WO2019017149A1 - Vehicular air conditioning device - Google Patents

Vehicular air conditioning device Download PDF

Info

Publication number
WO2019017149A1
WO2019017149A1 PCT/JP2018/023916 JP2018023916W WO2019017149A1 WO 2019017149 A1 WO2019017149 A1 WO 2019017149A1 JP 2018023916 W JP2018023916 W JP 2018023916W WO 2019017149 A1 WO2019017149 A1 WO 2019017149A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heat exchanger
air conditioning
refrigerant
outdoor heat
Prior art date
Application number
PCT/JP2018/023916
Other languages
French (fr)
Japanese (ja)
Inventor
竜 宮腰
耕平 山下
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Publication of WO2019017149A1 publication Critical patent/WO2019017149A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles

Definitions

  • the present invention relates to a heat pump type air conditioner for air conditioning a vehicle cabin of a vehicle.
  • the refrigerant evaporates in the outdoor heat exchanger and absorbs heat from the outside air, so frost formation occurs on the outdoor heat exchanger. If the operation of the compressor is continued in a state where frost formation on the outdoor heat exchanger has progressed, the heat absorption capacity from the outside air is reduced, so that the operation efficiency is significantly reduced. So, conventionally, the situation of frost formation was judged from temperature, pressure, etc. of an outdoor heat exchanger, and defrosting of the said outdoor heat exchanger was performed. Therefore, there is a drawback that control of frost determination is complicated. In addition, conventionally, when defrosting the outdoor heat exchanger, the heating mode is stopped and there is a problem that the comfort is impaired.
  • the present invention has been made to solve such conventional technical problems, and it is relatively easy to reduce the comfort in the vehicle interior and to reduce the operating efficiency caused by the frost formation on the outdoor heat exchanger.
  • An object of the present invention is to provide a vehicle air conditioner that can be suppressed by control.
  • the air conditioner for a vehicle heats the air supplied from the air flow passage to the vehicle compartment from the air flow passage by radiating the refrigerant and the air flow passage through which the air supplied to the vehicle is circulated.
  • a radiator, an outdoor heat exchanger provided outside the vehicle compartment for absorbing heat, and a control device the control device causing the radiator to dissipate at least the refrigerant discharged from the compressor
  • the air conditioning operation including the heating mode of heating the vehicle interior by absorbing heat with the outdoor heat exchanger is executed, and the control device stops the air conditioning operation in the heating mode
  • the outdoor heat exchanger is defrosted each time.
  • the air conditioner for a vehicle according to the second aspect of the present invention is the air conditioner for a vehicle according to the second aspect, wherein in the heating mode, the control device prevents malfunction if the state where the number of revolutions of the compressor is higher than the predetermined threshold continues for the first predetermined time t1. It is determined that the outdoor heat exchanger is defrosted after the air conditioning operation is stopped in the heating mode.
  • the malfunction preventing condition is It is determined that the condition is satisfied, and after the air conditioning operation is stopped in the heating mode, the outdoor heat exchanger is defrosted.
  • the control device in each of the inventions sets a predetermined defrost request flag when the heating mode is performed or when it is determined that the malfunction preventing condition is satisfied. If the air conditioning operation is performed in a mode other than the heating mode, the defrost request flag is reset, and after the air conditioning operation is stopped in a state where the defrost request flag is set, whether the outdoor heat exchanger can be defrosted If it is judged and permitted, the outdoor heat exchanger is defrosted, and a defrost request flag is reset.
  • the compressor is driven by the battery mounted on the vehicle, and the control device has no air conditioning requirement for the vehicle interior, and the battery is charging. It is characterized in that defrosting of the outdoor heat exchanger is permitted on condition that the remaining amount of the battery is equal to or more than a predetermined value.
  • the control device includes an air conditioning controller to which an air conditioning operation unit for performing an air conditioning setting operation in a vehicle compartment is connected; The air conditioning controller and the heat pump controller transmit and receive information via the vehicle communication bus, and the heat pump controller executes the heating mode, or the malfunction preventing condition is satisfied.
  • the defrost request flag is reset and the air conditioning operation is stopped in a state where the defrost request flag is set.
  • the outdoor heat is The defrosting of the converter is performed, the defrosting request flag is reset, and the air conditioning controller judges whether or not the outdoor heat exchanger can be defrosted when the defrosting request is received from the heat pump controller, and when permitting it, The defrosting permission of the outdoor heat exchanger is notified to the heat pump controller.
  • the air conditioner for a vehicle according to the invention of claim 7 is characterized in that in the above respective inventions, the control device defrosts the outdoor heat exchanger by heating the outdoor heat exchanger with a predetermined defroster. .
  • the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle compartment flows, and the radiator for radiating the heat of the refrigerant and heating the air supplied from the air flow passage to the vehicle compartment And an outdoor heat exchanger provided outside the vehicle for absorbing heat of the refrigerant, and a control device, wherein the control device causes at least the refrigerant discharged from the compressor to be dissipated by the radiator and dissipated
  • the control device stops the air conditioning operation in the heating mode each time Since the outdoor heat exchanger is defrosted, defrosting of the outdoor heat exchanger is performed each time the air conditioning operation is stopped in the heating mode without judging the status of frost formation on the outdoor heat exchanger, etc.
  • the outdoor heat exchanger is defrosted, for example, the heating mode becomes extremely It is also possible to solve the inconvenience that the defrosting is started only after being performed for a short time. Further, as in the invention of claim 4, when the control device executes the heating mode or determines that the malfunction preventing condition is satisfied, a predetermined defrost request flag is set, and the air conditioning operation other than the heating mode is performed. If the defrost request flag is reset and the air conditioning operation is stopped while the defrost request flag is set, it is judged whether the outdoor heat exchanger can be defrosted or not, and it is permitted.
  • the compressor is driven by a battery mounted on the vehicle as in the invention of claim 5
  • the control device permits defrosting of the outdoor heat exchanger on the condition that there is no air conditioning request in the vehicle compartment and the battery is charging or the remaining amount of the battery is equal to or more than a predetermined value.
  • the control device comprises an air conditioning controller to which an air conditioning operation unit for performing an air conditioning setting operation in the vehicle compartment is connected, and a heat pump controller for controlling the operation of the compressor. If the controller and the heat pump controller transmit and receive information via the vehicle communication bus, if the heat pump controller executes the heating mode, or if it is determined that the malfunction preventing condition is satisfied, the defrost request is made. When the flag is set and the air conditioning operation is executed except for the heating mode, the defrost request flag is reset, and when the air conditioning operation is stopped in the state where the defrost request flag is set, the defrost for the air conditioning controller is performed.
  • the air conditioning controller determines whether the outdoor heat exchanger can be defrosted if the defrosting request is received from the heat pump controller, and if it permits, the defrosting permission of the outdoor heat exchanger is heat pump By notifying the controller, it is possible to appropriately prevent or suppress the decrease in the driving efficiency caused by the comfort of the vehicle interior and the frost formation of the outdoor heat exchanger.
  • the outdoor heat exchanger is heated by the predetermined defrosting apparatus as in the seventh aspect of the invention to defrost the outdoor heat exchanger. It will be able to reliably remove by melting.
  • FIG. 1 It is a block diagram of the air conditioning apparatus for vehicles of one Embodiment to which this invention is applied. It is a block diagram of the control apparatus of the air conditioning apparatus for vehicles of FIG. It is a schematic diagram of the airflow path of the air conditioning apparatus for vehicles of FIG. It is a control block diagram regarding compressor control in heating mode of the heat pump controller of FIG. It is a control block diagram regarding compressor control in the dehumidification heating mode of the heat pump controller of FIG. It is a control block diagram regarding the auxiliary heater (auxiliary heating device) control in the dehumidification heating mode of the heat pump controller of FIG. It is a flowchart explaining defrost control of the outdoor heat exchanger by the heat pump controller of FIG. It is a flowchart explaining another defrost control of the outdoor heat exchanger by the heat pump controller of FIG. It is a block diagram of the air conditioning apparatus for vehicles of the other Example of this invention.
  • FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention.
  • the vehicle according to the embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and is used for traveling with electric power charged in a battery 75 (FIG. 2) mounted in the vehicle.
  • the electric motor is driven to travel (not shown), and the vehicle air conditioner 1 of the present invention is also driven by the power of the battery 75.
  • the vehicle air conditioner 1 of the embodiment performs the air conditioning operation by the heat pump using the refrigerant circuit in the electric vehicle which can not be heated by the engine waste heat, and in this air conditioning operation, the heating mode, the dehumidifying heating mode, the dehumidifying cooling Each operation mode of the mode, the cooling mode, the MAX cooling mode (maximum cooling mode), and the auxiliary heater single mode is selectively executed.
  • the present invention is applicable not only to electric vehicles as vehicles, but also to so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles traveling with an engine. Needless to say.
  • the vehicle air conditioner 1 of the embodiment performs air conditioning (heating, cooling, dehumidifying, and ventilating) of a vehicle compartment of an electric vehicle, and is an electric type that receives power from a battery 75 to drive and compress a refrigerant.
  • an outdoor expansion valve 6 pressure reducing device including a motor-operated valve for decompressing and expanding the refrigerant during heating, and a radiator 4 provided outside the vehicle for radiating heat during cooling
  • an indoor expansion valve 8 pressure reduction device including a motorized valve that decompresses and expands the refrigerant.
  • a heat sink 9 for cooling the air which absorbs heat from the outside of the vehicle interior by absorbing heat from the outside of the vehicle interior during cooling and dehumidification, the accumulator 12 and the like are sequentially connected by the refrigerant pipe 13, and the refrigerant circuit R is It is configured.
  • the refrigerant circuit R is filled with a predetermined amount of refrigerant and lubricating oil.
  • the outdoor heat exchanger 7 is provided with an outdoor fan 15. The outdoor fan 15 exchanges heat between the outdoor air and the refrigerant by forcibly ventilating the outdoor air to the outdoor heat exchanger 7, whereby the outdoor fan 15 is also outdoors when the vehicle is stopped (that is, the vehicle speed is 0 km / h).
  • the heat exchanger 7 is configured to ventilate outside air.
  • the outdoor heat exchanger 7 sequentially has the receiver dryer portion 14 and the subcooling portion 16 on the refrigerant downstream side, and the refrigerant pipe 13A that has come out of the outdoor heat exchanger 7 is a receiver via the solenoid valve 17 opened during cooling.
  • the refrigerant pipe 13B connected to the dryer unit 14 and at the outlet side of the subcooling unit 16 is connected to the inlet side of the heat absorber 9 via the indoor expansion valve 8.
  • the receiver dryer portion 14 and the subcooling portion 16 structurally constitute a part of the outdoor heat exchanger 7.
  • the refrigerant pipe 13B between the supercooling unit 16 and the indoor expansion valve 8 is provided in heat exchange relation with the refrigerant pipe 13C on the outlet side of the heat absorber 9, and both constitute an internal heat exchanger 19.
  • the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low temperature refrigerant that has exited the heat absorber 9.
  • the refrigerant pipe 13A that has exited from the outdoor heat exchanger 7 is branched into the refrigerant pipe 13D, and the branched refrigerant pipe 13D is downstream of the internal heat exchanger 19 via the solenoid valve 21 opened during heating.
  • the refrigerant pipe 13C is connected to the accumulator 12, and the accumulator 12 is connected to the refrigerant suction side of the compressor 2.
