WO2018061785A1 - Air-conditioning device for vehicle - Google Patents

Air-conditioning device for vehicle Download PDF

Info

Publication number
WO2018061785A1
WO2018061785A1 PCT/JP2017/033163 JP2017033163W WO2018061785A1 WO 2018061785 A1 WO2018061785 A1 WO 2018061785A1 JP 2017033163 W JP2017033163 W JP 2017033163W WO 2018061785 A1 WO2018061785 A1 WO 2018061785A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
temperature
target
heating
mode
Prior art date
Application number
PCT/JP2017/033163
Other languages
French (fr)
Japanese (ja)
Inventor
耕平 山下
竜 宮腰
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017141096A external-priority patent/JP2018058575A/en
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Publication of WO2018061785A1 publication Critical patent/WO2018061785A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00835Damper doors, e.g. position control
    • B60H1/00842Damper doors, e.g. position control the system comprising a plurality of damper doors; Air distribution between several outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00949Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00961Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising means for defrosting outside heat exchangers

Definitions

  • the present invention relates to a heat pump type air conditioner that air-conditions the interior of a vehicle.
  • Hybrid vehicles and electric vehicles have come into widespread use due to the emergence of environmental problems in recent years.
  • an electric compressor that compresses and discharges the refrigerant
  • a radiator that is provided in the air flow passage to dissipate the refrigerant
  • a heat absorber evaporator
  • an outdoor heat exchanger that is provided outside the vehicle cabin and dissipates or absorbs the refrigerant, and the refrigerant discharged from the compressor
  • the refrigerant discharged from the compressor is radiated in the radiator, and the radiated refrigerant is absorbed in the heat absorber and the outdoor heat exchanger.
  • a dehumidifying and heating mode a refrigerant discharged from the compressor is dissipated in the radiator and the outdoor heat exchanger, and a dehumidifying and cooling mode in which the dissipated refrigerant is absorbed in the heat absorber, and the refrigerant is discharged from the compressor.
  • a dehumidifying and cooling mode in which the dissipated refrigerant is absorbed in the heat absorber, and the refrigerant is discharged from the compressor.
  • the air flow passage on the leeward side of the heat absorber is partitioned into a heat exchange passage for heating and a bypass passage, and the radiator is arranged in the heat exchange passage for heating.
  • the air mix damper adjusts the amount of air flowing through the heating heat exchange passage.
  • SW (TAO ⁇ Te) / (TH ⁇ Te) is calculated to control the air mix damper.
  • a parameter called an air volume ratio SW passing through the heating heat exchange passage (heat radiator) obtained by the equation is used.
  • TAO is the target blowing temperature
  • TH is the temperature of the leeward air of the radiator
  • Te is the temperature of the heat absorber
  • the air volume ratio SW is calculated in the range of 0 ⁇ SW ⁇ 1, and heating is performed with “0”.
  • the air mix is fully closed without ventilating the heat exchange passage (heat radiator), and the air mix is fully open when all air in the air flow passage is vented to the heating heat exchange passage (heat radiator) with “1”. It was a thing.
  • FOOT foot
  • VENT vent
  • DEF def
  • the FOOT air outlet is an air outlet for blowing air to the feet in the passenger compartment, and is at the lowest position.
  • the VENT outlet is an outlet for blowing air near the driver's chest and face in the passenger compartment, and is located above the FOOT outlet.
  • a DEF blower outlet is a blower outlet for blowing air on the inner surface of a windshield, and exists in the highest position above other blower outlets.
  • B / L mode in which air is blown out from both FOOT and VENT air outlets
  • H / D mode in which air is blown out from both air outlets of FOOT and DEF.
  • the air volume ratio SW by the air mix damper is in the intermediate range, for example, the temperature of the air blown from the FOOT blowout port is higher than the air blown from the VENT blowout port, and the VENT blowout port The temperature of the air blown out from the air becomes higher than that of the air blown out from the DEF outlet. Therefore, for example, in the B / L mode described above, the air volume ratio SW is regulated to an intermediate range in order to achieve a so-called “head cold foot heat” temperature difference by adding a difference in the temperature of the air blown from the FOOT blowout port and the VENT blowout port. However, in this case, a situation occurs in which more air than the original air volume ratio SW flows to the bypass passage.
  • the present invention has been made to solve the conventional technical problems, and in a so-called heat pump type vehicle air conditioner, the air blown out from the air outlet is provided with an appropriate temperature difference and is comfortable. The purpose is to achieve air conditioning in the passenger compartment.
  • the vehicle air conditioner of the present invention includes a compressor for compressing a refrigerant, an air flow passage through which air supplied to the vehicle interior flows, and a heater for heating air supplied from the air flow passage to the vehicle interior.
  • An air mix damper for adjusting the ratio of the air in the air flow passage that has passed through the heater to the heat exchange passage for heating, a first air outlet for blowing air from the air flow passage into the vehicle interior, and air A second air outlet for blowing air out of the flow passage into the vehicle interior at a position above the first air outlet, and a control device;
  • the heater is disposed in the heat exchange passage for heating;
  • the air passing through the exchange passage is the second outlet And the air that has passed through the bypass passage is more easily blown from the second blower outlet than
  • the air volume ratio SW is regulated within a predetermined intermediate range, and the target heater temperature TCO is set higher than the target blowing temperature TAO.
  • the control device raises the target heater temperature TCO from the target blow temperature TAO by a predetermined value ⁇ 1 and increases the predetermined value ⁇ 1 to the outside air. It is determined based on the temperature Tam, the volumetric air volume Ga of the air flowing into the air flow passage, and the target blowing temperature TAO.
  • the vehicle air conditioner according to a third aspect of the invention is characterized in that, in the above invention, the control device increases the predetermined value ⁇ 1 as the volumetric air volume Ga increases.
  • a vehicle air conditioner according to a fourth aspect of the invention is characterized in that, in the first aspect of the invention, the control device sets the target heater temperature TCO to a predetermined high value in the first blowing mode.
  • the control device controls the compressor based on a target heat absorber temperature TEO, which is a target value of the temperature of the heat absorber. Then, the target heat absorber temperature TEO is set lower than the normal value.
  • the vehicle air conditioner according to the first aspect, wherein the control device does not flow the refrigerant through the heat absorber when the temperature Tas of the air flowing into the air flow passage is lower than the normal value of the target heat absorber temperature TEO.
  • the heater is switched to the operation of heating the air supplied from the air flow passage to the vehicle interior.
  • an air conditioning apparatus for a vehicle according to each of the first and second aspects of the present invention, wherein the control device has a blowing mode other than the first blowing mode, and the target heater temperature TCO is in a blowing mode other than the first blowing mode.
  • the vehicle air conditioner according to an eighth aspect of the present invention is characterized in that, in the above invention, the control device increases the predetermined value ⁇ 2 as the volumetric air volume Ga is smaller.
  • an air conditioning apparatus for a vehicle wherein the heater is a radiator and / or an airflow passage for heating the air supplied from the airflow passage to the passenger compartment by radiating the refrigerant It is an auxiliary heating device for heating the air supplied from the interior to the vehicle interior.
  • the compressor that compresses the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, the heater for heating the air supplied from the air flow passage to the vehicle interior, and the heat absorption of the refrigerant.
  • a heat absorber for cooling the air supplied to the vehicle interior from the air flow passage, a heating heat exchange passage and a bypass passage formed in the air flow passage on the leeward side of the heat absorber, and the heat absorber An air mix damper for adjusting the rate at which the air in the air flow passage is passed through the heating heat exchange passage, a first air outlet for blowing air from the air flow passage into the vehicle interior, and a first air outlet from the air flow passage.
  • the control device is configured to control the air on the leeward side of the heater.
  • Heating by the heater is controlled based on the target heater temperature TCO that is the target value of the heating temperature TH that is the temperature, and the target blowing temperature TAO that is the target value of the temperature of the air blown into the vehicle interior and the heating temperature TH
  • the first air blowing mode for controlling the air mix damper by calculating the air volume ratio SW passing through the heat exchange passage for heating and blowing air into the vehicle compartment from both the first air outlet and the second air outlet.
  • the air volume ratio SW is regulated within a predetermined intermediate range, so that the air blown from the first outlet and the second blowing in the first blowing mode. Exit It is possible to give a sufficient temperature difference between the air blown out.
  • the target heater temperature TCO is set higher than the target blowing temperature TAO, so that it is possible to prevent the temperature of the air blown into the passenger compartment from being lowered. This makes it possible to realize comfortable air conditioning in the vehicle.
  • the control device raises the target heater temperature TCO by a predetermined value ⁇ 1 from the target blowing temperature TAO, and flows the predetermined value ⁇ 1 into the outside air temperature Tam and the air flow passage. Since the determination is made based on the volume air volume Ga of the air and the target blowing temperature TAO, the temperature drop can be appropriately prevented based on the outside air temperature Tam, the volume air volume Ga, and the target blowing temperature TAO. Become.
  • the control device increases the predetermined value ⁇ 1 as the volumetric air volume Ga increases as in the invention of claim 3, even if the volumetric airflow Ga increases and the heat exchange efficiency between the heater and air decreases.
  • the air blown into the passenger compartment by the heater can be appropriately heated.
  • the control device as in the fourth aspect of the invention effectively prevents the temperature of the air blown into the vehicle compartment from being lowered by setting the target heater temperature TCO to a predetermined high value. Will be able to.
  • the control device controls the compressor based on the target heat absorber temperature TEO which is a target value of the temperature of the heat absorber, and in the first blowing mode, the target heat absorber temperature TEO is set.
  • the control device switches to the operation of heating the air supplied from the air flow passage to the vehicle interior by the heater without flowing the refrigerant through the heat absorber.
  • the control device raises the target heater temperature TCO by a predetermined value ⁇ 2 from the target blowout temperature TAO in the blowout mode other than the first blowout mode, and sets the predetermined value ⁇ 2 to the outside air temperature Tam, If it is determined based on the volume air volume Ga of the air flowing into the air flow passage, the target blowing temperature TAO, and the indoor temperature Tin, which is the temperature of the air in the passenger compartment, the heat in the process from the heater to the outlet A temperature drop due to loss can be compensated appropriately.
  • the control device increases the predetermined value ⁇ 2 as the volumetric air volume Ga is smaller as in the invention of claim 8, the volumetric air volume Ga is small, and heat loss is caused by heat exchange with the wall surface of the air flow passage.
  • the heater of each of the above inventions dissipates the refrigerant and heats the air supplied from the air flow passage to the vehicle interior, or is supplied from the air flow passage to the vehicle interior.
  • the above-described inventions are extremely effective for an air conditioning apparatus for a vehicle that can be constituted by an auxiliary heating apparatus for heating air to be heated, or both a radiator and an auxiliary heating apparatus.
  • FIG. 1 It is a block diagram of the air conditioning apparatus for vehicles of one Embodiment to which this invention is applied (Example 1). It is a block diagram of the control apparatus of the air conditioning apparatus for vehicles of FIG. It is a schematic diagram of the airflow path of the vehicle air conditioner of FIG. It is a control block diagram regarding the compressor control in the heating mode of the heat pump controller of FIG. It is a control block diagram regarding the compressor control in the dehumidification heating mode of the heat pump controller of FIG. It is a control block diagram regarding auxiliary heater (auxiliary heating apparatus) control in the dehumidification heating mode of the heat pump controller of FIG.
  • FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention.
  • a vehicle according to an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and travels by driving an electric motor for traveling with electric power charged in a battery. Yes (both not shown), the vehicle air conditioner 1 of the present invention is also driven by the power of the battery.
  • EV electric vehicle
  • an engine internal combustion engine
  • the vehicle air conditioner 1 of the embodiment performs a heating mode by a heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat, and further includes a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode, Each operation mode of the MAX cooling mode (maximum cooling mode) and the auxiliary heater single mode is selectively executed.
  • the present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles that run on an engine. Needless to say.
  • the vehicle air conditioner 1 performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and includes an electric compressor 2 that compresses refrigerant and vehicle interior air. Is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G, dissipates the refrigerant, and supplies it to the vehicle interior.
  • a radiator 4 as a heater for heating air
  • an outdoor expansion valve 6 pressure reducing device
  • a heat radiator that is provided outside the passenger compartment and is cooled during cooling.
  • an outdoor heat exchanger 7 that exchanges heat between the refrigerant and the outside air so as to function as an evaporator
  • an indoor expansion valve 8 compression device
  • an electric valve that decompresses and expands the refrigerant
  • an air flow passage 3 For cooling and removal
  • a heat sink 9 for cooling the air supplied to the vehicle interior is sucked from the vehicle interior outside of at refrigerant is endothermic and accumulator Lake 12, etc. are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed.
  • the refrigerant circuit R is filled with a predetermined amount of refrigerant and lubricating oil.
  • the outdoor heat exchanger 7 is provided with an outdoor blower 15.
  • the outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing outside air through the outdoor heat exchanger 7, so that the outdoor air blower 15 can also be used outdoors even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). It is comprised so that external air may be ventilated by the heat exchanger 7.
  • FIG. The outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 sequentially on the downstream side of the refrigerant, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is received via an electromagnetic valve 17 opened during cooling.
  • the refrigerant pipe 13 ⁇ / b> B connected to the dryer unit 14 and on the outlet side of the supercooling unit 16 is connected to the inlet side of the heat absorber 9 via the indoor expansion valve 8.
  • the receiver dryer part 14 and the supercooling part 16 structurally constitute a part of the outdoor heat exchanger 7.
  • the refrigerant pipe 13B between the subcooling section 16 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C on the outlet side of the heat absorber 9, and constitutes an internal heat exchanger 19 together.
  • the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that has exited the heat absorber 9.
  • the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched into a refrigerant pipe 13D, and this branched refrigerant pipe 13D is downstream of the internal heat exchanger 19 via an electromagnetic valve 21 opened during heating.
  • the refrigerant pipe 13C is connected in communication.
  • the refrigerant pipe 13 ⁇ / b> C is connected to the accumulator 12, and the accumulator 12 is connected to the refrigerant suction side of the compressor 2.
  • the refrigerant pipe 13E on the outlet side of the radiator 4 is connected to the inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.
  • a refrigerant pipe 13G between the discharge side of the compressor 2 and the inlet side of the radiator 4 is provided with a solenoid valve 30 (which constitutes a flow path switching device) that is closed during dehumidification heating and MAX cooling described later. Yes.
  • the refrigerant pipe 13G is branched into a bypass pipe 35 on the upstream side of the electromagnetic valve 30, and the bypass pipe 35 is opened by the electromagnetic valve 40 (which also constitutes a flow path switching device) during dehumidifying heating and MAX cooling.
  • Bypass pipe 45, solenoid valve 30 and solenoid valve 40 constitute bypass device 45.
  • the bypass device 45 is configured by the bypass pipe 35, the electromagnetic valve 30, and the electromagnetic valve 40, the dehumidifying heating mode or the MAX for allowing the refrigerant discharged from the compressor 2 to directly flow into the outdoor heat exchanger 7 as will be described later. Switching between the cooling mode and the heating mode in which the refrigerant discharged from the compressor 2 flows into the radiator 4, the dehumidifying cooling mode, and the cooling mode can be performed smoothly.
  • the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG. 1).
  • a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) which is air inside the passenger compartment and the outside air (outside air introduction mode) which is outside the passenger compartment.
  • an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
  • 23 is an auxiliary heater as an auxiliary heating device (another heater) provided in the vehicle air conditioner 1 of the embodiment.
  • the auxiliary heater 23 of the embodiment is composed of a PTC heater which is an electric heater, and is in the air flow passage 3 which is on the windward side (air upstream side) of the radiator 4 with respect to the air flow in the air flow passage 3. Is provided.
  • the auxiliary heater 23 When the auxiliary heater 23 is energized and generates heat, the air in the air flow passage 3 flowing into the radiator 4 through the heat absorber 9 is heated.
  • the auxiliary heater 23 serves as a so-called heater core, which heats or complements the passenger compartment.
  • the radiator 4 and the auxiliary heater 23 described above serve as a heater.
  • the air flow passage 3 on the leeward side (air downstream side) from the heat absorber 9 of the HVAC unit 10 is partitioned by a partition wall 10A, and a heating heat exchange passage 3A and a bypass passage 3B that bypasses it are formed.
  • the radiator 4 and the auxiliary heater 23 described above are disposed in the heating heat exchange passage 3A.
  • the air (inside air or outside air) in the air flow passage 3 after flowing into the air flow passage 3 and passing through the heat absorber 9 is supplemented into the air flow passage 3 on the windward side of the auxiliary heater 23.
  • An air mix damper 28 is provided for adjusting the rate of ventilation through the heating heat exchange passage 3A in which the heater 23 and the radiator 4 are disposed.
  • the HVAC unit 10 on the leeward side of the radiator 4 includes a FOOT (foot) outlet 29A (first outlet) and a VENT (vent) outlet 29B (FOOT outlet 29A).
  • FOOT outlet 29A first outlets
  • DEF (def) outlets 29C second outlets
  • the FOOT air outlet 29A is an air outlet for blowing air under the feet in the passenger compartment, and is at the lowest position.
  • the VENT outlet 29B is an outlet for blowing out air near the driver's chest and face in the passenger compartment, and is located above the FOOT outlet 29A.
  • the DEF air outlet 29C is an air outlet for blowing air to the inner surface of the windshield of the vehicle, and is located at the highest position above the other air outlets 29A and 29B.
  • the FOOT air outlet 29A, the VENT air outlet 29B, and the DEF air outlet 29C are respectively provided with a FOOT air outlet damper 31A, a VENT air outlet damper 31B, and a DEF air outlet damper 31C that control the amount of air blown out. It has been.
  • FIG. 2 shows a block diagram of the control device 11 of the vehicle air conditioner 1 of the embodiment.
  • the control device 11 includes an air-conditioning controller 20 and a heat pump controller 32 each of which is a microcomputer that is an example of a computer including a processor, and these include a CAN (Controller Area Network) and a LIN (Local Interconnect Network). Is connected to a vehicle communication bus 65.
  • the compressor 2 and the auxiliary heater 23 are also connected to the vehicle communication bus 65, and the air conditioning controller 20, the heat pump controller 32, the compressor 2 and the auxiliary heater 23 are configured to transmit and receive data via the vehicle communication bus 65.
  • the air conditioning controller 20 is an upper controller that controls the air conditioning of the vehicle interior of the vehicle.
  • the input of the air conditioning controller 20 detects an outside air temperature sensor 33 that detects the outside air temperature (Tam) of the vehicle and an outside air humidity.
  • An outside air humidity sensor 34 an HVAC suction temperature sensor 36 that detects the temperature of the air (suction air temperature Tas) that is sucked into the air flow passage 3 from the suction port 25 and flows into the heat sink 9, and the air in the vehicle interior (inside air)
  • An indoor air temperature sensor 37 for detecting the temperature of the vehicle (indoor temperature Tin)
  • an indoor air humidity sensor 38 for detecting the humidity of the air in the vehicle interior
  • an indoor CO2 concentration sensor 39 for detecting the carbon dioxide concentration in the vehicle interior
  • a blowing temperature sensor 41 that detects the temperature of the blown air
  • a discharge pressure sensor 42 that detects the discharge refrigerant pressure (discharge pressure Pd) of the compressor 2, and the vehicle interior.
  • a photosensor-type solar radiation sensor 51 for detecting the amount of solar radiation
  • each output of the vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle
  • air conditioning for setting the set temperature and operation mode.
  • An (air conditioner) operation unit 53 is connected.
  • the output of the air conditioning controller 20 is connected to an outdoor blower 15, an indoor blower (blower fan) 27, a suction switching damper 26, an air mix damper 28, and air outlet dampers 31A to 31C. It is controlled by the controller 20.
  • the heat pump controller 32 is a controller that mainly controls the refrigerant circuit R.
  • the input of the heat pump controller 32 includes a discharge temperature sensor 43 that detects a refrigerant temperature discharged from the compressor 2 and a suction refrigerant pressure of the compressor 2.
  • Radiator pressure sensor 47 for detecting the refrigerant pressure (heat radiator pressure PCI), a heat absorber temperature sensor 48 for detecting the refrigerant temperature (heat absorber temperature Te) of the heat absorber 9, and the refrigerant pressure of the heat absorber 9 are detected.
  • the heat absorber pressure sensor 49, the auxiliary heater temperature sensor 50 for detecting the temperature of the auxiliary heater 23 (auxiliary heater temperature Tptc), and the refrigerant temperature (outdoor heat) of the outdoor heat exchanger 7 The outputs of the outdoor heat exchanger temperature sensor 54 for detecting the exchanger temperature TXO) and the outdoor heat exchanger pressure sensor 56 for detecting the refrigerant pressure (outdoor heat exchanger pressure PXO) of the outdoor heat exchanger 7 are connected. Yes.
  • the output of the heat pump controller 32 includes an outdoor expansion valve 6, an indoor expansion valve 8, an electromagnetic valve 30 (for dehumidification), an electromagnetic valve 17 (for cooling), an electromagnetic valve 21 (for heating), an electromagnetic valve 40 (this) (Also for dehumidification) are connected to each other and are controlled by the heat pump controller 32.
  • the compressor 2 and the auxiliary heater 23 each have a built-in controller, and the controllers of the compressor 2 and the auxiliary heater 23 send and receive data to and from the heat pump controller 32 via the vehicle communication bus 65. Be controlled.
  • the heat pump controller 32 and the air conditioning controller 20 transmit / receive data to / from each other via the vehicle communication bus 65, and control each device based on the output of each sensor and the setting input by the air conditioning operation unit 53.
  • the outputs of the outside air temperature sensor 33, the discharge pressure sensor 42, the vehicle speed sensor 52, and the air conditioning operation unit 53 are transmitted from the air conditioning controller 20 to the heat pump controller 32 via the vehicle communication bus 65. It is configured to be used for control.
  • the control device 11 (the air conditioning controller 20 and the heat pump controller 32) has each operation mode of heating mode, dehumidifying heating mode, dehumidifying cooling mode, cooling mode, MAX cooling mode (maximum cooling mode), and auxiliary heater single mode. Switch and execute. First, an outline of refrigerant flow and control in each operation mode will be described.
  • heating mode When the heating mode is selected by the heat pump controller 32 (auto mode) or the manual operation (manual mode) to the air conditioning operation unit 53, the heat pump controller 32 opens the electromagnetic valve 21 (for heating) and the electromagnetic valve 17 (cooling). Close). Further, the electromagnetic valve 30 (for dehumidification) is opened, and the electromagnetic valve 40 (for dehumidification) is closed. Then, the compressor 2 is operated.
  • the air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating.
  • the auxiliary heater 23 and the radiator 4 are ventilated, but the air volume may be adjusted.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30. Since the air in the airflow passage 3 is passed through the radiator 4, the air in the airflow passage 3 is converted into the high-temperature refrigerant in the radiator 4 (when the auxiliary heater 23 operates, the auxiliary heater 23 and the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air, and is condensed and liquefied. The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the refrigerant circuit R becomes a heat pump.
  • the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C through the refrigerant pipe 13A, the electromagnetic valve 21 and the refrigerant pipe 13D, and is separated into gas and liquid there. Repeated circulation inhaled.
  • the air heated by the radiator 4 (when the auxiliary heater 23 is operated, the auxiliary heater 23 and the radiator 4) is blown out from the outlets 29A to 29C, so that the vehicle interior is heated. become.
  • the heat pump controller 32 calculates the target radiator pressure PCO (target value of the radiator pressure PCI) from the target heater temperature TCO (target value of the heating temperature TH described later) calculated by the air conditioning controller 20 from the target outlet temperature TAO. Based on the target radiator pressure PCO and the refrigerant pressure of the radiator 4 detected by the radiator pressure sensor 47 (radiator pressure PCI, high pressure of the refrigerant circuit R), the rotational speed NC of the compressor 2 is controlled, and the radiator 4 controls the heating.
  • target radiator pressure PCO target value of the radiator pressure PCI
  • TCO target value of the heating temperature TH described later
  • the heat pump controller 32 also opens the valve opening of the outdoor expansion valve 6 based on the temperature of the radiator 4 (the radiator temperature TCI) detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47. And the supercooling degree SC of the refrigerant at the outlet of the radiator 4 is controlled. Further, in this heating mode, when the heating capability by the radiator 4 is insufficient with respect to the heating capability required for the cabin air conditioning, the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. The energization of the auxiliary heater 23 is controlled. Thereby, comfortable vehicle interior heating is realized and frost formation of the outdoor heat exchanger 7 is also suppressed.
  • the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air flowing through the air flow passage 3 is vented to the auxiliary heater 23 before the radiator 4.
  • the auxiliary heater 23 is disposed on the air downstream side of the radiator 4
  • the auxiliary heater 23 is configured by a PTC heater as in the embodiment
  • the temperature of the air flowing into the auxiliary heater 23 is determined by the radiator. 4
  • the resistance value of the PTC heater increases, the current value also decreases, and the heat generation amount decreases.
  • the auxiliary heater 23 by arranging the auxiliary heater 23 on the air upstream side of the radiator 4, Thus, the capacity of the auxiliary heater 23 composed of the PTC heater can be sufficiently exhibited.
  • the heat pump controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is closed, the electromagnetic valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 is operated.
  • the air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating.
  • the auxiliary heater 23 and the radiator 4 are ventilated, but the air volume is also adjusted.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16.
  • the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates.
  • the air blown out from the indoor blower 27 by the heat absorption action at this time is cooled, and moisture in the air condenses and adheres to the heat absorber 9, so that the air in the air flow passage 3 is cooled, and Dehumidified.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
  • the valve opening degree of the outdoor expansion valve 6 is fully closed, it is possible to suppress or prevent inconvenience that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. It becomes. Thereby, the fall of a refrigerant
  • the heat pump controller 32 energizes the auxiliary heater 23 to generate heat.
