WO2018088124A1 - Vehicular air conditioner - Google Patents

Vehicular air conditioner Download PDF

Info

Publication number
WO2018088124A1
WO2018088124A1 PCT/JP2017/037291 JP2017037291W WO2018088124A1 WO 2018088124 A1 WO2018088124 A1 WO 2018088124A1 JP 2017037291 W JP2017037291 W JP 2017037291W WO 2018088124 A1 WO2018088124 A1 WO 2018088124A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
refrigerant
heat exchanger
temperature
outdoor heat
Prior art date
Application number
PCT/JP2017/037291
Other languages
French (fr)
Japanese (ja)
Inventor
竜 宮腰
耕平 山下
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Publication of WO2018088124A1 publication Critical patent/WO2018088124A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00961Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising means for defrosting outside heat exchangers

Definitions

  • the present invention relates to a heat pump type air conditioner that air-conditions the interior of a vehicle.
  • the outdoor heat exchanger absorbs heat from the outside air in the heating mode, frost formation occurs in the outdoor heat exchanger. If the operation of the compressor is continued in a state in which frost formation on the outdoor heat exchanger has progressed, the heat absorption capability from the outside air is reduced, so that the operation efficiency is significantly reduced. Moreover, defrosting of the outdoor heat exchanger becomes difficult due to excessive frost formation. In addition, even when the operation of the compressor is continued in a state where the temperature and pressure of the refrigerant sucked into the compressor is lowered due to a decrease in the outside air temperature or the like, the operation efficiency is remarkably high because the compressor speed cannot be increased sufficiently. descend.
  • the present invention has been made to solve the conventional technical problems, and provides an air conditioning apparatus for a vehicle that can eliminate the inconvenience of operating the compressor in a situation where the operating efficiency is lowered. For the purpose.
  • An air conditioner for a vehicle includes a compressor that compresses a refrigerant, an air flow passage through which air supplied to the vehicle interior flows, and air that radiates the refrigerant and supplies the refrigerant to the vehicle interior from the air flow passage.
  • a heat radiator that heats the vehicle, an outdoor heat exchanger that is provided outside the passenger compartment to absorb the refrigerant, and a control device, and at least the refrigerant discharged from the compressor is supplied to the heat radiator by the control device.
  • the refrigerant is radiated, and the radiated refrigerant is depressurized, and then the outdoor heat exchanger absorbs heat to heat the vehicle interior.
  • the control device is configured such that the refrigerant evaporating temperature TXO of the outdoor heat exchanger is not frosted.
  • the air conditioning apparatus for a vehicle according to a second aspect of the present invention is the air conditioning apparatus for a vehicle according to the second aspect, wherein the control apparatus is configured such that the refrigerant evaporation temperature TXObase of the outdoor heat exchanger at the time of non-frosting based on the environmental condition and / or the index indicating the operation state Or the refrigerant
  • the vehicle air conditioner according to the first aspect wherein the control device is configured such that when the difference ⁇ TXO or the difference ⁇ PXO is greater than the first threshold value A1 continues for the first predetermined time t1. It is characterized by stopping.
  • the control device is configured such that the difference ⁇ TXO or the state where the difference ⁇ PXO is larger than the second threshold A2 smaller than the first threshold A1 is first predetermined time. The compressor is stopped when the second predetermined time t2 longer than t1 is continued.
  • the control device can determine the progress of frost formation on the outdoor heat exchanger when the heating capacity of the radiator satisfies the required capacity. It is characterized by not stopping the compressor based on it.
  • the control device stops the compressor based on the determination of the progress state of frost formation on the outdoor heat exchanger until a predetermined time has elapsed after activation. It is characterized by not performing.
  • an air conditioning apparatus for a vehicle wherein the controller stops the compressor based on the determination of the progress of frosting on the outdoor heat exchanger, and then removes the outdoor heat exchanger. The compressor is prohibited from starting until it is frosted.
  • An air conditioner for a vehicle according to an eighth aspect of the invention includes a compressor that compresses a refrigerant, an air flow passage through which air supplied to the vehicle interior flows, and air that radiates the refrigerant and supplies the refrigerant to the vehicle interior from the air flow passage.
  • a heat radiator that heats the vehicle, an outdoor heat exchanger that is provided outside the passenger compartment to absorb the refrigerant, and a control device, and at least the refrigerant discharged from the compressor is supplied to the heat radiator by the control device. After the heat is radiated and the radiated refrigerant is depressurized, the heat is absorbed by the outdoor heat exchanger to heat the vehicle interior, and the control device is configured such that the suction refrigerant temperature Ts of the compressor is a first predetermined value Ts1.
  • a ninth aspect of the present invention there is provided a vehicle air conditioner according to the above invention, wherein the control device is in a restricted control state based on the suction refrigerant temperature Ts or the suction refrigerant pressure Ps of the compressor until a predetermined time elapses after activation. The compressor is not stopped.
  • a vehicle air conditioner according to the above invention, wherein the control device stops the compressor based on the determination of the suction refrigerant temperature Ts or the suction refrigerant pressure Ps of the compressor, and then the compressor. Until the suction refrigerant temperature Ts becomes higher than a second predetermined value Ts2 that is higher than the first predetermined value Ts1, or from the second predetermined value Ps2 that the suction refrigerant pressure Ps of the compressor is higher than the first predetermined value Ps1. Until the temperature rises or until the outside air temperature becomes higher than a predetermined value, starting of the compressor is prohibited.
  • the vehicle air conditioner according to an eleventh aspect of the present invention includes the auxiliary heating device provided in the air flow passage in each of the above inventions, and the control device is based on the determination of the progress state of frost formation on the outdoor heat exchanger.
  • the control device is based on the determination of the progress state of frost formation on the outdoor heat exchanger.
  • the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air supplied to the vehicle interior from the air flow passage by radiating the refrigerant are heated.
  • the control device as in the second aspect of the invention is configured so that the refrigerant evaporating temperature TXObase of the outdoor heat exchanger at the time of no frosting or the time of no frosting is determined based on the environmental condition and / or the index indicating the operation state.
  • the outdoor heat is reduced by stopping the compressor.
  • the control device determines that the difference ⁇ TXO or the state where the difference ⁇ PXO is larger than the second threshold A2 smaller than the first threshold A1 is longer than the first predetermined time t1. If the compressor is stopped when the time t2 is continued, the compressor can be surely stopped even when the moderate frost formation of the outdoor heat exchanger continues for a relatively long time. become.
  • the compressor is not stopped based on the determination of the progress state of frost formation on the outdoor heat exchanger. If it does in this way, stop of a compressor will be prohibited in the situation where the heating capability by a radiator is achieved, and comfortable heating of a vehicle interior can be continued as it is. Further, if the control device as in the sixth aspect of the invention prevents the compressor from being stopped based on the determination of the progress of frost formation on the outdoor heat exchanger until a predetermined time has elapsed after the start, It becomes possible to eliminate erroneous determination in the unstable driving state immediately after.
  • the compressor is operated until the outdoor heat exchanger is defrosted. If the start is prohibited, the restart of the compressor in a state where frost remains in the outdoor heat exchanger is prohibited, thereby avoiding inconvenience that frost that is hard to melt is generated in advance. Will be able to.
  • the control device has a suction refrigerant temperature Ts of the compressor that is lower than a first predetermined value Ts1.
  • the limit control for decelerating the rotation speed NC of the compressor is executed, and in this limit control state, the compressor The rotation speed NC is Since the compressor is stopped when the state lower than the fixed value NC1 continues for a predetermined time, the compressor is stopped in a state where the suction refrigerant temperature Ts or the suction refrigerant pressure Ps of the compressor is lowered due to a decrease in the outside air temperature or the like. You will be able to stop.
  • the control device does not stop the compressor in the restrictive control state based on the suction refrigerant temperature Ts or the suction refrigerant pressure Ps until a predetermined time has elapsed after starting. By doing so, it becomes possible to eliminate an erroneous stop of the compressor in an unstable operation state immediately after startup. Further, after the controller stops the compressor based on the determination of the suction refrigerant temperature Ts of the compressor or the suction refrigerant pressure Ps as in the invention of claim 10, the suction refrigerant temperature Ts of the compressor is the first.
  • the control device stops the compressor based on the determination of the progress of frost formation on the outdoor heat exchanger.
  • the compressor when the compressor is stopped based on the determination of the suction refrigerant temperature Ts or the suction refrigerant pressure Ps of the compressor, if the vehicle interior is heated by the auxiliary heating device, the operation efficiency of the compressor is reduced. Therefore, even when the compressor is stopped, the passenger compartment can be heated by the auxiliary heating device to reduce the passenger's discomfort.
  • FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention.
  • a vehicle according to an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and travels by driving an electric motor for traveling with electric power charged in a battery. Yes (both not shown), the vehicle air conditioner 1 of the present invention is also driven by the power of the battery.
  • EV electric vehicle
  • an engine internal combustion engine
  • the vehicle air conditioner 1 of the embodiment performs a heating mode by a heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat, and further includes a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode, Each operation mode of the MAX cooling mode (maximum cooling mode) and the auxiliary heater single mode is selectively executed.
  • the present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles that run on an engine. Needless to say.
  • the vehicle air conditioner 1 performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and includes an electric compressor 2 that compresses refrigerant and vehicle interior air. Is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G, dissipates the refrigerant, and supplies it to the vehicle interior.
  • a heat sink 9 for cooling caused by the air supplied to the vehicle interior is sucked from the cabin outside the accumulator 12 and the like are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed.
  • the refrigerant circuit R is filled with a predetermined amount of refrigerant and lubricating oil.
  • the outdoor heat exchanger 7 is provided with an outdoor blower 15.
  • the outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing outside air through the outdoor heat exchanger 7, so that the outdoor air blower 15 can also be used outdoors even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). It is comprised so that external air may be ventilated by the heat exchanger 7.
  • the outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 sequentially on the downstream side of the refrigerant, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is received via an electromagnetic valve 17 opened during cooling.
  • the refrigerant pipe 13 ⁇ / b> B connected to the dryer unit 14 and on the outlet side of the supercooling unit 16 is connected to the inlet side of the heat absorber 9 via the indoor expansion valve 8.
  • the receiver dryer part 14 and the supercooling part 16 structurally constitute a part of the outdoor heat exchanger 7.
  • the refrigerant pipe 13B between the subcooling section 16 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C on the outlet side of the heat absorber 9, and constitutes an internal heat exchanger 19 together.
  • the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that has exited the heat absorber 9.
  • the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched into a refrigerant pipe 13D, and this branched refrigerant pipe 13D is downstream of the internal heat exchanger 19 via an electromagnetic valve 21 opened during heating.
  • the refrigerant pipe 13C is connected in communication.
  • the refrigerant pipe 13 ⁇ / b> C is connected to the accumulator 12, and the accumulator 12 is connected to the refrigerant suction side of the compressor 2.
  • the refrigerant pipe 13E on the outlet side of the radiator 4 is connected to the inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.
  • a refrigerant pipe 13G between the discharge side of the compressor 2 and the inlet side of the radiator 4 is provided with a solenoid valve 30 (which constitutes a flow path switching device) that is closed during dehumidification heating and MAX cooling described later. Yes.
  • the refrigerant pipe 13G is branched into a bypass pipe 35 on the upstream side of the electromagnetic valve 30, and the bypass pipe 35 is opened by the electromagnetic valve 40 (which also constitutes a flow path switching device) during dehumidifying heating and MAX cooling.
  • Bypass pipe 45, solenoid valve 30 and solenoid valve 40 constitute bypass device 45.
  • the bypass device 45 is configured by the bypass pipe 35, the electromagnetic valve 30, and the electromagnetic valve 40, the dehumidifying heating mode or the MAX for allowing the refrigerant discharged from the compressor 2 to directly flow into the outdoor heat exchanger 7 as will be described later. Switching between the cooling mode and the heating mode in which the refrigerant discharged from the compressor 2 flows into the radiator 4, the dehumidifying cooling mode, and the cooling mode can be performed smoothly.
  • the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG. 1).
  • a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) which is air inside the passenger compartment and the outside air (outside air introduction mode) which is outside the passenger compartment.
  • an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
  • 23 is an auxiliary heater as an auxiliary heating device provided in the vehicle air conditioner 1 of the embodiment.
  • the auxiliary heater 23 of the embodiment is composed of a PTC heater which is an electric heater, and is in the air flow passage 3 which is on the windward side (air upstream side) of the radiator 4 with respect to the air flow in the air flow passage 3. Is provided.
  • the auxiliary heater 23 When the auxiliary heater 23 is energized and generates heat, the air in the air flow passage 3 flowing into the radiator 4 through the heat absorber 9 is heated.
  • the auxiliary heater 23 serves as a so-called heater core, which heats or complements the passenger compartment.
  • the air flow passage 3 on the leeward side (air downstream side) from the heat absorber 9 of the HVAC unit 10 is partitioned by a partition wall 10A, and a heating heat exchange passage 3A and a bypass passage 3B that bypasses it are formed.
  • the radiator 4 and the auxiliary heater 23 described above are disposed in the heating heat exchange passage 3A.
  • the air (inside air or outside air) in the air flow passage 3 after flowing into the air flow passage 3 and passing through the heat absorber 9 is supplemented into the air flow passage 3 on the windward side of the auxiliary heater 23.
  • An air mix damper 28 is provided for adjusting the rate of ventilation through the heating heat exchange passage 3A in which the heater 23 and the radiator 4 are disposed.
  • the HVAC unit 10 on the leeward side of the radiator 4 includes a FOOT (foot) outlet 29A (first outlet) and a VENT (vent) outlet 29B (FOOT outlet 29A).
  • FOOT outlet 29A first outlets
  • DEF (def) outlets 29C second outlets
  • the FOOT air outlet 29A is an air outlet for blowing air under the feet in the passenger compartment, and is at the lowest position.
  • the VENT outlet 29B is an outlet for blowing out air near the driver's chest and face in the passenger compartment, and is located above the FOOT outlet 29A.
  • the DEF air outlet 29C is an air outlet for blowing air to the inner surface of the windshield of the vehicle, and is located at the highest position above the other air outlets 29A and 29B.
  • the FOOT air outlet 29A, the VENT air outlet 29B, and the DEF air outlet 29C are respectively provided with a FOOT air outlet damper 31A, a VENT air outlet damper 31B, and a DEF air outlet damper 31C that control the amount of air blown out. It has been.
  • FIG. 2 shows a block diagram of the control device 11 of the vehicle air conditioner 1 of the embodiment.
  • the control device 11 includes an air-conditioning controller 20 and a heat pump controller 32 each of which is a microcomputer that is an example of a computer including a processor, and these include a CAN (Controller Area Network) and a LIN (Local Interconnect Network). Is connected to a vehicle communication bus 65.
  • the compressor 2 and the auxiliary heater 23 are also connected to the vehicle communication bus 65, and the air conditioning controller 20, the heat pump controller 32, the compressor 2 and the auxiliary heater 23 are configured to transmit and receive data via the vehicle communication bus 65.
  • the air conditioning controller 20 is a host controller that controls the air conditioning of the vehicle interior of the vehicle.
  • the input of the air conditioning controller 20 includes an outside air temperature sensor 33 that detects the outside air temperature Tam of the vehicle and an outside air humidity that detects the outside air humidity.
  • An indoor air temperature sensor 37 that detects (indoor temperature Tin)
  • an indoor air humidity sensor 38 that detects the humidity of the air in the vehicle interior
  • an indoor CO2 concentration sensor 39 that detects the carbon dioxide concentration in the vehicle interior, and the air blown into the vehicle interior.
  • Detect air temperature For example, a photosensor type solar radiation sensor 51 for detecting the amount of solar radiation into the passenger compartment, and a vehicle moving speed ( Each output of the vehicle speed sensor 52 for detecting the (vehicle speed) and an air conditioning (air conditioner) operation unit 53 for setting the switching of the set temperature and the operation mode are connected.
  • the output of the air conditioning controller 20 is connected to an outdoor blower 15, an indoor blower (blower fan) 27, a suction switching damper 26, an air mix damper 28, and air outlet dampers 31A to 31C. It is controlled by the controller 20.
  • the heat pump controller 32 is a controller that mainly controls the refrigerant circuit R.
  • the input of the heat pump controller 32 includes a discharge temperature sensor 43 that detects a discharge refrigerant temperature Td of the compressor 2 and a suction refrigerant of the compressor 2.
  • a suction pressure sensor 44 for detecting the pressure Ps
  • a suction temperature sensor 55 for detecting the suction refrigerant temperature Ts of the compressor 2
  • a radiator temperature sensor 46 for detecting the refrigerant temperature of the radiator 4 (radiator temperature TCI)
  • a radiator pressure sensor 47 that detects the refrigerant pressure of the radiator 4 (radiator pressure PCI)
  • a heat absorber temperature sensor 48 that detects the refrigerant temperature of the heat absorber 9 (heat absorber temperature Te), and the refrigerant pressure of the heat absorber 9
  • a heat absorber pressure sensor 49 that detects the temperature of the auxiliary heater 23, an auxiliary heater temperature sensor 50 that detects the temperature of the auxiliary heater 23 (auxiliary heater temperature Tptc), and the outlet of the outdoor heat exchanger 7
  • the output of the heat pump controller 32 includes an outdoor expansion valve 6, an indoor expansion valve 8, an electromagnetic valve 30 (for reheating), an electromagnetic valve 17 (for cooling), an electromagnetic valve 21 (for heating), and an electromagnetic valve 40 (bypass). Are connected to each other and are controlled by the heat pump controller 32.
  • the compressor 2 and the auxiliary heater 23 each have a built-in controller, and the controllers of the compressor 2 and the auxiliary heater 23 send and receive data to and from the heat pump controller 32 via the vehicle communication bus 65. Be controlled.
  • the heat pump controller 32 and the air conditioning controller 20 transmit / receive data to / from each other via the vehicle communication bus 65, and control each device based on the output of each sensor and the setting input by the air conditioning operation unit 53.
  • the outside air temperature sensor 33, the discharge pressure sensor 42, the vehicle speed sensor 52, the volumetric air volume Ga of air flowing into the air flow passage 3 (calculated by the air conditioning controller 20), and the air volume ratio SW The output from the air conditioning controller 53 is transmitted from the air conditioning controller 20 to the heat pump controller 32 via the vehicle communication bus 65, and is used for control by the heat pump controller 32.
  • the control device 11 the air conditioning controller 20 and the heat pump controller 32
  • heating mode When the heating mode is selected by the heat pump controller 32 (auto mode) or the manual operation (manual mode) to the air conditioning operation unit 53, the heat pump controller 32 opens the electromagnetic valve 21 (for heating) and the electromagnetic valve 17 (cooling). Close). Further, the electromagnetic valve 30 (for reheating) is opened, and the electromagnetic valve 40 (for bypass) is closed. Then, the compressor 2 is operated.
  • the air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating.
  • the auxiliary heater 23 and the radiator 4 are ventilated, but the air volume may be adjusted.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30. Since the air in the airflow passage 3 is passed through the radiator 4, the air in the airflow passage 3 is converted into the high-temperature refrigerant in the radiator 4 (when the auxiliary heater 23 operates, the auxiliary heater 23 and the radiator 4.
  • the refrigerant in the radiator 4 is cooled by being deprived of heat by the air, and is condensed and liquefied.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the refrigerant circuit R becomes a heat pump.
  • the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C through the refrigerant pipe 13A, the electromagnetic valve 21 and the refrigerant pipe 13D, and is separated into gas and liquid there.
  • the heat pump controller 32 calculates the target radiator pressure PCO (target value of the radiator pressure PCI) from the target heater temperature TCO (target value of the radiator temperature TCI) calculated by the air conditioning controller 20 from the target outlet temperature TAO, and this target.
  • the number of revolutions NC of the compressor 2 is controlled based on the radiator pressure PCO and the refrigerant pressure of the radiator 4 detected by the radiator pressure sensor 47 (radiator pressure PCI. High pressure of the refrigerant circuit R). Control the heating by.
  • the heat pump controller 32 opens the outdoor expansion valve 6 based on the refrigerant temperature (radiator temperature TCI) of the radiator 4 detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47. The degree of supercooling of the refrigerant at the outlet of the radiator 4 is controlled. Further, in this heating mode, when the heating capability by the radiator 4 is insufficient with respect to the heating capability required for the cabin air conditioning, the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. The energization of the auxiliary heater 23 is controlled. Thereby, comfortable vehicle interior heating is realized and frost formation of the outdoor heat exchanger 7 is also suppressed.
  • the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air flowing through the air flow passage 3 is vented to the auxiliary heater 23 before the radiator 4.
  • the auxiliary heater 23 is disposed on the air downstream side of the radiator 4
  • the auxiliary heater 23 is configured by a PTC heater as in the embodiment
  • the temperature of the air flowing into the auxiliary heater 23 is determined by the radiator. 4
  • the resistance value of the PTC heater increases, the current value also decreases, and the heat generation amount decreases.
  • the auxiliary heater 23 by arranging the auxiliary heater 23 on the air upstream side of the radiator 4, Thus, the capacity of the auxiliary heater 23 composed of the PTC heater can be sufficiently exhibited.
  • the heat pump controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is closed, the electromagnetic valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 is operated.
  • the air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating.
  • the auxiliary heater 23 and the radiator 4 are ventilated, but the air volume is also adjusted.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16.
  • the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates.
  • the air blown out from the indoor blower 27 by the heat absorption action at this time is cooled, and moisture in the air condenses and adheres to the heat absorber 9, so that the air in the air flow passage 3 is cooled, and Dehumidified.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
  • the valve opening degree of the outdoor expansion valve 6 is fully closed, it is possible to suppress or prevent inconvenience that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. It becomes. Thereby, the fall of a refrigerant
  • the heat pump controller 32 energizes the auxiliary heater 23 to generate heat.
  • the heat pump controller 32 is a compressor based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and a target heat absorber temperature TEO that is a target value of the heat absorber temperature Te calculated by the air conditioning controller 20. 2, and the auxiliary heater temperature Tptc detected by the auxiliary heater temperature sensor 50 and the above-described target heater temperature TCO (in this case, the target value of the auxiliary heater temperature Tptc) is used.
  • the air temperature of the air blown out from the outlets 29A to 29C by the heating by the auxiliary heater 23 while appropriately cooling and dehumidifying the air in the heat absorber 9 is controlled. Prevent the decline accurately. As a result, it is possible to control the temperature to an appropriate heating temperature while dehumidifying the air blown into the vehicle interior, and it is possible to realize comfortable and efficient dehumidification heating in the vehicle interior.
  • the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air heated by the auxiliary heater 23 passes through the radiator 4. In this dehumidifying heating mode, the refrigerant is supplied to the radiator 4.
  • the radiator 4 absorbs heat from the air heated by the auxiliary heater 23 is also eliminated. That is, the temperature of the air blown out into the vehicle compartment by the radiator 4 is suppressed, and the COP is improved.
  • the heat pump controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is opened and the electromagnetic valve 40 is closed. Then, the compressor 2 is operated.
  • the air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating.
  • the auxiliary heater 23 and the radiator 4 are ventilated, but the air volume is also adjusted.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
  • the refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates.
  • the air Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
  • the heat pump controller 32 does not energize the auxiliary heater 23, so that the air that has been cooled and dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4 (the heat dissipation capability is lower than that during heating). Is done.
  • the heat pump controller 32 determines the temperature of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO (transmitted from the air conditioning controller 20) that is the target value.
  • the rotational speed NC is controlled.
  • the heat pump controller 32 calculates the target radiator pressure PCO from the target heater temperature TCO described above, and the target radiator pressure PCO and the refrigerant pressure (radiator pressure PCI) of the radiator 4 detected by the radiator pressure sensor 47. Based on the high pressure of the refrigerant circuit R), the valve opening degree of the outdoor expansion valve 6 is controlled, and heating by the radiator 4 is controlled.
  • the heat pump controller 32 fully opens the opening degree of the outdoor expansion valve 6 in the dehumidifying and cooling mode. Then, the compressor 2 is operated and the auxiliary heater 23 is not energized.
  • the air-conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 is blown from the indoor blower 27 and the air in the air flow passage 3 that has passed through the heat absorber 9 is used as the auxiliary heater 23 in the heating heat exchange passage 3A. And it is set as the state which adjusts the ratio ventilated by the radiator 4.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30, and the refrigerant exiting the radiator 4 passes through the refrigerant pipe 13E and the outdoor expansion valve 6.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully opened, the refrigerant passes through it and flows into the outdoor heat exchanger 7 as it is, where it is cooled by air or by outside air that is ventilated by the outdoor blower 15 and condensed. Liquefaction.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16.
  • the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19.
  • the air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. Further, moisture in the air condenses and adheres to the heat absorber 9.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
  • Air that has been cooled and dehumidified by the heat absorber 9 is blown into the vehicle interior from each of the air outlets 29A to 29C (partly passes through the radiator 4 to exchange heat), thereby cooling the vehicle interior. Will be done. Further, in this cooling mode, the heat pump controller 32 uses the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the above-described target heat absorber temperature TEO which is the target value of the compressor 2. The number of revolutions NC is controlled. (5) MAX cooling mode (maximum cooling mode) Next, in the MAX cooling mode as the maximum cooling mode, the heat pump controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21.
  • the electromagnetic valve 30 is closed, the electromagnetic valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 is operated and the auxiliary heater 23 is not energized.
  • the air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 is blown from the indoor blower 27 and the air in the air flow passage 3 passing through the heat absorber 9 is used as an auxiliary heater for the heating heat exchange passage 3 ⁇ / b> A. 23 and the rate of ventilation through the radiator 4 are adjusted.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16.
  • the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. In addition, since moisture in the air condenses and adheres to the heat absorber 9, the air in the air flow passage 3 is dehumidified.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully closed, similarly, it is possible to suppress or prevent the disadvantage that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. . Thereby, the fall of a refrigerant
  • the high-temperature refrigerant flows through the radiator 4 in the cooling mode described above, direct heat conduction from the radiator 4 to the HVAC unit 10 occurs not a little, but in this MAX cooling mode, the refrigerant flows into the radiator 4. Therefore, the air in the air flow passage 3 from the heat absorber 9 is not heated by the heat transmitted from the radiator 4 to the HVAC unit 10. Therefore, powerful cooling of the passenger compartment is performed, and particularly in an environment where the outside air temperature Tam is high, the passenger compartment can be quickly cooled to realize comfortable air conditioning in the passenger compartment.
  • the heat pump controller 32 is also connected to the compressor based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO, which is the target value. 2 is controlled.
  • (6) Auxiliary heater single mode Note that the control device 11 of the embodiment stops the compressor 2 and the outdoor blower 15 of the refrigerant circuit R and energizes the auxiliary heater 23 when, for example, excessive frost formation occurs in the outdoor heat exchanger 7.
  • the auxiliary heater single mode for heating the passenger compartment with only 23 is provided.
  • the heat pump controller 32 controls energization (heat generation) of the auxiliary heater 23 based on the auxiliary heater temperature Tptc detected by the auxiliary heater temperature sensor 50 and the target heater temperature TCO described above.
  • the air conditioning controller 20 operates the indoor blower 27, and the air mix damper 28 passes the air in the air flow passage 3 blown out from the indoor blower 27 to the auxiliary heater 23 of the heat exchange passage 3A for heating, and the air volume is reduced. The state to be adjusted. Since the air heated by the auxiliary heater 23 is blown into the vehicle interior from each of the air outlets 29A to 29C, the vehicle interior is thereby heated. (7) Switching operation mode
  • the air conditioning controller 20 calculates the target blowing temperature TAO described above from the following formula (I).
  • This target blowing temperature TAO is a target value of the temperature of the air blown into the passenger compartment.
  • TAO (Tset ⁇ Tin) ⁇ K + Tbal (f (Tset, SUN, Tam)) .. (I)
  • Tset is a set temperature in the passenger compartment set by the air conditioning operation unit 53
  • Tin is a room temperature detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is a set temperature Tset
  • SUN is a balance value calculated from the outside air temperature Tam detected by the outside air temperature sensor 33.
  • this target blowing temperature TAO is so high that the outside temperature Tam is low, and it falls as the outside temperature Tam rises.
  • the heat pump controller 32 determines which one of the above operation modes based on the outside air temperature Tam (detected by the outside air temperature sensor 33) transmitted from the air conditioning controller 20 via the vehicle communication bus 65 and the target outlet temperature TAO. The operation mode is selected and each operation mode is transmitted to the air conditioning controller 20 via the vehicle communication bus 65.
  • the outside air temperature Tam the humidity in the passenger compartment
  • the target blowing temperature TAO the heating temperature TH (the temperature of the air on the leeward side of the radiator 4, estimated value)
  • the target heater temperature TCO the heat sink temperature Te
  • the heating mode, dehumidification heating mode, and dehumidification are accurately performed according to the environmental conditions and necessity of dehumidification.
  • FIG. 4 is a control block diagram of the heat pump controller 32 that determines the target rotational speed (compressor target rotational speed) TGNCh of the compressor 2 for heating mode.
  • the above-mentioned TH for calculating the air volume ratio SW is the temperature of the leeward air of the radiator 4 (hereinafter referred to as the heating temperature), and the heat pump controller 32 calculates the first-order lag calculation formula (II) shown below.
  • TH (INTL ⁇ TH0 + Tau ⁇ THz) / (Tau + INTL) (II)
  • INTL is the calculation cycle (constant)
  • Tau is the time constant of the primary delay
  • TH0 the steady value of the heating temperature TH in the steady state before the primary delay calculation
  • THz is the previous value of the heating temperature TH.
  • the heat pump controller 32 changes the time constant Tau and the steady value TH0 according to the operation mode described above, thereby making the above-described estimation formula (II) different depending on the operation mode, and estimates the heating temperature TH.
  • the heating temperature TH is transmitted to the air conditioning controller 20 via the vehicle communication bus 65.
  • the target radiator pressure PCO is calculated by the target value calculator 59 based on the target subcooling degree TGSC and the target heater temperature TCO.
  • the F / B (feedback) manipulated variable calculator 60 calculates the F / B manipulated variable TGNChfb of the compressor target rotational speed based on the target radiator pressure PCO and the radiator pressure PCI that is the refrigerant pressure of the radiator 4. To do.
  • the F / F manipulated variable TGNCnff computed by the F / F manipulated variable computing unit 58 and the TGNChfb computed by the F / B manipulated variable computing unit 60 are added by the adder 61, and the control upper limit value and the control are controlled by the limit setting unit 62. After the lower limit is set, it is determined as the compressor target rotational speed TGNCh. In the heating mode, the heat pump controller 32 controls the rotational speed NC of the compressor 2 based on the compressor target rotational speed TGNCh. (9) Control of the compressor 2 and the auxiliary heater 23 in the dehumidifying heating mode by the heat pump controller 32 On the other hand, FIG.
  • the F / F manipulated variable calculation unit 63 of the heat pump controller 32 is a target heat release that is a target value of the outside air temperature Tam, the volumetric air volume Ga of the air flowing into the air flow passage 3, and the pressure of the radiator 4 (radiator pressure PCI). Based on the compressor pressure PCO and the target heat absorber temperature TEO which is the target value of the temperature of the heat absorber 9 (heat absorber temperature Te), the F / F manipulated variable TGNCcff of the compressor target rotational speed is calculated.
  • the F / B operation amount calculation unit 64 calculates the F / B operation amount TGNCcfb of the compressor target rotational speed based on the target heat absorber temperature TEO (transmitted from the air conditioning controller 20) and the heat absorber temperature Te. Then, the F / F manipulated variable TGNCcff computed by the F / F manipulated variable computing unit 63 and the F / B manipulated variable TGNCcfb computed by the F / B manipulated variable computing unit 64 are added by the adder 66, and the limit setting unit 67 After the control upper limit value and the control lower limit value are set, the compressor target rotational speed TGNCc is determined.
  • the heat pump controller 32 controls the rotational speed NC of the compressor 2 based on the compressor target rotational speed TGNCc.
  • FIG. 6 is a control block diagram of the heat pump controller 32 that determines the auxiliary heater required capacity TGQPTC of the auxiliary heater 23 in the dehumidifying heating mode.
  • the subtractor 73 of the heat pump controller 32 receives the target heater temperature TCO and the auxiliary heater temperature Tptc, and calculates a deviation (TCO ⁇ Tptc) between the target heater temperature TCO and the auxiliary heater temperature Tptc. This deviation (TCO-Tptc) is input to the F / B control unit 74.
  • the F / B control unit 74 eliminates the deviation (TCO-Tptc) so that the auxiliary heater temperature Tptc becomes the target heater temperature TCO.
  • the required capacity F / B manipulated variable is calculated.
  • the auxiliary heater required capability F / B manipulated variable calculated by the F / B control unit 74 is determined as the auxiliary heater required capability TGQPTC after the limit setting unit 76 limits the control upper limit value and the control lower limit value. .
  • the controller 32 controls energization of the auxiliary heater 23 based on the auxiliary heater required capacity TGQPTC, thereby generating heat (heating) of the auxiliary heater 23 so that the auxiliary heater temperature Tptc becomes the target heater temperature TCO. To control.
  • the heat pump controller 32 controls the operation of the compressor based on the heat absorber temperature Te and the target heat absorber temperature TEO, and controls the heat generation of the auxiliary heater 23 based on the target heater temperature TCO.
  • cooling and dehumidification by the heat absorber 9 and heating by the auxiliary heater 23 in the dehumidifying heating mode are accurately controlled.
  • Ga is the volumetric volume of the air flowing into the air flow passage 3 described above
  • Te is the heat absorber temperature
  • TH is the heating temperature described above (the temperature of the air on the leeward side of the radiator 4).
  • the air conditioning controller 20 is based on the air volume ratio SW that is passed through the radiator 4 and the auxiliary heater 23 in the heating heat exchange passage 3A calculated by the above-described expression (the following expression (III)) so that the air volume of the ratio is obtained. Further, by controlling the air mix damper 28, the amount of ventilation to the radiator 4 (and the auxiliary heater 23) is adjusted.
  • the heat pump controller 32 uses the current refrigerant evaporation temperature TXO of the outdoor heat exchanger 7 obtained from the outdoor heat exchanger temperature sensor 54, and the outdoor heat exchanger 7 is not frosted in a low humidity environment. Based on the refrigerant evaporation temperature TXObase of the outdoor heat exchanger 7 at the time of frost formation, the progress state of frost formation on the outdoor heat exchanger 7 is determined.
  • the heat pump controller 32 estimates the refrigerant evaporation temperature TXObase of the outdoor heat exchanger 7 during non-frosting by calculating using the following equation (IV).
  • Tam which is a parameter of the formula (IV)
  • Tam is the outside air temperature obtained from the outside air temperature sensor 33
  • NC is the rotation speed of the compressor 2
  • Ga * SW is the air volume to the radiator 4
  • VSP is obtained from the vehicle speed sensor 52.
  • the vehicle speed and PCI to be used are the radiator pressure, and k1 to k5 are coefficients, which are obtained beforehand by experiments.
  • the outside air temperature Tam is an index indicating the intake air temperature (environmental condition) of the outdoor heat exchanger 7. The lower the outside air temperature Tam (the intake air temperature of the outdoor heat exchanger 7), the lower the TXObase. Therefore, the coefficient k1 is a positive value.
  • the index indicating the intake air temperature of the outdoor heat exchanger 7 is not limited to the outdoor air temperature Tam.
  • the rotational speed NC of the compressor 2 is an index indicating the refrigerant flow rate (operating condition) in the refrigerant circuit R, and TXObase tends to decrease as the rotational speed NC increases (the refrigerant flow rate increases).
  • the coefficient k2 is a negative value.
  • Ga * SW is an index indicating the amount of air passing through the radiator 4 (operating condition). The larger the Ga * SW (the larger the amount of air passing through the radiator 4), the lower the TXObase. Therefore, the coefficient k3 is a negative value.
  • the index indicating the amount of air passing through the radiator 4 is not limited to this, and the blower voltage BLV of the indoor blower 27 may be used.
  • the vehicle speed VSP is an index indicating the passing air speed (operation state) of the outdoor heat exchanger 7, and the TXObase tends to be lower as the vehicle speed VSP is lower (lower the passing air speed of the outdoor heat exchanger 7). Therefore, the coefficient k4 is a positive value.
  • the index indicating the passing air speed of the outdoor heat exchanger 7 is not limited to this, and the voltage of the outdoor blower 15 may be used.
  • the radiator pressure PCI is an index indicating the refrigerant pressure (operating condition) of the radiator 4. The higher the radiator pressure PCI, the lower the TXObase. Accordingly, the coefficient k5 is a negative value.
  • the outside temperature Tam, the rotation speed NC of the compressor 2, the passing air amount Ga * SW of the radiator 4, the vehicle speed VSP, and the radiator pressure PCI are used as parameters of the expression (IV) of this embodiment.
  • the parameters of IV) are not limited to all of the above, and any one of them or a combination thereof may be used.
  • the heat pump controller 32 determines whether or not a predetermined time has elapsed after the activation of the heating mode in step S5. If the predetermined time has not elapsed since the start of the heating mode, the process proceeds to step S11 and the compressor 2 is operated. Continue (HP operation).
  • step S5 the heat pump controller 32 proceeds to step S6, where the refrigerant evaporation temperature TXO is lower than the refrigerant evaporation temperature TXObase when there is no frost, and the difference ⁇ TXO is the first. It is determined whether or not the state where the threshold value A1 is larger than the first threshold value A1 (for example, 15 deg) continues for the first predetermined time t1 (for example, 30 seconds).
  • the solid line indicates the change in the refrigerant evaporation temperature TXO of the outdoor heat exchanger 7
  • the broken line indicates the change in the refrigerant evaporation temperature TXObase when there is no frost formation.
  • the refrigerant evaporation temperature TXO of the outdoor heat exchanger 7 and the refrigerant evaporation temperature TXObase at the time of no frosting are substantially the same value. As the heating mode progresses, the temperature in the passenger compartment is warmed and the load on the vehicle air conditioner 1 is reduced.
  • the refrigerant flow rate and the amount of air passing through the radiator 4 are also reduced.
  • the calculated TXObase rises.
  • frost formation occurs in the outdoor heat exchanger 7
  • the heat exchange performance with the outside air is hindered, so the refrigerant evaporation temperature TXO (solid line) decreases and eventually falls below the TXObase.
  • the refrigerant evaporation temperature TXO further decreases and the difference ⁇ TXO (TXObase ⁇ TXO) becomes larger than the first threshold value A1, and the state continues for the first predetermined time t1, the heat pump controller 32 performs step S6.
  • step S7 it is determined that excessive frost formation has progressed in the outdoor heat exchanger 7 in a short time, and the process proceeds to step S7.
  • the heat pump controller 32 proceeds to step S10, and this time the difference ⁇ TXO is smaller than the first threshold A1 and the second threshold A2 (for example, 5 deg, etc.).
  • step S7 It is determined whether or not the state of being greater than the first predetermined time t1 has continued for a second predetermined time t2 (for example, 60 minutes), and the state in which ⁇ TXO is greater than the second threshold A2
  • the predetermined time t2 of 2 it is determined that moderate frosting has continued in the outdoor heat exchanger 7 for a long time, and the process proceeds to step S7. If it is determined in step S10 that moderate frosting has not continued in the outdoor heat exchanger 7 for a long time, the heat pump controller 32 proceeds to step S11 and continues the operation of the compressor 2.
  • step S7 the heat pump controller 32 determines whether the heating temperature TH, which is the temperature of the air downstream of the radiator 4, is lower than the target heater temperature TCO- ⁇ ( ⁇ is a relatively small differential), which is the target value of the temperature of the radiator 4. Judge whether or not.
  • the target heater temperature TCO calculated from the target outlet temperature TAO is the required capacity of the radiator 4.
  • the heating temperature TH indicates the current heating capacity of the radiator 4. Therefore, when TH ⁇ TCO ⁇ (that is, TCO ⁇ TH ⁇ ⁇ ), the heating capacity of the radiator 4 satisfies the required capacity. And in the situation where the heating capacity of the radiator 4 satisfies the required capacity (No in step S7), the heat pump controller 32 proceeds to step S11 and continues the operation of the compressor 2.
  • step S8 Proceed and stop the compressor 2 (HP operation not permitted). And it progresses to step S9 and sets a frosting flag ("1"). Thereafter, the process proceeds from step S2 to step S8, and the heat pump controller 32 prohibits starting of the compressor 2 until the frosting flag is reset. Further, when the compressor 2 is stopped in step S8, the heat pump controller 32 switches the operation mode to the above-described auxiliary heater single mode and heats the vehicle interior by the auxiliary heater 23.
  • the frost formation of the outdoor heat exchanger 7 is melted, and defrosting is performed.
  • the heat pump controller 32 determines that the defrosting of the outdoor heat exchanger 7 has been completed, for example, when a predetermined period has elapsed since the compressor 2 was stopped. Then, the frosting flag described above is reset. As a result, the prohibition of starting the compressor 2 based on the determination of the progress of frost formation on the outdoor heat exchanger 7 is released, and the operation mode is switched from the auxiliary heater single mode to the heating mode.
  • the heat pump controller 32 estimates the refrigerant evaporation pressure PXObase of the outdoor heat exchanger 7 during non-frosting by calculating using the following equation (V).
  • each parameter of Formula (V) is the same as that of Formula (IV), description is abbreviate
  • the coefficients k6 to k10 have the same tendency (positive / negative) as the coefficients k1 to k5 described above.
  • the solid line indicates the change in the refrigerant evaporation pressure PXO of the outdoor heat exchanger 7, and the broken line indicates the change in the refrigerant evaporation pressure PXObase when there is no frost formation.
  • the refrigerant evaporation pressure PXO of the outdoor heat exchanger 7 and the refrigerant evaporation pressure PXObase at the time of no frosting are substantially the same value.
  • the heat pump controller 32 substitutes the current value of each parameter for the equation (V) in step S4 of FIG.
  • the first threshold value A1 and the second threshold value A2 are different from the case of the difference ⁇ TXO.
  • the heat pump controller 32 determines the progress of frost formation on the outdoor heat exchanger 7 based on the difference ⁇ TXO or the difference ⁇ PXO, and the state in which the frost formation on the outdoor heat exchanger 7 has progressed. If the compressor 2 is stopped when it continues for a predetermined time, the compressor 2 can be stopped in a state where frost formation on the outdoor heat exchanger 7 has progressed. Thereby, it is possible to prevent the operation of the compressor 2 from being continued in a situation where the operation efficiency is reduced due to the frost formation of the outdoor heat exchanger 7 and contribute to energy saving, and the outdoor heat exchanger. Thus, it is possible to solve the problem of equipment reliability reduction and defrosting due to the excessive frost of 7.
  • the heat pump controller 32 determines the refrigerant evaporation temperature TXObase of the outdoor heat exchanger 7 when there is no frosting and the refrigerant evaporation pressure PXObase of the outdoor heat exchanger 7 when there is no frosting based on an index indicating environmental conditions and operating conditions. Since it estimates, the progress of frost formation of the outdoor heat exchanger 7 can be accurately detected. Further, the heat pump controller 32 stops the compressor 2 when the difference ⁇ TXO or the difference ⁇ PXO is larger than the first threshold value A1 for the first predetermined time t1, so that the excessive amount of the outdoor heat exchanger 7 is excessive. When the frost formation proceeds in a relatively short time, the compressor 2 can be quickly stopped.
  • the heat pump controller 32 continues for a second predetermined time t2 longer than the first predetermined time t1. Since the compressor 2 is also stopped, the compressor 2 can be reliably stopped even when moderate frost formation of the outdoor heat exchanger 7 continues for a relatively long time. However, since the heat pump controller 32 does not stop the compressor 2 based on the determination of the progress of frost formation on the outdoor heat exchanger 7 when the heating capacity of the radiator 4 satisfies the required capacity, the radiator In the situation where the heating capability by 4 is achieved, the stop of the compressor 2 is prohibited, and the comfortable heating in the passenger compartment can be continued as it is.
  • the heat pump controller 32 since the heat pump controller 32 does not stop the compressor 2 based on the determination of the progress state of frost formation on the outdoor heat exchanger 7 until a predetermined time has elapsed after activation, the unstable operation state immediately after activation. This makes it possible to eliminate misjudgment. Furthermore, the heat pump controller 32 starts the compressor 2 until the outdoor heat exchanger 7 is defrosted after stopping the compressor 2 based on the determination of the progress of frost formation on the outdoor heat exchanger 7. Since the prohibition is prohibited, the restart of the compressor 2 in a state where the frost is left in the outdoor heat exchanger 7 is prohibited, so that it is possible to avoid inconvenience that frost that is hard to melt is generated. become.
  • the heat pump controller 32 heats the vehicle interior by the auxiliary heater 23 in the auxiliary heater single mode. Even when the compressor 2 is stopped due to a decrease in the operation efficiency of No. 2, the passenger compartment can be heated by the auxiliary heater 23 to reduce the passenger's discomfort.
  • the heat pump controller 32 stops the compressor 2 as follows based on the suction refrigerant temperature Ts of the compressor 2 detected by the suction temperature sensor 55 and the suction refrigerant pressure Ps of the compressor 2 detected by the suction pressure sensor 44. Execute control to Next, an example of the stop control of the compressor 2 based on the suction refrigerant temperature Ts and the suction refrigerant pressure Ps will be described with reference to FIGS. 10 and 11.
  • the heat pump controller 32 first determines whether or not the vehicle air conditioner 1 (HP) has not been determined to be faulty in step S13 of FIG. 10, and if not determined to be faulty, the heat pump controller 32 is step S14. It progresses to and it is judged whether the present operation mode is heating mode.
  • the vehicle air conditioner 1 HP
  • Step S15 when the present operation mode is heating mode, it progresses to Step S15, and it is judged whether it is immediately after the compressor 2 stopped by protection control mentioned below based on suction refrigerant temperature Ts and suction refrigerant pressure Ps. If it is not immediately after that, the heat pump controller 32 proceeds to step S16 to determine whether the suction refrigerant temperature Ts has become lower than a predetermined first predetermined value Ts1, or whether the suction refrigerant pressure Ps has a predetermined first predetermined value. It is determined whether or not the value is lower than the value Ps1.
  • Ts ⁇ Ts1 and Ps ⁇ Ps1 the process proceeds to step S22 and the operation of the compressor 2 (HP operation) is continued.
  • the heat pump controller 32 performs a step. Proceeding from S16 to step S17, restriction control of the rotational speed NC of the compressor 2 based on the suction refrigerant temperature Ts and the suction refrigerant pressure Ps is executed. In this limit control, the heat pump controller 32 performs control to decelerate the rotational speed NC of the compressor 2 by predetermined steps. Therefore, every time the process returns to step S16, the rotational speed NC of the compressor 2 decreases by a predetermined step.
  • step S18 determines whether or not a predetermined time has elapsed after the activation of the heating mode. If the predetermined time has not elapsed since the start of the heating mode, the process proceeds to step S22 and the compressor 2 Continue the operation (HP operation). If the predetermined time has elapsed since the activation of the heating mode in step S18, the heat pump controller 32 proceeds to step S19, is in the above-described limit control state of the rotational speed NC of the compressor 2, and the compressor 2 It is determined whether or not the state in which the rotational speed NC is lower than a predetermined value NC1 (a predetermined value higher than the lowest control rotational speed (for example, 800 rpm)) continues for a predetermined time.
  • a predetermined value NC1 a predetermined value higher than the lowest control rotational speed (for example, 800 rpm)
  • step S22 if the state where the rotational speed NC of the compressor 2 is lower than the predetermined value NC1 does not continue for a predetermined time, the heat pump controller 32 proceeds to step S22 and operates the compressor 2 (HP operation). continue.
  • the heat pump controller 32 performs step S19. Advances to step S20 to stop the compressor 2 (HP operation not permitted). Further, when the compressor 2 is stopped in step S20, the heat pump controller 32 switches the operation mode to the auxiliary heater single mode described above, and heats the vehicle interior by the auxiliary heater 23. This state is shown in FIG.
  • step S15 is protection control of the conventional compressor 2.
  • the compressor 2 is stopped when the suction refrigerant temperature Ts reaches a protection stop value Ts3 that is lower than the first predetermined value Ts1, it is longer than in the case of the stop control of the present invention indicated by the solid line.
  • the compressor 2 was operated at a low rotational speed NC over time, according to the stop control of the embodiment of the present invention, the compressor 2 can be stopped at an earlier stage, and operation in a situation where the operation efficiency is poor can be avoided. It became so.
  • the heat pump controller 32 proceeds from step S15 to step S21.
  • the heat pump controller 32 now has the suction refrigerant temperature Ts higher than the second predetermined value Ts2 higher than the first predetermined value Ts1 described above, or the suction refrigerant pressure Ps is the first predetermined value described above. It is determined whether or not it has become higher than a second predetermined value Ps2 that is higher than the value Ps1, or whether the outside air temperature Tam detected by the outside air temperature sensor 33 has become higher than a predetermined value (for example, ⁇ 15 ° C.).
  • a predetermined value for example, ⁇ 15 ° C.
  • the refrigerant suction temperature Ts and the refrigerant suction pressure Ps rise as the outside air temperature Tam rises, and the suction refrigerant temperature Ts becomes higher than a second predetermined value Ts2, or the suction refrigerant pressure Ps is a second predetermined value.
  • the heat pump controller 32 proceeds from step S21 to step S22, and the compressor 2 is operated.
  • the start prohibition of the compressor 2 is released (returned to normal control) when it becomes higher than a second predetermined value Ts2 (for example, ⁇ 19 ° C. or the like).
  • the prohibition of starting the compressor 2 based on the determination of the refrigerant suction temperature Ts and the refrigerant suction pressure Ps is released, and the operation mode is switched from the auxiliary heater single mode to the heating mode.
  • the suction refrigerant temperature Ts of the compressor 2 becomes lower than the first predetermined value Ts1 as in this embodiment, or when the suction refrigerant pressure Ps of the compressor 2 becomes lower than the first predetermined value Ps1
  • the heat pump controller 32 executes the limit control for decelerating the rotational speed NC of the compressor 2 and the state in which the rotational speed NC of the compressor 2 is lower than the predetermined value NC1 continues in this limited control state for a predetermined time, If the compressor 2 is stopped, the compressor 2 can be stopped in a state where the suction refrigerant temperature Ts and the suction refrigerant pressure Ps of the compressor 2 are lowered due to a decrease in the outside air temperature Tam or the like.
  • the restriction control for reducing the rotational speed NC of the compressor 2 is executed, it is avoided as much as possible that the compressor 2 is stopped due to a decrease in the suction refrigerant temperature Ts and the suction refrigerant pressure Ps, or until the stop. The time can be extended, and the comfortable heating of the passenger compartment can be continued as much as possible. Further, the heat pump controller 32 does not stop the compressor 2 in the restriction control state based on the suction refrigerant temperature Ts or the suction refrigerant pressure Ps of the compressor 2 until a predetermined time has elapsed after the activation of the heating mode. Thus, an erroneous stop of the compressor 2 in an unstable operation state immediately after startup can be eliminated.
  • the heat pump controller 32 stops the compressor 2 based on the determination of the suction refrigerant temperature Ts of the compressor 2 or the suction refrigerant pressure Ps, and then the suction refrigerant temperature Ts of the compressor 2 is a second predetermined value. Start of the compressor 2 is prohibited until it becomes higher than Ts2, or until the suction refrigerant pressure Ps of the compressor 2 becomes higher than the second predetermined value Ps2, or until the outside air temperature Tam becomes higher than the predetermined value.
  • the start-up of the compressor 2 is not permitted and the compressor 2 is frequently stopped / The inconvenience of being activated can be avoided. Also in this case, when the compressor 2 is stopped based on the determination of the suction refrigerant temperature Ts or the suction refrigerant pressure Ps of the compressor 2, the heat pump controller 32 heats the vehicle interior by the auxiliary heater 23. Even when the compressor is stopped due to a decrease in the operation efficiency of the machine 2, the passenger compartment can be heated by the auxiliary heater 23 to reduce the discomfort of the passenger.
  • FIG. 12 shows a configuration diagram of a vehicle air conditioner 1 of another embodiment to which the present invention is applied.
  • the same reference numerals as those in FIG. 1 indicate the same or similar functions.
  • the outlet of the supercooling section 16 is connected to the check valve 18, and the outlet of the check valve 18 is connected to the refrigerant pipe 13B.
  • the check valve 18 has a forward direction on the refrigerant pipe 13B (indoor expansion valve 8) side.
  • the refrigerant pipe 13E on the outlet side of the radiator 4 is branched before the outdoor expansion valve 6, and the branched refrigerant pipe (hereinafter referred to as second bypass pipe) 13F is an electromagnetic valve 22 (for dehumidification).
  • an evaporating pressure adjusting valve 70 is connected to the refrigerant pipe 13C on the outlet side of the heat absorber 9 on the refrigerant downstream side of the internal heat exchanger 19 and upstream of the refrigerant with respect to the refrigerant pipe 13D. .
  • the electromagnetic valve 22 and the evaporation pressure adjusting valve 70 are also connected to the output of the heat pump controller 32. Note that the bypass device 45 including the bypass pipe 35, the electromagnetic valve 30, and the electromagnetic valve 40 in FIG. 1 of the above-described embodiment is not provided. Others are the same as in FIG. With the above configuration, the operation of the vehicle air conditioner 1 of this embodiment will be described.
  • the heat pump controller 32 switches between the heating mode, the dehumidifying heating mode, the internal cycle mode, the dehumidifying cooling mode, the cooling mode, and the auxiliary heater single mode (the MAX cooling mode is present in this embodiment). do not do).
  • the operation when the heating mode, the dehumidifying and cooling mode, and the cooling mode are selected, the refrigerant flow, and the auxiliary heater single mode are the same as those in the above-described embodiment (embodiment 1), and thus the description thereof is omitted.
  • the solenoid valve 22 is closed in these heating mode, dehumidifying cooling mode, and cooling mode. (13) Dehumidifying and heating mode of the vehicle air conditioner 1 of FIG.
  • the heat pump controller 32 opens the electromagnetic valve 21 (for heating) and the electromagnetic valve 17 ( Close for cooling. Further, the electromagnetic valve 22 (for dehumidification) is opened. Then, the compressor 2 is operated.
  • the air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating.
  • the auxiliary heater 23 and the radiator 4 are ventilated, but the air volume is also adjusted.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G. Since the air in the air flow path 3 that has flowed into the heat exchange path 3A for heating is passed through the heat radiator 4, the air in the air flow path 3 is heated by the high-temperature refrigerant in the heat radiator 4, while the heat radiator The refrigerant in 4 is deprived of heat by the air and cooled to condense. The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the refrigerant circuit R becomes a heat pump. Then, the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 through the refrigerant pipe 13C through the refrigerant pipe 13A, the solenoid valve 21 and the refrigerant pipe 13D, and is gas-liquid separated there. Repeated circulation inhaled.
  • a part of the condensed refrigerant flowing through the refrigerant pipe 13E through the radiator 4 is diverted, passes through the electromagnetic valve 22, and reaches the indoor expansion valve 8 through the internal heat exchanger 19 from the second bypass pipe 13F and the refrigerant pipe 13B. It becomes like this.
  • the refrigerant After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 sequentially passes through the internal heat exchanger 19 and the evaporation pressure adjusting valve 70 and then merges with the refrigerant from the refrigerant pipe 13D in the refrigerant pipe 13C. Then, the refrigerant is sucked into the compressor 2 through the accumulator 12. repeat. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed.
  • the air conditioning controller 20 transmits the target heater temperature TCO (target value of the radiator outlet temperature TCI) calculated from the target blowing temperature TAO to the heat pump controller 32.
  • the heat pump controller 32 calculates a target radiator pressure PCO (target value of the radiator pressure PCI) from the target heater temperature TCO, and the refrigerant of the radiator 4 detected by the target radiator pressure PCO and the radiator pressure sensor 47.
  • the number of revolutions NC of the compressor 2 is controlled based on the pressure (radiator pressure PCI, high pressure of the refrigerant circuit R), and heating by the radiator 4 is controlled.
  • the heat pump controller 32 controls the valve opening degree of the outdoor expansion valve 6 based on the temperature Te of the heat absorber 9 detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO transmitted from the air conditioning controller 20.
  • the heat pump controller 32 opens (enlarges the flow path) / closes (flows a small amount of refrigerant) the heat absorber 9 based on the temperature Te of the heat absorber 9 detected by the heat absorber temperature sensor 48. The inconvenience of freezing due to too low temperature is prevented.
  • the heat pump controller 32 fully closes the outdoor expansion valve 6 in the dehumidifying and heating mode state (fully closed position), The solenoid valve 21 is closed. Since the outdoor expansion valve 6 and the electromagnetic valve 21 are closed, the inflow of refrigerant to the outdoor heat exchanger 7 and the outflow of refrigerant from the outdoor heat exchanger 7 are blocked.
  • the refrigerant flowing through the second bypass pipe 13F reaches the indoor expansion valve 8 via the internal heat exchanger 19 from the refrigerant pipe 13B. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 sequentially flows through the refrigerant pipe 13C through the internal heat exchanger 19 and the evaporation pressure adjustment valve 70, and repeats circulation that is sucked into the compressor 2 through the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed. Since the refrigerant is circulated between the radiator 4 (radiation) and the heat absorber 9 (heat absorption) in the passage 3, heat from the outside air is not pumped up, and heating for the consumed power of the compressor 2 is performed. Ability is demonstrated.
  • the air conditioning controller 20 transmits the target heater temperature TCO (target value of the radiator outlet temperature TCI) calculated from the target outlet temperature TAO to the heat pump controller 32.
  • the heat pump controller 32 calculates the target radiator pressure PCO (target value of the radiator pressure PCI) from the transmitted target heater temperature TCO, and the target radiator pressure PCO and the radiator 4 detected by the radiator pressure sensor 47.
  • the rotational speed NC of the compressor 2 is controlled based on the refrigerant pressure (radiator pressure PCI, high pressure of the refrigerant circuit R), and heating by the radiator 4 is controlled. And also in the case of this Example, it operates by frost formation of the outdoor heat exchanger 7 by performing the frost determination of the outdoor heat exchanger of (11) mentioned above and the stop control of the compressor based on the frost determination. It is possible to prevent the operation of the compressor 2 from being continued in a situation where the efficiency is reduced, and to contribute to energy saving, and to reduce the reliability of the equipment due to excessive frost formation of the outdoor heat exchanger 7 The problem of defrosting can be solved.
  • the suction refrigerant temperature Ts and the suction refrigerant pressure Ps are lowered due to a decrease in the outside air temperature and the operation efficiency is lowered. In such a situation, the operation of the compressor 2 can be prevented from being continued, which can contribute to energy saving, and can also solve the problem of reduced device reliability.
  • the numerical values shown in the embodiments are not limited thereto, and should be appropriately set according to the apparatus to be applied.
  • auxiliary heating device is not limited to the auxiliary heater 23 shown in the embodiment, and a heat medium circulation circuit that heats the air in the air flow passage 3 by circulating the heat medium heated by the heater or an engine. You may utilize the heater core etc. which circulate through the heated radiator water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Provided is a vehicular air conditioner capable of eliminating the inconvenience that a compressor is operated in a state where the operational efficiency is low. The progress of frost formation on an outdoor heat exchanger 7 is determined on the basis of the difference ΔTXO = TXObase - TXO between refrigerant evaporation temperature TXO and refrigerant evaporation temperature TXObase when the refrigerant evaporation temperature TXO of the outdoor heat exchanger 7 becomes lower than the refrigerant evaporation temperature TXObase of the outdoor heat exchanger during no frost formation, or on the basis of the difference ΔPXO between refrigerant evaporation pressure PXO and refrigerant evaporation pressure PXObase during no frost formation. If the state in which the frost formation on the outdoor heat exchanger 7 is proceeding is maintained for a predetermined time period, a compressor 2 is stopped.

