper 31B, and the air outlet of the DEF air outlet damper 31C are also divided by the partition plates for the driver seat (for right) and the passenger seat (for left). It is assumed that the air flow passages 3 are provided respectively.
  • driver seat and passenger seat identical air conditioning control (right and left air conditioning control) and driver seat and passenger seat independent air conditioning control (right and left independent air conditioning control) can be executed.
  • the air conditioning control unit 53 sets the same air conditioning control for the driver's seat and front passenger seat (right and left air conditioning control)
  • the air mix damper 28Dr and the air mix damper 28As perform the same operation
  • the air outlet dampers 31A to 31C for the passenger and passenger seats perform the same operation.
  • FIG. 2 shows a block diagram of the control device 11 of the vehicle air conditioner 1 of the embodiment.
  • the control device 11 includes an air-conditioning controller 20 and a heat pump controller 32 each of which is a microcomputer that is an example of a computer including a processor, and these include a CAN (Controller Area Network) and a LIN (Local Interconnect Network). Is connected to a vehicle communication bus 65.
  • CAN Controller Area Network
  • LIN Local Interconnect Network
  • the compressor 2 and the auxiliary heater 23 are also connected to the vehicle communication bus 65, and the air conditioning controller 20, the heat pump controller 32, the compressor 2 and the auxiliary heater 23 are configured to transmit and receive data via the vehicle communication bus 65.
  • the air conditioning controller 20 is a host controller that controls the vehicle interior air conditioning of the vehicle, and an input of the air conditioning controller 20 includes an outside air temperature sensor 33 that detects an outside air temperature Tam (temperature of air outside the vehicle interior) and the vehicle.
  • An outside air humidity sensor 34 for detecting outside air humidity
  • an inside air temperature sensor 37 for detecting the temperature (inside air temperature Tin) of the air inside the vehicle (inside air)
  • an inside air humidity sensor 38 for detecting the humidity of the air inside the vehicle interior
  • Indoor CO that detects the carbon dioxide concentration in the passenger compartment 2 Concentration sensor 39
  • blowing temperature sensor 41 for detecting the temperature of the air blown into the vehicle interior
  • discharge pressure sensor 42 for detecting the refrigerant discharge pressure (discharge pressure Pd) of the compressor 2
  • the amount of solar radiation into the vehicle interior For example, a photosensor-type solar radiation sensor 51, a vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, and an air conditioner (air conditioner) for setting the set temperature and operation mode.
  • the operation unit 53 is connected.
  • the output of the air conditioning controller 20 is connected to an outdoor fan 15, an indoor fan (blower fan) 27, a suction switching damper 26, air mix dampers 28Dr and 28As, and air outlet dampers 31A to 31C. Is controlled by the air conditioning controller 20.
  • the heat pump controller 32 is a controller that mainly controls the refrigerant circuit R.
  • the input of the heat pump controller 32 includes a discharge temperature sensor 43 that detects a refrigerant temperature discharged from the compressor 2 and a suction refrigerant pressure of the compressor 2.
  • Each output of the outdoor heat exchanger pressure sensor 56 for detecting the refrigerant pressure in the mouth (the outdoor heat exchanger pressure PXO) is connected.
  • the outputs of the auxiliary heater temperature sensors 50Dr and 50As as a plurality of temperature sensors for detecting the temperature of the auxiliary heater 23 (auxiliary heater temperature Tptc) are also connected to the input of the heat pump controller 32.
  • the auxiliary heater temperature sensor 50Dr detects the temperature of the auxiliary heater 23 on the right side (driver's seat side) partitioned by the partition plate, and the auxiliary heater temperature sensor 50As supports the left side (passenger seat side). It is attached so that the temperature of the heater 23 can be detected.
  • the output of the heat pump controller 32 includes an outdoor expansion valve 6, an indoor expansion valve 8, an electromagnetic valve 30 (for reheating), an electromagnetic valve 17 (for cooling), an electromagnetic valve 21 (for heating), and an electromagnetic valve 40 (bypass). Are connected to each other and are controlled by the heat pump controller 32.
  • the compressor 2 and the auxiliary heater 23 each have a built-in controller, and the controllers of the compressor 2 and the auxiliary heater 23 send and receive data to and from the heat pump controller 32 via the vehicle communication bus 65. Be controlled.
  • the heat pump controller 32 and the air conditioning controller 20 transmit / receive data to / from each other via the vehicle communication bus 65, and control each device based on the output of each sensor and the setting input by the air conditioning operation unit 53.
  • the operation of the vehicle air conditioner 1 having the above-described configuration will be described.
  • the control device 11 has each operation mode of heating mode, dehumidifying heating mode, dehumidifying cooling mode, cooling mode, MAX cooling mode (maximum cooling mode), and auxiliary heater single mode. Switch and execute.
  • Heating mode When the heating mode is selected by the heat pump controller 32 (auto mode) or by manual operation to the air conditioning operation unit 53 (manual mode), the heat pump controller 32 opens the electromagnetic valve 21 (for heating) and the electromagnetic valve 17 (cooling). Close). Further, the electromagnetic valve 30 (for reheating) is opened, and the electromagnetic valve 40 (for bypass) is closed. Then, the compressor 2 is operated.
  • the air-conditioning controller 20 operates each of the blowers 15 and 27, and the air mix dampers 28Dr and 28As basically exchange all the air in the air flow passage 3 blown from the indoor blower 27 and passed through the heat absorber 9 for heating.
  • the air volume may be adjusted.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30. Since the air in the airflow passage 3 is passed through the radiator 4, the air in the airflow passage 3 is converted into the high-temperature refrigerant in the radiator 4 (when the auxiliary heater 23 operates, the auxiliary heater 23 and the radiator 4.
  • the refrigerant in the radiator 4 is cooled by being deprived of heat by the air, and is condensed and liquefied.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the refrigerant circuit R becomes a heat pump.
  • the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C through the refrigerant pipe 13A, the electromagnetic valve 21 and the refrigerant pipe 13D, and is separated into gas and liquid there. Repeated circulation inhaled.
  • the air heated by the radiator 4 (when the auxiliary heater 23 is operated, the auxiliary heater 23 and the radiator 4) is blown out from the outlets 29A to 29C, so that the vehicle interior is heated. become.
  • the heat pump controller 32 calculates the target radiator pressure PCO (target value of the radiator pressure PCI) from the target heater temperature TCO (target value of the radiator temperature TCI) calculated by the air conditioning controller 20 from the target outlet temperature TAO, and this target.
  • the number of revolutions NC of the compressor 2 is controlled based on the radiator pressure PCO and the refrigerant pressure of the radiator 4 detected by the radiator pressure sensor 47 (radiator pressure PCI. High pressure of the refrigerant circuit R). Control the heating by. Further, the heat pump controller 32 opens the outdoor expansion valve 6 based on the refrigerant temperature (radiator temperature TCI) of the radiator 4 detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47. And the supercooling degree SC of the refrigerant at the outlet of the radiator 4 is controlled to the target supercooling degree TGSC which is the target value.
  • the heat pump controller 32 uses the auxiliary heater 23 for the shortage.
  • the energization of the auxiliary heater 23 is controlled so as to complement the heat generation. Thereby, comfortable vehicle interior heating is realized and frost formation of the outdoor heat exchanger 7 is also suppressed.
  • the auxiliary heater 23 is arranged on the upstream side of the air of the radiator 4, the air flowing through the air flow passage 3 is vented to the auxiliary heater 23 before the radiator 4.
  • the heat pump controller 32 controls the energization of the auxiliary heater 23 using the average value of the detection value TptcDr of the auxiliary heater temperature sensor 50Dr and the detection value TptcAs of the auxiliary heater temperature sensor 50As as the auxiliary heater temperature Tptc.
  • the heat pump controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is closed, the electromagnetic valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 is operated.
  • the air-conditioning controller 20 operates each of the blowers 15 and 27, and the air mix dampers 28Dr and 28As basically exchange all the air in the air flow passage 3 blown from the indoor blower 27 and passed through the heat absorber 9 for heating.
  • the air volume is also adjusted. Accordingly, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates.
  • the air blown out from the indoor blower 27 by the heat absorption action at this time is cooled, and moisture in the air condenses and adheres to the heat absorber 9, so that the air in the air flow passage 3 is cooled, and Dehumidified.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
  • the valve opening degree of the outdoor expansion valve 6 is fully closed, it is possible to suppress or prevent inconvenience that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. It becomes.
  • the heat pump controller 32 energizes the auxiliary heater 23 to generate heat.
  • the air cooled and dehumidified by the heat absorber 9 is further heated in the process of passing through the auxiliary heater 23 and the temperature rises, so that the dehumidifying heating in the passenger compartment is performed.
  • the heat pump controller 32 is a compressor based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and a target heat absorber temperature TEO that is a target value of the heat absorber temperature Te calculated by the air conditioning controller 20.
  • the average value of the detected value TptcDr of the auxiliary heater temperature sensor 50Dr and the detected value TptcAs of the auxiliary heater temperature sensor 50As is set as the auxiliary heater temperature Tptc, and the auxiliary heater temperature Tptc and the target heater temperature TCO
  • the air is appropriately cooled and dehumidified in the heat absorber 9 while assisting. Accurately lowering the temperature of the air blown from the outlets 29A to 29C into the passenger compartment by heating with the heater 23 To prevent.
  • the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air heated by the auxiliary heater 23 passes through the radiator 4. In this dehumidifying heating mode, the refrigerant is supplied to the radiator 4. Therefore, the disadvantage that the radiator 4 absorbs heat from the air heated by the auxiliary heater 23 is also eliminated. That is, the temperature of the air blown out into the vehicle compartment by the radiator 4 is suppressed, and the COP is improved.
  • the heat pump controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is opened and the electromagnetic valve 40 is closed. Then, the compressor 2 is operated.
  • the air-conditioning controller 20 operates each of the blowers 15 and 27, and the air mix dampers 28Dr and 28As basically exchange all the air in the air flow passage 3 blown from the indoor blower 27 and passed through the heat absorber 9 for heating. Although the state is such that the auxiliary heater 23 and the radiator 4 in the passage 3A are ventilated, the air volume is also adjusted.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
  • the refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates.
  • the air Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
  • the heat pump controller 32 does not energize the auxiliary heater 23, so that the air that has been cooled and dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4 (the heat dissipation capability is lower than that during heating). Is done.
  • the heat pump controller 32 determines the temperature of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO (transmitted from the air conditioning controller 20) that is the target value.
  • the rotational speed NC is controlled.
  • the heat pump controller 32 calculates the target radiator pressure PCO from the target heater temperature TCO described above, and the target radiator pressure PCO and the refrigerant pressure (radiator pressure PCI) of the radiator 4 detected by the radiator pressure sensor 47. Based on the high pressure of the refrigerant circuit R), the valve opening degree of the outdoor expansion valve 6 is controlled, and heating by the radiator 4 is controlled.
  • the heat pump controller 32 fully opens the opening degree of the outdoor expansion valve 6 in the dehumidifying and cooling mode. Then, the compressor 2 is operated and the auxiliary heater 23 is not energized.
  • the air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix dampers 28Dr and 28As of the air flow passage 3 blown out from the indoor blower 27 and passed through the heat absorber 9 are used to assist the heating heat exchange passage 3A. The ratio of the ventilation through the heater 23 and the radiator 4 is adjusted.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30, and the refrigerant exiting the radiator 4 passes through the refrigerant pipe 13E and the outdoor expansion valve 6.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully opened, the refrigerant passes through it and flows into the outdoor heat exchanger 7 as it is, where it is cooled by air or by outside air that is ventilated by the outdoor blower 15 and condensed. Liquefaction.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16.
  • the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19.
  • the air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. Further, moisture in the air condenses and adheres to the heat absorber 9.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
  • Air that has been cooled and dehumidified by the heat absorber 9 is blown into the vehicle interior from each of the air outlets 29A to 29C (partly passes through the radiator 4 to exchange heat), thereby cooling the vehicle interior. Will be done. Further, in this cooling mode, the heat pump controller 32 uses the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the above-described target heat absorber temperature TEO which is the target value of the compressor 2. The number of revolutions NC is controlled. (5) MAX cooling mode (maximum cooling mode) Next, in the MAX cooling mode as the maximum cooling mode, the heat pump controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21.
  • the air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix dampers 28Dr and 28As of the air flow passage 3 blown out of the indoor blower 27 and passed through the heat absorber 9 are supplied to the heating heat exchange passage 3A. It is set as the state which adjusts the ratio ventilated by the auxiliary heater 23 and the heat radiator 4.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16.
  • the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. In addition, since moisture in the air condenses and adheres to the heat absorber 9, the air in the air flow passage 3 is dehumidified.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully closed, similarly, it is possible to suppress or prevent the disadvantage that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. . Thereby, the fall of a refrigerant
  • the high-temperature refrigerant flows through the radiator 4 in the cooling mode described above, direct heat conduction from the radiator 4 to the HVAC unit 10 occurs not a little, but in this MAX cooling mode, the refrigerant flows into the radiator 4. Therefore, the air in the air flow passage 3 from the heat absorber 9 is not heated by the heat transmitted from the radiator 4 to the HVAC unit 10. Therefore, powerful cooling of the passenger compartment is performed, and particularly in an environment where the outside air temperature Tam is high, the passenger compartment can be quickly cooled to realize comfortable air conditioning in the passenger compartment.
  • the heat pump controller 32 is also connected to the compressor based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO, which is the target value. 2 is controlled.
  • (6) Auxiliary heater single mode Note that the control device 11 of the embodiment stops the compressor 2 and the outdoor blower 15 of the refrigerant circuit R and energizes the auxiliary heater 23 when, for example, excessive frost formation occurs in the outdoor heat exchanger 7.
  • the auxiliary heater single mode for heating the passenger compartment with only 23 is provided.
  • the heat pump controller 32 sets the average value of the detected value TptcDr of the auxiliary heater temperature sensor 50Dr and the detected value TptcAs of the auxiliary heater temperature sensor 50As as the auxiliary heater temperature Tptc, and the auxiliary heater temperature Tptc and the above-described target heater temperature TCO. Based on the above, the energization (heat generation) of the auxiliary heater 23 is controlled.
  • the air conditioning controller 20 operates the indoor blower 27, and the air mix dampers 28Dr and 28As vent the air in the air flow passage 3 blown out from the indoor blower 27 to the auxiliary heater 23 of the heating heat exchange passage 3A. Adjust the air volume.
  • the air conditioning controller 20 calculates the target blowing temperature TAO described above from the following formula (I).
  • This target blowing temperature TAO is a target value of the temperature of the air blown into the passenger compartment.
  • TAO (Tset ⁇ Tin) ⁇ K + Tbal (f (Tset, SUN, Tam)) .. (I)
  • Tset is the set temperature in the passenger compartment set by the air conditioning operation unit 53
  • Tin is the inside air temperature detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is the set temperature Tset, and the amount of solar radiation detected by the solar radiation sensor 51.
  • SUN is a balance value calculated from the outside air temperature Tam detected by the outside air temperature sensor 33. And generally this target blowing temperature TAO is so high that the outside temperature Tam is low, and it falls as the outside temperature Tam rises.
  • the heat pump controller 32 determines which one of the above operation modes based on the outside air temperature Tam (detected by the outside air temperature sensor 33) transmitted from the air conditioning controller 20 via the vehicle communication bus 65 and the target outlet temperature TAO. The operation mode is selected and each operation mode is transmitted to the air conditioning controller 20 via the vehicle communication bus 65.
  • the outside air temperature Tam the humidity in the passenger compartment
  • the target blowing temperature TAO the heating temperature TH (the temperature of the air on the leeward side of the radiator 4, estimated value)
  • the target heater temperature TCO the heat sink temperature Te
  • the heating mode, dehumidification heating mode, and dehumidification are accurately performed according to the environmental conditions and necessity of dehumidification.
  • the cooling mode, the cooling mode, the MAX cooling mode, and the auxiliary heater single mode are switched to control the temperature of the air blown into the vehicle interior to the target blowing temperature TAO, thereby realizing comfortable and efficient vehicle interior air conditioning.
  • the heating temperature TH is the temperature of the leeward air of the radiator 4 and is estimated by the heat pump controller 32 from the first-order lag calculation formula (II) shown below.
  • TH (INTL1 ⁇ TH0 + Tau1 ⁇ THz) / (Tau1 + INTL1) ..
  • INTL1 is a calculation cycle (constant)
  • Tau1 is a time constant of a first-order lag
  • TH0 is a steady value of the heating temperature TH in a steady state before the first-order lag calculation
  • THz is a previous value of the heating temperature TH.
  • FIG. 3 is a longitudinal side view of the HVAC unit 10
  • FIG. 4 is a control block diagram regarding compressor control in the cooling mode, the dehumidifying cooling mode, the dehumidifying heating mode, and the MAX cooling mode by the heat pump controller 32, and FIG.
  • the heat pump controller 32 calculates and estimates the heat sink intake air temperature Tevain using the following formulas (III) and (IV) based on the inside / outside air ratio RECrate as will be described later.
  • INTL2 is the calculation cycle (constant)
  • Tau2 is the time constant of the first-order lag
  • Tevain0 is the steady-state value of the heat sink intake air temperature Tevain in the steady state before the first-order lag calculation
  • Tevainz is the previous value of the heat sink intake air temperature Tevain.
  • Tam is the outside air temperature
  • Tin is the inside air temperature. For example, under the conditions where the outside air temperature Tam is + 40 ° C.
  • the inside air temperature Tin is + 25 ° C.
  • the inside / outside air ratio RECrate is 0 (outside air introduction mode) as shown in the uppermost part of FIG. 5
  • the heat sink intake air temperature Tevain is finally + 40 ° C, and the cooling load increases.
  • the inside / outside air ratio RECrate is 1 (inside air circulation mode) as shown in the lowermost stage of FIG. 5
  • the heat sink intake air temperature Tevain finally becomes + 25 ° C.
  • the cooling load becomes small.
  • the inside / outside air ratio RECrate is 0.5 (inside / outside air intermediate position) as shown in the middle of FIG.
  • the heat sink intake air temperature Tevain finally becomes + 32.5 ° C., and the cooling load is moderate. (This also applies to the first operation mode other than the cooling mode). Therefore, especially when the inside / outside air ratio RECrate changes after the inside air temperature Tin (the temperature of the air inside the vehicle interior) has stabilized, the rotational speed NC of the compressor 2 changes greatly, so that the heat pump controller 32 draws in the heat absorber. Control for correcting the rotational speed NC of the compressor 2 based on the air temperature Tevain is executed. Specific control will be described with reference to the block diagram of FIG.
  • the F / F (feed forward) manipulated variable calculation unit 63 of the heat pump controller 32 includes an outside air temperature Tam, a volumetric air volume Ga of air flowing into the air flow passage 3, and a pressure of the radiator 4 (radiator pressure PCI, high pressure).
  • F / F manipulated variable TGNCcff0 of the target rotational speed of the compressor based on the target radiator pressure PCO that is the target value of the compressor and the target heat absorber temperature TEO that is the target value of the heat absorber temperature Te (sent from the air conditioning controller 20) Is calculated.
  • an example of the formula of the feedforward calculation performed by the F / F manipulated variable calculation unit 63 is shown in (V) below.
  • Cooling mode TGNCcff0 K1 ⁇ Tam + K2 ⁇ Ga + K3 ⁇ TEO + K4 ⁇
  • TGNCcff0 K5 ⁇ Tam + K6 ⁇ Ga + K7 ⁇ TEO + K8 ⁇ PCO + K9 ⁇
  • TGNCcff0 K10 ⁇ Tam + K11 ⁇ Ga + K12 ⁇ TEO + K13 .. (V)
  • K1 to K3, K5 to K8, and K10 to K12 are coefficients, and K4, K9, and K13 are constants.
  • K14 is a coefficient for converting the temperature into the rotational speed.
  • the correction value TGNCcffHos increases as the heat sink intake air temperature Tevain increases, that is, as the inside / outside air ratio RECrate approaches 0 and the cooling load increases as described with reference to FIG. 5, and the F / F manipulated variable TGNCcff Is corrected in the direction of increasing.
  • the F / B (feedback) manipulated variable calculating unit 64 calculates the F / B manipulated variable TGNCcfb of the compressor target rotational speed based on the target heat absorber temperature TEO and the heat absorber temperature Te.
  • the F / F manipulated variable TGNCcff determined by the adder 72 and the F / B manipulated variable TGNCcfb calculated by the F / B manipulated variable calculating unit 64 are added by the adder 66, and the control setting upper limit value is obtained by the limit setting unit 67. And the control lower limit value is set, and then determined as the compressor target rotational speed TGNCc.
  • the heat pump controller 32 controls the rotational speed NC of the compressor 2 based on the compressor target rotational speed TGNCc, so that the heat sink intake air temperature Tevain is The higher the value, the higher the rotational speed NC of the compressor 2 is corrected, and the cooling / dehumidifying capacity of the heat absorber 9 also increases.
  • the F / F manipulated variable TGNCcff is corrected, it is possible to quickly follow the change in the heat sink intake air temperature Tevain.
  • the heat pump controller 32 is adjusted by the suction switching damper 26 in the cooling mode in which the refrigerant flows through the heat absorber 9, the dehumidifying cooling mode, the dehumidifying heating mode, and the MAX cooling mode (all are the first operation mode).
  • the heat sink suction air temperature Tevain flowing into the heat sink 9 is estimated, and the rotation speed of the compressor 2 is controlled based on the estimated heat sink suction air temperature Tevain.
  • the heat sink suction air temperature Tevain is estimated based on the inside / outside air ratio RECrate, and the rotational speed NC of the compressor 2 can be controlled. become.
  • the heat pump controller 32 calculates the F / F manipulated variable TGNCcff of the target rotational speed of the compressor 2 by feedforward calculation based on at least the target heat absorber temperature TEO that is the target value of the heat absorber temperature Te, The feedback operation based on the heat absorber temperature Te and the target heat absorber temperature TEO is used to calculate the F / B manipulated variable TGNCcfb of the target rotational speed of the compressor 2, and the F / F manipulated variable TGNCcff and the F / B manipulated variable TGNCcfb are added.
  • the target rotational speed TGNCc of the compressor 2 is calculated, and the F / F manipulated variable TGNCcff is corrected based on the heat sink suction air temperature Tevain. Therefore, the cooling load caused by the change in the inside / outside air ratio RECrate Responding quickly to fluctuations, the cooling / dehumidifying capacity of the heat sink 9 can be accurately controlled. So as to.
  • the ratio between the outside air and the inside air changes, it takes some time until it is reflected in the heat sink intake air temperature Tevain.
  • the heat pump controller 32 calculates the first order lag based on the inside / outside air ratio RECrate (the ratio between the outside air and the inside air). Since the heat sink suction air temperature Tevain is calculated by the above, the rotational speed NC of the compressor 2 can be controlled in accordance with the change in the actual heat sink suction air temperature Tevain. (9) Control of the compressor 2 in the heating mode using the inside / outside air ratio RECrate Next, the control of the compressor 2 in the heating mode using the inside / outside air ratio RECrate described above with reference to FIGS. 6 to 8 will be described in detail.
  • FIG. 6 is a vertical side view of the HVAC unit 10 when the heat absorber temperature sensor 48 is not provided
  • FIG. 7 is a control block diagram regarding compressor control in the heating mode by the heat pump controller 32
  • FIG. 8 is an inside / outside air ratio RECrate and the heating mode. It is a figure explaining the relationship with no heating load.
  • (9-1) Control of the compressor 2 in the heating mode when the heat absorber temperature sensor 48 is provided First, for comparison, the control of the compressor 2 when the heat absorber temperature sensor 48 is provided as in the examples of FIGS. 2 and 3 will be described with reference to FIG.
  • the F / F (feed forward) manipulated variable calculator 58 of the heat pump controller 32 includes a required heating capacity TGQ, which will be described later, which is a required heating capacity of the radiator 4, and a volumetric air volume Ga of the air flowing into the air flow passage 3. Feed forward based on the outside air temperature Tam obtained from the outside air temperature sensor 33, the target heater temperature TCO, which is the target value of the temperature of the radiator 4, and the target radiator pressure PCO, which is the target value of the pressure of the radiator 4.
  • the F / F manipulated variable TGNChff of the compressor target rotational speed is calculated by calculation.
  • an example of the formula of the feedforward calculation performed by the F / F manipulated variable calculation unit 58 is shown in the following (VII).
  • TGNChff K15 ⁇ TGQ + K16 ⁇ Ga + K17 ⁇ Tam + K18 .. (VII)
  • K15 to K17 are coefficients, and K18 is a constant.
  • the required heating capacity TGQ is calculated by the required heating capacity calculation unit 74 using the following formula (VIII) and is input to the F / F manipulated variable calculation unit 58.
  • Te (TCO-Te) ⁇ Cpa ⁇ Ga ⁇ ⁇ aTe ⁇ 1.16 (VIII) Te is the heat absorber temperature, Cpa is the constant pressure specific heat of air [kJ / m 3 K], Ga is the volumetric air volume of the air flowing into the air flow passage 3, ⁇ aTe is the air specific gravity, and 1.16 is a coefficient for matching the units.
  • the heat absorber temperature sensor 48 When the heat absorber temperature sensor 48 is provided, the heat absorber temperature Te can be acquired. In this case, since the heat absorber 9 is provided on the windward side of the radiator 4, the heat absorber temperature Te is the temperature of the air flowing into the auxiliary heater 23 and the radiator 4.
  • the required heating capacity calculation unit 74 calculates the required heating capacity TGQ from the difference between the target heater temperature TCO and the heat absorber temperature Te.
  • the target radiator pressure PCO is calculated by the target value calculator 59 based on the target supercooling degree TGSC that is the target value of the refrigerant subcooling degree SC at the outlet of the radiator 4 and the target radiator temperature TCO.
  • the F / B (feedback) manipulated variable calculation unit 60 performs the compressor target rotation by feedback calculation based on the target radiator pressure PCO and the radiator pressure PCI (high pressure of the refrigerant circuit R) that is the refrigerant pressure of the radiator 4.
  • the F / B manipulated variable TGNChfb is calculated.
  • the F / F manipulated variable TGNChff computed by the F / F manipulated variable computing unit 58 and the TGNChfb computed by the F / B manipulated variable computing unit 60 are added by the adder 61, and the control upper limit value and the control are controlled by the limit setting unit 62.
  • the lower limit is set, it is determined as the compressor target rotational speed TGNCh.
  • the heat pump controller 32 controls the rotational speed NC of the compressor 2 based on the compressor target rotational speed TGNCh. (9-2) Control of the compressor 2 in the heating mode when the heat absorber temperature sensor 48 is not provided On the other hand, when the heat absorber temperature sensor 48 is not provided as shown in FIG.
  • the heat absorber temperature Te that is, the temperature of the air flowing into the radiator 4 is not known.
  • the above-described heat absorber suction air temperature Tevain becomes the temperature of the air flowing into the auxiliary heater 23 and the radiator 4.
  • the heat sink intake air temperature Tevain changes, so that the heating load of the vehicle air conditioner 1 changes greatly, resulting in excessive or insufficient capacity. To do. For example, under the conditions where the outside air temperature Tam is ⁇ 10 ° C.
  • the inside air temperature Tin is + 25 ° C.
  • the inside / outside air ratio RECrate is 0 (outside air introduction mode) as shown in the uppermost stage of FIG. 8
  • the heat sink intake air temperature Tevain is finally -10 ° C, and the heating load increases.
  • the inside / outside air ratio RECrate is 1 (inside air circulation mode) as shown in the lowermost stage of FIG. 8
  • the heat sink intake air temperature Tevain finally becomes + 25 ° C.
  • the heating load becomes small.
  • the inside / outside air ratio RECrate is 0.5 (inside / outside air intermediate position) as shown in the middle of FIG.
  • the heat sink intake air temperature Tevain finally becomes + 7.5 ° C., and the heating load is moderate. It becomes. Therefore, especially when the inside / outside air ratio RECrate changes after the inside air temperature Tin (the temperature of the air in the passenger compartment) is stabilized, the rotational speed NC of the compressor 2 greatly changes. Therefore, when the heat absorber temperature sensor 48 is not provided, the required heating capacity calculation unit 74 in FIG. 7 performs the heat absorber suction calculated by the above formulas (III) and (IV) based on the inside / outside air ratio RECrate.
  • the required heating capacity TGQ is calculated by the following formula (IX) using the air temperature Tevain, and is output to the F / F manipulated variable calculator 58.
  • TGQ (TCO-Tevain) ⁇ Cpa ⁇ Ga ⁇ ⁇ aTe ⁇ 1.16 .. (IX)
  • each numerical value other than Tevain in each formula is the same as that in the formula (VIII).
  • the heat pump controller 32 controls the rotational speed NC of the compressor 2 based on the compressor target rotational speed TGNCh.
  • the heat pump controller 32 is based on the ratio between the outside air and the inside air (inside / outside air ratio RECrate) adjusted by the suction switching damper 26.
  • the intake air temperature Tevain is estimated, the required heating capacity TGQ is calculated based on the estimated heat sink intake air temperature Tevain, and the rotation speed NC of the compressor 2 is controlled based on the required heating capacity TGQ.
  • the heat sink intake air temperature Tevain is estimated based on the ratio, and the required heating capacity TGQ is calculated based on the estimated temperature. 2 can be controlled. This makes it possible to quickly respond to heating load fluctuations due to changes in the ratio of outside air to inside air in the heating mode, achieve a heating capacity with no excess or deficiency, and achieve a good target cabin temperature It is possible to improve both comfort and energy saving.
  • the heat pump controller 32 calculates the F / F manipulated variable TGNChff of the target rotational speed of the compressor 2 by feedforward calculation based on at least the required heating capacity TGQ, and based on the high pressure and the target value (PCO).
  • the F / B manipulated variable TGNChfb of the target rotational speed of the compressor 2 is calculated by feedback calculation, and the target rotational speed TGNCh of the compressor 2 is obtained by adding the F / F manipulated variable TGNChff and the F / B manipulated variable TGNChfb. Since the calculation is performed, the heating capacity of the radiator 4 can be accurately controlled in response to a change in the heating load due to a change in the ratio between the outside air and the inside air.
  • the heat pump controller 32 calculates the heat sink intake air temperature Tevain by a first-order lag calculation based on the inside / outside air ratio RECrate (ratio between outside air and inside air), and thus the actual heat sink intake air temperature Tevain. It becomes possible to control the rotational speed NC of the compressor 2 in accordance with the change of.
  • FIG. 9 shows a configuration diagram of a vehicle air conditioner 1 of another embodiment to which the present invention is applied.
  • the same reference numerals as those in FIG. 1 indicate the same or similar functions.
  • the outlet of the supercooling section 16 is connected to the check valve 18, and the outlet of the check valve 18 is connected to the refrigerant pipe 13B.
  • the check valve 18 has a forward direction on the refrigerant pipe 13B (indoor expansion valve 8) side.
  • the refrigerant pipe 13E on the outlet side of the radiator 4 is branched in front of the outdoor expansion valve 6, and this branched refrigerant pipe (hereinafter referred to as a bypass circuit) 13F is passed through an electromagnetic valve 22 (for dehumidification).
  • the refrigerant pipe 13B on the downstream side of the check valve 18 is connected in communication. Further, an evaporating pressure adjusting valve 70 is connected to the refrigerant pipe 13C on the outlet side of the heat absorber 9 on the refrigerant downstream side of the internal heat exchanger 19 and upstream of the refrigerant with respect to the refrigerant pipe 13D. .
  • the electromagnetic valve 22 and the evaporation pressure adjusting valve 70 are also connected to the output of the heat pump controller 32 and controlled. Note that the bypass device 45 including the bypass pipe 35, the electromagnetic valve 30, and the electromagnetic valve 40 in FIG. 1 of the above-described embodiment is not provided. Others are the same as in FIG. With the above configuration, the operation of the vehicle air conditioner 1 of this embodiment will be described.
  • the heat pump controller 32 switches between the heating mode, the dehumidifying heating mode, the internal cycle mode, the dehumidifying cooling mode, the cooling mode, and the auxiliary heater single mode (the MAX cooling mode is present in this embodiment). do not do).
  • the dehumidifying and heating mode, the internal cycle mode, the dehumidifying and cooling mode, and the cooling mode are the first operation mode in the present application.
  • the operation when the heating mode, the dehumidifying and cooling mode, and the cooling mode are selected, the refrigerant flow, and the auxiliary heater single mode are the same as those in the above-described embodiment (embodiment 1), and thus the description thereof is omitted.
  • the solenoid valve 22 is closed in the heating mode, the dehumidifying cooling mode, and the cooling mode. (10) Dehumidifying heating mode of vehicle air conditioner 1 of FIG. 9
  • heat pump controller 32 opens electromagnetic valve 21 (for heating).
  • the electromagnetic valve 17 (for cooling) is closed.
  • the electromagnetic valve 22 (for dehumidification) is opened. Then, the compressor 2 is operated.
  • the air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating.
  • the auxiliary heater 23 and the radiator 4 are ventilated, but the air volume is also adjusted. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G.
  • the air in the air flow path 3 that has flowed into the heat exchange path 3A for heating is passed through the heat radiator 4, the air in the air flow path 3 is heated by the high-temperature refrigerant in the heat radiator 4, while the heat radiator The refrigerant in 4 is deprived of heat by the air and cooled to condense.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15.
  • the refrigerant circuit R becomes a heat pump. Then, the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 through the refrigerant pipe 13C through the refrigerant pipe 13A, the solenoid valve 21 and the refrigerant pipe 13D, and is gas-liquid separated there. Repeated circulation inhaled. Further, a part of the condensed refrigerant flowing through the refrigerant pipe 13E via the radiator 4 is diverted, reaches the indoor expansion valve 8 via the electromagnetic valve 22 and the internal heat exchanger 19 from the bypass circuit 13F and the refrigerant pipe 13B. . After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates.
  • the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 sequentially passes through the internal heat exchanger 19 and the evaporation pressure adjusting valve 70 and then merges with the refrigerant from the refrigerant pipe 13D in the refrigerant pipe 13C. Then, the refrigerant is sucked into the compressor 2 through the accumulator 12. repeat. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed.
  • the air conditioning controller 20 transmits the target heater temperature TCO (target value of the radiator outlet temperature TCI) calculated from the target blowing temperature TAO to the heat pump controller 32.
  • the heat pump controller 32 controls the rotational speed NC of the compressor 2 based on the target radiator pressure PCO and the radiator pressure PCI (high pressure of the refrigerant circuit R) as in the heating mode described in FIG.
  • the rotational speed NC of the compressor 2 is controlled based on the heat absorber temperature Te and the target heat absorber temperature TEO as in the cooling mode described with reference to FIG.
  • the smaller one (MIN) of the compressor target rotational speed TGNCh and the compressor target rotational speed TGNCc is selected to control the rotational speed NC of the compressor 2.
  • the compressor target rotation speed TGNCh when the compressor target rotation speed TGNCh is selected, if the heat absorber temperature sensor 48 is not provided, the heat sink intake air temperature Tevain is estimated as described above, and the required heating capacity TGQ is calculated based on the estimated temperature. (FIG. 7). Further, when the compressor target rotational speed TGNCc is selected, the F / F manipulated variable TGNCcff is corrected based on the heat sink intake air temperature Tevain (FIG. 4).
  • the heat pump controller 32 controls the valve opening degree of the outdoor expansion valve 6 based on the heat absorber temperature Te and the target heat absorber temperature TEO, which will be described in detail later.
  • the heat pump controller 32 opens the evaporating pressure regulating valve 70 based on the heat absorber temperature Te (enlarges the flow path) / closes (flow of the low-permissible refrigerant), and the temperature of the heat absorber 9 is too low to freeze. To prevent. (11) Internal cycle mode of the vehicle air conditioner 1 of FIG. 9 In the internal cycle mode, the heat pump controller 32 fully closes the outdoor expansion valve 6 in the dehumidifying and heating mode state (fully closed position), The solenoid valve 21 is closed. Since the outdoor expansion valve 6 and the electromagnetic valve 21 are closed, the inflow of refrigerant to the outdoor heat exchanger 7 and the outflow of refrigerant from the outdoor heat exchanger 7 are blocked.
  • the refrigerant evaporated in the heat absorber 9 sequentially flows through the refrigerant pipe 13C through the internal heat exchanger 19 and the evaporation pressure adjustment valve 70, and repeats circulation that is sucked into the compressor 2 through the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed. Since the refrigerant is circulated between the radiator 4 (radiation) and the heat absorber 9 (heat absorption) in the passage 3, heat from the outside air is not pumped up, and heating for the consumed power of the compressor 2 is performed. Ability is demonstrated.
  • the F / F (feed forward) manipulated variable calculator 76 of the heat pump controller 32 sets the target heater temperature TCO, the volumetric air volume Ga of the air flowing into the air flow passage 3, the outside air temperature Tam, and the target heat absorber temperature TEO. Based on this, the F / F manipulated variable TGECCVteff0 of the outdoor expansion valve target valve opening is calculated.
  • the correction value calculation unit 81 of the heat pump controller 32 calculates the heat absorber intake air temperature Tevain from the outside air temperature Tam, the inside air temperature Tin, and the inside / outside air ratio RECrate using the above formulas (III) and (IV), and this heat absorber. Based on the intake air temperature Tevain, the correction value TGECCVteffHos is calculated using the following formula (X).
  • TGECCVteffHos K19 ⁇ Tevai n (X)
  • K19 is a coefficient for converting temperature into valve opening.
  • the F / F operation amount TGECCVteff0 calculated by the F / F operation amount calculator 76 is corrected by the correction value TGECCVteffHos and determined as the F / F operation maximum TGECCVteff.
  • the higher the heat sink intake air temperature Tevain that is, as the inside / outside air ratio RECrate approaches 0 and the cooling load increases as described with reference to FIG. 5, the correction value TGECCVeffHos increases and the F / F manipulated variable TGECCVteff Is corrected in the direction of decreasing (the direction in which the outdoor expansion valve 6 is closed).
  • the F / B (feedback) manipulated variable calculator 77 calculates the F / B manipulated variable TGECCVtefb of the outdoor expansion valve target valve opening based on the target heat absorber temperature TEO and the heat absorber temperature Te. Then, the F / F manipulated variable TGECCVteff determined by the subtractor 82 and the F / B manipulated variable TGECCVtefb calculated by the F / B manipulated variable calculator 77 are added by the adder 78, and the control upper limit value is set by the limit setting unit 79. Are set as the outdoor expansion valve target valve opening TGECCVte.
  • the heat pump controller 32 controls the valve opening of the outdoor expansion valve 6 based on the outdoor expansion valve target valve opening TGECCVte, so that the higher the heat sink intake air temperature Tevain,
  • the expansion valve 6 is corrected in the closing direction.
  • the outdoor expansion valve 6 is corrected in the closing direction, the amount of refrigerant flowing into the heat absorber 9 via the bypass circuit 13F and the refrigerant pipe 13B increases, so that the cooling / dehumidifying capability of the heat absorber 9 increases.
  • the F / F manipulated variable TGECCVteff is corrected, it is possible to quickly follow the change in the heat sink intake air temperature Tevain.
  • the valve opening degree of the outdoor expansion valve 6 and the rotation speed of the compressor 2 were controlled based on heat sink suction
  • the heat pump controller 32 estimates the heat sink suction air temperature Tevain, which is the temperature of the air flowing into the heat sink 9, based on the inside / outside air ratio RECrate adjusted by the suction switching damper 26. Since the opening degree of the outdoor expansion valve 6 and / or the rotational speed of the compressor 2 is controlled based on the estimated heat sink suction air temperature Tevain, the suction switching damper 26 flows into the air flow passage 3.
  • the heat sink suction air temperature Tevain is estimated based on the ratio, and the valve opening degree of the outdoor expansion valve 6 and / or the rotation speed of the compressor 2 is controlled. Will be able to.
  • the dehumidifying heating mode of this embodiment it is possible to quickly cope with load fluctuations due to the change in the ratio between the outside air and the inside air, and to realize the dehumidifying capacity without excess or deficiency by the heat absorber 9. Become.
  • the heat pump controller 32 calculates the F / F manipulated variable TGECCVteff of the target valve opening degree of the outdoor expansion valve 6 by feedforward calculation based on the target heat absorber temperature TEO which is at least the target value of the heat absorber temperature Te, and absorbs heat.
  • the F / B manipulated variable TGECCVtef of the target valve opening of the outdoor expansion valve 6 is calculated by feedback calculation based on the heater temperature Te and the target heat absorber temperature TEO, and the F / F manipulated variable TGECCVtef and the F / B manipulated variable TGECCVtefb are added.
  • the target valve opening TGECCVte of the outdoor expansion valve 6 is calculated, and the F / F manipulated variable TGNCcff of the target rotational speed of the compressor 2 is calculated by feedforward calculation based on at least the target heat absorber temperature TEO. Feedback calculation based on temperature Te and target heat absorber temperature TEO
  • the F / B manipulated variable TGNCcfb of the target rotational speed of the compressor 2 is calculated, and the target rotational speed TGNCc of the compressor 2 is calculated by adding the F / F manipulated variable TGNCcff and the F / B manipulated variable TGNCcfb.
  • the target rotational speed TGNCc is selected, and the F / F manipulated variable TGECCVteff based on the heat sink intake air temperature Tevain and / or Since the F / F manipulated variable TGNCcff is corrected, the dehumidifying ability of the heat absorber 8 is accurately controlled in response to the load fluctuation caused by the change in the inside / outside air ratio RECrate, thereby realizing comfortable dehumidifying heating. Will be able to.
  • the heat pump controller 32 calculates the heat sink intake air temperature Tevain by a first-order lag calculation based on the inside / outside air ratio RECrate (ratio between outside air and inside air), and thus the actual heat sink intake air temperature Tevain.
  • the valve opening degree of the outdoor expansion valve 6 can be controlled in accordance with the change of.
  • the parameters, numerical values, and the like used for the control shown in each embodiment are not limited thereto, and should be appropriately selected / set according to the device to be applied without departing from the spirit of the present invention.