  • the refrigerant pipe 13E on the outlet side of the radiator 4 is connected to the inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.
  • the refrigerant pipe 13G between the discharge side of the compressor 2 and the inlet side of the radiator 4 is provided with a solenoid valve 30 (constituting a flow path switching device) closed during dehumidifying heating and MAX cooling described later. There is.
  • the refrigerant pipe 13G is branched to a bypass pipe 35 on the upstream side of the solenoid valve 30, and the bypass pipe 35 is a solenoid valve 40 (also constituting a flow path switching device) opened during dehumidifying heating and MAX cooling. Is connected to the refrigerant pipe 13E on the downstream side of the outdoor expansion valve 6).
  • the bypass pipe 45, the solenoid valve 30, and the solenoid valve 40 constitute a bypass device 45.
  • the dehumidifying heating mode or MAX for directly flowing the refrigerant discharged from the compressor 2 into the outdoor heat exchanger 7 as described later It is possible to smoothly switch between the cooling mode and the heating mode, the dehumidifying cooling mode, and the cooling mode in which the refrigerant discharged from the compressor 2 flows into the radiator 4. Further, in the air flow passage 3 on the air upstream side of the heat absorber 9, suction ports for the outside air suction port and the inside air suction port are formed (represented by the suction port 25 in FIG.
  • this suction port A suction switching damper 26 is provided at 25 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) that is the air inside the vehicle compartment and the outside air (outside air introduction mode) that is the air outside the vehicle outside There is. Further, on the air downstream side of the suction switching damper 26, an indoor blower (blower fan) 27 for supplying the introduced internal air and the external air to the air flow passage 3 is provided. Further, in FIG. 1, reference numeral 23 denotes an auxiliary heater as an auxiliary heating device provided in the vehicle air conditioner 1 of the embodiment.
  • the auxiliary heater 23 of the embodiment is constituted by a PTC heater which is an electric heater, and the inside of the air flow passage 3 which is on the windward side (air upstream side) of the radiator 4 with respect to the air flow of the air flow passage 3.
  • the auxiliary heater 23 is energized to generate heat, the air in the air flow passage 3 flowing into the radiator 4 through the heat absorber 9 is heated. That is, the auxiliary heater 23 serves as a so-called heater core to heat the vehicle interior or supplement it.
  • the air flow passage 3 on the downwind side (air downstream side) of the heat absorber 9 of the HVAC unit 10 is partitioned by the partition wall 10A, and a heating heat exchange passage 3A and a bypass passage 3B bypassing it are formed.
  • the radiator 4 and the auxiliary heater 23 described above are disposed in the heating heat exchange passage 3A.
  • the air (internal air and outside air) in the air flow passage 3 after flowing into the air flow passage 3 and passing through the heat absorber 9 is assisted.
  • An air mix damper 28 is provided to adjust the ratio of ventilation to the heating heat exchange passage 3A in which the heater 23 and the radiator 4 are disposed.
  • the HVAC unit 10 on the downwind side of the radiator 4 has a FOOT (foot) outlet 29A (first outlet) and a VENT (vent) outlet 29B (second outlet for the FOOT outlet 29A).
  • the FOOT blowout port 29A is a blowout port for blowing air under the foot of the vehicle compartment and is at the lowest position.
  • the VENT outlet 29B is an outlet for blowing air around the driver's chest and face in the vehicle compartment, and is above the FOOT outlet 29A.
  • the DEF outlet 29C is a outlet for blowing air to the inner surface of the windshield of the vehicle, and is located at the highest position above the other outlets 29A and 29B.
  • FIG. 2 shows a block diagram of the control device 11 of the vehicle air conditioner 1 of the embodiment.
  • the control device 11 is composed of an air conditioning controller 20 and a heat pump controller 32, each of which is constituted by a microcomputer which is an example of a computer having a processor, and these are CAN (Controller Area Network) and LIN (Local Interconnect Network).
  • the compressor 2 and the auxiliary heater 23 are also connected to the vehicle communication bus 65, and the air conditioning controller 20, the heat pump controller 32, the compressor 2 and the auxiliary heater 23 transmit and receive data via the vehicle communication bus 65. It is done.
  • the air conditioning controller 20 is a higher-level controller that controls the air conditioning inside the vehicle, and the outside air temperature sensor 33 for detecting the outside air temperature Tam of the vehicle and the outside air humidity for detecting the outside air humidity are input to the air conditioning controller 20.
  • a sensor 34 an HVAC suction temperature sensor 36 for detecting the temperature of the air (suctioned air temperature Tas) sucked into the air flow passage 3 from the suction port 25 and flowing into the heat absorber 9, the temperature of the air (internal air) in the vehicle compartment
  • An indoor air temperature sensor 37 for detecting (indoor temperature Tin)
  • an indoor air humidity sensor 38 for detecting the humidity of air in the vehicle compartment
  • an indoor CO 2 concentration sensor 39 for detecting carbon dioxide concentration in the vehicle compartment
  • a discharge pressure sensor 42 for detecting the discharge refrigerant pressure Pd of the compressor 2 and a solar radiation amount into the vehicle compartment.
  • the photo sensor type solar radiation sensor 51 the outputs of the vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, and the air conditioning setting operation of the vehicle interior such as switching of the set temperature and the operation mode
  • An air conditioning operation unit (air conditioning operation unit) 53 for the purpose is connected.
  • the outdoor air blower 15, the indoor air blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, and the air outlet dampers 31A to 31C are connected to the output of the air conditioning controller 20, and they are used for air conditioning It is controlled by the controller 20.
  • the battery 75 incorporates a controller, and the controller of the battery 75 transmits and receives data to and from the air conditioning controller 20 via the vehicle communication bus 65.
  • the heat pump controller 32 mainly controls the control of the refrigerant circuit R, and an input of the heat pump controller 32 is a discharge temperature sensor 43 for detecting a discharge refrigerant temperature Td of the compressor 2 and a suction refrigerant of the compressor 2
  • a suction pressure sensor 44 for detecting a pressure Ps, a suction temperature sensor 55 for detecting a suction refrigerant temperature Ts of the compressor 2, and a radiator temperature sensor 46 for detecting a refrigerant temperature (a radiator temperature TCI) of the radiator 4
  • a radiator pressure sensor 47 that detects the refrigerant pressure of the radiator 4 (radiator pressure PCI), a heat sink temperature sensor 48 that detects the refrigerant temperature (heat sink temperature Te) of the heat sink 9, and a refrigerant pressure of the heat sink 9
  • Heat sensor pressure sensor 49 for detecting the temperature, the auxiliary heater temperature sensor 50 for detecting the
  • the heat pump controller 32 outputs the outdoor expansion valve 6, the indoor expansion valve 8, the solenoid valve 30 (for reheating), the solenoid valve 17 (for cooling), the solenoid valve 21 (for heating), the solenoid valve 40 (bypass) ) Are connected, and they are controlled by the heat pump controller 32.
  • the compressor 2 and the auxiliary heater 23 each have a built-in controller, and the controller of the compressor 2 and the auxiliary heater 23 transmits / receives data to / from the heat pump controller 32 via the vehicle communication bus 65. It is controlled.
  • the heat pump controller 32 and the air conditioning controller 20 mutually transmit and receive data via the vehicle communication bus 65, and control each device based on the output of each sensor and the setting inputted by the air conditioning operation unit 53.
  • the operation of the vehicle air conditioner 1 of the embodiment having the above configuration will be described.
  • the controller 11 performs the air conditioning operation in the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, the MAX cooling mode (maximum cooling mode) and the auxiliary heater. Switch between the operation modes in single mode and execute. First, an outline of the flow and control of the refrigerant in each operation mode will be described.
  • Heating mode When the heating mode is selected by the heat pump controller 32 (automatic mode) or by the manual air conditioning setting operation (manual mode) to the air conditioning operation unit 53, the heat pump controller 32 sets the solenoid valve 21 (for heating). Open and close the solenoid valve 17 (for cooling).
  • the solenoid valve 30 (for reheating) is opened, and the solenoid valve 40 (for bypass) is closed. Then, the compressor 2 is operated.
  • the air conditioning controller 20 operates the blowers 15 and 27, and the air mix damper 28 is basically blown out from the indoor blower 27 and passes through the heat absorber 9 and all the air in the air flow passage 3 is heated by the heat exchange passage 3A. In the state of ventilating to the auxiliary heater 23 and the radiator 4, the air volume may be adjusted. As a result, the high temperature and high pressure gas refrigerant discharged from the compressor 2 passes through the solenoid valve 30 and flows into the radiator 4 from the refrigerant pipe 13G.
  • the air in the air flow passage 3 is ventilated to the radiator 4, the air in the air flow passage 3 is a high temperature refrigerant in the heat radiator 4 (when the auxiliary heater 23 is operated, the auxiliary heater 23 and the radiator 4 are While the refrigerant in the radiator 4 loses its heat by air, is cooled, and condenses and liquefies.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 evaporates, and heat is pumped up from the outside air ventilated by the traveling or the outdoor blower 15. That is, the refrigerant circuit R is a heat pump. Then, the low temperature refrigerant leaving the outdoor heat exchanger 7 passes through the refrigerant piping 13A, the solenoid valve 21 and the refrigerant piping 13D, enters the accumulator 12 from the refrigerant piping 13C, and is separated into gas and liquid there, and then the gas refrigerant is the compressor 2 Repeat the cycle of sucking in Since the air heated by the radiator 4 (the auxiliary heater 23 and the radiator 4 when the auxiliary heater 23 operates) is blown out from the outlets 29A to 29C, this heats the vehicle interior.
  • the heat pump controller 32 calculates a target radiator pressure PCO (target value of the radiator pressure PCI) from the target heater temperature TCO (target value of the heating temperature TH described later) calculated by the air conditioning controller 20 from the target outlet temperature TAO.
  • the rotational speed NC of the compressor 2 is controlled based on the target radiator pressure PCO and the refrigerant pressure (radiator pressure PCI, high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47, and the radiator Control heating by 4. Further, the heat pump controller 32 opens the outdoor expansion valve 6 based on the refrigerant temperature (the radiator temperature TCI) of the radiator 4 detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47.
  • the degree of subcooling SC of the refrigerant at the outlet of the radiator 4 is controlled.
  • the heat pump controller 32 compensates for the shortage by the heat generation of the auxiliary heater 23.
  • the energization of the auxiliary heater 23 is controlled. Thereby, comfortable heating of the vehicle interior is realized, and frost formation on the outdoor heat exchanger 7 is also suppressed.
  • the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air flowing through the air flow passage 3 is ventilated to the auxiliary heater 23 in front of the radiator 4.
  • the auxiliary heater 23 when the auxiliary heater 23 is disposed on the air downstream side of the radiator 4, when the auxiliary heater 23 is configured by the PTC heater as in the embodiment, the temperature of the air flowing into the auxiliary heater 23 is the radiator Because the resistance value of the PTC heater increases and the current value also decreases and the calorific value decreases, the auxiliary heater 23 is disposed on the air upstream side of the radiator 4 in the embodiment. As described above, the capability of the auxiliary heater 23 composed of a PTC heater can be sufficiently exhibited. (2) Dehumidifying and Heating Mode Next, in the dehumidifying and heating mode, the heat pump controller 32 opens the solenoid valve 17 and closes the solenoid valve 21.