Description

車両用空気調和装置Air conditioner for vehicles
 本発明は、車両の車室内を空調するヒートポンプ式の空気調和装置に関するものである。 The present invention relates to a heat pump type air conditioner that air-conditions the interior of a vehicle.
 近年の環境問題の顕在化から、ハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する圧縮機と、車室内側に設けられて冷媒を放熱させる放熱器と、車室外側に設けられて冷媒を吸熱させる室外熱交換器を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させる暖房モードを実行するものが開発されている(例えば、特許文献1参照)。 Recently, hybrid vehicles and electric vehicles have become popular due to the emergence of environmental problems. As an air conditioner that can be applied to such a vehicle, a compressor that compresses and discharges the refrigerant, a radiator that is provided on the vehicle interior side and dissipates the refrigerant, and is provided on the vehicle exterior side. An outdoor heat exchanger that absorbs refrigerant is provided, and a heating mode is developed in which the refrigerant discharged from the compressor dissipates heat in the radiator, and the refrigerant dissipated in the radiator absorbs heat in the outdoor heat exchanger. (For example, refer to Patent Document 1).
特開2014−94676号公報JP 2014-94676 A
 ここで、暖房モードでは室外熱交換器が外気から吸熱するため、当該室外熱交換器には着霜が生じる。室外熱交換器への着霜が進行した状態で圧縮機の運転を継続すると、外気からの吸熱能力が低下するために運転効率が著しく低下する。また、過着霜により室外熱交換器の除霜も困難となる。
 また、外気温度の低下等によって圧縮機に吸い込まれる冷媒の温度や圧力が低下した状態で圧縮機の運転を継続した場合にも、圧縮機の回転数を十分上げられないために運転効率が著しく低下する。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、運転効率が低下した状況で圧縮機が運転される不都合を解消することができる車両用空気調和装置を提供することを目的とする。
Here, since the outdoor heat exchanger absorbs heat from the outside air in the heating mode, frost formation occurs in the outdoor heat exchanger. If the operation of the compressor is continued in a state in which frost formation on the outdoor heat exchanger has progressed, the heat absorption capability from the outside air is reduced, so that the operation efficiency is significantly reduced. Moreover, defrosting of the outdoor heat exchanger becomes difficult due to excessive frost formation.
In addition, even when the operation of the compressor is continued in a state where the temperature and pressure of the refrigerant sucked into the compressor is lowered due to a decrease in the outside air temperature or the like, the operation efficiency is remarkably high because the compressor speed cannot be increased sufficiently. descend.
The present invention has been made to solve the conventional technical problems, and provides an air conditioning apparatus for a vehicle that can eliminate the inconvenience of operating the compressor in a situation where the operating efficiency is lowered. For the purpose.
 請求項1の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、車室外に設けられて冷媒を吸熱させるための室外熱交換器と、制御装置とを備え、この制御装置により、少なくとも圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させて車室内を暖房するものであって、制御装置は、室外熱交換器の冷媒蒸発温度TXOが無着霜時における当該室外熱交換器の冷媒蒸発温度TXObaseより低下したときの室外熱交換器の冷媒蒸発温度TXOと無着霜時における室外熱交換器の冷媒蒸発温度TXObaseとの差ΔTXO=TXObase−TXOに基づき、又は、室外熱交換器の冷媒蒸発圧力PXOが無着霜時における当該室外熱交換器の冷媒蒸発圧力PXObaseより低下したときの室外熱交換器の冷媒蒸発圧力PXOと無着霜時における室外熱交換器の冷媒蒸発圧力PXObaseとの差ΔPXO=PXObase−PXOに基づき、この室外熱交換器への着霜の進行状態を判定すると共に、当該室外熱交換器への着霜が進行した状態が所定時間継続した場合、圧縮機を停止することを特徴とする。
 請求項2の発明の車両用空気調和装置は、上記発明において制御装置は、環境条件、及び/又は、運転状況を示す指標に基づいて無着霜時における室外熱交換器の冷媒蒸発温度TXObase、又は、無着霜時における室外熱交換器の冷媒蒸発圧力PXObaseを推定することを特徴とする。
 請求項3の発明の車両用空気調和装置は、上記各発明において制御装置は、差ΔTXO、又は、差ΔPXOが第1の閾値A1より大きい状態が第1の所定時間t1継続した場合、圧縮機を停止することを特徴とする。
 請求項4の発明の車両用空気調和装置は、上記発明において制御装置は、差ΔTXO、又は、差ΔPXOが第1の閾値A1より小さい第2の閾値A2より大きい状態が、第1の所定時間t1より長い第2の所定時間t2継続した場合、圧縮機を停止することを特徴とする。
 請求項5の発明の車両用空気調和装置は、上記各発明において制御装置は、放熱器の暖房能力が要求能力を満たしている状況では、室外熱交換器への着霜の進行状態の判定に基づく圧縮機の停止を行わないことを特徴とする。
 請求項6の発明の車両用空気調和装置は、上記各発明において制御装置は、起動後所定時間経過するまでは、室外熱交換器への着霜の進行状態の判定に基づく圧縮機の停止を行わないことを特徴とする。
 請求項7の発明の車両用空気調和装置は、上記各発明において制御装置は、室外熱交換器への着霜の進行状態の判定に基づいて圧縮機を停止した後、室外熱交換器が除霜されるまでは圧縮機の起動を禁止することを特徴とする。
 請求項8の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、車室外に設けられて冷媒を吸熱させるための室外熱交換器と、制御装置とを備え、この制御装置により、少なくとも圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させて車室内を暖房するものであって、制御装置は、圧縮機の吸込冷媒温度Tsが第1の所定値Ts1より低くなった場合、又は、圧縮機の吸込冷媒圧力Psが第1の所定値Ps1より低くなった場合、圧縮機の回転数NCを減速させる制限制御を実行すると共に、この制限制御状態において、圧縮機の回転数NCが所定値NC1よりも低い状態が所定時間継続した場合、当該圧縮機を停止することを特徴とする。
 請求項9の発明の車両用空気調和装置は、上記発明において制御装置は、起動後所定時間経過するまでは、圧縮機の吸込冷媒温度Ts、又は、吸込冷媒圧力Psに基づく制限制御状態での圧縮機の停止を行わないことを特徴とする。 請求項10の発明の車両用空気調和装置は、上記各発明において制御装置は、圧縮機の吸込冷媒温度Ts、又は、吸込冷媒圧力Psの判定に基づいて当該圧縮機を停止した後、圧縮機の吸込冷媒温度Tsが第1の所定値Ts1より高い第2の所定値Ts2より高くなるまで、又は、圧縮機の吸込冷媒圧力Psが第1の所定値Ps1より高い第2の所定値Ps2より高くなるまで、若しくは、外気温度が所定値より高くなるまでは、圧縮機の起動を禁止することを特徴とする。
 請求項11の発明の車両用空気調和装置は、上記各発明において空気流通路内に設けられた補助加熱装置を備え、制御装置は、室外熱交換器への着霜の進行状態の判定に基づいて圧縮機を停止した場合、又は、圧縮機の吸込冷媒温度Ts、又は、吸込冷媒圧力Psの判定に基づいて圧縮機を停止した場合、補助加熱装置により車室内を暖房することを特徴とする。
An air conditioner for a vehicle according to a first aspect of the present invention includes a compressor that compresses a refrigerant, an air flow passage through which air supplied to the vehicle interior flows, and air that radiates the refrigerant and supplies the refrigerant to the vehicle interior from the air flow passage. A heat radiator that heats the vehicle, an outdoor heat exchanger that is provided outside the passenger compartment to absorb the refrigerant, and a control device, and at least the refrigerant discharged from the compressor is supplied to the heat radiator by the control device. The refrigerant is radiated, and the radiated refrigerant is depressurized, and then the outdoor heat exchanger absorbs heat to heat the vehicle interior. The control device is configured such that the refrigerant evaporating temperature TXO of the outdoor heat exchanger is not frosted. The difference ΔTXO = TXObase−T between the refrigerant evaporation temperature TXO of the outdoor heat exchanger when it is lower than the refrigerant evaporation temperature TXObase of the outdoor heat exchanger and the refrigerant evaporation temperature TXObase of the outdoor heat exchanger when there is no frost Or when the refrigerant evaporating pressure PXO of the outdoor heat exchanger is lower than the refrigerant evaporating pressure PXObase of the outdoor heat exchanger at the time of no frosting and at the time of no frosting Based on the difference ΔPXO = PXObase−PXO with the refrigerant evaporation pressure PXObase of the outdoor heat exchanger at, the progress of frost formation on the outdoor heat exchanger was determined and the frost formation on the outdoor heat exchanger proceeded The compressor is stopped when the state continues for a predetermined time.
The air conditioning apparatus for a vehicle according to a second aspect of the present invention is the air conditioning apparatus for a vehicle according to the second aspect, wherein the control apparatus is configured such that the refrigerant evaporation temperature TXObase of the outdoor heat exchanger at the time of non-frosting based on the environmental condition and / or the index indicating the operation state Or the refrigerant | coolant evaporation pressure PXObase of the outdoor heat exchanger at the time of no frost formation is estimated, It is characterized by the above-mentioned.
According to a third aspect of the present invention, there is provided the vehicle air conditioner according to the first aspect, wherein the control device is configured such that when the difference ΔTXO or the difference ΔPXO is greater than the first threshold value A1 continues for the first predetermined time t1. It is characterized by stopping.
According to a fourth aspect of the present invention, there is provided the vehicle air conditioner according to the first aspect, wherein the control device is configured such that the difference ΔTXO or the state where the difference ΔPXO is larger than the second threshold A2 smaller than the first threshold A1 is first predetermined time. The compressor is stopped when the second predetermined time t2 longer than t1 is continued.
In the vehicle air conditioner of the invention of claim 5, in each of the above inventions, the control device can determine the progress of frost formation on the outdoor heat exchanger when the heating capacity of the radiator satisfies the required capacity. It is characterized by not stopping the compressor based on it.
According to a sixth aspect of the present invention, there is provided a vehicle air conditioner according to the above-described invention, wherein the control device stops the compressor based on the determination of the progress state of frost formation on the outdoor heat exchanger until a predetermined time has elapsed after activation. It is characterized by not performing.
According to a seventh aspect of the present invention, there is provided an air conditioning apparatus for a vehicle according to each of the above inventions, wherein the controller stops the compressor based on the determination of the progress of frosting on the outdoor heat exchanger, and then removes the outdoor heat exchanger. The compressor is prohibited from starting until it is frosted.
An air conditioner for a vehicle according to an eighth aspect of the invention includes a compressor that compresses a refrigerant, an air flow passage through which air supplied to the vehicle interior flows, and air that radiates the refrigerant and supplies the refrigerant to the vehicle interior from the air flow passage. A heat radiator that heats the vehicle, an outdoor heat exchanger that is provided outside the passenger compartment to absorb the refrigerant, and a control device, and at least the refrigerant discharged from the compressor is supplied to the heat radiator by the control device. After the heat is radiated and the radiated refrigerant is depressurized, the heat is absorbed by the outdoor heat exchanger to heat the vehicle interior, and the control device is configured such that the suction refrigerant temperature Ts of the compressor is a first predetermined value Ts1. When it becomes lower, or when the suction refrigerant pressure Ps of the compressor becomes lower than the first predetermined value Ps1, the limit control for decelerating the rotation speed NC of the compressor is executed, and in this limit control state, Rotation speed NC of the compressor is If lower than the value NC1 continues for a predetermined time, characterized by stopping the compressor.
According to a ninth aspect of the present invention, there is provided a vehicle air conditioner according to the above invention, wherein the control device is in a restricted control state based on the suction refrigerant temperature Ts or the suction refrigerant pressure Ps of the compressor until a predetermined time elapses after activation. The compressor is not stopped. According to a tenth aspect of the present invention, there is provided a vehicle air conditioner according to the above invention, wherein the control device stops the compressor based on the determination of the suction refrigerant temperature Ts or the suction refrigerant pressure Ps of the compressor, and then the compressor. Until the suction refrigerant temperature Ts becomes higher than a second predetermined value Ts2 that is higher than the first predetermined value Ts1, or from the second predetermined value Ps2 that the suction refrigerant pressure Ps of the compressor is higher than the first predetermined value Ps1. Until the temperature rises or until the outside air temperature becomes higher than a predetermined value, starting of the compressor is prohibited.
The vehicle air conditioner according to an eleventh aspect of the present invention includes the auxiliary heating device provided in the air flow passage in each of the above inventions, and the control device is based on the determination of the progress state of frost formation on the outdoor heat exchanger. When the compressor is stopped, or when the compressor is stopped based on the determination of the suction refrigerant temperature Ts or the suction refrigerant pressure Ps of the compressor, the vehicle interior is heated by the auxiliary heating device. .
 請求項1の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、車室外に設けられて冷媒を吸熱させるための室外熱交換器と、制御装置とを備え、この制御装置により、少なくとも圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させて車室内を暖房する車両用空気調和装置において、制御装置が、室外熱交換器の冷媒蒸発温度TXOが無着霜時における当該室外熱交換器の冷媒蒸発温度TXObaseより低下したときの室外熱交換器の冷媒蒸発温度TXOと無着霜時における室外熱交換器の冷媒蒸発温度TXObaseとの差ΔTXO=TXObase−TXOに基づき、又は、室外熱交換器の冷媒蒸発圧力PXOが無着霜時における当該室外熱交換器の冷媒蒸発圧力PXObaseより低下したときの室外熱交換器の冷媒蒸発圧力PXOと無着霜時における室外熱交換器の冷媒蒸発圧力PXObaseとの差ΔPXO=PXObase−PXOに基づき、この室外熱交換器への着霜の進行状態を判定すると共に、当該室外熱交換器への着霜が進行した状態が所定時間継続した場合、圧縮機を停止するようにしたので、室外熱交換器への着霜が進行した状態では圧縮機を停止することができるようになる。
 これにより、室外熱交換器の着霜により運転効率が低下した状況で、圧縮機の運転が継続されることを防止し、省エネルギーに寄与することができるようになると共に、室外熱交換器の過着霜に伴う機器の信頼性低下や除霜の問題も解消することが可能となる。
 この場合、請求項2の発明の如く制御装置が、環境条件、及び/又は、運転状況を示す指標に基づいて無着霜時における室外熱交換器の冷媒蒸発温度TXObase、又は、無着霜時における室外熱交換器の冷媒蒸発圧力PXObaseを推定することで、室外熱交換器の着霜の進行を的確に検知することができるようになる。
 また、請求項3の発明の如く制御装置が、差ΔTXO、又は、差ΔPXOが第1の閾値A1より大きい状態が第1の所定時間t1継続した場合、圧縮機を停止することで、室外熱交換器の過度の着霜が比較的短時間で進行した場合に、迅速に圧縮機を停止することができるようになる。
 一方、請求項4の発明の如く制御装置が、差ΔTXO、又は、差ΔPXOが第1の閾値A1より小さい第2の閾値A2より大きい状態が、第1の所定時間t1より長い第2の所定時間t2継続した場合、圧縮機を停止するようにすれば、室外熱交換器の中程度の着霜が比較的長時間継続している場合にも、確実に圧縮機を停止することができるようになる。
 但し、請求項5の発明の如く制御装置により、放熱器の暖房能力が要求能力を満たしている状況では、室外熱交換器への着霜の進行状態の判定に基づく圧縮機の停止を行わないようにすれば、放熱器による暖房能力が達成されている状況では圧縮機の停止を禁止し、車室内の快適な暖房をそのまま継続することができるようになる。
 また、請求項6の発明の如く制御装置により、起動後所定時間経過するまでは、室外熱交換器への着霜の進行状態の判定に基づく圧縮機の停止を行わないようにすれば、起動直後の不安定な運転状態での誤判定を排除することができるようになる。
更に、請求項7の発明の如く制御装置により、室外熱交換器への着霜の進行状態の判定に基づいて圧縮機を停止した後、室外熱交換器が除霜されるまでは圧縮機の起動を禁止するようにすれば、室外熱交換器に着霜が残っている状態での圧縮機の再起動を禁止して、固く溶け難い着霜が生成されてしまう不都合を未然に回避することができるようになる。
 請求項8の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、車室外に設けられて冷媒を吸熱させるための室外熱交換器と、制御装置とを備え、この制御装置により、少なくとも圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させて車室内を暖房する車両用空気調和装置において、制御装置が、圧縮機の吸込冷媒温度Tsが第1の所定値Ts1より低くなった場合、又は、圧縮機の吸込冷媒圧力Psが第1の所定値Ps1より低くなった場合、圧縮機の回転数NCを減速させる制限制御を実行すると共に、この制限制御状態において、圧縮機の回転数NCが所定値NC1よりも低い状態が所定時間継続した場合、当該圧縮機を停止するようにしたので、外気温度の低下等によって圧縮機の吸込冷媒温度Tsや吸込冷媒圧力Psが低下した状態では圧縮機を停止することができるようになる。
 これにより、吸込冷媒温度Tsや吸込冷媒圧力Psが低く運転効率が低下した状況で、圧縮機の運転が継続されることを防止し、省エネルギーに寄与することができるようになると共に、機器の信頼性低下の問題も解消することが可能となる。
 このとき制御装置は、圧縮機の吸込冷媒温度Tsが第1の所定値Ts1より低くなった場合、又は、圧縮機の吸込冷媒圧力Psが第1の所定値Ps1より低くなった場合、圧縮機の回転数NCを減速させる制限制御を実行するので、吸込冷媒温度Tsや吸込冷媒圧力Psの低下で圧縮機が停止されることをできるだけ回避し、或いは、停止されるまでの時間を延長することができるようになり、車室内の快適な暖房をできるだけ継続することができるようになる。
 また、請求項9の発明の如く制御装置が、起動後所定時間経過するまでは、圧縮機の吸込冷媒温度Ts、又は、吸込冷媒圧力Psに基づく制限制御状態での圧縮機の停止を行わないようにすれば、起動直後の不安定な運転状態での誤った圧縮機の停止を排除することができるようになる。
 更に、請求項10の発明の如く制御装置が、圧縮機の吸込冷媒温度Ts、又は、吸込冷媒圧力Psの判定に基づいて当該圧縮機を停止した後、圧縮機の吸込冷媒温度Tsが第1の所定値Ts1より高い第2の所定値Ts2より高くなるまで、又は、圧縮機の吸込冷媒圧力Psが第1の所定値Ps1より高い第2の所定値Ps2より高くなるまで、若しくは、外気温度が所定値より高くなるまでは、圧縮機の起動を禁止するようにすれば、外気温度が低く、制限制御となって圧縮機の回転数が前述した所定値NC1より低くなると予想される状況では圧縮機の起動を許可せず、頻繁に圧縮機が停止/起動されてしまう不都合を回避することができるようになる。
 そして、請求項11の発明の如く空気流通路内に設けられた補助加熱装置を備える場合、制御装置が、室外熱交換器への着霜の進行状態の判定に基づいて圧縮機を停止した場合、又は、圧縮機の吸込冷媒温度Ts、又は、吸込冷媒圧力Psの判定に基づいて圧縮機を停止した場合、補助加熱装置により車室内を暖房するようにすれば、圧縮機の運転効率の低下のために当該圧縮機を停止した場合にも、補助加熱装置によって車室内を暖房し、搭乗者の不快感を低減することができるようになる。
According to the first aspect of the present invention, the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air supplied to the vehicle interior from the air flow passage by radiating the refrigerant are heated. A radiator, an outdoor heat exchanger provided outside the passenger compartment to absorb the refrigerant, and a control device, and by this control device, at least the refrigerant discharged from the compressor is radiated by the radiator, In a vehicle air conditioner that heats the interior of a vehicle by depressurizing the radiated refrigerant and then heat-absorbing it in the outdoor heat exchanger, the control device is configured so that the refrigerant evaporation temperature TXO of the outdoor heat exchanger is Difference ΔTXO = TXObase−T between the refrigerant evaporation temperature TXO of the outdoor heat exchanger when it is lower than the refrigerant evaporation temperature TXObase of the outdoor heat exchanger and the refrigerant evaporation temperature TXObase of the outdoor heat exchanger when there is no frost formation Or when the refrigerant evaporating pressure PXO of the outdoor heat exchanger is lower than the refrigerant evaporating pressure PXObase of the outdoor heat exchanger at the time of no frosting and at the time of no frosting Based on the difference ΔPXO = PXObase−PXO with the refrigerant evaporation pressure PXObase of the outdoor heat exchanger at, the progress of frost formation on the outdoor heat exchanger was determined and the frost formation on the outdoor heat exchanger proceeded Since the compressor is stopped when the state continues for a predetermined time, the compressor can be stopped in a state where frost formation on the outdoor heat exchanger has progressed.
As a result, it is possible to prevent the operation of the compressor from being continued in a situation where the operation efficiency is reduced due to the frost formation of the outdoor heat exchanger, and to contribute to energy saving. It also becomes possible to eliminate the problem of device reliability degradation and defrosting due to frost formation.
In this case, the control device as in the second aspect of the invention is configured so that the refrigerant evaporating temperature TXObase of the outdoor heat exchanger at the time of no frosting or the time of no frosting is determined based on the environmental condition and / or the index indicating the operation state. By estimating the refrigerant evaporation pressure PXObase of the outdoor heat exchanger at, the progress of frost formation of the outdoor heat exchanger can be accurately detected.
According to a third aspect of the present invention, when the control device causes the difference ΔTXO or the difference ΔPXO to be greater than the first threshold value A1 continues for the first predetermined time t1, the outdoor heat is reduced by stopping the compressor. When excessive frosting of the exchanger proceeds in a relatively short time, the compressor can be stopped quickly.
On the other hand, as in the fourth aspect of the present invention, the control device determines that the difference ΔTXO or the state where the difference ΔPXO is larger than the second threshold A2 smaller than the first threshold A1 is longer than the first predetermined time t1. If the compressor is stopped when the time t2 is continued, the compressor can be surely stopped even when the moderate frost formation of the outdoor heat exchanger continues for a relatively long time. become.
However, in the situation where the heating capacity of the radiator satisfies the required capacity by the control device as in the invention of claim 5, the compressor is not stopped based on the determination of the progress state of frost formation on the outdoor heat exchanger. If it does in this way, stop of a compressor will be prohibited in the situation where the heating capability by a radiator is achieved, and comfortable heating of a vehicle interior can be continued as it is.
Further, if the control device as in the sixth aspect of the invention prevents the compressor from being stopped based on the determination of the progress of frost formation on the outdoor heat exchanger until a predetermined time has elapsed after the start, It becomes possible to eliminate erroneous determination in the unstable driving state immediately after.
Furthermore, after stopping the compressor based on the determination of the progress of frost formation on the outdoor heat exchanger by the control device as in the invention of claim 7, the compressor is operated until the outdoor heat exchanger is defrosted. If the start is prohibited, the restart of the compressor in a state where frost remains in the outdoor heat exchanger is prohibited, thereby avoiding inconvenience that frost that is hard to melt is generated in advance. Will be able to.
According to invention of Claim 8, in order to heat the compressor which compresses a refrigerant | coolant, the air flow path through which the air supplied to a vehicle interior distribute | circulates, and the air which thermally radiates a refrigerant | coolant and is supplied into a vehicle interior from an air flow path A radiator, an outdoor heat exchanger provided outside the passenger compartment to absorb the refrigerant, and a control device, and by this control device, at least the refrigerant discharged from the compressor is radiated by the radiator, In the vehicle air conditioner that heats the interior of the vehicle by depressurizing the radiated refrigerant and then absorbing the heat with an outdoor heat exchanger, the control device has a suction refrigerant temperature Ts of the compressor that is lower than a first predetermined value Ts1. Or when the suction refrigerant pressure Ps of the compressor becomes lower than the first predetermined value Ps1, the limit control for decelerating the rotation speed NC of the compressor is executed, and in this limit control state, the compressor The rotation speed NC is Since the compressor is stopped when the state lower than the fixed value NC1 continues for a predetermined time, the compressor is stopped in a state where the suction refrigerant temperature Ts or the suction refrigerant pressure Ps of the compressor is lowered due to a decrease in the outside air temperature or the like. You will be able to stop.
As a result, in a situation where the suction refrigerant temperature Ts and the suction refrigerant pressure Ps are low and the operation efficiency is lowered, it is possible to prevent the compressor from being continuously operated, and to contribute to energy saving, and the reliability of the equipment. It is possible to solve the problem of deterioration of the property.
At this time, when the suction refrigerant temperature Ts of the compressor becomes lower than the first predetermined value Ts1, or when the suction refrigerant pressure Ps of the compressor becomes lower than the first predetermined value Ps1, Since the restriction control is performed to decelerate the rotational speed NC of the compressor, it is possible to prevent the compressor from being stopped as much as possible by reducing the suction refrigerant temperature Ts or the suction refrigerant pressure Ps, or to extend the time until the compressor is stopped. As a result, it is possible to continue the comfortable heating of the passenger compartment as much as possible.
Further, as in the ninth aspect of the present invention, the control device does not stop the compressor in the restrictive control state based on the suction refrigerant temperature Ts or the suction refrigerant pressure Ps until a predetermined time has elapsed after starting. By doing so, it becomes possible to eliminate an erroneous stop of the compressor in an unstable operation state immediately after startup.
Further, after the controller stops the compressor based on the determination of the suction refrigerant temperature Ts of the compressor or the suction refrigerant pressure Ps as in the invention of claim 10, the suction refrigerant temperature Ts of the compressor is the first. Until it becomes higher than the second predetermined value Ts2 higher than the predetermined value Ts1, or until the suction refrigerant pressure Ps of the compressor becomes higher than the second predetermined value Ps2 higher than the first predetermined value Ps1, or the outside air temperature In the situation where the start-up of the compressor is prohibited until the value becomes higher than the predetermined value, the outside air temperature is low and the control speed is expected to be lower than the predetermined value NC1 due to the restriction control. It is possible to avoid the inconvenience that the compressor is frequently stopped and started without permitting the start of the compressor.
When the auxiliary heating device provided in the air flow passage is provided as in the invention of claim 11, the control device stops the compressor based on the determination of the progress of frost formation on the outdoor heat exchanger. Or, when the compressor is stopped based on the determination of the suction refrigerant temperature Ts or the suction refrigerant pressure Ps of the compressor, if the vehicle interior is heated by the auxiliary heating device, the operation efficiency of the compressor is reduced. Therefore, even when the compressor is stopped, the passenger compartment can be heated by the auxiliary heating device to reduce the passenger's discomfort.
本発明を適用した一実施形態の車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles of one Embodiment to which this invention is applied. 図1の車両用空気調和装置の制御装置のブロック図である。It is a block diagram of the control apparatus of the air conditioning apparatus for vehicles of FIG. 図1の車両用空気調和装置の空気流通路の模式図である。It is a schematic diagram of the airflow path of the vehicle air conditioner of FIG. 図2のヒートポンプコントローラの暖房モードにおける圧縮機制御に関する制御ブロック図である。It is a control block diagram regarding the compressor control in the heating mode of the heat pump controller of FIG. 図2のヒートポンプコントローラの除湿暖房モードにおける圧縮機制御に関する制御ブロック図である。It is a control block diagram regarding the compressor control in the dehumidification heating mode of the heat pump controller of FIG. 図2のヒートポンプコントローラの除湿暖房モードにおける補助ヒータ(補助加熱装置)制御に関する制御ブロック図である。It is a control block diagram regarding auxiliary heater (auxiliary heating apparatus) control in the dehumidification heating mode of the heat pump controller of FIG. 図2のヒートポンプコントローラによる着霜判定に基づく圧縮機の停止制御を説明するフローチャートである。It is a flowchart explaining the stop control of the compressor based on the frost formation determination by the heat pump controller of FIG. TXObaseとTXOに基づく図2のヒートポンプコントローラによる室外熱交換器の着霜判定を説明するタイミングチャートである。It is a timing chart explaining the frost formation determination of the outdoor heat exchanger by the heat pump controller of FIG. 2 based on TXObase and TXO. PXObaseとPXOに基づく図2のヒートポンプコントローラによる室外熱交換器の着霜判定を説明するタイミングチャートである。It is a timing chart explaining the frost formation determination of the outdoor heat exchanger by the heat pump controller of FIG. 2 based on PXObase and PXO. 図2のヒートポンプコントローラによる吸込冷媒温度Tsに基づく圧縮機の停止制御を説明するフローチャートである。It is a flowchart explaining the stop control of the compressor based on the suction refrigerant temperature Ts by the heat pump controller of FIG. 図2のヒートポンプコントローラによる吸込冷媒温度Tsに基づく圧縮機の停止制御を説明するタイミングチャートである。It is a timing chart explaining the stop control of the compressor based on the suction refrigerant temperature Ts by the heat pump controller of FIG. 本発明の他の実施例の車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles of the other Example of this invention.