  • the heat pump controller 32 is a compressor based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and a target heat absorber temperature TEO that is a target value of the heat absorber temperature Te calculated by the air conditioning controller 20. 2, and the energization of the auxiliary heater 23 (heating by heat generation) is controlled based on the auxiliary heater temperature Tptc detected by the auxiliary heater temperature sensor 50 and the above-described target heater temperature TCO.
  • the temperature of the air blown out from the respective outlets 29A to 29C into the vehicle interior is accurately prevented by the heating by the auxiliary heater 23.
  • the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air heated by the auxiliary heater 23 passes through the radiator 4. In this dehumidifying heating mode, the refrigerant is supplied to the radiator 4. Therefore, the disadvantage that the radiator 4 absorbs heat from the air heated by the auxiliary heater 23 is also eliminated.
  • the heat pump controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is opened and the electromagnetic valve 40 is closed. Then, the compressor 2 is operated.
  • the air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating.
  • the auxiliary heater 23 and the radiator 4 are ventilated, but the air volume is also adjusted.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
  • the refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates.
  • the air Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
  • the heat pump controller 32 does not energize the auxiliary heater 23, so that the air that has been cooled and dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4 (the heat dissipation capability is lower than that during heating). Is done.
  • the heat pump controller 32 determines the temperature of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO (transmitted from the air conditioning controller 20) that is the target value.
  • the rotational speed NC is controlled.
  • the heat pump controller 32 calculates the target radiator pressure PCO from the target heater temperature TCO described above, and the target radiator pressure PCO and the refrigerant pressure (radiator pressure PCI) of the radiator 4 detected by the radiator pressure sensor 47. Based on the high pressure of the refrigerant circuit R), the valve opening degree of the outdoor expansion valve 6 is controlled, and heating by the radiator 4 is controlled.
  • the heat pump controller 32 fully opens the opening degree of the outdoor expansion valve 6 in the dehumidifying and cooling mode. Then, the compressor 2 is operated and the auxiliary heater 23 is not energized.
  • the air-conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 is blown from the indoor blower 27 and the air in the air flow passage 3 that has passed through the heat absorber 9 is used as the auxiliary heater 23 in the heating heat exchange passage 3A. And it is set as the state which adjusts the ratio ventilated by the heat radiator 4.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30, and the refrigerant exiting the radiator 4 passes through the refrigerant pipe 13E and the outdoor expansion valve 6.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully opened, the refrigerant passes through it and flows into the outdoor heat exchanger 7 as it is, where it is cooled by air or by outside air that is ventilated by the outdoor blower 15 and condensed. Liquefaction.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16.
  • the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19.
  • the air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. Further, moisture in the air condenses and adheres to the heat absorber 9.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
  • Air that has been cooled and dehumidified by the heat absorber 9 is blown into the vehicle interior from each of the air outlets 29A to 29C (partly passes through the radiator 4 to exchange heat), thereby cooling the vehicle interior. Will be done. Further, in this cooling mode, the heat pump controller 32 uses the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the above-described target heat absorber temperature TEO which is the target value of the compressor 2. The number of revolutions NC is controlled. (5) MAX cooling mode (maximum cooling mode) Next, in the MAX cooling mode as the maximum cooling mode, the heat pump controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21.
  • the electromagnetic valve 30 is closed, the electromagnetic valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 is operated and the auxiliary heater 23 is not energized.
  • the air conditioning controller 20 operates the blowers 15 and 27, and the air mix damper 28 keeps the air in the air flow passage 3 from passing through the auxiliary heater 23 and the radiator 4 of the heating heat exchange passage 3 ⁇ / b> A. However, there is no problem even if it is ventilated somewhat.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16.
  • the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. In addition, since moisture in the air condenses and adheres to the heat absorber 9, the air in the air flow passage 3 is dehumidified.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully closed, similarly, it is possible to suppress or prevent the disadvantage that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. . Thereby, the fall of a refrigerant
  • the high-temperature refrigerant flows through the radiator 4 in the cooling mode described above, direct heat conduction from the radiator 4 to the HVAC unit 10 occurs not a little, but in this MAX cooling mode, the refrigerant flows into the radiator 4. Therefore, the air in the air flow passage 3 from the heat absorber 9 is not heated by the heat transmitted from the radiator 4 to the HVAC unit 10. Therefore, powerful cooling of the passenger compartment is performed, and particularly in an environment where the outside air temperature Tam is high, the passenger compartment can be quickly cooled to realize comfortable air conditioning in the passenger compartment.
  • the heat pump controller 32 is also connected to the compressor based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO, which is the target value. 2 is controlled.
  • (6) Auxiliary heater single mode Note that the control device 11 of the embodiment stops the compressor 2 and the outdoor blower 15 of the refrigerant circuit R and energizes the auxiliary heater 23 when, for example, excessive frost formation occurs in the outdoor heat exchanger 7.
  • the auxiliary heater single mode for heating the passenger compartment with only 23 is provided.
  • the heat pump controller 32 controls energization (heat generation) of the auxiliary heater 23 based on the auxiliary heater temperature Tptc detected by the auxiliary heater temperature sensor 50 and the target heater temperature TCO described above.
  • the air conditioning controller 20 operates the indoor blower 27, and the air mix damper 28 passes the air in the air flow passage 3 blown out from the indoor blower 27 to the auxiliary heater 23 of the heat exchange passage 3A for heating, and the air volume is reduced. The state to be adjusted. Since the air heated by the auxiliary heater 23 is blown into the vehicle interior from each of the air outlets 29A to 29C, the vehicle interior is thereby heated. (7) Switching operation mode
  • the air conditioning controller 20 calculates the target blowing temperature TAO described above from the following formula (I).
  • This target blowing temperature TAO is a target value of the temperature of the air blown into the passenger compartment.
  • TAO (Tset ⁇ Tin) ⁇ K + Tbal (f (Tset, SUN, Tam)) (I)
  • Tset is a set temperature in the passenger compartment set by the air conditioning operation unit 53
  • Tin is a room temperature detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is a set temperature Tset
  • SUN is a balance value calculated from the outside air temperature Tam detected by the outside air temperature sensor 33.
  • this target blowing temperature TAO is so high that the outside temperature Tam is low, and it falls as the outside temperature Tam rises.
  • the heat pump controller 32 determines which one of the above operation modes based on the outside air temperature Tam (detected by the outside air temperature sensor 33) transmitted from the air conditioning controller 20 via the vehicle communication bus 65 and the target outlet temperature TAO. The operation mode is selected and each operation mode is transmitted to the air conditioning controller 20 via the vehicle communication bus 65.
  • the outside air temperature Tam the humidity in the vehicle interior, the target outlet temperature TAO, the heating temperature TH, the target heater temperature TCO, the heat absorber temperature Te, the target heat absorber temperature TEO, whether there is a dehumidification request in the vehicle interior, etc.
  • the heating mode, dehumidifying heating mode, dehumidifying cooling mode, cooling mode, MAX cooling mode, and auxiliary heater single mode can be accurately set according to the environmental conditions and necessity of dehumidification.
  • the temperature of the air that is switched and blown into the passenger compartment is controlled to the target outlet temperature TAO to realize comfortable and efficient air conditioning in the passenger compartment.
  • Control of the compressor 2 in the heating mode by the heat pump controller 32 Next, the control of the compressor 2 in the heating mode described above will be described in detail with reference to FIG.
  • FIG. 4 is a control block diagram of the heat pump controller 32 that determines the target rotational speed (compressor target rotational speed) TGNCh of the compressor 2 for heating mode.
  • the above-mentioned TH for calculating the air volume ratio SW is the temperature of the leeward air of the radiator 4 (hereinafter referred to as the heating temperature), and is estimated by the heat pump controller 32 from the first-order lag calculation formula (II) shown below.
  • TH (INTL ⁇ TH0 + Tau ⁇ THz) / (Tau + INTL) (II)
  • INTL is the calculation cycle (constant)
  • Tau is the time constant of the first-order lag
  • TH0 is the steady value that is the value of the heating temperature TH in the steady state before the first-order lag calculation
  • THz is the previous value of the heating temperature TH.
  • the heating temperature TH is transmitted to the air conditioning controller 20 via the vehicle communication bus 65.
  • the target radiator pressure PCO is calculated by the target value calculator 59 based on the target subcooling degree TGSC and the target heater temperature TCO. Further, the F / B (feedback) manipulated variable calculator 60 calculates the F / B manipulated variable TGNChfb of the compressor target rotational speed based on the target radiator pressure PCO and the radiator pressure PCI that is the refrigerant pressure of the radiator 4. To do.
  • the F / F manipulated variable TGNCnff computed by the F / F manipulated variable computing unit 58 and the TGNChfb computed by the F / B manipulated variable computing unit 60 are added by the adder 61, and the control upper limit value and the control are controlled by the limit setting unit 62.
  • FIG. 5 is a control block diagram of the heat pump controller 32 that determines the target rotational speed (compressor target rotational speed) TGNCc of the compressor 2 for the dehumidifying and heating mode.
  • the F / F manipulated variable calculation unit 63 of the heat pump controller 32 is a target heat release that is a target value of the outside air temperature Tam, the volumetric air volume Ga of the air flowing into the air flow passage 3, and the pressure of the radiator 4 (radiator pressure PCI). Based on the compressor pressure PCO and the target heat absorber temperature TEO which is the target value of the temperature of the heat absorber 9 (heat absorber temperature Te), the F / F manipulated variable TGNCcff of the compressor target rotational speed is calculated. Further, the F / B operation amount calculation unit 64 calculates the F / B operation amount TGNCcfb of the compressor target rotational speed based on the target heat absorber temperature TEO (transmitted from the air conditioning controller 20) and the heat absorber temperature Te.
  • FIG. 6 is a control block diagram of the heat pump controller 32 that determines the auxiliary heater required capacity TGQPTC of the auxiliary heater 23 in the dehumidifying heating mode.
  • the subtractor 73 of the heat pump controller 32 receives the target heater temperature TCO and the auxiliary heater temperature Tptc, and calculates a deviation (TCO ⁇ Tptc) between the target heater temperature TCO and the auxiliary heater temperature Tptc.
  • This deviation (TCO-Tptc) is input to the F / B control unit 74.
  • the F / B control unit 74 eliminates the deviation (TCO-Tptc) so that the auxiliary heater temperature Tptc becomes the target heater temperature TCO.
  • the required capacity F / B manipulated variable is calculated.
  • the auxiliary heater required capability F / B manipulated variable calculated by the F / B control unit 74 is determined as the auxiliary heater required capability TGQPTC after the limit setting unit 76 limits the control upper limit value and the control lower limit value. .
  • the controller 32 controls energization of the auxiliary heater 23 based on the auxiliary heater required capacity TGQPTC, thereby generating heat (heating) of the auxiliary heater 23 so that the auxiliary heater temperature Tptc becomes the target heater temperature TCO. To control.
  • the heat pump controller 32 controls the operation of the compressor based on the heat absorber temperature Te and the target heat absorber temperature TEO, and controls the heat generation of the auxiliary heater 23 based on the target heater temperature TCO.
  • cooling and dehumidification by the heat absorber 9 and heating by the auxiliary heater 23 in the dehumidifying heating mode are accurately controlled.
  • Ga is the volumetric volume of the air flowing into the air flow passage 3 described above
  • Te is the heat absorber temperature
  • TH is the heating temperature described above (the temperature of the air on the leeward side of the radiator 4).
  • the air conditioning controller 20 is based on the air volume ratio SW that is passed through the radiator 4 and the auxiliary heater 23 in the heating heat exchange passage 3A calculated by the above-described expression (the following expression (III)) so that the air volume of the ratio is obtained. Further, by controlling the air mix damper 28, the amount of ventilation to the radiator 4 (and the auxiliary heater 23) is adjusted.
  • the air conditioning controller 20 controls the blowout outlets 31A to 31C to control the blowout of air from each of the blowout openings 29A to 29C.
  • the air conditioning controller 20 is used as the FOOT blowout opening. 29A, VENT outlet 29B, and DEF outlet 29C, as well as a FOOT outlet 29A and a VENT outlet, as well as a blowing mode in which air is blown out from any of the DEF outlets 29C (all are second blowing modes other than the first blowing mode) B / L mode (first blowing mode) that blows out from both outlets of 29B, and H / D mode that blows out from both outlets of FOOT outlet 29A and DEF outlet 29C (also first blowing mode) have.
  • the FOOT outlet 29A is formed on the heating heat exchange passage 3A side as shown in FIGS.
  • the air that has passed through the heat exchange passage 3A (the radiator 4 and the auxiliary heater 23) is configured to be easily blown out from the FOOT outlet 29A.
  • the DEF outlet 29C is formed on the bypass passage 3B side, and the air that has passed through the bypass passage 3B is configured to be easily blown out from the DEF outlet 29C.
  • the VENT air outlet 29B is formed on the extension of the partition wall 10A, and the air passing through the bypass passage 3B is more easily blown from the VENT air outlet 29B than the FOOT air outlet 29A, and heat exchange for heating is performed more than the DEF air outlet 29C.
  • the air passing through the passage 3A is configured to be easily blown out. Therefore, when the air volume ratio SW described above by the air mix damper 28 is in the intermediate range, the temperature of the air blown out from the FOOT blowout port 29A becomes higher than the air blown out from the VENT blowout port 29B, and VENT The temperature of the air blown out from the air outlet 29B is higher than that of the air blown out from the DEF air outlet 29C.
  • the air blown out from the VENT outlet 29B is blown out toward the driver's chest and face, so generally, about 25 ° C. (below body temperature) is preferred from the viewpoint of comfort.
  • the temperature of the air blown out from the FOOT outlet 29A is preferably about 40 ° C. (body temperature or higher) for the same reason in order to blow out under the feet. That is, it is preferable that the difference is about 15 deg.
  • the range of the air volume ratio SW that can make a sufficient difference in the outlet temperature between the VENT outlet 29B and the FOOT outlet 29A is limited.
  • FIG. 7 shows changes in the respective outlet temperatures (VENT outlet temperature, FOOT outlet temperature) of the VENT outlet 29B and the FOOT outlet 29A when the air volume ratio SW is changed between “1” and “0”. Yes.
  • the temperature difference can be taken in an intermediate range between the air volume ratios SW1 (for example, 0.4) and SW2 (for example, 0.7). This is because the temperature blown out from the outlets 29B and 29A becomes almost the same even if the air volume ratio SW is too large or too small.
  • the air conditioning controller 20 forcibly dissipates heat in the heat exchange passage 3A for heating when, for example, in the dehumidifying heating mode and the dehumidifying cooling mode described above, for example, in the B / L mode (first blowing mode). Control is performed to regulate the air volume ratio SW to the heater 4 and the auxiliary heater 23 within an intermediate range between SW1 and SW2. That is, the air-conditioning controller 20 sets the upper limit of SW2 and the lower limit of SW1 to the air volume ratio SW calculated by the above formula (III), and prohibits it from becoming larger than SW2 and smaller than SW1.
  • the air-conditioning controller 20 conventionally has the above-described targets for the blowing mode blowing from the VENT blowing outlet 29B, the B / L mode, and the blowing mode blowing from the FOOT blowing outlet 29A, as indicated by the thick oblique solid line in FIG.
  • the air-conditioning controller 20 determines the predetermined value ⁇ 1 based on the outside air temperature Tam, the volumetric air volume Ga of the air flowing into the air flow passage 3, and the target blowing temperature TAO. In this case, the air conditioning controller 20 increases the predetermined value ⁇ 1 as the outside air temperature Tam is lower, and increases the predetermined value ⁇ 1 as the volumetric air volume Ga is larger. Moreover, it calculates in the direction which enlarges predetermined value (alpha) 1, so that the target blowing temperature TAO is high.
  • the heat pump controller 32 that has received it (TCO) increases the heating capability of the auxiliary heater 23 in the dehumidifying heating mode and dissipates heat in the dehumidifying cooling mode. Since the heating capacity by the vessel 4 is increased, a decrease in the blowing temperature is compensated. The same applies to the H / D mode.
  • the air-conditioning controller 20 sets the target heater temperature TCO from the target outlet temperature TAO when the air volume ratio SW is regulated within a predetermined intermediate range (SW1 ⁇ SW ⁇ SW2) in the B / L mode or the H / D mode.
  • the target heater temperature TCO is raised from the target blowing temperature TAO by a predetermined value ⁇ 1, and the predetermined value ⁇ 1 is set to the outside air temperature Tam and the air flow path. Since it is determined based on the volume air volume Ga of the air flowing into the air and the target blowing temperature TAO, the temperature drop can be appropriately prevented based on the outside air temperature Tam, the volume air volume Ga, and the target blowing temperature TAO. It becomes like this.
  • the air conditioning controller 20 increases the predetermined value ⁇ 1 as the volumetric air volume Ga is larger. Therefore, even if the volumetric airflow Ga increases and the heat exchange efficiency between the radiator 4 and the auxiliary heater 23 and air decreases, The air blown into the passenger compartment by the auxiliary heater 23 can be appropriately heated.
  • the raising control of the target heater temperature TCO in the B / L mode (H / D mode) is not limited to the above, and a method of raising the target heater temperature TCO to a predetermined high value t1 (for example, + 70 ° C.) and fixing it may be used (FIG. 8). (Shown with a thin solid line).
  • the air conditioning controller 20 can effectively reduce the temperature of the air blown into the passenger compartment by setting the target heater temperature TCO to the predetermined high value t1. Will be able to prevent. (13) Lowering control of the target heat absorber temperature TEO in the B / L mode (H / D mode) Further, when the air-conditioning controller 20 is in the B / L mode (H / D mode) and the current operation mode is the dehumidifying heating mode or the dehumidifying cooling mode, the target heat absorber temperature TEO is set lower than the normal value TEO0. To do.
  • the heat pump controller 32 that has received it (TEO) via the vehicle communication bus 65 exchanges heat with the heat absorber 9 in order to increase the rotational speed NC of the compressor 2.
  • the temperature of the air passing through the bypass passage 3B decreases.
  • the air conditioning controller 20 calculates the predetermined value ⁇ 2 by the following equation (V) when the blowing mode is a blowing mode (second blowing mode) other than the B / L mode and the H / D mode described above. Increase the target heater temperature TCO.
  • ⁇ 2 f (Tam, Ga, TAO, Tin) (V) That is, the air conditioning controller 20 determines the predetermined value ⁇ 2 based on the outside air temperature Tam, the volume air volume Ga of the air flowing into the air flow passage 3, the target blowing temperature TAO, and the room temperature Tin. In this case, the air conditioning controller 20 increases the predetermined value ⁇ 2 as the outside air temperature Tam decreases, and increases the predetermined value ⁇ 2 as the volumetric air volume Ga decreases. Further, the predetermined value ⁇ 2 is increased as the target blowout temperature TAO is higher, and is calculated in a direction of increasing as the indoor temperature Tin is lower. However, the relationship of ⁇ 1> ⁇ 2 is maintained.
  • the heat pump controller 32 that has received it (TCO) increases the heating capability of the auxiliary heater 23 in the dehumidifying heating mode, and the radiator in the dehumidifying cooling mode. Since the heating ability by 4 will be increased, the fall of the blowing temperature by heat loss will be compensated. The same applies to the H / D mode.
  • the air conditioning controller 20 determines the predetermined value ⁇ 2 based on the outside air temperature Tam, the volumetric air volume Ga of the air flowing into the air flow passage, the target blowing temperature TAO, and the indoor temperature Tin that is the temperature of the air in the vehicle interior.
  • the air conditioning controller 20 increases the predetermined value ⁇ 2 as the volumetric air volume Ga is smaller. Therefore, in the situation where the volumetric airflow Ga is small and the heat loss is increased due to heat exchange with the wall surface of the air flow passage 3. Temperature compensation can be performed effectively.
  • FIG. 9 shows a configuration diagram of a vehicle air conditioner 1 of another embodiment to which the present invention is applied.
  • the same reference numerals as those in FIG. 1 indicate the same or similar functions.
  • the outlet of the supercooling section 16 is connected to the check valve 18, and the outlet of the check valve 18 is connected to the refrigerant pipe 13B.
  • the check valve 18 has a forward direction on the refrigerant pipe 13B (indoor expansion valve 8) side.
  • the refrigerant pipe 13E on the outlet side of the radiator 4 is branched before the outdoor expansion valve 6, and the branched refrigerant pipe (hereinafter referred to as second bypass pipe) 13F is an electromagnetic valve 22 (for dehumidification).
  • an evaporating pressure adjusting valve 70 is connected to the refrigerant pipe 13C on the outlet side of the heat absorber 9 on the refrigerant downstream side of the internal heat exchanger 19 and upstream of the refrigerant with respect to the refrigerant pipe 13D. .
  • the electromagnetic valve 22 and the evaporation pressure adjusting valve 70 are also connected to the output of the heat pump controller 32.
  • the bypass device 45 including the bypass pipe 35, the electromagnetic valve 30 and the electromagnetic valve 40 in FIG. 1 of the above-described embodiment is not provided. Others are the same as in FIG. With the above configuration, the operation of the vehicle air conditioner 1 of this embodiment will be described.
  • the heat pump controller 32 performs switching between the heating mode, the dehumidifying heating mode, the internal cycle mode, the dehumidifying cooling mode, and the cooling mode (the MAX cooling mode does not exist in this embodiment).
  • the operation and the refrigerant flow when the heating mode, the dehumidifying and cooling mode, and the cooling mode are selected are the same as those in the above-described embodiment (Example 1), and thus the description thereof is omitted.
  • the solenoid valve 22 is closed in the heating mode, the dehumidifying cooling mode, and the cooling mode.
  • heat pump controller 32 opens electromagnetic valve 21 (for heating).
  • the electromagnetic valve 17 (for cooling) is closed.
  • the electromagnetic valve 22 (for dehumidification) is opened.
  • the compressor 2 is operated.
  • the air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating.
  • the auxiliary heater 23 and the radiator 4 are ventilated, but the air volume is also adjusted.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G. Since the air in the air flow path 3 that has flowed into the heat exchange path 3A for heating is passed through the heat radiator 4, the air in the air flow path 3 is heated by the high-temperature refrigerant in the heat radiator 4, while the heat radiator The refrigerant in 4 is deprived of heat by the air and cooled to condense. The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the refrigerant circuit R becomes a heat pump. Then, the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 through the refrigerant pipe 13C through the refrigerant pipe 13A, the solenoid valve 21 and the refrigerant pipe 13D, and is gas-liquid separated there. Repeated circulation inhaled.
  • a part of the condensed refrigerant flowing through the refrigerant pipe 13E through the radiator 4 is diverted, passes through the electromagnetic valve 22, and reaches the indoor expansion valve 8 through the internal heat exchanger 19 from the second bypass pipe 13F and the refrigerant pipe 13B. It becomes like this.
  • the refrigerant After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 sequentially passes through the internal heat exchanger 19 and the evaporation pressure adjusting valve 70 and then merges with the refrigerant from the refrigerant pipe 13D in the refrigerant pipe 13C. Then, the refrigerant is sucked into the compressor 2 through the accumulator 12. repeat. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed.
  • the air conditioning controller 20 transmits the target heater temperature TCO (target value of the heating temperature TH) calculated from the target blowing temperature TAO to the heat pump controller 32.
  • the heat pump controller 32 calculates a target radiator pressure PCO (target value of the radiator pressure PCI) from the target heater temperature TCO, and the refrigerant of the radiator 4 detected by the target radiator pressure PCO and the radiator pressure sensor 47.
  • the number of revolutions NC of the compressor 2 is controlled based on the pressure (radiator pressure PCI, high pressure of the refrigerant circuit R), and heating by the radiator 4 is controlled.
  • the heat pump controller 32 controls the valve opening degree of the outdoor expansion valve 6 based on the temperature Te of the heat absorber 9 detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO transmitted from the air conditioning controller 20.
  • the heat pump controller 32 opens (expands the flow path) / closes (low permitting refrigerant flows) based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • the heat pump controller 32 fully closes the outdoor expansion valve 6 in the dehumidifying heating mode (fully closed position), The solenoid valve 21 is closed. Since the outdoor expansion valve 6 and the electromagnetic valve 21 are closed, the inflow of refrigerant to the outdoor heat exchanger 7 and the outflow of refrigerant from the outdoor heat exchanger 7 are blocked.
  • the refrigerant flowing through the second bypass pipe 13F reaches the indoor expansion valve 8 via the internal heat exchanger 19 from the refrigerant pipe 13B. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 sequentially flows through the refrigerant pipe 13C through the internal heat exchanger 19 and the evaporation pressure adjustment valve 70, and repeats circulation that is sucked into the compressor 2 through the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed. Since the refrigerant is circulated between the radiator 4 (radiation) and the heat absorber 9 (heat absorption) in the passage 3, heat from the outside air is not pumped up, and heating for the consumed power of the compressor 2 is performed. Ability is demonstrated.
  • the air conditioning controller 20 transmits a target heater temperature TCO (target value of the heating temperature TH) calculated from the target blowing temperature TAO to the heat pump controller 32.
  • the heat pump controller 32 calculates the target radiator pressure PCO (target value of the radiator pressure PCI) from the transmitted target heater temperature TCO, and the target radiator pressure PCO and the radiator 4 detected by the radiator pressure sensor 47.
  • the rotational speed NC of the compressor 2 is controlled based on the refrigerant pressure (radiator pressure PCI, high pressure of the refrigerant circuit R), and heating by the radiator 4 is controlled.
  • the above-described (10) control of the air mix damper 28 in the dehumidifying heating mode, the internal cycle mode, and the dehumidifying cooling mode (10-1) B / L mode ( (11) B / L mode (H / D mode) (11) B / L mode (H / D mode) (11) B / L mode (H / D mode)
  • the target heater temperature TCO can be set higher than the target blowing temperature TAO to prevent a temperature drop of the air blown into the passenger compartment.
  • TAO target blowing temperature
  • control of the present invention is executed in the dehumidifying and heating mode, the dehumidifying and cooling mode, or the internal cycle mode.
  • the present invention is not limited thereto, and the same effect can be expected in the heating mode.
  • a 1st blowing mode the case where it blows out from both VENT blower outlet 29B and DEF blower outlet 29C other than B / L mode and H / D mode is also considered.
  • the switching control of each operation mode shown in the embodiment is not limited thereto, and the outside air temperature Tam, the humidity in the vehicle interior, the target blowing temperature TAO, depending on the capability and usage environment of the vehicle air conditioner, It is appropriate to adopt any one of the parameters such as heating temperature TH, target heater temperature TCO, heat absorber temperature Te, target heat absorber temperature TEO, presence / absence of dehumidification request in the vehicle interior, or a combination thereof, or all of them. It is good to set conditions.
  • the auxiliary heating device is not limited to the auxiliary heater 23 shown in the embodiment, and a heat medium circulation circuit that heats the air in the air flow passage 3 by circulating the heat medium heated by the heater or an engine. You may utilize the heater core etc. which circulate through the heated radiator water.