Abstract

Provided is a vehicle air-conditioning device capable of providing stable air-conditioning control for the passenger compartment even if the ratio of outside air to inside air flowing into an air circulation path is changed. A control device implements a first operation mode in which the refrigerant discharged from a compressor 1 is caused to flow to an external heat exchanger 7 and release heat through the external heat exchanger, the refrigerant from which heat is released is decompressed, and, thereafter, and a heat absorber 9 is made to absorb heat. The control device estimates a heat absorber suction air temperature Tevain, which is the temperature of air flowing into the heat absorber 9, on the basis of the ratio of outside air to inside air adjusted by a suction switching damper 26, and controls the rotational speed of the compressor 2 on the basis of the estimated heat absorber suction air temperature Tevain.

Description

車両用空気調和装置Air conditioner for vehicles
 本発明は、車両の車室内を空調する車両用空気調和装置、特に空気流通路に流入する外気と内気の比率を調整可能とされたものに関するものである。 The present invention relates to a vehicle air conditioner that air-conditions the interior of a vehicle, and more particularly to a device that can adjust the ratio of outside air and inside air flowing into an air flow passage.
 近年の環境問題の顕在化から、ハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する電動式の圧縮機と、空気流通路内に設けられて冷媒を吸熱させる吸熱器と、この吸熱器の空気下流側の空気流通路内に設けられて冷媒を放熱させる放熱器と、車室外に設けられて冷媒を放熱又は吸熱させる室外熱交換器を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させる暖房モードと、圧縮機から吐出された冷媒を放熱器において放熱させ、放熱した冷媒を吸熱器と室外熱交換器において吸熱させる除湿暖房モードと、圧縮機から吐出された冷媒を放熱器及び室外熱交換器において放熱させ、放熱した冷媒を吸熱器において吸熱させる除湿冷房モードと、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器において吸熱させる冷房モード等の各運転モードを切り換えて実行するものが開発されている(例えば、特許文献1参照)。
 この特許文献1では、吸熱器の空気上流側には吸込切換ダンパが設けられ、この吸込切換ダンパによって空気流通路に外気を導入するか(外気導入モード)、内気(車室内の空気)を導入するか(内気循環モード)を切り換えるようにしていたが、空気流通路(エアミックスチャンバ)に導入する外気と内気の比率を調整可能としたものも開発されている(例えば、特許文献2参照)。
Hybrid vehicles and electric vehicles have come into widespread use due to the emergence of environmental problems in recent years. As an air conditioner that can be applied to such a vehicle, an electric compressor that compresses and discharges the refrigerant, a heat absorber that is provided in the air flow passage and absorbs the refrigerant, and the heat absorber A heat radiator that dissipates heat from the refrigerant provided in the air flow passage on the downstream side of the air, and an outdoor heat exchanger that dissipates or absorbs heat from the refrigerant provided outside the passenger compartment, and discharges the refrigerant discharged from the compressor In the heating mode in which heat is radiated in the radiator and the refrigerant radiated in the radiator is absorbed in the outdoor heat exchanger, the refrigerant discharged from the compressor is radiated in the radiator, and the radiated refrigerant is absorbed in the heat absorber and the outdoor heat exchanger. A dehumidifying and heating mode, a refrigerant discharged from the compressor to dissipate heat in the radiator and the outdoor heat exchanger, and a dehumidifying and cooling mode in which the dissipated refrigerant absorbs heat in the heat absorber. The discharged refrigerant is radiated in the outdoor heat exchanger, which executes switching the various operating modes such as a cooling mode to heat absorption have been developed in the heat sink (e.g., see Patent Document 1).
In Patent Document 1, a suction switching damper is provided on the air upstream side of the heat absorber, and outside air is introduced into the air flow passage by the suction switching damper (outside air introduction mode) or inside air (air in the vehicle interior) is introduced. Whether or not (inside air circulation mode) is switched, an apparatus capable of adjusting the ratio of outside air and inside air introduced into the air flow passage (air mix chamber) has been developed (for example, see Patent Document 2). .
特開2014−94673号公報JP 2014-94673 A 特開平10−166845号公報Japanese Patent Laid-Open No. 10-166845
 ここで、外気の温度と内気の温度は環境条件や走行状況によって異なって来るので、空気流通路に流通される空気の外気と内気の比率(割合)が変化すると、車両用空気調和装置の負荷は大きく変化し、能力の過不足が発生する。特に、車室内の空気温度が安定した後に、外気導入と内気循環の切換があった場合、圧縮機の回転数が大きく異なるため、制御性も悪化することになる。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、空気流通路に流入する外気と内気の比率が変化した場合にも、安定した車室内の空調制御を行うことができる車両用空気調和装置を提供することを目的とする。
Here, since the temperature of the outside air and the temperature of the inside air differ depending on the environmental conditions and the running conditions, if the ratio (ratio) of the outside air to the inside air flowing through the air flow passage changes, the load of the vehicle air conditioner Changes drastically, and overcapacity occurs. In particular, when the outside air introduction and the inside air circulation are switched after the air temperature in the passenger compartment is stabilized, the controllability is also deteriorated because the rotational speed of the compressor is greatly different.
The present invention has been made to solve the conventional technical problem, and performs stable air-conditioning control of the passenger compartment even when the ratio of outside air and inside air flowing into the air flow passage changes. An object of the present invention is to provide a vehicle air conditioner that can perform the above-described operation.
 請求項1の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられた室外熱交換器と、空気流通路に流入する外気と車室内の空気である内気の比率を調整可能な吸込切換ダンパと、制御装置を備え、この制御装置により、圧縮機から吐出された冷媒を室外熱交換器に流して当該室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる第1の運転モードを実行するものであって、制御装置は、吸込切換ダンパにより調整される外気と内気の比率に基づき、吸熱器に流入する空気の温度である吸熱器吸込空気温度Tevainを推定し、推定した当該吸熱器吸込空気温度Tevainに基づいて圧縮機の回転数を制御することを特徴とする。
 請求項2の発明の車両用空気調和装置は、上記発明において制御装置は、少なくとも吸熱器の温度Teの目標値である目標吸熱器温度TEOに基づくフィードフォワード演算により圧縮機の目標回転数のF/F操作量TGNCcffを算出し、吸熱器の温度Teと目標吸熱器温度TEOに基づくフィードバック演算により圧縮機の目標回転数のF/B操作量TGNCcfbを算出し、これらF/F操作量TGNCcffとF/B操作量TGNCcfbを加算することで、圧縮機の目標回転数TGNCcを算出すると共に、吸熱器吸込空気温度Tevainに基づいてF/F操作量TGNCcffを補正することを特徴とする。
 請求項3の発明の車両用空気調和装置は、上記各発明において空気流通路の空気の流れに対して吸熱器の風下側に設けられ、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器を備え、第1の運転モードは、圧縮機から吐出された冷媒を放熱器から室外熱交換器に流して当該室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる冷房モード、及び/又は、圧縮機から吐出された冷媒を放熱器から室外熱交換器に流して当該放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる除湿冷房モード、であることを特徴とする。
 請求項4の発明の車両用空気調和装置は、上記各発明において空気流通路の空気の流れに対して吸熱器の風下側に設けられ、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、圧縮機から吐出された冷媒を、放熱器に流すこと無く室外熱交換器に直接流入させるためのバイパス装置と、空気流通路から車室内に供給する空気を加熱するための補助加熱装置を備え、第1の運転モードは、圧縮機から吐出された冷媒をバイパス装置により室外熱交換器に流して放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる最大冷房モード、及び/又は、圧縮機から吐出された冷媒をバイパス装置により室外熱交換器に流して放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させると共に、補助加熱装置を発熱させる除湿暖房モード、であることを特徴とする。
 請求項5の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、空気流通路の空気の流れに対して吸熱器の風下側に設けられ、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、車室外に設けられた室外熱交換器と、空気流通路に流入する外気と車室内の空気である内気の比率を調整可能な吸込切換ダンパと、制御装置を備え、この制御装置により、圧縮機から吐出された冷媒を放熱器に流して放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードを実行するものであって、制御装置は、吸込切換ダンパにより調整される外気と内気の比率に基づき、吸熱器に流入する空気の温度である吸熱器吸込空気温度Tevainを推定し、推定した当該吸熱器吸込空気温度Tevainに基づいて、要求される放熱器の暖房能力である要求暖房能力TGQを算出し、この要求暖房能力TGQに基づいて圧縮機の回転数を制御することを特徴とする。
 請求項6の発明の車両用空気調和装置は、上記発明において制御装置は、少なくとも要求暖房能力TGQに基づくフィードフォワード演算により圧縮機の目標回転数のF/F操作量TGNChffを算出し、高圧圧力とその目標値に基づくフィードバック演算により圧縮機の目標回転数のF/B操作量TGNChfbを算出し、これらF/F操作量TGNChffとF/B操作量TGNChfbを加算することで、圧縮機の目標回転数TGNChを算出することを特徴とする。
 請求項7の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、空気流通路の空気の流れに対して吸熱器の風下側に設けられ、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、車室外に設けられた室外熱交換器と、この室外熱交換器に流入する冷媒を減圧する室外膨張弁と、室外熱交換器及び室外膨張弁の直列回路に対して並列に接続されたバイパス回路と、吸熱器に流入する冷媒を減圧する室内膨張弁と、空気流通路に流入する外気と車室内の空気である内気の比率を調整可能な吸込切換ダンパと、制御装置を備え、この制御装置により、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を分流し、一部をバイパス回路から室内膨張弁に流し、当該室内膨張弁で減圧した後、吸熱器に流入させ、当該吸熱器にて吸熱させると共に、残りを室外膨張弁で減圧した後、室外熱交換器に流入させ、当該室外熱交換器にて吸熱させる除湿暖房モードを実行するものであって、制御装置は、吸込切換ダンパにより調整される外気と内気の比率に基づき、吸熱器に流入する空気の温度である吸熱器吸込空気温度Tevainを推定し、推定した当該吸熱器吸込空気温度Tevainに基づいて室外膨張弁の弁開度、及び/又は、圧縮機の回転数を制御することを特徴とする。
 請求項8の発明の車両用空気調和装置は、上記発明において制御装置は、少なくとも吸熱器の温度Teの目標値である目標吸熱器温度TEOに基づくフィードフォワード演算により室外膨張弁の目標弁開度のF/F操作量TGECCVteffを算出し、吸熱器の温度Teと目標吸熱器温度TEOに基づくフィードバック演算により室外膨張弁の目標弁開度のF/B操作量TGECCVtefbを算出し、これらF/F操作量TGECCVteffとF/B操作量TGECCVtefbを加算することで、室外膨張弁の目標弁開度TGECCVteを算出すると共に、少なくとも目標吸熱器温度TEOに基づくフィードフォワード演算により圧縮機の目標回転数のF/F操作量TGNCcffを算出し、吸熱器の温度Teと目標吸熱器温度TEOに基づくフィードバック演算により圧縮機の目標回転数のF/B操作量TGNCcfbを算出し、これらF/F操作量TGNCcffとF/B操作量TGNCcfbを加算することで、圧縮機の目標回転数TGNCcを算出し、吸熱器吸込空気温度Tevainに基づいてF/F操作量TGECCVteff、及び/又は、F/F操作量TGNCcffを補正することを特徴とする。
 請求項9の発明の車両用空気調和装置は、上記各発明において制御装置は、外気と内気の比率に基づく一次遅れ演算により吸熱器吸込空気温度Tevainを算出することを特徴とする。
An air conditioner for a vehicle according to a first aspect of the present invention includes a compressor that compresses a refrigerant, an air flow passage through which air supplied to the vehicle interior flows, and air that absorbs heat from the refrigerant and supplies the refrigerant to the vehicle interior. A heat absorber for cooling the vehicle, an outdoor heat exchanger provided outside the vehicle interior, a suction switching damper capable of adjusting the ratio of the outside air flowing into the air flow passage and the inside air which is the air inside the vehicle interior, and a control device. And the control device causes the refrigerant discharged from the compressor to flow through the outdoor heat exchanger, dissipates heat in the outdoor heat exchanger, decompresses the dissipated refrigerant, and then absorbs heat in the heat absorber. The control device executes the operation mode, and the control device estimates the heat sink suction air temperature Tevain, which is the temperature of the air flowing into the heat sink, based on the ratio of the outside air and the inside air adjusted by the suction switching damper. The heat sink suction empty And controlling the rotational speed of the compressor based on the temperature Tevain.
In the vehicle air conditioner according to a second aspect of the present invention, in the above-described invention, the control device performs an F of the target rotational speed of the compressor by feedforward calculation based on at least a target heat absorber temperature TEO that is a target value of the temperature Te of the heat absorber. / F manipulated variable TGNCcff is calculated, F / B manipulated variable TGNCcfb of the target rotational speed of the compressor is calculated by feedback calculation based on the temperature Te of the heat absorber and the target heat absorber temperature TEO, and these F / F manipulated variable TGNCcff and By adding the F / B operation amount TGNCcfb, the target rotation speed TGNCc of the compressor is calculated, and the F / F operation amount TGNCcf is corrected based on the heat sink intake air temperature Tevain.
The air conditioner for a vehicle according to a third aspect of the present invention is provided on the leeward side of the heat absorber with respect to the air flow in the air flow passage in each of the above-described inventions, and dissipates the refrigerant to be supplied from the air flow passage to the vehicle interior. The first operation mode includes a radiator for heating air, and the first operation mode is such that the refrigerant discharged from the compressor flows from the radiator to the outdoor heat exchanger and is radiated by the outdoor heat exchanger, and the radiated refrigerant. After the pressure is reduced, the cooling mode in which the heat is absorbed by the heat absorber and / or the refrigerant discharged from the compressor flows from the radiator to the outdoor heat exchanger to dissipate the heat by the radiator and the outdoor heat exchanger. In the dehumidifying and cooling mode, the refrigerant is decompressed and then absorbed by a heat absorber.
A vehicle air conditioner according to a fourth aspect of the present invention is provided on the leeward side of the heat absorber with respect to the air flow in the air flow passage in each of the above-described inventions, and dissipates the refrigerant to be supplied from the air flow passage to the vehicle interior. A radiator for heating the air, a bypass device for allowing the refrigerant discharged from the compressor to flow directly into the outdoor heat exchanger without flowing to the radiator, and air supplied to the vehicle interior from the air flow passage An auxiliary heating device for heating is provided, and in the first operation mode, the refrigerant discharged from the compressor is radiated by flowing it through the outdoor heat exchanger by the bypass device, and after the decompressed refrigerant is depressurized, The maximum cooling mode to absorb heat and / or the refrigerant discharged from the compressor flows to the outdoor heat exchanger by the bypass device to dissipate the heat, and after the decompressed refrigerant is depressurized, the heat absorber absorbs heat and assists. Addition Wherein the device is a dehumidifying heating mode, thereby heating the.
A vehicle air conditioner according to a fifth aspect of the invention includes a compressor that compresses a refrigerant, an air flow passage through which air to be supplied to the vehicle interior flows, and air that absorbs heat from the refrigerant and supplies the refrigerant to the vehicle interior. And a radiator for heating the air supplied to the vehicle interior from the air flow path by dissipating the refrigerant, provided on the leeward side of the heat sink with respect to the air flow in the air flow path And an outdoor heat exchanger provided outside the vehicle compartment, a suction switching damper capable of adjusting the ratio of the outside air flowing into the air flow passage and the inside air which is the air inside the vehicle compartment, and a control device, A refrigerant discharged from a compressor is caused to flow through a radiator to dissipate heat, and after the decompressed refrigerant is decompressed, a heating mode is performed in which heat is absorbed by an outdoor heat exchanger. Ratio of outside air and inside air adjusted by Based on the estimated heat sink suction air temperature Tevain, which is the temperature of the air flowing into the heat sink, and based on the estimated heat sink suction air temperature Tevain, the required heating capacity TGQ, which is the required heating capacity of the radiator, is calculated. It calculates and controls the rotation speed of a compressor based on this required heating capacity TGQ.
According to a sixth aspect of the present invention, there is provided an air conditioning apparatus for a vehicle according to the present invention, wherein the control device calculates an F / F manipulated variable TGNChff at a target rotational speed of the compressor by a feedforward calculation based on at least the required heating capacity TGQ. The F / B manipulated variable TGNChfb of the target rotational speed of the compressor is calculated by feedback calculation based on the target value and the F / F manipulated variable TGNChff and the F / B manipulated variable TGNChfb are added. The rotational speed TGNCh is calculated.
An air conditioner for a vehicle according to a seventh aspect of the invention includes a compressor for compressing a refrigerant, an air flow passage through which air supplied to the vehicle interior flows, and air supplied to the vehicle interior from the air flow passage by absorbing the heat of the refrigerant. And a radiator for heating the air supplied to the vehicle interior from the air flow path by dissipating the refrigerant, provided on the leeward side of the heat sink with respect to the air flow in the air flow path And an outdoor heat exchanger provided outside the vehicle interior, an outdoor expansion valve for reducing the pressure of the refrigerant flowing into the outdoor heat exchanger, and a series circuit of the outdoor heat exchanger and the outdoor expansion valve. A bypass circuit, an indoor expansion valve that depressurizes the refrigerant flowing into the heat absorber, a suction switching damper that can adjust the ratio of the outside air flowing into the air flow passage and the inside air that is the air in the passenger compartment, and a control device. Refrigerant discharged from the compressor by the control device Dissipate heat with a radiator, divide the radiated refrigerant, partly flow from the bypass circuit to the indoor expansion valve, depressurize with the indoor expansion valve, flow into the heat absorber, and absorb the heat with the heat absorber The remainder is decompressed by the outdoor expansion valve, and then flows into the outdoor heat exchanger, and a dehumidifying heating mode is performed in which heat is absorbed by the outdoor heat exchanger. The control device is adjusted by a suction switching damper. Based on the ratio between the outside air and the inside air, the heat sink suction air temperature Tevain, which is the temperature of the air flowing into the heat sink, is estimated, the valve opening degree of the outdoor expansion valve based on the estimated heat sink suction air temperature Tevain, and / or Alternatively, the number of revolutions of the compressor is controlled.
The vehicle air conditioner according to an eighth aspect of the present invention is the air conditioning apparatus for a vehicle according to the present invention, wherein the control device performs a target valve opening degree of the outdoor expansion valve by feedforward calculation based on at least a target heat absorber temperature TEO that is a target value of the temperature Te of the heat absorber. F / F manipulated variable TGECCVteff is calculated, and F / B manipulated variable TGECCVtefb of the target valve opening degree of the outdoor expansion valve is calculated by feedback calculation based on the temperature Te of the heat absorber and the target heat absorber temperature TEO, and these F / F By adding the operation amount TGECCVteff and the F / B operation amount TGECCVteb, the target valve opening TGECCVte of the outdoor expansion valve is calculated, and at the same time, the target rotational speed F of the compressor is calculated by feedforward calculation based on at least the target heat absorber temperature TEO. / F manipulated variable TGNCcff is calculated, and the heat absorber temperature Te and the target heat absorber temperature T The F / B manipulated variable TGNCcfb of the target rotational speed of the compressor is calculated by feedback calculation based on O, and the target rotational speed TGNCc of the compressor is obtained by adding the F / F manipulated variable TGNCcff and the F / B manipulated variable TGNCcfb. And the F / F manipulated variable TGECCVteff and / or the F / F manipulated variable TGNCcff is corrected based on the heat sink suction air temperature Tevain.
The vehicle air conditioner according to a ninth aspect of the present invention is characterized in that, in each of the above inventions, the control device calculates the heat sink intake air temperature Tevain by a first-order lag calculation based on a ratio of outside air to inside air.
 請求項1の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられた室外熱交換器と、空気流通路に流入する外気と車室内の空気である内気の比率を調整可能な吸込切換ダンパと、制御装置を備え、この制御装置により、圧縮機から吐出された冷媒を室外熱交換器に流して当該室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる第1の運転モードを実行する車両用空気調和装置において、制御装置が、吸込切換ダンパにより調整される外気と内気の比率に基づき、吸熱器に流入する空気の温度である吸熱器吸込空気温度Tevainを推定し、推定した当該吸熱器吸込空気温度Tevainに基づいて圧縮機の回転数を制御するようにしたので、吸込切換ダンパにより空気流通路に流入する外気と内気の比率が変化した場合にも、当該比率に基づいて吸熱器吸込空気温度Tevainを推定し、圧縮機の回転数を制御することができるようになる。
 これにより、請求項3の発明の冷房モードや除湿冷房モード、請求項4の発明の最大冷房モードや除湿暖房モードの如く吸熱器にて冷媒を吸熱させる第1の運転モードにおいて、外気と内気の比率が変化したことに伴う負荷変動に迅速に対応し、過不足の無い空調能力を実現して、車室内の温度を目標とする値に良好に収束させ、快適性と省エネ性の双方を向上させることができるようになる。
 この場合、請求項2の発明の如く制御装置が、少なくとも吸熱器の温度Teの目標値である目標吸熱器温度TEOに基づくフィードフォワード演算により圧縮機の目標回転数のF/F操作量TGNCcffを算出し、吸熱器の温度Teと目標吸熱器温度TEOに基づくフィードバック演算により圧縮機の目標回転数のF/B操作量TGNCcfbを算出し、これらF/F操作量TGNCcffとF/B操作量TGNCcfbを加算することで、圧縮機の目標回転数TGNCcを算出するときに、吸熱器吸込空気温度Tevainに基づいてF/F操作量TGNCcffを補正するようにすれば、外気と内気の比率が変化したことに伴う負荷変動に迅速に対応して、吸熱器による冷房/除湿能力を的確に制御することができるようになる。
 請求項5の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、空気流通路の空気の流れに対して吸熱器の風下側に設けられ、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、車室外に設けられた室外熱交換器と、空気流通路に流入する外気と車室内の空気である内気の比率を調整可能な吸込切換ダンパと、制御装置を備え、この制御装置により、圧縮機から吐出された冷媒を放熱器に流して放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードを実行する車両用空気調和装置において、制御装置が、吸込切換ダンパにより調整される外気と内気の比率に基づき、吸熱器に流入する空気の温度である吸熱器吸込空気温度Tevainを推定し、推定した当該吸熱器吸込空気温度Tevainに基づいて、要求される放熱器の暖房能力である要求暖房能力TGQを算出し、この要求暖房能力TGQに基づいて圧縮機の回転数を制御するようにしたので、吸込切換ダンパにより空気流通路に流入する外気と内気の比率が変化した場合にも、当該比率に基づいて吸熱器吸込空気温度Tevainを推定し、それに基づいて要求暖房能力TGQを算出して、圧縮機の回転数を制御することができるようになる。
 これにより、暖房モードにおいて、外気と内気の比率が変化したことに伴う負荷変動に迅速に対応し、過不足の無い暖房能力を実現して、車室内の温度を目標とする値に良好に収束させ、快適性と省エネ性の双方を向上させることができるようになる。
 この場合、請求項6の発明の如く制御装置が、少なくとも要求暖房能力TGQに基づくフィードフォワード演算により圧縮機の目標回転数のF/F操作量TGNChffを算出し、高圧圧力とその目標値に基づくフィードバック演算により圧縮機の目標回転数のF/B操作量TGNChfbを算出し、これらF/F操作量TGNChffとF/B操作量TGNChfbを加算することで、圧縮機の目標回転数TGNChを算出するようにすれば、外気と内気の比率が変化したことに伴う負荷変動に迅速に対応して、放熱器による暖房能力を的確に制御することができるようになる。
 請求項7の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、空気流通路の空気の流れに対して吸熱器の風下側に設けられ、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、車室外に設けられた室外熱交換器と、この室外熱交換器に流入する冷媒を減圧する室外膨張弁と、室外熱交換器及び室外膨張弁の直列回路に対して並列に接続されたバイパス回路と、吸熱器に流入する冷媒を減圧する室内膨張弁と、空気流通路に流入する外気と車室内の空気である内気の比率を調整可能な吸込切換ダンパと、制御装置を備え、この制御装置により、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を分流し、一部をバイパス回路から室内膨張弁に流し、当該室内膨張弁で減圧した後、吸熱器に流入させ、当該吸熱器にて吸熱させると共に、残りを室外膨張弁で減圧した後、室外熱交換器に流入させ、当該室外熱交換器にて吸熱させる除湿暖房モードを実行する車両用空気調和装置において、制御装置が、吸込切換ダンパにより調整される外気と内気の比率に基づき、吸熱器に流入する空気の温度である吸熱器吸込空気温度Tevainを推定し、推定した当該吸熱器吸込空気温度Tevainに基づいて室外膨張弁の弁開度、及び/又は、圧縮機の回転数を制御するようにしたので、吸込切換ダンパにより空気流通路に流入する外気と内気の比率が変化した場合にも、当該比率に基づいて吸熱器吸込空気温度Tevainを推定し、室外膨張弁の弁開度、及び/又は、圧縮機の回転数を制御することができるようになる。
 これにより、除湿暖房モードにおいて、外気と内気の比率が変化したことに伴う負荷変動に迅速に対応し、吸熱器による過不足の無い除湿能力を実現することができるようになる。
 この場合、請求項8の発明の如く制御装置が、少なくとも吸熱器の温度Teの目標値である目標吸熱器温度TEOに基づくフィードフォワード演算により室外膨張弁の目標弁開度のF/F操作量TGECCVteffを算出し、吸熱器の温度Teと目標吸熱器温度TEOに基づくフィードバック演算により室外膨張弁の目標弁開度のF/B操作量TGECCVtefbを算出し、これらF/F操作量TGECCVteffとF/B操作量TGECCVtefbを加算することで、室外膨張弁の目標弁開度TGECCVteを算出し、少なくとも目標吸熱器温度TEOに基づくフィードフォワード演算により圧縮機の目標回転数のF/F操作量TGNCcffを算出し、吸熱器の温度Teと目標吸熱器温度TEOに基づくフィードバック演算により圧縮機の目標回転数のF/B操作量TGNCcfbを算出し、これらF/F操作量TGNCcffとF/B操作量TGNCcfbを加算することで、圧縮機の目標回転数TGNCcを算出するときに、吸熱器吸込空気温度Tevainに基づいてF/F操作量TGECCVteff、及び/又は、F/F操作量TGNCcffを補正するようにすれば、外気と内気の比率が変化したことに伴う負荷変動に迅速に対応して、吸熱器による除湿能力を的確に制御し、快適な除湿暖房を実現することができるようになる。
 ここで、外気と内気の比率が変化した場合、吸熱器吸込空気温度Tevainに反映されるまでは或る程度時間がかかる。即ち、外気と内気の比率が変化しても吸熱器吸込空気温度Tevainは直ぐに変化するものでは無い。そこで、請求項9の発明の如く制御装置が、外気と内気の比率に基づく一次遅れ演算により吸熱器吸込空気温度Tevainを算出するようにすれば、実際の吸熱器吸込空気温度Tevainの変化に合わせて圧縮機の回転数や室外膨張弁の弁開度を制御することができるようになる。
According to the first aspect of the present invention, the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air supplied to the vehicle interior from the air flow passage by absorbing the refrigerant are cooled. A heat exchanger, an outdoor heat exchanger provided outside the vehicle interior, a suction switching damper capable of adjusting the ratio of the outside air flowing into the air flow passage and the inside air which is the air inside the vehicle interior, and a control device. The first operation mode in which the refrigerant discharged from the compressor is caused to flow through the outdoor heat exchanger and radiated by the outdoor heat exchanger, and the radiated refrigerant is decompressed and then absorbed by the heat absorber. In the vehicle air conditioner, the control device estimates the heat sink suction air temperature Tevain, which is the temperature of the air flowing into the heat sink, based on the ratio of the outside air and the inside air adjusted by the suction switching damper. Heat sink suction empty Since the rotation speed of the compressor is controlled on the basis of the temperature Tevain, even when the ratio of the outside air and the inside air flowing into the air flow passage is changed by the suction switching damper, the heat sink suction air temperature based on the ratio Tevain can be estimated and the rotation speed of the compressor can be controlled.
Thus, in the first operation mode in which the heat is absorbed by the heat absorber as in the cooling mode and the dehumidifying cooling mode of the invention of claim 3, and the maximum cooling mode and the dehumidifying heating mode of the invention of claim 4, the outside air and the inside air are Responds quickly to load fluctuations due to changes in the ratio, realizes air-conditioning capacity without excess and deficiency, and successfully converges the cabin temperature to the target value, improving both comfort and energy saving To be able to.
In this case, as in the second aspect of the invention, the control device calculates the F / F manipulated variable TGNCcff of the target rotational speed of the compressor by feedforward calculation based on at least the target heat absorber temperature TEO which is the target value of the heat absorber temperature Te. The F / B manipulated variable TGNCcfb of the target rotational speed of the compressor is calculated by feedback calculation based on the heat absorber temperature Te and the target heat absorber temperature TEO, and these F / F manipulated variable TGNCcff and F / B manipulated variable TGNCcfb When the target rotational speed TGNCc of the compressor is calculated by adding the F / F manipulated variable TGNCcff based on the heat sink suction air temperature Tevain, the ratio of the outside air to the inside air has changed. The cooling / dehumidifying capability of the heat absorber can be accurately controlled in response to the load fluctuation accompanying the change.
According to invention of Claim 5, in order to cool the compressor which compresses a refrigerant | coolant, the air flow path through which the air supplied to a vehicle interior distribute | circulates, and the refrigerant | coolant which absorbs heat and is supplied to a vehicle interior from an air flow path A heat sink, a heat dissipator provided on the lee side of the heat sink with respect to the air flow in the air flow path, for radiating the refrigerant and heating the air supplied from the air flow path to the vehicle interior, and the exterior of the vehicle interior Provided with an outdoor heat exchanger, a suction switching damper capable of adjusting the ratio of the outside air flowing into the air flow passage and the inside air, which is the air in the passenger compartment, and a control device. The control device allows discharge from the compressor. In a vehicle air conditioner that executes a heating mode in which the discharged refrigerant is caused to flow through a radiator to radiate heat, and the radiated refrigerant is decompressed and then absorbed by an outdoor heat exchanger, the control device is adjusted by a suction switching damper Ratio of outside air to inside air Based on the estimated heat sink suction air temperature Tevain, which is the temperature of the air flowing into the heat sink, and based on the estimated heat sink suction air temperature Tevain, the required heating capacity TGQ, which is the required heating capacity of the radiator, is calculated. Since the calculation and the rotation speed of the compressor is controlled based on the required heating capacity TGQ, even when the ratio of the outside air and the inside air flowing into the air flow passage is changed by the suction switching damper, Thus, the heat sink intake air temperature Tevain is estimated, the required heating capacity TGQ is calculated based on the estimated temperature, and the rotational speed of the compressor can be controlled.