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は本発明の一実施例の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、バッテリに充電された電力で走行用の電動モータを駆動して走行するものであり(何れも図示せず)、本発明の車両用空気調和装置1も、バッテリの電力で駆動されるものとする。
 即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路を用いたヒートポンプ運転により暖房モードを行い、更に、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード(最大冷房モード)及び補助ヒータ単独モードの各運転モードを選択的に実行するものである。
 尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明は有効であり、更には、エンジンで走行する通常の自動車にも適用可能であることは云うまでもない。
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を放熱させて車室内に供給する空気を加熱するための放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6(減圧装置)と、車室外に設けられて冷房時には放熱器として機能し、暖房時には蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る室内膨張弁8(減圧装置)と、空気流通路3内に設けられ、冷房時及び除湿時に冷媒を吸熱させて車室内外から吸い込んで車室内に供給する空気を冷却するための吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。
 そして、この冷媒回路Rには所定量の冷媒と潤滑用のオイルが充填されている。尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。
 また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7から出た冷媒配管13Aは冷房時に開放される電磁弁17を介してレシーバドライヤ部14に接続され、過冷却部16の出口側の冷媒配管13Bは室内膨張弁8介して吸熱器9の入口側に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成している。
 また、過冷却部16と室内膨張弁8間の冷媒配管13Bは、吸熱器9の出口側の冷媒配管13Cと熱交換関係に設けられ、両者で内部熱交換器19を構成している。これにより、冷媒配管13Bを経て室内膨張弁8に流入する冷媒は、吸熱器9を出た低温の冷媒により冷却(過冷却)される構成とされている。
 また、室外熱交換器7から出た冷媒配管13Aは冷媒配管13Dに分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁21を介して内部熱交換器19の下流側における冷媒配管13Cに連通接続されている。この冷媒配管13Cがアキュムレータ12に接続され、アキュムレータ12は圧縮機2の冷媒吸込側に接続されている。更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6を介して室外熱交換器7の入口側に接続されている。
 また、圧縮機2の吐出側と放熱器4の入口側の間の冷媒配管13Gには後述する除湿暖房とMAX冷房時に閉じられる電磁弁30(流路切換装置を構成する)が介設されている。この場合、冷媒配管13Gは電磁弁30の上流側でバイパス配管35に分岐しており、このバイパス配管35は除湿暖房とMAX冷房時に開放される電磁弁40(これも流路切換装置を構成する)を介して室外膨張弁6の下流側の冷媒配管13Eに連通接続されている。これらバイパス配管35、電磁弁30及び電磁弁40によりバイパス装置45が構成される。
 このようなバイパス配管35、電磁弁30及び電磁弁40によりバイパス装置45を構成したことで、後述する如く圧縮機2から吐出された冷媒を室外熱交換器7に直接流入させる除湿暖房モードやMAX冷房モードと、圧縮機2から吐出された冷媒を放熱器4に流入させる暖房モードや除湿冷房モード、冷房モードとの切り換えを円滑に行うことができるようになる。
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環モード)と、車室外の空気である外気(外気導入モード)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
 また、図1において23は実施例の車両用空気調和装置1に設けられた補助加熱装置としての補助ヒータである。実施例の補助ヒータ23は電気ヒータであるPTCヒータにて構成されており、空気流通路3の空気の流れに対して、放熱器4の風上側(空気上流側)となる空気流通路3内に設けられている。そして、補助ヒータ23に通電されて発熱すると、吸熱器9を経て放熱器4に流入する空気流通路3内の空気が加熱される。即ち、この補助ヒータ23が所謂ヒータコアとなり、車室内の暖房を行い、或いは、それを補完する。
 ここで、HVACユニット10の吸熱器9より風下側(空気下流側)の空気流通路3は仕切壁10Aにより区画され、暖房用熱交換通路3Aとそれをバイパスするバイパス通路3Bとが形成されており、前述した放熱器4と補助ヒータ23は暖房用熱交換通路3Aに配置されている。
 また、補助ヒータ23の風上側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を、補助ヒータ23及び放熱器4が配置された暖房用熱交換通路3Aに通風する割合を調整するエアミックスダンパ28が設けられている。
 更に、放熱器4の風下側におけるHVACユニット10には、FOOT(フット)吹出口29A(第1の吹出口)、VENT(ベント)吹出口29B(FOOT吹出口29Aに対しては第2の吹出口、DEF吹出口29Cに対しては第1の吹出口)、DEF(デフ)吹出口29C(第2の吹出口)の各吹出口が形成されている。FOOT吹出口29Aは車室内の足下に空気を吹き出すための吹出口で、最も低い位置にある。また、VENT吹出口29Bは車室内の運転者の胸や顔付近に空気を吹き出すための吹出口で、FOOT吹出口29Aより上方にある。そして、DEF吹出口29Cは車両のフロントガラス内面に空気を吹き出すための吹出口で、他の吹出口29A、29Bよりも上方の最も高い位置にある。
 そして、FOOT吹出口29A、VENT吹出口29B、及び、DEF吹出口29Cには、空気の吹き出し量を制御するFOOT吹出口ダンパ31A、VENT吹出口ダンパ31B、及び、DEF吹出口ダンパ31Cがそれぞれ設けられている。
 次に、図2は実施例の車両用空気調和装置1の制御装置11のブロック図を示している。制御装置11は、何れもプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成された空調コントローラ20及びヒートポンプコントローラ32から構成されており、これらがCAN(Controller Area Network)やLIN(Local Interconnect Network)を構成する車両通信バス65に接続されている。また、圧縮機2と補助ヒータ23も車両通信バス65に接続され、これら空調コントローラ20、ヒートポンプコントローラ32、圧縮機2及び補助ヒータ23が車両通信バス65を介してデータの送受信を行うように構成されている。
 空調コントローラ20は、車両の車室内空調の制御を司る上位のコントローラであり、この空調コントローラ20の入力には、車両の外気温度Tamを検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれて吸熱器9に流入する空気の温度(吸込空気温度Tas)を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度(室内温度Tin)を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、車室内に吹き出される空気の温度を検出
する吹出温度センサ41と、圧縮機2の吐出冷媒圧力Pdを検出する吐出圧力センサ42と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52の各出力と、設定温度や運転モードの切り換えを設定するための空調(エアコン)操作部53が接続されている。
 また、空調コントローラ20の出力には、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、各吹出口ダンパ31A~31Cが接続され、それらは空調コントローラ20により制御される。
 ヒートポンプコントローラ32は、主に冷媒回路Rの制御を司るコントローラであり、このヒートポンプコントローラ32の入力には、圧縮機2の吐出冷媒温度Tdを検出する吐出温度センサ43と、圧縮機2の吸込冷媒圧力Psを検出する吸込圧力センサ44と、圧縮機2の吸込冷媒温度Tsを検出する吸込温度センサ55と、放熱器4の冷媒温度(放熱器温度TCI)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器圧力PCI)を検出する放熱器圧力センサ47と、吸熱器9の冷媒温度(吸熱器温度Te)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力を検出する吸熱器圧力センサ49と、補助ヒータ23の温度(補助ヒータ温度Tptc)を検出する補助ヒータ温度センサ50と、室外熱交換器7の出口の冷媒温度(室外熱交換器温度TXO)を検出する室外熱交換器温度センサ54と、室外熱交換器7の出口の冷媒圧力(室外熱交換器圧力PXO)を検出する室外熱交換器圧力センサ56の各出力が接続されている。
 また、ヒートポンプコントローラ32の出力には、室外膨張弁6、室内膨張弁8と、電磁弁30(リヒート用)、電磁弁17(冷房用)、電磁弁21(暖房用)、電磁弁40(バイパス用)の各電磁弁が接続され、それらはヒートポンプコントローラ32により制御される。尚、圧縮機2と補助ヒータ23はそれぞれコントローラを内蔵しており、圧縮機2と補助ヒータ23のコントローラは車両通信バス65を介してヒートポンプコントローラ32とデータの送受信を行い、このヒートポンプコントローラ32によって制御される。
 ヒートポンプコントローラ32と空調コントローラ20は車両通信バス65を介して相互にデータの送受信を行い、各センサの出力や空調操作部53にて入力された設定に基づき、各機器を制御するものであるが、この場合の実施例では外気温度センサ33、吐出圧力センサ42、車速センサ52、空気流通路3に流入した空気の体積風量Ga(空調コントローラ20が算出)、エアミックスダンパ28による風量割合SW(空調コントローラ20が算出)、空調操作部53の出力は空調コントローラ20から車両通信バス65を介してヒートポンプコントローラ32に送信され、ヒートポンプコントローラ32による制御に供される構成とされている。
 以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。この実施例では制御装置11(空調コントローラ20、ヒートポンプコントローラ32)は、暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード(最大冷房モード)及び補助ヒータ単独モードの各運転モードを切り換えて実行する。先ず、各運転モードにおける冷媒の流れと制御の概略について説明する。
 (1)暖房モード
 ヒートポンプコントローラ32により(オートモード)或いは空調操作部53へのマニュアル操作(マニュアルモード)により暖房モードが選択されると、ヒートポンプコントローラ32は電磁弁21(暖房用)を開放し、電磁弁17(冷房用)を閉じる。また、電磁弁30(リヒート用)を開放し、電磁弁40(バイパス用)を閉じる。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量を調整してもよい。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)にて加熱された空気は各吹出口29A~29Cから吹き出されるので、これにより車室内の暖房が行われることになる。
 ヒートポンプコントローラ32は、空調コントローラ20が目標吹出温度TAOから算出する目標ヒータ温度TCO(放熱器温度TCIの目標値)から目標放熱器圧力PCO(放熱器圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数NCを制御し、放熱器4による加熱を制御する。また、ヒートポンプコントローラ32は、放熱器温度センサ46が検出する放熱器4の冷媒温度(放熱器温度TCI)及び放熱器圧力センサ47が検出する放熱器圧力PCIに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度SCを制御する。
 また、ヒートポンプコントローラ32はこの暖房モードにおいては、車室内空調に要求される暖房能力に対して放熱器4による暖房能力が不足する場合、その不足する分を補助ヒータ23の発熱で補完するように補助ヒータ23の通電を制御する。それにより、快適な車室内暖房を実現し、且つ、室外熱交換器7の着霜も抑制する。このとき、補助ヒータ23は放熱器4の空気上流側に配置されているので、空気流通路3を流通する空気は放熱器4の前に補助ヒータ23に通風されることになる。
 ここで、補助ヒータ23が放熱器4の空気下流側に配置されていると、実施例の如くPTCヒータで補助ヒータ23を構成した場合には、補助ヒータ23に流入する空気の温度が放熱器4によって上昇するため、PTCヒータの抵抗値が大きくなり、電流値も低くなって発熱量が低下してしまうが、放熱器4の空気上流側に補助ヒータ23を配置することで、実施例の如くPTCヒータから構成される補助ヒータ23の能力を十分に発揮させることができるようになる。
 (2)除湿暖房モード
 次に、除湿暖房モードでは、ヒートポンプコントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量の調整も行う。
 これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却され、且つ、当該空気中の水分が吸熱器9に凝結して付着するので、空気流通路3内の空気は冷却され、且つ、除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。
 このとき、室外膨張弁6の弁開度は全閉とされているので、圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。更に、この除湿暖房モードにおいてヒートポンプコントローラ32は、補助ヒータ23に通電して発熱させる。これにより、吸熱器9にて冷却され、且つ、除湿された空気は補助ヒータ23を通過する過程で更に加熱され、温度が上昇するので車室内の除湿暖房が行われることになる。
 ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)と、空調コントローラ20が算出する吸熱器温度Teの目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御すると共に、補助ヒータ温度センサ50が検出する補助ヒータ温度Tptcと前述した目標ヒータ温度TCO(この場合、補助ヒータ温度Tptcの目標値となる)に基づいて補助ヒータ23の通電(発熱による加熱)を制御することで、吸熱器9での空気の冷却と除湿を適切に行いながら、補助ヒータ23による加熱で各吹出口29A~29Cから車室内に吹き出される空気温度の低下を的確に防止する。これにより、車室内に吹き出される空気を除湿しながら、その温度を適切な暖房温度に制御することが可能となり、車室内の快適且つ効率的な除湿暖房を実現することができるようになる。
 尚、補助ヒータ23は放熱器4の空気上流側に配置されているので、補助ヒータ23で加熱された空気は放熱器4を通過することになるが、この除湿暖房モードでは放熱器4に冷媒は流されないので、補助ヒータ23にて加熱された空気から放熱器4が吸熱してしまう不都合も解消される。即ち、放熱器4によって車室内に吹き出される空気の温度が低下してしまうことが抑制され、COPも向上することになる。
 (3)除湿冷房モード
 次に、除湿冷房モードでは、ヒートポンプコントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を開放し、電磁弁40を閉じる。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量の調整も行う。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
 放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。この除湿冷房モードではヒートポンプコントローラ32は補助ヒータ23に通電しないので、吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱(暖房時よりも放熱能力は低い)される。これにより車室内の除湿冷房が行われることになる。
 ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEO(空調コントローラ20から送信される)に基づいて圧縮機2の回転数NCを制御する。また、ヒートポンプコントローラ32は前述した目標ヒータ温度TCOから目標放熱器圧力PCOを算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて室外膨張弁6の弁開度を制御し、放熱器4による加熱を制御する。
 (4)冷房モード
 次に、冷房モードでは、ヒートポンプコントローラ32は上記除湿冷房モードの状態において室外膨張弁6の弁開度を全開とする。そして、圧縮機2を運転し、補助ヒータ23には通電しない。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の空気が、暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風される割合を調整する状態とする。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入すると共に、放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので冷媒はそれを通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着する。
 吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気が各吹出口29A~29Cから車室内に吹き出されるので(一部は放熱器4を通過して熱交換する)、これにより車室内の冷房が行われることになる。また、この冷房モードにおいては、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である前述した目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御する。
 (5)MAX冷房モード(最大冷房モード)
 次に、最大冷房モードとしてのMAX冷房モードでは、ヒートポンプコントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2を運転し、補助ヒータ23には通電しない。空調コントローラ20は、各送風機15、27を運転し、エアミックスダンパ28は、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の空気が、暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風される割合を調整する状態とする。
 これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着するので、空気流通路3内の空気は除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。このとき、室外膨張弁6は全閉とされているので、同様に圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。
 ここで、前述した冷房モードでは放熱器4に高温の冷媒が流れているため、放熱器4からHVACユニット10への直接の熱伝導が少なからず生じるが、このMAX冷房モードでは放熱器4に冷媒が流れないため、放熱器4からHVACユニット10に伝達される熱で吸熱器9からの空気流通路3内の空気が加熱されることも無くなる。そのため、車室内の強力な冷房が行われ、特に外気温度Tamが高いような環境下では、迅速に車室内を冷房して快適な車室内空調を実現することができるようになる。また、このMAX冷房モードにおいても、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である前述した目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御する。
 (6)補助ヒータ単独モード
 尚、実施例の制御装置11は室外熱交換器7に過着霜が生じた場合などに、冷媒回路Rの圧縮機2と室外送風機15を停止し、補助ヒータ23に通電してこの補助ヒータ23のみで車室内を暖房する補助ヒータ単独モードを有している。この場合にも、ヒートポンプコントローラ32は補助ヒータ温度センサ50が検出する補助ヒータ温度Tptcと前述した目標ヒータ温度TCOに基づいて補助ヒータ23の通電(発熱)を制御する。
 また、空調コントローラ20は室内送風機27を運転し、エアミックスダンパ28は、室内送風機27から吹き出された空気流通路3内の空気を暖房用熱交換通路3Aの補助ヒータ23に通風し、風量を調整する状態とする。補助ヒータ23にて加熱された空気が各吹出口29A~29Cから車室内に吹き出されるので、これにより車室内の暖房が行われることになる。
 (7)運転モードの切換
 空調コントローラ20は、下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、車室内に吹き出される空気の温度の目標値である。
 TAO=(Tset−Tin)×K+Tbal(f(Tset、SUN、Tam))
                ・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する室内温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
 ヒートポンプコントローラ32は、起動時には空調コントローラ20から車両通信バス65を介して送信される外気温度Tam(外気温度センサ33が検出する)と目標吹出温度TAOとに基づいて上記各運転モードのうちの何れかの運転モードを選択すると共に、各運転モードを車両通信バス65を介して空調コントローラ20に送信する。また、起動後は外気温度Tam、車室内の湿度、目標吹出温度TAO、後述する加熱温度TH(放熱器4の風下側の空気の温度。推定値)、目標ヒータ温度TCO、吸熱器温度Te、目標吸熱器温度TEO、車室内の除湿要求の有無、等のパラメータに基づいて各運転モードの切り換えを行うことで、環境条件や除湿の要否に応じて的確に暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード及び補助ヒータ単独モードを切り換えて車室内に吹き出される空気の温度を目標吹出温度TAOに制御し、快適且つ効率的な車室内空調を実現するものである。
 (8)ヒートポンプコントローラ32による暖房モードでの圧縮機2の制御
 次に、図4を用いて前述した暖房モードにおける圧縮機2の制御について詳述する。図4は暖房モード用の圧縮機2の目標回転数(圧縮機目標回転数)TGNChを決定するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F(フィードフォワード)操作量演算部58は外気温度センサ33から得られる外気温度Tamと、室内送風機27のブロワ電圧BLVと、SW=(TAO−Te)/(TH−Te)で得られるエアミックスダンパ28による風量割合SWと、放熱器4の出口における過冷却度SCの目標値である目標過冷却度TGSCと、放熱器4の温度の目標値である前述した目標ヒータ温度TCO(空調コントローラ20から送信される)と、放熱器4の圧力の目標値である目標放熱器圧力PCOに基づいて圧縮機目標回転数のF/F操作量TGNChffを演算する。
 ここで、風量割合SWを算出する上記THは、放熱器4の風下側の空気の温度(以下、加熱温度と云う)であり、ヒートポンプコントローラ32が下記に示す一次遅れ演算の式(II)から推定する。
 TH=(INTL×TH0+Tau×THz)/(Tau+INTL) ・・(II)
 ここで、INTLは演算周期(定数)、Tauは一次遅れの時定数、TH0は一次遅れ演算前の定常状態における加熱温度THの定常値、THzは加熱温度THの前回値である。このように加熱温度THを推定することで、格別な温度センサを設ける必要がなくなる。
 尚、ヒートポンプコントローラ32は前述した運転モードによって上記時定数Tau及び定常値TH0を変更することにより、上述した推定式(II)を運転モードによって異なるものとし、加熱温度THを推定する。そして、この加熱温度THは車両通信バス65を介して空調コントローラ20に送信される。 前記目標放熱器圧力PCOは上記目標過冷却度TGSCと目標ヒータ温度TCOに基づいて目標値演算部59が演算する。更に、F/B(フィードバック)操作量演算部60はこの目標放熱器圧力PCOと放熱器4の冷媒圧力である放熱器圧力PCIに基づいて圧縮機目標回転数のF/B操作量TGNChfbを演算する。そして、F/F操作量演算部58が演算したF/F操作量TGNCnffとF/B操作量演算部60が演算したTGNChfbは加算器61で加算され、リミット設定部62で制御上限値と制御下限値のリミットが付けられた後、圧縮機目標回転数TGNChとして決定される。前記暖房モードにおいては、ヒートポンプコントローラ32はこの圧縮機目標回転数TGNChに基づいて圧縮機2の回転数NCを制御する。
 (9)ヒートポンプコントローラ32による除湿暖房モードでの圧縮機2及び補助ヒータ23の制御
 一方、図5は前記除湿暖房モード用の圧縮機2の目標回転数(圧縮機目標回転数)TGNCcを決定するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F操作量演算部63は外気温度Tamと、空気流通路3に流入した空気の体積風量Gaと、放熱器4の圧力(放熱器圧力PCI)の目標値である目標放熱器圧力PCOと、吸熱器9の温度(吸熱器温度Te)の目標値である目標吸熱器温度TEOに基づいて圧縮機目標回転数のF/F操作量TGNCcffを演算する。
 また、F/B操作量演算部64は目標吸熱器温度TEO(空調コントローラ20から送信される)と吸熱器温度Teに基づいて圧縮機目標回転数のF/B操作量TGNCcfbを演算する。そして、F/F操作量演算部63が演算したF/F操作量TGNCcffとF/B操作量演算部64が演算したF/B操作量TGNCcfbは加算器66で加算され、リミット設定部67で制御上限値と制御下限値のリミットが付けられた後、圧縮機目標回転数TGNCcとして決定される。除湿暖房モードにおいては、ヒートポンプコントローラ32はこの圧縮機目標回転数TGNCcに基づいて圧縮機2の回転数NCを制御する。
 また、図6は除湿暖房モードにおける補助ヒータ23の補助ヒータ要求能力TGQPTCを決定するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32の減算器73には目標ヒータ温度TCOと補助ヒータ温度Tptcが入力され、目標ヒータ温度TCOと補助ヒータ温度Tptcの偏差(TCO−Tptc)が算出される。この偏差(TCO−Tptc)はF/B制御部74に入力され、このF/B制御部74は偏差(TCO−Tptc)を無くして補助ヒータ温度Tptcが目標ヒータ温度TCOとなるように補助ヒータ要求能力F/B操作量を演算する。
 このF/B制御部74で算出された補助ヒータ要求能力F/B操作量はリミット設定部76で制御上限値と制御下限値のリミットが付けられた後、補助ヒータ要求能力TGQPTCとして決定される。除湿暖房モードにおいては、コントローラ32はこの補助ヒータ要求能力TGQPTCに基づいて補助ヒータ23の通電を制御することにより、補助ヒータ温度Tptcが目標ヒータ温度TCOとなるように補助ヒータ23の発熱(加熱)を制御する。
 このようにしてヒートポンプコントローラ32は、除湿暖房モードでは吸熱器温度Teと目標吸熱器温度TEOに基づいて圧縮機の運転を制御すると共に、目標ヒータ温度TCOに基づいて補助ヒータ23の発熱を制御することで、除湿暖房モードにおける吸熱器9による冷却と除湿、並びに、補助ヒータ23による加熱を的確に制御する。これにより、車室内に吹き出される空気をより適切に除湿しながら、その温度をより正確な暖房温度に制御することが可能となり、より一層快適且つ効率的な車室内の除湿暖房を実現することができるようになる。
 (10)エアミックスダンパ28の制御
 次に、図3を参照しながら空調コントローラ20によるエアミックスダンパ28の制御について説明する。図3においてGaは前述した空気流通路3に流入した空気の体積風量、Teは吸熱器温度、THは前述した加熱温度(放熱器4の風下側の空気の温度)である。
 空調コントローラ20は、前述した如き式(下記式(III))により算出される暖房用熱交換通路3Aの放熱器4と補助ヒータ23に通風する風量割合SWに基づき、当該割合の風量となるようにエアミックスダンパ28を制御することで放熱器4(及び補助ヒータ23)への通風量を調整する。
 SW=(TAO−Te)/(TH−Te)    ・・(III)
 即ち、暖房用熱交換通路3Aの放熱器4と補助ヒータ23に通風する風量割合SWは0≦SW≦1の範囲で変化し、「0」で暖房用熱交換通路3Aへの通風をせず、空気流通路3内の全ての空気をバイパス通路3Bに通風するエアミックス全閉状態、「1」で空気流通路3内の全ての空気を暖房用熱交換通路3Aに通風するエアミックス全開状態となる。即ち、放熱器4への風量はGa×SWとなる。
 (11)室外熱交換器の着霜判定と、着霜判定に基づく圧縮機の停止制御
 前述した如く暖房モードでは、室外熱交換器7は外気から吸熱して低温となるため、室外熱交換器7には外気中の水分が霜となって付着する。この着霜が成長すると、室外熱交換器7とそれに通風される外気との間の熱交換が著しく阻害されるため、圧縮機2の運転効率が低下する。また、過着霜で室外送風機15等が破損が発生する場合もある。そこで、ヒートポンプコントローラ32は以下の如く室外熱交換器7への着霜の進行状態を判定する。
 (11−1)室外熱交換器への着霜の進行状態の判定と圧縮機の停止制御(その1)
 次に、図7及び図8を用いてこの室外熱交換器7への着霜の進行状態の判定と、それに基づく圧縮機2の停止制御の一例を説明する。この実施例では、ヒートポンプコントローラ32は室外熱交換器温度センサ54から得られる室外熱交換器7の現在の冷媒蒸発温度TXOと、外気が低湿環境で室外熱交換器7に着霜していない無着霜時における当該室外熱交換器7の冷媒蒸発温度TXObaseとに基づき、室外熱交換器7への着霜の進行状態を判定する。
 ヒートポンプコントローラ32は先ず、図7のステップS1で車両用空気調和装置1(HP)が故障判定されていないか否か判断し、故障判定されていなければステップS2に進み、現在着霜フラグがリセット(「0」)されているか否か判定する。現在は着霜フラグはリセットされているものとすると、ヒートポンプコントローラ32はステップS3に進み、現在の運転モードが暖房モードか否か判断する。
 そして、現在の運転モードが暖房モードである場合はステップS4に進み、無着霜時における冷媒蒸発温度TXObaseと現在の冷媒蒸発温度TXOとの差ΔTXO(ΔTXO=TXObase−TXO)を演算(算出)する。この場合、ヒートポンプコントローラ32は、無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseを、次式(IV)を用いて演算することで推定する。
 TXObase=f(Tam、NC、Ga*SW、VSP、PCI)
 =k1×Tam+k2×NC+k3×Ga*SW+k4×VSP+k5×PCI
                                 ・・(IV)
 ここで、式(IV)のパラメータであるTamは外気温度センサ33から得られる外気温度、NCは圧縮機2の回転数、Ga*SWは放熱器4への風量、VSPは車速センサ52から得られる車速、PCIは放熱器圧力であり、k1~k5は係数で、予め実験により求めておく。
 外気温度Tamは室外熱交換器7の吸込空気温度(環境条件)を示す指標であり、外気温度Tam(室外熱交換器7の吸込空気温度)が低くなる程、TXObaseは低くなる傾向となる。従って、係数k1は正の値となる。尚、同様に室外熱交換器7の吸込空気温度を示す指標としては外気温度Tamに限られない。
 また、圧縮機2の回転数NCは冷媒回路R内の冷媒流量(運転状況)を示す指標であり、回転数NCが高い程(冷媒流量が多い程)、TXObaseは低くなる傾向となる。従って、係数k2は負の値となる。
 また、Ga*SWは放熱器4の通過風量(運転状況)を示す指標であり、Ga*SWが大きい程(放熱器4の通過風量が大きい程)、TXObaseは低くなる傾向となる。従って、係数k3は負の値となる。尚、放熱器4の通過風量を示す指標としてはこれに限らず、室内送風機27のブロワ電圧BLVでもよい。
 また、車速VSPは室外熱交換器7の通過風速(運転状況)を示す指標であり、車速VSPが低い程(室外熱交換器7の通過風速が低い程)、TXObaseは低くなる傾向となる。従って、係数k4は正の値となる。尚、室外熱交換器7の通過風速を示す指標としてはこれに限らず、室外送風機15の電圧でもよい。
 また、放熱器圧力PCIは放熱器4の冷媒圧力(運転状況)を示す指標であり、放熱器圧力PCIが高い程、TXObaseは低くなる傾向となる。従って、係数k5は負の値となる。
 尚、この実施例の式(IV)のパラメータとして外気温度Tam、圧縮機2の回転数NC、放熱器4の通過風量Ga*SW、車速VSP、放熱器圧力PCIを用いているが、式(IV)のパラメータとしては、上記全てに限らず、それらのうちの何れか一つ、若しくは、それらの組み合わせでもよい。
 そして、ステップS4でコントローラ32は、式(IV)に現在の各パラメータの値を代入することで得られる無着霜時における冷媒蒸発温度TXObaseと現在の冷媒蒸発温度TXOとの差ΔTXO(ΔTXO=TXObase−TXO)を算出する。次に、ヒートポンプコントローラ32はステップS5で暖房モードの起動後、所定時間経過しているか否か判断し、起動初期であって所定時間が経過していなければステップS11に進んで圧縮機2の運転(HP運転)を継続する。即ち、後述する室外熱交換器7への着霜の進行状態の判定に基づく圧縮機2の停止を行わない。
 ステップS5で暖房モードの起動から所定時間が経過している場合、ヒートポンプコントローラ32はステップS6に進み、冷媒蒸発温度TXOが無着霜時における冷媒蒸発温度TXObaseより低下して、その差ΔTXOが第1の閾値A1(例えば、15deg等)より大きくなっている状態が第1の所定時間t1(例えば、30秒等)継続したか否か判断し、ΔTXOが第1の閾値A1より大きい状態が第1の所定時間t1継続している場合には、室外熱交換器7に過度の着霜が短時間で進行しているものと判定する。
 図8で実線は室外熱交換器7の冷媒蒸発温度TXOの変化を示し、破線は無着霜時における冷媒蒸発温度TXObaseの変化を示している。起動初期(非着霜)には室外熱交換器7の冷媒蒸発温度TXOと無着霜時における冷媒蒸発温度TXObaseは略同じ値となる。暖房モードの進行に伴って車室内の温度は暖められ、車両用空気調和装置1の負荷は低下してくるので、前述した冷媒流量や放熱器4の通過風量も低下し、式(IV)で算出されるTXObase(図8の破線)は上昇してくる。
 一方、室外熱交換器7に着霜が生じると外気との熱交換性能が阻害されるようになるので、冷媒蒸発温度TXO(実線)は低下していき、やがてTXObaseを下回る。そして冷媒蒸発温度TXOの低下が更に進行して、その差ΔTXO(TXObase−TXO)が第1の閾値A1より大きくなり、その状態が第1の所定時間t1継続した場合、ヒートポンプコントローラ32はステップS6で室外熱交換器7に過度の着霜が短時間で進行しているものと判定し、ステップS7に進む。
 他方、ステップS6で過度の着霜が短時間で進行していない場合、ヒートポンプコントローラ32はステップS10に進み、今度は差ΔTXOが第1の閾値A1より小さい第2の閾値A2(例えば、5deg等)より大きくなっている状態が第1の所定時間t1より長い第2の所定時間t2(例えば、60分等)継続したているか否か判断し、ΔTXOが第2の閾値A2より大きい状態が第2の所定時間t2継続している場合には、室外熱交換器7に中程度の着霜が長時間継続していると判断し、ステップS7に進む。尚、ステップS10で室外熱交換器7に中程度の着霜が長時間継続していないと判断した場合には、ヒートポンプコントローラ32はステップS11に進んで圧縮機2の運転を継続する。
 ステップS7ではヒートポンプコントローラ32は放熱器4の下流側の空気の温度である加熱温度THが放熱器4の温度の目標値である目標ヒータ温度TCO−α(αは比較的小さいディファレンシャル)より低いか否か判断する。前述した如く目標吹出温度TAOから算出されるこの目標ヒータ温度TCOは放熱器4の要求能力である。そして、加熱温度THは現在の放熱器4の暖房能力を示している。従って、TH≧TCO−α(即ち、TCO−TH≦α)である場合は、放熱器4の暖房能力が要求能力を満たしている状況である。そして、ヒートポンプコントローラ32は放熱器4の暖房能力が要求能力を満たしている状況では(ステップS7でNo)、ステップS11に進んで圧縮機2の運転を継続する。
 一方、ステップS7で加熱温度THが目標ヒータ温度TCOより低く、その差がαより大きい場合(Yes:放熱器4の暖房能力が要求能力を満たしていない)には、ヒートポンプコントローラ32はステップS8に進んで圧縮機2を停止する(HP運転不許可)。そして、ステップS9に進んで着霜フラグをセット(「1」)する。以後は、ステップS2からステップS8に進むようになり、ヒートポンプコントローラ32は着霜フラグがリセットされるまで、圧縮機2の起動を禁止する。
 また、ヒートポンプコントローラ32はステップS8で圧縮機2を停止した場合、運転モードを前述した補助ヒータ単独モードに切り換え、補助ヒータ23により車室内を暖房を行う。尚、圧縮機2を停止したことで、室外熱交換器7の着霜は融解していき、除霜が行われる。特に、車両の停止中は除霜は急速に進むことになるので、ヒートポンプコントローラ32は例えば圧縮機2の停止から所定期間が経過したことで室外熱交換器7の除霜が完了したものと判断し、前述した着霜フラグをリセットする。これにより、室外熱交換器7への着霜の進行状態の判定に基づく圧縮機2の起動禁止は解除され、運転モードは補助ヒータ単独モードから暖房モードに切り換えられることになる。
 (11−2)室外熱交換器への着霜の進行状態の判定と圧縮機の停止制御(その2)
 次に、図9を用いて室外熱交換器7の着霜の進行状態の判定と圧縮機の停止制御の他の例を説明する。尚、ヒートポンプコントローラ32はこの例の場合も図7と同様の制御を行うが、図7中の差ΔTXOは後述する差ΔPXOに置き換えるものとする。そして、この実施例ではヒートポンプコントローラ32は室外熱交換器圧力センサ56から得られる
室外熱交換器7の現在の冷媒蒸発圧力PXOと、外気が低湿環境で室外熱交換器7に着霜していない無着霜時における当該室外熱交換器7の冷媒蒸発圧力PXObaseとに基づき、室外熱交換器7への着霜の進行状態を判定する。この場合のヒートポンプコントローラ32は、無着霜時における室外熱交換器7の冷媒蒸発圧力PXObaseを、次式(V)を用いて演算することで推定する。
 PXObase=f(Tam、NC、Ga*SW、VSP、PCI)
 =k6×Tam+k7×NC+k8×Ga*SW+k9×VSP+k10×PCI
                                 ・・(V)
 尚、式(V)の各パラメータは式(IV)と同様であるので説明を省略する。また、各係数k6~k10も前述した各係数k1~k5とそれぞれ同様の傾向(正負)となる。
 図9で実線は室外熱交換器7の冷媒蒸発圧力PXOの変化を示し、破線は無着霜時における冷媒蒸発圧力PXObaseの変化を示している。起動初期(非着霜)には室外熱交換器7の冷媒蒸発圧力PXOと無着霜時における冷媒蒸発圧力PXObaseは略同じ値となる。暖房モードの進行に伴って車室内の温度は暖められ、車両用空気調和装置1の負荷は低下してくるので、前述した冷媒流量や放熱器4の通過風量も低下し、式(V)で算出されるPXObase(図9の破線)は上昇してくる。
 一方、室外熱交換器7に着霜が生じると外気との熱交換性能が阻害されるようになるので、冷媒蒸発圧力PXO(実線)は低下していき、やがてPXObaseを下回る。ヒートポンプコントローラ32はこの実施例の場合には、図7のステップS4で式(V)に現在の各パラメータの値を代入することで得られる無着霜時における冷媒蒸発圧力PXObaseと現在の冷媒蒸発圧力PXOとの差ΔPXO(ΔPXO=PXObase−PXO)を演算(算出)する。以後は、図7のステップS6とステップS10における差ΔTXOを差ΔPXOに置き換えて制御を行う。但し、第1の閾値A1や第2の閾値A2は差ΔTXOの場合とは異なるものとする。
 以上の如くヒートポンプコントローラ32は差ΔTXO、又は、差ΔPXOに基づき、この室外熱交換器7への着霜の進行状態を判定すると共に、当該室外熱交換器7への着霜が進行した状態が所定時間継続した場合、圧縮機2を停止するようにしたので、室外熱交換器7への着霜が進行した状態では圧縮機2を停止することができるようになる。これにより、室外熱交換器7の着霜により運転効率が低下した状況で、圧縮機2の運転が継続されることを防止し、省エネルギーに寄与することができるようになると共に、室外熱交換器7の過着霜に伴う機器の信頼性低下や除霜の問題も解消することが可能となる。
 この場合、ヒートポンプコントローラ32は環境条件や運転状況を示す指標に基づいて無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseや無着霜時における室外熱交換器7の冷媒蒸発圧力PXObaseを推定するので、室外熱交換器7の着霜の進行を的確に検知することができるようになる。 また、ヒートポンプコントローラ32は、差ΔTXO、又は、差ΔPXOが第1の閾値A1より大きい状態が第1の所定時間t1継続した場合、圧縮機2を停止するので、室外熱交換器7の過度の着霜が比較的短時間で進行した場合に、迅速に圧縮機2を停止することができるようになる。
 一方、ヒートポンプコントローラ32は、差ΔTXO、又は、差ΔPXOが第1の閾値A1より小さい第2の閾値A2より大きい状態が、第1の所定時間t1より長い第2の所定時間t2継続した場合にも圧縮機2を停止するので、室外熱交換器7の中程度の着霜が比較的長時間継続している場合にも、確実に圧縮機2を停止することができるようになる。
 但し、ヒートポンプコントローラ32は放熱器4の暖房能力が要求能力を満たしている状況では、室外熱交換器7への着霜の進行状態の判定に基づく圧縮機2の停止を行わないので、放熱器4による暖房能力が達成されている状況では圧縮機2の停止を禁止し、車室内の快適な暖房をそのまま継続することができるようになる。
 また、ヒートポンプコントローラ32は、起動後所定時間経過するまでは、室外熱交換器7への着霜の進行状態の判定に基づく圧縮機2の停止を行わないので、起動直後の不安定な運転状態での誤判定を排除することができるようになる。
 更に、ヒートポンプコントローラ32は、室外熱交換器7への着霜の進行状態の判定に基づいて圧縮機2を停止した後、室外熱交換器7が除霜されるまでは圧縮機2の起動を禁止するので、室外熱交換器7に着霜が残っている状態での圧縮機2の再起動を禁止して、固く溶け難い着霜が生成されてしまう不都合を未然に回避することができるようになる。
 更にまた、ヒートポンプコントローラ32は室外熱交換器7への着霜の進行状態の判定に基づいて圧縮機2を停止した場合、補助ヒータ単独モードとして補助ヒータ23により車室内を暖房するので、圧縮機2の運転効率の低下のために当該圧縮機2を停止した場合にも、補助ヒータ23によって車室内を暖房し、搭乗者の不快感を低減することができるようになる。
FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention. A vehicle according to an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and travels by driving an electric motor for traveling with electric power charged in a battery. Yes (both not shown), the vehicle air conditioner 1 of the present invention is also driven by the power of the battery.
That is, the vehicle air conditioner 1 of the embodiment performs a heating mode by a heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat, and further includes a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode, Each operation mode of the MAX cooling mode (maximum cooling mode) and the auxiliary heater single mode is selectively executed.
The present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles that run on an engine. Needless to say.
The vehicle air conditioner 1 according to the embodiment performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and includes an electric compressor 2 that compresses refrigerant and vehicle interior air. Is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G, dissipates the refrigerant, and supplies it to the vehicle interior. A radiator 4 for heating air, an outdoor expansion valve 6 (pressure reducing device) composed of an electric valve that decompresses and expands the refrigerant during heating, and functions as a radiator during cooling and serves as a radiator during heating, and an evaporator during heating An outdoor heat exchanger 7 that exchanges heat between the refrigerant and the outside air, an indoor expansion valve 8 (decompression device) that is an electric valve that decompresses and expands the refrigerant, and an air flow passage 3. Absorbs refrigerant during cooling and dehumidification A heat sink 9 for cooling caused by the air supplied to the vehicle interior is sucked from the cabin outside the accumulator 12 and the like are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed.
The refrigerant circuit R is filled with a predetermined amount of refrigerant and lubricating oil. The outdoor heat exchanger 7 is provided with an outdoor blower 15. The outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing outside air through the outdoor heat exchanger 7, so that the outdoor air blower 15 can also be used outdoors even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). It is comprised so that external air may be ventilated by the heat exchanger 7. FIG.
The outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 sequentially on the downstream side of the refrigerant, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is received via an electromagnetic valve 17 opened during cooling. The refrigerant pipe 13 </ b> B connected to the dryer unit 14 and on the outlet side of the supercooling unit 16 is connected to the inlet side of the heat absorber 9 via the indoor expansion valve 8. In addition, the receiver dryer part 14 and the supercooling part 16 structurally constitute a part of the outdoor heat exchanger 7.
The refrigerant pipe 13B between the subcooling section 16 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C on the outlet side of the heat absorber 9, and constitutes an internal heat exchanger 19 together. Thus, the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that has exited the heat absorber 9.
Further, the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched into a refrigerant pipe 13D, and this branched refrigerant pipe 13D is downstream of the internal heat exchanger 19 via an electromagnetic valve 21 opened during heating. The refrigerant pipe 13C is connected in communication. The refrigerant pipe 13 </ b> C is connected to the accumulator 12, and the accumulator 12 is connected to the refrigerant suction side of the compressor 2. Further, the refrigerant pipe 13E on the outlet side of the radiator 4 is connected to the inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.
A refrigerant pipe 13G between the discharge side of the compressor 2 and the inlet side of the radiator 4 is provided with a solenoid valve 30 (which constitutes a flow path switching device) that is closed during dehumidification heating and MAX cooling described later. Yes. In this case, the refrigerant pipe 13G is branched into a bypass pipe 35 on the upstream side of the electromagnetic valve 30, and the bypass pipe 35 is opened by the electromagnetic valve 40 (which also constitutes a flow path switching device) during dehumidifying heating and MAX cooling. ) Through the refrigerant pipe 13E on the downstream side of the outdoor expansion valve 6. Bypass pipe 45, solenoid valve 30 and solenoid valve 40 constitute bypass device 45.
Since the bypass device 45 is configured by the bypass pipe 35, the electromagnetic valve 30, and the electromagnetic valve 40, the dehumidifying heating mode or the MAX for allowing the refrigerant discharged from the compressor 2 to directly flow into the outdoor heat exchanger 7 as will be described later. Switching between the cooling mode and the heating mode in which the refrigerant discharged from the compressor 2 flows into the radiator 4, the dehumidifying cooling mode, and the cooling mode can be performed smoothly.
The air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG. 1). 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) which is air inside the passenger compartment and the outside air (outside air introduction mode) which is outside the passenger compartment. Yes. Furthermore, an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
Moreover, in FIG. 1, 23 is an auxiliary heater as an auxiliary heating device provided in the vehicle air conditioner 1 of the embodiment. The auxiliary heater 23 of the embodiment is composed of a PTC heater which is an electric heater, and is in the air flow passage 3 which is on the windward side (air upstream side) of the radiator 4 with respect to the air flow in the air flow passage 3. Is provided. When the auxiliary heater 23 is energized and generates heat, the air in the air flow passage 3 flowing into the radiator 4 through the heat absorber 9 is heated. In other words, the auxiliary heater 23 serves as a so-called heater core, which heats or complements the passenger compartment.
Here, the air flow passage 3 on the leeward side (air downstream side) from the heat absorber 9 of the HVAC unit 10 is partitioned by a partition wall 10A, and a heating heat exchange passage 3A and a bypass passage 3B that bypasses it are formed. The radiator 4 and the auxiliary heater 23 described above are disposed in the heating heat exchange passage 3A.