Abstract

The present invention achieves comfortable air-conditioning in a passenger compartment by causing an appropriate difference in temperature of air discharged from a blowout port. This air-conditioning device 1 for a vehicle comprises a compressor 2, an air circulation path 3, a radiator 4, an auxiliary heater 23, a heat absorber 9, a heat exchange path 3A for heating and a bypass path 3B, an air mix damper 28, a FOOT blowout port 29A, a VENT blowout port 29B, and a control device. The control device has a B/L mode in which air blows into the passenger compartment through both the FOOT blowout port and the VENT blowout port. In the B/L mode, the air volume ratio SW adjusted by the air mix damper is regulated within a predetermined intermediate range, and target heater temperature TCO is set higher than target blowout temperature TAO.

Description

車両用空気調和装置Air conditioner for vehicles
 本発明は、車両の車室内を空調するヒートポンプ式の空気調和装置に関するものである。 The present invention relates to a heat pump type air conditioner that air-conditions the interior of a vehicle.
 近年の環境問題の顕在化から、ハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する電動式の圧縮機と、空気流通路内に設けられて冷媒を放熱させる放熱器(凝縮器)と、空気流通路内に設けられて冷媒を吸熱させる吸熱器(蒸発器)と、車室外に設けられて冷媒を放熱又は吸熱させる室外熱交換器を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させる暖房モードと、圧縮機から吐出された冷媒を放熱器において放熱させ、放熱した冷媒を吸熱器と室外熱交換器において吸熱させる除湿暖房モードと、圧縮機から吐出された冷媒を放熱器及び室外熱交換器において放熱させ、放熱した冷媒を吸熱器において吸熱させる除湿冷房モードと、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器において吸熱させる冷房モード等の各運転モードを切り換えて実行するものが開発されている。
 そして、空気流通路内にはエアミックスダンパを設け、このエアミックスダンパによって放熱器に通風される空気の割合を零から全部の範囲で調整することにより、目標とする車室内への吹出温度を実現していた(例えば、特許文献1参照)。
 この場合、吸熱器の風下側の空気流通路内は、暖房用熱交換通路とバイパス通路とに区画され、放熱器は暖房用熱交換通路に配置される。そして、エアミックスダンパにより、暖房用熱交換通路に通風する風量を調整するものであるが、この場合のエアミックスダンパの制御には、SW=(TAO−Te)/(TH−Te)の計算式で得られる暖房用熱交換通路(放熱器)に通風する風量割合SWと云うパラメータが用いられる。
 この場合、TAOは目標吹出温度、THは放熱器の風下側の空気の温度、Teは吸熱器の温度であり、風量割合SWは0≦SW≦1の範囲で算出され、「0」で暖房用熱交換通路(放熱器)への通風をしないエアミックス全閉状態、「1」で空気流通路内の全ての空気を暖房用熱交換通路(放熱器)に通風するエアミックス全開状態となるものであった。
Hybrid vehicles and electric vehicles have come into widespread use due to the emergence of environmental problems in recent years. And as an air conditioner that can be applied to such a vehicle, an electric compressor that compresses and discharges the refrigerant, and a radiator (condenser) that is provided in the air flow passage to dissipate the refrigerant A heat absorber (evaporator) that is provided in the air flow passage and absorbs the refrigerant; and an outdoor heat exchanger that is provided outside the vehicle cabin and dissipates or absorbs the refrigerant, and the refrigerant discharged from the compressor In the heating mode in which heat is radiated in the radiator and the refrigerant radiated in the radiator is absorbed in the outdoor heat exchanger, the refrigerant discharged from the compressor is radiated in the radiator, and the radiated refrigerant is absorbed in the heat absorber and the outdoor heat exchanger. A dehumidifying and heating mode, a refrigerant discharged from the compressor is dissipated in the radiator and the outdoor heat exchanger, and a dehumidifying and cooling mode in which the dissipated refrigerant is absorbed in the heat absorber, and the refrigerant is discharged from the compressor. To dissipate the refrigerant in the outdoor heat exchanger, which executes switching the various operating modes such as a cooling mode to heat absorption it has been developed in the heat sink.
Then, an air mix damper is provided in the air flow passage, and by adjusting the ratio of the air that is ventilated by the air mix damper to the radiator in the whole range from zero, the target blowout temperature into the vehicle interior is adjusted. (For example, refer patent document 1).
In this case, the air flow passage on the leeward side of the heat absorber is partitioned into a heat exchange passage for heating and a bypass passage, and the radiator is arranged in the heat exchange passage for heating. The air mix damper adjusts the amount of air flowing through the heating heat exchange passage. In this case, SW = (TAO−Te) / (TH−Te) is calculated to control the air mix damper. A parameter called an air volume ratio SW passing through the heating heat exchange passage (heat radiator) obtained by the equation is used.
In this case, TAO is the target blowing temperature, TH is the temperature of the leeward air of the radiator, Te is the temperature of the heat absorber, and the air volume ratio SW is calculated in the range of 0 ≦ SW ≦ 1, and heating is performed with “0”. The air mix is fully closed without ventilating the heat exchange passage (heat radiator), and the air mix is fully open when all air in the air flow passage is vented to the heating heat exchange passage (heat radiator) with “1”. It was a thing.
特開2012−250708号公報JP 2012-250708 A
 ここで、車室内への空気の吹出口としては通常、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口が設けられている。FOOT吹出口は車室内の足下に空気を吹き出すための吹出口で、最も低い位置にある。また、VENT吹出口は車室内の運転者の胸や顔付近に空気を吹き出すための吹出口で、FOOT吹出口より上方にある。そして、DEF吹出口はフロントガラス内面に空気を吹き出すための吹出口で、他の吹出口よりも上方の最も高い位置にある。
 そして、これらの何れかの吹出口から空気を吹き出すモードの他、FOOTとVENTの双方の吹出口から吹き出すB/Lモードや、FOOTとDEFの双方の吹出口から吹き出すH/Dモード等がある。これらはマニュアルにより或いはオートモードで選択されるものであるが、その目的から暖房用熱交換通路(放熱器)を経た空気はFOOT吹出口から吹き出され易く、バイパス通路を経た空気はDEF吹出口から吹き出され易く、VENT吹出口からはそれらの中間の空気が吹き出されるように構成されている。
 従って、エアミックスダンパによる前述した風量割合SWが中間範囲にあるときは、例えばFOOT吹出口から吹き出される空気の温度は、VENT吹出口から吹き出される空気よりも温度が高くなり、VENT吹出口から吹き出される空気の温度は、DEF吹出口から吹き出される空気よりも温度が高くなる。
 そこで、例えば前述したB/LモードでFOOT吹出口とVENT吹出口から吹き出される空気の温度に差を付けて、所謂「頭寒足熱」の温度差を実現するために風量割合SWを中間範囲に規制することが考えられるが、その場合には本来の風量割合SWより多くの空気がバイパス通路に流れる状況が発生するため、特に車室内を除湿するモード(前述した除湿暖房モードや除湿冷房モード)では吹出温度が低下してしまう場合があった。
 また、放熱器により加熱された空気は上記各吹出口に至る過程で空気流通路の壁面と熱交換するため、熱ロスにより温度が低下する問題もあった。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、所謂ヒートポンプ式の車両用空気調和装置において、吹出口から吹き出される空気に適切な温度差を付けて快適な車室内空調を実現することを目的とする。
Here, FOOT (foot), VENT (vent), and DEF (def) air outlets are usually provided as air outlets into the passenger compartment. The FOOT air outlet is an air outlet for blowing air to the feet in the passenger compartment, and is at the lowest position. The VENT outlet is an outlet for blowing air near the driver's chest and face in the passenger compartment, and is located above the FOOT outlet. And a DEF blower outlet is a blower outlet for blowing air on the inner surface of a windshield, and exists in the highest position above other blower outlets.
In addition to the mode in which air is blown out from any of these air outlets, there are B / L mode in which air is blown out from both FOOT and VENT air outlets, and H / D mode in which air is blown out from both air outlets of FOOT and DEF. . These are selected manually or in the auto mode. For that purpose, the air passing through the heating heat exchange passage (heat radiator) is easily blown out from the FOOT outlet, and the air passing through the bypass passage from the DEF outlet. It is easy to be blown out, and the intermediate air is blown out from the VENT outlet.
Therefore, when the above-described air volume ratio SW by the air mix damper is in the intermediate range, for example, the temperature of the air blown from the FOOT blowout port is higher than the air blown from the VENT blowout port, and the VENT blowout port The temperature of the air blown out from the air becomes higher than that of the air blown out from the DEF outlet.
Therefore, for example, in the B / L mode described above, the air volume ratio SW is regulated to an intermediate range in order to achieve a so-called “head cold foot heat” temperature difference by adding a difference in the temperature of the air blown from the FOOT blowout port and the VENT blowout port. However, in this case, a situation occurs in which more air than the original air volume ratio SW flows to the bypass passage. Therefore, particularly in the mode of dehumidifying the passenger compartment (the above-described dehumidifying heating mode or dehumidifying cooling mode). There was a case where the blowing temperature was lowered.
In addition, since the air heated by the radiator exchanges heat with the wall surface of the air flow passage in the process of reaching each outlet, there is a problem that the temperature is lowered due to heat loss.
The present invention has been made to solve the conventional technical problems, and in a so-called heat pump type vehicle air conditioner, the air blown out from the air outlet is provided with an appropriate temperature difference and is comfortable. The purpose is to achieve air conditioning in the passenger compartment.
 本発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、この空気流通路から車室内に供給する空気を加熱するためのヒータと、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、吸熱器より風下側の空気流通路に区画形成された暖房用熱交換通路及びバイパス通路と、吸熱器を通過した空気流通路内の空気を暖房用熱交換通路に通風する割合を調整するためのエアミックスダンパと、空気流通路から車室内に空気を吹き出すための第1の吹出口と、空気流通路から第1の吹出口より上方の位置の車室内に空気を吹き出すための第2の吹出口と、制御装置とを備え、ヒータは、暖房用熱交換通路に配置され、この暖房用熱交換通路を経た空気は第2の吹出口よりも第1の吹出口から吹き出され易く、バイパス通路を経た空気は第1の吹出口よりも第2の吹出口から吹き出され易い構成とされたものであって、制御装置は、ヒータの風下側の空気の温度である加熱温度THの目標値である目標ヒータ温度TCOに基づいてヒータによる加熱を制御し、車室内に吹き出される空気の温度の目標値である目標吹出温度TAOと、加熱温度THとに基づき、暖房用熱交換通路に通風する風量割合SWを算出してエアミックスダンパを制御すると共に、第1の吹出口と第2の吹出口の双方から車室内に空気を吹き出す第1の吹出モードを有し、この第1の吹出モードでは、風量割合SWを所定の中間範囲内に規制し、且つ、目標ヒータ温度TCOを目標吹出温度TAOより高く設定することを特徴とする。
 請求項2の発明の車両用空気調和装置は、上記発明において制御装置は、第1の吹出モードでは、目標ヒータ温度TCOを目標吹出温度TAOより所定値α1引き上げると共に、この所定値α1を、外気温度Tam、空気流通路に流入した空気の体積風量Ga、及び、目標吹出温度TAOに基づいて決定することを特徴とする。
 請求項3の発明の車両用空気調和装置は、上記発明において制御装置は、体積風量Gaが大きい程、所定値α1を大きくすることを特徴とする。
 請求項4の発明の車両用空気調和装置は、請求項1の発明において制御装置は、第1の吹出モードでは、目標ヒータ温度TCOを所定の高い値とすることを特徴とする。
 請求項5の発明の車両用空気調和装置は、上記各発明において制御装置は、吸熱器の温度の目標値である目標吸熱器温度TEOに基づいて圧縮機を制御すると共に、第1の吹出モードでは、目標吸熱器温度TEOを通常値より低く設定することを特徴とする。
 請求項6の発明の車両用空気調和装置は、上記発明において制御装置は、空気流通路に流入する空気の温度Tasが目標吸熱器温度TEOの通常値より低い場合、吸熱器に冷媒を流さずにヒータにより空気流通路から車室内に供給する空気を加熱する運転に切り換えることを特徴とする。
 請求項7の発明の車両用空気調和装置は、上記各発明において制御装置は、第1の吹出モード以外の吹出モードを有し、この第1の吹出モード以外の吹出モードでは、目標ヒータ温度TCOを目標吹出温度TAOより所定値α2引き上げると共に、この所定値α2を、外気温度Tam、空気流通路に流入した空気の体積風量Ga、目標吹出温度TAO、及び、車室内の空気の温度である室内温度Tinに基づいて決定することを特徴とする。
 請求項8の発明の車両用空気調和装置は、上記発明において制御装置は、体積風量Gaが小さい程、所定値α2を大きくすることを特徴とする。
 請求項9の発明の車両用空気調和装置は、上記各発明においてヒータは、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器、及び/又は、空気流通路から車室内に供給する空気を加熱するための補助加熱装置であることを特徴とする。
The vehicle air conditioner of the present invention includes a compressor for compressing a refrigerant, an air flow passage through which air supplied to the vehicle interior flows, and a heater for heating air supplied from the air flow passage to the vehicle interior. A heat absorber for absorbing the refrigerant to cool the air supplied from the air flow passage to the vehicle interior, a heating heat exchange passage and a bypass passage defined in the air flow passage on the leeward side of the heat absorber, and the heat absorption An air mix damper for adjusting the ratio of the air in the air flow passage that has passed through the heater to the heat exchange passage for heating, a first air outlet for blowing air from the air flow passage into the vehicle interior, and air A second air outlet for blowing air out of the flow passage into the vehicle interior at a position above the first air outlet, and a control device; the heater is disposed in the heat exchange passage for heating; The air passing through the exchange passage is the second outlet And the air that has passed through the bypass passage is more easily blown from the second blower outlet than the first blower outlet, and the control device The heating by the heater is controlled based on the target heater temperature TCO that is the target value of the heating temperature TH that is the temperature of the side air, the target blowing temperature TAO that is the target value of the temperature of the air blown into the passenger compartment, and the heating Based on the temperature TH, the air volume damper SW is controlled by calculating the air volume ratio SW passing through the heating heat exchange passage, and air is blown into the vehicle compartment from both the first air outlet and the second air outlet. In this first blowing mode, the air volume ratio SW is regulated within a predetermined intermediate range, and the target heater temperature TCO is set higher than the target blowing temperature TAO.
In the vehicle air conditioner according to a second aspect of the present invention, in the first aspect of the present invention, the control device raises the target heater temperature TCO from the target blow temperature TAO by a predetermined value α1 and increases the predetermined value α1 to the outside air. It is determined based on the temperature Tam, the volumetric air volume Ga of the air flowing into the air flow passage, and the target blowing temperature TAO.
The vehicle air conditioner according to a third aspect of the invention is characterized in that, in the above invention, the control device increases the predetermined value α1 as the volumetric air volume Ga increases.
A vehicle air conditioner according to a fourth aspect of the invention is characterized in that, in the first aspect of the invention, the control device sets the target heater temperature TCO to a predetermined high value in the first blowing mode.
According to a fifth aspect of the present invention, there is provided the vehicle air conditioner according to the first aspect, wherein the control device controls the compressor based on a target heat absorber temperature TEO, which is a target value of the temperature of the heat absorber. Then, the target heat absorber temperature TEO is set lower than the normal value.
According to a sixth aspect of the present invention, there is provided the vehicle air conditioner according to the first aspect, wherein the control device does not flow the refrigerant through the heat absorber when the temperature Tas of the air flowing into the air flow passage is lower than the normal value of the target heat absorber temperature TEO. The heater is switched to the operation of heating the air supplied from the air flow passage to the vehicle interior.
According to a seventh aspect of the present invention, there is provided an air conditioning apparatus for a vehicle according to each of the first and second aspects of the present invention, wherein the control device has a blowing mode other than the first blowing mode, and the target heater temperature TCO is in a blowing mode other than the first blowing mode. Is increased from the target blowing temperature TAO by a predetermined value α2, and the predetermined value α2 is set to the outside air temperature Tam, the volume air volume Ga of the air flowing into the air flow passage, the target blowing temperature TAO, and the air temperature in the vehicle interior. It is determined based on the temperature Tin.
The vehicle air conditioner according to an eighth aspect of the present invention is characterized in that, in the above invention, the control device increases the predetermined value α2 as the volumetric air volume Ga is smaller.
According to a ninth aspect of the present invention, there is provided an air conditioning apparatus for a vehicle according to the present invention, wherein the heater is a radiator and / or an airflow passage for heating the air supplied from the airflow passage to the passenger compartment by radiating the refrigerant It is an auxiliary heating device for heating the air supplied from the interior to the vehicle interior.
 本発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、この空気流通路から車室内に供給する空気を加熱するためのヒータと、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、吸熱器より風下側の空気流通路に区画形成された暖房用熱交換通路及びバイパス通路と、吸熱器を通過した空気流通路内の空気を暖房用熱交換通路に通風する割合を調整するためのエアミックスダンパと、空気流通路から車室内に空気を吹き出すための第1の吹出口と、空気流通路から第1の吹出口より上方の位置の車室内に空気を吹き出すための第2の吹出口と、制御装置とを備え、ヒータは、暖房用熱交換通路に配置され、この暖房用熱交換通路を経た空気は第2の吹出口よりも第1の吹出口から吹き出され易く、バイパス通路を経た空気は第1の吹出口よりも第2の吹出口から吹き出され易い構成とされた車両用空気調和装置において、制御装置が、ヒータの風下側の空気の温度である加熱温度THの目標値である目標ヒータ温度TCOに基づいてヒータによる加熱を制御し、車室内に吹き出される空気の温度の目標値である目標吹出温度TAOと、加熱温度THとに基づき、暖房用熱交換通路に通風する風量割合SWを算出してエアミックスダンパを制御すると共に、第1の吹出口と第2の吹出口の双方から車室内に空気を吹き出す第1の吹出モードを有し、この第1の吹出モードでは、風量割合SWを所定の中間範囲内に規制するようにしたので、第1の吹出モードで第1の吹出口から吹き出される空気と第2の吹出口から吹き出される空気との間に十分な温度差を付けることができるようになる。
 また、この第1の吹出モードでは目標ヒータ温度TCOを目標吹出温度TAOより高く設定するので、車室内に吹き出される空気の温度低下も防止することができるようになり、これらによって所謂「頭寒足熱」の快適な車室内空調を実現することができるようになる。
そして、請求項2の発明では制御装置が、第1の吹出モードでは、目標ヒータ温度TCOを目標吹出温度TAOより所定値α1引き上げると共に、この所定値α1を、外気温度Tam、空気流通路に流入した空気の体積風量Ga、及び、目標吹出温度TAOに基づいて決定するようにしたので、外気温度Tamや体積風量Ga、目標吹出温度TAOに基づいて適切に温度低下を防止することができるようになる。
 特に、請求項3の発明の如く制御装置が、体積風量Gaが大きい程、所定値α1を大きくするようにすれば、体積風量Gaが大きくなってヒータと空気との熱交換効率が下がってもヒータにより車室内に吹き出される空気を適切に加熱することができるようになる。
 また、請求項4の発明の如く制御装置が、第1の吹出モードでは、目標ヒータ温度TCOを所定の高い値とすることによっても車室内に吹き出される空気の温度低下を効果的に防止することができるようになる。
 また、請求項5の発明の如く制御装置が、吸熱器の温度の目標値である目標吸熱器温度TEOに基づいて圧縮機を制御すると共に、第1の吹出モードでは、目標吸熱器温度TEOを通常値より低く設定するようにすれば、バイパス通路を通過する空気の温度が低下するため、第1の吹出口から吹き出される空気と第2の吹出口から吹き出される空気との間に温度差を付け易くなり、一層快適な車室内空調を実現することができるようになる。
 尚、この場合、空気流通路に流入する空気の温度Tasが目標吸熱器温度TEOの通常値より低くなると、各吹出口から吹き出される空気に温度差が付き易くなると共に、車室内を加熱する必要も出てくるので、制御装置は、吸熱器に冷媒を流さずにヒータにより空気流通路から車室内に供給する空気を加熱する運転に切り換える。
 また、請求項7の発明の如く制御装置が、第1の吹出モード以外の吹出モードでは、目標ヒータ温度TCOを目標吹出温度TAOより所定値α2引き上げると共に、この所定値α2を、外気温度Tam、空気流通路に流入した空気の体積風量Ga、目標吹出温度TAO、及び、車室内の空気の温度である室内温度Tinに基づいて決定するようにすれば、ヒータから吹出口に至る過程での熱ロスによる温度低下を適切に補償することができるようになる。
 この場合、請求項8の発明の如く制御装置が、体積風量Gaが小さい程、所定値α2を大きくするようにすれば、体積風量Gaが小さく、空気流通路の壁面との熱交換で熱ロスがより大きくなる状況において、一層効果的に温度補償を行うことができるようになる。
 そして、上記各発明のヒータは、請求項9の発明の如く、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器、又は、空気流通路から車室内に供給する空気を加熱するための補助加熱装置、或いは、放熱器と補助加熱装置の双方で構成することができ、係る車両用空気調和装置に上記各発明は極めて有効となる。
According to the present invention, the compressor that compresses the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, the heater for heating the air supplied from the air flow passage to the vehicle interior, and the heat absorption of the refrigerant. A heat absorber for cooling the air supplied to the vehicle interior from the air flow passage, a heating heat exchange passage and a bypass passage formed in the air flow passage on the leeward side of the heat absorber, and the heat absorber An air mix damper for adjusting the rate at which the air in the air flow passage is passed through the heating heat exchange passage, a first air outlet for blowing air from the air flow passage into the vehicle interior, and a first air outlet from the air flow passage. A second air outlet for blowing air into the passenger compartment located above the air outlet of 1 and a control device, and the heater is disposed in the heat exchange passage for heating and passes through the heat exchange passage for heating. Air is at the first outlet rather than at the second outlet. In a vehicle air conditioner configured such that air that is easily blown from the mouth and that has passed through the bypass passage is more likely to be blown from the second air outlet than the first air outlet, the control device is configured to control the air on the leeward side of the heater. Heating by the heater is controlled based on the target heater temperature TCO that is the target value of the heating temperature TH that is the temperature, and the target blowing temperature TAO that is the target value of the temperature of the air blown into the vehicle interior and the heating temperature TH Based on this, the first air blowing mode for controlling the air mix damper by calculating the air volume ratio SW passing through the heat exchange passage for heating and blowing air into the vehicle compartment from both the first air outlet and the second air outlet. In this first blowing mode, the air volume ratio SW is regulated within a predetermined intermediate range, so that the air blown from the first outlet and the second blowing in the first blowing mode. Exit It is possible to give a sufficient temperature difference between the air blown out.
Further, in this first blowing mode, the target heater temperature TCO is set higher than the target blowing temperature TAO, so that it is possible to prevent the temperature of the air blown into the passenger compartment from being lowered. This makes it possible to realize comfortable air conditioning in the vehicle.
In the second aspect of the invention, in the first blowing mode, the control device raises the target heater temperature TCO by a predetermined value α1 from the target blowing temperature TAO, and flows the predetermined value α1 into the outside air temperature Tam and the air flow passage. Since the determination is made based on the volume air volume Ga of the air and the target blowing temperature TAO, the temperature drop can be appropriately prevented based on the outside air temperature Tam, the volume air volume Ga, and the target blowing temperature TAO. Become.
In particular, if the control device increases the predetermined value α1 as the volumetric air volume Ga increases as in the invention of claim 3, even if the volumetric airflow Ga increases and the heat exchange efficiency between the heater and air decreases. The air blown into the passenger compartment by the heater can be appropriately heated.
Further, in the first blowing mode, the control device as in the fourth aspect of the invention effectively prevents the temperature of the air blown into the vehicle compartment from being lowered by setting the target heater temperature TCO to a predetermined high value. Will be able to.
Further, as in the fifth aspect of the invention, the control device controls the compressor based on the target heat absorber temperature TEO which is a target value of the temperature of the heat absorber, and in the first blowing mode, the target heat absorber temperature TEO is set. If it is set lower than the normal value, the temperature of the air passing through the bypass passage decreases, so the temperature between the air blown from the first blower outlet and the air blown from the second blower outlet It becomes easy to make a difference, and it becomes possible to realize more comfortable vehicle interior air conditioning.
In this case, if the temperature Tas of the air flowing into the air flow passage becomes lower than the normal value of the target heat absorber temperature TEO, the air blown out from each outlet becomes easy to have a temperature difference and heats the passenger compartment. Since the necessity also arises, the control device switches to the operation of heating the air supplied from the air flow passage to the vehicle interior by the heater without flowing the refrigerant through the heat absorber.
Further, as in the seventh aspect of the invention, the control device raises the target heater temperature TCO by a predetermined value α2 from the target blowout temperature TAO in the blowout mode other than the first blowout mode, and sets the predetermined value α2 to the outside air temperature Tam, If it is determined based on the volume air volume Ga of the air flowing into the air flow passage, the target blowing temperature TAO, and the indoor temperature Tin, which is the temperature of the air in the passenger compartment, the heat in the process from the heater to the outlet A temperature drop due to loss can be compensated appropriately.
In this case, if the control device increases the predetermined value α2 as the volumetric air volume Ga is smaller as in the invention of claim 8, the volumetric air volume Ga is small, and heat loss is caused by heat exchange with the wall surface of the air flow passage. Thus, temperature compensation can be performed more effectively in a situation where the value of the value becomes larger.
The heater of each of the above inventions, as in the ninth aspect of the invention, dissipates the refrigerant and heats the air supplied from the air flow passage to the vehicle interior, or is supplied from the air flow passage to the vehicle interior. The above-described inventions are extremely effective for an air conditioning apparatus for a vehicle that can be constituted by an auxiliary heating apparatus for heating air to be heated, or both a radiator and an auxiliary heating apparatus.
本発明を適用した一実施形態の車両用空気調和装置の構成図である(実施例1)。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the air conditioning apparatus for vehicles of one Embodiment to which this invention is applied (Example 1). 図1の車両用空気調和装置の制御装置のブロック図である。It is a block diagram of the control apparatus of the air conditioning apparatus for vehicles of FIG. 図1の車両用空気調和装置の空気流通路の模式図である。It is a schematic diagram of the airflow path of the vehicle air conditioner of FIG. 図2のヒートポンプコントローラの暖房モードにおける圧縮機制御に関する制御ブロック図である。It is a control block diagram regarding the compressor control in the heating mode of the heat pump controller of FIG. 図2のヒートポンプコントローラの除湿暖房モードにおける圧縮機制御に関する制御ブロック図である。It is a control block diagram regarding the compressor control in the dehumidification heating mode of the heat pump controller of FIG. 図2のヒートポンプコントローラの除湿暖房モードにおける補助ヒータ(補助加熱装置)制御に関する制御ブロック図である。It is a control block diagram regarding auxiliary heater (auxiliary heating apparatus) control in the dehumidification heating mode of the heat pump controller of FIG. 風量割合SWと、FOOT吹出口から吹出温度及びVENT吹出口からの吹出温度との関係を説明する図である。It is a figure explaining the relationship between air volume ratio SW, the blowing temperature from a FOOT blower outlet, and the blowout temperature from a VENT blower outlet. 図2のヒートポンプコントローラによる目標ヒータ温度TCOの引き上げ制御を説明する図である。It is a figure explaining raising control of target heater temperature TCO by the heat pump controller of FIG. 本発明の他の実施例の車両用空気調和装置の構成図である(実施例2)。It is a block diagram of the air conditioning apparatus for vehicles of the other Example of this invention (Example 2).
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は本発明の一実施例の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、バッテリに充電された電力で走行用の電動モータを駆動して走行するものであり(何れも図示せず)、本発明の車両用空気調和装置1も、バッテリの電力で駆動されるものとする。即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路を用いたヒートポンプ運転により暖房モードを行い、更に、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード(最大冷房モード)及び補助ヒータ単独モードの各運転モードを選択的に実行するものである。
 尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明は有効であり、更には、エンジンで走行する通常の自動車にも適用可能であることは云うまでもない。
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を放熱させて車室内に供給する空気を加熱するためのヒータとしての放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6(減圧装置)と、車室外に設けられて冷房時には放熱器として機能し、暖房時には蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る室内膨張弁8(減圧装置)と、空気流通路3内に設けられ、冷房時及び除湿時に冷媒を吸熱させて車室内外から吸い込んで車室内に供給する空気を冷却するための吸熱器9と、アキュムレーク12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。
 そして、この冷媒回路Rには所定量の冷媒と潤滑用のオイルが充填されている。尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。
 また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7から出た冷媒配管13Aは冷房時に開放される電磁弁17を介してレシーバドライヤ部14に接続され、過冷却部16の出口側の冷媒配管13Bは室内膨張弁8介して吸熱器9の入口側に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成している。
 また、過冷却部16と室内膨張弁8間の冷媒配管13Bは、吸熱器9の出口側の冷媒配管13Cと熱交換関係に設けられ、両者で内部熱交換器19を構成している。これにより、冷媒配管13Bを経て室内膨張弁8に流入する冷媒は、吸熱器9を出た低温の冷媒により冷却(過冷却)される構成とされている。
 また、室外熱交換器7から出た冷媒配管13Aは冷媒配管13Dに分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁21を介して内部熱交換器19の下流側における冷媒配管13Cに連通接続されている。この冷媒配管13Cがアキュムレータ12に接続され、アキュムレータ12は圧縮機2の冷媒吸込側に接続されている。更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6を介して室外熱交換器7の入口側に接続されている。
 また、圧縮機2の吐出側と放熱器4の入口側の間の冷媒配管13Gには後述する除湿暖房とMAX冷房時に閉じられる電磁弁30(流路切換装置を構成する)が介設されている。この場合、冷媒配管13Gは電磁弁30の上流側でバイパス配管35に分岐しており、このバイパス配管35は除湿暖房とMAX冷房時に開放される電磁弁40(これも流路切換装置を構成する)を介して室外膨張弁6の下流側の冷媒配管13Eに連通接続されている。これらバイパス配管35、電磁弁30及び電磁弁40によりバイパス装置45が構成される。
 このようなバイパス配管35、電磁弁30及び電磁弁40によりバイパス装置45を構成したことで、後述する如く圧縮機2から吐出された冷媒を室外熱交換器7に直接流入させる除湿暖房モードやMAX冷房モードと、圧縮機2から吐出された冷媒を放熱器4に流入させる暖房モードや除湿冷房モード、冷房モードとの切り換えを円滑に行うことができるようになる。
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環モード)と、車室外の空気である外気(外気導入モード)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