  • the solenoid valve 30 is closed, the solenoid valve 40 is opened, and the degree of opening of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 is operated.
  • the air conditioning controller 20 operates the blowers 15 and 27, and the air mix damper 28 is basically blown out from the indoor blower 27 and passes through the heat absorber 9 and all the air in the air flow passage 3 is heated by the heat exchange passage 3A. In the state of ventilating to the auxiliary heater 23 and the radiator 4, the air volume is also adjusted.
  • the high-temperature, high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, and passes through the solenoid valve 40 and the refrigerant pipe on the downstream side of the outdoor expansion valve 6 It will reach 13E.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 is air-cooled and condensed by traveling there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant leaving the outdoor heat exchanger 7 flows from the refrigerant pipe 13A through the solenoid valve 17 into the receiver dryer portion 14 and the supercooling portion 16 sequentially.
  • the refrigerant is subcooled.
  • the refrigerant leaving the subcooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13B, passes through the internal heat exchanger 19, and reaches the indoor expansion valve 8.
  • the refrigerant After the refrigerant is depressurized by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates.
  • the air blown out from the indoor blower 27 is cooled by the heat absorption action, and the moisture in the air condenses and adheres to the heat absorber 9, so the air in the air flow passage 3 is cooled, and Dehumidified.
  • the refrigerant evaporated by the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 via the refrigerant pipe 13C, and the circulation through which the refrigerant is sucked into the compressor 2 is repeated.
  • the valve opening degree of the outdoor expansion valve 6 is fully closed, it is possible to suppress or prevent the disadvantage that the refrigerant discharged from the compressor 2 flows back from the outdoor expansion valve 6 into the radiator 4 It becomes.
  • the heat pump controller 32 supplies power to the auxiliary heater 23 to generate heat.
  • the heat pump controller 32 is a compressor based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48 (heat absorber temperature Te) and the target heat absorber temperature TEO which is a target value of the heat absorber temperature Te calculated by the air conditioning controller 20.
  • the heat absorber is controlled by controlling the rotation speed NC of 2 and controlling the energization (heating due to heat generation) of the auxiliary heater 23 based on the auxiliary heater temperature Tptc detected by the auxiliary heater temperature sensor 50 and the target heater temperature TCO described above.
  • the temperature of the air blown into the vehicle compartment from each of the outlets 29A to 29C by the heating by the auxiliary heater 23 is properly prevented.
  • the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air heated by the auxiliary heater 23 passes through the radiator 4, but in this dehumidifying and heating mode, the refrigerant 4 Since the air is not flowed, the problem that the radiator 4 absorbs heat from the air heated by the auxiliary heater 23 is also eliminated.
  • the heat pump controller 32 opens the solenoid valve 17 and closes the solenoid valve 21. Also, the solenoid valve 30 is opened and the solenoid valve 40 is closed. Then, the compressor 2 is operated.
  • the air conditioning controller 20 operates the blowers 15 and 27, and the air mix damper 28 is basically blown out from the indoor blower 27 and passes through the heat absorber 9 and all the air in the air flow passage 3 is heated by the heat exchange passage 3A. In the state of ventilating to the auxiliary heater 23 and the radiator 4, the air volume is also adjusted.
  • the high temperature and high pressure gas refrigerant discharged from the compressor 2 passes through the solenoid valve 30 and flows into the radiator 4 from the refrigerant pipe 13G. Since the air in the air flow passage 3 is ventilated to the radiator 4, the air in the air flow passage 3 is heated by the high temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is taken away, cooled, and condensed and liquefied. The refrigerant leaving the radiator 4 passes through the refrigerant pipe 13E to reach the outdoor expansion valve 6, and then flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 which is controlled to be open.
  • the refrigerant flowing into the outdoor heat exchanger 7 is air-cooled and condensed by traveling there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant leaving the outdoor heat exchanger 7 flows from the refrigerant pipe 13A through the solenoid valve 17 into the receiver dryer portion 14 and the supercooling portion 16 sequentially.
  • the refrigerant is subcooled.
  • the refrigerant leaving the subcooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13B, passes through the internal heat exchanger 19, and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates.
  • the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat sink 9, so that the air is cooled and dehumidified.
  • the refrigerant evaporated by the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 via the refrigerant pipe 13C, and the circulation through which the refrigerant is sucked into the compressor 2 is repeated.
  • the heat pump controller 32 does not energize the auxiliary heater 23, so the air cooled by the heat absorber 9 and dehumidified air passes through the radiator 4 and is reheated (heat radiation capacity is lower than that during heating) Be done. As a result, dehumidifying and cooling of the passenger compartment is performed.
  • the heat pump controller 32 detects the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO (sent from the air conditioning controller 20) as its target value. Control the rotational speed NC. Further, the heat pump controller 32 calculates the target radiator pressure PCO from the target heater temperature TCO described above, and the target radiator pressure PCO and the refrigerant pressure of the radiator 4 detected by the radiator pressure sensor 47 (the radiator pressure PCI. The valve opening degree of the outdoor expansion valve 6 is controlled based on the high pressure of the refrigerant circuit R, and the heating by the radiator 4 is controlled.
  • the heat pump controller 32 fully opens the degree of the outdoor expansion valve 6 in the dehumidifying cooling mode. Then, the compressor 2 is operated and the auxiliary heater 23 is not energized.
  • the air conditioning controller 20 operates the blowers 15, 27.
  • the air mix damper 28 is blown out from the indoor blower 27 and the air in the air flow passage 3 which has passed through the heat absorber 9 is the auxiliary heater 23 of the heating heat exchange passage 3A. And let it be in the state which adjusts the ratio ventilated to the radiator 4.
  • the high temperature / high pressure gas refrigerant discharged from the compressor 2 flows from the refrigerant pipe 13G to the radiator 4 through the solenoid valve 30, and the refrigerant leaving the radiator 4 passes through the refrigerant pipe 13E to the outdoor expansion valve 6 Lead to At this time, since the outdoor expansion valve 6 is fully opened, the refrigerant passes through it and flows into the outdoor heat exchanger 7 where it is cooled by air or by the outside air ventilated by the outdoor blower 15 by running. Liquefy.
  • the refrigerant leaving the outdoor heat exchanger 7 flows from the refrigerant pipe 13A through the solenoid valve 17 into the receiver dryer portion 14 and the supercooling portion 16 sequentially. Here, the refrigerant is subcooled.
  • the refrigerant leaving the subcooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13B, passes through the internal heat exchanger 19, and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 is cooled by the heat absorption action at this time. Further, the moisture in the air condenses and adheres to the heat absorber 9. The refrigerant evaporated by the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 via the refrigerant pipe 13C, and the circulation through which the refrigerant is sucked into the compressor 2 is repeated.
  • the air cooled by the heat absorber 9 and dehumidified is blown out from the blowout ports 29A to 29C into the vehicle compartment (a part of the air passes through the radiator 4 for heat exchange). It will be done. Further, in the cooling mode, the heat pump controller 32 generates the compressor 2 based on the temperature (heat absorber temperature Te) of the heat absorber 9 detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO described above, which is its target value. Control the number of revolutions NC. (5) MAX cooling mode (maximum cooling mode) Next, in the MAX cooling mode as the maximum cooling mode, the heat pump controller 32 opens the solenoid valve 17 and closes the solenoid valve 21.
  • the solenoid valve 30 is closed, the solenoid valve 40 is opened, and the degree of opening of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 is operated and the auxiliary heater 23 is not energized.
  • the air conditioning controller 20 operates the blowers 15 and 27, and the air mix damper 28 is blown out from the indoor blower 27 and the air in the air flow passage 3 having passed through the heat absorber 9 is an auxiliary heater of the heating heat exchange passage 3A. 23 and the radiator 4 are adjusted.
  • the high-temperature, high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, and passes through the solenoid valve 40 and the refrigerant pipe on the downstream side of the outdoor expansion valve 6 It will reach 13E.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 is air-cooled and condensed by traveling there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant leaving the outdoor heat exchanger 7 flows from the refrigerant pipe 13A through the solenoid valve 17 into the receiver dryer portion 14 and the supercooling portion 16 sequentially.
  • the refrigerant is subcooled.
  • the refrigerant leaving the subcooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13B, passes through the internal heat exchanger 19, and reaches the indoor expansion valve 8.
  • the refrigerant After the refrigerant is depressurized by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates.
  • the air blown out from the indoor blower 27 is cooled by the heat absorption action at this time. Further, since the moisture in the air condenses and adheres to the heat absorber 9, the air in the air flow passage 3 is dehumidified.
  • the refrigerant evaporated by the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 via the refrigerant pipe 13C, and the circulation through which the refrigerant is sucked into the compressor 2 is repeated.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully closed, it is possible to similarly suppress or prevent the problem that the refrigerant discharged from the compressor 2 flows back from the outdoor expansion valve 6 into the radiator 4 . As a result, it is possible to suppress or eliminate the decrease in the refrigerant circulation amount and secure the air conditioning capacity.
  • the heat pump controller 32 generates a compressor based on the temperature (heat absorber temperature Te) of the heat absorber 9 detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO described above, which is its target value. Control the rotation speed NC of 2.
  • the controller 11 of the embodiment stops the compressor 2 of the refrigerant circuit R and the outdoor blower 15 when excessive frost formation occurs in the outdoor heat exchanger 7, etc., and the auxiliary heater In the auxiliary heater only mode, it is possible to energize the vehicle 23 and heat the vehicle interior only with the auxiliary heater 23.
  • the heat pump controller 32 controls the energization (heat generation) of the auxiliary heater 23 based on the auxiliary heater temperature Tptc detected by the auxiliary heater temperature sensor 50 and the target heater temperature TCO described above.
  • the air conditioning controller 20 operates the indoor fan 27, and the air mix damper 28 ventilates the air in the air flow path 3 blown out from the indoor fan 27 to the auxiliary heater 23 of the heating heat exchange path 3A to obtain the air volume. It will be in the state to adjust. Since the air heated by the auxiliary heater 23 is blown out into the vehicle compartment from the air outlets 29A to 29C, this heats the vehicle interior.
  • the air conditioning controller 20 calculates the above-mentioned target blowing temperature TAO from the following formula (I).
  • the target blowing temperature TAO is a target value of the temperature of air blown out into the vehicle compartment.
  • TAO (Tset ⁇ Tin) ⁇ K + Tbal (f (Tset, SUN, Tam)) (I)
  • Tset is the set temperature of the vehicle interior set by the air conditioning operation unit 53
  • Tin is the indoor temperature detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is the set temperature Tset
  • the amount of solar radiation detected by the solar radiation sensor 51 SUN it is a balance value calculated from the outside air temperature Tam detected by the outside air temperature sensor 33.
  • the target blowing temperature TAO is higher as the outside air temperature Tam is lower, and decreases as the outside air temperature Tam increases.
  • the heat pump controller 32 selects one of the above operation modes based on the outside air temperature Tam (detected by the outside air temperature sensor 33) transmitted from the air conditioning controller 20 via the vehicle communication bus 65 at the time of startup and the target blowout temperature TAO. The operation mode is selected, and each operation mode is transmitted to the air conditioning controller 20 via the vehicle communication bus 65.