Further, the air (inside air or outside air) in the air flow passage 3 after flowing into the air flow passage 3 and passing through the heat absorber 9 is supplemented into the air flow passage 3 on the windward side of the auxiliary heater 23. An air mix damper 28 is provided for adjusting the rate of ventilation through the heating heat exchange passage 3A in which the heater 23 and the radiator 4 are disposed.
Further, the HVAC unit 10 on the leeward side of the radiator 4 includes a FOOT (foot) outlet 29A (first outlet) and a VENT (vent) outlet 29B (FOOT outlet 29A). For the outlet and the DEF outlet 29C, first outlets) and DEF (def) outlets 29C (second outlets) are formed. The FOOT air outlet 29A is an air outlet for blowing air under the feet in the passenger compartment, and is at the lowest position. Further, the VENT outlet 29B is an outlet for blowing out air near the driver's chest and face in the passenger compartment, and is located above the FOOT outlet 29A. The DEF air outlet 29C is an air outlet for blowing air to the inner surface of the windshield of the vehicle, and is located at the highest position above the other air outlets 29A and 29B.
The FOOT air outlet 29A, the VENT air outlet 29B, and the DEF air outlet 29C are respectively provided with a FOOT air outlet damper 31A, a VENT air outlet damper 31B, and a DEF air outlet damper 31C that control the amount of air blown out. It has been.
Next, FIG. 2 shows a block diagram of the control device 11 of the vehicle air conditioner 1 of the embodiment. The control device 11 includes an air-conditioning controller 20 and a heat pump controller 32 each of which is a microcomputer that is an example of a computer including a processor, and these include a CAN (Controller Area Network) and a LIN (Local Interconnect Network). Is connected to a vehicle communication bus 65. The compressor 2 and the auxiliary heater 23 are also connected to the vehicle communication bus 65, and the air conditioning controller 20, the heat pump controller 32, the compressor 2 and the auxiliary heater 23 are configured to transmit and receive data via the vehicle communication bus 65. Has been.
The air conditioning controller 20 is a host controller that controls the air conditioning of the vehicle interior of the vehicle. The input of the air conditioning controller 20 includes an outside air temperature sensor 33 that detects the outside air temperature Tam of the vehicle and an outside air humidity that detects the outside air humidity. The sensor 34, the HVAC suction temperature sensor 36 that detects the temperature of the air (suction air temperature Tas) that is sucked into the air flow passage 3 from the suction port 25 and flows into the heat sink 9, and the temperature of the air (inside air) in the passenger compartment An indoor air temperature sensor 37 that detects (indoor temperature Tin), an indoor air humidity sensor 38 that detects the humidity of the air in the vehicle interior, an indoor CO2 concentration sensor 39 that detects the carbon dioxide concentration in the vehicle interior, and the air blown into the vehicle interior. Detect air temperature
For example, a photosensor type solar radiation sensor 51 for detecting the amount of solar radiation into the passenger compartment, and a vehicle moving speed ( Each output of the vehicle speed sensor 52 for detecting the (vehicle speed) and an air conditioning (air conditioner) operation unit 53 for setting the switching of the set temperature and the operation mode are connected.
The output of the air conditioning controller 20 is connected to an outdoor blower 15, an indoor blower (blower fan) 27, a suction switching damper 26, an air mix damper 28, and air outlet dampers 31A to 31C. It is controlled by the controller 20.
The heat pump controller 32 is a controller that mainly controls the refrigerant circuit R. The input of the heat pump controller 32 includes a discharge temperature sensor 43 that detects a discharge refrigerant temperature Td of the compressor 2 and a suction refrigerant of the compressor 2. A suction pressure sensor 44 for detecting the pressure Ps, a suction temperature sensor 55 for detecting the suction refrigerant temperature Ts of the compressor 2, a radiator temperature sensor 46 for detecting the refrigerant temperature of the radiator 4 (radiator temperature TCI), A radiator pressure sensor 47 that detects the refrigerant pressure of the radiator 4 (radiator pressure PCI), a heat absorber temperature sensor 48 that detects the refrigerant temperature of the heat absorber 9 (heat absorber temperature Te), and the refrigerant pressure of the heat absorber 9 A heat absorber pressure sensor 49 that detects the temperature of the auxiliary heater 23, an auxiliary heater temperature sensor 50 that detects the temperature of the auxiliary heater 23 (auxiliary heater temperature Tptc), and the outlet of the outdoor heat exchanger 7 An outdoor heat exchanger temperature sensor 54 that detects the refrigerant temperature (outdoor heat exchanger temperature TXO), and an outdoor heat exchanger pressure sensor 56 that detects the refrigerant pressure (outdoor heat exchanger pressure PXO) at the outlet of the outdoor heat exchanger 7. Each output is connected.
The output of the heat pump controller 32 includes an outdoor expansion valve 6, an indoor expansion valve 8, an electromagnetic valve 30 (for reheating), an electromagnetic valve 17 (for cooling), an electromagnetic valve 21 (for heating), and an electromagnetic valve 40 (bypass). Are connected to each other and are controlled by the heat pump controller 32. The compressor 2 and the auxiliary heater 23 each have a built-in controller, and the controllers of the compressor 2 and the auxiliary heater 23 send and receive data to and from the heat pump controller 32 via the vehicle communication bus 65. Be controlled.
The heat pump controller 32 and the air conditioning controller 20 transmit / receive data to / from each other via the vehicle communication bus 65, and control each device based on the output of each sensor and the setting input by the air conditioning operation unit 53. In the embodiment in this case, the outside air temperature sensor 33, the discharge pressure sensor 42, the vehicle speed sensor 52, the volumetric air volume Ga of air flowing into the air flow passage 3 (calculated by the air conditioning controller 20), and the air volume ratio SW ( The output from the air conditioning controller 53 is transmitted from the air conditioning controller 20 to the heat pump controller 32 via the vehicle communication bus 65, and is used for control by the heat pump controller 32.
Next, the operation of the vehicle air conditioner 1 having the above-described configuration will be described. In this embodiment, the control device 11 (the air conditioning controller 20 and the heat pump controller 32) has each operation mode of heating mode, dehumidifying heating mode, dehumidifying cooling mode, cooling mode, MAX cooling mode (maximum cooling mode), and auxiliary heater single mode. Switch and execute. First, an outline of refrigerant flow and control in each operation mode will be described.
(1) Heating mode
When the heating mode is selected by the heat pump controller 32 (auto mode) or the manual operation (manual mode) to the air conditioning operation unit 53, the heat pump controller 32 opens the electromagnetic valve 21 (for heating) and the electromagnetic valve 17 (cooling). Close). Further, the electromagnetic valve 30 (for reheating) is opened, and the electromagnetic valve 40 (for bypass) is closed. Then, the compressor 2 is operated. The air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating. The auxiliary heater 23 and the radiator 4 are ventilated, but the air volume may be adjusted.
As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30. Since the air in the airflow passage 3 is passed through the radiator 4, the air in the airflow passage 3 is converted into the high-temperature refrigerant in the radiator 4 (when the auxiliary heater 23 operates, the auxiliary heater 23 and the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air, and is condensed and liquefied.
The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the refrigerant circuit R becomes a heat pump. Then, the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C through the refrigerant pipe 13A, the electromagnetic valve 21 and the refrigerant pipe 13D, and is separated into gas and liquid there. Repeated circulation inhaled. The air heated by the radiator 4 (when the auxiliary heater 23 is operated, the auxiliary heater 23 and the radiator 4) is blown out from the outlets 29A to 29C, so that the vehicle interior is heated. become.
The heat pump controller 32 calculates the target radiator pressure PCO (target value of the radiator pressure PCI) from the target heater temperature TCO (target value of the radiator temperature TCI) calculated by the air conditioning controller 20 from the target outlet temperature TAO, and this target. The number of revolutions NC of the compressor 2 is controlled based on the radiator pressure PCO and the refrigerant pressure of the radiator 4 detected by the radiator pressure sensor 47 (radiator pressure PCI. High pressure of the refrigerant circuit R). Control the heating by. Further, the heat pump controller 32 opens the outdoor expansion valve 6 based on the refrigerant temperature (radiator temperature TCI) of the radiator 4 detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47. The degree of supercooling of the refrigerant at the outlet of the radiator 4 is controlled.
Further, in this heating mode, when the heating capability by the radiator 4 is insufficient with respect to the heating capability required for the cabin air conditioning, the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. The energization of the auxiliary heater 23 is controlled. Thereby, comfortable vehicle interior heating is realized and frost formation of the outdoor heat exchanger 7 is also suppressed. At this time, since the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air flowing through the air flow passage 3 is vented to the auxiliary heater 23 before the radiator 4.
Here, when the auxiliary heater 23 is disposed on the air downstream side of the radiator 4, when the auxiliary heater 23 is configured by a PTC heater as in the embodiment, the temperature of the air flowing into the auxiliary heater 23 is determined by the radiator. 4, the resistance value of the PTC heater increases, the current value also decreases, and the heat generation amount decreases. However, by arranging the auxiliary heater 23 on the air upstream side of the radiator 4, Thus, the capacity of the auxiliary heater 23 composed of the PTC heater can be sufficiently exhibited.
(2) Dehumidification heating mode
Next, in the dehumidifying heating mode, the heat pump controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is closed, the electromagnetic valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 is operated. The air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating. The auxiliary heater 23 and the radiator 4 are ventilated, but the air volume is also adjusted.
Accordingly, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled, and moisture in the air condenses and adheres to the heat absorber 9, so that the air in the air flow passage 3 is cooled, and Dehumidified. The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
At this time, since the valve opening degree of the outdoor expansion valve 6 is fully closed, it is possible to suppress or prevent inconvenience that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. It becomes. Thereby, the fall of a refrigerant | coolant circulation amount can be suppressed or eliminated and air-conditioning capability can be ensured now. Further, in this dehumidifying and heating mode, the heat pump controller 32 energizes the auxiliary heater 23 to generate heat. As a result, the air cooled and dehumidified by the heat absorber 9 is further heated in the process of passing through the auxiliary heater 23 and the temperature rises, so that the dehumidifying heating in the passenger compartment is performed.
The heat pump controller 32 is a compressor based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and a target heat absorber temperature TEO that is a target value of the heat absorber temperature Te calculated by the air conditioning controller 20. 2, and the auxiliary heater temperature Tptc detected by the auxiliary heater temperature sensor 50 and the above-described target heater temperature TCO (in this case, the target value of the auxiliary heater temperature Tptc) is used. By controlling energization (heating by heat generation), the air temperature of the air blown out from the outlets 29A to 29C by the heating by the auxiliary heater 23 while appropriately cooling and dehumidifying the air in the heat absorber 9 is controlled. Prevent the decline accurately. As a result, it is possible to control the temperature to an appropriate heating temperature while dehumidifying the air blown into the vehicle interior, and it is possible to realize comfortable and efficient dehumidification heating in the vehicle interior.
In addition, since the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air heated by the auxiliary heater 23 passes through the radiator 4. In this dehumidifying heating mode, the refrigerant is supplied to the radiator 4. Therefore, the disadvantage that the radiator 4 absorbs heat from the air heated by the auxiliary heater 23 is also eliminated. That is, the temperature of the air blown out into the vehicle compartment by the radiator 4 is suppressed, and the COP is improved.
(3) Dehumidifying and cooling mode
Next, in the dehumidifying and cooling mode, the heat pump controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is opened and the electromagnetic valve 40 is closed. Then, the compressor 2 is operated. The air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating. The auxiliary heater 23 and the radiator 4 are ventilated, but the air volume is also adjusted.
As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
The refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through. In this dehumidifying and cooling mode, the heat pump controller 32 does not energize the auxiliary heater 23, so that the air that has been cooled and dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4 (the heat dissipation capability is lower than that during heating). Is done. As a result, dehumidifying and cooling in the passenger compartment is performed.
The heat pump controller 32 determines the temperature of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO (transmitted from the air conditioning controller 20) that is the target value. The rotational speed NC is controlled. The heat pump controller 32 calculates the target radiator pressure PCO from the target heater temperature TCO described above, and the target radiator pressure PCO and the refrigerant pressure (radiator pressure PCI) of the radiator 4 detected by the radiator pressure sensor 47. Based on the high pressure of the refrigerant circuit R), the valve opening degree of the outdoor expansion valve 6 is controlled, and heating by the radiator 4 is controlled.
(4) Cooling mode
Next, in the cooling mode, the heat pump controller 32 fully opens the opening degree of the outdoor expansion valve 6 in the dehumidifying and cooling mode. Then, the compressor 2 is operated and the auxiliary heater 23 is not energized. The air-conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 is blown from the indoor blower 27 and the air in the air flow passage 3 that has passed through the heat absorber 9 is used as the auxiliary heater 23 in the heating heat exchange passage 3A. And it is set as the state which adjusts the ratio ventilated by the radiator 4.
As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30, and the refrigerant exiting the radiator 4 passes through the refrigerant pipe 13E and the outdoor expansion valve 6. To. At this time, since the outdoor expansion valve 6 is fully opened, the refrigerant passes through it and flows into the outdoor heat exchanger 7 as it is, where it is cooled by air or by outside air that is ventilated by the outdoor blower 15 and condensed. Liquefaction. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. Further, moisture in the air condenses and adheres to the heat absorber 9.
The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through. Air that has been cooled and dehumidified by the heat absorber 9 is blown into the vehicle interior from each of the air outlets 29A to 29C (partly passes through the radiator 4 to exchange heat), thereby cooling the vehicle interior. Will be done. Further, in this cooling mode, the heat pump controller 32 uses the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the above-described target heat absorber temperature TEO which is the target value of the compressor 2. The number of revolutions NC is controlled.
(5) MAX cooling mode (maximum cooling mode)
Next, in the MAX cooling mode as the maximum cooling mode, the heat pump controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is closed, the electromagnetic valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 is operated and the auxiliary heater 23 is not energized. The air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 is blown from the indoor blower 27 and the air in the air flow passage 3 passing through the heat absorber 9 is used as an auxiliary heater for the heating heat exchange passage 3 </ b> A. 23 and the rate of ventilation through the radiator 4 are adjusted.
Accordingly, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. In addition, since moisture in the air condenses and adheres to the heat absorber 9, the air in the air flow passage 3 is dehumidified. The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through. At this time, since the outdoor expansion valve 6 is fully closed, similarly, it is possible to suppress or prevent the disadvantage that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. . Thereby, the fall of a refrigerant | coolant circulation amount can be suppressed or eliminated and air-conditioning capability can be ensured now.
Here, since the high-temperature refrigerant flows through the radiator 4 in the cooling mode described above, direct heat conduction from the radiator 4 to the HVAC unit 10 occurs not a little, but in this MAX cooling mode, the refrigerant flows into the radiator 4. Therefore, the air in the air flow passage 3 from the heat absorber 9 is not heated by the heat transmitted from the radiator 4 to the HVAC unit 10. Therefore, powerful cooling of the passenger compartment is performed, and particularly in an environment where the outside air temperature Tam is high, the passenger compartment can be quickly cooled to realize comfortable air conditioning in the passenger compartment. Also in this MAX cooling mode, the heat pump controller 32 is also connected to the compressor based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO, which is the target value. 2 is controlled.
(6) Auxiliary heater single mode
Note that the control device 11 of the embodiment stops the compressor 2 and the outdoor blower 15 of the refrigerant circuit R and energizes the auxiliary heater 23 when, for example, excessive frost formation occurs in the outdoor heat exchanger 7. The auxiliary heater single mode for heating the passenger compartment with only 23 is provided. Also in this case, the heat pump controller 32 controls energization (heat generation) of the auxiliary heater 23 based on the auxiliary heater temperature Tptc detected by the auxiliary heater temperature sensor 50 and the target heater temperature TCO described above.
The air conditioning controller 20 operates the indoor blower 27, and the air mix damper 28 passes the air in the air flow passage 3 blown out from the indoor blower 27 to the auxiliary heater 23 of the heat exchange passage 3A for heating, and the air volume is reduced. The state to be adjusted. Since the air heated by the auxiliary heater 23 is blown into the vehicle interior from each of the air outlets 29A to 29C, the vehicle interior is thereby heated.
(7) Switching operation mode
The air conditioning controller 20 calculates the target blowing temperature TAO described above from the following formula (I). This target blowing temperature TAO is a target value of the temperature of the air blown into the passenger compartment.
TAO = (Tset−Tin) × K + Tbal (f (Tset, SUN, Tam))
.. (I)
Here, Tset is a set temperature in the passenger compartment set by the air conditioning operation unit 53, Tin is a room temperature detected by the inside air temperature sensor 37, K is a coefficient, Tbal is a set temperature Tset, and a solar radiation amount detected by the solar radiation sensor 51. SUN is a balance value calculated from the outside air temperature Tam detected by the outside air temperature sensor 33. And generally this target blowing temperature TAO is so high that the outside temperature Tam is low, and it falls as the outside temperature Tam rises.
When the heat pump controller 32 is activated, the heat pump controller 32 determines which one of the above operation modes based on the outside air temperature Tam (detected by the outside air temperature sensor 33) transmitted from the air conditioning controller 20 via the vehicle communication bus 65 and the target outlet temperature TAO. The operation mode is selected and each operation mode is transmitted to the air conditioning controller 20 via the vehicle communication bus 65. In addition, after startup, the outside air temperature Tam, the humidity in the passenger compartment, the target blowing temperature TAO, the heating temperature TH (the temperature of the air on the leeward side of the radiator 4, estimated value), the target heater temperature TCO, the heat sink temperature Te, By switching each operation mode based on parameters such as the target heat absorber temperature TEO and whether or not there is a dehumidification request in the passenger compartment, the heating mode, dehumidification heating mode, and dehumidification are accurately performed according to the environmental conditions and necessity of dehumidification. The cooling mode, the cooling mode, the MAX cooling mode, and the auxiliary heater single mode are switched to control the temperature of the air blown into the vehicle interior to the target blowing temperature TAO, thereby realizing comfortable and efficient vehicle interior air conditioning.
(8) Control of the compressor 2 in the heating mode by the heat pump controller 32
Next, the control of the compressor 2 in the heating mode described above will be described in detail with reference to FIG. FIG. 4 is a control block diagram of the heat pump controller 32 that determines the target rotational speed (compressor target rotational speed) TGNCh of the compressor 2 for heating mode. The F / F (feed forward) manipulated variable calculation unit 58 of the heat pump controller 32 has an outside air temperature Tam obtained from the outside air temperature sensor 33, a blower voltage BLV of the indoor blower 27, and SW = (TAO−Te) / (TH−Te). ) Obtained by the air mix damper 28, the target supercooling degree TGSC that is the target value of the supercooling degree SC at the outlet of the radiator 4, and the target heater that is the target value of the temperature of the radiator 4 described above. Based on the temperature TCO (transmitted from the air conditioning controller 20) and the target radiator pressure PCO that is the target value of the pressure of the radiator 4, the F / F manipulated variable TGNChff of the compressor target rotational speed is calculated.
Here, the above-mentioned TH for calculating the air volume ratio SW is the temperature of the leeward air of the radiator 4 (hereinafter referred to as the heating temperature), and the heat pump controller 32 calculates the first-order lag calculation formula (II) shown below. presume.
TH = (INTL × TH0 + Tau × THz) / (Tau + INTL) (II)
Here, INTL is the calculation cycle (constant), Tau is the time constant of the primary delay, TH0 is the steady value of the heating temperature TH in the steady state before the primary delay calculation, and THz is the previous value of the heating temperature TH. By estimating the heating temperature TH in this way, there is no need to provide a special temperature sensor.
The heat pump controller 32 changes the time constant Tau and the steady value TH0 according to the operation mode described above, thereby making the above-described estimation formula (II) different depending on the operation mode, and estimates the heating temperature TH. The heating temperature TH is transmitted to the air conditioning controller 20 via the vehicle communication bus 65. The target radiator pressure PCO is calculated by the target value calculator 59 based on the target subcooling degree TGSC and the target heater temperature TCO. Further, the F / B (feedback) manipulated variable calculator 60 calculates the F / B manipulated variable TGNChfb of the compressor target rotational speed based on the target radiator pressure PCO and the radiator pressure PCI that is the refrigerant pressure of the radiator 4. To do. The F / F manipulated variable TGNCnff computed by the F / F manipulated variable computing unit 58 and the TGNChfb computed by the F / B manipulated variable computing unit 60 are added by the adder 61, and the control upper limit value and the control are controlled by the limit setting unit 62. After the lower limit is set, it is determined as the compressor target rotational speed TGNCh. In the heating mode, the heat pump controller 32 controls the rotational speed NC of the compressor 2 based on the compressor target rotational speed TGNCh.
(9) Control of the compressor 2 and the auxiliary heater 23 in the dehumidifying heating mode by the heat pump controller 32