 また、図1において23は実施例の車両用空気調和装置1に設けられた補助加熱装置(もう一つのヒータ)としての補助ヒータである。実施例の補助ヒータ23は電気ヒータであるPTCヒータにて構成されており、空気流通路3の空気の流れに対して、放熱器4の風上側(空気上流側)となる空気流通路3内に設けられている。そして、補助ヒータ23に通電されて発熱すると、吸熱器9を経て放熱器4に流入する空気流通路3内の空気が加熱される。即ち、この補助ヒータ23が所謂ヒータコアとなり、車室内の暖房を行い、或いは、それを補完する。この実施例では前述した放熱器4とこの補助ヒータ23がヒータとなる。
 ここで、HVACユニット10の吸熱器9より風下側(空気下流側)の空気流通路3は仕切壁10Aにより区画され、暖房用熱交換通路3Aとそれをバイパスするバイパス通路3Bとが形成されており、前述した放熱器4と補助ヒータ23は暖房用熱交換通路3Aに配置されている。
 また、補助ヒータ23の風上側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を、補助ヒータ23及び放熱器4が配置された暖房用熱交換通路3Aに通風する割合を調整するエアミックスダンパ28が設けられている。
 更に、放熱器4の風下側におけるHVACユニット10には、FOOT(フット)吹出口29A(第1の吹出口)、VENT(ベント)吹出口29B(FOOT吹出口29Aに対しては第2の吹出口、DEF吹出口29Cに対しては第1の吹出口)、DEF(デフ)吹出口29C(第2の吹出口)の各吹出口が形成されている。FOOT吹出口29Aは車室内の足下に空気を吹き出すための吹出口で、最も低い位置にある。また、VENT吹出口29Bは車室内の運転者の胸や顔付近に空気を吹き出すための吹出口で、FOOT吹出口29Aより上方にある。そして、DEF吹出口29Cは車両のフロントガラス内面に空気を吹き出すための吹出口で、他の吹出口29A、29Bよりも上方の最も高い位置にある。
 そして、FOOT吹出口29A、VENT吹出口29B、及び、DEF吹出口29Cには、空気の吹き出し量を制御するFOOT吹出口ダンパ31A、VENT吹出口ダンパ31B、及び、DEF吹出口ダンパ31Cがそれぞれ設けられている。
 次に、図2は実施例の車両用空気調和装置1の制御装置11のブロック図を示している。制御装置11は、何れもプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成された空調コントローラ20及びヒートポンプコントローラ32から構成されており、これらがCAN(Controller Area Network)やLIN(Local Interconnect Network)を構成する車両通信バス65に接続されている。また、圧縮機2と補助ヒータ23も車両通信バス65に接続され、これら空調コントローラ20、ヒートポンプコントローラ32、圧縮機2及び補助ヒータ23が車両通信バス65を介してデータの送受信を行うように構成されている。
 空調コントローラ20は、車両の車室内空調の制御を司る上位のコントローラであり、この空調コントローラ20の入力には、車両の外気温度(Tam)を検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれて吸熱器9に流入する空気の温度(吸込空気温度Tas)を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度(室内温度Tin)を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力(吐出圧力Pd)を検出する吐出圧力センサ42と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52の各出力と、設定温度や運転モードの切り換えを設定するための空調(エアコン)操作部53が接続されている。
 また、空調コントローラ20の出力には、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、各吹出口ダンパ31A~31Cが接続され、それらは空調コントローラ20により制御される。
 ヒートポンプコントローラ32は、主に冷媒回路Rの制御を司るコントローラであり、このヒートポンプコントローラ32の入力には、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒圧力を検出する吸込圧力センサ44と、圧縮機2の吸込冷媒温度を検出する吸込温度センサ55と、放熱器4の冷媒温度(放熱器温度TCI)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器圧力PCI)を検出する放熱器圧力センサ47と、吸熱器9の冷媒温度(吸熱器温度Te)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力を検出する吸熱器圧力センサ49と、補助ヒータ23の温度(補助ヒータ温度Tptc)を検出する補助ヒータ温度センサ50と、室外熱交換器7の冷媒温度(室外熱交換器温度TXO)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(室外熱交換器圧力PXO)を検出する室外熱交換器圧力センサ56の各出力が接続されている。
 また、ヒートポンプコントローラ32の出力には、室外膨張弁6、室内膨張弁8と、電磁弁30(除湿用)、電磁弁17(冷房用)、電磁弁21(暖房用)、電磁弁40(これも除湿用)の各電磁弁が接続され、それらはヒートポンプコントローラ32により制御される。尚、圧縮機2と補助ヒータ23はそれぞれコントローラを内蔵しており、圧縮機2と補助ヒータ23のコントローラは車両通信バス65を介してヒートポンプコントローラ32とデータの送受信を行い、このヒートポンプコントローラ32によって制御される。
 ヒートポンプコントローラ32と空調コントローラ20は車両通信バス65を介して相互にデータの送受信を行い、各センサの出力や空調操作部53にて入力された設定に基づき、各機器を制御するものであるが、この場合の実施例では外気温度センサ33、吐出圧力センサ42、車速センサ52、空調操作部53の出力は空調コントローラ20から車両通信バス65を介してヒートポンプコントローラ32に送信され、ヒートポンプコントローラ32による制御に供される構成とされている。
 以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。この実施例では制御装置11(空調コントローラ20、ヒートポンプコントローラ32)は、暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード(最大冷房モード)及び補助ヒータ単独モードの各運転モードを切り換えて実行する。先ず、各運転モードにおける冷媒の流れと制御の概略について説明する。
 (1)暖房モード
 ヒートポンプコントローラ32により(オートモード)或いは空調操作部53へのマニュアル操作(マニュアルモード)により暖房モードが選択されると、ヒートポンプコントローラ32は電磁弁21(暖房用)を開放し、電磁弁17(冷房用)を閉じる。また、電磁弁30(除湿用)を開放し、電磁弁40(除湿用)を閉じる。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量を調整してもよい。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)にて加熱された空気は各吹出口29A~29Cから吹き出されるので、これにより車室内の暖房が行われることになる。
 ヒートポンプコントローラ32は、空調コントローラ20が目標吹出温度TAOから算出する目標ヒータ温度TCO(後述する加熱温度THの目標値)から目標放熱器圧力PCO(放熱器圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数NCを制御し、放熱器4による加熱を制御する。また、ヒートポンプコントローラ32は、放熱器温度センサ46が検出する放熱器4の温度(放熱器温度TCI)及び放熱器圧力センサ47が検出する放熱器圧力PCIに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度SCを制御する。
 また、ヒートポンプコントローラ32はこの暖房モードにおいては、車室内空調に要求される暖房能力に対して放熱器4による暖房能力が不足する場合、その不足する分を補助ヒータ23の発熱で補完するように補助ヒータ23の通電を制御する。それにより、快適な車室内暖房を実現し、且つ、室外熱交換器7の着霜も抑制する。このとき、補助ヒータ23は放熱器4の空気上流側に配置されているので、空気流通路3を流通する空気は放熱器4の前に補助ヒータ23に通風されることになる。
 ここで、補助ヒータ23が放熱器4の空気下流側に配置されていると、実施例の如くPTCヒータで補助ヒータ23を構成した場合には、補助ヒータ23に流入する空気の温度が放熱器4によって上昇するため、PTCヒータの抵抗値が大きくなり、電流値も低くなって発熱量が低下してしまうが、放熱器4の空気上流側に補助ヒータ23を配置することで、実施例の如くPTCヒータから構成される補助ヒータ23の能力を十分に発揮させることができるようになる。
 (2)除湿暖房モード
 次に、除湿暖房モードでは、ヒートポンプコントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量の調整も行う。
 これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却され、且つ、当該空気中の水分が吸熱器9に凝結して付着するので、空気流通路3内の空気は冷却され、且つ、除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。
 このとき、室外膨張弁6の弁開度は全閉とされているので、圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。更に、この除湿暖房モードにおいてヒートポンプコントローラ32は、補助ヒータ23に通電して発熱させる。これにより、吸熱器9にて冷却され、且つ、除湿された空気は補助ヒータ23を通過する過程で更に加熱され、温度が上昇するので車室内の除湿暖房が行われることになる。
 ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)と、空調コントローラ20が算出する吸熱器温度Teの目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御すると共に、補助ヒータ温度センサ50が検出する補助ヒータ温度Tptcと前述した目標ヒータ温度TCOに基づいて補助ヒータ23の通電(発熱による加熱)を制御することで、吸熱器9での空気の冷却と除湿を適切に行いながら、補助ヒータ23による加熱で各吹出口29A~29Cから車室内に吹き出される空気温度の低下を的確に防止する。これにより、車室内に吹き出される空気を除湿しながら、その温度を適切な暖房温度に制御することが可能となり、車室内の快適且つ効率的な除湿暖房を実現することができるようになる。
 尚、補助ヒータ23は放熱器4の空気上流側に配置されているので、補助ヒータ23で加熱された空気は放熱器4を通過することになるが、この除湿暖房モードでは放熱器4に冷媒は流されないので、補助ヒータ23にて加熱された空気から放熱器4が吸熱してしまう不都合も解消される。即ち、放熱器4によって車室内に吹き出される空気の温度が低下してしまうことが抑制され、COPも向上することになる。
 (3)除湿冷房モード
 次に、除湿冷房モードでは、ヒートポンプコントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を開放し、電磁弁40を閉じる。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量の調整も行う。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
 放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。この除湿冷房モードではヒートポンプコントローラ32は補助ヒータ23に通電しないので、吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱(暖房時よりも放熱能力は低い)される。これにより車室内の除湿冷房が行われることになる。
 ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEO(空調コントローラ20から送信される)に基づいて圧縮機2の回転数NCを制御する。また、ヒートポンプコントローラ32は前述した目標ヒータ温度TCOから目標放熱器圧力PCOを算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて室外膨張弁6の弁開度を制御し、放熱器4による加熱を制御する。
 (4)冷房モード
 次に、冷房モードでは、ヒートポンプコントローラ32は上記除湿冷房モードの状態において室外膨張弁6の弁開度を全開とする。そして、圧縮機2を運転し、補助ヒータ23には通電しない。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の空気が、暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風される割合を調整する状態とする。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入すると共に、放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので冷媒はそれを通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着する。
 吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気が各吹出口29A~29Cから車室内に吹き出されるので(一部は放熱器4を通過して熱交換する)、これにより車室内の冷房が行われることになる。また、この冷房モードにおいては、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である前述した目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御する。
 (5)MAX冷房モード(最大冷房モード)
 次に、最大冷房モードとしてのMAX冷房モードでは、ヒートポンプコントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2を運転し、補助ヒータ23には通電しない。空調コントローラ20は、各送風機15、27を運転し、エアミックスダンパ28は暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に空気流通路3内の空気が通風されない状態とする。但し、多少通風されても支障はない。
 これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着するので、空気流通路3内の空気は除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。このとき、室外膨張弁6は全閉とされているので、同様に圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。
 ここで、前述した冷房モードでは放熱器4に高温の冷媒が流れているため、放熱器4からHVACユニット10への直接の熱伝導が少なからず生じるが、このMAX冷房モードでは放熱器4に冷媒が流れないため、放熱器4からHVACユニット10に伝達される熱で吸熱器9からの空気流通路3内の空気が加熱されることも無くなる。そのため、車室内の強力な冷房が行われ、特に外気温度Tamが高いような環境下では、迅速に車室内を冷房して快適な車室内空調を実現することができるようになる。また、このMAX冷房モードにおいても、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である前述した目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御する。
 (6)補助ヒータ単独モード
 尚、実施例の制御装置11は室外熱交換器7に過着霜が生じた場合などに、冷媒回路Rの圧縮機2と室外送風機15を停止し、補助ヒータ23に通電してこの補助ヒータ23のみで車室内を暖房する補助ヒータ単独モードを有している。この場合にも、ヒートポンプコントローラ32は補助ヒータ温度センサ50が検出する補助ヒータ温度Tptcと前述した目標ヒータ温度TCOに基づいて補助ヒータ23の通電(発熱)を制御する。
 また、空調コントローラ20は室内送風機27を運転し、エアミックスダンパ28は、室内送風機27から吹き出された空気流通路3内の空気を暖房用熱交換通路3Aの補助ヒータ23に通風し、風量を調整する状態とする。補助ヒータ23にて加熱された空気が各吹出口29A~29Cから車室内に吹き出されるので、これにより車室内の暖房が行われることになる。
 (7)運転モードの切換
 空調コントローラ20は、下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、車室内に吹き出される空気の温度の目標値である。
 TAO=(Tset−Tin)×K+Tbal(f(Tset、SUN、Tam))・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する室内温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
 ヒートポンプコントローラ32は、起動時には空調コントローラ20から車両通信バス65を介して送信される外気温度Tam(外気温度センサ33が検出する)と目標吹出温度TAOとに基づいて上記各運転モードのうちの何れかの運転モードを選択すると共に、各運転モードを車両通信バス65を介して空調コントローラ20に送信する。また、起動後は外気温度Tam、車室内の湿度、目標吹出温度TAO、後述する加熱温度TH、目標ヒータ温度TCO、吸熱器温度Te、目標吸熱器温度TEO、車室内の除湿要求の有無、等のパラメータに基づいて各運転モードの切り換えを行うことで、環境条件や除湿の要否に応じて的確に暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード及び補助ヒータ単独モードを切り換えて車室内に吹き出される空気の温度を目標吹出温度TAOに制御し、快適且つ効率的な車室内空調を実現するものである。
 (8)ヒートポンプコントローラ32による暖房モードでの圧縮機2の制御
 次に、図4を用いて前述した暖房モードにおける圧縮機2の制御について詳述する。図4は暖房モード用の圧縮機2の目標回転数(圧縮機目標回転数)TGNChを決定するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F(フィードフォワード)操作量演算部58は外気温度センサ33から得られる外気温度Tamと、室内送風機27のブロワ電圧BLVと、SW=(TAO−Te)/(TH−Te)で得られるエアミックスダンパ28による風量割合SWと、放熱器4の出口における過冷却度SCの目標値である目標過冷却度TGSCと、加熱温度THの目標値である前述した目標ヒータ温度TCO(空調コントローラ20から送信される)と、放熱器4の圧力の目標値である目標放熱器圧力PCOに基づいて圧縮機目標回転数のF/F操作量TGNChffを演算する。
 尚、風量割合SWを算出する上記THは、放熱器4の風下側の空気の温度(以下、加熱温度と云う)であり、ヒートポンプコントローラ32が下記に示す一次遅れ演算の式(II)から推定する。
 TH=(INTL×TH0+Tau×THz)/(Tau+INTL) ・・(II)
 ここで、INTLは演算周期(定数)、Tauは一次遅れの時定数、TH0は一次遅れ演算前の定常状態における加熱温度THの値である定常値、THzは加熱温度THの前回値である。そして、この加熱温度THは車両通信バス65を介して空調コントローラ20に送信される。
 前記目標放熱器圧力PCOは上記目標過冷却度TGSCと目標ヒータ温度TCOに基づいて目標値演算部59が演算する。更に、F/B(フィードバック)操作量演算部60はこの目標放熱器圧力PCOと放熱器4の冷媒圧力である放熱器圧力PCIに基づいて圧縮機目標回転数のF/B操作量TGNChfbを演算する。そして、F/F操作量演算部58が演算したF/F操作量TGNCnffとF/B操作量演算部60が演算したTGNChfbは加算器61で加算され、リミット設定部62で制御上限値と制御下限値のリミットが付けられた後、圧縮機目標回転数TGNChとして決定される。前記暖房モードにおいては、ヒートポンプコントローラ32はこの圧縮機目標回転数TGNChに基づいて圧縮機2の回転数NCを制御する。
 (9)ヒートポンプコントローラ32による除湿暖房モードでの圧縮機2及び補助ヒータ23の制御
 一方、図5は前記除湿暖房モード用の圧縮機2の目標回転数(圧縮機目標回転数)TGNCcを決定するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F操作量演算部63は外気温度Tamと、空気流通路3に流入した空気の体積風量Gaと、放熱器4の圧力(放熱器圧力PCI)の目標値である目標放熱器圧力PCOと、吸熱器9の温度(吸熱器温度Te)の目標値である目標吸熱器温度TEOに基づいて圧縮機目標回転数のF/F操作量TGNCcffを演算する。
 また、F/B操作量演算部64は目標吸熱器温度TEO(空調コントローラ20から送信される)と吸熱器温度Teに基づいて圧縮機目標回転数のF/B操作量TGNCcfbを演算する。そして、F/F操作量演算部63が演算したF/F操作量TGNCcffとF/B操作量演算部64が演算したF/B操作量TGNCcfbは加算器66で加算され、リミット設定部67で制御上限値と制御下限値のリミットが付けられた後、圧縮機目標回転数TGNCcとして決定される。除湿暖房モードにおいては、ヒートポンプコントローラ32はこの圧縮機目標回転数TGNCcに基づいて圧縮機2の回転数NCを制御する。
 また、図6は除湿暖房モードにおける補助ヒータ23の補助ヒータ要求能力TGQPTCを決定するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32の減算器73には目標ヒータ温度TCOと補助ヒータ温度Tptcが入力され、目標ヒータ温度TCOと補助ヒータ温度Tptcの偏差(TCO−Tptc)が算出される。この偏差(TCO−Tptc)はF/B制御部74に入力され、このF/B制御部74は偏差(TCO−Tptc)を無くして補助ヒータ温度Tptcが目標ヒータ温度TCOとなるように補助ヒータ要求能力F/B操作量を演算する。
 このF/B制御部74で算出された補助ヒータ要求能力F/B操作量はリミット設定部76で制御上限値と制御下限値のリミットが付けられた後、補助ヒータ要求能力TGQPTCとして決定される。除湿暖房モードにおいては、コントローラ32はこの補助ヒータ要求能力TGQPTCに基づいて補助ヒータ23の通電を制御することにより、補助ヒータ温度Tptcが目標ヒータ温度TCOとなるように補助ヒータ23の発熱(加熱)を制御する。
 このようにしてヒートポンプコントローラ32は、除湿暖房モードでは吸熱器温度Teと目標吸熱器温度TEOに基づいて圧縮機の運転を制御すると共に、目標ヒータ温度TCOに基づいて補助ヒータ23の発熱を制御することで、除湿暖房モードにおける吸熱器9による冷却と除湿、並びに、補助ヒータ23による加熱を的確に制御する。これにより、車室内に吹き出される空気をより適切に除湿しながら、その温度をより正確な暖房温度に制御することが可能となり、より一層快適且つ効率的な車室内の除湿暖房を実現することができるようになる。
 (10)エアミックスダンパ28の制御
 次に、図3を参照しながら空調コントローラ20によるエアミックスダンパ28の制御について説明する。図3においてGaは前述した空気流通路3に流入した空気の体積風量、Teは吸熱器温度、THは前述した加熱温度(放熱器4の風下側の空気の温度)である。
 空調コントローラ20は、前述した如き式(下記式(III))により算出される暖房用熱交換通路3Aの放熱器4と補助ヒータ23に通風する風量割合SWに基づき、当該割合の風量となるようにエアミックスダンパ28を制御することで放熱器4(及び補助ヒータ23)への通風量を調整する。
 SW=(TAO−Te)/(TH−Te)    ・・(III)
 即ち、暖房用熱交換通路3Aの放熱器4と補助ヒータ23に通風する風量割合SWは0≦SW≦1の範囲で変化し、「0」で暖房用熱交換通路3Aへの通風をせず、空気流通路3内の全ての空気をバイパス通路3Bに通風するエアミックス全閉状態、「1」で空気流通路3内の全ての空気を暖房用熱交換通路3Aに通風するエアミックス全開状態となる。即ち、放熱器4への風量はGa×SWとなる。
 ここで、空調コントローラ20は各吹出口ダンパ31A~31Cを制御することにより、各吹出口29A~29Cからの空気の吹き出しを制御するものであるが、この場合、空調コントローラ20は、FOOT吹出口29A、VENT吹出口29B、DEF吹出口29Cの何れかの吹出口から空気を吹き出す吹出モード(何れも第1の吹出モード以外の第2の吹出モード)の他、FOOT吹出口29AとVENT吹出口29Bの双方の吹出口から吹き出すB/Lモード(第1の吹出モード)や、FOOT吹出口29AとDEF吹出口29Cの双方の吹出口から吹き出すH/Dモード(これも第1の吹出モード)を有している。そして、何れの吹出モードが選択されているかは空調コントローラ20からヒートポンプコントローラ32に車両通信バス65を介して通知される。
 これらは空調操作部53へのマニュアルにより或いはオートモードで選択されるものであるが、その目的からFOOT吹出口29Aは図1や図3に示す如く暖房用熱交換通路3A側に形成され、暖房用熱交換通路3A(放熱器4や補助ヒータ23)を経た空気は、このFOOT吹出口29Aから吹き出され易くなるように構成されている。また、DEF吹出口29Cはバイパス通路3B側に形成され、バイパス通路3Bを経た空気は、このDEF吹出口29Cから吹き出され易くなるように構成されている。更に、VENT吹出口29Bは仕切壁10Aの延長上に形成され、VENT吹出口29BからはFOOT吹出口29Aよりもバイパス通路3Bを経た空気が吹き出され易く、DEF吹出口29Cよりも暖房用熱交換通路3Aを経た空気が吹き出され易くなるように構成されている。
 従って、エアミックスダンパ28による前述した風量割合SWが中間範囲にあるときは、FOOT吹出口29Aから吹き出される空気の温度は、VENT吹出口29Bから吹き出される空気よりも温度が高くなり、VENT吹出口29Bから吹き出される空気の温度は、DEF吹出口29Cから吹き出される空気よりも温度が高くなる。
 そして、例えばVENT吹出口29Bから吹き出される空気は運転者の胸や顔付近に向けて吹き出されるので、一般的には快適性の観点から25℃程度(体温未満)が好ましいとされており、FOOT吹出口29Aから吹き出される空気の温度は、足下に吹き出すために、同じ理由で40℃程度(体温以上)が好ましいとされている。即ち、両者には15deg程度の差がつくことが好ましい。
 一方、HVACユニット10の特性に依存するが、例えばB/LモードでVENT吹出口29BとFOOT吹出口29Aの吹出温度の差を十分に作ることができる風量割合SWの範囲は限られている。図7は風量割合SWを「1」と「0」の間で変化させたときの、VENT吹出口29BとFOOT吹出口29Aの各吹出温度(VENT吹出温度、FOOT吹出温度)の変化を示している。この図からも明らかな如く、風量割合SW1(例えば0.4)とSW2(例えば0.7)の間の中間範囲で温度差をとることができる。これは風量割合SWが大きすぎても小さすぎても各吹出口29B、29Aから吹き出される温度が殆ど同じになってしまうからである。
 (10−1)B/Lモード(H/Dモード)における風量割合SWの規制制御
 そこで、空調コントローラ20は、この実施例では前述した除湿暖房モードと除湿冷房モードにおいて、例えばB/Lモード(第1の吹出モード)であるときは、強制的に暖房用熱交換通路3Aの放熱器4及び補助ヒータ23への風量割合SWを、このSW1とSW2の間の中間範囲内に規制する制御を実行する。即ち、空調コントローラ20は、前記式(III)で算出された風量割合SWに、SW2の上限とSW1の下限を設け、SW2より大きくなり、SW1より小さくなることを禁止する。
 これにより、FOOT吹出口29AとVENT吹出口29Bの吹出温度に十分な差をとることができるようになり、所謂「頭寒足熱」を実現して快適性を担保することが可能となる。尚、これは前述したH/Dモードが選択された場合にも同様である。
 (11)B/Lモード(H/Dモード)での目標ヒータ温度TCOの引き上げ制御1
 しかしながら、上記の如く風量割合SWを中間範囲内(SW1≦SW≦SW2)に規制すると、式(III)から算出された風量割合SWがSW2より大きかった場合、本来の風量割合SWよりも多くの空気がバイパス通路3Bに流れることになる。特に、吸熱器9で車室内を除湿する運転モード(前述した除湿暖房モードや除湿冷房モード)ではその現象が顕著となり、吹出温度が低下して車室内の空調性能が悪化することになる。
 一方、空調コントローラ20は、従来では図8中の太い斜め実線で示す如く、VENT吹出口29Bから吹き出す吹出モード、B/Lモード、及び、FOOT吹出口29Aから吹き出す吹出モードの全般で前述した目標ヒータ温度TCOを、TCO=TAOとしていた(尚、空調コントローラ20が算出した目標ヒータ温度TCOは車両通信バス65を介してヒートポンプコントローラ32に送信される)。
 そこで、本発明では空調コントローラ20は、B/Lモードが選択された場合、目標ヒータ温度TCOを目標吹出温度TAOより高く設定する。即ち、この実施例で空調コントローラ20は目標ヒータ温度TCOを目標吹出温度TAOより所定値α1だけ引き上げる(TCO=TAO+α1)。この状態を図8中に斜め破線で示す。また、空調コントローラ20は、下記式(IV)により所定値α1を算出して目標ヒータ温度TCOを引き上げる。
 α1=f(Tam、Ga、TAO)   ・・(IV)
 即ち、空調コントローラ20は、外気温度Tamと、空気流通路3に流入した空気の体積風量Gaと、目標吹出温度TAOに基づいて所定値α1を決定する。この場合、空調コントローラ20は外気温度Tamが低い程、所定値α1を大きくし、体積風量Gaが大きい程、所定値α1を大きくする。また、目標吹出温度TAOが高い程、所定値α1を大きくする方向で算出する。
 このように目標ヒータ温度TCOが目標吹出温度TAOより高く設定されることで、それ(TCO)を受信したヒートポンプコントローラ32は、除湿暖房モードでは補助ヒータ23による加熱能力を上げ、除湿冷房モードでは放熱器4による加熱能力を増大させるようになるので、吹出温度の低下を補償することになる。これはH/Dモードでも同様である。
 このように、空調コントローラ20は、B/LモードやH/Dモードで風量割合SWを所定の中間範囲内(SW1≦SW≦SW2)に規制した場合、目標ヒータ温度TCOを目標吹出温度TAOより高く設定するので、車室内に吹き出される空気の温度低下も防止することができるようになり、これらによって快適な車室内空調を実現することができるようになる。
 また、この実施例では空調コントローラ20がB/LモードやH/Dモードでは、目標ヒータ温度TCOを目標吹出温度TAOより所定値α1引き上げると共に、この所定値α1を、外気温度Tam、空気流通路に流入した空気の体積風量Ga、及び、目標吹出温度TAOに基づいて決定するようにしたので、外気温度Tamや体積風量Ga、目標吹出温度TAOに基づいて適切に温度低下を防止することができるようになる。
 特に、空調コントローラ20は体積風量Gaが大きい程、所定値α1を大きくするので、体積風量Gaが大きくなって放熱器4や補助ヒータ23と空気との熱交換効率が下がっても放熱器4や補助ヒータ23により車室内に吹き出される空気を適切に加熱することができるようになる。
 (12)B/Lモード(H/Dモード)での目標ヒータ温度TCOの引き上げ制御2
 ここで、B/Lモード(H/Dモード)での目標ヒータ温度TCOの引き上げ制御は前記に限らず、所定の高い値t1(例えば+70℃等)に上げて固定する方式でも良い(図8に細い実線で示す)。このように、空調コントローラ20により、B/L「モードやH/Dモードでは、目標ヒータ温度TCOを所定の高い値t1とすることによっても、車室内に吹き出される空気の温度低下を効果的に防止することができるようになる。
 (13)B/Lモード(H/Dモード)での目標吸熱器温度TEOの引き下げ制御
 また、空調コントローラ20は、B/Lモード(H/Dモード)であるとき、現在の運転モードが除湿暖房モードや除湿冷房モードである場合、目標吸熱器温度TEOを通常値TEO0よりも低く設定する。目標吸熱器温度TEOが低くなることで、車両通信バス65を介してそれ(TEO)を受信したヒートポンプコントローラ32は、圧縮機2の回転数NCを上昇させるため、吸熱器9と熱交換してバイパス通路3Bを通過する空気の温度が低下する。これにより、例えばB/LモードではFOOT吹出口29Aから吹き出される空気とVENT吹出口29Bから吹き出される空気の間に温度差を付け易くなるので、一層快適な車室内空調を実現することができるようになる。
 但し、この場合空気流通路3に流入する空気の温度(吸込空気温度Tas)が目標吸熱器温度TEOの通常値TEO0より低くなると、各吹出口29A、29Bから吹き出される空気に温度差が付き易くなると共に、車室内を加熱する必要も出てくるので、空調コントローラ32は、暖房モード(吸熱器9に冷媒を流さずに放熱器4や補助ヒータ23により空気流通路3から車室内に供給する空気を加熱する運転モード)に切り換える。この運転モードの切り換えの情報もヒートポンプコントローラ32に送信される。
 (14)その他の吹出モードでの目標ヒータ温度TCOの引き上げ制御
 ここで、補助ヒータ23や放熱器4により加熱された空気は、各吹出口29A~29Cに至る過程でHVACユニット10の空気流通路3の壁面と熱交換するため、熱ロスにより温度が低下する。そこで、空調コントローラ20は、吹出モードが上述したB/LモードやH/Dモード以外の吹出モード(第2の吹出モード)であるときは、下記式(V)により所定値α2を算出して目標ヒータ温度TCOを引き上げる。
 α2=f(Tam、Ga、TAO、Tin)   ・・(V)
 即ち、空調コントローラ20は、外気温度Tamと、空気流通路3に流入した空気の体積風量Gaと、目標吹出温度TAOと、室内温度Tinに基づいて所定値α2を決定する。この場合、空調コントローラ20は外気温度Tamが低い程、所定値α2を大きくし、体積風量Gaが小さい程、所定値α2を大きくする。また、目標吹出温度TAOが高い程、所定値α2を大きくし、室内温度Tinが低い程、大きくする方向で算出する。但し、α1>α2の関係を維持するものとする。
 このように目標ヒータ温度TCOが目標吹出温度TAOより高く設定されることで、それ(TCO)を受信したヒートポンプコントローラ32は除湿暖房モードでは補助ヒータ23による加熱能力を上げ、除湿冷房モードでは放熱器4による加熱能力を増大させるようになるので、熱ロスによる吹出温度の低下を補償することになる。これはH/Dモードでも同様である。
 特に、空調コントローラ20は所定値α2を、外気温度Tam、空気流通路に流入した空気の体積風量Ga、目標吹出温度TAO、及び、車室内の空気の温度である室内温度Tinに基づいて決定するので、放熱器4や補助ヒータ23から吹出口29A~29Cに至る過程での熱ロスによる温度低下を適切に補償することができるようになる。
 この場合、空調コントローラ20は、体積風量Gaが小さい程、所定値α2を大きくするので、体積風量Gaが小さく、空気流通路3の壁面との熱交換で熱ロスがより大きくなる状況において、一層効果的に温度補償を行うことができるようになる。
FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention. A vehicle according to an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and travels by driving an electric motor for traveling with electric power charged in a battery. Yes (both not shown), the vehicle air conditioner 1 of the present invention is also driven by the power of the battery. That is, the vehicle air conditioner 1 of the embodiment performs a heating mode by a heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat, and further includes a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode, Each operation mode of the MAX cooling mode (maximum cooling mode) and the auxiliary heater single mode is selectively executed.
The present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles that run on an engine. Needless to say.
The vehicle air conditioner 1 according to the embodiment performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and includes an electric compressor 2 that compresses refrigerant and vehicle interior air. Is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G, dissipates the refrigerant, and supplies it to the vehicle interior. A radiator 4 as a heater for heating air, an outdoor expansion valve 6 (pressure reducing device) composed of an electric valve that decompresses and expands the refrigerant during heating, and a heat radiator that is provided outside the passenger compartment and is cooled during cooling. Sometimes an outdoor heat exchanger 7 that exchanges heat between the refrigerant and the outside air so as to function as an evaporator, an indoor expansion valve 8 (decompression device) that includes an electric valve that decompresses and expands the refrigerant, and an air flow passage 3 For cooling and removal A heat sink 9 for cooling the air supplied to the vehicle interior is sucked from the vehicle interior outside of at refrigerant is endothermic and accumulator Lake 12, etc. are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed.
The refrigerant circuit R is filled with a predetermined amount of refrigerant and lubricating oil. The outdoor heat exchanger 7 is provided with an outdoor blower 15. The outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing outside air through the outdoor heat exchanger 7, so that the outdoor air blower 15 can also be used outdoors even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). It is comprised so that external air may be ventilated by the heat exchanger 7. FIG.
The outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 sequentially on the downstream side of the refrigerant, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is received via an electromagnetic valve 17 opened during cooling. The refrigerant pipe 13 </ b> B connected to the dryer unit 14 and on the outlet side of the supercooling unit 16 is connected to the inlet side of the heat absorber 9 via the indoor expansion valve 8. In addition, the receiver dryer part 14 and the supercooling part 16 structurally constitute a part of the outdoor heat exchanger 7.
The refrigerant pipe 13B between the subcooling section 16 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C on the outlet side of the heat absorber 9, and constitutes an internal heat exchanger 19 together. Thus, the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that has exited the heat absorber 9.
Further, the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched into a refrigerant pipe 13D, and this branched refrigerant pipe 13D is downstream of the internal heat exchanger 19 via an electromagnetic valve 21 opened during heating. The refrigerant pipe 13C is connected in communication. The refrigerant pipe 13 </ b> C is connected to the accumulator 12, and the accumulator 12 is connected to the refrigerant suction side of the compressor 2. Further, the refrigerant pipe 13E on the outlet side of the radiator 4 is connected to the inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.
A refrigerant pipe 13G between the discharge side of the compressor 2 and the inlet side of the radiator 4 is provided with a solenoid valve 30 (which constitutes a flow path switching device) that is closed during dehumidification heating and MAX cooling described later. Yes. In this case, the refrigerant pipe 13G is branched into a bypass pipe 35 on the upstream side of the electromagnetic valve 30, and the bypass pipe 35 is opened by the electromagnetic valve 40 (which also constitutes a flow path switching device) during dehumidifying heating and MAX cooling. ) Through the refrigerant pipe 13E on the downstream side of the outdoor expansion valve 6. Bypass pipe 45, solenoid valve 30 and solenoid valve 40 constitute bypass device 45.
Since the bypass device 45 is configured by the bypass pipe 35, the electromagnetic valve 30, and the electromagnetic valve 40, the dehumidifying heating mode or the MAX for allowing the refrigerant discharged from the compressor 2 to directly flow into the outdoor heat exchanger 7 as will be described later. Switching between the cooling mode and the heating mode in which the refrigerant discharged from the compressor 2 flows into the radiator 4, the dehumidifying cooling mode, and the cooling mode can be performed smoothly.
The air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG. 1). 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) which is air inside the passenger compartment and the outside air (outside air introduction mode) which is outside the passenger compartment. Yes. Furthermore, an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
Moreover, in FIG. 1, 23 is an auxiliary heater as an auxiliary heating device (another heater) provided in the vehicle air conditioner 1 of the embodiment. The auxiliary heater 23 of the embodiment is composed of a PTC heater which is an electric heater, and is in the air flow passage 3 which is on the windward side (air upstream side) of the radiator 4 with respect to the air flow in the air flow passage 3. Is provided. When the auxiliary heater 23 is energized and generates heat, the air in the air flow passage 3 flowing into the radiator 4 through the heat absorber 9 is heated. In other words, the auxiliary heater 23 serves as a so-called heater core, which heats or complements the passenger compartment. In this embodiment, the radiator 4 and the auxiliary heater 23 described above serve as a heater.
Here, the air flow passage 3 on the leeward side (air downstream side) from the heat absorber 9 of the HVAC unit 10 is partitioned by a partition wall 10A, and a heating heat exchange passage 3A and a bypass passage 3B that bypasses it are formed. The radiator 4 and the auxiliary heater 23 described above are disposed in the heating heat exchange passage 3A.
Further, the air (inside air or outside air) in the air flow passage 3 after flowing into the air flow passage 3 and passing through the heat absorber 9 is supplemented into the air flow passage 3 on the windward side of the auxiliary heater 23. An air mix damper 28 is provided for adjusting the rate of ventilation through the heating heat exchange passage 3A in which the heater 23 and the radiator 4 are disposed.
Further, the HVAC unit 10 on the leeward side of the radiator 4 includes a FOOT (foot) outlet 29A (first outlet) and a VENT (vent) outlet 29B (FOOT outlet 29A). For the outlet and the DEF outlet 29C, first outlets) and DEF (def) outlets 29C (second outlets) are formed. The FOOT air outlet 29A is an air outlet for blowing air under the feet in the passenger compartment, and is at the lowest position. Further, the VENT outlet 29B is an outlet for blowing out air near the driver's chest and face in the passenger compartment, and is located above the FOOT outlet 29A. The DEF air outlet 29C is an air outlet for blowing air to the inner surface of the windshield of the vehicle, and is located at the highest position above the other air outlets 29A and 29B.
The FOOT air outlet 29A, the VENT air outlet 29B, and the DEF air outlet 29C are respectively provided with a FOOT air outlet damper 31A, a VENT air outlet damper 31B, and a DEF air outlet damper 31C that control the amount of air blown out. It has been.
Next, FIG. 2 shows a block diagram of the control device 11 of the vehicle air conditioner 1 of the embodiment. The control device 11 includes an air-conditioning controller 20 and a heat pump controller 32 each of which is a microcomputer that is an example of a computer including a processor, and these include a CAN (Controller Area Network) and a LIN (Local Interconnect Network). Is connected to a vehicle communication bus 65. The compressor 2 and the auxiliary heater 23 are also connected to the vehicle communication bus 65, and the air conditioning controller 20, the heat pump controller 32, the compressor 2 and the auxiliary heater 23 are configured to transmit and receive data via the vehicle communication bus 65. Has been.
The air conditioning controller 20 is an upper controller that controls the air conditioning of the vehicle interior of the vehicle. The input of the air conditioning controller 20 detects an outside air temperature sensor 33 that detects the outside air temperature (Tam) of the vehicle and an outside air humidity. An outside air humidity sensor 34, an HVAC suction temperature sensor 36 that detects the temperature of the air (suction air temperature Tas) that is sucked into the air flow passage 3 from the suction port 25 and flows into the heat sink 9, and the air in the vehicle interior (inside air) An indoor air temperature sensor 37 for detecting the temperature of the vehicle (indoor temperature Tin), an indoor air humidity sensor 38 for detecting the humidity of the air in the vehicle interior, an indoor CO2 concentration sensor 39 for detecting the carbon dioxide concentration in the vehicle interior, A blowing temperature sensor 41 that detects the temperature of the blown air, a discharge pressure sensor 42 that detects the discharge refrigerant pressure (discharge pressure Pd) of the compressor 2, and the vehicle interior. For example, a photosensor-type solar radiation sensor 51 for detecting the amount of solar radiation, each output of the vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, and air conditioning for setting the set temperature and operation mode. An (air conditioner) operation unit 53 is connected.
The output of the air conditioning controller 20 is connected to an outdoor blower 15, an indoor blower (blower fan) 27, a suction switching damper 26, an air mix damper 28, and air outlet dampers 31A to 31C. It is controlled by the controller 20.
The heat pump controller 32 is a controller that mainly controls the refrigerant circuit R. The input of the heat pump controller 32 includes a discharge temperature sensor 43 that detects a refrigerant temperature discharged from the compressor 2 and a suction refrigerant pressure of the compressor 2. A suction pressure sensor 44 for detecting the refrigerant, a suction temperature sensor 55 for detecting the refrigerant temperature of the compressor 2, a radiator temperature sensor 46 for detecting the refrigerant temperature (radiator temperature TCI) of the radiator 4, and the radiator 4. Radiator pressure sensor 47 for detecting the refrigerant pressure (heat radiator pressure PCI), a heat absorber temperature sensor 48 for detecting the refrigerant temperature (heat absorber temperature Te) of the heat absorber 9, and the refrigerant pressure of the heat absorber 9 are detected. The heat absorber pressure sensor 49, the auxiliary heater temperature sensor 50 for detecting the temperature of the auxiliary heater 23 (auxiliary heater temperature Tptc), and the refrigerant temperature (outdoor heat) of the outdoor heat exchanger 7 The outputs of the outdoor heat exchanger temperature sensor 54 for detecting the exchanger temperature TXO) and the outdoor heat exchanger pressure sensor 56 for detecting the refrigerant pressure (outdoor heat exchanger pressure PXO) of the outdoor heat exchanger 7 are connected. Yes.