  • the outside air temperature Tam After startup, the outside air temperature Tam, the humidity inside the vehicle compartment, the target air outlet temperature TAO, the heating temperature TH (the temperature of the air on the downwind side of the radiator 4; estimated value), the target heater temperature TCO, the heat sink temperature Te,
  • heating mode, dehumidification heating mode, dehumidification can be properly performed according to environmental conditions and necessity of dehumidification
  • the cooling mode, the cooling mode, the MAX cooling mode, and the auxiliary heater single mode to control the temperature of the air blown into the vehicle compartment to the target blowing temperature TAO, a comfortable and efficient vehicle interior air conditioning is realized.
  • FIG. 4 is a control block diagram of the heat pump controller 32 for determining the target rotational speed (compressor target rotational speed) TGNCh of the compressor 2 for the heating mode.
  • the target subcooling degree TGSC which is the target value of the subcooling degree SC at the outlet of the radiator 4, and the target heater temperature TCO described above, which is the target value of the heating temperature TH.
  • the F / F operation amount TGNChff of the compressor target rotational speed is calculated based on the target radiator pressure PCO which is a target value of the pressure of the radiator 4 (transmitted from the air conditioning controller 20).
  • the above-mentioned TH for calculating the air volume ratio SW is the temperature of air on the leeward side of the radiator 4 (hereinafter referred to as a heating temperature), and the heat pump controller 32 calculates the first-order lag calculation formula (II) below. presume.
  • TH (INTL ⁇ TH0 + Tau ⁇ THz) / (Tau + INTL) ⁇ (II)
  • INTL is a calculation cycle (constant)
  • Tau is a first-order lag time constant
  • TH0 is a steady-state value of the heating temperature TH in a steady state before the first-order lag calculation
  • THz is a previous value of the heating temperature TH.
  • the heating temperature TH is transmitted to the air conditioning controller 20 via the vehicle communication bus 65.
  • the target radiator pressure PCO is calculated by the target value calculator 59 based on the target degree of supercooling TGSC and the target heater temperature TCO.
  • the F / B (feedback) manipulated variable computing unit 60 computes the F / B manipulated variable TGNChfb of the compressor target rotational speed based on the target radiator pressure PCO and the radiator pressure PCI which is the refrigerant pressure of the radiator 4 Do.
  • the F / F manipulated variable TGNCnff computed by the F / F manipulated variable computing unit 58 and TGNChfb computed by the F / B manipulated variable computing unit 60 are added by the adder 61, and the limit setting unit 62 sets the control upper limit value ECNpdLimHi After the control lower limit value ECNpdLimLo is limited, it is determined as the compressor target rotation speed TGNCh.
  • the heat pump controller 32 controls the rotation speed NC of the compressor 2 based on the compressor target rotation speed TGNCh. (9) Control of the compressor 2 and the auxiliary heater 23 in the dehumidifying and heating mode by the heat pump controller 32 On the other hand, FIG.
  • FIG. 6 is a control block diagram of the heat pump controller 32.
  • the F / F operation amount calculation unit 63 of the heat pump controller 32 is a target heat radiation that is a target value of the outside air temperature Tam, the volumetric air flow rate Ga of the air flowing into the air flow passage 3, and the pressure of the radiator 4 (radiator pressure PCI).
  • the F / F manipulated variable TGNCcff of the compressor target rotational speed is calculated based on the target pressure T.sub.o of the heat sink 9 and the target heat sink temperature T.sub.oO which is the target value of the temperature of the heat sink 9 (the heat sink temperature Te).
  • the F / B manipulated variable computing unit 64 computes the F / B manipulated variable TGNCcfb of the compressor target rotational speed based on the target heat absorber temperature TEO (transmitted from the air conditioning controller 20) and the heat absorber temperature Te.
  • the F / F operation amount TGNCcff calculated by the F / F operation amount calculation unit 63 and the F / B operation amount TGNCcfb calculated by the F / B operation amount calculation unit 64 are added by the adder 66 and the limit setting unit 67 After the control upper limit value TGNCcLimHi and the control lower limit value TGNCcLimLo are limited, the compressor target rotational speed TGNCc is determined.
  • the heat pump controller 32 controls the rotation speed NC of the compressor 2 based on the compressor target rotation speed TGNCc.
  • FIG. 6 is a control block diagram of the heat pump controller 32 for determining the auxiliary heater request capacity TGQPTC of the auxiliary heater 23 in the dehumidifying and heating mode.
  • the target heater temperature TCO and the auxiliary heater temperature Tptc are input to the subtractor 73 of the heat pump controller 32, and the deviation (TCO-Tptc) of the target heater temperature TCO and the auxiliary heater temperature Tptc is calculated.
  • the deviation (TCO-Tptc) is input to the F / B control unit 74, and the F / B control unit 74 eliminates the deviation (TCO-Tptc) and the auxiliary heater temperature Tptc becomes the target heater temperature TCO. Calculate the required ability F / B operation amount.
  • the auxiliary heater required capacity F / B manipulated variable Qafb calculated by the F / B control unit 74 is limited by the limit setting unit 76 with the control upper limit value QptcLimHi and the control lower limit value QptcLimLo as an auxiliary heater required capacity TGQPTC. It is determined.
  • the controller 32 controls the energization of the auxiliary heater 23 based on the auxiliary heater request capability TGQPTC to generate (heat) the auxiliary heater 23 so that the auxiliary heater temperature Tptc becomes the target heater temperature TCO. Control.
  • the heat pump controller 32 controls the operation of the compressor based on the heat absorber temperature Te and the target heat absorber temperature TEO, and controls the heat generation of the auxiliary heater 23 based on the target heater temperature TCO.
  • the cooling and the dehumidification by the heat absorber 9 in the dehumidifying and heating mode, and the heating by the auxiliary heater 23 are properly controlled.
  • the air conditioning controller 20 The air mix damper 28 is controlled to adjust the amount of ventilation to the radiator 4 (and the auxiliary heater 23).
  • SW (TAO-Te) / (TH-Te) ⁇ ⁇ (III) That is, the air volume ratio SW ventilated to the radiator 4 and the auxiliary heater 23 of the heating heat exchange passage 3A changes in the range of 0 ⁇ SW ⁇ 1, and “0” does not ventilate the heating heat exchange passage 3A.
  • the heat pump controller 32 performs the defrosting control of the outdoor heat exchanger 7 as follows. (11-1) Defrosting control of the outdoor heat exchanger 7 (part 1) Next, an example of the defrosting control of the outdoor heat exchanger 7 will be described using FIG. 7.
  • the heat pump controller 32 first determines whether the vehicle has been activated in step S1 of FIG. 7 and an air conditioning request for the passenger compartment (hereinafter referred to as an HP air conditioning request) by the air conditioning device 1 for a vehicle. Determine if it is. In this case, it is determined from the ON information (sent from the air conditioning controller 20) of the ignition (IG) whether or not the vehicle is activated.
  • the HP air conditioning request is an operation request for the air conditioning system 1 for a vehicle, and in the embodiment, the ON / OFF switch of the air conditioner provided in the air conditioning operation unit 53 is turned ON whether or not there is the HP air conditioning request. It judges from the information (it transmitted from the air conditioning controller 20) of whether it was. Then, when the vehicle is started and the HP air conditioning request is made, the heat pump controller 32 starts the air conditioning operation by the air conditioning device 1 for a vehicle, and proceeds to step S2. On the other hand, if step S1 fails, the process proceeds to step S6.
  • step S6 the heat pump controller 32 determines whether or not there is an HP air conditioning request, and if there is an HP air conditioning request, that is, if there is an HP air conditioning request regardless of whether the vehicle is activated or not.
  • the air conditioning operation by the air conditioner 1 is started, and the process proceeds to step S2.
  • step S6 the air conditioning operation by the vehicle air conditioner 1 is stopped, and the process proceeds to step S7.
  • step S2 the heat pump controller 32 determines whether or not the vehicle air conditioner 1 (HP) is determined to have a failure. If the failure is not determined, the process proceeds to step S3 and the current operation mode is the heating mode to decide.
  • step S4 the defrost request flag fDFSTReq is set ("1"). If it is determined in step S3 that the current operation mode is other than the heating mode, the process proceeds to step S5, and the defrost request flag fDFSTReq is reset ("0"). Further, the heat pump controller 32 is provided with a non-volatile memory (EEP-ROM) 80, and the state of the defrost request flag fDFSTReq set (“1”) and reset (“0”) is stored in the non-volatile memory 80.
  • EEP-ROM non-volatile memory
  • step S7 determines whether the defrost request flag fDFSTReq is set (“1”), and if reset (“0”), proceeds to step S12, and the non-volatile memory 80
  • the state of the defrost request flag fDFSTReq held in is kept as the previous state (previous value).
  • step S4 the heat pump controller 32 sets the defrost request flag fDFSTReq ("1"). Is notified to the air conditioning controller 20 as a defrost request (FIG. 2).
  • the heat pump controller 32 proceeds from step S7 to step S8, and determines whether the defrosting permission has been notified from the air conditioning controller 20 or not.
  • the air conditioning controller 20 is notified that the defrosting request flag fDFSTReq is set as the defrosting request from the heat pump controller 32 as described above
  • the current state of the vehicle is the defrosting permission of the outdoor heat exchanger 7 Whether the defrosting of the outdoor heat exchanger 7 is possible or not is judged by judging whether the conditions are satisfied.
  • the defrost permission condition in the case of the embodiment is that there is no HP air conditioning request described above, and the battery 75 is being charged (the vehicle is stopped) or the remaining amount of the battery 75 is equal to or more than a predetermined value.
  • the air conditioning controller 20 sets ("1") the defrosting permission flag fDFSTPerm.
  • the fact that the defrosting permission flag fDFSTPerm is set ("1") is notified from the air-conditioning controller 20 to the heat pump controller 32 as the defrosting permission (FIG. 2).
  • the heat pump controller 32 proceeds from step S8 to step S9 to perform the defrosting operation of the outdoor heat exchanger 7 when notified of the defrosting permission from the air conditioning controller 20, and proceeds to step S12 when not notified.
  • the heat pump controller 32 sets the refrigerant circuit R to the heating mode state in the defrosting operation in step S9, then fully opens the outdoor expansion valve 6 and sets the air volume ratio SW by the air mix damper 28 to "0". It is set as the state which does not ventilate to the heat exchange path 3A for heating (it does not ventilate to the radiator 4). Then, the compressor 2 is operated, and the high temperature refrigerant discharged from the compressor 2 flows through the radiator 4 and the outdoor expansion valve 6 into the outdoor heat exchanger 7 to heat the outdoor heat exchanger 7. Thereby, the frost formation of the outdoor heat exchanger 7 is melted.
  • the compressor 2, the outdoor expansion valve 6, and the high temperature refrigerant discharged from the compressor 2 constitute the defrosting device of the outdoor heat exchanger 7 in the present invention.
  • a predetermined electric heater for example, in the case of a vehicle equipped with an engine, a circulation circuit of engine cooling water etc. is installed as a defroster, and the outdoor heat exchanger 7 is It may heat and defrost.
  • step S10 the heat pump controller 32 determines that the temperature of the outdoor heat exchanger 7 (in this case, the outdoor heat exchanger temperature TXO) detected by the outdoor heat exchanger temperature sensor 54 is a predetermined defrost end temperature (for example, + 3 ° C., etc.) It is judged whether the higher state continues for a predetermined time (for example, several minutes) (defrost completion condition), and defrost of the outdoor heat exchanger 7 is finished and the outdoor heat exchanger temperature TXO is If the defrost termination condition is satisfied, the process proceeds to step S11, and it is determined that the defrost is completed, and the above-described defrost request flag fDFSTReq is reset ("0") (step S7 to step S12 is defrost control).