As a result, in heating mode, it responds quickly to load fluctuations due to changes in the ratio of outside air to inside air, realizes heating capacity without excess and deficiency, and successfully converges the temperature in the passenger compartment to the target value. It is possible to improve both comfort and energy saving.
In this case, as in the sixth aspect of the invention, the control device calculates the F / F manipulated variable TGNChff of the target rotational speed of the compressor by feedforward calculation based on at least the required heating capacity TGQ, and based on the high pressure and the target value. The F / B operation amount TGNChfb of the target rotation speed of the compressor is calculated by feedback calculation, and the target rotation number TGNCh of the compressor is calculated by adding the F / F operation amount TGNChff and the F / B operation amount TGNChfb. If it does in this way, it will become possible to respond to the load fluctuation accompanying change of the ratio of outside air and inside air quickly, and to control the heating capability by a radiator precisely.
According to the invention of claim 7, the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air supplied to the vehicle interior from the air flow passage by absorbing the refrigerant are cooled. A heat sink, a heat dissipator provided on the lee side of the heat sink with respect to the air flow in the air flow path, for radiating the refrigerant and heating the air supplied from the air flow path to the vehicle interior, and the exterior of the vehicle interior An outdoor heat exchanger provided in the outdoor heat exchanger, an outdoor expansion valve for decompressing the refrigerant flowing into the outdoor heat exchanger, a bypass circuit connected in parallel to the series circuit of the outdoor heat exchanger and the outdoor expansion valve, An indoor expansion valve that depressurizes the refrigerant flowing into the heat absorber, a suction switching damper that can adjust the ratio of the outside air flowing into the air flow passage and the inside air that is the air in the vehicle interior, and a control device. The refrigerant discharged from the compressor is released by a radiator. The refrigerant that has dissipated the heat is diverted, and part of the refrigerant flows from the bypass circuit to the indoor expansion valve. After the pressure is reduced by the indoor expansion valve, the refrigerant flows into the heat absorber and absorbs heat by the heat absorber, and the rest is expanded outdoors. In a vehicle air conditioner that executes a dehumidifying heating mode in which the pressure is reduced by a valve and then flows into an outdoor heat exchanger and heat is absorbed by the outdoor heat exchanger, the control device is configured to control the outside air and the inside air that are adjusted by the suction switching damper. Based on the ratio, the heat sink suction air temperature Tevain, which is the temperature of the air flowing into the heat sink, is estimated, and the valve opening and / or compression of the outdoor expansion valve based on the estimated heat sink suction air temperature Tevain Since the rotation speed of the machine is controlled, even when the ratio of the outside air and the inside air flowing into the air flow passage is changed by the suction switching damper, the heat sink suction air temperature T is changed based on the ratio. Estimating a vain, the valve opening degree of the outdoor expansion valve, and / or, it is possible to control the rotational speed of the compressor.
As a result, in the dehumidifying heating mode, it is possible to quickly cope with a load fluctuation caused by a change in the ratio between the outside air and the inside air, and to realize a dehumidifying capability without excess or deficiency by the heat absorber.
In this case, as in the eighth aspect of the invention, the control device performs the F / F manipulated variable of the target valve opening degree of the outdoor expansion valve by the feedforward calculation based on at least the target heat absorber temperature TEO that is the target value of the heat absorber temperature Te. TGECCVteff is calculated, and F / B manipulated variable TGECCVtefb of the target valve opening of the outdoor expansion valve is calculated by feedback calculation based on the temperature Te of the heat absorber and the target heat absorber temperature TEO. By adding the B operation amount TGECCVtefb, the target valve opening degree TGECCVte of the outdoor expansion valve is calculated, and the F / F operation amount TGNCcff of the target rotation speed of the compressor is calculated by feedforward calculation based on at least the target heat absorber temperature TEO And for feedback calculation based on the endothermic temperature Te and the target endothermic temperature TEO When calculating the target rotational speed TGNCc of the compressor by calculating the F / B manipulated variable TGNCcfb of the target rotational speed of the compressor and adding the F / F manipulated variable TGNCcff and the F / B manipulated variable TGNCcfb. If the F / F manipulated variable TGECCVteff and / or the F / F manipulated variable TGNCcff is corrected based on the heat sink suction air temperature Tevain, the load fluctuation accompanying the change in the ratio between the outside air and the inside air can be quickly achieved. In response to this, it is possible to accurately control the dehumidifying capacity of the heat absorber and to realize comfortable dehumidifying heating.
Here, when the ratio between the outside air and the inside air changes, it takes some time until it is reflected in the heat sink intake air temperature Tevain. That is, even if the ratio between the outside air and the inside air changes, the heat sink intake air temperature Tevain does not change immediately. Therefore, if the control device calculates the heat sink intake air temperature Tevain by the first-order lag calculation based on the ratio of the outside air and the inside air as in the invention of claim 9, it matches the change in the actual heat sink intake air temperature Tevain. Thus, the rotational speed of the compressor and the valve opening degree of the outdoor expansion valve can be controlled.
本発明を適用した一実施形態の車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles of one Embodiment to which this invention is applied. 図1の車両用空気調和装置の制御装置のブロック図である。It is a block diagram of the control apparatus of the air conditioning apparatus for vehicles of FIG. 図1の車両用空気調和装置のHVACユニットの縦断側面図である。It is a vertical side view of the HVAC unit of the vehicle air conditioner of FIG. 図2のヒートポンプコントローラによる冷房モード等における圧縮機制御に関する制御ブロック図である。FIG. 3 is a control block diagram related to compressor control in a cooling mode or the like by the heat pump controller of FIG. 2. 内外気比率と冷房モードの冷房負荷との関係を説明する図である。It is a figure explaining the relationship between the inside / outside air ratio and the cooling load in the cooling mode. 図1の車両用空気調和装置のHVACユニットのもう一つの縦断側面図である。It is another vertical side view of the HVAC unit of the vehicle air conditioner of FIG. 図2のヒートポンプコントローラによる暖房モードにおける圧縮機制御に関する制御ブロック図である。It is a control block diagram regarding the compressor control in the heating mode by the heat pump controller of FIG. 内外気比率と暖房モードの暖房負荷との関係を説明する図である。It is a figure explaining the relationship between an inside / outside air ratio and the heating load of heating mode. 本発明の他の実施例の車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles of the other Example of this invention. 図9の場合のヒートポンプコントローラによる除湿暖房モードにおける室外膨張弁制御に関する制御ブロック図である。FIG. 10 is a control block diagram related to outdoor expansion valve control in a dehumidifying and heating mode by a heat pump controller in the case of FIG. 9.
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は本発明の一実施例の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、バッテリに充電された電力で走行用の電動モータを駆動して走行するものであり(何れも図示せず)、本発明の車両用空気調和装置1も、バッテリの電力で駆動されるものとする。即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路を用いたヒートポンプ運転により暖房モードを行い、更に、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード(最大冷房モード)及び補助ヒータ単独モードの各運転モードを選択的に実行する。この実施例では、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モードが本出願における第1の運転モードである。
 尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明は有効であり、更には、エンジンで走行する通常の自動車にも適用可能であることは云うまでもない。
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、外気や車室内の空気が通気/循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を放熱させて車室内に供給する空気を加熱するための放熱器4(ヒータ)と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6(減圧装置)と、車室外に設けられて冷房時には放熱器として機能し、暖房時には蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る室内膨張弁8(減圧装置)と、空気流通路3内に設けられ、冷房時及び除湿時に冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。この場合、放熱器4は空気流通路3の空気の流れに対して吸熱器9の風下側(空気下流側)に配置されている。
 そして、この冷媒回路Rには所定量の冷媒と潤滑用のオイルが充填されている。尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。
 また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7から出た冷媒配管13Aは冷房時に開放される電磁弁17を介してレシーバドライヤ部14に接続され、過冷却部16の出口側の冷媒配管13Bは室内膨張弁8介して吸熱器9の入口側に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成している。
 また、過冷却部16と室内膨張弁8間の冷媒配管13Bは、吸熱器9の出口側の冷媒配管13Cと熱交換関係に設けられ、両者で内部熱交換器19を構成している。これにより、冷媒配管13Bを経て室内膨張弁8に流入する冷媒は、吸熱器9を出た低温の冷媒により冷却(過冷却)される構成とされている。
 また、室外熱交換器7から出た冷媒配管13Aは冷媒配管13Dに分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁21を介して内部熱交換器19の下流側における冷媒配管13Cに連通接続されている。この冷媒配管13Cがアキュムレータ12に接続され、アキュムレータ12は圧縮機2の冷媒吸込側に接続されている。更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6を介して室外熱交換器7の入口側に接続されている。
 また、圧縮機2の吐出側と放熱器4の入口側の間の冷媒配管13Gには後述する除湿暖房とMAX冷房時に閉じられる電磁弁30(流路切換装置を構成する)が介設されている。この場合、冷媒配管13Gは電磁弁30の上流側でバイパス配管35に分岐しており、このバイパス配管35は除湿暖房とMAX冷房時に開放される電磁弁40(これも流路切換装置を構成する)を介して室外膨張弁6の下流側の冷媒配管13Eに連通接続されている。これらバイパス配管35、電磁弁30及び電磁弁40によりバイパス装置45が構成される。
 このようなバイパス配管35、電磁弁30及び電磁弁40によりバイパス装置45を構成したことで、後述する如く圧縮機2から吐出された冷媒を室外熱交換器7に直接流入させる除湿暖房モードやMAX冷房モードと、圧縮機2から吐出された冷媒を放熱器4に流入させる暖房モードや除湿冷房モード、冷房モードとの切り換えを円滑に行うことができるようになる。
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口25Aと内気吸込口25Bの各吸込口が形成されており、外気吸込口25Aからは車室外の空気である外気が吸い込まれ、内気吸込口25Bからは車室内の空気である内気が吸い込まれる構成とされている。更に、空気流通路3には吸込切換ダンパ26が設けられ、この吸込切換ダンパ26の空気下流側には、各吸込口25A、25Bから吸い込まれた外気や内気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
 上記吸込切換ダンパ26は、外気吸込口25Aと内気吸込口25Bを任意の比率で開閉することにより、空気流通路3の吸熱器9に流入する外気と内気の比率を0~100%の間で調整することができるように構成されている。尚、本出願では吸込切換ダンパ26により調整される外気と内気の比率を内外気比率RECrateと称し、この内外気比率RECrate=1のときに内気が100%、外気が0%の内気循環モードとなり、内外気比率RECrate=0のときに外気が100%、内気が0%の外気導入モードとなる。そして、0<内外気比率RECrate<1のときに0%<内気<100%、且つ、100%>外気>0%の内外気中間位置となる。即ち、本出願において内外気比率RECrateは空気流通路3の吸熱器9に流入する空気のうちの内気の割合を意味する。
 この吸込切換ダンパ26は後述する空調コントローラ20により制御され、後述するオートモード或いは空調操作部53へのマニュアル操作(マニュアルモード)によって上記内気循環モード、外気導入モード及び内外気中間位置が選択される。この場合、クールダウン時等の冷房負荷が大きいときや市街地等の外気臭が気になるときに内気循環モードとされ、換気が必要なときや暖房時の窓曇り防止を行うときにデフロスタスイッチ(後述する空調操作部53に設けられる)との連動等で外気導入モードが選択される。また、暖房時の暖房負荷の低減と窓曇り防止の両立を行うときに内外気中間位置が選択されることになる。
 また、図1において23は実施例の車両用空気調和装置1に設けられた補助加熱装置としての補助ヒータである。実施例の補助ヒータ23はPTCヒータ(電気ヒータ)にて構成されており、空気流通路3の空気の流れに対して、放熱器4の風上側(空気上流側)であって吸熱器9の風下側(空気下流側)となる空気流通路3内に設けられている。そして、補助ヒータ23に通電されて発熱すると、吸熱器9を経て放熱器4に流入する前の空気流通路3内の空気が加熱される。即ち、この補助ヒータ23が所謂ヒータコアとなり、車室内の暖房を行い、或いは、それを補完する。
 ここで、HVACユニット10の吸熱器9より風下側(空気下流側)の空気流通路3は仕切壁10Aにより区画され、暖房用熱交換通路3Aとそれをバイパスするバイパス通路3Bとが形成されており、前述した放熱器4と補助ヒータ23は暖房用熱交換通路3Aに配置されている。
 また、補助ヒータ23の風上側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を、補助ヒータ23及び放熱器4が配置された暖房用熱交換通路3Aに通風する割合を調整するエアミックスダンパ28Dr、28Asが設けられている。
 更に、放熱器4の風下側におけるHVACユニット10には、FOOT(フット)吹出口29A、VENT(ベント)吹出口29B、DEF(デフ)吹出口29Cの各吹出口が形成されている。FOOT吹出口29Aは車室内の足下に空気を吹き出すための吹出口で、最も低い位置にある。また、VENT吹出口29Bは車室内の運転者の胸や顔付近に空気を吹き出すための吹出口で、FOOT吹出口29Aより上方にある。そして、DEF吹出口29Cは車両のフロントガラス内面に空気を吹き出すための吹出口で、他の吹出口29A、29Bよりも上方の最も高い位置にある。
 そして、FOOT吹出口29A、VENT吹出口29B、及び、DEF吹出口29Cには、空気の吹き出し量を制御するFOOT吹出口ダンパ31A、VENT吹出口ダンパ31B、及び、DEF吹出口ダンパ31Cがそれぞれ設けられている。
 尚、実施例の車両用空気調和装置1は、車両の運転席と助手席で、左右独立空調制御が可能とされており、放熱器4及び補助ヒータ23が設けられた空気流通路3内は図示しない仕切板により左右に仕切られている。そして、前述したエアミックスダンパ28Drは運転席用(右用)のエアミックスダンパとされて右側の空気流通路3に設けられ、エアミックスダンパ28Asは助手席用(左用)のエアミックスダンパとされて左側の空気流通路3に設けられている。また、上記FOOT吹出口ダンパ31A、VENT吹出口ダンパ31B、及び、DEF吹出口ダンパ31Cの各吹出口も、運転席用(右用)と助手席用(左用)が前記仕切板で仕切られる左右の空気流通路3にそれぞれ設けられているものとする。そして、それらにより運転席・助手席同一空調制御(左右同一空調制御)と、運転席・助手席独立空調制御(左右独立空調制御)とを実行可能とされている。
 即ち、後述する空調操作部53での設定で、運転席・助手席同一空調制御(左右同一空調制御)となったときには、エアミックスダンパ28Dr及びエアミックスダンパ28Asは同一の動作を行い、運転席用と助手席用の各吹出口ダンパ31A~31Cも同一の動作を行う。一方、運転席・助手席独立空調制御(左右独立空調制御)となったときには、エアミックスダンパ28Dr及びエアミックスダンパ28Asは独立して動作し、運転席用と助手席用の各吹出口ダンパ31A~31Cも独立して動作することになる。
 次に、図2は実施例の車両用空気調和装置1の制御装置11のブロック図を示している。制御装置11は、何れもプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成された空調コントローラ20及びヒートポンプコントローラ32から構成されており、これらがCAN(Controller Area Network)やLIN(Local Interconnect Network)を構成する車両通信バス65に接続されている。また、圧縮機2と補助ヒータ23も車両通信バス65に接続され、これら空調コントローラ20、ヒートポンプコントローラ32、圧縮機2及び補助ヒータ23が車両通信バス65を介してデータの送受信を行うように構成されている。
 空調コントローラ20は、車両の車室内空調の制御を司る上位のコントローラであり、この空調コントローラ20の入力には、車両の外気温度Tam(車室外の空気の温度)を検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、車室内の空気(内気)の温度(内気温度Tin)を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO濃度センサ39と、車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力(吐出圧力Pd)を検出する吐出圧力センサ42と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52の各出力と、設定温度や運転モードの切り換えを設定するための空調(エアコン)操作部53が接続されている。
 また、空調コントローラ20の出力には、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28Dr、28Asと、各吹出口ダンパ31A~31Cが接続され、それらは空調コントローラ20により制御される。
 ヒートポンプコントローラ32は、主に冷媒回路Rの制御を司るコントローラであり、このヒートポンプコントローラ32の入力には、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒圧力を検出する吸込圧力センサ44と、圧縮機2の吸込冷媒温度Tsを検出する吸込温度センサ55と、放熱器4の冷媒温度(放熱器温度TCI)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器圧力PCI)を検出する放熱器圧力センサ47と、吸熱器9の冷媒温度(吸熱器温度Te)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力を検出する吸熱器圧力センサ49と、室外熱交換器7の出口の冷媒温度(室外熱交換器温度TXO)を検出する室外熱交換器温度センサ54と、室外熱交換器7の出口の冷媒圧力(室外熱交換器圧力PXO)を検出する室外熱交換器圧力センサ56の各出力が接続されている。
 更に、ヒートポンプコントローラ32の入力には、補助ヒータ23の温度(補助ヒータ温度Tptc)を検出する複数の温度センサとしての補助ヒータ温度センサ50Dr、50Asの各出力も接続されている。この場合、補助ヒータ温度センサ50Drは前記仕切板で仕切られた右側(運転席側)の部分の補助ヒータ23の温度を検出し、補助ヒータ温度センサ50Asは左側(助手席側)の部分の補助ヒータ23の温度を検出することができるように取り付けられている。
 また、ヒートポンプコントローラ32の出力には、室外膨張弁6、室内膨張弁8と、電磁弁30(リヒート用)、電磁弁17(冷房用)、電磁弁21(暖房用)、電磁弁40(バイパス用)の各電磁弁が接続され、それらはヒートポンプコントローラ32により制御される。尚、圧縮機2と補助ヒータ23はそれぞれコントローラを内蔵しており、圧縮機2と補助ヒータ23のコントローラは車両通信バス65を介してヒートポンプコントローラ32とデータの送受信を行い、このヒートポンプコントローラ32によって制御される。
 ヒートポンプコントローラ32と空調コントローラ20は車両通信バス65を介して相互にデータの送受信を行い、各センサの出力や空調操作部53にて入力された設定に基づき、各機器を制御するものであるが、この場合の実施例では外気温度センサ33、吐出圧力センサ42、車速センサ52、空気流通路3に流入した空気の実際の体積風量Ga(実システム風量。空調コントローラ20が算出)、エアミックスダンパ28Dr、28Asによる風量割合SWDr、SWAs(空調コントローラ20が算出)、前記内外気比率RECrate(空調コントローラ20が調整)、空調操作部53の出力は空調コントローラ20から車両通信バス65を介してヒートポンプコントローラ32に送信され、ヒートポンプコントローラ32による制御に供される構成とされている。
 以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。この実施例では制御装置11(空調コントローラ20、ヒートポンプコントローラ32)は、暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード(最大冷房モード)及び補助ヒータ単独モードの各運転モードを切り換えて実行する。先ず、各運転モードにおける冷媒の流れと制御の概略について説明する。
 (1)暖房モード
 ヒートポンプコントローラ32により(オートモード)或いは空調操作部53へのマニュアル操作により(マニュアルモード)暖房モードが選択されると、ヒートポンプコントローラ32は電磁弁21(暖房用)を開放し、電磁弁17(冷房用)を閉じる。また、電磁弁30(リヒート用)を開放し、電磁弁40(バイパス用)を閉じる。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28Dr、28Asは、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量を調整してもよい。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)にて加熱された空気は各吹出口29A~29Cから吹き出されるので、これにより車室内の暖房が行われることになる。
 ヒートポンプコントローラ32は、空調コントローラ20が目標吹出温度TAOから算出する目標ヒータ温度TCO(放熱器温度TCIの目標値)から目標放熱器圧力PCO(放熱器圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数NCを制御し、放熱器4による加熱を制御する。また、ヒートポンプコントローラ32は、放熱器温度センサ46が検出する放熱器4の冷媒温度(放熱器温度TCI)及び放熱器圧力センサ47が検出する放熱器圧力PCIに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度SCをその目標値である目標過冷却度TGSCに制御する。
 また、ヒートポンプコントローラ32はこの暖房モードにおいては、車室内空調に要求される暖房能力(要求暖房能力TGQ)に対して放熱器4による暖房能力が不足する場合、その不足する分を補助ヒータ23の発熱で補完するように補助ヒータ23の通電を制御する。それにより、快適な車室内暖房を実現し、且つ、室外熱交換器7の着霜も抑制する。実施例では補助ヒータ23は放熱器4の空気上流側に配置されているので、空気流通路3を流通する空気は放熱器4の前に補助ヒータ23に通風されることになる。
 この場合、実施例ではヒートポンプコントローラ32は、補助ヒータ温度センサ50Drの検出値TptcDrと補助ヒータ温度センサ50Asの検出値TptcAsの平均値を補助ヒータ温度Tptcとして補助ヒータ23の通電を制御する。
 (2)除湿暖房モード
 次に、除湿暖房モードでは、ヒートポンプコントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28Dr、28Asは、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量の調整も行う。
 これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却され、且つ、当該空気中の水分が吸熱器9に凝結して付着するので、空気流通路3内の空気は冷却され、且つ、除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。
 このとき、室外膨張弁6の弁開度は全閉とされているので、圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。更に、この除湿暖房モードにおいてヒートポンプコントローラ32は、補助ヒータ23に通電して発熱させる。これにより、吸熱器9にて冷却され、且つ、除湿された空気は補助ヒータ23を通過する過程で更に加熱され、温度が上昇するので車室内の除湿暖房が行われることになる。
 ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)と、空調コントローラ20が算出する吸熱器温度Teの目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御すると共に、補助ヒータ温度センサ50Drの検出値TptcDrと補助ヒータ温度センサ50Asの検出値TptcAsの平均値を補助ヒータ温度Tptcとし、この補助ヒータ温度Tptcと前記目標ヒータ温度TCO(この場合、補助ヒータ温度Tptcの目標値となる)に基づいて補助ヒータ23の通電(発熱による加熱)を制御することで、吸熱器9での空気の冷却と除湿を適切に行いながら、補助ヒータ23による加熱で各吹出口29A~29Cから車室内に吹き出される空気温度の低下を的確に防止する。これにより、車室内に吹き出される空気を除湿しながら、その温度を適切な暖房温度に制御することが可能となり、車室内の快適且つ効率的な除湿暖房を実現することができるようになる。
 尚、補助ヒータ23は放熱器4の空気上流側に配置されているので、補助ヒータ23で加熱された空気は放熱器4を通過することになるが、この除湿暖房モードでは放熱器4に冷媒は流されないので、補助ヒータ23にて加熱された空気から放熱器4が吸熱してしまう不都合も解消される。即ち、放熱器4によって車室内に吹き出される空気の温度が低下してしまうことが抑制され、COPも向上することになる。
 (3)除湿冷房モード
 次に、除湿冷房モードでは、ヒートポンプコントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を開放し、電磁弁40を閉じる。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28Dr、28Asは、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量の調整も行う。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
 放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。この除湿冷房モードではヒートポンプコントローラ32は補助ヒータ23に通電しないので、吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱(暖房時よりも放熱能力は低い)される。これにより車室内の除湿冷房が行われることになる。
 ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEO(空調コントローラ20から送信される)に基づいて圧縮機2の回転数NCを制御する。また、ヒートポンプコントローラ32は前述した目標ヒータ温度TCOから目標放熱器圧力PCOを算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて室外膨張弁6の弁開度を制御し、放熱器4による加熱を制御する。
 (4)冷房モード
 次に、冷房モードでは、ヒートポンプコントローラ32は上記除湿冷房モードの状態において室外膨張弁6の弁開度を全開とする。そして、圧縮機2を運転し、補助ヒータ23には通電しない。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28Dr、28Asは、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の空気が、暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風される割合を調整する状態とする。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入すると共に、放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので冷媒はそれを通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着する。
 吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気が各吹出口29A~29Cから車室内に吹き出されるので(一部は放熱器4を通過して熱交換する)、これにより車室内の冷房が行われることになる。また、この冷房モードにおいては、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である前述した目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御する。
 (5)MAX冷房モード(最大冷房モード)
 次に、最大冷房モードとしてのMAX冷房モードでは、ヒートポンプコントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2を運転し、補助ヒータ23には通電しない。空調コントローラ20は、各送風機15、27を運転し、エアミックスダンパ28Dr、28Asは、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の空気が、暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風される割合を調整する状態とする。
 これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着するので、空気流通路3内の空気は除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。このとき、室外膨張弁6は全閉とされているので、同様に圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。
 ここで、前述した冷房モードでは放熱器4に高温の冷媒が流れているため、放熱器4からHVACユニット10への直接の熱伝導が少なからず生じるが、このMAX冷房モードでは放熱器4に冷媒が流れないため、放熱器4からHVACユニット10に伝達される熱で吸熱器9からの空気流通路3内の空気が加熱されることも無くなる。そのため、車室内の強力な冷房が行われ、特に外気温度Tamが高いような環境下では、迅速に車室内を冷房して快適な車室内空調を実現することができるようになる。また、このMAX冷房モードにおいても、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である前述した目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御する。
 (6)補助ヒータ単独モード
 尚、実施例の制御装置11は室外熱交換器7に過着霜が生じた場合などに、冷媒回路Rの圧縮機2と室外送風機15を停止し、補助ヒータ23に通電してこの補助ヒータ23のみで車室内を暖房する補助ヒータ単独モードを有している。この場合にも、ヒートポンプコントローラ32は補助ヒータ温度センサ50Drの検出値TptcDrと補助ヒータ温度センサ50Asの検出値TptcAsの平均値を補助ヒータ温度Tptcとし、この補助ヒータ温度Tptcと前述した目標ヒータ温度TCOに基づいて補助ヒータ23の通電(発熱)を制御する。
 また、空調コントローラ20は室内送風機27を運転し、エアミックスダンパ28Dr、28Asは、室内送風機27から吹き出された空気流通路3内の空気を暖房用熱交換通路3Aの補助ヒータ23に通風し、風量を調整する状態とする。補助ヒータ23にて加熱された空気が各吹出口29A~29Cから車室内に吹き出されるので、これにより車室内の暖房が行われることになる。
 (7)運転モードの切換
 空調コントローラ20は、下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、車室内に吹き出される空気の温度の目標値である。
 TAO=(Tset−Tin)×K+Tbal(f(Tset、SUN、Tam))
                                   ・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する内気温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
 ヒートポンプコントローラ32は、起動時には空調コントローラ20から車両通信バス65を介して送信される外気温度Tam(外気温度センサ33が検出する)と目標吹出温度TAOとに基づいて上記各運転モードのうちの何れかの運転モードを選択すると共に、各運転モードを車両通信バス65を介して空調コントローラ20に送信する。また、起動後は外気温度Tam、車室内の湿度、目標吹出温度TAO、後述する加熱温度TH(放熱器4の風下側の空気の温度。推定値)、目標ヒータ温度TCO、吸熱器温度Te、目標吸熱器温度TEO、車室内の除湿要求の有無、等のパラメータに基づいて各運転モードの切り換えを行うことで、環境条件や除湿の要否に応じて的確に暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード及び補助ヒータ単独モードを切り換えて車室内に吹き出される空気の温度を目標吹出温度TAOに制御し、快適且つ効率的な車室内空調を実現するものである。
 ここで、上記加熱温度THは、放熱器4の風下側の空気の温度であり、ヒートポンプコントローラ32が下記に示す一次遅れ演算の式(II)から推定する。
 TH=(INTL1×TH0+Tau1×THz)/(Tau1+INTL1)
                                  ・・(II)
 ここで、INTL1は演算周期(定数)、Tau1は一次遅れの時定数、TH0は一次遅れ演算前の定常状態における加熱温度THの定常値、THzは加熱温度THの前回値である。このように加熱温度THを推定することで、格別な温度センサを設ける必要がなくなる。また、ヒートポンプコントローラ32は前述した運転モードによって上記時定数Tau1及び定常値TH0を変更することにより、上述した推定式(II)を運転モードによって異なるものとし、加熱温度THを推定する。そして、この加熱温度THは車両通信バス65を介して空調コントローラ20に送信される。
 (8)内外気比率RECrateを用いた冷房モード、除湿冷房モード、除湿暖房モード及びMAX冷房モードにおける圧縮機2の制御
 次に、図3~図5を参照して前述した内外気比率RECrateを用いた冷房モード、除湿冷房モード、除湿暖房モード及びMAX冷房モードの各運転モード(第1の運転モード)における圧縮機2の制御について詳述する。図3はHVACユニット10の縦断側面図、図4はヒートポンプコントローラ32による冷房モード、除湿冷房モード、除湿暖房モード及びMAX冷房モードにおける圧縮機制御に関する制御ブロック図、図5は内外気比率RECrateと冷房モードの冷房負荷との関係を説明する図である。
 空気流通路3に流通される空気の外気と内気の比率(内外気比率RECrate)が変化すると、吸熱器9に流入する空気の温度(吸熱器吸込空気温度Tevain)が変化するため、車両用空気調和装置1の冷房負荷は大きく変化し、能力の過不足が発生する。そこで、ヒートポンプコントローラ32は、後述する如く内外気比率RECrateに基づき、下記式(III)、(IV)を用いて、この吸熱器吸込空気温度Tevainを算出し、推定する。
 Tevain=(INTL2×Tevain0+Tau2×Tevainz)/(Tau2+INTL2)
                                 ・・(III)
 Tevain0=Tam×(1−RECrate)+Tin×RECrate
                                  ・・(IV)
 ここで、INTL2は演算周期(定数)、Tau2は一次遅れの時定数、Tevain0は一次遅れ演算前の定常状態における吸熱器吸込空気温度Tevainの定常値、Tevainzは吸熱器吸込空気温度Tevainの前回値である。また、Tamは外気温度、Tinは内気温度である。例えば、外気温度Tamが+40℃、内気温度Tinが+25℃の条件において、図5の最上段の如く内外気比率RECrateが0(外気導入モード)の場合、吸熱器吸込空気温度Tevainは最終的に+40℃となり、冷房負荷は大きくなる。また、同じ条件において、図5の最下段の如く内外気比率RECrateが1(内気循環モード)の場合、吸熱器吸込空気温度Tevainは最終的に+25℃となり、冷房負荷は小さくなる。更に、同じ条件において、図5の中段の如く内外気比率RECrateが0.5(内外気中間位置)の場合、吸熱器吸込空気温度Tevainは最終的に+32.5℃となり、冷房負荷は中程度となる(これは冷房モード以外の第1の運転モードにおいても同様)。従って、特に内気温度Tin(車室内の空気の温度)が安定した後に、内外気比率RECrateが変化した場合には、圧縮機2の回転数NCが大きく変化するため、ヒートポンプコントローラ32は吸熱器吸込空気温度Tevainに基づいて圧縮機2の回転数NCを補正する制御を実行する。
 図4のブロック図を参照しながら具体的な制御を説明する。ヒートポンプコントローラ32のF/F(フィードフォワード)操作量演算部63は外気温度Tamと、空気流通路3に流入した空気の体積風量Gaと、放熱器4の圧力(放熱器圧力PCI。高圧圧力)の目標値である目標放熱器圧力PCOと、吸熱器温度Teの目標値である目標吸熱器温度TEO(空調コントローラ20から送信される)に基づいて圧縮機目標回転数のF/F操作量TGNCcff0を算出する。
 ここで、F/F操作量演算部63で行われるフィードフォワード演算の式の一例を下記(V)に示す。即ち、
・冷房モードの場合
 TGNCcff0=K1×Tam+K2×Ga+K3×TEO+K4
・除湿冷房モードの場合
 TGNCcff0=K5×Tam+K6×Ga+K7×TEO+K8×PCO+K9
・除湿暖房モード/MAX冷房モードの場合
 TGNCcff0=K10×Tam+K11×Ga+K12×TEO+K13
    ・・(V)
 尚、K1~K3、K5~K8、K10~K12は係数であり、K4、K9、K13は定数である。
 また、ヒートポンプコントローラ32の補正値演算部71は外気温度Tamと内気温度Tinと内外気比率RECrateから前記式(III)、(IV)を用いて吸熱器吸込空気温度Tevainを算出し、この吸熱器吸込空気温度Tevainに基づき、下記式(VI)を用いて補正値TGNCcffHosを算出する。
 TGNCcffHos=K14×Tevain           ・・(VI)
 ここで、K14は温度を回転数に変換するための係数である。
 そして、F/F操作量演算部63が算出したF/F操作量TGNCcff0と補正値演算部71が算出した補正値TGNCcffHosは加算器72で加算され、最終的にF/F操作量TGNCcff(TGNCcff=TGNCcff0+TGNCcffHos)とされる。即ち、F/F操作量演算部63が算出したF/F操作量TGNCcff0が補正値TGNCcffHosにより補正され、F/F操作量TGNCcffとして決定される。
 ここで、吸熱器吸込空気温度Tevainが高い程、即ち、内外気比率RECrateが0に近づいて図5で説明した如く冷房負荷が大きくなる程、補正値TGNCcffHosが大きくなり、F/F操作量TGNCcffも大きくなる方向に補正されることになる。
 また、F/B(フィードバック)操作量演算部64は目標吸熱器温度TEOと吸熱器温度Teに基づいて圧縮機目標回転数のF/B操作量TGNCcfbを算出する。そして、加算器72で決定されたF/F操作量TGNCcffとF/B操作量演算部64で算出されたF/B操作量TGNCcfbは加算器66で加算され、リミット設定部67で制御上限値と制御下限値のリミットが付けられた後、圧縮機目標回転数TGNCcとして決定される。
 冷房モード、除湿冷房モード、除湿暖房モード及びMAX冷房モードにおいては、ヒートポンプコントローラ32はこの圧縮機目標回転数TGNCcに基づいて圧縮機2の回転数NCを制御するので、吸熱器吸込空気温度Tevainが高い程、圧縮機2の回転数NCは高くなる方向に補正され、吸熱器9による冷房/除湿能力も増大することになる。特に、F/F操作量TGNCcffを補正するので、吸熱器吸込空気温度Tevainの変化に対して迅速に追従することができる。
 このように、吸熱器9に冷媒を流す冷房モード、除湿冷房モード、除湿暖房モード及びMAX冷房モード(何れも第1の運転モード)においては、ヒートポンプコントローラ32は、吸込切換ダンパ26により調整される内外気比率RECrateに基づき、吸熱器9に流入する吸熱器吸込空気温度Tevainを推定し、推定した吸熱器吸込空気温度Tevainに基づいて圧縮機2の回転数を制御するので、吸込切換ダンパ26により空気流通路3に流入する外気と内気の比率が変化した場合にも、内外気比率RECrateに基づいて吸熱器吸込空気温度Tevainを推定し、圧縮機2の回転数NCを制御することができるようになる。
 これにより、外気と内気の比率が変化したことに伴う冷房負荷の変動に迅速に対応し、過不足の無い空調能力を実現して、車室内の温度を目標とする値に良好に収束させ、快適性と省エネ性の双方を向上させることができるようになる。
 この場合、実施例ではヒートポンプコントローラ32は、少なくとも吸熱器温度Teの目標値である目標吸熱器温度TEOに基づくフィードフォワード演算により圧縮機2の目標回転数のF/F操作量TGNCcffを算出し、吸熱器温度Teと目標吸熱器温度TEOに基づくフィードバック演算により圧縮機2の目標回転数のF/B操作量TGNCcfbを算出し、これらF/F操作量TGNCcffとF/B操作量TGNCcfbを加算することで、圧縮機2の目標回転数TGNCcを算出しており、吸熱器吸込空気温度Tevainに基づいてF/F操作量TGNCcffを補正するので、内外気比率RECrateが変化したことに伴う冷房負荷の変動に迅速に対応して、吸熱器9による冷房/除湿能力を的確に制御することができるようになる。
 ここで、外気と内気の比率が変化した場合、吸熱器吸込空気温度Tevainに反映されるまでは或る程度時間がかかる。即ち、外気と内気の比率が変化しても吸熱器吸込空気温度Tevainは直ぐに変化するものでは無いが実施例ではヒートポンプコントローラ32が、内外気比率RECrate(外気と内気の比率)に基づく一次遅れ演算により吸熱器吸込空気温度Tevainを算出するので、実際の吸熱器吸込空気温度Tevainの変化に合わせて圧縮機2の回転数NCを制御することができるようになる。
 (9)内外気比率RECrateを用いた暖房モードにおける圧縮機2の制御
 次に、図6~図8を参照して前述した内外気比率RECrateを用いた暖房モードにおける圧縮機2の制御について詳述する。図6は吸熱器温度センサ48が設けられない場合のHVACユニット10の縦断側面図、図7はヒートポンプコントローラ32による暖房モードにおける圧縮機制御に関する制御ブロック図、図8は内外気比率RECrateと暖房モードの暖房負荷との関係を説明する図である。
 (9−1)吸熱器温度センサ48が設けられている場合の暖房モードにおける圧縮機2の制御
 先ず、比較のために図2や図3の例の如く吸熱器温度センサ48が設けられている場合の圧縮機2の制御について図7を参照しながら説明する。ヒートポンプコントローラ32のF/F(フィードフォワード)操作量演算部58は、要求される放熱器4の暖房能力である後述する要求暖房能力TGQと、空気流通路3に流入した空気の体積風量Gaと、外気温度センサ33から得られる外気温度Tamと、放熱器4の温度の目標値である前述した目標ヒータ温度TCOと、放熱器4の圧力の目標値である目標放熱器圧力PCOに基づくフィードフォワード演算により、圧縮機目標回転数のF/F操作量TGNChffを算出する。
 ここで、F/F操作量演算部58で行われるフィードフォワード演算の式の一例を下記(VII)に示す。
 TGNChff=K15×TGQ+K16×Ga+K17×Tam+K18
                                 ・・(VII)
 尚、K15~K17は係数であり、K18は定数である。
 また、上記要求暖房能力TGQは要求暖房能力演算部74により下記式(VIII)を用いて算出され、F/F操作量演算部58に入力される。
 TGQ=(TCO−Te)×Cpa×Ga×γaTe×1.16  ・・(VIII)
 尚、Teは吸熱器温度、Cpaは空気の定圧比熱[kJ/m・K]、Gaは空気流通路3を流入した空気の体積風量、γaTeは空気比重、1.16は単位を合わせるための係数である。吸熱器温度センサ48が設けられている場合には吸熱器温度Teが取得できる。この場合、吸熱器9は放熱器4の風上側に設けられているので、吸熱器温度Teは補助ヒータ23や放熱器4に流入する空気の温度となる。そこで、要求暖房能力演算部74は目標ヒータ温度TCOとこの吸熱器温度Teとの差から、要求暖房能力TGQを算出する。
 また、前記目標放熱器圧力PCOは、放熱器4の出口における冷媒の過冷却度SCの目標値である目標過冷却度TGSCと目標放熱器温度TCOに基づいて目標値演算部59が演算する。更に、F/B(フィードバック)操作量演算部60はこの目標放熱器圧力PCOと放熱器4の冷媒圧力である放熱器圧力PCI(冷媒回路Rの高圧圧力)に基づくフィードバック演算により圧縮機目標回転数のF/B操作量TGNChfbを演算する。そして、F/F操作量演算部58が演算したF/F操作量TGNChffとF/B操作量演算部60が演算したTGNChfbは加算器61で加算され、リミット設定部62で制御上限値と制御下限値のリミットが付けられた後、圧縮機目標回転数TGNChとして決定される。暖房モードにおいては、ヒートポンプコントローラ32はこの圧縮機目標回転数TGNChに基づいて圧縮機2の回転数NCを制御する。
 (9−2)吸熱器温度センサ48が設けられていない場合の暖房モードにおける圧縮機2の制御
 一方、図6の如く吸熱器温度センサ48が設けられていない場合は、吸熱器温度Te、即ち、放熱器4に流入する空気の温度が分からない。また、暖房モードでは吸熱器9に冷媒は流れないので、前述した吸熱器吸込空気温度Tevainが補助ヒータ23や放熱器4に流入する空気の温度となるが、前述同様に空気流通路3に流通される空気の外気と内気の比率(内外気比率RECrate)が変化すると、吸熱器吸込空気温度Tevainが変化するため、車両用空気調和装置1の暖房負荷は大きく変化し、能力の過不足が発生する。