The output of the heat pump controller 32 includes an outdoor expansion valve 6, an indoor expansion valve 8, an electromagnetic valve 30 (for dehumidification), an electromagnetic valve 17 (for cooling), an electromagnetic valve 21 (for heating), an electromagnetic valve 40 (this) (Also for dehumidification) are connected to each other and are controlled by the heat pump controller 32. The compressor 2 and the auxiliary heater 23 each have a built-in controller, and the controllers of the compressor 2 and the auxiliary heater 23 send and receive data to and from the heat pump controller 32 via the vehicle communication bus 65. Be controlled.
The heat pump controller 32 and the air conditioning controller 20 transmit / receive data to / from each other via the vehicle communication bus 65, and control each device based on the output of each sensor and the setting input by the air conditioning operation unit 53. In this embodiment, the outputs of the outside air temperature sensor 33, the discharge pressure sensor 42, the vehicle speed sensor 52, and the air conditioning operation unit 53 are transmitted from the air conditioning controller 20 to the heat pump controller 32 via the vehicle communication bus 65. It is configured to be used for control.
Next, the operation of the vehicle air conditioner 1 having the above-described configuration will be described. In this embodiment, the control device 11 (the air conditioning controller 20 and the heat pump controller 32) has each operation mode of heating mode, dehumidifying heating mode, dehumidifying cooling mode, cooling mode, MAX cooling mode (maximum cooling mode), and auxiliary heater single mode. Switch and execute. First, an outline of refrigerant flow and control in each operation mode will be described.
(1) Heating mode
When the heating mode is selected by the heat pump controller 32 (auto mode) or the manual operation (manual mode) to the air conditioning operation unit 53, the heat pump controller 32 opens the electromagnetic valve 21 (for heating) and the electromagnetic valve 17 (cooling). Close). Further, the electromagnetic valve 30 (for dehumidification) is opened, and the electromagnetic valve 40 (for dehumidification) is closed. Then, the compressor 2 is operated. The air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating. The auxiliary heater 23 and the radiator 4 are ventilated, but the air volume may be adjusted.
As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30. Since the air in the airflow passage 3 is passed through the radiator 4, the air in the airflow passage 3 is converted into the high-temperature refrigerant in the radiator 4 (when the auxiliary heater 23 operates, the auxiliary heater 23 and the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air, and is condensed and liquefied.
The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the refrigerant circuit R becomes a heat pump. Then, the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C through the refrigerant pipe 13A, the electromagnetic valve 21 and the refrigerant pipe 13D, and is separated into gas and liquid there. Repeated circulation inhaled. The air heated by the radiator 4 (when the auxiliary heater 23 is operated, the auxiliary heater 23 and the radiator 4) is blown out from the outlets 29A to 29C, so that the vehicle interior is heated. become.
The heat pump controller 32 calculates the target radiator pressure PCO (target value of the radiator pressure PCI) from the target heater temperature TCO (target value of the heating temperature TH described later) calculated by the air conditioning controller 20 from the target outlet temperature TAO. Based on the target radiator pressure PCO and the refrigerant pressure of the radiator 4 detected by the radiator pressure sensor 47 (radiator pressure PCI, high pressure of the refrigerant circuit R), the rotational speed NC of the compressor 2 is controlled, and the radiator 4 controls the heating. The heat pump controller 32 also opens the valve opening of the outdoor expansion valve 6 based on the temperature of the radiator 4 (the radiator temperature TCI) detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47. And the supercooling degree SC of the refrigerant at the outlet of the radiator 4 is controlled.
Further, in this heating mode, when the heating capability by the radiator 4 is insufficient with respect to the heating capability required for the cabin air conditioning, the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. The energization of the auxiliary heater 23 is controlled. Thereby, comfortable vehicle interior heating is realized and frost formation of the outdoor heat exchanger 7 is also suppressed. At this time, since the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air flowing through the air flow passage 3 is vented to the auxiliary heater 23 before the radiator 4.
Here, when the auxiliary heater 23 is disposed on the air downstream side of the radiator 4, when the auxiliary heater 23 is configured by a PTC heater as in the embodiment, the temperature of the air flowing into the auxiliary heater 23 is determined by the radiator. 4, the resistance value of the PTC heater increases, the current value also decreases, and the heat generation amount decreases. However, by arranging the auxiliary heater 23 on the air upstream side of the radiator 4, Thus, the capacity of the auxiliary heater 23 composed of the PTC heater can be sufficiently exhibited.
(2) Dehumidification heating mode
Next, in the dehumidifying heating mode, the heat pump controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is closed, the electromagnetic valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 is operated. The air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating. The auxiliary heater 23 and the radiator 4 are ventilated, but the air volume is also adjusted.
Accordingly, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled, and moisture in the air condenses and adheres to the heat absorber 9, so that the air in the air flow passage 3 is cooled, and Dehumidified. The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
At this time, since the valve opening degree of the outdoor expansion valve 6 is fully closed, it is possible to suppress or prevent inconvenience that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. It becomes. Thereby, the fall of a refrigerant | coolant circulation amount can be suppressed or eliminated and air-conditioning capability can be ensured now. Further, in this dehumidifying and heating mode, the heat pump controller 32 energizes the auxiliary heater 23 to generate heat. As a result, the air cooled and dehumidified by the heat absorber 9 is further heated in the process of passing through the auxiliary heater 23 and the temperature rises, so that the dehumidifying heating in the passenger compartment is performed.
The heat pump controller 32 is a compressor based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and a target heat absorber temperature TEO that is a target value of the heat absorber temperature Te calculated by the air conditioning controller 20. 2, and the energization of the auxiliary heater 23 (heating by heat generation) is controlled based on the auxiliary heater temperature Tptc detected by the auxiliary heater temperature sensor 50 and the above-described target heater temperature TCO. 9, while appropriately cooling and dehumidifying the air, the temperature of the air blown out from the respective outlets 29A to 29C into the vehicle interior is accurately prevented by the heating by the auxiliary heater 23. As a result, it is possible to control the temperature to an appropriate heating temperature while dehumidifying the air blown into the vehicle interior, and it is possible to realize comfortable and efficient dehumidification heating in the vehicle interior.
In addition, since the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air heated by the auxiliary heater 23 passes through the radiator 4. In this dehumidifying heating mode, the refrigerant is supplied to the radiator 4. Therefore, the disadvantage that the radiator 4 absorbs heat from the air heated by the auxiliary heater 23 is also eliminated. That is, the temperature of the air blown out into the vehicle compartment by the radiator 4 is suppressed, and the COP is improved.
(3) Dehumidifying and cooling mode
Next, in the dehumidifying and cooling mode, the heat pump controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is opened and the electromagnetic valve 40 is closed. Then, the compressor 2 is operated. The air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating. The auxiliary heater 23 and the radiator 4 are ventilated, but the air volume is also adjusted.
As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
The refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through. In this dehumidifying and cooling mode, the heat pump controller 32 does not energize the auxiliary heater 23, so that the air that has been cooled and dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4 (the heat dissipation capability is lower than that during heating). Is done. As a result, dehumidifying and cooling in the passenger compartment is performed.
The heat pump controller 32 determines the temperature of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO (transmitted from the air conditioning controller 20) that is the target value. The rotational speed NC is controlled. The heat pump controller 32 calculates the target radiator pressure PCO from the target heater temperature TCO described above, and the target radiator pressure PCO and the refrigerant pressure (radiator pressure PCI) of the radiator 4 detected by the radiator pressure sensor 47. Based on the high pressure of the refrigerant circuit R), the valve opening degree of the outdoor expansion valve 6 is controlled, and heating by the radiator 4 is controlled.
(4) Cooling mode
Next, in the cooling mode, the heat pump controller 32 fully opens the opening degree of the outdoor expansion valve 6 in the dehumidifying and cooling mode. Then, the compressor 2 is operated and the auxiliary heater 23 is not energized. The air-conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 is blown from the indoor blower 27 and the air in the air flow passage 3 that has passed through the heat absorber 9 is used as the auxiliary heater 23 in the heating heat exchange passage 3A. And it is set as the state which adjusts the ratio ventilated by the heat radiator 4. FIG.
As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30, and the refrigerant exiting the radiator 4 passes through the refrigerant pipe 13E and the outdoor expansion valve 6. To. At this time, since the outdoor expansion valve 6 is fully opened, the refrigerant passes through it and flows into the outdoor heat exchanger 7 as it is, where it is cooled by air or by outside air that is ventilated by the outdoor blower 15 and condensed. Liquefaction. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. Further, moisture in the air condenses and adheres to the heat absorber 9.
The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through. Air that has been cooled and dehumidified by the heat absorber 9 is blown into the vehicle interior from each of the air outlets 29A to 29C (partly passes through the radiator 4 to exchange heat), thereby cooling the vehicle interior. Will be done. Further, in this cooling mode, the heat pump controller 32 uses the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the above-described target heat absorber temperature TEO which is the target value of the compressor 2. The number of revolutions NC is controlled.
(5) MAX cooling mode (maximum cooling mode)
Next, in the MAX cooling mode as the maximum cooling mode, the heat pump controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is closed, the electromagnetic valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 is operated and the auxiliary heater 23 is not energized. The air conditioning controller 20 operates the blowers 15 and 27, and the air mix damper 28 keeps the air in the air flow passage 3 from passing through the auxiliary heater 23 and the radiator 4 of the heating heat exchange passage 3 </ b> A. However, there is no problem even if it is ventilated somewhat.
Accordingly, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. In addition, since moisture in the air condenses and adheres to the heat absorber 9, the air in the air flow passage 3 is dehumidified. The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through. At this time, since the outdoor expansion valve 6 is fully closed, similarly, it is possible to suppress or prevent the disadvantage that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. . Thereby, the fall of a refrigerant | coolant circulation amount can be suppressed or eliminated and air-conditioning capability can be ensured now.
Here, since the high-temperature refrigerant flows through the radiator 4 in the cooling mode described above, direct heat conduction from the radiator 4 to the HVAC unit 10 occurs not a little, but in this MAX cooling mode, the refrigerant flows into the radiator 4. Therefore, the air in the air flow passage 3 from the heat absorber 9 is not heated by the heat transmitted from the radiator 4 to the HVAC unit 10. Therefore, powerful cooling of the passenger compartment is performed, and particularly in an environment where the outside air temperature Tam is high, the passenger compartment can be quickly cooled to realize comfortable air conditioning in the passenger compartment. Also in this MAX cooling mode, the heat pump controller 32 is also connected to the compressor based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO, which is the target value. 2 is controlled.
(6) Auxiliary heater single mode
Note that the control device 11 of the embodiment stops the compressor 2 and the outdoor blower 15 of the refrigerant circuit R and energizes the auxiliary heater 23 when, for example, excessive frost formation occurs in the outdoor heat exchanger 7. The auxiliary heater single mode for heating the passenger compartment with only 23 is provided. Also in this case, the heat pump controller 32 controls energization (heat generation) of the auxiliary heater 23 based on the auxiliary heater temperature Tptc detected by the auxiliary heater temperature sensor 50 and the target heater temperature TCO described above.
The air conditioning controller 20 operates the indoor blower 27, and the air mix damper 28 passes the air in the air flow passage 3 blown out from the indoor blower 27 to the auxiliary heater 23 of the heat exchange passage 3A for heating, and the air volume is reduced. The state to be adjusted. Since the air heated by the auxiliary heater 23 is blown into the vehicle interior from each of the air outlets 29A to 29C, the vehicle interior is thereby heated.
(7) Switching operation mode
The air conditioning controller 20 calculates the target blowing temperature TAO described above from the following formula (I). This target blowing temperature TAO is a target value of the temperature of the air blown into the passenger compartment.
TAO = (Tset−Tin) × K + Tbal (f (Tset, SUN, Tam)) (I)
Here, Tset is a set temperature in the passenger compartment set by the air conditioning operation unit 53, Tin is a room temperature detected by the inside air temperature sensor 37, K is a coefficient, Tbal is a set temperature Tset, and a solar radiation amount detected by the solar radiation sensor 51. SUN is a balance value calculated from the outside air temperature Tam detected by the outside air temperature sensor 33. And generally this target blowing temperature TAO is so high that the outside temperature Tam is low, and it falls as the outside temperature Tam rises.
When the heat pump controller 32 is activated, the heat pump controller 32 determines which one of the above operation modes based on the outside air temperature Tam (detected by the outside air temperature sensor 33) transmitted from the air conditioning controller 20 via the vehicle communication bus 65 and the target outlet temperature TAO. The operation mode is selected and each operation mode is transmitted to the air conditioning controller 20 via the vehicle communication bus 65. In addition, after startup, the outside air temperature Tam, the humidity in the vehicle interior, the target outlet temperature TAO, the heating temperature TH, the target heater temperature TCO, the heat absorber temperature Te, the target heat absorber temperature TEO, whether there is a dehumidification request in the vehicle interior, etc. By switching each operation mode based on the parameters, the heating mode, dehumidifying heating mode, dehumidifying cooling mode, cooling mode, MAX cooling mode, and auxiliary heater single mode can be accurately set according to the environmental conditions and necessity of dehumidification. The temperature of the air that is switched and blown into the passenger compartment is controlled to the target outlet temperature TAO to realize comfortable and efficient air conditioning in the passenger compartment.
(8) Control of the compressor 2 in the heating mode by the heat pump controller 32
Next, the control of the compressor 2 in the heating mode described above will be described in detail with reference to FIG. FIG. 4 is a control block diagram of the heat pump controller 32 that determines the target rotational speed (compressor target rotational speed) TGNCh of the compressor 2 for heating mode. The F / F (feed forward) manipulated variable calculation unit 58 of the heat pump controller 32 has an outside air temperature Tam obtained from the outside air temperature sensor 33, a blower voltage BLV of the indoor blower 27, and SW = (TAO−Te) / (TH−Te). ) Obtained by the air mix damper 28, the target supercooling degree TGSC that is the target value of the supercooling degree SC at the outlet of the radiator 4, and the target heater temperature TCO that is the target value of the heating temperature TH described above. (Transmitted from the air-conditioning controller 20), the F / F manipulated variable TGNChff of the compressor target rotational speed is calculated based on the target radiator pressure PCO that is the target value of the radiator 4 pressure.
The above-mentioned TH for calculating the air volume ratio SW is the temperature of the leeward air of the radiator 4 (hereinafter referred to as the heating temperature), and is estimated by the heat pump controller 32 from the first-order lag calculation formula (II) shown below. To do.
TH = (INTL × TH0 + Tau × THz) / (Tau + INTL) (II)
Here, INTL is the calculation cycle (constant), Tau is the time constant of the first-order lag, TH0 is the steady value that is the value of the heating temperature TH in the steady state before the first-order lag calculation, and THz is the previous value of the heating temperature TH. The heating temperature TH is transmitted to the air conditioning controller 20 via the vehicle communication bus 65.
The target radiator pressure PCO is calculated by the target value calculator 59 based on the target subcooling degree TGSC and the target heater temperature TCO. Further, the F / B (feedback) manipulated variable calculator 60 calculates the F / B manipulated variable TGNChfb of the compressor target rotational speed based on the target radiator pressure PCO and the radiator pressure PCI that is the refrigerant pressure of the radiator 4. To do. The F / F manipulated variable TGNCnff computed by the F / F manipulated variable computing unit 58 and the TGNChfb computed by the F / B manipulated variable computing unit 60 are added by the adder 61, and the control upper limit value and the control are controlled by the limit setting unit 62. After the lower limit is set, it is determined as the compressor target rotational speed TGNCh. In the heating mode, the heat pump controller 32 controls the rotational speed NC of the compressor 2 based on the compressor target rotational speed TGNCh.
(9) Control of the compressor 2 and the auxiliary heater 23 in the dehumidifying heating mode by the heat pump controller 32
On the other hand, FIG. 5 is a control block diagram of the heat pump controller 32 that determines the target rotational speed (compressor target rotational speed) TGNCc of the compressor 2 for the dehumidifying and heating mode. The F / F manipulated variable calculation unit 63 of the heat pump controller 32 is a target heat release that is a target value of the outside air temperature Tam, the volumetric air volume Ga of the air flowing into the air flow passage 3, and the pressure of the radiator 4 (radiator pressure PCI). Based on the compressor pressure PCO and the target heat absorber temperature TEO which is the target value of the temperature of the heat absorber 9 (heat absorber temperature Te), the F / F manipulated variable TGNCcff of the compressor target rotational speed is calculated.
Further, the F / B operation amount calculation unit 64 calculates the F / B operation amount TGNCcfb of the compressor target rotational speed based on the target heat absorber temperature TEO (transmitted from the air conditioning controller 20) and the heat absorber temperature Te. Then, the F / F manipulated variable TGNCcff computed by the F / F manipulated variable computing unit 63 and the F / B manipulated variable TGNCcfb computed by the F / B manipulated variable computing unit 64 are added by the adder 66, and the limit setting unit 67 After the control upper limit value and the control lower limit value are set, the compressor target rotational speed TGNCc is determined. In the dehumidifying and heating mode, the heat pump controller 32 controls the rotational speed NC of the compressor 2 based on the compressor target rotational speed TGNCc.
FIG. 6 is a control block diagram of the heat pump controller 32 that determines the auxiliary heater required capacity TGQPTC of the auxiliary heater 23 in the dehumidifying heating mode. The subtractor 73 of the heat pump controller 32 receives the target heater temperature TCO and the auxiliary heater temperature Tptc, and calculates a deviation (TCO−Tptc) between the target heater temperature TCO and the auxiliary heater temperature Tptc. This deviation (TCO-Tptc) is input to the F / B control unit 74. The F / B control unit 74 eliminates the deviation (TCO-Tptc) so that the auxiliary heater temperature Tptc becomes the target heater temperature TCO. The required capacity F / B manipulated variable is calculated.
The auxiliary heater required capability F / B manipulated variable calculated by the F / B control unit 74 is determined as the auxiliary heater required capability TGQPTC after the limit setting unit 76 limits the control upper limit value and the control lower limit value. . In the dehumidifying heating mode, the controller 32 controls energization of the auxiliary heater 23 based on the auxiliary heater required capacity TGQPTC, thereby generating heat (heating) of the auxiliary heater 23 so that the auxiliary heater temperature Tptc becomes the target heater temperature TCO. To control.
Thus, in the dehumidifying heating mode, the heat pump controller 32 controls the operation of the compressor based on the heat absorber temperature Te and the target heat absorber temperature TEO, and controls the heat generation of the auxiliary heater 23 based on the target heater temperature TCO. Thus, cooling and dehumidification by the heat absorber 9 and heating by the auxiliary heater 23 in the dehumidifying heating mode are accurately controlled. As a result, it is possible to control the temperature to a more accurate heating temperature while more appropriately dehumidifying the air blown into the passenger compartment, thereby realizing more comfortable and efficient dehumidifying heating in the passenger compartment. Will be able to.
(10) Control of the air mix damper 28
Next, the control of the air mix damper 28 by the air conditioning controller 20 will be described with reference to FIG. In FIG. 3, Ga is the volumetric volume of the air flowing into the air flow passage 3 described above, Te is the heat absorber temperature, and TH is the heating temperature described above (the temperature of the air on the leeward side of the radiator 4).
The air conditioning controller 20 is based on the air volume ratio SW that is passed through the radiator 4 and the auxiliary heater 23 in the heating heat exchange passage 3A calculated by the above-described expression (the following expression (III)) so that the air volume of the ratio is obtained. Further, by controlling the air mix damper 28, the amount of ventilation to the radiator 4 (and the auxiliary heater 23) is adjusted.
SW = (TAO-Te) / (TH-Te) (III)
That is, the air flow rate ratio SW passing through the radiator 4 and the auxiliary heater 23 in the heat exchange passage 3A for heating changes in a range of 0 ≦ SW ≦ 1, and when “0”, the air is not passed through the heat exchange passage 3A for heating. The air mix fully closed state in which all the air in the air flow passage 3 is passed through the bypass passage 3B, and the air mix fully open state in which all the air in the air flow passage 3 is passed through the heating heat exchange passage 3A with "1" It becomes. That is, the air volume to the radiator 4 is Ga × SW.
Here, the air conditioning controller 20 controls the blowout outlets 31A to 31C to control the blowout of air from each of the blowout openings 29A to 29C. In this case, the air conditioning controller 20 is used as the FOOT blowout opening. 29A, VENT outlet 29B, and DEF outlet 29C, as well as a FOOT outlet 29A and a VENT outlet, as well as a blowing mode in which air is blown out from any of the DEF outlets 29C (all are second blowing modes other than the first blowing mode) B / L mode (first blowing mode) that blows out from both outlets of 29B, and H / D mode that blows out from both outlets of FOOT outlet 29A and DEF outlet 29C (also first blowing mode) have. Then, which blowing mode is selected is notified from the air conditioning controller 20 to the heat pump controller 32 via the vehicle communication bus 65.
These are selected by manual operation to the air-conditioning operation unit 53 or in the automatic mode. For this purpose, the FOOT outlet 29A is formed on the heating heat exchange passage 3A side as shown in FIGS. The air that has passed through the heat exchange passage 3A (the radiator 4 and the auxiliary heater 23) is configured to be easily blown out from the FOOT outlet 29A. The DEF outlet 29C is formed on the bypass passage 3B side, and the air that has passed through the bypass passage 3B is configured to be easily blown out from the DEF outlet 29C. Furthermore, the VENT air outlet 29B is formed on the extension of the partition wall 10A, and the air passing through the bypass passage 3B is more easily blown from the VENT air outlet 29B than the FOOT air outlet 29A, and heat exchange for heating is performed more than the DEF air outlet 29C. The air passing through the passage 3A is configured to be easily blown out.