On the other hand, FIG. 5 is a control block diagram of the heat pump controller 32 that determines the target rotational speed (compressor target rotational speed) TGNCc of the compressor 2 for the dehumidifying and heating mode. The F / F manipulated variable calculation unit 63 of the heat pump controller 32 is a target heat release that is a target value of the outside air temperature Tam, the volumetric air volume Ga of the air flowing into the air flow passage 3, and the pressure of the radiator 4 (radiator pressure PCI). Based on the compressor pressure PCO and the target heat absorber temperature TEO which is the target value of the temperature of the heat absorber 9 (heat absorber temperature Te), the F / F manipulated variable TGNCcff of the compressor target rotational speed is calculated.
Further, the F / B operation amount calculation unit 64 calculates the F / B operation amount TGNCcfb of the compressor target rotational speed based on the target heat absorber temperature TEO (transmitted from the air conditioning controller 20) and the heat absorber temperature Te. Then, the F / F manipulated variable TGNCcff computed by the F / F manipulated variable computing unit 63 and the F / B manipulated variable TGNCcfb computed by the F / B manipulated variable computing unit 64 are added by the adder 66, and the limit setting unit 67 After the control upper limit value and the control lower limit value are set, the compressor target rotational speed TGNCc is determined. In the dehumidifying and heating mode, the heat pump controller 32 controls the rotational speed NC of the compressor 2 based on the compressor target rotational speed TGNCc.
FIG. 6 is a control block diagram of the heat pump controller 32 that determines the auxiliary heater required capacity TGQPTC of the auxiliary heater 23 in the dehumidifying heating mode. The subtractor 73 of the heat pump controller 32 receives the target heater temperature TCO and the auxiliary heater temperature Tptc, and calculates a deviation (TCO−Tptc) between the target heater temperature TCO and the auxiliary heater temperature Tptc. This deviation (TCO-Tptc) is input to the F / B control unit 74. The F / B control unit 74 eliminates the deviation (TCO-Tptc) so that the auxiliary heater temperature Tptc becomes the target heater temperature TCO. The required capacity F / B manipulated variable is calculated.
The auxiliary heater required capability F / B manipulated variable calculated by the F / B control unit 74 is determined as the auxiliary heater required capability TGQPTC after the limit setting unit 76 limits the control upper limit value and the control lower limit value. . In the dehumidifying heating mode, the controller 32 controls energization of the auxiliary heater 23 based on the auxiliary heater required capacity TGQPTC, thereby generating heat (heating) of the auxiliary heater 23 so that the auxiliary heater temperature Tptc becomes the target heater temperature TCO. To control.
Thus, in the dehumidifying heating mode, the heat pump controller 32 controls the operation of the compressor based on the heat absorber temperature Te and the target heat absorber temperature TEO, and controls the heat generation of the auxiliary heater 23 based on the target heater temperature TCO. Thus, cooling and dehumidification by the heat absorber 9 and heating by the auxiliary heater 23 in the dehumidifying heating mode are accurately controlled. As a result, it is possible to control the temperature to a more accurate heating temperature while more appropriately dehumidifying the air blown into the passenger compartment, thereby realizing more comfortable and efficient dehumidifying heating in the passenger compartment. Will be able to.
(10) Control of the air mix damper 28
Next, the control of the air mix damper 28 by the air conditioning controller 20 will be described with reference to FIG. In FIG. 3, Ga is the volumetric volume of the air flowing into the air flow passage 3 described above, Te is the heat absorber temperature, and TH is the heating temperature described above (the temperature of the air on the leeward side of the radiator 4).
The air conditioning controller 20 is based on the air volume ratio SW that is passed through the radiator 4 and the auxiliary heater 23 in the heating heat exchange passage 3A calculated by the above-described expression (the following expression (III)) so that the air volume of the ratio is obtained. Further, by controlling the air mix damper 28, the amount of ventilation to the radiator 4 (and the auxiliary heater 23) is adjusted.
SW = (TAO-Te) / (TH-Te) (III)
That is, the air flow rate ratio SW passing through the radiator 4 and the auxiliary heater 23 in the heat exchange passage 3A for heating changes in a range of 0 ≦ SW ≦ 1, and when “0”, the air is not passed through the heat exchange passage 3A for heating. The air mix fully closed state in which all the air in the air flow passage 3 is passed through the bypass passage 3B, and the air mix fully open state in which all the air in the air flow passage 3 is passed through the heating heat exchange passage 3A with "1" It becomes. That is, the air volume to the radiator 4 is Ga × SW.
(11) Defrosting determination of outdoor heat exchanger and compressor stop control based on frosting determination
As described above, in the heating mode, the outdoor heat exchanger 7 absorbs heat from the outside air and becomes a low temperature. Therefore, moisture in the outside air adheres to the outdoor heat exchanger 7 as frost. If this frost growth grows, the heat exchange between the outdoor heat exchanger 7 and the outside air that is vented to it will be significantly impeded, and the operating efficiency of the compressor 2 will be reduced. Moreover, the outdoor blower 15 and the like may be damaged due to excessive frost formation. Therefore, the heat pump controller 32 determines the progress of frost formation on the outdoor heat exchanger 7 as follows.
(11-1) Determination of progress of frost formation on outdoor heat exchanger and compressor stop control (part 1)
Next, an example of determination of the progress of frost formation on the outdoor heat exchanger 7 and stop control of the compressor 2 based on the determination will be described with reference to FIGS. 7 and 8. In this embodiment, the heat pump controller 32 uses the current refrigerant evaporation temperature TXO of the outdoor heat exchanger 7 obtained from the outdoor heat exchanger temperature sensor 54, and the outdoor heat exchanger 7 is not frosted in a low humidity environment. Based on the refrigerant evaporation temperature TXObase of the outdoor heat exchanger 7 at the time of frost formation, the progress state of frost formation on the outdoor heat exchanger 7 is determined.
First, the heat pump controller 32 determines whether or not the vehicle air conditioner 1 (HP) has been determined to be faulty in step S1 of FIG. 7, and if not determined to be faulty, the process proceeds to step S2 where the current frost flag is reset. ("0") is determined. Assuming that the frost flag is currently reset, the heat pump controller 32 proceeds to step S3, and determines whether or not the current operation mode is the heating mode.
If the current operation mode is the heating mode, the process proceeds to step S4, and a difference ΔTXO (ΔTXO = TXObase−TXO) between the refrigerant evaporation temperature TXObase and the current refrigerant evaporation temperature TXO during no frosting is calculated (calculated). To do. In this case, the heat pump controller 32 estimates the refrigerant evaporation temperature TXObase of the outdoor heat exchanger 7 during non-frosting by calculating using the following equation (IV).
TXObase = f (Tam, NC, Ga * SW, VSP, PCI)
= K1 * Tam + k2 * NC + k3 * Ga * SW + k4 * VSP + k5 * PCI
.. (IV)
Here, Tam, which is a parameter of the formula (IV), is the outside air temperature obtained from the outside air temperature sensor 33, NC is the rotation speed of the compressor 2, Ga * SW is the air volume to the radiator 4, and VSP is obtained from the vehicle speed sensor 52. The vehicle speed and PCI to be used are the radiator pressure, and k1 to k5 are coefficients, which are obtained beforehand by experiments.
The outside air temperature Tam is an index indicating the intake air temperature (environmental condition) of the outdoor heat exchanger 7. The lower the outside air temperature Tam (the intake air temperature of the outdoor heat exchanger 7), the lower the TXObase. Therefore, the coefficient k1 is a positive value. Similarly, the index indicating the intake air temperature of the outdoor heat exchanger 7 is not limited to the outdoor air temperature Tam.
Further, the rotational speed NC of the compressor 2 is an index indicating the refrigerant flow rate (operating condition) in the refrigerant circuit R, and TXObase tends to decrease as the rotational speed NC increases (the refrigerant flow rate increases). Therefore, the coefficient k2 is a negative value.
Ga * SW is an index indicating the amount of air passing through the radiator 4 (operating condition). The larger the Ga * SW (the larger the amount of air passing through the radiator 4), the lower the TXObase. Therefore, the coefficient k3 is a negative value. The index indicating the amount of air passing through the radiator 4 is not limited to this, and the blower voltage BLV of the indoor blower 27 may be used.
Further, the vehicle speed VSP is an index indicating the passing air speed (operation state) of the outdoor heat exchanger 7, and the TXObase tends to be lower as the vehicle speed VSP is lower (lower the passing air speed of the outdoor heat exchanger 7). Therefore, the coefficient k4 is a positive value. The index indicating the passing air speed of the outdoor heat exchanger 7 is not limited to this, and the voltage of the outdoor blower 15 may be used.
The radiator pressure PCI is an index indicating the refrigerant pressure (operating condition) of the radiator 4. The higher the radiator pressure PCI, the lower the TXObase. Accordingly, the coefficient k5 is a negative value.
In addition, although the outside temperature Tam, the rotation speed NC of the compressor 2, the passing air amount Ga * SW of the radiator 4, the vehicle speed VSP, and the radiator pressure PCI are used as parameters of the expression (IV) of this embodiment. The parameters of IV) are not limited to all of the above, and any one of them or a combination thereof may be used.
Then, in step S4, the controller 32 calculates the difference ΔTXO (ΔTXO = ΔTX) between the refrigerant evaporating temperature TXObase and the current refrigerant evaporating temperature TXO at the time of no frosting obtained by substituting the current values of the respective parameters into equation (IV). TXObase-TXO) is calculated. Next, the heat pump controller 32 determines whether or not a predetermined time has elapsed after the activation of the heating mode in step S5. If the predetermined time has not elapsed since the start of the heating mode, the process proceeds to step S11 and the compressor 2 is operated. Continue (HP operation). That is, the compressor 2 is not stopped based on the determination of the progress of frost formation on the outdoor heat exchanger 7 described later.
When the predetermined time has elapsed since the activation of the heating mode in step S5, the heat pump controller 32 proceeds to step S6, where the refrigerant evaporation temperature TXO is lower than the refrigerant evaporation temperature TXObase when there is no frost, and the difference ΔTXO is the first. It is determined whether or not the state where the threshold value A1 is larger than the first threshold value A1 (for example, 15 deg) continues for the first predetermined time t1 (for example, 30 seconds). When the predetermined time t1 is continued, it is determined that excessive frost formation has progressed in the outdoor heat exchanger 7 in a short time.
In FIG. 8, the solid line indicates the change in the refrigerant evaporation temperature TXO of the outdoor heat exchanger 7, and the broken line indicates the change in the refrigerant evaporation temperature TXObase when there is no frost formation. In the initial stage of startup (non-frosting), the refrigerant evaporation temperature TXO of the outdoor heat exchanger 7 and the refrigerant evaporation temperature TXObase at the time of no frosting are substantially the same value. As the heating mode progresses, the temperature in the passenger compartment is warmed and the load on the vehicle air conditioner 1 is reduced. Therefore, the refrigerant flow rate and the amount of air passing through the radiator 4 are also reduced. The calculated TXObase (broken line in FIG. 8) rises.
On the other hand, when frost formation occurs in the outdoor heat exchanger 7, the heat exchange performance with the outside air is hindered, so the refrigerant evaporation temperature TXO (solid line) decreases and eventually falls below the TXObase. When the refrigerant evaporation temperature TXO further decreases and the difference ΔTXO (TXObase−TXO) becomes larger than the first threshold value A1, and the state continues for the first predetermined time t1, the heat pump controller 32 performs step S6. Thus, it is determined that excessive frost formation has progressed in the outdoor heat exchanger 7 in a short time, and the process proceeds to step S7.
On the other hand, if excessive frost formation does not proceed in a short time in step S6, the heat pump controller 32 proceeds to step S10, and this time the difference ΔTXO is smaller than the first threshold A1 and the second threshold A2 (for example, 5 deg, etc.). ) It is determined whether or not the state of being greater than the first predetermined time t1 has continued for a second predetermined time t2 (for example, 60 minutes), and the state in which ΔTXO is greater than the second threshold A2 When the predetermined time t2 of 2 is continued, it is determined that moderate frosting has continued in the outdoor heat exchanger 7 for a long time, and the process proceeds to step S7. If it is determined in step S10 that moderate frosting has not continued in the outdoor heat exchanger 7 for a long time, the heat pump controller 32 proceeds to step S11 and continues the operation of the compressor 2.
In step S7, the heat pump controller 32 determines whether the heating temperature TH, which is the temperature of the air downstream of the radiator 4, is lower than the target heater temperature TCO-α (α is a relatively small differential), which is the target value of the temperature of the radiator 4. Judge whether or not. As described above, the target heater temperature TCO calculated from the target outlet temperature TAO is the required capacity of the radiator 4. The heating temperature TH indicates the current heating capacity of the radiator 4. Therefore, when TH ≧ TCO−α (that is, TCO−TH ≦ α), the heating capacity of the radiator 4 satisfies the required capacity. And in the situation where the heating capacity of the radiator 4 satisfies the required capacity (No in step S7), the heat pump controller 32 proceeds to step S11 and continues the operation of the compressor 2.
On the other hand, if the heating temperature TH is lower than the target heater temperature TCO in step S7 and the difference is larger than α (Yes: the heating capacity of the radiator 4 does not satisfy the required capacity), the heat pump controller 32 proceeds to step S8. Proceed and stop the compressor 2 (HP operation not permitted). And it progresses to step S9 and sets a frosting flag ("1"). Thereafter, the process proceeds from step S2 to step S8, and the heat pump controller 32 prohibits starting of the compressor 2 until the frosting flag is reset.
Further, when the compressor 2 is stopped in step S8, the heat pump controller 32 switches the operation mode to the above-described auxiliary heater single mode and heats the vehicle interior by the auxiliary heater 23. In addition, by stopping the compressor 2, the frost formation of the outdoor heat exchanger 7 is melted, and defrosting is performed. In particular, since the defrosting proceeds rapidly while the vehicle is stopped, the heat pump controller 32 determines that the defrosting of the outdoor heat exchanger 7 has been completed, for example, when a predetermined period has elapsed since the compressor 2 was stopped. Then, the frosting flag described above is reset. As a result, the prohibition of starting the compressor 2 based on the determination of the progress of frost formation on the outdoor heat exchanger 7 is released, and the operation mode is switched from the auxiliary heater single mode to the heating mode.
(11-2) Determination of progress of frost formation on outdoor heat exchanger and compressor stop control (part 2)
Next, another example of the determination of the progress of frosting in the outdoor heat exchanger 7 and the stop control of the compressor will be described with reference to FIG. In this example, the heat pump controller 32 performs the same control as in FIG. 7, but the difference ΔTXO in FIG. 7 is replaced with a difference ΔPXO described later. In this embodiment, the heat pump controller 32 is obtained from the outdoor heat exchanger pressure sensor 56.
Based on the current refrigerant evaporation pressure PXO of the outdoor heat exchanger 7 and the refrigerant evaporation pressure PXObase of the outdoor heat exchanger 7 when the outside air is not frosted in the low humidity environment and is not frosted, The progress state of frost formation on the outdoor heat exchanger 7 is determined. In this case, the heat pump controller 32 estimates the refrigerant evaporation pressure PXObase of the outdoor heat exchanger 7 during non-frosting by calculating using the following equation (V).
PXObase = f (Tam, NC, Ga * SW, VSP, PCI)
= K6 * Tam + k7 * NC + k8 * Ga * SW + k9 * VSP + k10 * PCI
.. (V)
In addition, since each parameter of Formula (V) is the same as that of Formula (IV), description is abbreviate | omitted. Also, the coefficients k6 to k10 have the same tendency (positive / negative) as the coefficients k1 to k5 described above.
In FIG. 9, the solid line indicates the change in the refrigerant evaporation pressure PXO of the outdoor heat exchanger 7, and the broken line indicates the change in the refrigerant evaporation pressure PXObase when there is no frost formation. In the initial stage of startup (non-frosting), the refrigerant evaporation pressure PXO of the outdoor heat exchanger 7 and the refrigerant evaporation pressure PXObase at the time of no frosting are substantially the same value. As the heating mode progresses, the temperature in the passenger compartment is warmed and the load on the vehicle air conditioner 1 is reduced. Therefore, the refrigerant flow rate and the amount of air passing through the radiator 4 are also reduced. The calculated PXObase (broken line in FIG. 9) rises.
On the other hand, when frost formation occurs in the outdoor heat exchanger 7, the heat exchange performance with the outside air is hindered, so the refrigerant evaporation pressure PXO (solid line) decreases and eventually falls below PXObase. In this embodiment, the heat pump controller 32 substitutes the current value of each parameter for the equation (V) in step S4 of FIG. 7 and the refrigerant evaporation pressure PXObase at the time of no frost formation and the current refrigerant evaporation. A difference ΔPXO (ΔPXO = PXObase−PXO) from the pressure PXO is calculated (calculated). Thereafter, the control is performed by replacing the difference ΔTXO in step S6 and step S10 in FIG. 7 with the difference ΔPXO. However, the first threshold value A1 and the second threshold value A2 are different from the case of the difference ΔTXO.
As described above, the heat pump controller 32 determines the progress of frost formation on the outdoor heat exchanger 7 based on the difference ΔTXO or the difference ΔPXO, and the state in which the frost formation on the outdoor heat exchanger 7 has progressed. If the compressor 2 is stopped when it continues for a predetermined time, the compressor 2 can be stopped in a state where frost formation on the outdoor heat exchanger 7 has progressed. Thereby, it is possible to prevent the operation of the compressor 2 from being continued in a situation where the operation efficiency is reduced due to the frost formation of the outdoor heat exchanger 7 and contribute to energy saving, and the outdoor heat exchanger. Thus, it is possible to solve the problem of equipment reliability reduction and defrosting due to the excessive frost of 7.
In this case, the heat pump controller 32 determines the refrigerant evaporation temperature TXObase of the outdoor heat exchanger 7 when there is no frosting and the refrigerant evaporation pressure PXObase of the outdoor heat exchanger 7 when there is no frosting based on an index indicating environmental conditions and operating conditions. Since it estimates, the progress of frost formation of the outdoor heat exchanger 7 can be accurately detected. Further, the heat pump controller 32 stops the compressor 2 when the difference ΔTXO or the difference ΔPXO is larger than the first threshold value A1 for the first predetermined time t1, so that the excessive amount of the outdoor heat exchanger 7 is excessive. When the frost formation proceeds in a relatively short time, the compressor 2 can be quickly stopped.
On the other hand, when the difference ΔTXO or the difference ΔPXO is larger than the second threshold A2 smaller than the first threshold A1, the heat pump controller 32 continues for a second predetermined time t2 longer than the first predetermined time t1. Since the compressor 2 is also stopped, the compressor 2 can be reliably stopped even when moderate frost formation of the outdoor heat exchanger 7 continues for a relatively long time.
However, since the heat pump controller 32 does not stop the compressor 2 based on the determination of the progress of frost formation on the outdoor heat exchanger 7 when the heating capacity of the radiator 4 satisfies the required capacity, the radiator In the situation where the heating capability by 4 is achieved, the stop of the compressor 2 is prohibited, and the comfortable heating in the passenger compartment can be continued as it is.
Moreover, since the heat pump controller 32 does not stop the compressor 2 based on the determination of the progress state of frost formation on the outdoor heat exchanger 7 until a predetermined time has elapsed after activation, the unstable operation state immediately after activation. This makes it possible to eliminate misjudgment.
Furthermore, the heat pump controller 32 starts the compressor 2 until the outdoor heat exchanger 7 is defrosted after stopping the compressor 2 based on the determination of the progress of frost formation on the outdoor heat exchanger 7. Since the prohibition is prohibited, the restart of the compressor 2 in a state where the frost is left in the outdoor heat exchanger 7 is prohibited, so that it is possible to avoid inconvenience that frost that is hard to melt is generated. become.
Furthermore, when the compressor 2 is stopped based on the determination of the progress of frost formation on the outdoor heat exchanger 7, the heat pump controller 32 heats the vehicle interior by the auxiliary heater 23 in the auxiliary heater single mode. Even when the compressor 2 is stopped due to a decrease in the operation efficiency of No. 2, the passenger compartment can be heated by the auxiliary heater 23 to reduce the passenger's discomfort.
 (12)吸込冷媒温度Ts、吸込冷媒圧力Psに基づく圧縮機の停止制御
 次に、圧縮機2の吸込冷媒温度Tsや吸込冷媒圧力Psに基づいて圧縮機2の運転効率の低下を解消するもう一つの制御について説明する。外気温度Tamの低下すると圧縮機2の吸込冷媒温度Tsや吸込冷媒圧力Psが低下するため、その状態では圧縮機2の回転数NCを上げられなくなり、運転効率が低下する。そこで、ヒートポンプコントローラ32は吸込温度センサ55が検出する圧縮機2の吸込冷媒温度Tsと吸込圧力センサ44が検出する圧縮機2の吸込冷媒圧力Psに基づいて、以下のように圧縮機2を停止する制御を実行する。
 次に、図10及び図11を用いてこの吸込冷媒温度Ts、吸込冷媒圧力Psに基づく圧縮機2の停止制御の一例を説明する。この実施例では、ヒートポンプコントローラ32は先ず、図10のステップS13で車両用空気調和装置1(HP)が故障判定されていないか否か判断し、故障判定されていなければヒートポンプコントローラ32はステップS14に進み、現在の運転モードが暖房モードか否か判断する。
 そして、現在の運転モードが暖房モードである場合はステップS15に進み、吸込冷媒温度Tsや吸込冷媒圧力Psに基づいた後述する保護制御で圧縮機2が停止した直後であるか否か判断する。現在は直後では無いものとするとヒートポンプコントローラ32はステップS16に進み、吸込冷媒温度Tsが所定の第1の所定値Ts1より低くなったか否か、又は、吸込冷媒圧力Psが所定の第1の所定値Ps1より低くなったか否か判断する。ここで、Ts≧Ts1、且つ、Ps≧Ps1である場合にはステップS22に進んで圧縮機2の運転(HP運転)を継続する。
 一方、外気温度が低下する等により吸込冷媒温度Tsが第1の所定値Ts1より低くなった場合、又は、吸込冷媒圧力Psが第1の所定値Ps1より低くなった場合、ヒートポンプコントローラ32はステップS16からステップS17に進み、吸込冷媒温度Tsや吸込冷媒圧力Psに基づいた圧縮機2の回転数NCの制限制御を実行する。この制限制御では、ヒートポンプコントローラ32は所定ステップずつ圧縮機2の回転数NCを減速させる制御を行う。従って、このステップS16に戻って来る毎に圧縮機2の回転数NCは所定ステップずつ低下してことになる。
 次に、ヒートポンプコントローラ32はステップS18に進み、暖房モードの起動後、所定時間経過しているか否か判断し、起動初期であって所定時間が経過していなければステップS22に進んで圧縮機2の運転(HP運転)を継続する。ステップS18で暖房モードの起動から所定時間が経過している場合、ヒートポンプコントローラ32はステップS19に進み、前述した圧縮機2の回転数NCの制限制御状態であって、且つ、当該圧縮機2の回転数NCが所定値NC1(制御上の最低回転数(例えば800rpm)より高い所定の値)よりも低くなった状態が所定時間継続しているか否か判断する。
 この時点では圧縮機2の回転数NCが所定値NC1よりも低くなった状態が所定時間継続していない場合には、ヒートポンプコントローラ32はステップS22に進んで圧縮機2の運転(HP運転)を継続する。他方、圧縮機2の回転数NCの制限制御状態となって、当該圧縮機2の回転数NCが所定値NC1よりも低くなった状態が所定時間継続している場合、ヒートポンプコントローラ32はステップS19からステップS20に進んで圧縮機2を停止する(HP運転不許可)。また、ヒートポンプコントローラ32はステップS20で圧縮機2を停止した場合、運転モードを前述した補助ヒータ単独モードに切り換え、補助ヒータ23により車室内を暖房を行う。
 この様子を吸込冷媒温度Tsを例に採って図11に示す。通常制御で外気温度Tamが低下し、吸込冷媒温度Tsが第1所定値Ts1(例えば、−22℃等)より低くなった後は、圧縮機2の回転数NCの制限制御が開始されて圧縮機2の回転数NCは低下していく(Ts制限制御中)。また、係る制限制御によって吸込冷媒温度Tsは低い状態で推移することになる。その後、圧縮機2の回転数が所定値NC1より低下し、その状態が所定時間継続した時点で圧縮機2は停止されることになる(Ts保護制御中)。
 ここで、図11中に破線で示すものは従来の圧縮機2の保護制御である。従来は吸込冷媒温度Tsが第1の所定値Ts1よりも更に低い保護停止値Ts3になった時点で圧縮機2を停止していたため、実線で示す本発明の停止制御の場合に比して長時間、圧縮機2は低い回転数NCで運転されていたが、本発明の実施例の停止制御によればより早い段階で圧縮機2を停止させ、運転効率の悪い状況での運転を回避できるようになった。
 このような吸込冷媒温度Tsや吸込冷媒圧力Psに基づいた保護制御で圧縮機2が停止された直後、ヒートポンプコントローラ32は今度はステップS15からステップS21に進むようになる。このステップS21では、ヒートポンプコントローラ32は今度は吸込冷媒温度Tsが前述した第1の所定値Ts1より高い第2の所定値Ts2より高くなったか、又は、吸込冷媒圧力Psが前述した第1の所定値Ps1より高い第2の所定値Ps2より高くなったか、若しくは、外気温度センサ33が検出する外気温度Tamが所定値(例えば−15℃等)より高くなった否か判断する。ここで、未だTs<Ts2、且つ、Ps<Ps2、且つ、Tam<所定値(−15℃)である場合には、ヒートポンプコントローラ32はステップS20に進んで圧縮機2の起動を禁止する。 外気温度Tamの上昇等に伴って冷媒吸込温度Tsや冷媒吸込圧力Psが上昇し、吸込冷媒温度Tsが第2の所定値Ts2より高くなった場合、又は、吸込冷媒圧力Psが第2の所定値Ps2より高くなった場合、若しくは、外気温度Tamが所定値より高くなった場合、ヒートポンプコントローラ32はステップS21からステップS22に進み、圧縮機2の運転する。図11の例では第2の所定値Ts2(例えば、−19℃等)より高くなった時点で圧縮機2の起動禁止が解除されている(通常制御へ復帰)。即ち、冷媒吸込温度Tsや冷媒吸込圧力Psの判定に基づく圧縮機2の起動禁止が解除され、運転モードが補助ヒータ単独モードから暖房モードに切り換えられることになる。
 この実施例のように圧縮機2の吸込冷媒温度Tsが第1の所定値Ts1より低くなった場合、又は、圧縮機2の吸込冷媒圧力Psが第1の所定値Ps1より低くなった場合、ヒートポンプコントローラ32が圧縮機2の回転数NCを減速させる制限制御を実行すると共に、この制限制御状態において、圧縮機2の回転数NCが所定値NC1よりも低い状態が所定時間継続した場合、当該圧縮機2を停止するようにすれば、外気温度Tamの低下等によって圧縮機2の吸込冷媒温度Tsや吸込冷媒圧力Psが低下した状態では圧縮機2を停止することができるようになる。