 例えば、外気温度Tamが−10℃、内気温度Tinが+25℃の条件において、図8の最上段の如く内外気比率RECrateが0(外気導入モード)の場合、吸熱器吸込空気温度Tevainは最終的に−10℃となり、暖房負荷は大きくなる。また、同じ条件において、図8の最下段の如く内外気比率RECrateが1(内気循環モード)の場合、吸熱器吸込空気温度Tevainは最終的に+25℃となり、暖房負荷は小さくなる。更に、同じ条件において、図8の中段の如く内外気比率RECrateが0.5(内外気中間位置)の場合、吸熱器吸込空気温度Tevainは最終的に+7.5℃となり、暖房負荷は中程度となる。従って、特に内気温度Tin(車室内の空気の温度)が安定した後に、内外気比率RECrateが変化した場合には、圧縮機2の回転数NCが大きく変化することになる。
 そこで、吸熱器温度センサ48が設けられていない場合には、図7の要求暖房能力演算部74は、内外気比率RECrateに基づいて前記式(III)、(IV)で算出された吸熱器吸込空気温度Tevainを用いて、下記式(IX)により要求暖房能力TGQを算出し、F/F操作量演算部58に出力する。
 TGQ=(TCO−Tevain)×Cpa×Ga×γaTe×1.16
                                  ・・(IX)
 尚、各式中のTevain以外の各数値は前記式(VIII)と同様である。
 ここで、吸熱器吸込空気温度Tevainが低い程、即ち、内外気比率RECrateが0に近づいて図8で説明した如く暖房負荷が大きくなる程、要求暖房能力TGQは大きくなるので、F/F操作量TGNChffも大きくなり、圧縮機目標回転数TGNChも高くなる。暖房モードにおいては、ヒートポンプコントローラ32はこの圧縮機目標回転数TGNChに基づいて圧縮機2の回転数NCを制御するので、吸熱器吸込空気温度Tevainが低い程、圧縮機2の回転数NCは高くなり、放熱器4による暖房能力も増大することになる。特に、この要求暖房能力TGQによりF/F操作量TGNChffが算出されるので、吸熱器吸込空気温度Tevainの変化に対して迅速に追従することができる。
 このように、吸熱器温度センサ48が設けられていない場合には、暖房モードではヒートポンプコントローラ32は、吸込切換ダンパ26により調整される外気と内気の比率(内外気比率RECrate)に基づき、吸熱器吸込空気温度Tevainを推定し、推定した当該吸熱器吸込空気温度Tevainに基づいて要求暖房能力TGQを算出し、この要求暖房能力TGQに基づいて圧縮機2の回転数NCを制御するので、吸込切換ダンパ26により空気流通路3に流入する内外気比率RECrateが変化した場合にも、当該比率に基づいて吸熱器吸込空気温度Tevainを推定し、それに基づいて要求暖房能力TGQを算出して、圧縮機2の回転数NCを制御することができるようになる。
 これにより、暖房モードにおいて、外気と内気の比率が変化したことに伴う暖房負荷の変動に迅速に対応し、過不足の無い暖房能力を実現して、車室内の温度を目標とする値に良好に収束させ、快適性と省エネ性の双方を向上させることができるようになる。特に、実施例ではヒートポンプコントローラ32は、少なくとも要求暖房能力TGQに基づくフィードフォワード演算により圧縮機2の目標回転数のF/F操作量TGNChffを算出し、高圧圧力とその目標値(PCO)に基づくフィードバック演算により圧縮機2の目標回転数のF/B操作量TGNChfbを算出し、これらF/F操作量TGNChffとF/B操作量TGNChfbを加算することで、圧縮機2の目標回転数TGNChを算出しているので、外気と内気の比率が変化したことに伴う暖房負荷の変動に迅速に対応して、放熱器4による暖房能力を的確に制御することができるようになる。
 この場合も、実施例ではヒートポンプコントローラ32が、内外気比率RECrate(外気と内気の比率)に基づく一次遅れ演算により吸熱器吸込空気温度Tevainを算出しているので、実際の吸熱器吸込空気温度Tevainの変化に合わせて圧縮機2の回転数NCを制御することができるようになる。
FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention. A vehicle according to an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and travels by driving an electric motor for traveling with electric power charged in a battery. Yes (both not shown), the vehicle air conditioner 1 of the present invention is also driven by the power of the battery. That is, the vehicle air conditioner 1 of the embodiment performs a heating mode by a heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat, and further includes a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode, Each operation mode of the MAX cooling mode (maximum cooling mode) and the auxiliary heater single mode is selectively executed. In this embodiment, the dehumidifying and heating mode, the dehumidifying and cooling mode, the cooling mode, and the MAX cooling mode are the first operation modes in the present application.
The present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles that run on an engine. Needless to say.
The vehicle air conditioner 1 according to the embodiment performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and includes an electric compressor 2 that compresses refrigerant, outside air, and a vehicle. A high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G and is radiated to dissipate the refrigerant in the air flow passage 3 of the HVAC unit 10 through which indoor air is vented / circulated. A radiator 4 (heater) for heating the air supplied to the room, an outdoor expansion valve 6 (pressure reducing device) composed of an electric valve that decompresses and expands the refrigerant during heating, and a heat radiator provided outside the vehicle compartment and for cooling. An outdoor heat exchanger 7 that performs heat exchange between the refrigerant and the outside air to function as an evaporator during heating, an indoor expansion valve 8 (decompression device) that includes an electric valve that decompresses and expands the refrigerant, and air It is provided in the flow passage 3 and during cooling A heat sink 9 for cooling the air supplying coolant to the vehicle interior by heat absorption when fine dehumidification, the accumulator 12 and the like are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed. In this case, the radiator 4 is arranged on the leeward side (air downstream side) of the heat absorber 9 with respect to the air flow in the air flow passage 3.
The refrigerant circuit R is filled with a predetermined amount of refrigerant and lubricating oil. The outdoor heat exchanger 7 is provided with an outdoor blower 15. The outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing outside air through the outdoor heat exchanger 7, so that the outdoor air blower 15 can also be used outdoors even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). It is comprised so that external air may be ventilated by the heat exchanger 7. FIG.
The outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 sequentially on the downstream side of the refrigerant, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is received via an electromagnetic valve 17 opened during cooling. The refrigerant pipe 13 </ b> B connected to the dryer unit 14 and on the outlet side of the supercooling unit 16 is connected to the inlet side of the heat absorber 9 via the indoor expansion valve 8. In addition, the receiver dryer part 14 and the supercooling part 16 structurally constitute a part of the outdoor heat exchanger 7.
The refrigerant pipe 13B between the subcooling section 16 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C on the outlet side of the heat absorber 9, and constitutes an internal heat exchanger 19 together. Thus, the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that has exited the heat absorber 9.
Further, the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched into a refrigerant pipe 13D, and this branched refrigerant pipe 13D is downstream of the internal heat exchanger 19 via an electromagnetic valve 21 opened during heating. The refrigerant pipe 13C is connected in communication. The refrigerant pipe 13 </ b> C is connected to the accumulator 12, and the accumulator 12 is connected to the refrigerant suction side of the compressor 2. Further, the refrigerant pipe 13E on the outlet side of the radiator 4 is connected to the inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.
A refrigerant pipe 13G between the discharge side of the compressor 2 and the inlet side of the radiator 4 is provided with a solenoid valve 30 (which constitutes a flow path switching device) that is closed during dehumidification heating and MAX cooling described later. Yes. In this case, the refrigerant pipe 13G is branched into a bypass pipe 35 on the upstream side of the electromagnetic valve 30, and the bypass pipe 35 is opened by the electromagnetic valve 40 (which also constitutes a flow path switching device) during dehumidifying heating and MAX cooling. ) Through the refrigerant pipe 13E on the downstream side of the outdoor expansion valve 6. Bypass pipe 45, solenoid valve 30 and solenoid valve 40 constitute bypass device 45.
Since the bypass device 45 is configured by the bypass pipe 35, the electromagnetic valve 30, and the electromagnetic valve 40, the dehumidifying heating mode or the MAX for allowing the refrigerant discharged from the compressor 2 to directly flow into the outdoor heat exchanger 7 as will be described later. Switching between the cooling mode and the heating mode in which the refrigerant discharged from the compressor 2 flows into the radiator 4, the dehumidifying cooling mode, and the cooling mode can be performed smoothly.
The air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of the outside air suction port 25A and the inside air suction port 25B, and the outside air, which is air outside the passenger compartment, is formed from the outside air suction port 25A. The inside air that is sucked in and the inside air that is the air in the passenger compartment is sucked from the inside air inlet 25B. Further, a suction switching damper 26 is provided in the air flow passage 3, and outside air and inside air sucked from the suction ports 25 </ b> A and 25 </ b> B are supplied to the air flow passage 3 on the air downstream side of the suction switching damper 26. An indoor blower (blower fan) 27 is provided.
The suction switching damper 26 opens and closes the outside air suction port 25A and the inside air suction port 25B at an arbitrary ratio so that the ratio between the outside air and the inside air flowing into the heat absorber 9 of the air flow passage 3 is between 0 and 100%. It is configured so that it can be adjusted. In the present application, the ratio of the outside air to the inside air adjusted by the suction switching damper 26 is referred to as an inside / outside air ratio RECrate. When this inside / outside air ratio RECrate = 1, the inside air circulation mode is set to 100% inside air and 0% outside air. When the inside / outside air ratio RECrate = 0, the outside air introduction mode is set in which the outside air is 100% and the inside air is 0%. When 0 <inside / outside air ratio RECrate <1, the inside / outside air intermediate position is 0% <inside air <100% and 100%> outside air> 0%. That is, in the present application, the inside / outside air ratio RECrate means the ratio of the inside air in the air flowing into the heat absorber 9 of the air flow passage 3.
The suction switching damper 26 is controlled by an air conditioning controller 20 described later, and the inside air circulation mode, the outside air introduction mode, and the inside / outside air intermediate position are selected by an auto mode described later or a manual operation (manual mode) to the air conditioning operation unit 53. . In this case, the internal air circulation mode is selected when the cooling load during cooling down is large, or when an outside air odor such as a city area is anxious, and the defroster switch ( The outside air introduction mode is selected in conjunction with the air conditioning operation unit 53 (to be described later). In addition, the inside / outside air intermediate position is selected when both reducing the heating load during heating and preventing window fogging.
Moreover, in FIG. 1, 23 is an auxiliary heater as an auxiliary heating device provided in the vehicle air conditioner 1 of the embodiment. The auxiliary heater 23 of the embodiment is composed of a PTC heater (electric heater), and is located on the windward side (upstream side of the air) of the radiator 4 with respect to the air flow of the airflow passage 3 and the heat absorber 9. It is provided in the air flow passage 3 on the leeward side (air downstream side). When the auxiliary heater 23 is energized and generates heat, the air in the air flow passage 3 before flowing into the radiator 4 through the heat absorber 9 is heated. In other words, the auxiliary heater 23 serves as a so-called heater core, which heats or complements the passenger compartment.
Here, the air flow passage 3 on the leeward side (air downstream side) from the heat absorber 9 of the HVAC unit 10 is partitioned by a partition wall 10A, and a heating heat exchange passage 3A and a bypass passage 3B that bypasses it are formed. The radiator 4 and the auxiliary heater 23 described above are disposed in the heating heat exchange passage 3A.
Further, the air (inside air or outside air) in the air flow passage 3 after flowing into the air flow passage 3 and passing through the heat absorber 9 is supplemented into the air flow passage 3 on the windward side of the auxiliary heater 23. Air mix dampers 28Dr and 28As are provided for adjusting the rate of ventilation through the heating heat exchange passage 3A in which the heater 23 and the radiator 4 are disposed.
Further, the HVAC unit 10 on the leeward side of the radiator 4 is formed with FOOT (foot) outlets 29A, VENT (vent) outlets 29B, and DEF (def) outlets 29C. The FOOT air outlet 29A is an air outlet for blowing air under the feet in the passenger compartment, and is at the lowest position. Further, the VENT outlet 29B is an outlet for blowing out air near the driver's chest and face in the passenger compartment, and is located above the FOOT outlet 29A. The DEF air outlet 29C is an air outlet for blowing air to the inner surface of the windshield of the vehicle, and is located at the highest position above the other air outlets 29A and 29B.
The FOOT air outlet 29A, the VENT air outlet 29B, and the DEF air outlet 29C are respectively provided with a FOOT air outlet damper 31A, a VENT air outlet damper 31B, and a DEF air outlet damper 31C that control the amount of air blown out. It has been.
In the vehicle air conditioner 1 of the embodiment, independent left and right air-conditioning control can be performed at the driver's seat and the passenger seat of the vehicle, and the inside of the air flow passage 3 provided with the radiator 4 and the auxiliary heater 23 is provided. It is divided into left and right by a partition plate (not shown). The air mix damper 28Dr described above is an air mix damper for the driver's seat (right) and is provided in the right air flow passage 3, and the air mix damper 28As is an air mix damper for the passenger seat (left). The left air flow passage 3 is provided. The FOOT air outlet damper 31A, the VENT air outlet damper 31B, and the air outlet of the DEF air outlet damper 31C are also divided by the partition plates for the driver seat (for right) and the passenger seat (for left). It is assumed that the air flow passages 3 are provided respectively. Thus, the driver seat and passenger seat identical air conditioning control (right and left air conditioning control) and driver seat and passenger seat independent air conditioning control (right and left independent air conditioning control) can be executed.
In other words, when the air conditioning control unit 53 (to be described later) sets the same air conditioning control for the driver's seat and front passenger seat (right and left air conditioning control), the air mix damper 28Dr and the air mix damper 28As perform the same operation, The air outlet dampers 31A to 31C for the passenger and passenger seats perform the same operation. On the other hand, when the driver / passenger seat independent air-conditioning control (left and right independent air-conditioning control) is selected, the air mix damper 28Dr and the air mix damper 28As operate independently, and the air outlet dampers 31A for the driver seat and the passenger seat are used. ~ 31C will also operate independently.
Next, FIG. 2 shows a block diagram of the control device 11 of the vehicle air conditioner 1 of the embodiment. The control device 11 includes an air-conditioning controller 20 and a heat pump controller 32 each of which is a microcomputer that is an example of a computer including a processor, and these include a CAN (Controller Area Network) and a LIN (Local Interconnect Network). Is connected to a vehicle communication bus 65. The compressor 2 and the auxiliary heater 23 are also connected to the vehicle communication bus 65, and the air conditioning controller 20, the heat pump controller 32, the compressor 2 and the auxiliary heater 23 are configured to transmit and receive data via the vehicle communication bus 65. Has been.
The air conditioning controller 20 is a host controller that controls the vehicle interior air conditioning of the vehicle, and an input of the air conditioning controller 20 includes an outside air temperature sensor 33 that detects an outside air temperature Tam (temperature of air outside the vehicle interior) and the vehicle. An outside air humidity sensor 34 for detecting outside air humidity, an inside air temperature sensor 37 for detecting the temperature (inside air temperature Tin) of the air inside the vehicle (inside air), an inside air humidity sensor 38 for detecting the humidity of the air inside the vehicle interior, Indoor CO that detects the carbon dioxide concentration in the passenger compartment 2 Concentration sensor 39, blowing temperature sensor 41 for detecting the temperature of the air blown into the vehicle interior, discharge pressure sensor 42 for detecting the refrigerant discharge pressure (discharge pressure Pd) of the compressor 2, and the amount of solar radiation into the vehicle interior For example, a photosensor-type solar radiation sensor 51, a vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, and an air conditioner (air conditioner) for setting the set temperature and operation mode. ) The operation unit 53 is connected.
The output of the air conditioning controller 20 is connected to an outdoor fan 15, an indoor fan (blower fan) 27, a suction switching damper 26, air mix dampers 28Dr and 28As, and air outlet dampers 31A to 31C. Is controlled by the air conditioning controller 20.
The heat pump controller 32 is a controller that mainly controls the refrigerant circuit R. The input of the heat pump controller 32 includes a discharge temperature sensor 43 that detects a refrigerant temperature discharged from the compressor 2 and a suction refrigerant pressure of the compressor 2. A suction pressure sensor 44 that detects the refrigerant, a suction temperature sensor 55 that detects the suction refrigerant temperature Ts of the compressor 2, a radiator temperature sensor 46 that detects the refrigerant temperature (radiator temperature TCI) of the radiator 4, and a radiator 4, a radiator pressure sensor 47 for detecting the refrigerant pressure (radiator pressure PCI), a heat absorber temperature sensor 48 for detecting the refrigerant temperature (heat absorber temperature Te) of the heat absorber 9, and a refrigerant pressure of the heat absorber 9 are detected. An endothermic pressure sensor 49 for detecting the temperature of the refrigerant at the outlet of the outdoor heat exchanger 7 (outdoor heat exchanger temperature TXO), and an outdoor heat exchanger temperature sensor 54 for detecting the refrigerant temperature at the outlet of the outdoor heat exchanger 7. Each output of the outdoor heat exchanger pressure sensor 56 for detecting the refrigerant pressure in the mouth (the outdoor heat exchanger pressure PXO) is connected.
Further, the outputs of the auxiliary heater temperature sensors 50Dr and 50As as a plurality of temperature sensors for detecting the temperature of the auxiliary heater 23 (auxiliary heater temperature Tptc) are also connected to the input of the heat pump controller 32. In this case, the auxiliary heater temperature sensor 50Dr detects the temperature of the auxiliary heater 23 on the right side (driver's seat side) partitioned by the partition plate, and the auxiliary heater temperature sensor 50As supports the left side (passenger seat side). It is attached so that the temperature of the heater 23 can be detected.
The output of the heat pump controller 32 includes an outdoor expansion valve 6, an indoor expansion valve 8, an electromagnetic valve 30 (for reheating), an electromagnetic valve 17 (for cooling), an electromagnetic valve 21 (for heating), and an electromagnetic valve 40 (bypass). Are connected to each other and are controlled by the heat pump controller 32. The compressor 2 and the auxiliary heater 23 each have a built-in controller, and the controllers of the compressor 2 and the auxiliary heater 23 send and receive data to and from the heat pump controller 32 via the vehicle communication bus 65. Be controlled.
The heat pump controller 32 and the air conditioning controller 20 transmit / receive data to / from each other via the vehicle communication bus 65, and control each device based on the output of each sensor and the setting input by the air conditioning operation unit 53. In the embodiment in this case, the outside air temperature sensor 33, the discharge pressure sensor 42, the vehicle speed sensor 52, the actual volume air volume Ga of the air flowing into the air flow passage 3 (actual system air volume, calculated by the air conditioning controller 20), the air mix damper Air volume ratios SWDr and SWAs by 28Dr and 28As (calculated by the air conditioning controller 20), the inside / outside air ratio RECrate (adjusted by the air conditioning controller 20), and the output of the air conditioning operation unit 53 from the air conditioning controller 20 via the vehicle communication bus 65 32, and by the heat pump controller 32 It is configured to be subjected your on.
Next, the operation of the vehicle air conditioner 1 having the above-described configuration will be described. In this embodiment, the control device 11 (the air conditioning controller 20 and the heat pump controller 32) has each operation mode of heating mode, dehumidifying heating mode, dehumidifying cooling mode, cooling mode, MAX cooling mode (maximum cooling mode), and auxiliary heater single mode. Switch and execute. First, an outline of refrigerant flow and control in each operation mode will be described.
(1) Heating mode
When the heating mode is selected by the heat pump controller 32 (auto mode) or by manual operation to the air conditioning operation unit 53 (manual mode), the heat pump controller 32 opens the electromagnetic valve 21 (for heating) and the electromagnetic valve 17 (cooling). Close). Further, the electromagnetic valve 30 (for reheating) is opened, and the electromagnetic valve 40 (for bypass) is closed. Then, the compressor 2 is operated. The air-conditioning controller 20 operates each of the blowers 15 and 27, and the air mix dampers 28Dr and 28As basically exchange all the air in the air flow passage 3 blown from the indoor blower 27 and passed through the heat absorber 9 for heating. Although the state is such that the auxiliary heater 23 and the radiator 4 in the passage 3A are ventilated, the air volume may be adjusted.
As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30. Since the air in the airflow passage 3 is passed through the radiator 4, the air in the airflow passage 3 is converted into the high-temperature refrigerant in the radiator 4 (when the auxiliary heater 23 operates, the auxiliary heater 23 and the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air, and is condensed and liquefied.
The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the refrigerant circuit R becomes a heat pump. Then, the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C through the refrigerant pipe 13A, the electromagnetic valve 21 and the refrigerant pipe 13D, and is separated into gas and liquid there. Repeated circulation inhaled. The air heated by the radiator 4 (when the auxiliary heater 23 is operated, the auxiliary heater 23 and the radiator 4) is blown out from the outlets 29A to 29C, so that the vehicle interior is heated. become.
The heat pump controller 32 calculates the target radiator pressure PCO (target value of the radiator pressure PCI) from the target heater temperature TCO (target value of the radiator temperature TCI) calculated by the air conditioning controller 20 from the target outlet temperature TAO, and this target. The number of revolutions NC of the compressor 2 is controlled based on the radiator pressure PCO and the refrigerant pressure of the radiator 4 detected by the radiator pressure sensor 47 (radiator pressure PCI. High pressure of the refrigerant circuit R). Control the heating by. Further, the heat pump controller 32 opens the outdoor expansion valve 6 based on the refrigerant temperature (radiator temperature TCI) of the radiator 4 detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47. And the supercooling degree SC of the refrigerant at the outlet of the radiator 4 is controlled to the target supercooling degree TGSC which is the target value.
Further, in this heating mode, when the heating capability by the radiator 4 is insufficient with respect to the heating capability required for vehicle interior air conditioning (required heating capability TGQ), the heat pump controller 32 uses the auxiliary heater 23 for the shortage. The energization of the auxiliary heater 23 is controlled so as to complement the heat generation. Thereby, comfortable vehicle interior heating is realized and frost formation of the outdoor heat exchanger 7 is also suppressed. In the embodiment, since the auxiliary heater 23 is arranged on the upstream side of the air of the radiator 4, the air flowing through the air flow passage 3 is vented to the auxiliary heater 23 before the radiator 4.
In this case, in the embodiment, the heat pump controller 32 controls the energization of the auxiliary heater 23 using the average value of the detection value TptcDr of the auxiliary heater temperature sensor 50Dr and the detection value TptcAs of the auxiliary heater temperature sensor 50As as the auxiliary heater temperature Tptc.
(2) Dehumidification heating mode
Next, in the dehumidifying heating mode, the heat pump controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is closed, the electromagnetic valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 is operated. The air-conditioning controller 20 operates each of the blowers 15 and 27, and the air mix dampers 28Dr and 28As basically exchange all the air in the air flow passage 3 blown from the indoor blower 27 and passed through the heat absorber 9 for heating. Although the state is such that the auxiliary heater 23 and the radiator 4 in the passage 3A are ventilated, the air volume is also adjusted.
Accordingly, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled, and moisture in the air condenses and adheres to the heat absorber 9, so that the air in the air flow passage 3 is cooled, and Dehumidified. The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
At this time, since the valve opening degree of the outdoor expansion valve 6 is fully closed, it is possible to suppress or prevent inconvenience that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. It becomes. Thereby, the fall of a refrigerant | coolant circulation amount can be suppressed or eliminated and air-conditioning capability can be ensured now. Further, in this dehumidifying and heating mode, the heat pump controller 32 energizes the auxiliary heater 23 to generate heat. As a result, the air cooled and dehumidified by the heat absorber 9 is further heated in the process of passing through the auxiliary heater 23 and the temperature rises, so that the dehumidifying heating in the passenger compartment is performed.
The heat pump controller 32 is a compressor based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and a target heat absorber temperature TEO that is a target value of the heat absorber temperature Te calculated by the air conditioning controller 20. 2, the average value of the detected value TptcDr of the auxiliary heater temperature sensor 50Dr and the detected value TptcAs of the auxiliary heater temperature sensor 50As is set as the auxiliary heater temperature Tptc, and the auxiliary heater temperature Tptc and the target heater temperature TCO By controlling energization (heating by heat generation) of the auxiliary heater 23 based on (in this case, the target value of the auxiliary heater temperature Tptc), the air is appropriately cooled and dehumidified in the heat absorber 9 while assisting. Accurately lowering the temperature of the air blown from the outlets 29A to 29C into the passenger compartment by heating with the heater 23 To prevent. As a result, it is possible to control the temperature to an appropriate heating temperature while dehumidifying the air blown into the vehicle interior, and it is possible to realize comfortable and efficient dehumidification heating in the vehicle interior.