Therefore, when the air volume ratio SW described above by the air mix damper 28 is in the intermediate range, the temperature of the air blown out from the FOOT blowout port 29A becomes higher than the air blown out from the VENT blowout port 29B, and VENT The temperature of the air blown out from the air outlet 29B is higher than that of the air blown out from the DEF air outlet 29C.
For example, the air blown out from the VENT outlet 29B is blown out toward the driver's chest and face, so generally, about 25 ° C. (below body temperature) is preferred from the viewpoint of comfort. The temperature of the air blown out from the FOOT outlet 29A is preferably about 40 ° C. (body temperature or higher) for the same reason in order to blow out under the feet. That is, it is preferable that the difference is about 15 deg.
On the other hand, depending on the characteristics of the HVAC unit 10, for example, in the B / L mode, the range of the air volume ratio SW that can make a sufficient difference in the outlet temperature between the VENT outlet 29B and the FOOT outlet 29A is limited. FIG. 7 shows changes in the respective outlet temperatures (VENT outlet temperature, FOOT outlet temperature) of the VENT outlet 29B and the FOOT outlet 29A when the air volume ratio SW is changed between “1” and “0”. Yes. As is apparent from this figure, the temperature difference can be taken in an intermediate range between the air volume ratios SW1 (for example, 0.4) and SW2 (for example, 0.7). This is because the temperature blown out from the outlets 29B and 29A becomes almost the same even if the air volume ratio SW is too large or too small.
(10-1) Restriction control of air volume ratio SW in B / L mode (H / D mode)
Therefore, in this embodiment, the air conditioning controller 20 forcibly dissipates heat in the heat exchange passage 3A for heating when, for example, in the dehumidifying heating mode and the dehumidifying cooling mode described above, for example, in the B / L mode (first blowing mode). Control is performed to regulate the air volume ratio SW to the heater 4 and the auxiliary heater 23 within an intermediate range between SW1 and SW2. That is, the air-conditioning controller 20 sets the upper limit of SW2 and the lower limit of SW1 to the air volume ratio SW calculated by the above formula (III), and prohibits it from becoming larger than SW2 and smaller than SW1.
As a result, a sufficient difference can be taken between the blowing temperatures of the FOOT blowout port 29A and the VENT blowout port 29B, and so-called “head cold foot heat” can be realized to ensure comfort. This is the same when the above-described H / D mode is selected.
(11) Raising control 1 of the target heater temperature TCO in the B / L mode (H / D mode)
However, when the air volume ratio SW is restricted to the intermediate range (SW1 ≦ SW ≦ SW2) as described above, when the air volume ratio SW calculated from the formula (III) is larger than SW2, the air volume ratio SW is larger than the original air volume ratio SW. Air flows into the bypass passage 3B. In particular, in the operation mode (dehumidifying and heating mode or dehumidifying and cooling mode described above) in which the vehicle interior is dehumidified by the heat absorber 9, the phenomenon becomes remarkable, and the air temperature in the vehicle interior deteriorates due to a decrease in the blowing temperature.
On the other hand, the air-conditioning controller 20 conventionally has the above-described targets for the blowing mode blowing from the VENT blowing outlet 29B, the B / L mode, and the blowing mode blowing from the FOOT blowing outlet 29A, as indicated by the thick oblique solid line in FIG. The heater temperature TCO was TCO = TAO (note that the target heater temperature TCO calculated by the air conditioning controller 20 is transmitted to the heat pump controller 32 via the vehicle communication bus 65).
Therefore, in the present invention, the air conditioning controller 20 sets the target heater temperature TCO higher than the target blowing temperature TAO when the B / L mode is selected. That is, in this embodiment, the air conditioning controller 20 raises the target heater temperature TCO by a predetermined value α1 from the target blowout temperature TAO (TCO = TAO + α1). This state is indicated by a diagonal broken line in FIG. Further, the air conditioning controller 20 calculates a predetermined value α1 by the following formula (IV) and raises the target heater temperature TCO.
α1 = f (Tam, Ga, TAO) (IV)
That is, the air-conditioning controller 20 determines the predetermined value α1 based on the outside air temperature Tam, the volumetric air volume Ga of the air flowing into the air flow passage 3, and the target blowing temperature TAO. In this case, the air conditioning controller 20 increases the predetermined value α1 as the outside air temperature Tam is lower, and increases the predetermined value α1 as the volumetric air volume Ga is larger. Moreover, it calculates in the direction which enlarges predetermined value (alpha) 1, so that the target blowing temperature TAO is high.
Thus, by setting the target heater temperature TCO higher than the target blowout temperature TAO, the heat pump controller 32 that has received it (TCO) increases the heating capability of the auxiliary heater 23 in the dehumidifying heating mode and dissipates heat in the dehumidifying cooling mode. Since the heating capacity by the vessel 4 is increased, a decrease in the blowing temperature is compensated. The same applies to the H / D mode.
As described above, the air-conditioning controller 20 sets the target heater temperature TCO from the target outlet temperature TAO when the air volume ratio SW is regulated within a predetermined intermediate range (SW1 ≦ SW ≦ SW2) in the B / L mode or the H / D mode. Since the temperature is set high, it is possible to prevent the temperature of the air blown into the vehicle interior from being lowered, and it is possible to realize comfortable vehicle interior air conditioning.
In this embodiment, when the air-conditioning controller 20 is in the B / L mode or H / D mode, the target heater temperature TCO is raised from the target blowing temperature TAO by a predetermined value α1, and the predetermined value α1 is set to the outside air temperature Tam and the air flow path. Since it is determined based on the volume air volume Ga of the air flowing into the air and the target blowing temperature TAO, the temperature drop can be appropriately prevented based on the outside air temperature Tam, the volume air volume Ga, and the target blowing temperature TAO. It becomes like this.
In particular, the air conditioning controller 20 increases the predetermined value α1 as the volumetric air volume Ga is larger. Therefore, even if the volumetric airflow Ga increases and the heat exchange efficiency between the radiator 4 and the auxiliary heater 23 and air decreases, The air blown into the passenger compartment by the auxiliary heater 23 can be appropriately heated.
(12) Control for raising target heater temperature TCO in B / L mode (H / D mode) 2
Here, the raising control of the target heater temperature TCO in the B / L mode (H / D mode) is not limited to the above, and a method of raising the target heater temperature TCO to a predetermined high value t1 (for example, + 70 ° C.) and fixing it may be used (FIG. 8). (Shown with a thin solid line). In this way, in the B / L “mode or H / D mode, the air conditioning controller 20 can effectively reduce the temperature of the air blown into the passenger compartment by setting the target heater temperature TCO to the predetermined high value t1. Will be able to prevent.
(13) Lowering control of the target heat absorber temperature TEO in the B / L mode (H / D mode)
Further, when the air-conditioning controller 20 is in the B / L mode (H / D mode) and the current operation mode is the dehumidifying heating mode or the dehumidifying cooling mode, the target heat absorber temperature TEO is set lower than the normal value TEO0. To do. When the target heat absorber temperature TEO is lowered, the heat pump controller 32 that has received it (TEO) via the vehicle communication bus 65 exchanges heat with the heat absorber 9 in order to increase the rotational speed NC of the compressor 2. The temperature of the air passing through the bypass passage 3B decreases. Thus, for example, in the B / L mode, it becomes easier to create a temperature difference between the air blown from the FOOT blowout port 29A and the air blown from the VENT blower port 29B, so that more comfortable vehicle interior air conditioning can be realized. become able to.
However, in this case, when the temperature of the air flowing into the air flow passage 3 (suction air temperature Tas) becomes lower than the normal value TEO0 of the target heat absorber temperature TEO, a temperature difference is added to the air blown out from the respective outlets 29A, 29B. The air conditioning controller 32 is supplied to the vehicle interior from the air flow passage 3 by the radiator 4 and the auxiliary heater 23 without flowing the refrigerant through the heat absorber 9 because it becomes necessary to heat the vehicle interior. To the operation mode in which the air to be heated is heated. Information on switching of the operation mode is also transmitted to the heat pump controller 32.
(14) Raising control of target heater temperature TCO in other blowing modes
Here, since the air heated by the auxiliary heater 23 and the radiator 4 exchanges heat with the wall surface of the air flow passage 3 of the HVAC unit 10 in the process of reaching the outlets 29A to 29C, the temperature is lowered due to heat loss. . Therefore, the air conditioning controller 20 calculates the predetermined value α2 by the following equation (V) when the blowing mode is a blowing mode (second blowing mode) other than the B / L mode and the H / D mode described above. Increase the target heater temperature TCO.
α2 = f (Tam, Ga, TAO, Tin) (V)
That is, the air conditioning controller 20 determines the predetermined value α2 based on the outside air temperature Tam, the volume air volume Ga of the air flowing into the air flow passage 3, the target blowing temperature TAO, and the room temperature Tin. In this case, the air conditioning controller 20 increases the predetermined value α2 as the outside air temperature Tam decreases, and increases the predetermined value α2 as the volumetric air volume Ga decreases. Further, the predetermined value α2 is increased as the target blowout temperature TAO is higher, and is calculated in a direction of increasing as the indoor temperature Tin is lower. However, the relationship of α1> α2 is maintained.
Thus, by setting the target heater temperature TCO higher than the target blowout temperature TAO, the heat pump controller 32 that has received it (TCO) increases the heating capability of the auxiliary heater 23 in the dehumidifying heating mode, and the radiator in the dehumidifying cooling mode. Since the heating ability by 4 will be increased, the fall of the blowing temperature by heat loss will be compensated. The same applies to the H / D mode.
In particular, the air conditioning controller 20 determines the predetermined value α2 based on the outside air temperature Tam, the volumetric air volume Ga of the air flowing into the air flow passage, the target blowing temperature TAO, and the indoor temperature Tin that is the temperature of the air in the vehicle interior. Therefore, it is possible to appropriately compensate for the temperature decrease due to heat loss in the process from the radiator 4 and the auxiliary heater 23 to the outlets 29A to 29C.
In this case, the air conditioning controller 20 increases the predetermined value α2 as the volumetric air volume Ga is smaller. Therefore, in the situation where the volumetric airflow Ga is small and the heat loss is increased due to heat exchange with the wall surface of the air flow passage 3. Temperature compensation can be performed effectively.
 次に、図9は本発明を適用した他の実施例の車両用空気調和装置1の構成図を示している。尚、この図において図1と同一符号で示すものは同一若しくは同様の機能を奏するものである。この実施例の場合、過冷却部16の出口は逆止弁18に接続され、この逆止弁18の出口が冷媒配管13Bに接続されている。尚、逆止弁18は冷媒配管13B(室内膨張弁8)側が順方向とされている。
 また、放熱器4の出口側の冷媒配管13Eは室外膨張弁6の手前で分岐しており、この分岐した冷媒配管(以下、第2のバイパス配管と称する)13Fは電磁弁22(除湿用)を介して逆止弁18の下流側の冷媒配管13Bに連通接続されている。更に、吸熱器9の出口側の冷媒配管13Cには、内部熱交換器19の冷媒下流側であって、冷媒配管13Dとの合流点より冷媒上流側に蒸発圧力調整弁70が接続されている。そして、これら電磁弁22や蒸発圧力調整弁70もヒートポンプコントローラ32の出力に接続されている。また、前述の実施例の図1中のバイパス配管35、電磁弁30及び電磁弁40から成るバイパス装置45は設けられていない。その他は図1と同様であるので説明を省略する。
 以上の構成で、この実施例の車両用空気調和装置1の動作を説明する。ヒートポンプコントローラ32はこの実施例では、暖房モード、除湿暖房モード、内部サイクルモード、除湿冷房モード及び冷房モードの各運転モードを切り換えて実行する(MAX冷房モードはこの実施例では存在しない)。尚、暖房モード、除湿冷房モード及び冷房モードが選択されたときの動作及び冷媒の流れは前述の実施例(実施例1)の場合と同様であるので説明を省略する。但し、この実施例(実施例2)ではこれら暖房モード、除湿冷房モード及び冷房モードにおいては電磁弁22を閉じるものとする。
 (15)図9の車両用空気調和装置1の除湿暖房モード
 他方、除湿暖房モードが選択された場合、この実施例(実施例2)ではヒートポンプコントローラ32は電磁弁21(暖房用)を開放し、電磁弁17(冷房用)を閉じる。また、電磁弁22(除湿用)を開放する。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量の調整も行う。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は冷媒配管13Gから放熱器4に流入する。放熱器4には暖房用熱交換通路3Aに流入した空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A、電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。
 また、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部は分流され、電磁弁22を経て第2のバイパス配管13F及び冷媒配管13Bより内部熱交換器19を経て室内膨張弁8に至るようになる。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は、内部熱交換器19、蒸発圧力調整弁70を順次経て冷媒配管13Cにて冷媒配管13Dからの冷媒と合流した後、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。
 空調コントローラ20は、目標吹出温度TAOから算出される目標ヒータ温度TCO(加熱温度THの目標値)をヒートポンプコントローラ32に送信する。ヒートポンプコントローラ32は、この目標ヒータ温度TCOから目標放熱器圧力PCO(放熱器圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数NCを制御し、放熱器4による加熱を制御する。また、ヒートポンプコントローラ32は、吸熱器温度センサ48が検出する吸熱器9の温度Teと、空調コントローラ20から送信された目標吸熱器温度TEOに基づいて室外膨張弁6の弁開度を制御する。また、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づき、蒸発圧力調整弁70を開(流路を拡大する)/閉(少許冷媒が流れる)して吸熱器9の温度が下がり過ぎて凍結する不都合を防止する。
 (16)図9の車両用空気調和装置1の内部サイクルモード
 また、内部サイクルモードでは、ヒートポンプコントローラ32は上記除湿暖房モードの状態において室外膨張弁6を全閉とする(全閉位置)と共に、電磁弁21を閉じる。この室外膨張弁6と電磁弁21が閉じられることにより、室外熱交換器7への冷媒の流入、及び、室外熱交換器7からの冷媒の流出は阻止されることになるので、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒は電磁弁22を経て第2のバイパス配管13Fに全て流れるようになる。そして、第2のバイパス配管13Fを流れる冷媒は冷媒配管13Bより内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は、内部熱交換器19、蒸発圧力調整弁70を順次経て冷媒配管13Cを流れ、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより、車室内の除湿暖房が行われることになるが、この内部サイクルモードでは室内側の空気流通路3内にある放熱器4(放熱)と吸熱器9(吸熱)の間で冷媒が循環されることになるので、外気からの熱の汲み上げは行われず、圧縮機2の消費動力分の暖房能力が発揮される。除湿作用を発揮する吸熱器9には冷媒の全量が流れるので、上記除湿暖房モードに比較すると除湿能力は高いが、暖房能力は低くなる。
 空調コントローラ20は目標吹出温度TAOから算出される目標ヒータ温度TCO(加熱温度THの目標値)をヒートポンプコントローラ32に送信する。ヒートポンプコントローラ32は送信された目標ヒータ温度TCOから目標放熱器圧力PCO(放熱器圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数NCを制御し、放熱器4による加熱を制御する。
 この実施例のような車両用空気調和装置1においても、特に除湿暖房モードや内部サイクルモード、除湿冷房モードで前述した(10)エアミックスダンパ28の制御、(10−1)B/Lモード(H/Dモード)における風量割合SWの規制制御、(11)B/Lモード(H/Dモード)での目標ヒータ温度TCOの引き上げ制御1、(12)B/Lモード(H/Dモード)での目標ヒータ温度TCOの引き上げ制御2、(13)B/Lモード(H/Dモード)での目標吸熱器温度TEOの引き下げ制御、及び、(14)その他の吹出モードでの目標ヒータ温度TCOの引き上げ制御、を実行することで、同様にB/Lモード等でFOOT吹出口29Aから吹き出される空気とVENT吹出口29Bから吹き出される空気との間に十分な温度差を付けることができるようになると共に、このB/Lモード等では目標ヒータ温度TCOを目標吹出温度TAOより高く設定して、車室内に吹き出される空気の温度低下も防止することができるようになり、これらによって所謂「頭寒足熱」の快適な車室内空調を実現することができるようになる。また、補助ヒータ23や放熱器4から各吹出口29A~29Cに至る過程での熱ロスによる温度低下も、同様に適切に補償することもできるようになる。
 尚、各実施例では除湿暖房モード、除湿冷房モード、或いは、内部サイクルモードで本発明の各制御を実行することで説明したが、それに限らず、暖房モードでも同様に効果が期待できる。また、第1の吹出モードとしてはB/LモードやH/Dモードの他、VENT吹出口29BとDEF吹出口29Cの双方から吹き出す場合も考えられる。
 また、実施例で示した各運転モードの切換制御は、それに限られるものでは無く、車両用空気調和装置の能力や使用環境に応じて、外気温度Tam、車室内の湿度、目標吹出温度TAO、加熱温度TH、目標ヒータ温度TCO、吸熱器温度Te、目標吸熱器温度TEO、車室内の除湿要求の有無、等のパラメータの何れか、又は、それらの組み合わせ、それらの全てを採用して適切な条件を設定すると良い。
 また、補助加熱装置は実施例で示した補助ヒータ23に限られるものでは無く、ヒータで加熱された熱媒体を循環させて空気流通路3内の空気を加熱する熱媒体循環回路や、エンジンで加熱されたラジエター水を循環するヒータコア等を利用してもよい。
Next, FIG. 9 shows a configuration diagram of a vehicle air conditioner 1 of another embodiment to which the present invention is applied. In this figure, the same reference numerals as those in FIG. 1 indicate the same or similar functions. In the case of this embodiment, the outlet of the supercooling section 16 is connected to the check valve 18, and the outlet of the check valve 18 is connected to the refrigerant pipe 13B. The check valve 18 has a forward direction on the refrigerant pipe 13B (indoor expansion valve 8) side.
The refrigerant pipe 13E on the outlet side of the radiator 4 is branched before the outdoor expansion valve 6, and the branched refrigerant pipe (hereinafter referred to as second bypass pipe) 13F is an electromagnetic valve 22 (for dehumidification). Is connected to the refrigerant pipe 13B downstream of the check valve 18. Further, an evaporating pressure adjusting valve 70 is connected to the refrigerant pipe 13C on the outlet side of the heat absorber 9 on the refrigerant downstream side of the internal heat exchanger 19 and upstream of the refrigerant with respect to the refrigerant pipe 13D. . The electromagnetic valve 22 and the evaporation pressure adjusting valve 70 are also connected to the output of the heat pump controller 32. Further, the bypass device 45 including the bypass pipe 35, the electromagnetic valve 30 and the electromagnetic valve 40 in FIG. 1 of the above-described embodiment is not provided. Others are the same as in FIG.
With the above configuration, the operation of the vehicle air conditioner 1 of this embodiment will be described. In this embodiment, the heat pump controller 32 performs switching between the heating mode, the dehumidifying heating mode, the internal cycle mode, the dehumidifying cooling mode, and the cooling mode (the MAX cooling mode does not exist in this embodiment). The operation and the refrigerant flow when the heating mode, the dehumidifying and cooling mode, and the cooling mode are selected are the same as those in the above-described embodiment (Example 1), and thus the description thereof is omitted. However, in this embodiment (Example 2), the solenoid valve 22 is closed in the heating mode, the dehumidifying cooling mode, and the cooling mode.
(15) Dehumidifying and heating mode of vehicle air conditioner 1 in FIG. 9 On the other hand, when the dehumidifying and heating mode is selected, in this embodiment (Example 2), heat pump controller 32 opens electromagnetic valve 21 (for heating). The electromagnetic valve 17 (for cooling) is closed. Further, the electromagnetic valve 22 (for dehumidification) is opened. Then, the compressor 2 is operated. The air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating. The auxiliary heater 23 and the radiator 4 are ventilated, but the air volume is also adjusted.
Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G. Since the air in the air flow path 3 that has flowed into the heat exchange path 3A for heating is passed through the heat radiator 4, the air in the air flow path 3 is heated by the high-temperature refrigerant in the heat radiator 4, while the heat radiator The refrigerant in 4 is deprived of heat by the air and cooled to condense.
The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the refrigerant circuit R becomes a heat pump. Then, the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 through the refrigerant pipe 13C through the refrigerant pipe 13A, the solenoid valve 21 and the refrigerant pipe 13D, and is gas-liquid separated there. Repeated circulation inhaled.
Further, a part of the condensed refrigerant flowing through the refrigerant pipe 13E through the radiator 4 is diverted, passes through the electromagnetic valve 22, and reaches the indoor expansion valve 8 through the internal heat exchanger 19 from the second bypass pipe 13F and the refrigerant pipe 13B. It becomes like this. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
The refrigerant evaporated in the heat absorber 9 sequentially passes through the internal heat exchanger 19 and the evaporation pressure adjusting valve 70 and then merges with the refrigerant from the refrigerant pipe 13D in the refrigerant pipe 13C. Then, the refrigerant is sucked into the compressor 2 through the accumulator 12. repeat. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed.
The air conditioning controller 20 transmits the target heater temperature TCO (target value of the heating temperature TH) calculated from the target blowing temperature TAO to the heat pump controller 32. The heat pump controller 32 calculates a target radiator pressure PCO (target value of the radiator pressure PCI) from the target heater temperature TCO, and the refrigerant of the radiator 4 detected by the target radiator pressure PCO and the radiator pressure sensor 47. The number of revolutions NC of the compressor 2 is controlled based on the pressure (radiator pressure PCI, high pressure of the refrigerant circuit R), and heating by the radiator 4 is controlled. The heat pump controller 32 controls the valve opening degree of the outdoor expansion valve 6 based on the temperature Te of the heat absorber 9 detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO transmitted from the air conditioning controller 20. Further, the heat pump controller 32 opens (expands the flow path) / closes (low permitting refrigerant flows) based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48. Thus, the inconvenience that the temperature of the heat absorber 9 is too low and freezes is prevented.
(16) Internal cycle mode of the vehicle air conditioner 1 of FIG. 9 In the internal cycle mode, the heat pump controller 32 fully closes the outdoor expansion valve 6 in the dehumidifying heating mode (fully closed position), The solenoid valve 21 is closed. Since the outdoor expansion valve 6 and the electromagnetic valve 21 are closed, the inflow of refrigerant to the outdoor heat exchanger 7 and the outflow of refrigerant from the outdoor heat exchanger 7 are blocked. The condensed refrigerant flowing through the refrigerant pipe 13E through the refrigerant flows through the electromagnetic valve 22 to the second bypass pipe 13F. The refrigerant flowing through the second bypass pipe 13F reaches the indoor expansion valve 8 via the internal heat exchanger 19 from the refrigerant pipe 13B. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
The refrigerant evaporated in the heat absorber 9 sequentially flows through the refrigerant pipe 13C through the internal heat exchanger 19 and the evaporation pressure adjustment valve 70, and repeats circulation that is sucked into the compressor 2 through the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed. Since the refrigerant is circulated between the radiator 4 (radiation) and the heat absorber 9 (heat absorption) in the passage 3, heat from the outside air is not pumped up, and heating for the consumed power of the compressor 2 is performed. Ability is demonstrated. Since the entire amount of the refrigerant flows through the heat absorber 9 that exhibits the dehumidifying action, the dehumidifying capacity is higher than that in the dehumidifying and heating mode, but the heating capacity is lowered.
The air conditioning controller 20 transmits a target heater temperature TCO (target value of the heating temperature TH) calculated from the target blowing temperature TAO to the heat pump controller 32. The heat pump controller 32 calculates the target radiator pressure PCO (target value of the radiator pressure PCI) from the transmitted target heater temperature TCO, and the target radiator pressure PCO and the radiator 4 detected by the radiator pressure sensor 47. The rotational speed NC of the compressor 2 is controlled based on the refrigerant pressure (radiator pressure PCI, high pressure of the refrigerant circuit R), and heating by the radiator 4 is controlled.
Also in the vehicle air conditioner 1 as in this embodiment, the above-described (10) control of the air mix damper 28 in the dehumidifying heating mode, the internal cycle mode, and the dehumidifying cooling mode, (10-1) B / L mode ( (11) B / L mode (H / D mode) (11) B / L mode (H / D mode) (11) B / L mode (H / D mode) Target heater temperature TCO raising control 2 at (13), target heat absorber temperature TEO lowering control at B / L mode (H / D mode), and (14) target heater temperature TCO at other blowing modes. In the same manner, a sufficient temperature is maintained between the air blown from the FOOT blowout port 29A and the air blown from the VENT blowout port 29B in the B / L mode or the like. In this B / L mode or the like, the target heater temperature TCO can be set higher than the target blowing temperature TAO to prevent a temperature drop of the air blown into the passenger compartment. Thus, it is possible to realize a so-called “head cold foot fever” comfortable vehicle interior air conditioning. Further, a temperature drop due to heat loss in the process from the auxiliary heater 23 and the radiator 4 to each of the outlets 29A to 29C can be appropriately compensated as well.
In each embodiment, the control of the present invention is executed in the dehumidifying and heating mode, the dehumidifying and cooling mode, or the internal cycle mode. However, the present invention is not limited thereto, and the same effect can be expected in the heating mode. Moreover, as a 1st blowing mode, the case where it blows out from both VENT blower outlet 29B and DEF blower outlet 29C other than B / L mode and H / D mode is also considered.
Further, the switching control of each operation mode shown in the embodiment is not limited thereto, and the outside air temperature Tam, the humidity in the vehicle interior, the target blowing temperature TAO, depending on the capability and usage environment of the vehicle air conditioner, It is appropriate to adopt any one of the parameters such as heating temperature TH, target heater temperature TCO, heat absorber temperature Te, target heat absorber temperature TEO, presence / absence of dehumidification request in the vehicle interior, or a combination thereof, or all of them. It is good to set conditions.
Further, the auxiliary heating device is not limited to the auxiliary heater 23 shown in the embodiment, and a heat medium circulation circuit that heats the air in the air flow passage 3 by circulating the heat medium heated by the heater or an engine. You may utilize the heater core etc. which circulate through the heated radiator water.
 1 車両用空気調和装置
 2 圧縮機
 3 空気流通路
 3A 暖房用熱交換通路
 3B バイパス通路
 4 放熱器(ヒータ)
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器
 10 HVACユニット
 10A 仕切壁
 11 制御装置
 20 空調コントローラ
 23 補助ヒータ(補助加熱装置、ヒータ)
 27 室内送風機(ブロワファン)
 28 エアミックスダンパ
 29A FOOT吹出口(第1の吹出口)
 29B VENT吹出口(第2の吹出口、第1の吹出口)
 29C DEF吹出口(第2の吹出口)
 31A~31C 吹出口ダンパ
 32 ヒートポンプコントローラ
 65 車両通信バス
 R 冷媒回路
DESCRIPTION OF SYMBOLS 1 Vehicle air conditioner 2 Compressor 3 Air flow path 3A Heat exchange path for heating 3B Bypass path 4 Radiator (heater)
6 Outdoor Expansion Valve 7 Outdoor Heat Exchanger 8 Indoor Expansion Valve 9 Heat Absorber 10 HVAC Unit 10A Partition Wall 11 Controller 20 Air Conditioning Controller 23 Auxiliary Heater (Auxiliary Heating Device, Heater)
27 Indoor blower
28 air mix damper 29A FOOT outlet (first outlet)
29B VENT outlet (second outlet, first outlet)
29C DEF outlet (second outlet)
31A to 31C Air outlet damper 32 Heat pump controller 65 Vehicle communication bus R Refrigerant circuit