 これにより、吸込冷媒温度Tsや吸込冷媒圧力Psが低く運転効率が低下した状況で、圧縮機2の運転が継続されることを防止し、省エネルギーに寄与することができるようになると共に、機器の信頼性低下の問題も解消することが可能となる。
 このときヒートポンプコントローラ32は、圧縮機2の吸込冷媒温度Tsが第1の所定値Ts1より低くなった場合、又は、圧縮機2の吸込冷媒圧力Psが第1の所定値Ps1より低くなった場合、圧縮機2の回転数NCを減速させる制限制御を実行するので、吸込冷媒温度Tsや吸込冷媒圧力Psの低下で圧縮機2が停止されることをできるだけ回避し、或いは、停止されるまでの時間を延長することができるようになり、車室内の快適な暖房をできるだけ継続することができるようになる。
 また、ヒートポンプコントローラ32は、暖房モードの起動後所定時間経過するまでは、圧縮機2の吸込冷媒温度Ts、又は、吸込冷媒圧力Psに基づく制限制御状態での圧縮機2の停止を行わないので、起動直後の不安定な運転状態での誤った圧縮機2の停止を排除することができるようになる。
 更に、ヒートポンプコントローラ32は、圧縮機2の吸込冷媒温度Ts、又は、吸込冷媒圧力Psの判定に基づいて当該圧縮機2を停止した後、圧縮機2の吸込冷媒温度Tsが第2の所定値Ts2より高くなるまで、又は、圧縮機2の吸込冷媒圧力Psが第2の所定値Ps2より高くなるまで、若しくは、外気温度Tamが所定値より高くなるまでは、圧縮機2の起動を禁止するので、外気温度Tamが低く、制限制御となって圧縮機2の回転数NCが所定値NC1より低くなると予想される状況では圧縮機2の起動を許可せず、頻繁に圧縮機2が停止/起動されてしまう不都合を回避することができるようになる。
 そして、この場合にもヒートポンプコントローラ32は圧縮機2の吸込冷媒温度Ts、又は、吸込冷媒圧力Psの判定に基づいて圧縮機2を停止した場合、補助ヒータ23により車室内を暖房するので、圧縮機2の運転効率の低下のために当該圧縮機を停止した場合にも、補助ヒータ23によって車室内を暖房し、搭乗者の不快感を低減することができるようになる。
(12) Compressor Stop Control Based on Suction Refrigerant Temperature Ts and Suction Refrigerant Pressure Ps Next, the reduction in operating efficiency of the compressor 2 will be eliminated based on the suction refrigerant temperature Ts and suction refrigerant pressure Ps of the compressor 2. One control will be described. When the outside air temperature Tam is lowered, the suction refrigerant temperature Ts and the suction refrigerant pressure Ps of the compressor 2 are lowered. Therefore, in this state, the rotational speed NC of the compressor 2 cannot be increased, and the operation efficiency is lowered. Therefore, the heat pump controller 32 stops the compressor 2 as follows based on the suction refrigerant temperature Ts of the compressor 2 detected by the suction temperature sensor 55 and the suction refrigerant pressure Ps of the compressor 2 detected by the suction pressure sensor 44. Execute control to
Next, an example of the stop control of the compressor 2 based on the suction refrigerant temperature Ts and the suction refrigerant pressure Ps will be described with reference to FIGS. 10 and 11. In this embodiment, the heat pump controller 32 first determines whether or not the vehicle air conditioner 1 (HP) has not been determined to be faulty in step S13 of FIG. 10, and if not determined to be faulty, the heat pump controller 32 is step S14. It progresses to and it is judged whether the present operation mode is heating mode.
And when the present operation mode is heating mode, it progresses to Step S15, and it is judged whether it is immediately after the compressor 2 stopped by protection control mentioned below based on suction refrigerant temperature Ts and suction refrigerant pressure Ps. If it is not immediately after that, the heat pump controller 32 proceeds to step S16 to determine whether the suction refrigerant temperature Ts has become lower than a predetermined first predetermined value Ts1, or whether the suction refrigerant pressure Ps has a predetermined first predetermined value. It is determined whether or not the value is lower than the value Ps1. Here, when Ts ≧ Ts1 and Ps ≧ Ps1, the process proceeds to step S22 and the operation of the compressor 2 (HP operation) is continued.
On the other hand, when the suction refrigerant temperature Ts becomes lower than the first predetermined value Ts1 due to a decrease in the outside air temperature or the like, or when the suction refrigerant pressure Ps becomes lower than the first predetermined value Ps1, the heat pump controller 32 performs a step. Proceeding from S16 to step S17, restriction control of the rotational speed NC of the compressor 2 based on the suction refrigerant temperature Ts and the suction refrigerant pressure Ps is executed. In this limit control, the heat pump controller 32 performs control to decelerate the rotational speed NC of the compressor 2 by predetermined steps. Therefore, every time the process returns to step S16, the rotational speed NC of the compressor 2 decreases by a predetermined step.
Next, the heat pump controller 32 proceeds to step S18 to determine whether or not a predetermined time has elapsed after the activation of the heating mode. If the predetermined time has not elapsed since the start of the heating mode, the process proceeds to step S22 and the compressor 2 Continue the operation (HP operation). If the predetermined time has elapsed since the activation of the heating mode in step S18, the heat pump controller 32 proceeds to step S19, is in the above-described limit control state of the rotational speed NC of the compressor 2, and the compressor 2 It is determined whether or not the state in which the rotational speed NC is lower than a predetermined value NC1 (a predetermined value higher than the lowest control rotational speed (for example, 800 rpm)) continues for a predetermined time.
At this time, if the state where the rotational speed NC of the compressor 2 is lower than the predetermined value NC1 does not continue for a predetermined time, the heat pump controller 32 proceeds to step S22 and operates the compressor 2 (HP operation). continue. On the other hand, when the rotational speed NC of the compressor 2 is in the limit control state and the state where the rotational speed NC of the compressor 2 is lower than the predetermined value NC1 continues for a predetermined time, the heat pump controller 32 performs step S19. Advances to step S20 to stop the compressor 2 (HP operation not permitted). Further, when the compressor 2 is stopped in step S20, the heat pump controller 32 switches the operation mode to the auxiliary heater single mode described above, and heats the vehicle interior by the auxiliary heater 23.
This state is shown in FIG. 11 taking the suction refrigerant temperature Ts as an example. After the outside air temperature Tam is lowered by the normal control and the suction refrigerant temperature Ts becomes lower than the first predetermined value Ts1 (for example, −22 ° C., etc.), the restriction control of the rotational speed NC of the compressor 2 is started and the compression is started. The rotational speed NC of the machine 2 decreases (during Ts restriction control). Further, the suction refrigerant temperature Ts changes in a low state by the restriction control. Thereafter, when the rotation speed of the compressor 2 falls below the predetermined value NC1, and the state continues for a predetermined time, the compressor 2 is stopped (during Ts protection control).
Here, what is indicated by a broken line in FIG. 11 is protection control of the conventional compressor 2. Conventionally, since the compressor 2 is stopped when the suction refrigerant temperature Ts reaches a protection stop value Ts3 that is lower than the first predetermined value Ts1, it is longer than in the case of the stop control of the present invention indicated by the solid line. Although the compressor 2 was operated at a low rotational speed NC over time, according to the stop control of the embodiment of the present invention, the compressor 2 can be stopped at an earlier stage, and operation in a situation where the operation efficiency is poor can be avoided. It became so.
Immediately after the compressor 2 is stopped by the protection control based on the suction refrigerant temperature Ts and the suction refrigerant pressure Ps, the heat pump controller 32 proceeds from step S15 to step S21. In this step S21, the heat pump controller 32 now has the suction refrigerant temperature Ts higher than the second predetermined value Ts2 higher than the first predetermined value Ts1 described above, or the suction refrigerant pressure Ps is the first predetermined value described above. It is determined whether or not it has become higher than a second predetermined value Ps2 that is higher than the value Ps1, or whether the outside air temperature Tam detected by the outside air temperature sensor 33 has become higher than a predetermined value (for example, −15 ° C.). Here, if Ts <Ts2, Ps <Ps2, and Tam <predetermined value (−15 ° C.), the heat pump controller 32 proceeds to step S20 and prohibits the compressor 2 from starting. The refrigerant suction temperature Ts and the refrigerant suction pressure Ps rise as the outside air temperature Tam rises, and the suction refrigerant temperature Ts becomes higher than a second predetermined value Ts2, or the suction refrigerant pressure Ps is a second predetermined value. When it becomes higher than the value Ps2 or when the outside air temperature Tam becomes higher than a predetermined value, the heat pump controller 32 proceeds from step S21 to step S22, and the compressor 2 is operated. In the example of FIG. 11, the start prohibition of the compressor 2 is released (returned to normal control) when it becomes higher than a second predetermined value Ts2 (for example, −19 ° C. or the like). That is, the prohibition of starting the compressor 2 based on the determination of the refrigerant suction temperature Ts and the refrigerant suction pressure Ps is released, and the operation mode is switched from the auxiliary heater single mode to the heating mode.
When the suction refrigerant temperature Ts of the compressor 2 becomes lower than the first predetermined value Ts1 as in this embodiment, or when the suction refrigerant pressure Ps of the compressor 2 becomes lower than the first predetermined value Ps1, When the heat pump controller 32 executes the limit control for decelerating the rotational speed NC of the compressor 2 and the state in which the rotational speed NC of the compressor 2 is lower than the predetermined value NC1 continues in this limited control state for a predetermined time, If the compressor 2 is stopped, the compressor 2 can be stopped in a state where the suction refrigerant temperature Ts and the suction refrigerant pressure Ps of the compressor 2 are lowered due to a decrease in the outside air temperature Tam or the like.
As a result, it is possible to prevent the operation of the compressor 2 from continuing in a situation where the suction refrigerant temperature Ts and the suction refrigerant pressure Ps are low and the operation efficiency is lowered, thereby contributing to energy saving. It is possible to solve the problem of reliability degradation.
At this time, when the suction refrigerant temperature Ts of the compressor 2 becomes lower than the first predetermined value Ts1 or when the suction refrigerant pressure Ps of the compressor 2 becomes lower than the first predetermined value Ps1. Since the restriction control for reducing the rotational speed NC of the compressor 2 is executed, it is avoided as much as possible that the compressor 2 is stopped due to a decrease in the suction refrigerant temperature Ts and the suction refrigerant pressure Ps, or until the stop. The time can be extended, and the comfortable heating of the passenger compartment can be continued as much as possible.
Further, the heat pump controller 32 does not stop the compressor 2 in the restriction control state based on the suction refrigerant temperature Ts or the suction refrigerant pressure Ps of the compressor 2 until a predetermined time has elapsed after the activation of the heating mode. Thus, an erroneous stop of the compressor 2 in an unstable operation state immediately after startup can be eliminated.
Further, the heat pump controller 32 stops the compressor 2 based on the determination of the suction refrigerant temperature Ts of the compressor 2 or the suction refrigerant pressure Ps, and then the suction refrigerant temperature Ts of the compressor 2 is a second predetermined value. Start of the compressor 2 is prohibited until it becomes higher than Ts2, or until the suction refrigerant pressure Ps of the compressor 2 becomes higher than the second predetermined value Ps2, or until the outside air temperature Tam becomes higher than the predetermined value. Therefore, in a situation where the outside air temperature Tam is low and the control is expected to cause the rotational speed NC of the compressor 2 to be lower than the predetermined value NC1, the start-up of the compressor 2 is not permitted and the compressor 2 is frequently stopped / The inconvenience of being activated can be avoided.
Also in this case, when the compressor 2 is stopped based on the determination of the suction refrigerant temperature Ts or the suction refrigerant pressure Ps of the compressor 2, the heat pump controller 32 heats the vehicle interior by the auxiliary heater 23. Even when the compressor is stopped due to a decrease in the operation efficiency of the machine 2, the passenger compartment can be heated by the auxiliary heater 23 to reduce the discomfort of the passenger.
 次に、図12は本発明を適用した他の実施例の車両用空気調和装置1の構成図を示している。尚、この図において図1と同一符号で示すものは同一若しくは同様の機能を奏するものである。この実施例の場合、過冷却部16の出口は逆止弁18に接続され、この逆止弁18の出口が冷媒配管13Bに接続されている。尚、逆止弁18は冷媒配管13B(室内膨張弁8)側が順方向とされている。
 また、放熱器4の出口側の冷媒配管13Eは室外膨張弁6の手前で分岐しており、この分岐した冷媒配管(以下、第2のバイパス配管と称する)13Fは電磁弁22(除湿用)を介して逆止弁18の下流側の冷媒配管13Bに連通接続されている。更に、吸熱器9の出口側の冷媒配管13Cには、内部熱交換器19の冷媒下流側であって、冷媒配管13Dとの合流点より冷媒上流側に蒸発圧力調整弁70が接続されている。そして、これら電磁弁22や蒸発圧力調整弁70もヒートポンプコントローラ32の出力に接続されている。尚、前述の実施例の図1中のバイパス配管35、電磁弁30及び電磁弁40から成るバイパス装置45は設けられていない。その他は図1と同様であるので説明を省略する。
 以上の構成で、この実施例の車両用空気調和装置1の動作を説明する。ヒートポンプコントローラ32はこの実施例では、暖房モード、除湿暖房モード、内部サイクルモード、除湿冷房モード、冷房モード及び補助ヒータ単独モードの各運転モードを切り換えて実行する(MAX冷房モードはこの実施例では存在しない)。尚、暖房モード、除湿冷房モード及び冷房モードが選択されたときの動作及び冷媒の流れと、補助ヒータ単独モードは前述の実施例(実施例1)の場合と同様であるので説明を省略する。但し、この実施例(実施例3)ではこれら暖房モード、除湿冷房モード及び冷房モードにおいては電磁弁22を閉じるものとする。
 (13)図12の車両用空気調和装置1の除湿暖房モード
 他方、除湿暖房モードが選択された場合、この実施例ではヒートポンプコントローラ32は電磁弁21(暖房用)を開放し、電磁弁17(冷房用)を閉じる。また、電磁弁22(除湿用)を開放する。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量の調整も行う。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は冷媒配管13Gから放熱器4に流入する。放熱器4には暖房用熱交換通路3Aに流入した空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A、電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。
 また、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部は分流され、電磁弁22を経て第2のバイパス配管13F及び冷媒配管13Bより内部熱交換器19を経て室内膨張弁8に至るようになる。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は、内部熱交換器19、蒸発圧力調整弁70を順次経て冷媒配管13Cにて冷媒配管13Dからの冷媒と合流した後、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。
 空調コントローラ20は、目標吹出温度TAOから算出される目標ヒータ温度TCO(放熱器出口温度TCIの目標値)をヒートポンプコントローラ32に送信する。ヒートポンプコントローラ32は、この目標ヒータ温度TCOから目標放熱器圧力PCO(放熱器圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数NCを制御し、放熱器4による加熱を制御する。また、ヒートポンプコントローラ32は、吸熱器温度センサ48が検出する吸熱器9の温度Teと、空調コントローラ20から送信された目標吸熱器温度TEOに基づいて室外膨張弁6の弁開度を制御する。また、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度Teに基づき、蒸発圧力調整弁70を開(流路を拡大する)/閉(少許冷媒が流れる)して吸熱器9の温度が下がり過ぎて凍結する不都合を防止する。
 (14)図12の車両用空気調和装置1の内部サイクルモード
 また、内部サイクルモードでは、ヒートポンプコントローラ32は上記除湿暖房モードの状態において室外膨張弁6を全閉とする(全閉位置)と共に、電磁弁21を閉じる。この室外膨張弁6と電磁弁21が閉じられることにより、室外熱交換器7への冷媒の流入、及び、室外熱交換器7からの冷媒の流出は阻止されることになるので、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒は電磁弁22を経て第2のバイパス配管13Fに全て流れるようになる。そして、第2のバイパス配管13Fを流れる冷媒は冷媒配管13Bより内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は、内部熱交換器19、蒸発圧力調整弁70を順次経て冷媒配管13Cを流れ、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより、車室内の除湿暖房が行われることになるが、この内部サイクルモードでは室内側の空気流通路3内にある放熱器4(放熱)と吸熱器9(吸熱)の間で冷媒が循環されることになるので、外気からの熱の汲み上げは行われず、圧縮機2の消費動力分の暖房能力が発揮される。除湿作用を発揮する吸熱器9には冷媒の全量が流れるので、上記除湿暖房モードに比較すると除湿能力は高いが、暖房能力は低くなる。
 空調コントローラ20は目標吹出温度TAOから算出される目標ヒータ温度TCO(放熱器出口温度TCIの目標値)をヒートポンプコントローラ32に送信する。ヒートポンプコントローラ32は送信された目標ヒータ温度TCOから目標放熱器圧力PCO(放熱器圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数NCを制御し、放熱器4による加熱を制御する。
 そして、この実施例の場合にも前述した(11)の室外熱交換器の着霜判定と、着霜判定に基づく圧縮機の停止制御を行うことで、室外熱交換器7の着霜により運転効率が低下した状況で、圧縮機2の運転が継続されることを防止し、省エネルギーに寄与することができるようになると共に、室外熱交換器7の過着霜に伴う機器の信頼性低下や除霜の問題も解消することが可能となる。また、前述した(12)の吸込冷媒温度Ts、吸込冷媒圧力Psに基づく圧縮機の停止制御を行うことで、外気温度の低下等により吸込冷媒温度Tsや吸込冷媒圧力Psが低く運転効率が低下した状況で、圧縮機2の運転が継続されることを防止し、省エネルギーに寄与することができるようになると共に、機器の信頼性低下の問題も解消することが可能となる。
 尚、各実施例で示した数値等はそれに限られるものでは無く、適用する装置に応じて適宜設定すべきものである。また、補助加熱装置は実施例で示した補助ヒータ23に限られるものでは無く、ヒータで加熱された熱媒体を循環させて空気流通路3内の空気を加熱する熱媒体循環回路や、エンジンで加熱されたラジエター水を循環するヒータコア等を利用してもよい。
Next, FIG. 12 shows a configuration diagram of a vehicle air conditioner 1 of another embodiment to which the present invention is applied. In this figure, the same reference numerals as those in FIG. 1 indicate the same or similar functions. In the case of this embodiment, the outlet of the supercooling section 16 is connected to the check valve 18, and the outlet of the check valve 18 is connected to the refrigerant pipe 13B. The check valve 18 has a forward direction on the refrigerant pipe 13B (indoor expansion valve 8) side.
The refrigerant pipe 13E on the outlet side of the radiator 4 is branched before the outdoor expansion valve 6, and the branched refrigerant pipe (hereinafter referred to as second bypass pipe) 13F is an electromagnetic valve 22 (for dehumidification). Is connected to the refrigerant pipe 13B downstream of the check valve 18. Further, an evaporating pressure adjusting valve 70 is connected to the refrigerant pipe 13C on the outlet side of the heat absorber 9 on the refrigerant downstream side of the internal heat exchanger 19 and upstream of the refrigerant with respect to the refrigerant pipe 13D. . The electromagnetic valve 22 and the evaporation pressure adjusting valve 70 are also connected to the output of the heat pump controller 32. Note that the bypass device 45 including the bypass pipe 35, the electromagnetic valve 30, and the electromagnetic valve 40 in FIG. 1 of the above-described embodiment is not provided. Others are the same as in FIG.
With the above configuration, the operation of the vehicle air conditioner 1 of this embodiment will be described. In this embodiment, the heat pump controller 32 switches between the heating mode, the dehumidifying heating mode, the internal cycle mode, the dehumidifying cooling mode, the cooling mode, and the auxiliary heater single mode (the MAX cooling mode is present in this embodiment). do not do). The operation when the heating mode, the dehumidifying and cooling mode, and the cooling mode are selected, the refrigerant flow, and the auxiliary heater single mode are the same as those in the above-described embodiment (embodiment 1), and thus the description thereof is omitted. However, in this embodiment (Example 3), the solenoid valve 22 is closed in these heating mode, dehumidifying cooling mode, and cooling mode.
(13) Dehumidifying and heating mode of the vehicle air conditioner 1 of FIG. 12 On the other hand, when the dehumidifying and heating mode is selected, in this embodiment, the heat pump controller 32 opens the electromagnetic valve 21 (for heating) and the electromagnetic valve 17 ( Close for cooling. Further, the electromagnetic valve 22 (for dehumidification) is opened. Then, the compressor 2 is operated. The air conditioning controller 20 operates each of the blowers 15 and 27, and the air mix damper 28 basically heats all the air in the air flow passage 3 that is blown out from the indoor blower 27 and passes through the heat absorber 9 to the heat exchange passage 3A for heating. The auxiliary heater 23 and the radiator 4 are ventilated, but the air volume is also adjusted.
Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G. Since the air in the air flow path 3 that has flowed into the heat exchange path 3A for heating is passed through the heat radiator 4, the air in the air flow path 3 is heated by the high-temperature refrigerant in the heat radiator 4, while the heat radiator The refrigerant in 4 is deprived of heat by the air and cooled to condense.
The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the refrigerant circuit R becomes a heat pump. Then, the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 through the refrigerant pipe 13C through the refrigerant pipe 13A, the solenoid valve 21 and the refrigerant pipe 13D, and is gas-liquid separated there. Repeated circulation inhaled.
Further, a part of the condensed refrigerant flowing through the refrigerant pipe 13E through the radiator 4 is diverted, passes through the electromagnetic valve 22, and reaches the indoor expansion valve 8 through the internal heat exchanger 19 from the second bypass pipe 13F and the refrigerant pipe 13B. It becomes like this. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
The refrigerant evaporated in the heat absorber 9 sequentially passes through the internal heat exchanger 19 and the evaporation pressure adjusting valve 70 and then merges with the refrigerant from the refrigerant pipe 13D in the refrigerant pipe 13C. Then, the refrigerant is sucked into the compressor 2 through the accumulator 12. repeat. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed.
The air conditioning controller 20 transmits the target heater temperature TCO (target value of the radiator outlet temperature TCI) calculated from the target blowing temperature TAO to the heat pump controller 32. The heat pump controller 32 calculates a target radiator pressure PCO (target value of the radiator pressure PCI) from the target heater temperature TCO, and the refrigerant of the radiator 4 detected by the target radiator pressure PCO and the radiator pressure sensor 47. The number of revolutions NC of the compressor 2 is controlled based on the pressure (radiator pressure PCI, high pressure of the refrigerant circuit R), and heating by the radiator 4 is controlled. The heat pump controller 32 controls the valve opening degree of the outdoor expansion valve 6 based on the temperature Te of the heat absorber 9 detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO transmitted from the air conditioning controller 20. In addition, the heat pump controller 32 opens (enlarges the flow path) / closes (flows a small amount of refrigerant) the heat absorber 9 based on the temperature Te of the heat absorber 9 detected by the heat absorber temperature sensor 48. The inconvenience of freezing due to too low temperature is prevented.
(14) Internal cycle mode of the vehicle air conditioner 1 of FIG. 12 In the internal cycle mode, the heat pump controller 32 fully closes the outdoor expansion valve 6 in the dehumidifying and heating mode state (fully closed position), The solenoid valve 21 is closed. Since the outdoor expansion valve 6 and the electromagnetic valve 21 are closed, the inflow of refrigerant to the outdoor heat exchanger 7 and the outflow of refrigerant from the outdoor heat exchanger 7 are blocked. The condensed refrigerant flowing through the refrigerant pipe 13E through the refrigerant flows through the electromagnetic valve 22 to the second bypass pipe 13F. The refrigerant flowing through the second bypass pipe 13F reaches the indoor expansion valve 8 via the internal heat exchanger 19 from the refrigerant pipe 13B. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
The refrigerant evaporated in the heat absorber 9 sequentially flows through the refrigerant pipe 13C through the internal heat exchanger 19 and the evaporation pressure adjustment valve 70, and repeats circulation that is sucked into the compressor 2 through the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed. Since the refrigerant is circulated between the radiator 4 (radiation) and the heat absorber 9 (heat absorption) in the passage 3, heat from the outside air is not pumped up, and heating for the consumed power of the compressor 2 is performed. Ability is demonstrated. Since the entire amount of the refrigerant flows through the heat absorber 9 that exhibits the dehumidifying action, the dehumidifying capacity is higher than that in the dehumidifying and heating mode, but the heating capacity is lowered.
The air conditioning controller 20 transmits the target heater temperature TCO (target value of the radiator outlet temperature TCI) calculated from the target outlet temperature TAO to the heat pump controller 32. The heat pump controller 32 calculates the target radiator pressure PCO (target value of the radiator pressure PCI) from the transmitted target heater temperature TCO, and the target radiator pressure PCO and the radiator 4 detected by the radiator pressure sensor 47. The rotational speed NC of the compressor 2 is controlled based on the refrigerant pressure (radiator pressure PCI, high pressure of the refrigerant circuit R), and heating by the radiator 4 is controlled.
And also in the case of this Example, it operates by frost formation of the outdoor heat exchanger 7 by performing the frost determination of the outdoor heat exchanger of (11) mentioned above and the stop control of the compressor based on the frost determination. It is possible to prevent the operation of the compressor 2 from being continued in a situation where the efficiency is reduced, and to contribute to energy saving, and to reduce the reliability of the equipment due to excessive frost formation of the outdoor heat exchanger 7 The problem of defrosting can be solved. Further, by performing the stop control of the compressor based on the suction refrigerant temperature Ts and the suction refrigerant pressure Ps of (12) described above, the suction refrigerant temperature Ts and the suction refrigerant pressure Ps are lowered due to a decrease in the outside air temperature and the operation efficiency is lowered. In such a situation, the operation of the compressor 2 can be prevented from being continued, which can contribute to energy saving, and can also solve the problem of reduced device reliability.
It should be noted that the numerical values shown in the embodiments are not limited thereto, and should be appropriately set according to the apparatus to be applied. Further, the auxiliary heating device is not limited to the auxiliary heater 23 shown in the embodiment, and a heat medium circulation circuit that heats the air in the air flow passage 3 by circulating the heat medium heated by the heater or an engine. You may utilize the heater core etc. which circulate through the heated radiator water.
 1 車両用空気調和装置
 2 圧縮機
 3 空気流通路
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器
 10 HVACユニット
 11 制御装置
 20 空調コントローラ
 23 補助ヒータ(補助加熱装置)
 27 室内送風機(ブロワファン)
 28 エアミックスダンパ
 32 ヒートポンプコントローラ
 33 外気温度センサ
 44 吸込圧力センサ
 55 吸込温度センサ
 65 車両通信バス
 R 冷媒回路
DESCRIPTION OF SYMBOLS 1 Vehicle air conditioner 2 Compressor 3 Air flow path 4 Radiator 6 Outdoor expansion valve 7 Outdoor heat exchanger 8 Indoor expansion valve 9 Heat absorber 10 HVAC unit 11 Controller 20 Air conditioning controller 23 Auxiliary heater (auxiliary heating device)
27 Indoor blower
28 Air Mix Damper 32 Heat Pump Controller 33 Outside Air Temperature Sensor 44 Suction Pressure Sensor 55 Suction Temperature Sensor 65 Vehicle Communication Bus R Refrigerant Circuit