In addition, since the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air heated by the auxiliary heater 23 passes through the radiator 4. In this dehumidifying heating mode, the refrigerant is supplied to the radiator 4. Therefore, the disadvantage that the radiator 4 absorbs heat from the air heated by the auxiliary heater 23 is also eliminated. That is, the temperature of the air blown out into the vehicle compartment by the radiator 4 is suppressed, and the COP is improved.
(3) Dehumidifying and cooling mode
Next, in the dehumidifying and cooling mode, the heat pump controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is opened and the electromagnetic valve 40 is closed. Then, the compressor 2 is operated. The air-conditioning controller 20 operates each of the blowers 15 and 27, and the air mix dampers 28Dr and 28As basically exchange all the air in the air flow passage 3 blown from the indoor blower 27 and passed through the heat absorber 9 for heating. Although the state is such that the auxiliary heater 23 and the radiator 4 in the passage 3A are ventilated, the air volume is also adjusted.
As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
The refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through. In this dehumidifying and cooling mode, the heat pump controller 32 does not energize the auxiliary heater 23, so that the air that has been cooled and dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4 (the heat dissipation capability is lower than that during heating). Is done. As a result, dehumidifying and cooling in the passenger compartment is performed.
The heat pump controller 32 determines the temperature of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO (transmitted from the air conditioning controller 20) that is the target value. The rotational speed NC is controlled. The heat pump controller 32 calculates the target radiator pressure PCO from the target heater temperature TCO described above, and the target radiator pressure PCO and the refrigerant pressure (radiator pressure PCI) of the radiator 4 detected by the radiator pressure sensor 47. Based on the high pressure of the refrigerant circuit R), the valve opening degree of the outdoor expansion valve 6 is controlled, and heating by the radiator 4 is controlled.
(4) Cooling mode
Next, in the cooling mode, the heat pump controller 32 fully opens the opening degree of the outdoor expansion valve 6 in the dehumidifying and cooling mode. Then, the compressor 2 is operated and the auxiliary heater 23 is not energized. The air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix dampers 28Dr and 28As of the air flow passage 3 blown out from the indoor blower 27 and passed through the heat absorber 9 are used to assist the heating heat exchange passage 3A. The ratio of the ventilation through the heater 23 and the radiator 4 is adjusted.
As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30, and the refrigerant exiting the radiator 4 passes through the refrigerant pipe 13E and the outdoor expansion valve 6. To. At this time, since the outdoor expansion valve 6 is fully opened, the refrigerant passes through it and flows into the outdoor heat exchanger 7 as it is, where it is cooled by air or by outside air that is ventilated by the outdoor blower 15 and condensed. Liquefaction. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. Further, moisture in the air condenses and adheres to the heat absorber 9.
The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through. Air that has been cooled and dehumidified by the heat absorber 9 is blown into the vehicle interior from each of the air outlets 29A to 29C (partly passes through the radiator 4 to exchange heat), thereby cooling the vehicle interior. Will be done. Further, in this cooling mode, the heat pump controller 32 uses the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the above-described target heat absorber temperature TEO which is the target value of the compressor 2. The number of revolutions NC is controlled.
(5) MAX cooling mode (maximum cooling mode)
Next, in the MAX cooling mode as the maximum cooling mode, the heat pump controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is closed, the electromagnetic valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 is operated and the auxiliary heater 23 is not energized. The air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix dampers 28Dr and 28As of the air flow passage 3 blown out of the indoor blower 27 and passed through the heat absorber 9 are supplied to the heating heat exchange passage 3A. It is set as the state which adjusts the ratio ventilated by the auxiliary heater 23 and the heat radiator 4. FIG.
Accordingly, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. In addition, since moisture in the air condenses and adheres to the heat absorber 9, the air in the air flow passage 3 is dehumidified. The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through. At this time, since the outdoor expansion valve 6 is fully closed, similarly, it is possible to suppress or prevent the disadvantage that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. . Thereby, the fall of a refrigerant | coolant circulation amount can be suppressed or eliminated and air-conditioning capability can be ensured now.
Here, since the high-temperature refrigerant flows through the radiator 4 in the cooling mode described above, direct heat conduction from the radiator 4 to the HVAC unit 10 occurs not a little, but in this MAX cooling mode, the refrigerant flows into the radiator 4. Therefore, the air in the air flow passage 3 from the heat absorber 9 is not heated by the heat transmitted from the radiator 4 to the HVAC unit 10. Therefore, powerful cooling of the passenger compartment is performed, and particularly in an environment where the outside air temperature Tam is high, the passenger compartment can be quickly cooled to realize comfortable air conditioning in the passenger compartment. Also in this MAX cooling mode, the heat pump controller 32 is also connected to the compressor based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO, which is the target value. 2 is controlled.
(6) Auxiliary heater single mode
Note that the control device 11 of the embodiment stops the compressor 2 and the outdoor blower 15 of the refrigerant circuit R and energizes the auxiliary heater 23 when, for example, excessive frost formation occurs in the outdoor heat exchanger 7. The auxiliary heater single mode for heating the passenger compartment with only 23 is provided. Also in this case, the heat pump controller 32 sets the average value of the detected value TptcDr of the auxiliary heater temperature sensor 50Dr and the detected value TptcAs of the auxiliary heater temperature sensor 50As as the auxiliary heater temperature Tptc, and the auxiliary heater temperature Tptc and the above-described target heater temperature TCO. Based on the above, the energization (heat generation) of the auxiliary heater 23 is controlled.
The air conditioning controller 20 operates the indoor blower 27, and the air mix dampers 28Dr and 28As vent the air in the air flow passage 3 blown out from the indoor blower 27 to the auxiliary heater 23 of the heating heat exchange passage 3A. Adjust the air volume. Since the air heated by the auxiliary heater 23 is blown into the vehicle interior from each of the air outlets 29A to 29C, the vehicle interior is thereby heated.
(7) Switching operation mode
The air conditioning controller 20 calculates the target blowing temperature TAO described above from the following formula (I). This target blowing temperature TAO is a target value of the temperature of the air blown into the passenger compartment.
TAO = (Tset−Tin) × K + Tbal (f (Tset, SUN, Tam))
.. (I)
Here, Tset is the set temperature in the passenger compartment set by the air conditioning operation unit 53, Tin is the inside air temperature detected by the inside air temperature sensor 37, K is a coefficient, Tbal is the set temperature Tset, and the amount of solar radiation detected by the solar radiation sensor 51. SUN is a balance value calculated from the outside air temperature Tam detected by the outside air temperature sensor 33. And generally this target blowing temperature TAO is so high that the outside temperature Tam is low, and it falls as the outside temperature Tam rises.
When the heat pump controller 32 is activated, the heat pump controller 32 determines which one of the above operation modes based on the outside air temperature Tam (detected by the outside air temperature sensor 33) transmitted from the air conditioning controller 20 via the vehicle communication bus 65 and the target outlet temperature TAO. The operation mode is selected and each operation mode is transmitted to the air conditioning controller 20 via the vehicle communication bus 65. In addition, after startup, the outside air temperature Tam, the humidity in the passenger compartment, the target blowing temperature TAO, the heating temperature TH (the temperature of the air on the leeward side of the radiator 4, estimated value), the target heater temperature TCO, the heat sink temperature Te, By switching each operation mode based on parameters such as the target heat absorber temperature TEO and whether or not there is a dehumidification request in the passenger compartment, the heating mode, dehumidification heating mode, and dehumidification are accurately performed according to the environmental conditions and necessity of dehumidification. The cooling mode, the cooling mode, the MAX cooling mode, and the auxiliary heater single mode are switched to control the temperature of the air blown into the vehicle interior to the target blowing temperature TAO, thereby realizing comfortable and efficient vehicle interior air conditioning.
Here, the heating temperature TH is the temperature of the leeward air of the radiator 4 and is estimated by the heat pump controller 32 from the first-order lag calculation formula (II) shown below.
TH = (INTL1 × TH0 + Tau1 × THz) / (Tau1 + INTL1)
.. (II)
Here, INTL1 is a calculation cycle (constant), Tau1 is a time constant of a first-order lag, TH0 is a steady value of the heating temperature TH in a steady state before the first-order lag calculation, and THz is a previous value of the heating temperature TH. By estimating the heating temperature TH in this way, there is no need to provide a special temperature sensor. Further, the heat pump controller 32 changes the time constant Tau1 and the steady value TH0 according to the operation mode described above, thereby changing the above-described estimation formula (II) depending on the operation mode, and estimates the heating temperature TH. The heating temperature TH is transmitted to the air conditioning controller 20 via the vehicle communication bus 65.
(8) Control of the compressor 2 in the cooling mode, the dehumidifying cooling mode, the dehumidifying heating mode, and the MAX cooling mode using the inside / outside air ratio RECrate
Next, the compressor 2 in each operation mode (first operation mode) of the cooling mode, the dehumidifying cooling mode, the dehumidifying heating mode, and the MAX cooling mode using the inside / outside air ratio RECrate described above with reference to FIGS. The control will be described in detail. 3 is a longitudinal side view of the HVAC unit 10, FIG. 4 is a control block diagram regarding compressor control in the cooling mode, the dehumidifying cooling mode, the dehumidifying heating mode, and the MAX cooling mode by the heat pump controller 32, and FIG. 5 is the inside / outside air ratio RECrate and the cooling. It is a figure explaining the relationship with the cooling load of a mode.
When the ratio of the outside air to the inside air flowing through the air flow passage 3 (inside / outside air ratio RECrate) changes, the temperature of the air flowing into the heat absorber 9 (heat absorber intake air temperature Tevain) changes. The cooling load of the harmony device 1 changes greatly, and excessive or insufficient capacity occurs. Therefore, the heat pump controller 32 calculates and estimates the heat sink intake air temperature Tevain using the following formulas (III) and (IV) based on the inside / outside air ratio RECrate as will be described later.
Tevain = (INTL2 × Tevain0 + Tau2 × Tevainz) / (Tau2 + INTL2)
.. (III)
Tevain0 = Tam × (1-RECrate) + Tin × RECrate
.. (IV)
Here, INTL2 is the calculation cycle (constant), Tau2 is the time constant of the first-order lag, Tevain0 is the steady-state value of the heat sink intake air temperature Tevain in the steady state before the first-order lag calculation, and Tevainz is the previous value of the heat sink intake air temperature Tevain. It is. Tam is the outside air temperature and Tin is the inside air temperature. For example, under the conditions where the outside air temperature Tam is + 40 ° C. and the inside air temperature Tin is + 25 ° C., when the inside / outside air ratio RECrate is 0 (outside air introduction mode) as shown in the uppermost part of FIG. 5, the heat sink intake air temperature Tevain is finally + 40 ° C, and the cooling load increases. Further, under the same conditions, when the inside / outside air ratio RECrate is 1 (inside air circulation mode) as shown in the lowermost stage of FIG. 5, the heat sink intake air temperature Tevain finally becomes + 25 ° C., and the cooling load becomes small. Further, under the same conditions, when the inside / outside air ratio RECrate is 0.5 (inside / outside air intermediate position) as shown in the middle of FIG. 5, the heat sink intake air temperature Tevain finally becomes + 32.5 ° C., and the cooling load is moderate. (This also applies to the first operation mode other than the cooling mode). Therefore, especially when the inside / outside air ratio RECrate changes after the inside air temperature Tin (the temperature of the air inside the vehicle interior) has stabilized, the rotational speed NC of the compressor 2 changes greatly, so that the heat pump controller 32 draws in the heat absorber. Control for correcting the rotational speed NC of the compressor 2 based on the air temperature Tevain is executed.
Specific control will be described with reference to the block diagram of FIG. The F / F (feed forward) manipulated variable calculation unit 63 of the heat pump controller 32 includes an outside air temperature Tam, a volumetric air volume Ga of air flowing into the air flow passage 3, and a pressure of the radiator 4 (radiator pressure PCI, high pressure). F / F manipulated variable TGNCcff0 of the target rotational speed of the compressor based on the target radiator pressure PCO that is the target value of the compressor and the target heat absorber temperature TEO that is the target value of the heat absorber temperature Te (sent from the air conditioning controller 20) Is calculated.
Here, an example of the formula of the feedforward calculation performed by the F / F manipulated variable calculation unit 63 is shown in (V) below. That is,
・ Cooling mode
TGNCcff0 = K1 × Tam + K2 × Ga + K3 × TEO + K4
・ In dehumidifying and cooling mode
TGNCcff0 = K5 × Tam + K6 × Ga + K7 × TEO + K8 × PCO + K9
・ In the case of dehumidifying heating mode / MAX cooling mode
TGNCcff0 = K10 × Tam + K11 × Ga + K12 × TEO + K13
.. (V)
K1 to K3, K5 to K8, and K10 to K12 are coefficients, and K4, K9, and K13 are constants.
The correction value calculation unit 71 of the heat pump controller 32 calculates the heat absorber intake air temperature Tevain from the outside air temperature Tam, the inside air temperature Tin, and the inside / outside air ratio RECrate using the above formulas (III) and (IV), and this heat absorber. Based on the intake air temperature Tevain, a correction value TGNCcffHos is calculated using the following formula (VI).
TGNCcffHos = K14 × Tevain (VI)
Here, K14 is a coefficient for converting the temperature into the rotational speed.
Then, the F / F manipulated variable TGNCcff0 calculated by the F / F manipulated variable calculator 63 and the correction value TGNCcffHos calculated by the correction value calculator 71 are added by the adder 72, and finally the F / F manipulated variable TGNCcff (TGNCcff) = TGNCcff0 + TGNCcffHos). That is, the F / F operation amount TGNCcff0 calculated by the F / F operation amount calculation unit 63 is corrected by the correction value TGNCcffHos and determined as the F / F operation amount TGNCcff.
Here, the correction value TGNCcffHos increases as the heat sink intake air temperature Tevain increases, that is, as the inside / outside air ratio RECrate approaches 0 and the cooling load increases as described with reference to FIG. 5, and the F / F manipulated variable TGNCcff Is corrected in the direction of increasing.
Further, the F / B (feedback) manipulated variable calculating unit 64 calculates the F / B manipulated variable TGNCcfb of the compressor target rotational speed based on the target heat absorber temperature TEO and the heat absorber temperature Te. Then, the F / F manipulated variable TGNCcff determined by the adder 72 and the F / B manipulated variable TGNCcfb calculated by the F / B manipulated variable calculating unit 64 are added by the adder 66, and the control setting upper limit value is obtained by the limit setting unit 67. And the control lower limit value is set, and then determined as the compressor target rotational speed TGNCc.
In the cooling mode, the dehumidifying cooling mode, the dehumidifying heating mode, and the MAX cooling mode, the heat pump controller 32 controls the rotational speed NC of the compressor 2 based on the compressor target rotational speed TGNCc, so that the heat sink intake air temperature Tevain is The higher the value, the higher the rotational speed NC of the compressor 2 is corrected, and the cooling / dehumidifying capacity of the heat absorber 9 also increases. In particular, since the F / F manipulated variable TGNCcff is corrected, it is possible to quickly follow the change in the heat sink intake air temperature Tevain.
Thus, the heat pump controller 32 is adjusted by the suction switching damper 26 in the cooling mode in which the refrigerant flows through the heat absorber 9, the dehumidifying cooling mode, the dehumidifying heating mode, and the MAX cooling mode (all are the first operation mode). Based on the inside / outside air ratio RECrate, the heat sink suction air temperature Tevain flowing into the heat sink 9 is estimated, and the rotation speed of the compressor 2 is controlled based on the estimated heat sink suction air temperature Tevain. Even when the ratio between the outside air and the inside air flowing into the air flow passage 3 changes, the heat sink suction air temperature Tevain is estimated based on the inside / outside air ratio RECrate, and the rotational speed NC of the compressor 2 can be controlled. become.
As a result, it quickly responds to fluctuations in the cooling load due to the change in the ratio of outside air to inside air, realizes an air conditioning capacity without excess and deficiency, and converges the temperature in the passenger compartment well to the target value, Both comfort and energy saving can be improved.
In this case, in the embodiment, the heat pump controller 32 calculates the F / F manipulated variable TGNCcff of the target rotational speed of the compressor 2 by feedforward calculation based on at least the target heat absorber temperature TEO that is the target value of the heat absorber temperature Te, The feedback operation based on the heat absorber temperature Te and the target heat absorber temperature TEO is used to calculate the F / B manipulated variable TGNCcfb of the target rotational speed of the compressor 2, and the F / F manipulated variable TGNCcff and the F / B manipulated variable TGNCcfb are added. Thus, the target rotational speed TGNCc of the compressor 2 is calculated, and the F / F manipulated variable TGNCcff is corrected based on the heat sink suction air temperature Tevain. Therefore, the cooling load caused by the change in the inside / outside air ratio RECrate Responding quickly to fluctuations, the cooling / dehumidifying capacity of the heat sink 9 can be accurately controlled. So as to.
Here, when the ratio between the outside air and the inside air changes, it takes some time until it is reflected in the heat sink intake air temperature Tevain. That is, even if the ratio between the outside air and the inside air changes, the heat sink suction air temperature Tevain does not change immediately, but in the embodiment, the heat pump controller 32 calculates the first order lag based on the inside / outside air ratio RECrate (the ratio between the outside air and the inside air). Since the heat sink suction air temperature Tevain is calculated by the above, the rotational speed NC of the compressor 2 can be controlled in accordance with the change in the actual heat sink suction air temperature Tevain.
(9) Control of the compressor 2 in the heating mode using the inside / outside air ratio RECrate
Next, the control of the compressor 2 in the heating mode using the inside / outside air ratio RECrate described above with reference to FIGS. 6 to 8 will be described in detail. 6 is a vertical side view of the HVAC unit 10 when the heat absorber temperature sensor 48 is not provided, FIG. 7 is a control block diagram regarding compressor control in the heating mode by the heat pump controller 32, and FIG. 8 is an inside / outside air ratio RECrate and the heating mode. It is a figure explaining the relationship with no heating load.
(9-1) Control of the compressor 2 in the heating mode when the heat absorber temperature sensor 48 is provided
First, for comparison, the control of the compressor 2 when the heat absorber temperature sensor 48 is provided as in the examples of FIGS. 2 and 3 will be described with reference to FIG. The F / F (feed forward) manipulated variable calculator 58 of the heat pump controller 32 includes a required heating capacity TGQ, which will be described later, which is a required heating capacity of the radiator 4, and a volumetric air volume Ga of the air flowing into the air flow passage 3. Feed forward based on the outside air temperature Tam obtained from the outside air temperature sensor 33, the target heater temperature TCO, which is the target value of the temperature of the radiator 4, and the target radiator pressure PCO, which is the target value of the pressure of the radiator 4. The F / F manipulated variable TGNChff of the compressor target rotational speed is calculated by calculation.
Here, an example of the formula of the feedforward calculation performed by the F / F manipulated variable calculation unit 58 is shown in the following (VII).
TGNChff = K15 × TGQ + K16 × Ga + K17 × Tam + K18
.. (VII)
K15 to K17 are coefficients, and K18 is a constant.
The required heating capacity TGQ is calculated by the required heating capacity calculation unit 74 using the following formula (VIII) and is input to the F / F manipulated variable calculation unit 58.
TGQ = (TCO-Te) × Cpa × Ga × γaTe × 1.16 (VIII)
Te is the heat absorber temperature, Cpa is the constant pressure specific heat of air [kJ / m 3 K], Ga is the volumetric air volume of the air flowing into the air flow passage 3, γaTe is the air specific gravity, and 1.16 is a coefficient for matching the units. When the heat absorber temperature sensor 48 is provided, the heat absorber temperature Te can be acquired. In this case, since the heat absorber 9 is provided on the windward side of the radiator 4, the heat absorber temperature Te is the temperature of the air flowing into the auxiliary heater 23 and the radiator 4. Therefore, the required heating capacity calculation unit 74 calculates the required heating capacity TGQ from the difference between the target heater temperature TCO and the heat absorber temperature Te.
The target radiator pressure PCO is calculated by the target value calculator 59 based on the target supercooling degree TGSC that is the target value of the refrigerant subcooling degree SC at the outlet of the radiator 4 and the target radiator temperature TCO. Further, the F / B (feedback) manipulated variable calculation unit 60 performs the compressor target rotation by feedback calculation based on the target radiator pressure PCO and the radiator pressure PCI (high pressure of the refrigerant circuit R) that is the refrigerant pressure of the radiator 4. The F / B manipulated variable TGNChfb is calculated. Then, the F / F manipulated variable TGNChff computed by the F / F manipulated variable computing unit 58 and the TGNChfb computed by the F / B manipulated variable computing unit 60 are added by the adder 61, and the control upper limit value and the control are controlled by the limit setting unit 62. After the lower limit is set, it is determined as the compressor target rotational speed TGNCh. In the heating mode, the heat pump controller 32 controls the rotational speed NC of the compressor 2 based on the compressor target rotational speed TGNCh.
(9-2) Control of the compressor 2 in the heating mode when the heat absorber temperature sensor 48 is not provided
On the other hand, when the heat absorber temperature sensor 48 is not provided as shown in FIG. 6, the heat absorber temperature Te, that is, the temperature of the air flowing into the radiator 4 is not known. In the heating mode, since the refrigerant does not flow into the heat absorber 9, the above-described heat absorber suction air temperature Tevain becomes the temperature of the air flowing into the auxiliary heater 23 and the radiator 4. When the ratio of the outside air to the inside air (inside / outside air ratio RECrate) changes, the heat sink intake air temperature Tevain changes, so that the heating load of the vehicle air conditioner 1 changes greatly, resulting in excessive or insufficient capacity. To do.