Claims (9)

  1.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     該空気流通路から前記車室内に供給する空気を加熱するためのヒータと、
     冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
     前記吸熱器より風下側の前記空気流通路に区画形成された暖房用熱交換通路及びバイパス通路と、
     前記吸熱器を通過した前記空気流通路内の空気を前記暖房用熱交換通路に通風する割合を調整するためのエアミックスダンパと、
     前記空気流通路から前記車室内に空気を吹き出すための第1の吹出口と、
     前記空気流通路から前記第1の吹出口より上方の位置の前記車室内に空気を吹き出すための第2の吹出口と、
     制御装置とを備え、
     前記ヒータは、前記暖房用熱交換通路に配置され、該暖房用熱交換通路を経た空気は前記第2の吹出口よりも前記第1の吹出口から吹き出され易く、前記バイパス通路を経た空気は前記第1の吹出口よりも前記第2の吹出口から吹き出され易い構成とされた車両用空気調和装置において、
     前記制御装置は、前記ヒータの風下側の空気の温度である加熱温度THの目標値である目標ヒータ温度TCOに基づいて前記ヒータによる加熱を制御し、
     前記車室内に吹き出される空気の温度の目標値である目標吹出温度TAOと、前記加熱温度THとに基づき、前記暖房用熱交換通路に通風する風量割合SWを算出して前記エアミックスダンパを制御すると共に、
     前記第1の吹出口と前記第2の吹出口の双方から前記車室内に空気を吹き出す第1の吹出モードを有し、
     該第1の吹出モードでは、前記風量割合SWを所定の中間範囲内に規制し、且つ、前記目標ヒータ温度TCOを前記目標吹出温度TAOより高く設定することを特徴とする車両用空気調和装置。
    A compressor for compressing the refrigerant;
    An air flow passage through which air to be supplied into the passenger compartment flows;
    A heater for heating air supplied from the air flow passage to the vehicle interior;
    A heat absorber for absorbing the refrigerant and cooling the air supplied from the air flow passage to the vehicle interior;
    A heat exchange passage for heating and a bypass passage formed in the air flow passage on the leeward side of the heat absorber;
    An air mix damper for adjusting the rate at which the air in the air flow passage that has passed through the heat absorber passes through the heating heat exchange passage;
    A first outlet for blowing air from the air flow passage into the vehicle interior;
    A second air outlet for blowing air from the air flow passage into the vehicle compartment at a position above the first air outlet;
    A control device,
    The heater is disposed in the heating heat exchange passage, and the air that has passed through the heating heat exchange passage is more easily blown out of the first air outlet than the second air outlet, and the air that has passed through the bypass passage is In the vehicle air conditioner configured to be easier to blow out from the second outlet than the first outlet,
    The control device controls heating by the heater based on a target heater temperature TCO that is a target value of a heating temperature TH that is a temperature of air on the leeward side of the heater,
    Based on the target air temperature TAO, which is a target value of the temperature of the air blown into the passenger compartment, and the heating temperature TH, the air volume damper SW is calculated by calculating the air volume ratio SW passing through the heating heat exchange passage. Control and
    A first blowing mode for blowing air into the vehicle interior from both the first blowing port and the second blowing port;
    In the first blowing mode, the vehicle air conditioner is characterized in that the air volume ratio SW is regulated within a predetermined intermediate range, and the target heater temperature TCO is set higher than the target blowing temperature TAO.
  2.  前記制御装置は、前記第1の吹出モードでは、前記目標ヒータ温度TCOを前記目標吹出温度TAOより所定値α1引き上げると共に、該所定値α1を、外気温度Tam、前記空気流通路に流入した空気の体積風量Ga、及び、前記目標吹出温度TAOに基づいて決定することを特徴とする請求項1に記載の車両用空気調和装置。 In the first blowing mode, the control device raises the target heater temperature TCO by a predetermined value α1 from the target blowing temperature TAO, and increases the predetermined value α1 to the outside air temperature Tam and the air flowing into the air flow path. 2. The vehicle air conditioner according to claim 1, wherein the air conditioner is determined based on a volume air volume Ga and the target blowing temperature TAO.
  3.  前記制御装置は、前記体積風量Gaが大きい程、前記所定値α1を大きくすることを特徴とする請求項2に記載の車両用空気調和装置。 3. The vehicle air conditioner according to claim 2, wherein the control device increases the predetermined value α1 as the volume air volume Ga increases.
  4.  前記制御装置は、前記第1の吹出モードでは、前記目標ヒータ温度TCOを所定の高い値とすることを特徴とする請求項1に記載の車両用空気調和装置。 The vehicle air conditioner according to claim 1, wherein the control device sets the target heater temperature TCO to a predetermined high value in the first blowing mode.
  5.  前記制御装置は、前記吸熱器の温度の目標値である目標吸熱器温度TEOに基づいて前記圧縮機を制御すると共に、前記第1の吹出モードでは、前記目標吸熱器温度TEOを通常値より低く設定することを特徴とする請求項1乃至請求項4のうちの何れかに記載の車両用空気調和装置。 The control device controls the compressor based on a target heat absorber temperature TEO which is a target value of the temperature of the heat absorber, and lowers the target heat absorber temperature TEO below a normal value in the first blowing mode. The vehicle air conditioner according to any one of claims 1 to 4, wherein the air conditioner is set.
  6.  前記制御装置は、前記空気流通路に流入する空気の温度Tasが前記目標吸熱器温度TEOの通常値より低い場合、前記吸熱器に冷媒を流さずに前記ヒータにより前記空気流通路から前記車室内に供給する空気を加熱する運転に切り換えることを特徴とする請求項5に記載の車両用空気調和装置。 When the temperature Tas of the air flowing into the air flow passage is lower than a normal value of the target heat absorber temperature TEO, the control device causes the heater to pass through the air flow passage from the air flow passage without flowing the refrigerant through the heat absorber. The vehicle air conditioner according to claim 5, wherein the vehicle is switched to an operation for heating the air supplied to the vehicle.
  7.  前記制御装置は、前記第1の吹出モード以外の吹出モードを有し、該第1の吹出モード以外の吹出モードでは、前記目標ヒータ温度TCOを前記目標吹出温度TAOより所定値α2引き上げると共に、該所定値α2を、前記外気温度Tam、前記空気流通路に流入した空気の体積風量Ga、前記目標吹出温度TAO、及び、前記車室内の空気の温度である室内温度Tinに基づいて決定することを特徴とする請求項1乃至請求項6のうちの何れかに記載の車両用空気調和装置。 The control device has a blow mode other than the first blow mode, and in the blow mode other than the first blow mode, the target heater temperature TCO is raised from the target blow temperature TAO by a predetermined value α2, The predetermined value α2 is determined based on the outside air temperature Tam, the volume air volume Ga of the air flowing into the air flow passage, the target blowing temperature TAO, and the indoor temperature Tin which is the temperature of the air in the vehicle interior. The vehicle air conditioner according to any one of claims 1 to 6, wherein the vehicle air conditioner is provided.
  8.  前記制御装置は、前記体積風量Gaが小さい程、前記所定値α2を大きくすることを特徴とする請求項7に記載の車両用空気調和装置。 The vehicle air conditioner according to claim 7, wherein the control device increases the predetermined value α2 as the volume air volume Ga is smaller.
  9.  前記ヒータは、冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器、及び/又は、前記空気流通路から前記車室内に供給する空気を加熱するための補助加熱装置であることを特徴とする請求項1乃至請求項8のうちの何れかに記載の車両用空気調和装置。 The heater dissipates the refrigerant and heats the air supplied from the air flow passage to the vehicle interior and / or heats the air supplied from the air flow passage to the vehicle interior. The vehicle air conditioner according to any one of claims 1 to 8, wherein the vehicle air conditioner is an auxiliary heating device.
PCT/JP2017/033163 2016-09-30 2017-09-07 Air-conditioning device for vehicle WO2018061785A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-193303 2016-09-30
JP2016193303 2016-09-30
JP2017141096A JP2018058575A (en) 2016-09-30 2017-07-20 Air conditioner for vehicle
JP2017-141096 2017-07-20