  • the defrost completion condition for example, several minutes
  • the heat pump controller 32 performs the air conditioning operation in the heating mode if the defrost permission notification is received from the air conditioning controller 20 without judging the frost formation condition on the outdoor heat exchanger 7 or the like.
  • the outdoor heat exchanger 7 is defrosted each time it is stopped.
  • FIG. 8 shows another example of the defrosting control of the outdoor heat exchanger 7.
  • the steps denoted by the same reference numerals as those in FIG. 7 are the same as in FIG. In the control example of FIG.
  • the heat pump controller 32 determines in step S3 whether the current operation mode is the heating mode, and if the current operation mode is the heating mode, the malfunction determination is performed in steps S13 and S14. That is, when the current operation mode is the heating mode in step S3, the heat pump controller 32 proceeds to step S13 and determines whether the first malfunction preventing condition is satisfied.
  • a predetermined threshold for example, 3000 rpm
  • the first predetermined time t1 for example, 5 minutes
  • the heat pump controller 32 performs the first malfunction when the operation with the number of revolutions of the compressor 2 being higher than the threshold continues for the first predetermined time t1. It is determined that the prevention condition is established, and the process proceeds from step S13 to step S4, and the defrost request flag fDFSTReq is set ("1"). On the other hand, if the first malfunction prevention condition is not satisfied in step S13, the heat pump controller 32 proceeds to step S14 to determine whether the second malfunction prevention condition is satisfied this time.
  • the second malfunction prevention condition of the embodiment is whether or not the air conditioning operation in the heating mode has continued for a second predetermined time t2 (for example, 10 minutes) longer than the first predetermined time t1.
  • the heat pump controller 32 determines that the second malfunction prevention condition is satisfied, and proceeds from step S14 to step S4, and requests defrosting The flag fDFSTReq is set ("1").
  • the heat pump controller 32 proceeds to step S5 and resets the defrosting request flag fDFSTReq (“0”).
  • Other control is the same as in the case of FIG. In the control example in this case, even if the heating mode is performed, the defrost request flag fDFSTReq is not set if the first and second malfunction prevention conditions are not satisfied, so the air conditioning operation unit 53 is erroneously operated.
  • the heat pump controller 32 performs defrosting of the outdoor heat exchanger 7 every time the air conditioning operation is stopped in the heating mode. Each time the air conditioning operation is stopped in the heating mode, defrosting of the outdoor heat exchanger 7 is performed without determining the state of frost formation and the like. As a result, it is possible to prevent or suppress the decrease in the operating efficiency associated with the frost formation on the outdoor heat exchanger 7 with a relatively simple control.
  • the defrosting of the outdoor heat exchanger 7 is performed after the air conditioning operation is stopped, it is possible to prevent or suppress the decrease in the comfort of the vehicle interior.
  • the first malfunction prevention condition is satisfied.
  • the outdoor heat exchanger 7 is defrosted, or the heating mode is continuously performed for a second predetermined time t2 longer than the first predetermined time t1. In this case, it is determined that the second malfunction prevention condition is satisfied, and after the air conditioning operation is stopped in the heating mode, defrosting of the outdoor heat exchanger 7 is performed.
  • the heating mode is extremely short. It is also possible to eliminate the inconvenience that, for example, defrosting of the outdoor heat exchanger 7 is started only when time is taken.
  • the defrost request flag fDFSTReq is set ("1").
  • the defrost request flag fDFSTReq is reset ("0") and the air conditioning operation is stopped in a state where the defrost request flag fDFSTReq is set ("1").
  • the outdoor heat exchanger 7 After that, it is judged whether the outdoor heat exchanger 7 is defrostable or not, and if permitted, the outdoor heat exchanger 7 is defrosted and the defrost request flag fDFSTReq is reset ("0"). Therefore, when the compressor 2 is driven by the battery 75 mounted on the vehicle as in the embodiment, the air conditioning controller 20 has no request for air conditioning in the vehicle compartment. Also, by allowing defrosting of the outdoor heat exchanger 7 under the condition that the battery 75 is being charged or the remaining amount of the battery 75 is equal to or more than a predetermined value, the traveling of the vehicle is adversely affected. The outdoor heat exchanger 7 can be appropriately defrosted without having to do so.
  • the defrost request flag fDFSTReq is reset ("0"). Therefore, when the air conditioning operation is stopped in a mode other than the heating mode, defrosting of the outdoor heat exchanger 7 is performed.
  • control device 11 is configured of the air conditioning controller 20 to which the air conditioning operation unit 53 for performing the air conditioning setting operation of the vehicle compartment is connected, and the heat pump controller 32 for controlling the operation of the compressor 2;
  • the heat pump controller 32 executes the heating mode, or the first or second
  • the defrost request flag fDFSTReq is set (“1”)
  • the defrost request flag fDFSTReq is reset (“0”)
  • the air conditioning operation is stopped with the defrost request flag fDFSTReq set (“1”)
  • the outdoor heat exchanger 7 is defrosted, and the defrost request flag fDFSTReq is
  • the air conditioner controller 20 determines whether the outdoor heat exchanger 7 can be defrosted or not, and when permitting it, the defrosting permission of the outdoor heat exchanger 7 is By notifying the controller 32, it is possible to appropriately prevent or suppress the comfort in the vehicle interior and the decrease in the operating efficiency caused by the frost formation on the outdoor heat exchanger 7. Then, in the embodiment, the outdoor heat exchanger 7 is heated by the defrosting apparatus such as high temperature refrigerant discharged from the compressor 2 and the outdoor heat exchanger 7 is defrosted, so the outdoor heat exchanger 7 is It will be possible to melt and remove the frost formation reliably.
  • the defrosting apparatus such as high temperature refrigerant discharged from the compressor 2 and the outdoor heat exchanger 7 is defrosted
  • FIG. 9 shows a configuration diagram of a vehicle air conditioner 1 of another embodiment to which the present invention is applied.
  • the same reference numerals as in FIG. 1 have the same or similar functions.
  • the outlet of the supercooling unit 16 is connected to the check valve 18, and the outlet of the check valve 18 is connected to the refrigerant pipe 13B.
  • the refrigerant pipe 13B (indoor expansion valve 8) side is in the forward direction.
  • the refrigerant pipe 13E on the outlet side of the radiator 4 is branched in front of the outdoor expansion valve 6, and the branched refrigerant pipe (hereinafter referred to as a second bypass pipe) 13F is a solenoid valve 22 (for dehumidification) Is connected in communication with the refrigerant pipe 13B on the downstream side of the check valve 18.
  • an evaporation pressure adjusting valve 70 is connected to the refrigerant pipe 13C on the outlet side of the heat absorber 9 on the refrigerant downstream side of the internal heat exchanger 19 and on the refrigerant upstream side from the junction with the refrigerant pipe 13D. .
  • the solenoid valve 22 and the evaporation pressure regulating valve 70 are also connected to the output of the heat pump controller 32.
  • the bypass pipe 45, the solenoid valve 30, and the bypass device 45 including the solenoid valve 40 in FIG. 1 of the embodiment described above are not provided.
  • the other parts are the same as those in FIG.
  • the operation of the vehicle air conditioner 1 of this embodiment will be described with the above configuration.
  • the heat pump controller 32 switches and executes each operation mode of heating mode, dehumidifying heating mode, internal cycle mode, dehumidifying cooling mode, cooling mode and auxiliary heater single mode in the air conditioning operation of this embodiment (MAX cooling mode is implemented Not present in the example).
  • the solenoid valve 22 is closed in the heating mode (including defrosting) and in the dehumidifying / cooling mode and the cooling mode.
  • the heat pump controller 32 opens the solenoid valve 21 (for heating) in this embodiment, and the solenoid valve 17 ( Close for cooling.
  • the solenoid valve 22 (for dehumidification) is opened. Then, the compressor 2 is operated.
  • the air conditioning controller 20 operates the blowers 15 and 27, and the air mix damper 28 is basically blown out from the indoor blower 27 and passes through the heat absorber 9 and all the air in the air flow passage 3 is heated by the heat exchange passage 3A. In the state of ventilating to the auxiliary heater 23 and the radiator 4, the air volume is also adjusted. As a result, the high-temperature, high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G.
  • the air in the air flow passage 3 which has flowed into the heating heat exchange passage 3A is ventilated in the radiator 4, the air in the air flow passage 3 is heated by the high temperature refrigerant in the radiator 4, while the radiator is The refrigerant in 4 is cooled by the heat taken by the air and condenses and liquefies.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 evaporates, and heat is pumped up from the outside air ventilated by the traveling or the outdoor blower 15.
  • the refrigerant circuit R is a heat pump. Then, the low temperature refrigerant leaving the outdoor heat exchanger 7 passes through the refrigerant pipe 13A, the solenoid valve 21 and the refrigerant pipe 13D, enters the accumulator 12 from the refrigerant pipe 13C, and is gas-liquid separated there, and then the gas refrigerant is the compressor 2 Repeat the cycle of sucking in Further, a part of the condensed refrigerant flowing through the refrigerant pipe 13E through the radiator 4 is diverted, and passes through the solenoid valve 22 to the indoor expansion valve 8 through the internal heat exchanger 19 from the second bypass pipe 13F and the refrigerant pipe 13B. It will be.
  • the refrigerant After the refrigerant is depressurized by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates. At this time, the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat sink 9, so that the air is cooled and dehumidified.
  • the refrigerant evaporated by the heat absorber 9 passes through the internal heat exchanger 19 and the evaporation pressure adjusting valve 70 sequentially, joins with the refrigerant from the refrigerant pipe 13D in the refrigerant pipe 13C, and then passes through the accumulator 12 and is sucked into the compressor 2 repeat.
  • the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, whereby dehumidifying and heating of the vehicle interior is performed.
  • the air conditioning controller 20 transmits the target heater temperature TCO (target value of the heating temperature TH) calculated from the target outlet temperature TAO to the heat pump controller 32.
  • the heat pump controller 32 calculates a target radiator pressure PCO (a target value of the radiator pressure PCI) from the target heater temperature TCO, and the refrigerant of the radiator 4 detected by the target radiator pressure PCO and the radiator pressure sensor 47
  • the rotation speed NC of the compressor 2 is controlled based on the pressure (radiator pressure PCI, high pressure of the refrigerant circuit R), and heating by the radiator 4 is controlled.
  • the heat pump controller 32 controls the degree of opening of the outdoor expansion valve 6 based on the temperature Te of the heat absorber 9 detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO transmitted from the air conditioning controller 20. Further, the heat pump controller 32 opens the evaporation pressure control valve 70 (enlarges the flow path) / closes (a small amount of refrigerant flows) based on the temperature Te of the heat absorber 9 detected by the heat absorber temperature sensor 48. Prevent the problem of freezing due to too low temperature. (13) Internal cycle mode of vehicle air conditioner 1 in FIG. 9 In internal cycle mode, the heat pump controller 32 fully closes the outdoor expansion valve 6 in the dehumidifying and heating mode (fully closed position), Close the solenoid valve 21.