For example, under the conditions where the outside air temperature Tam is −10 ° C. and the inside air temperature Tin is + 25 ° C., if the inside / outside air ratio RECrate is 0 (outside air introduction mode) as shown in the uppermost stage of FIG. 8, the heat sink intake air temperature Tevain is finally -10 ° C, and the heating load increases. Further, under the same conditions, when the inside / outside air ratio RECrate is 1 (inside air circulation mode) as shown in the lowermost stage of FIG. 8, the heat sink intake air temperature Tevain finally becomes + 25 ° C., and the heating load becomes small. Further, under the same conditions, when the inside / outside air ratio RECrate is 0.5 (inside / outside air intermediate position) as shown in the middle of FIG. 8, the heat sink intake air temperature Tevain finally becomes + 7.5 ° C., and the heating load is moderate. It becomes. Therefore, especially when the inside / outside air ratio RECrate changes after the inside air temperature Tin (the temperature of the air in the passenger compartment) is stabilized, the rotational speed NC of the compressor 2 greatly changes.
Therefore, when the heat absorber temperature sensor 48 is not provided, the required heating capacity calculation unit 74 in FIG. 7 performs the heat absorber suction calculated by the above formulas (III) and (IV) based on the inside / outside air ratio RECrate. The required heating capacity TGQ is calculated by the following formula (IX) using the air temperature Tevain, and is output to the F / F manipulated variable calculator 58.
TGQ = (TCO-Tevain) × Cpa × Ga × γaTe × 1.16
.. (IX)
In addition, each numerical value other than Tevain in each formula is the same as that in the formula (VIII).
Here, as the heat sink intake air temperature Tevain is lower, that is, as the inside / outside air ratio RECrate approaches 0 and the heating load increases as described with reference to FIG. 8, the required heating capacity TGQ increases. The amount TGNChff increases, and the compressor target rotational speed TGNCh also increases. In the heating mode, the heat pump controller 32 controls the rotational speed NC of the compressor 2 based on the compressor target rotational speed TGNCh. Therefore, the lower the heat sink intake air temperature Tevain, the higher the rotational speed NC of the compressor 2 is. Therefore, the heating capacity by the radiator 4 is also increased. In particular, since the F / F manipulated variable TGNChff is calculated from the required heating capacity TGQ, it is possible to quickly follow the change in the heat sink intake air temperature Tevain.
Thus, when the heat absorber temperature sensor 48 is not provided, in the heating mode, the heat pump controller 32 is based on the ratio between the outside air and the inside air (inside / outside air ratio RECrate) adjusted by the suction switching damper 26. The intake air temperature Tevain is estimated, the required heating capacity TGQ is calculated based on the estimated heat sink intake air temperature Tevain, and the rotation speed NC of the compressor 2 is controlled based on the required heating capacity TGQ. Even when the inside / outside air ratio RECrate flowing into the air flow passage 3 is changed by the damper 26, the heat sink intake air temperature Tevain is estimated based on the ratio, and the required heating capacity TGQ is calculated based on the estimated temperature. 2 can be controlled.
This makes it possible to quickly respond to heating load fluctuations due to changes in the ratio of outside air to inside air in the heating mode, achieve a heating capacity with no excess or deficiency, and achieve a good target cabin temperature It is possible to improve both comfort and energy saving. In particular, in the embodiment, the heat pump controller 32 calculates the F / F manipulated variable TGNChff of the target rotational speed of the compressor 2 by feedforward calculation based on at least the required heating capacity TGQ, and based on the high pressure and the target value (PCO). The F / B manipulated variable TGNChfb of the target rotational speed of the compressor 2 is calculated by feedback calculation, and the target rotational speed TGNCh of the compressor 2 is obtained by adding the F / F manipulated variable TGNChff and the F / B manipulated variable TGNChfb. Since the calculation is performed, the heating capacity of the radiator 4 can be accurately controlled in response to a change in the heating load due to a change in the ratio between the outside air and the inside air.
In this case as well, in the embodiment, the heat pump controller 32 calculates the heat sink intake air temperature Tevain by a first-order lag calculation based on the inside / outside air ratio RECrate (ratio between outside air and inside air), and thus the actual heat sink intake air temperature Tevain. It becomes possible to control the rotational speed NC of the compressor 2 in accordance with the change of.
 次に、図9は本発明を適用した他の実施例の車両用空気調和装置1の構成図を示している。尚、この図において図1と同一符号で示すものは同一若しくは同様の機能を奏するものである。この実施例の場合、過冷却部16の出口は逆止弁18に接続され、この逆止弁18の出口が冷媒配管13Bに接続されている。尚、逆止弁18は冷媒配管13B(室内膨張弁8)側が順方向とされている。
 また、放熱器4の出口側の冷媒配管13Eは室外膨張弁6の手前で分岐しており、この分岐した冷媒配管(以下、バイパス回路と称する)13Fは電磁弁22(除湿用)を介して逆止弁18の下流側の冷媒配管13Bに連通接続されている。更に、吸熱器9の出口側の冷媒配管13Cには、内部熱交換器19の冷媒下流側であって、冷媒配管13Dとの合流点より冷媒上流側に蒸発圧力調整弁70が接続されている。そして、これら電磁弁22や蒸発圧力調整弁70もヒートポンプコントローラ32の出力に接続されて制御される。尚、前述の実施例の図1中のバイパス配管35、電磁弁30及び電磁弁40から成るバイパス装置45は設けられていない。その他は図1と同様であるので説明を省略する。
 以上の構成で、この実施例の車両用空気調和装置1の動作を説明する。ヒートポンプコントローラ32はこの実施例では、暖房モード、除湿暖房モード、内部サイクルモード、除湿冷房モード、冷房モード及び補助ヒータ単独モードの各運転モードを切り換えて実行する(MAX冷房モードはこの実施例では存在しない)。そして、この実施例では除湿暖房モード、内部サイクルモード、除湿冷房モード、冷房モードが本出願における第1の運転モードとなる。
 尚、暖房モード、除湿冷房モード及び冷房モードが選択されたときの動作及び冷媒の流れと、補助ヒータ単独モードは前述の実施例(実施例1)の場合と同様であるので説明を省略する。但し、この実施例(実施例2)ではこれら暖房モード、除湿冷房モード及び冷房モードにおいては電磁弁22を閉じるものとする。
 (10)図9の車両用空気調和装置1の除湿暖房モード
 他方、除湿暖房モードが選択された場合、この実施例(実施例2)ではヒートポンプコントローラ32は電磁弁21(暖房用)を開放し、電磁弁17(冷房用)を閉じる。また、電磁弁22(除湿用)を開放する。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量の調整も行う。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は冷媒配管13Gから放熱器4に流入する。放熱器4には暖房用熱交換通路3Aに流入した空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A、電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。
 また、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部は分流され、電磁弁22を経てバイパス回路13F及び冷媒配管13Bより内部熱交換器19を経て室内膨張弁8に至るようになる。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は、内部熱交換器19、蒸発圧力調整弁70を順次経て冷媒配管13Cにて冷媒配管13Dからの冷媒と合流した後、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。
 空調コントローラ20は、目標吹出温度TAOから算出される目標ヒータ温度TCO(放熱器出口温度TCIの目標値)をヒートポンプコントローラ32に送信する。ヒートポンプコントローラ32は、図7で説明した暖房モードの場合と同様に目標放熱器圧力PCOと、放熱器圧力PCI(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数NCを制御するか、又は、図4で説明した冷房モードの場合と同様に吸熱器温度Teと、目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御する。その場合は、圧縮機目標回転数TGNChと圧縮機目標回転数TGNCcのうちの小さい方(MIN)を選択して圧縮機2の回転数NCを制御することになる。
 即ち、圧縮機目標回転数TGNChが選択されるとき、吸熱器温度センサ48が設けられない場合には、前述同様に吸熱器吸込空気温度Tevainを推定し、それに基づいて要求暖房能力TGQを算出する(図7)。また、圧縮機目標回転数TGNCcが選択されるときには、吸熱器吸込空気温度Tevainに基づいてF/F操作量TGNCcffを補正するものである(図4)。
 また、ヒートポンプコントローラ32は、吸熱器温度Teと、目標吸熱器温度TEOに基づいて室外膨張弁6の弁開度を制御するがこれについては後に詳述する。更に、ヒートポンプコントローラ32は吸熱器温度Teに基づき、蒸発圧力調整弁70を開(流路を拡大する)/閉(少許冷媒が流れる)して吸熱器9の温度が下がり過ぎて凍結する不都合を防止する。
 (11)図9の車両用空気調和装置1の内部サイクルモード
 また、内部サイクルモードでは、ヒートポンプコントローラ32は上記除湿暖房モードの状態において室外膨張弁6を全閉とする(全閉位置)と共に、電磁弁21を閉じる。この室外膨張弁6と電磁弁21が閉じられることにより、室外熱交換器7への冷媒の流入、及び、室外熱交換器7からの冷媒の流出は阻止されることになるので、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒は電磁弁22を経てバイパス回路13Fに全て流れるようになる。そして、バイパス回路13Fを流れる冷媒は冷媒配管13Bより内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は、内部熱交換器19、蒸発圧力調整弁70を順次経て冷媒配管13Cを流れ、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより、車室内の除湿暖房が行われることになるが、この内部サイクルモードでは室内側の空気流通路3内にある放熱器4(放熱)と吸熱器9(吸熱)の間で冷媒が循環されることになるので、外気からの熱の汲み上げは行われず、圧縮機2の消費動力分の暖房能力が発揮される。除湿作用を発揮する吸熱器9には冷媒の全量が流れるので、上記除湿暖房モードに比較すると除湿能力は高いが、暖房能力は低くなる。このヒートポンプコントローラ32による圧縮機2の制御は除湿暖房モードと同様である。
 (12)図9の車両用空気調和装置1の除湿暖房モードでの室外膨張弁6の制御
 次に、図10のブロック図を参照しながら前述したこの実施例(実施例2)の除湿暖房モードにおける室外膨張弁6の具体的な制御について説明する。ヒートポンプコントローラ32のF/F(フィードフォワード)操作量演算部76は前述した目標ヒータ温度TCOと、空気流通路3に流入した空気の体積風量Gaと、外気温度Tamと、目標吸熱器温度TEOに基づいて室外膨張弁目標弁開度のF/F操作量TGECCVteff0を算出する。
 また、ヒートポンプコントローラ32の補正値演算部81は外気温度Tamと内気温度Tinと内外気比率RECrateから前記式(III)、(IV)を用いて吸熱器吸込空気温度Tevainを算出し、この吸熱器吸込空気温度Tevainに基づき、下記式(X)を用いて補正値TGECCVteffHosを算出する。
 TGECCVteffHos=K19×Tevai
n          ・・(X)
 ここで、K19は温度を弁開度に変換するための係数である。
 そして、補正値演算部81が算出した補正値TGECCVteffHosは、F/F操作量演算部76が算出したF/F操作量TGECCVteff0から減算器82で減算され、最終的にF/F操作量TGECCVteff(TGECCVteff=TGECCVteff0−TGECCVteffHos)とされる。即ち、F/F操作量演算部76が算出したF/F操作量TGECCVteff0が補正値TGECCVteffHosにより補正され、F/F操作最TGECCVteffとして決定される。
 ここで、吸熱器吸込空気温度Tevainが高い程、即ち、内外気比率RECrateが0に近づいて図5で説明した如く冷房負荷が大きくなる程、補正値TGECCVteffHosが大きくなり、F/F操作量TGECCVteffは小さくなる方向(室外膨張弁6を閉じる方向)に補正されることになる。
 また、F/B(フィードバック)操作量演算部77は目標吸熱器温度TEOと吸熱器温度Teに基づいて室外膨張弁目標弁開度のF/B操作量TGECCVtefbを算出する。そして、減算器82で決定されたF/F操作量TGECCVteffとF/B操作量演算部77で算出されたF/B操作量TGECCVtefbは加算器78で加算され、リミット設定部79で制御上限値と制御下限値のリミットが付けられた後、室外膨張弁目標弁開度TGECCVteとして決定される。
 この実施例における除湿暖房モードにおいては、ヒートポンプコントローラ32はこの室外膨張弁目標弁開度TGECCVteに基づいて室外膨張弁6の弁開度を制御するので、吸熱器吸込空気温度Tevainが高い程、室外膨張弁6は閉じられる方向に補正される。室外膨張弁6が閉じられる方向に補正されると、バイパス回路13F及び冷媒配管13Bを経て吸熱器9に流入する冷媒量が増加するので、吸熱器9による冷房/除湿能力が増大することになる。特に、F/F操作量TGECCVteffを補正するので、吸熱器吸込空気温度Tevainの変化に対して迅速に追従することができる。
 尚、上記実施例(実施例2)では吸熱器吸込空気温度Tevainに基づいて室外膨張弁6の弁開度及び圧縮機2の回転数を制御するようにしたが、それに限らず、それらのうちの何れか一方のみを吸熱器吸込空気温度Tevainに基づいて制御するようにしてもよい。
 このように、この実施例の場合もヒートポンプコントローラ32は、吸込切換ダンパ26により調整される内外気比率RECrateに基づき、吸熱器9に流入する空気の温度である吸熱器吸込空気温度Tevainを推定し、推定した吸熱器吸込空気温度Tevainに基づいて室外膨張弁6の弁開度、及び/又は、圧縮機2の回転数を制御するようにしたので、吸込切換ダンパ26により空気流通路3に流入する外気と内気の比率が変化した場合にも、当該比率に基づいて吸熱器吸込空気温度Tevainを推定し、室外膨張弁6の弁開度、及び/又は、圧縮機2の回転数を制御することができるようになる。
 これにより、この実施例の除湿暖房モードにおいても、外気と内気の比率が変化したことに伴う負荷変動に迅速に対応し、吸熱器9による過不足の無い除湿能力を実現することができるようになる。
 この場合もヒートポンプコントローラ32は、少なくとも吸熱器温度Teの目標値である目標吸熱器温度TEOに基づくフィードフォワード演算により室外膨張弁6の目標弁開度のF/F操作量TGECCVteffを算出し、吸熱器温度Teと目標吸熱器温度TEOに基づくフィードバック演算により室外膨張弁6の目標弁開度のF/B操作量TGECCVtefbを算出し、これらF/F操作量TGECCVteffとF/B操作量TGECCVtefbを加算することで、室外膨張弁6の目標弁開度TGECCVteを算出し、少なくとも目標吸熱器温度TEOに基づくフィードフォワード演算により圧縮機2の目標回転数のF/F操作量TGNCcffを算出し、吸熱器温度Teと目標吸熱器温度TEOに基づくフィードバック演算により圧縮機2の目標回転数のF/B操作量TGNCcfbを算出し、これらF/F操作量TGNCcffとF/B操作量TGNCcfbを加算することで、圧縮機2の目標回転数TGNCcを算出し、圧縮機目標回転数TGNChとTGNCcのうち、TGNCcの方が小さい場合には当該目標回転数TGNCcを選択しており、吸熱器吸込空気温度Tevainに基づいてF/F操作量TGECCVteff、及び/又は、F/F操作量TGNCcffを補正するので、内外気比率RECrateが変化したことに伴う負荷変動に迅速に対応して、吸熱器8による除湿能力を的確に制御し、快適な除湿暖房を実現することができるようになる。
 この場合も、実施例ではヒートポンプコントローラ32が、内外気比率RECrate(外気と内気の比率)に基づく一次遅れ演算により吸熱器吸込空気温度Tevainを算出しているので、実際の吸熱器吸込空気温度Tevainの変化に合わせて室外膨張弁6の弁開度を制御することができるようになる。
 尚、各実施例で示した制御に用いるパラメータや数値等はそれに限られるものでは無く、本発明の趣旨を逸脱しない範囲で、適用する装置に応じて適宜選択/設定すべきものである。
Next, FIG. 9 shows a configuration diagram of a vehicle air conditioner 1 of another embodiment to which the present invention is applied. In this figure, the same reference numerals as those in FIG. 1 indicate the same or similar functions. In the case of this embodiment, the outlet of the supercooling section 16 is connected to the check valve 18, and the outlet of the check valve 18 is connected to the refrigerant pipe 13B. The check valve 18 has a forward direction on the refrigerant pipe 13B (indoor expansion valve 8) side.
Further, the refrigerant pipe 13E on the outlet side of the radiator 4 is branched in front of the outdoor expansion valve 6, and this branched refrigerant pipe (hereinafter referred to as a bypass circuit) 13F is passed through an electromagnetic valve 22 (for dehumidification). The refrigerant pipe 13B on the downstream side of the check valve 18 is connected in communication. Further, an evaporating pressure adjusting valve 70 is connected to the refrigerant pipe 13C on the outlet side of the heat absorber 9 on the refrigerant downstream side of the internal heat exchanger 19 and upstream of the refrigerant with respect to the refrigerant pipe 13D. . The electromagnetic valve 22 and the evaporation pressure adjusting valve 70 are also connected to the output of the heat pump controller 32 and controlled. Note that the bypass device 45 including the bypass pipe 35, the electromagnetic valve 30, and the electromagnetic valve 40 in FIG. 1 of the above-described embodiment is not provided. Others are the same as in FIG.
With the above configuration, the operation of the vehicle air conditioner 1 of this embodiment will be described. In this embodiment, the heat pump controller 32 switches between the heating mode, the dehumidifying heating mode, the internal cycle mode, the dehumidifying cooling mode, the cooling mode, and the auxiliary heater single mode (the MAX cooling mode is present in this embodiment). do not do). In this embodiment, the dehumidifying and heating mode, the internal cycle mode, the dehumidifying and cooling mode, and the cooling mode are the first operation mode in the present application.
The operation when the heating mode, the dehumidifying and cooling mode, and the cooling mode are selected, the refrigerant flow, and the auxiliary heater single mode are the same as those in the above-described embodiment (embodiment 1), and thus the description thereof is omitted. However, in this embodiment (Example 2), the solenoid valve 22 is closed in the heating mode, the dehumidifying cooling mode, and the cooling mode.
(10) Dehumidifying heating mode of vehicle air conditioner 1 of FIG. 9 On the other hand, when the dehumidifying heating mode is selected, in this embodiment (Example 2), heat pump controller 32 opens electromagnetic valve 21 (for heating). The electromagnetic valve 17 (for cooling) is closed. Further, the electromagnetic valve 22 (for dehumidification) is opened. Then, the compressor 2 is operated. The air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating. The auxiliary heater 23 and the radiator 4 are ventilated, but the air volume is also adjusted.
Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G. Since the air in the air flow path 3 that has flowed into the heat exchange path 3A for heating is passed through the heat radiator 4, the air in the air flow path 3 is heated by the high-temperature refrigerant in the heat radiator 4, while the heat radiator The refrigerant in 4 is deprived of heat by the air and cooled to condense.
The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the refrigerant circuit R becomes a heat pump. Then, the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 through the refrigerant pipe 13C through the refrigerant pipe 13A, the solenoid valve 21 and the refrigerant pipe 13D, and is gas-liquid separated there. Repeated circulation inhaled.
Further, a part of the condensed refrigerant flowing through the refrigerant pipe 13E via the radiator 4 is diverted, reaches the indoor expansion valve 8 via the electromagnetic valve 22 and the internal heat exchanger 19 from the bypass circuit 13F and the refrigerant pipe 13B. . After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
The refrigerant evaporated in the heat absorber 9 sequentially passes through the internal heat exchanger 19 and the evaporation pressure adjusting valve 70 and then merges with the refrigerant from the refrigerant pipe 13D in the refrigerant pipe 13C. Then, the refrigerant is sucked into the compressor 2 through the accumulator 12. repeat. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed.
The air conditioning controller 20 transmits the target heater temperature TCO (target value of the radiator outlet temperature TCI) calculated from the target blowing temperature TAO to the heat pump controller 32. Whether the heat pump controller 32 controls the rotational speed NC of the compressor 2 based on the target radiator pressure PCO and the radiator pressure PCI (high pressure of the refrigerant circuit R) as in the heating mode described in FIG. Alternatively, the rotational speed NC of the compressor 2 is controlled based on the heat absorber temperature Te and the target heat absorber temperature TEO as in the cooling mode described with reference to FIG. In that case, the smaller one (MIN) of the compressor target rotational speed TGNCh and the compressor target rotational speed TGNCc is selected to control the rotational speed NC of the compressor 2.
That is, when the compressor target rotation speed TGNCh is selected, if the heat absorber temperature sensor 48 is not provided, the heat sink intake air temperature Tevain is estimated as described above, and the required heating capacity TGQ is calculated based on the estimated temperature. (FIG. 7). Further, when the compressor target rotational speed TGNCc is selected, the F / F manipulated variable TGNCcff is corrected based on the heat sink intake air temperature Tevain (FIG. 4).
The heat pump controller 32 controls the valve opening degree of the outdoor expansion valve 6 based on the heat absorber temperature Te and the target heat absorber temperature TEO, which will be described in detail later. Further, the heat pump controller 32 opens the evaporating pressure regulating valve 70 based on the heat absorber temperature Te (enlarges the flow path) / closes (flow of the low-permissible refrigerant), and the temperature of the heat absorber 9 is too low to freeze. To prevent.
(11) Internal cycle mode of the vehicle air conditioner 1 of FIG. 9 In the internal cycle mode, the heat pump controller 32 fully closes the outdoor expansion valve 6 in the dehumidifying and heating mode state (fully closed position), The solenoid valve 21 is closed. Since the outdoor expansion valve 6 and the electromagnetic valve 21 are closed, the inflow of refrigerant to the outdoor heat exchanger 7 and the outflow of refrigerant from the outdoor heat exchanger 7 are blocked. The condensed refrigerant flowing through the refrigerant pipe 13E through the refrigerant flows through the electromagnetic valve 22 to the bypass circuit 13F. And the refrigerant | coolant which flows through the bypass circuit 13F reaches the indoor expansion valve 8 through the internal heat exchanger 19 from the refrigerant | coolant piping 13B. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
The refrigerant evaporated in the heat absorber 9 sequentially flows through the refrigerant pipe 13C through the internal heat exchanger 19 and the evaporation pressure adjustment valve 70, and repeats circulation that is sucked into the compressor 2 through the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed. Since the refrigerant is circulated between the radiator 4 (radiation) and the heat absorber 9 (heat absorption) in the passage 3, heat from the outside air is not pumped up, and heating for the consumed power of the compressor 2 is performed. Ability is demonstrated. Since the entire amount of the refrigerant flows through the heat absorber 9 that exhibits the dehumidifying action, the dehumidifying capacity is higher than that in the dehumidifying and heating mode, but the heating capacity is lowered. The control of the compressor 2 by the heat pump controller 32 is the same as in the dehumidifying heating mode.
(12) Control of outdoor expansion valve 6 in dehumidifying and heating mode of vehicle air conditioner 1 of FIG. 9 Next, the dehumidifying and heating mode of this embodiment (Example 2) described above with reference to the block diagram of FIG. Specific control of the outdoor expansion valve 6 will be described. The F / F (feed forward) manipulated variable calculator 76 of the heat pump controller 32 sets the target heater temperature TCO, the volumetric air volume Ga of the air flowing into the air flow passage 3, the outside air temperature Tam, and the target heat absorber temperature TEO. Based on this, the F / F manipulated variable TGECCVteff0 of the outdoor expansion valve target valve opening is calculated.
The correction value calculation unit 81 of the heat pump controller 32 calculates the heat absorber intake air temperature Tevain from the outside air temperature Tam, the inside air temperature Tin, and the inside / outside air ratio RECrate using the above formulas (III) and (IV), and this heat absorber. Based on the intake air temperature Tevain, the correction value TGECCVteffHos is calculated using the following formula (X).
TGECCVteffHos = K19 × Tevai
n (X)
Here, K19 is a coefficient for converting temperature into valve opening.
Then, the correction value TGECCVteffHos calculated by the correction value calculator 81 is subtracted by the subtractor 82 from the F / F manipulated variable TGECCVteff0 calculated by the F / F manipulated variable calculator 76, and finally the F / F manipulated variable TGECCVteff ( TGECCVteff = TGECCVteff0−TGECCVteffHos). That is, the F / F operation amount TGECCVteff0 calculated by the F / F operation amount calculator 76 is corrected by the correction value TGECCVteffHos and determined as the F / F operation maximum TGECCVteff.
Here, the higher the heat sink intake air temperature Tevain, that is, as the inside / outside air ratio RECrate approaches 0 and the cooling load increases as described with reference to FIG. 5, the correction value TGECCVeffHos increases and the F / F manipulated variable TGECCVteff Is corrected in the direction of decreasing (the direction in which the outdoor expansion valve 6 is closed).
The F / B (feedback) manipulated variable calculator 77 calculates the F / B manipulated variable TGECCVtefb of the outdoor expansion valve target valve opening based on the target heat absorber temperature TEO and the heat absorber temperature Te. Then, the F / F manipulated variable TGECCVteff determined by the subtractor 82 and the F / B manipulated variable TGECCVtefb calculated by the F / B manipulated variable calculator 77 are added by the adder 78, and the control upper limit value is set by the limit setting unit 79. Are set as the outdoor expansion valve target valve opening TGECCVte.
In the dehumidifying and heating mode in this embodiment, the heat pump controller 32 controls the valve opening of the outdoor expansion valve 6 based on the outdoor expansion valve target valve opening TGECCVte, so that the higher the heat sink intake air temperature Tevain, The expansion valve 6 is corrected in the closing direction. When the outdoor expansion valve 6 is corrected in the closing direction, the amount of refrigerant flowing into the heat absorber 9 via the bypass circuit 13F and the refrigerant pipe 13B increases, so that the cooling / dehumidifying capability of the heat absorber 9 increases. . In particular, since the F / F manipulated variable TGECCVteff is corrected, it is possible to quickly follow the change in the heat sink intake air temperature Tevain.
In addition, in the said Example (Example 2), although the valve opening degree of the outdoor expansion valve 6 and the rotation speed of the compressor 2 were controlled based on heat sink suction | inhalation air temperature Tevain, it is not restricted to them, Only one of these may be controlled based on the heat sink intake air temperature Tevain.
Thus, also in this embodiment, the heat pump controller 32 estimates the heat sink suction air temperature Tevain, which is the temperature of the air flowing into the heat sink 9, based on the inside / outside air ratio RECrate adjusted by the suction switching damper 26. Since the opening degree of the outdoor expansion valve 6 and / or the rotational speed of the compressor 2 is controlled based on the estimated heat sink suction air temperature Tevain, the suction switching damper 26 flows into the air flow passage 3. Even when the ratio of the outside air to the inside air changes, the heat sink suction air temperature Tevain is estimated based on the ratio, and the valve opening degree of the outdoor expansion valve 6 and / or the rotation speed of the compressor 2 is controlled. Will be able to.
Thereby, also in the dehumidifying heating mode of this embodiment, it is possible to quickly cope with load fluctuations due to the change in the ratio between the outside air and the inside air, and to realize the dehumidifying capacity without excess or deficiency by the heat absorber 9. Become.
Also in this case, the heat pump controller 32 calculates the F / F manipulated variable TGECCVteff of the target valve opening degree of the outdoor expansion valve 6 by feedforward calculation based on the target heat absorber temperature TEO which is at least the target value of the heat absorber temperature Te, and absorbs heat. The F / B manipulated variable TGECCVtef of the target valve opening of the outdoor expansion valve 6 is calculated by feedback calculation based on the heater temperature Te and the target heat absorber temperature TEO, and the F / F manipulated variable TGECCVtef and the F / B manipulated variable TGECCVtefb are added. Thus, the target valve opening TGECCVte of the outdoor expansion valve 6 is calculated, and the F / F manipulated variable TGNCcff of the target rotational speed of the compressor 2 is calculated by feedforward calculation based on at least the target heat absorber temperature TEO. Feedback calculation based on temperature Te and target heat absorber temperature TEO Thus, the F / B manipulated variable TGNCcfb of the target rotational speed of the compressor 2 is calculated, and the target rotational speed TGNCc of the compressor 2 is calculated by adding the F / F manipulated variable TGNCcff and the F / B manipulated variable TGNCcfb. When the TGNCc is smaller between the compressor target rotational speeds TGNCh and TGNCc, the target rotational speed TGNCc is selected, and the F / F manipulated variable TGECCVteff based on the heat sink intake air temperature Tevain and / or Since the F / F manipulated variable TGNCcff is corrected, the dehumidifying ability of the heat absorber 8 is accurately controlled in response to the load fluctuation caused by the change in the inside / outside air ratio RECrate, thereby realizing comfortable dehumidifying heating. Will be able to.
In this case as well, in the embodiment, the heat pump controller 32 calculates the heat sink intake air temperature Tevain by a first-order lag calculation based on the inside / outside air ratio RECrate (ratio between outside air and inside air), and thus the actual heat sink intake air temperature Tevain. The valve opening degree of the outdoor expansion valve 6 can be controlled in accordance with the change of.
The parameters, numerical values, and the like used for the control shown in each embodiment are not limited thereto, and should be appropriately selected / set according to the device to be applied without departing from the spirit of the present invention.
 1 車両用空気調和装置
 2 圧縮機
 3 空気流通路
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器
 10 HVACユニット
 11 制御装置
 13F バイパス回路
 20 空調コントローラ
 23 補助ヒータ(補助加熱装置)
 25A 外気吸込口
 25B 内気吸込口
 26 吸込切換ダンパ
 27 室内送風機(ブロワファン)
 32 ヒートポンプコントローラ
 45 バイパス装置
 48 吸熱器温度センサ
 58、63、76 F/F操作量演算部
 60、64、77 F/B操作量演算部
 71、81 補正値演算部
 R 冷媒回路
DESCRIPTION OF SYMBOLS 1 Vehicle air conditioner 2 Compressor 3 Air flow path 4 Radiator 6 Outdoor expansion valve 7 Outdoor heat exchanger 8 Indoor expansion valve 9 Heat absorber 10 HVAC unit 11 Controller 13F Bypass circuit 20 Air conditioning controller 23 Auxiliary heater (auxiliary heating) apparatus)
25A Outside air inlet 25B Inside air inlet 26 Suction switching damper 27 Indoor blower (blower fan)
32 Heat pump controller 45 Bypass device 48 Heat absorber temperature sensor 58, 63, 76 F / F manipulated variable calculator 60, 64, 77 F / B manipulated variable calculator 71, 81 Correction value calculator R Refrigerant circuit