Publications (1)

Publication Number Publication Date
WO2018061785A1 true WO2018061785A1 (en) 2018-04-05

Family

ID=61760263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033163 WO2018061785A1 (en) 2016-09-30 2017-09-07 Air-conditioning device for vehicle

Country Status (1)

Country Link
WO (1) WO2018061785A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108382161A (en) * 2018-04-16 2018-08-10 上海理工大学 Secondary circuit air conditioner heat pump system and its method
CN112440665A (en) * 2019-08-29 2021-03-05 法雷奥日本株式会社 Air conditioner for vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587610A (en) * 1978-12-25 1980-07-02 Nissan Shatai Co Ltd Air conditioning system for automobile
JPH1111138A (en) * 1997-06-23 1999-01-19 Denso Corp Vehicle air conditioner
JP2001150918A (en) * 1999-11-29 2001-06-05 Denso Corp Air conditioner for vehicle
JP2002283826A (en) * 2001-03-23 2002-10-03 Denso Corp Air conditioner for vehicle
JP2012176659A (en) * 2011-02-25 2012-09-13 Sanden Corp Air conditioning device for vehicle
JP2016060418A (en) * 2014-09-19 2016-04-25 サンデンホールディングス株式会社 Vehicular air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587610A (en) * 1978-12-25 1980-07-02 Nissan Shatai Co Ltd Air conditioning system for automobile
JPH1111138A (en) * 1997-06-23 1999-01-19 Denso Corp Vehicle air conditioner
JP2001150918A (en) * 1999-11-29 2001-06-05 Denso Corp Air conditioner for vehicle
JP2002283826A (en) * 2001-03-23 2002-10-03 Denso Corp Air conditioner for vehicle
JP2012176659A (en) * 2011-02-25 2012-09-13 Sanden Corp Air conditioning device for vehicle
JP2016060418A (en) * 2014-09-19 2016-04-25 サンデンホールディングス株式会社 Vehicular air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108382161A (en) * 2018-04-16 2018-08-10 上海理工大学 Secondary circuit air conditioner heat pump system and its method
CN112440665A (en) * 2019-08-29 2021-03-05 法雷奥日本株式会社 Air conditioner for vehicle

Similar Documents

Publication Publication Date Title
JP6997558B2 (en) Vehicle air conditioner
JP6607638B2 (en) Air conditioner for vehicles
WO2018074112A1 (en) Vehicular air conditioning device
WO2018211958A1 (en) Vehicle air-conditioning device
WO2018147039A1 (en) Vehicle air-conditioning device
JP6900271B2 (en) Vehicle air conditioner
WO2018116962A1 (en) Air conditioning device for vehicle
JP2018058575A (en) Air conditioner for vehicle
WO2018110211A1 (en) Vehicle air-conditioning device
WO2018061785A1 (en) Air-conditioning device for vehicle
WO2018110212A1 (en) Vehicle air-conditioning apparatus
WO2018225486A1 (en) Air-conditioning device for vehicles
WO2018123634A1 (en) Vehicular air conditioning device
WO2018135603A1 (en) Vehicular air-conditioning device
WO2018079121A1 (en) Vehicle air-conditioning device
WO2018088124A1 (en) Vehicular air conditioner
WO2018043152A1 (en) Vehicle air-conditioning apparatus
WO2017146269A1 (en) Vehicular air-conditioning device
JP2019018708A (en) Air conditioner for vehicle
WO2018074111A1 (en) Vehicular air conditioning device
WO2018225485A1 (en) Vehicle air conditioner
JP2019031226A (en) Air conditioning apparatus for vehicle
WO2019049637A1 (en) Vehicular air conditioning device
WO2020179492A1 (en) Vehicle air conditioner
JP6853036B2 (en) Vehicle air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855741

Country of ref document: EP

Kind code of ref document: A1