Claims (11)

  1.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     車室外に設けられて冷媒を吸熱させるための室外熱交換器と、
     制御装置とを備え、
     該制御装置により、少なくとも前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させて車室内を暖房する車両用空気調和装置において、
     前記制御装置は、前記室外熱交換器の冷媒蒸発温度TXOが無着霜時における当該室外熱交換器の冷媒蒸発温度TXObaseより低下したときの前記室外熱交換器の冷媒蒸発温度TXOと前記無着霜時における室外熱交換器の冷媒蒸発温度TXObaseとの差ΔTXO=TXObase−TXOに基づき、又は、前記室外熱交換器の冷媒蒸発圧力PXOが無着霜時における当該室外熱交換器の冷媒蒸発圧力PXObaseより低下したときの前記室外熱交換器の冷媒蒸発圧力PXOと前記無着霜時における室外熱交換器の冷媒蒸発圧力PXObaseとの差ΔPXO=PXObase−PXOに基づき、該室外熱交換器への着霜の進行状態を判定すると共に、
     当該室外熱交換器への着霜が進行した状態が所定時間継続した場合、前記圧縮機を停止することを特徴とする車両用空気調和装置。
    A compressor for compressing the refrigerant;
    An air flow passage through which air to be supplied into the passenger compartment flows;
    A radiator for radiating the refrigerant to heat the air supplied from the air flow passage to the vehicle interior;
    An outdoor heat exchanger provided outside the passenger compartment to absorb heat from the refrigerant;
    A control device,
    Vehicle air that heats at least the refrigerant discharged from the compressor by the control device and radiates heat by the radiator, depressurizes the radiated refrigerant, and then absorbs heat by the outdoor heat exchanger. In the harmony device,
    The control device includes the refrigerant evaporation temperature TXO of the outdoor heat exchanger and the non-adherence when the refrigerant evaporation temperature TXO of the outdoor heat exchanger is lower than the refrigerant evaporation temperature TXObase of the outdoor heat exchanger when no frost is formed. Based on the difference ΔTXO = TXObase−TXO from the refrigerant evaporation temperature TXObase of the outdoor heat exchanger during frost, or the refrigerant evaporation pressure of the outdoor heat exchanger when the refrigerant evaporation pressure PXO of the outdoor heat exchanger is not frosted Based on the difference ΔPXO = PXObase−PXO between the refrigerant evaporating pressure PXO of the outdoor heat exchanger when lower than PXObase and the refrigerant evaporating pressure PXObase of the outdoor heat exchanger at the time of no frost formation, While judging the progress of frost formation,
    The vehicle air conditioner is characterized in that the compressor is stopped when frosting on the outdoor heat exchanger has continued for a predetermined time.
  2.  前記制御装置は、環境条件、及び/又は、運転状況を示す指標に基づいて前記無着霜時における室外熱交換器の冷媒蒸発温度TXObase、又は、前記無着霜時における室外熱交換器の冷媒蒸発圧力PXObaseを推定することを特徴とする請求項1に記載の車両用空気調和装置。 The control device is configured such that the refrigerant evaporating temperature TXObase of the outdoor heat exchanger at the time of no frost formation or the refrigerant of the outdoor heat exchanger at the time of no frost formation based on an index indicating environmental conditions and / or operating conditions The vehicle air conditioner according to claim 1, wherein an evaporation pressure PXObase is estimated.
  3.  前記制御装置は、前記差ΔTXO、又は、前記差ΔPXOが第1の閾値A1より大きい状態が第1の所定時間t1継続した場合、前記圧縮機を停止することを特徴とする請求項1又は請求項2に記載の車両用空気調和装置。 2. The control device according to claim 1, wherein the controller stops the compressor when the difference ΔTXO or the difference ΔPXO is larger than a first threshold value A <b> 1 continues for a first predetermined time t <b> 1. Item 3. The vehicle air conditioner according to Item 2.
  4.  前記制御装置は、前記差ΔTXO、又は、前記差ΔPXOが第1の閾値A1より小さい第2の閾値A2より大きい状態が、前記第1の所定時間t1より長い第2の所定時間t2継続した場合、前記圧縮機を停止することを特徴とする請求項3に記載の車両用空気調和装置。 In the case where the difference ΔTXO or the difference ΔPXO is greater than a second threshold A2 that is smaller than the first threshold A1 continues for a second predetermined time t2 that is longer than the first predetermined time t1. The vehicle air conditioner according to claim 3, wherein the compressor is stopped.
  5.  前記制御装置は、前記放熱器の暖房能力が要求能力を満たしている状況では、前記室外熱交換器への着霜の進行状態の判定に基づく前記圧縮機の停止を行わないことを特徴とする請求項1乃至請求項4のうちの何れかに記載の車両用空気調和装置。 The control device does not stop the compressor based on the determination of the progress of frost formation on the outdoor heat exchanger in a situation where the heating capacity of the radiator satisfies a required capacity. The vehicle air conditioner according to any one of claims 1 to 4.
  6.  前記制御装置は、起動後所定時間経過するまでは、前記室外熱交換器への着霜の進行状態の判定に基づく前記圧縮機の停止を行わないことを特徴とする請求項1乃至請求項5のうちの何れかに記載の車両用空気調和装置。 The said control apparatus does not stop the said compressor based on determination of the progress state of the frost formation to the said outdoor heat exchanger until predetermined time passes after starting. The vehicle air conditioner according to any one of the above.
  7.  前記制御装置は、前記室外熱交換器への着霜の進行状態の判定に基づいて前記圧縮機を停止した後、前記室外熱交換器が除霜されるまでは前記圧縮機の起動を禁止することを特徴とする請求項1乃至請求項6のうちの何れかに記載の車両用空気調和装置。 The control device prohibits starting of the compressor until the outdoor heat exchanger is defrosted after stopping the compressor based on the determination of the progress of frost formation on the outdoor heat exchanger. The vehicle air conditioner according to any one of claims 1 to 6, wherein the vehicle air conditioner is provided.
  8.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     車室外に設けられて冷媒を吸熱させるための室外熱交換器と、
     制御装置とを備え、
     該制御装置により、少なくとも前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させて車室内を暖房する車両用空気調和装置において、
     前記制御装置は、前記圧縮機の吸込冷媒温度Tsが第1の所定値Ts1より低くなった場合、又は、前記圧縮機の吸込冷媒圧力Psが第1の所定値Ps1より低くなった場合、前記圧縮機の回転数NCを減速させる制限制御を実行すると共に、
     該制限制御状態において、前記圧縮機の回転数NCが所定値NC1よりも低い状態が所定時間継続した場合、当該圧縮機を停止することを特徴とする車両用空気調和装置。
    A compressor for compressing the refrigerant;
    An air flow passage through which air to be supplied into the passenger compartment flows;
    A radiator for radiating the refrigerant to heat the air supplied from the air flow passage to the vehicle interior;
    An outdoor heat exchanger provided outside the passenger compartment to absorb heat from the refrigerant;
    A control device,
    Vehicle air that heats at least the refrigerant discharged from the compressor by the control device and radiates heat by the radiator, depressurizes the radiated refrigerant, and then absorbs heat by the outdoor heat exchanger. In the harmony device,
    When the suction refrigerant temperature Ts of the compressor is lower than a first predetermined value Ts1, or when the suction refrigerant pressure Ps of the compressor is lower than a first predetermined value Ps1, While performing the limiting control to decelerate the rotational speed NC of the compressor,
    In the limit control state, the vehicle air conditioner is characterized in that the compressor is stopped when a state where the rotational speed NC of the compressor is lower than a predetermined value NC1 continues for a predetermined time.
  9.  前記制御装置は、起動後所定時間経過するまでは、前記圧縮機の吸込冷媒温度Ts、又は、吸込冷媒圧力Psに基づく前記制限制御状態での前記圧縮機の停止を行わないことを特徴とする請求項8に記載の車両用空気調和装置。 The control device does not stop the compressor in the restriction control state based on the suction refrigerant temperature Ts or the suction refrigerant pressure Ps of the compressor until a predetermined time elapses after starting. The vehicle air conditioner according to claim 8.
  10.  前記制御装置は、前記圧縮機の吸込冷媒温度Ts、又は、吸込冷媒圧力Psの判定に基づいて当該圧縮機を停止した後、前記圧縮機の吸込冷媒温度Tsが前記第1の所定値Ts1より高い第2の所定値Ts2より高くなるまで、又は、前記圧縮機の吸込冷媒圧力Psが前記第1の所定値Ps1より高い第2の所定値Ps2より高くなるまで、若しくは、外気温度が所定値より高くなるまでは、前記圧縮機の起動を禁止することを特徴とする請求項8又は請求項9に記載の車両用空気調和装置。 The control device stops the compressor based on the determination of the suction refrigerant temperature Ts or the suction refrigerant pressure Ps of the compressor, and then the suction refrigerant temperature Ts of the compressor is greater than the first predetermined value Ts1. Until the higher second predetermined value Ts2 is reached, or until the suction refrigerant pressure Ps of the compressor becomes higher than a second predetermined value Ps2 higher than the first predetermined value Ps1, or the outside air temperature is a predetermined value. The vehicle air conditioner according to claim 8 or 9, wherein starting of the compressor is prohibited until it becomes higher.
  11.  前記空気流通路内に設けられた補助加熱装置を備え、
     前記制御装置は、前記室外熱交換器への着霜の進行状態の判定に基づいて前記圧縮機を停止した場合、又は、前記圧縮機の吸込冷媒温度Ts、又は、吸込冷媒圧力Psの判定に基づいて前記圧縮機を停止した場合、前記補助加熱装置により前記車室内を暖房することを特徴とする請求項1乃至請求項10のうちの何れかに記載の車両用空気調和装置。
    An auxiliary heating device provided in the air flow passage,
    The control device determines when the compressor is stopped based on the determination of the progress of frost formation on the outdoor heat exchanger, or when determining the suction refrigerant temperature Ts or the suction refrigerant pressure Ps of the compressor. The vehicle air conditioner according to any one of claims 1 to 10, wherein when the compressor is stopped based on the auxiliary heating device, the vehicle interior is heated by the auxiliary heating device.
PCT/JP2017/037291 2016-11-14 2017-10-10 Vehicular air conditioner WO2018088124A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016221400A JP2018079722A (en) 2016-11-14 2016-11-14 Air conditioner for vehicle
JP2016-221400 2016-11-14