Claims (9)

  1.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
     車室外に設けられた室外熱交換器と、
     前記空気流通路に流入する外気と前記車室内の空気である内気の比率を調整可能な吸込切換ダンパと、
     制御装置を備え、
     該制御装置により、前記圧縮機から吐出された冷媒を前記室外熱交換器に流して当該室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる第1の運転モードを実行する車両用空気調和装置において、
     前記制御装置は、前記吸込切換ダンパにより調整される前記外気と内気の比率に基づき、前記吸熱器に流入する空気の温度である吸熱器吸込空気温度Tevainを推定し、推定した当該吸熱器吸込空気温度Tevainに基づいて前記圧縮機の回転数を制御することを特徴とする車両用空気調和装置。
    A compressor for compressing the refrigerant;
    An air flow passage through which air to be supplied into the passenger compartment flows;
    A heat absorber for absorbing the refrigerant and cooling the air supplied from the air flow passage to the vehicle interior;
    An outdoor heat exchanger installed outside the passenger compartment,
    A suction switching damper capable of adjusting a ratio of outside air flowing into the air flow passage and inside air as air in the vehicle interior;
    Equipped with a control device,
    The controller causes the refrigerant discharged from the compressor to flow through the outdoor heat exchanger, dissipates heat in the outdoor heat exchanger, depressurizes the dissipated refrigerant, and then absorbs heat in the heat absorber. In the vehicle air conditioner for executing the operation mode of
    The control device estimates a heat sink intake air temperature Tevain, which is a temperature of air flowing into the heat sink, based on a ratio between the outside air and the inside air adjusted by the suction switching damper, and the estimated heat sink intake air A vehicle air conditioner that controls the rotational speed of the compressor based on a temperature Tevain.
  2.  前記制御装置は、少なくとも前記吸熱器の温度Teの目標値である目標吸熱器温度TEOに基づくフィードフォワード演算により前記圧縮機の目標回転数のF/F操作量TGNCcffを算出し、前記吸熱器の温度Teと前記目標吸熱器温度TEOに基づくフィードバック演算により前記圧縮機の目標回転数のF/B操作量TGNCcfbを算出し、これらF/F操作量TGNCcffとF/B操作量TGNCcfbを加算することで、前記圧縮機の目標回転数TGNCcを算出すると共に、
     前記吸熱器吸込空気温度Tevainに基づいて前記F/F操作量TGNCcffを補正することを特徴とする請求項1に記載の車両用空気調和装置。
    The control device calculates an F / F manipulated variable TGNCcff of the target rotational speed of the compressor by a feedforward calculation based on at least a target heat absorber temperature TEO that is a target value of the temperature Te of the heat absorber, F / B operation amount TGNCcfb of the target rotational speed of the compressor is calculated by feedback calculation based on temperature Te and target heat absorber temperature TEO, and these F / F operation amount TGNCcff and F / B operation amount TGNCcfb are added. And calculating the target rotational speed TGNCc of the compressor,
    The vehicle air conditioner according to claim 1, wherein the F / F manipulated variable TGNCcff is corrected based on the heat sink intake air temperature Tevain.
  3.  前記空気流通路の空気の流れに対して前記吸熱器の風下側に設けられ、冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器を備え、
     前記第1の運転モードは、
     前記圧縮機から吐出された冷媒を前記放熱器から前記室外熱交換器に流して当該室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる冷房モード、及び/又は、
     前記圧縮機から吐出された冷媒を前記放熱器から前記室外熱交換器に流して当該放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる除湿冷房モード、
     であることを特徴とする請求項1又は請求項2に記載の車両用空気調和装置。
    Provided on the leeward side of the heat absorber with respect to the air flow in the air flow passage, and includes a radiator for heating the air supplied from the air flow passage to the vehicle interior by radiating the refrigerant.
    The first operation mode is:
    A cooling mode in which the refrigerant discharged from the compressor flows from the radiator to the outdoor heat exchanger to dissipate heat in the outdoor heat exchanger, and after reducing the heat dissipated, the refrigerant absorbs heat in the heat absorber. And / or
    The refrigerant discharged from the compressor is allowed to flow from the radiator to the outdoor heat exchanger and radiated by the radiator and the outdoor heat exchanger, and after the radiated refrigerant is decompressed, the heat absorber absorbs heat. Dehumidifying and cooling mode,
    The air conditioner for a vehicle according to claim 1 or 2, wherein the air conditioner is for a vehicle.
  4.  前記空気流通路の空気の流れに対して前記吸熱器の風下側に設けられ、冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     前記圧縮機から吐出された冷媒を、前記放熱器に流すこと無く前記室外熱交換器に直接流入させるためのバイパス装置と、
     前記空気流通路から前記車室内に供給する空気を加熱するための補助加熱装置を備え、
     前記第1の運転モードは、
     前記圧縮機から吐出された冷媒を前記バイパス装置により前記室外熱交換器に流して放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる最大冷房モード、及び/又は、
     前記圧縮機から吐出された冷媒を前記バイパス装置により前記室外熱交換器に流して放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させると共に、前記補助加熱装置を発熱させる除湿暖房モード、
     であることを特徴とする請求項1乃至請求項3のうちの何れかに記載の車両用空気調和装置。
    A heat radiator provided on the leeward side of the heat absorber with respect to the air flow in the air flow path, for radiating the refrigerant and heating the air supplied from the air flow path to the vehicle interior;
    A bypass device for causing the refrigerant discharged from the compressor to flow directly into the outdoor heat exchanger without flowing into the radiator;
    An auxiliary heating device for heating air supplied from the air flow passage to the vehicle interior;
    The first operation mode is:
    A maximum cooling mode in which the refrigerant discharged from the compressor is caused to flow through the outdoor heat exchanger by the bypass device to dissipate heat, the heat dissipated is decompressed, and then the heat absorber absorbs heat, and / or
    The refrigerant discharged from the compressor is caused to flow through the outdoor heat exchanger by the bypass device to dissipate heat. Heating mode,
    The vehicle air conditioner according to any one of claims 1 to 3, wherein the air conditioner for a vehicle is a vehicle.
  5.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
     前記空気流通路の空気の流れに対して前記吸熱器の風下側に設けられ、冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     車室外に設けられた室外熱交換器と、
     前記空気流通路に流入する外気と前記車室内の空気である内気の比率を調整可能な吸込切換ダンパと、
     制御装置を備え、
     該制御装置により、前記圧縮機から吐出された冷媒を前記放熱器に流して放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させる暖房モードを実行する車両用空気調和装置において、
     前記制御装置は、前記吸込切換ダンパにより調整される前記外気と内気の比率に基づき、前記吸熱器に流入する空気の温度である吸熱器吸込空気温度Tevainを推定し、推定した当該吸熱器吸込空気温度Tevainに基づいて、要求される前記放熱器の暖房能力である要求暖房能力TGQを算出し、該要求暖房能力TGQに基づいて前記圧縮機の回転数を制御することを特徴とする車両用空気調和装置。
    A compressor for compressing the refrigerant;
    An air flow passage through which air to be supplied into the passenger compartment flows;
    A heat absorber for absorbing the refrigerant and cooling the air supplied from the air flow passage to the vehicle interior;
    A heat radiator provided on the leeward side of the heat absorber with respect to the air flow in the air flow path, for radiating the refrigerant and heating the air supplied from the air flow path to the vehicle interior;
    An outdoor heat exchanger installed outside the passenger compartment,
    A suction switching damper capable of adjusting a ratio of outside air flowing into the air flow passage and inside air as air in the vehicle interior;
    Equipped with a control device,
    The control device causes the refrigerant discharged from the compressor to flow through the radiator to dissipate heat, decompresses the dissipated refrigerant, and then performs a heating mode in which heat is absorbed by the outdoor heat exchanger. In the device
    The control device estimates a heat sink intake air temperature Tevain, which is a temperature of air flowing into the heat sink, based on a ratio between the outside air and the inside air adjusted by the suction switching damper, and the estimated heat sink intake air Vehicular air characterized in that a required heating capacity TGQ, which is a required heating capacity of the radiator, is calculated based on a temperature Tevain, and the rotational speed of the compressor is controlled based on the required heating capacity TGQ. Harmony device.
  6.  前記制御装置は、少なくとも前記要求暖房能力TGQに基づくフィードフォワード演算により前記圧縮機の目標回転数のF/F操作量TGNChffを算出し、高圧圧力とその目標値に基づくフィードバック演算により前記圧縮機の目標回転数のF/B操作量TGNChfbを算出し、これらF/F操作量TGNChffとF/B操作量TGNChfbを加算することで、前記圧縮機の目標回転数TGNChを算出することを特徴とする請求項5に記載の車両用空気調和装置。 The control device calculates an F / F manipulated variable TGNChff of a target rotational speed of the compressor by feedforward calculation based on at least the required heating capacity TGQ, and performs feedback calculation based on the high pressure and the target value of the compressor. The F / B manipulated variable TGNChfb of the target rotational speed is calculated, and the target rotational speed TGNCh of the compressor is calculated by adding the F / F manipulated variable TGNChff and the F / B manipulated variable TGNChfb. The vehicle air conditioner according to claim 5.
  7.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
     前記空気流通路の空気の流れに対して前記吸熱器の風下側に設けられ、冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     車室外に設けられた室外熱交換器と、
     該室外熱交換器に流入する冷媒を減圧する室外膨張弁と、
     前記室外熱交換器及び室外膨張弁の直列回路に対して並列に接続されたバイパス回路と、
     前記吸熱器に流入する冷媒を減圧する室内膨張弁と、
     前記空気流通路に流入する外気と前記車室内の空気である内気の比率を調整可能な吸込切換ダンパと、
     制御装置を備え、
     該制御装置により、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を分流し、一部を前記バイパス回路から前記室内膨張弁に流し、当該室内膨張弁で減圧した後、前記吸熱器に流入させ、当該吸熱器にて吸熱させると共に、残りを前記室外膨張弁で減圧した後、前記室外熱交換器に流入させ、当該室外熱交換器にて吸熱させる除湿暖房モードを実行する車両用空気調和装置において、
     前記制御装置は、前記吸込切換ダンパにより調整される前記外気と内気の比率に基づき、前記吸熱器に流入する空気の温度である吸熱器吸込空気温度Tevainを推定し、推定した当該吸熱器吸込空気温度Tevainに基づいて前記室外膨張弁の弁開度、及び/又は、前記圧縮機の回転数を制御することを特徴とする車両用空気調和装置。
    A compressor for compressing the refrigerant;
    An air flow passage through which air to be supplied into the passenger compartment flows;
    A heat absorber for absorbing the refrigerant and cooling the air supplied from the air flow passage to the vehicle interior;
    A heat radiator provided on the leeward side of the heat absorber with respect to the air flow in the air flow path, for radiating the refrigerant and heating the air supplied from the air flow path to the vehicle interior;
    An outdoor heat exchanger installed outside the passenger compartment,
    An outdoor expansion valve that depressurizes the refrigerant flowing into the outdoor heat exchanger;
    A bypass circuit connected in parallel to the series circuit of the outdoor heat exchanger and the outdoor expansion valve;
    An indoor expansion valve for decompressing the refrigerant flowing into the heat absorber;
    A suction switching damper capable of adjusting a ratio of outside air flowing into the air flow passage and inside air as air in the vehicle interior;
    Equipped with a control device,
    By the control device, the refrigerant discharged from the compressor is radiated by the radiator, the radiated refrigerant is divided, a part is flowed from the bypass circuit to the indoor expansion valve, and the pressure is reduced by the indoor expansion valve. Then, the dehumidification heating is caused to flow into the heat absorber and absorb the heat with the heat absorber, and the remaining pressure is reduced with the outdoor expansion valve, and then flows into the outdoor heat exchanger and absorbs heat with the outdoor heat exchanger. In the vehicle air conditioner for executing the mode,
    The control device estimates a heat sink intake air temperature Tevain, which is a temperature of air flowing into the heat sink, based on a ratio between the outside air and the inside air adjusted by the suction switching damper, and the estimated heat sink intake air A vehicle air conditioner that controls the valve opening degree of the outdoor expansion valve and / or the rotational speed of the compressor based on a temperature Tevain.
  8.  前記制御装置は、少なくとも前記吸熱器の温度Teの目標値である目標吸熱器温度TEOに基づくフィードフォワード演算により前記室外膨張弁の目標弁開度のF/F操作量TGECCVteffを算出し、前記吸熱器の温度Teと前記目標吸熱器温度TEOに基づくフィードバック演算により前記室外膨張弁の目標弁開度のF/B操作量TGECCVtefbを算出し、これらF/F操作量TGECCVteffとF/B操作量TGECCVtefbを加算することで、前記室外膨張弁の目標弁開度TGECCVteを算出すると共に、
     少なくとも前記目標吸熱器温度TEOに基づくフィードフォワード演算により前記圧縮機の目標回転数のF/F操作量TGNCcffを算出し、前記吸熱器の温度Teと前記目標吸熱器温度TEOに基づくフィードバック演算により前記圧縮機の目標回転数のF/B操作量TGNCcfbを算出し、これらF/F操作量TGNCcffとF/B操作量TGNCcfbを加算することで、前記圧縮機の目標回転数TGNCcを算出し、
     前記吸熱器吸込空気温度Tevainに基づいて前記F/F操作量TGECCVteff、及び/又は、前記F/F操作量TGNCcffを補正することを特徴とする請求項7に記載の車両用空気調和装置。
    The control device calculates an F / F manipulated variable TGECCVteff of a target valve opening degree of the outdoor expansion valve by a feedforward calculation based on at least a target heat absorber temperature TEO that is a target value of the temperature Te of the heat absorber. The F / B manipulated variable TGECCVtef of the target valve opening degree of the outdoor expansion valve is calculated by feedback calculation based on the temperature Te of the cooler and the target heat absorber temperature TEO. And calculating the target valve opening TGECCVte of the outdoor expansion valve,
    F / F manipulated variable TGNCcff of the target rotational speed of the compressor is calculated by feedforward calculation based on at least the target heat absorber temperature TEO, and the feedback calculation based on the heat absorber temperature Te and the target heat absorber temperature TEO F / B manipulated variable TGNCcfb of the target rotational speed of the compressor is calculated, and by adding these F / F manipulated variable TGNCcff and F / B manipulated variable TGNCcfb, the target rotational speed TGNCc of the compressor is calculated,
    The vehicle air conditioner according to claim 7, wherein the F / F operation amount TGECCVteff and / or the F / F operation amount TGNCcff is corrected based on the heat sink intake air temperature Tevain.
  9.  前記制御装置は、前記外気と内気の比率に基づく一次遅れ演算により前記吸熱器吸込空気温度Tevainを算出することを特徴とする請求項1乃至請求項8のうちの何れかに記載の車両用空気調和装置。 The vehicle air according to any one of claims 1 to 8, wherein the control device calculates the heat sink intake air temperature Tevain by a first-order lag calculation based on a ratio between the outside air and the inside air. Harmony device.
PCT/JP2018/001480 2017-02-07 2018-01-12 Vehicle air-conditioning device WO2018147039A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112018000713.8T DE112018000713T5 (en) 2017-02-07 2018-01-12 Vehicle air conditioning device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017020422A JP6855267B2 (en) 2017-02-07 2017-02-07 Vehicle air conditioner
JP2017-020422 2017-02-07