  • the radiator 4 By closing the outdoor expansion valve 6 and the solenoid valve 21, the inflow of the refrigerant to the outdoor heat exchanger 7 and the outflow of the refrigerant from the outdoor heat exchanger 7 are prevented, so the radiator 4
  • the condensed refrigerant flowing through the refrigerant pipe 13E passes through the solenoid valve 22 and all flows to the second bypass pipe 13F.
  • the refrigerant flowing through the second bypass pipe 13F passes from the refrigerant pipe 13B to the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates.
  • the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat sink 9, so that the air is cooled and dehumidified.
  • the refrigerant evaporated by the heat absorber 9 flows through the refrigerant pipe 13C sequentially through the internal heat exchanger 19 and the evaporation pressure adjusting valve 70, and repeats the circulation sucked into the compressor 2 through the accumulator 12.
  • the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, this means that dehumidifying and heating of the passenger compartment is performed, but in this internal cycle mode, the air flow on the indoor side Since the refrigerant is circulated between the radiator 4 (heat radiation) and the heat absorber 9 (heat absorption) in the passage 3, heating of heat from the outside air is not performed, and heating for the power consumption of the compressor 2 is performed.
  • the dehumidifying ability is higher than the dehumidifying and heating mode, but the heating ability is lowered.
  • the air conditioning controller 20 transmits the target heater temperature TCO (target value of the heating temperature TH) calculated from the target blowing temperature TAO to the heat pump controller 32.
  • the heat pump controller 32 calculates a target radiator pressure PCO (target value of the radiator pressure PCI) from the transmitted target heater temperature TCO, and the target radiator pressure PCO and the radiator 4 detected by the radiator pressure sensor 47
  • the rotation speed NC of the compressor 2 is controlled based on the refrigerant pressure (the radiator pressure PCI, the high pressure of the refrigerant circuit R), and the heating by the radiator 4 is controlled.
  • the auxiliary heating device is not limited to the auxiliary heater 23 shown in the embodiment, and a heat medium circulation circuit which heats the air in the air flow passage 3 by circulating a heat medium heated by the heater and an engine You may utilize the heater core etc. which circulate the heated radiator water.
  • Air conditioner 1 Vehicle air conditioner 2 Compressor 3 Air flow passage 4 Radiator 6 Outdoor expansion valve 7 Outdoor heat exchanger 8 Indoor expansion valve 9 Heat sink 10 HVAC unit 11 Control device 20 Air conditioning controller 23 Auxiliary heater (auxiliary heating device) 27 Indoor blower (blower fan) 28 air mix damper 32 heat pump controller 53 air conditioning control unit 65 vehicle communication bus 75 battery R refrigerant circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Provided is a vehicular air conditioning device capable of suppressing, by means of a relatively simple control, a decrease in comfort in a vehicle cabin and a decrease in an operation efficiency due to frost formation on an outdoor heat exchanger. The present invention is provided with a compressor 2, a radiator 4, an outdoor heat exchanger 7, and a control device, wherein an air conditioning operation including a heating mode, in which at least the refrigerant discharged from the compressor 2 radiates heat through the radiator 4, and the heat-radiated refrigerant is depressurized and then absorbs heat through the outdoor heat exchanger 7, thereby heating the inside of the vehicle cabin, is performed with the control device. The control device performs defrosting of the outdoor heat exchanger 7 every time the air conditioning operation in the heating mode is stopped.

Description

車両用空気調和装置Vehicle air conditioner
 本発明は、車両の車室内を空調するヒートポンプ式の空気調和装置に関するものである。 The present invention relates to a heat pump type air conditioner for air conditioning a vehicle cabin of a vehicle.
 近年の環境問題の顕在化から、ハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する圧縮機と、車室内側に設けられて冷媒を放熱させる放熱器と、車室外側に設けられて冷媒を吸熱させる室外熱交換器を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させることで車室内を暖房する暖房モード等の空調運転を実行するものが開発されている(例えば、特許文献1参照)。 The recent emergence of environmental problems has led to the spread of hybrid vehicles and electric vehicles. And, as an air conditioner which can be applied to such a vehicle, a compressor which compresses and discharges a refrigerant, a radiator which is provided on the vehicle interior side and which radiates the refrigerant, and which is provided outside a vehicle interior The outdoor heat exchanger that absorbs heat is provided, the refrigerant discharged from the compressor is dissipated by the radiator, and the refrigerant dissipated by the radiator is absorbed by the outdoor heat exchanger, thereby heating the interior of the vehicle. What performs the air conditioning driving | operation of is developed (for example, refer patent document 1).
特開2014−94676号公報Japanese Patent Application Publication No. 2014-94676
 ここで、暖房モードでは室外熱交換器で冷媒が蒸発し、外気から吸熱するため、当該室外熱交換器には着霜が生じる。室外熱交換器への着霜が進行した状態で圧縮機の運転を継続すると、外気からの吸熱能力が低下するために運転効率が著しく低下する。そこで、従来では室外熱交換器の温度や圧力等から着霜の状況を判断し、当該室外熱交換器の除霜を行っていた。そのため、着霜判定の制御が複雑となる欠点があった。
 また、従来では室外熱交換器の除霜を行う場合、暖房モードを停止して行っていたため、快適性が損なわれてしまう問題もあった。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、車室内の快適性の低下と、室外熱交換器の着霜に伴う運転効率の低下を、比較的簡単な制御で抑制することができる車両用空気調和装置を提供することを目的とする。
Here, in the heating mode, the refrigerant evaporates in the outdoor heat exchanger and absorbs heat from the outside air, so frost formation occurs on the outdoor heat exchanger. If the operation of the compressor is continued in a state where frost formation on the outdoor heat exchanger has progressed, the heat absorption capacity from the outside air is reduced, so that the operation efficiency is significantly reduced. So, conventionally, the situation of frost formation was judged from temperature, pressure, etc. of an outdoor heat exchanger, and defrosting of the said outdoor heat exchanger was performed. Therefore, there is a drawback that control of frost determination is complicated.
In addition, conventionally, when defrosting the outdoor heat exchanger, the heating mode is stopped and there is a problem that the comfort is impaired.
The present invention has been made to solve such conventional technical problems, and it is relatively easy to reduce the comfort in the vehicle interior and to reduce the operating efficiency caused by the frost formation on the outdoor heat exchanger. An object of the present invention is to provide a vehicle air conditioner that can be suppressed by control.
 本発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、車室外に設けられて冷媒を吸熱させるための室外熱交換器と、制御装置とを備え、この制御装置により、少なくとも圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させて車室内を暖房する暖房モードを含む空調運転を実行するものであって、制御装置は、暖房モードで空調運転を停止する毎に、室外熱交換器の除霜を行うことを特徴とする。
 請求項2の発明の車両用空気調和装置は、上記発明において制御装置は、暖房モードにおいて、圧縮機の回転数が所定の閾値より高い状態が第1の所定時間t1継続した場合、誤動作防止条件が成立したものと判断し、当該暖房モードで空調運転の停止した後、室外熱交換器の除霜を行うことを特徴とする。
 請求項3の発明の車両用空気調和装置は、上記各発明において制御装置は、暖房モードを第1の所定時間t1よりも長い第2の所定時間t2継続して実行した場合、誤動作防止条件が成立したものと判断し、当該暖房モードで空調運転の停止した後、室外熱交換器の除霜を行うことを特徴とする。
 請求項4の発明の車両用空気調和装置は、上記各発明において制御装置は、暖房モードを実行した場合、又は、誤動作防止条件が成立したものと判断した場合、所定の除霜要求フラグをセットし、暖房モード以外で空調運転を実行した場合、除霜要求フラグをリセットすると共に、当該除霜要求フラグがセットされている状態で空調運転を停止した後、室外熱交換器の除霜可否を判断し、許可されている場合には、当該室外熱交換器の除霜を行い、除霜要求フラグをリセットすることを特徴とする。
 請求項5の発明の車両用空気調和装置は、上記発明において圧縮機は、車両に搭載されたバッテリにより駆動されると共に、制御装置は、車室内の空調要求が無く、且つ、バッテリが充電中であるか当該バッテリの残量が所定値以上あることを条件として、室外熱交換器の除霜を許可することを特徴とする。
 請求項6の発明の車両用空気調和装置は、請求項4又は請求項5の発明において制御装置は、車室内の空調設定操作を行うための空調操作部が接続された空調コントローラと、圧縮機の運転を制御するヒートポンプコントローラとから構成され、空調コントローラとヒートポンプコントローラは、車両通信バスを介して情報の送受信を行い、ヒートポンプコントローラは、暖房モードを実行した場合、又は、誤動作防止条件が成立したものと判断した場合、除霜要求フラグをセットし、暖房モード以外で空調運転を実行した場合、除霜要求フラグをリセットし、当該除霜要求フラグがセットされている状態で空調運転を停止した場合、空調コントローラに対して除霜要求を行い、空調コントローラから除霜許可が通知されている場合、室外熱交換器の除霜を行い、除霜要求フラグをリセットすると共に、空調コントローラは、ヒートポンプコントローラから除霜要求があった場合、室外熱交換器の除霜可否を判断し、許可する場合には、当該室外熱交換器の除霜許可をヒートポンプコントローラに通知することを特徴とする。
 請求項7の発明の車両用空気調和装置は、上記各発明において制御装置は、所定の除霜装置により室外熱交換器を加熱することで当該室外熱交換器を除霜することを特徴とする。
The air conditioner for a vehicle according to the present invention heats the air supplied from the air flow passage to the vehicle compartment from the air flow passage by radiating the refrigerant and the air flow passage through which the air supplied to the vehicle is circulated. A radiator, an outdoor heat exchanger provided outside the vehicle compartment for absorbing heat, and a control device, the control device causing the radiator to dissipate at least the refrigerant discharged from the compressor After decompressing the refrigerant that has dissipated the heat, the air conditioning operation including the heating mode of heating the vehicle interior by absorbing heat with the outdoor heat exchanger is executed, and the control device stops the air conditioning operation in the heating mode The outdoor heat exchanger is defrosted each time.
The air conditioner for a vehicle according to the second aspect of the present invention is the air conditioner for a vehicle according to the second aspect, wherein in the heating mode, the control device prevents malfunction if the state where the number of revolutions of the compressor is higher than the predetermined threshold continues for the first predetermined time t1. It is determined that the outdoor heat exchanger is defrosted after the air conditioning operation is stopped in the heating mode.
In the vehicle air conditioner of the invention of claim 3, in each of the inventions described above, when the control device continuously executes the heating mode for a second predetermined time t2 longer than the first predetermined time t1, the malfunction preventing condition is It is determined that the condition is satisfied, and after the air conditioning operation is stopped in the heating mode, the outdoor heat exchanger is defrosted.
In the vehicle air conditioner of the invention of claim 4, the control device in each of the inventions sets a predetermined defrost request flag when the heating mode is performed or when it is determined that the malfunction preventing condition is satisfied. If the air conditioning operation is performed in a mode other than the heating mode, the defrost request flag is reset, and after the air conditioning operation is stopped in a state where the defrost request flag is set, whether the outdoor heat exchanger can be defrosted If it is judged and permitted, the outdoor heat exchanger is defrosted, and a defrost request flag is reset.