Publications (1)

Publication Number Publication Date
WO2018088124A1 true WO2018088124A1 (en) 2018-05-17

Family

ID=62110423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037291 WO2018088124A1 (en) 2016-11-14 2017-10-10 Vehicular air conditioner

Country Status (2)

Country Link
JP (1) JP2018079722A (en)
WO (1) WO2018088124A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113853313A (en) * 2019-05-28 2021-12-28 三电汽车空调系统株式会社 Air conditioner for vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6871745B2 (en) * 2017-01-20 2021-05-12 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053207A (en) * 2002-07-23 2004-02-19 Mitsubishi Heavy Ind Ltd Air conditioner and frost preventing method for indoor heat exchanger of air conditioner
JP2011127853A (en) * 2009-12-18 2011-06-30 Mitsubishi Electric Corp Heat pump device
JP2012176660A (en) * 2011-02-25 2012-09-13 Sanden Corp Air conditioning device for vehicle
JP2014231261A (en) * 2013-05-28 2014-12-11 サンデン株式会社 Vehicle air conditioner
US20150040589A1 (en) * 2012-03-08 2015-02-12 Renault S.A.S. Automatic control method used for defrosting a heat pump for a vehicle
JP2015215101A (en) * 2014-05-08 2015-12-03 サンデンホールディングス株式会社 Air conditioner for vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053207A (en) * 2002-07-23 2004-02-19 Mitsubishi Heavy Ind Ltd Air conditioner and frost preventing method for indoor heat exchanger of air conditioner
JP2011127853A (en) * 2009-12-18 2011-06-30 Mitsubishi Electric Corp Heat pump device
JP2012176660A (en) * 2011-02-25 2012-09-13 Sanden Corp Air conditioning device for vehicle
US20150040589A1 (en) * 2012-03-08 2015-02-12 Renault S.A.S. Automatic control method used for defrosting a heat pump for a vehicle
JP2014231261A (en) * 2013-05-28 2014-12-11 サンデン株式会社 Vehicle air conditioner
JP2015215101A (en) * 2014-05-08 2015-12-03 サンデンホールディングス株式会社 Air conditioner for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113853313A (en) * 2019-05-28 2021-12-28 三电汽车空调系统株式会社 Air conditioner for vehicle

Also Published As

Publication number Publication date
JP2018079722A (en) 2018-05-24

Similar Documents

Publication Publication Date Title
JP6040099B2 (en) Air conditioner for vehicles
JP6125330B2 (en) Air conditioner for vehicles
WO2018074112A1 (en) Vehicular air conditioning device
JP2019031227A (en) Air conditioning apparatus for vehicle
WO2019049636A1 (en) Vehicular air conditioning device
WO2018211957A1 (en) Vehicle air-conditioning device
WO2018079121A1 (en) Vehicle air-conditioning device
WO2018088124A1 (en) Vehicular air conditioner
JP2018058575A (en) Air conditioner for vehicle
WO2018225486A1 (en) Air-conditioning device for vehicles
WO2018135603A1 (en) Vehicular air-conditioning device
WO2018110211A1 (en) Vehicle air-conditioning device
WO2018110212A1 (en) Vehicle air-conditioning apparatus
WO2018061785A1 (en) Air-conditioning device for vehicle
WO2019017149A1 (en) Vehicular air conditioning device
WO2017146269A1 (en) Vehicular air-conditioning device
WO2018225485A1 (en) Vehicle air conditioner
JP6831239B2 (en) Vehicle air conditioner
WO2018074111A1 (en) Vehicular air conditioning device
WO2019049637A1 (en) Vehicular air conditioning device
WO2019031203A1 (en) Vehicle air conditioner
WO2018088130A1 (en) Vehicle air conditioning device
JP6853036B2 (en) Vehicle air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17869701

Country of ref document: EP

Kind code of ref document: A1