Publications (1)

Publication Number Publication Date
WO2018147039A1 true WO2018147039A1 (en) 2018-08-16

Family

ID=63107354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001480 WO2018147039A1 (en) 2017-02-07 2018-01-12 Vehicle air-conditioning device

Country Status (3)

Country Link
JP (1) JP6855267B2 (en)
DE (1) DE112018000713T5 (en)
WO (1) WO2018147039A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137235A1 (en) * 2018-12-25 2020-07-02 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air-conditioning device
CN112440665A (en) * 2019-08-29 2021-03-05 法雷奥日本株式会社 Air conditioner for vehicle
US11299011B2 (en) * 2017-06-12 2022-04-12 Mitsubishi Electric Corporation Vehicular air-conditioning apparatus and air-conditioning method of vehicular air-conditioning apparatus
WO2024041432A1 (en) * 2022-08-22 2024-02-29 浙江吉利控股集团有限公司 Air conditioning system and vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020131804A (en) * 2019-02-14 2020-08-31 株式会社日本クライメイトシステムズ Temperature estimation device for vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732871A (en) * 1993-07-21 1995-02-03 Nippondenso Co Ltd Air conditioner
JP2000146329A (en) * 1998-08-24 2000-05-26 Nippon Soken Inc Heat pump cycle
JP2014094676A (en) * 2012-11-09 2014-05-22 Sanden Corp Air conditioner for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732871A (en) * 1993-07-21 1995-02-03 Nippondenso Co Ltd Air conditioner
JP2000146329A (en) * 1998-08-24 2000-05-26 Nippon Soken Inc Heat pump cycle
JP2014094676A (en) * 2012-11-09 2014-05-22 Sanden Corp Air conditioner for vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11299011B2 (en) * 2017-06-12 2022-04-12 Mitsubishi Electric Corporation Vehicular air-conditioning apparatus and air-conditioning method of vehicular air-conditioning apparatus
WO2020137235A1 (en) * 2018-12-25 2020-07-02 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air-conditioning device
JP2020100363A (en) * 2018-12-25 2020-07-02 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular air-conditioning device
CN113195272A (en) * 2018-12-25 2021-07-30 三电汽车空调系统株式会社 Air conditioner for vehicle
JP7233915B2 (en) 2018-12-25 2023-03-07 サンデン株式会社 Vehicle air conditioner
CN112440665A (en) * 2019-08-29 2021-03-05 法雷奥日本株式会社 Air conditioner for vehicle
WO2024041432A1 (en) * 2022-08-22 2024-02-29 浙江吉利控股集团有限公司 Air conditioning system and vehicle

Also Published As

Publication number Publication date
DE112018000713T5 (en) 2019-11-14
JP6855267B2 (en) 2021-04-07
JP2018127048A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
JP6073653B2 (en) Air conditioner for vehicles
JP6496958B2 (en) Air conditioner for vehicles
JP6339419B2 (en) Air conditioner for vehicles
WO2018147039A1 (en) Vehicle air-conditioning device
WO2016208338A1 (en) Vehicle air conditioning device
JP2014094677A5 (en)
JP6723137B2 (en) Vehicle air conditioner
WO2018211958A1 (en) Vehicle air-conditioning device
JP6571430B2 (en) Air conditioner for vehicles
WO2019031192A1 (en) Vehicle air-conditioning device
WO2018110211A1 (en) Vehicle air-conditioning device
JP2018058575A (en) Air conditioner for vehicle
WO2018110212A1 (en) Vehicle air-conditioning apparatus
WO2018061785A1 (en) Air-conditioning device for vehicle
WO2018225486A1 (en) Air-conditioning device for vehicles
WO2018079121A1 (en) Vehicle air-conditioning device
WO2018123634A1 (en) Vehicular air conditioning device
WO2018043152A1 (en) Vehicle air-conditioning apparatus
JP6948183B2 (en) Vehicle air conditioner
WO2018074111A1 (en) Vehicular air conditioning device
WO2019049637A1 (en) Vehicular air conditioning device
JP6853036B2 (en) Vehicle air conditioner
WO2018088130A1 (en) Vehicle air conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751226

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18751226

Country of ref document: EP

Kind code of ref document: A1