In the air conditioner for a vehicle according to the fifth aspect of the present invention, in the above aspect, the compressor is driven by the battery mounted on the vehicle, and the control device has no air conditioning requirement for the vehicle interior, and the battery is charging. It is characterized in that defrosting of the outdoor heat exchanger is permitted on condition that the remaining amount of the battery is equal to or more than a predetermined value.
According to a sixth aspect of the present invention, in the vehicle air conditioner of the fourth aspect or the fifth aspect, the control device includes an air conditioning controller to which an air conditioning operation unit for performing an air conditioning setting operation in a vehicle compartment is connected; The air conditioning controller and the heat pump controller transmit and receive information via the vehicle communication bus, and the heat pump controller executes the heating mode, or the malfunction preventing condition is satisfied. If it is determined that the defrost request flag is set, and if the air conditioning operation is performed except in the heating mode, the defrost request flag is reset and the air conditioning operation is stopped in a state where the defrost request flag is set. In this case, when the defrost request is issued to the air conditioning controller and the defrost permission is notified from the air conditioning controller, the outdoor heat is The defrosting of the converter is performed, the defrosting request flag is reset, and the air conditioning controller judges whether or not the outdoor heat exchanger can be defrosted when the defrosting request is received from the heat pump controller, and when permitting it, The defrosting permission of the outdoor heat exchanger is notified to the heat pump controller.
The air conditioner for a vehicle according to the invention of claim 7 is characterized in that in the above respective inventions, the control device defrosts the outdoor heat exchanger by heating the outdoor heat exchanger with a predetermined defroster. .
 本発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、車室外に設けられて冷媒を吸熱させるための室外熱交換器と、制御装置とを備え、この制御装置により、少なくとも圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させて車室内を暖房する暖房モードを含む空調運転を実行する車両用空気調和装置において、制御装置が、暖房モードで空調運転を停止する毎に、室外熱交換器の除霜を行うようにしたので、室外熱交換器への着霜の状況等を判断すること無く、暖房モードで空調運転を停止する毎に室外熱交換器の除霜が行われるようになる。
 これにより、比較的簡単な制御で室外熱交換器の着霜に伴う運転効率の低下を防止、若しくは、抑制することができるようになる。また、室外熱交換器の除霜は空調運転が停止された後に行われるので、車室内の快適性の低下も防止、若しくは、抑制することができる効果もある。
 この場合、例えば請求項2の発明の如く制御装置が、暖房モードにおいて、圧縮機の回転数が所定の閾値より高い状態が第1の所定時間t1継続した場合、誤動作防止条件が成立したものと判断し、当該暖房モードで空調運転を停止した後、室外熱交換器の除霜を行うことにより、或いは、請求項3の発明の如く暖房モードを第1の所定時間t1よりも長い第2の所定時間t2継続して実行した場合、誤動作防止条件が成立したものと判断し、当該暖房モードで空調運転を停止した後、室外熱交換器の除霜を行うことにより、例えば、暖房モードが極めて短時間行われただけで除霜が開始されてしまう等の不都合も解消することができる。
 また、請求項4の発明の如く制御装置が、暖房モードを実行した場合、又は、誤動作防止条件が成立したものと判断した場合、所定の除霜要求フラグをセットし、暖房モード以外で空調運転を実行した場合、除霜要求フラグをリセットすると共に、当該除霜要求フラグがセットされている状態で空調運転を停止した後、室外熱交換器の除霜可否を判断し、許可されている場合には、当該室外熱交換器の除霜を行い、除霜要求フラグをリセットするようにすれば、例えば、請求項5の発明の如く圧縮機が、車両に搭載されたバッテリにより駆動される場合、制御装置が、車室内の空調要求が無く、且つ、バッテリが充電中であるか当該バッテリの残量が所定値以上あることを条件として、室外熱交換器の除霜を許可するようにすることで、車両の走行に悪影響を及ぼすこと無く、適切に室外熱交換器の除霜を行うことができるようになる。また、暖房モード以外で空調運転を実行した場合には、除霜要求フラグはリセットされるので、暖房モード以外で空調運転を停止したときに室外熱交換器の除霜が行われる不都合も防止できる。
 このとき、請求項6の発明の如く制御装置が、車室内の空調設定操作を行うための空調操作部が接続された空調コントローラと、圧縮機の運転を制御するヒートポンプコントローラとから構成され、空調コントローラとヒートポンプコントローラは、車両通信バスを介して情報の送受信を行うようにした場合、ヒートポンプコントローラが、暖房モードを実行した場合、又は、誤動作防止条件が成立したものと判断した場合、除霜要求フラグをセットし、暖房モード以外で空調運転を実行した場合、除霜要求フラグをリセットし、当該除霜要求フラグがセットされている状態で空調運転を停止した場合、空調コントローラに対して除霜要求を行い、空調コントローラから除霜許可が通知されている場合、室外熱交換器の除霜を行い、除霜要求フラグをリセットすると共に、空調コントローラは、ヒートポンプコントローラから除霜要求があった場合、室外熱交換器の除霜可否を判断し、許可する場合には、当該室外熱交換器の除霜許可をヒートポンプコントローラに通知することで、車室内の快適性と室外熱交換器の着霜に伴う運転効率の低下を適切に防止、若しくは、抑制することができるようになる。
 そして、室外熱交換器の除霜に関しては、請求項7の発明の如く所定の除霜装置によって室外熱交換器を加熱し、除霜するようにすることで、室外熱交換器の着霜を確実に融解除去することができるようになるものである。
According to the present invention, the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle compartment flows, and the radiator for radiating the heat of the refrigerant and heating the air supplied from the air flow passage to the vehicle compartment And an outdoor heat exchanger provided outside the vehicle for absorbing heat of the refrigerant, and a control device, wherein the control device causes at least the refrigerant discharged from the compressor to be dissipated by the radiator and dissipated In a vehicle air conditioner that performs air conditioning operation including a heating mode of heating the vehicle interior by absorbing heat with an outdoor heat exchanger after decompressing the refrigerant, the control device stops the air conditioning operation in the heating mode each time Since the outdoor heat exchanger is defrosted, defrosting of the outdoor heat exchanger is performed each time the air conditioning operation is stopped in the heating mode without judging the status of frost formation on the outdoor heat exchanger, etc. It will be done.
As a result, it is possible to prevent or suppress the decrease in the operating efficiency caused by the frost formation on the outdoor heat exchanger with relatively simple control. In addition, since defrosting of the outdoor heat exchanger is performed after the air conditioning operation is stopped, there is also an effect that deterioration in the comfort of the vehicle interior can be prevented or suppressed.
In this case, for example, as in the second aspect of the invention, in the heating mode, when the state where the number of revolutions of the compressor is higher than the predetermined threshold continues for the first predetermined time t1, the malfunction preventing condition is satisfied. After the air conditioning operation is stopped in the heating mode, the outdoor heat exchanger is defrosted, or, as in the invention of claim 3, the second heating mode is longer than the first predetermined time t1. If the operation is continued for a predetermined time t2, it is determined that the malfunction prevention condition is satisfied, and after the air conditioning operation is stopped in the heating mode, the outdoor heat exchanger is defrosted, for example, the heating mode becomes extremely It is also possible to solve the inconvenience that the defrosting is started only after being performed for a short time.
Further, as in the invention of claim 4, when the control device executes the heating mode or determines that the malfunction preventing condition is satisfied, a predetermined defrost request flag is set, and the air conditioning operation other than the heating mode is performed. If the defrost request flag is reset and the air conditioning operation is stopped while the defrost request flag is set, it is judged whether the outdoor heat exchanger can be defrosted or not, and it is permitted. If the outdoor heat exchanger is defrosted and the defrost request flag is reset, for example, the compressor is driven by a battery mounted on the vehicle as in the invention of claim 5 The control device permits defrosting of the outdoor heat exchanger on the condition that there is no air conditioning request in the vehicle compartment and the battery is charging or the remaining amount of the battery is equal to or more than a predetermined value. By the vehicle Running without adversely affecting the appropriately it is possible to perform the defrosting of the outdoor heat exchanger. In addition, when the air conditioning operation is performed in a mode other than the heating mode, the defrost request flag is reset, so that it is possible to prevent the inconvenience that the outdoor heat exchanger is defrosted when the air conditioning operation is stopped in any mode other than the heating mode. .
At this time, as in the invention of claim 6, the control device comprises an air conditioning controller to which an air conditioning operation unit for performing an air conditioning setting operation in the vehicle compartment is connected, and a heat pump controller for controlling the operation of the compressor. If the controller and the heat pump controller transmit and receive information via the vehicle communication bus, if the heat pump controller executes the heating mode, or if it is determined that the malfunction preventing condition is satisfied, the defrost request is made. When the flag is set and the air conditioning operation is executed except for the heating mode, the defrost request flag is reset, and when the air conditioning operation is stopped in the state where the defrost request flag is set, the defrost for the air conditioning controller is performed. If request is made and defrost permission is notified from the air conditioning controller, defrost the outdoor heat exchanger and request defrost While resetting the lag, the air conditioning controller determines whether the outdoor heat exchanger can be defrosted if the defrosting request is received from the heat pump controller, and if it permits, the defrosting permission of the outdoor heat exchanger is heat pump By notifying the controller, it is possible to appropriately prevent or suppress the decrease in the driving efficiency caused by the comfort of the vehicle interior and the frost formation of the outdoor heat exchanger.
With regard to defrosting of the outdoor heat exchanger, the outdoor heat exchanger is heated by the predetermined defrosting apparatus as in the seventh aspect of the invention to defrost the outdoor heat exchanger. It will be able to reliably remove by melting.
本発明を適用した一実施形態の車両用空気調和装置の構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the air conditioning apparatus for vehicles of one Embodiment to which this invention is applied. 図1の車両用空気調和装置の制御装置のブロック図である。It is a block diagram of the control apparatus of the air conditioning apparatus for vehicles of FIG. 図1の車両用空気調和装置の空気流通路の模式図である。It is a schematic diagram of the airflow path of the air conditioning apparatus for vehicles of FIG. 図2のヒートポンプコントローラの暖房モードにおける圧縮機制御に関する制御ブロック図である。It is a control block diagram regarding compressor control in heating mode of the heat pump controller of FIG. 図2のヒートポンプコントローラの除湿暖房モードにおける圧縮機制御に関する制御ブロック図である。It is a control block diagram regarding compressor control in the dehumidification heating mode of the heat pump controller of FIG. 図2のヒートポンプコントローラの除湿暖房モードにおける補助ヒータ(補助加熱装置)制御に関する制御ブロック図である。It is a control block diagram regarding the auxiliary heater (auxiliary heating device) control in the dehumidification heating mode of the heat pump controller of FIG. 図2のヒートポンプコントローラによる室外熱交換器の除霜制御を説明するフローチャートである。It is a flowchart explaining defrost control of the outdoor heat exchanger by the heat pump controller of FIG. 図2のヒートポンプコントローラによる室外熱交換器のもう一つの除霜制御を説明するフローチャートである。It is a flowchart explaining another defrost control of the outdoor heat exchanger by the heat pump controller of FIG. 本発明の他の実施例の車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles of the other Example of this invention.
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings.
 図1は本発明の一実施例の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、車両に搭載されたバッテリ75(図2)に充電された電力で走行用の電動モータを駆動して走行するものであり(何れも図示せず)、本発明の車両用空気調和装置1も、バッテリ75の電力で駆動されるものとする。
 即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路を用いたヒートポンプにより空調運転を行い、この空調運転において、暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード(最大冷房モード)及び補助ヒータ単独モードの各運転モードを選択的に実行するものである。
 尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明は有効であり、更には、エンジンで走行する通常の自動車にも適用可能であることは云うまでもない。
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、バッテリ75から給電されて駆動し、冷媒を圧縮する電動式の圧縮機2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を放熱させて車室内に供給する空気を加熱するための放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6(減圧装置)と、車室外に設けられて冷房時には放熱器として機能し、暖房時には蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る室内膨張弁8(減圧装置)と、空気流通路3内に設けられ、冷房時及び除湿時に冷媒を吸熱させて車室内外から吸い込んで車室内に供給する空気を冷却するための吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。
 そして、この冷媒回路Rには所定量の冷媒と潤滑用のオイルが充填されている。尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。
 また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7から出た冷媒配管13Aは冷房時に開放される電磁弁17を介してレシーバドライヤ部14に接続され、過冷却部16の出口側の冷媒配管13Bは室内膨張弁8介して吸熱器9の入口側に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成している。
 また、過冷却部16と室内膨張弁8間の冷媒配管13Bは、吸熱器9の出口側の冷媒配管13Cと熱交換関係に設けられ、両者で内部熱交換器19を構成している。これにより、冷媒配管13Bを経て室内膨張弁8に流入する冷媒は、吸熱器9を出た低温の冷媒により冷却(過冷却)される構成とされている。
 また、室外熱交換器7から出た冷媒配管13Aは冷媒配管13Dに分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁21を介して内部熱交換器19の下流側における冷媒配管13Cに連通接続されている。この冷媒配管13Cがアキュムレータ12に接続され、アキュムレータ12は圧縮機2の冷媒吸込側に接続されている。更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6を介して室外熱交換器7の入口側に接続されている。
 また、圧縮機2の吐出側と放熱器4の入口側の間の冷媒配管13Gには後述する除湿暖房とMAX冷房時に閉じられる電磁弁30(流路切換装置を構成する)が介設されている。この場合、冷媒配管13Gは電磁弁30の上流側でバイパス配管35に分岐しており、このバイパス配管35は除湿暖房とMAX冷房時に開放される電磁弁40(これも流路切換装置を構成する)を介して室外膨張弁6の下流側の冷媒配管13Eに連通接続されている。これらバイパス配管35、電磁弁30及び電磁弁40によりバイパス装置45が構成される。
 このようなバイパス配管35、電磁弁30及び電磁弁40によりバイパス装置45を構成したことで、後述する如く圧縮機2から吐出された冷媒を室外熱交換器7に直接流入させる除湿暖房モードやMAX冷房モードと、圧縮機2から吐出された冷媒を放熱器4に流入させる暖房モードや除湿冷房モード、冷房モードとの切り換えを円滑に行うことができるようになる。
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環モード)と、車室外の空気である外気(外気導入モード)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
 また、図1において23は実施例の車両用空気調和装置1に設けられた補助加熱装置としての補助ヒータである。実施例の補助ヒータ23は電気ヒータであるPTCヒータにて構成されており、空気流通路3の空気の流れに対して、放熱器4の風上側(空気上流側)となる空気流通路3内に設けられている。そして、補助ヒータ23に通電されて発熱すると、吸熱器9を経て放熱器4に流入する空気流通路3内の空気が加熱される。即ち、この補助ヒータ23が所謂ヒータコアとなり、車室内の暖房を行い、或いは、それを補完する。
 ここで、HVACユニット10の吸熱器9より風下側(空気下流側)の空気流通路3は仕切壁10Aにより区画され、暖房用熱交換通路3Aとそれをバイパスするバイパス通路3Bとが形成されており、前述した放熱器4と補助ヒータ23は暖房用熱交換通路3Aに配置されている。
 また、補助ヒータ23の風上側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を、補助ヒータ23及び放熱器4が配置された暖房用熱交換通路3Aに通風する割合を調整するエアミックスダンパ28が設けられている。
 更に、放熱器4の風下側におけるHVACユニット10には、FOOT(フット)吹出口29A(第1の吹出口)、VENT(ベント)吹出口29B(FOOT吹出口29Aに対しては第2の吹出口、DEF吹出口29Cに対しては第1の吹出口)、DEF(デフ)吹出口29C(第2の吹出口)の各吹出口が形成されている。FOOT吹出口29Aは車室内の足下に空気を吹き出すための吹出口で、最も低い位置にある。また、VENT吹出口29Bは車室内の運転者の胸や顔付近に空気を吹き出すための吹出口で、FOOT吹出口29Aより上方にある。そして、DEF吹出口29Cは車両のフロントガラス内面に空気を吹き出すための吹出口で、他の吹出口29A、29Bよりも上方の最も高い位置にある。
 そして、FOOT吹出口29A、VENT吹出口29B、及び、DEF吹出口29Cには、空気の吹き出し量を制御するFOOT吹出口ダンパ31A、VENT吹出口ダンパ31B、及び、DEF吹出口ダンパ31Cがそれぞれ設けられている。
 次に、図2は実施例の車両用空気調和装置1の制御装置11のブロック図を示している。制御装置11は、何れもプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成された空調コントローラ20及びヒートポンプコントローラ32から構成されており、これらがCAN(Controller Area Network)やLIN(Local Interconnect Network)を構成する車両通信バス65に接続されている。また、圧縮機2と補助ヒータ23も車両通信バス65に接続され、これら空調コントローラ20、ヒートポンプコントローラ32、圧縮機2及び補助ヒータ23が車両通信バス65を介してデータの送受信を行うように構成されている。
 空調コントローラ20は、車両の車室内空調の制御を司る上位のコントローラであり、この空調コントローラ20の入力には、車両の外気温度Tamを検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれて吸熱器9に流入する空気の温度(吸込空気温度Tas)を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度(室内温度Tin)を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO濃度センサ39と、車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力Pdを検出する吐出圧力センサ42と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52の各出力と、設定温度や運転モードの切り換え等の車室内の空調設定操作を行うための空調操作部(エアコン操作部)53が接続されている。
 また、空調コントローラ20の出力には、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、各吹出口ダンパ31A~31Cが接続され、それらは空調コントローラ20により制御される。尚、バッテリ75はコントローラを内蔵しており、バッテリ75のコントローラは車両通信バス65を介して空調コントローラ20とデータの送受信を行い、この空調コントローラ20にバッテリ75が充電中であるか否かの情報やバッテリ75の残量(充電量)に関する情報が送信される構成とされている。
 ヒートポンプコントローラ32は、主に冷媒回路Rの制御を司るコントローラであり、このヒートポンプコントローラ32の入力には、圧縮機2の吐出冷媒温度Tdを検出する吐出温度センサ43と、圧縮機2の吸込冷媒圧力Psを検出する吸込圧力センサ44と、圧縮機2の吸込冷媒温度Tsを検出する吸込温度センサ55と、放熱器4の冷媒温度(放熱器温度TCI)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器圧力PCI)を検出する放熱器圧力センサ47と、吸熱器9の冷媒温度(吸熱器温度Te)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力を検出する吸熱器圧力センサ49と、補助ヒータ23の温度(補助ヒータ温度Tptc)を検出する補助ヒータ温度センサ50と、室外熱交換器7の出口の冷媒温度(室外熱交換器7の冷媒蒸発温度TXO、室外熱交換器温度TXO)を検出する室外熱交換器温度センサ54と、室外熱交換器7の出口の冷媒圧力(室外熱交換器7の冷媒蒸発圧力PXO、室外熱交換器圧力PXO)を検出する室外熱交換器圧力センサ56の各出力が接続されている。
 また、ヒートポンプコントローラ32の出力には、室外膨張弁6、室内膨張弁8と、電磁弁30(リヒート用)、電磁弁17(冷房用)、電磁弁21(暖房用)、電磁弁40(バイパス用)の各電磁弁が接続され、それらはヒートポンプコントローラ32により制御される。尚、圧縮機2と補助ヒータ23はそれぞれコントローラを内蔵しており、圧縮機2と補助ヒータ23のコントローラは車両通信バス65を介してヒートポンプコントローラ32とデータの送受信を行い、このヒートポンプコントローラ32によって制御される。
 ヒートポンプコントローラ32と空調コントローラ20は車両通信バス65を介して相互にデータの送受信を行い、各センサの出力や空調操作部53にて入力された設定に基づき、各機器を制御するものであるが、この場合の実施例では外気温度センサ33、吐出圧力センサ42、車速センサ52、空気流通路3に流入した空気の体積風量Ga(空調コントローラ20が算出)、エアミックスダンパ28による風量割合SW(空調コントローラ20が算出)、空調操作部53の出力は空調コントローラ20から車両通信バス65を介してヒートポンプコントローラ32に送信され、ヒートポンプコントローラ32による制御に供される構成とされている。
 以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。この実施例では制御装置11(空調コントローラ20、ヒートポンプコントローラ32)は、空調運転を実行する場合、暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード(最大冷房モード)及び補助ヒータ単独モードの各運転モードを切り換えて実行する。先ず、各運転モードにおける冷媒の流れと制御の概略について説明する。
 (1)暖房モード
 ヒートポンプコントローラ32により(オートモード)或いは空調操作部53へのマニュアルの空調設定操作(マニュアルモード)により暖房モードが選択されると、ヒートポンプコントローラ32は電磁弁21(暖房用)を開放し、電磁弁17(冷房用)を閉じる。また、電磁弁30(リヒート用)を開放し、電磁弁40(バイパス用)を閉じる。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量を調整してもよい。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)にて加熱された空気は各吹出口29A~29Cから吹き出されるので、これにより車室内の暖房が行われることになる。
 ヒートポンプコントローラ32は、空調コントローラ20が目標吹出温度TAOから算出する目標ヒータ温度TCO(後述する加熱温度THの目標値)から目標放熱器圧力PCO(放熱器圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数NCを制御し、放熱器4による加熱を制御する。また、ヒートポンプコントローラ32は、放熱器温度センサ46が検出する放熱器4の冷媒温度(放熱器温度TCI)及び放熱器圧力センサ47が検出する放熱器圧力PCIに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度SCを制御する。
 また、ヒートポンプコントローラ32はこの暖房モードにおいては、車室内空調に要求される暖房能力に対して放熱器4による暖房能力が不足する場合、その不足する分を補助ヒータ23の発熱で補完するように補助ヒータ23の通電を制御する。それにより、快適な車室内暖房を実現し、且つ、室外熱交換器7の着霜も抑制する。このとき、補助ヒータ23は放熱器4の空気上流側に配置されているので、空気流通路3を流通する空気は放熱器4の前に補助ヒータ23に通風されることになる。
 ここで、補助ヒータ23が放熱器4の空気下流側に配置されていると、実施例の如くPTCヒータで補助ヒータ23を構成した場合には、補助ヒータ23に流入する空気の温度が放熱器4によって上昇するため、PTCヒータの抵抗値が大きくなり、電流値も低くなって発熱量が低下してしまうが、放熱器4の空気上流側に補助ヒータ23を配置することで、実施例の如くPTCヒータから構成される補助ヒータ23の能力を十分に発揮させることができるようになる。
 (2)除湿暖房モード
 次に、除湿暖房モードでは、ヒートポンプコントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量の調整も行う。
 これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却され、且つ、当該空気中の水分が吸熱器9に凝結して付着するので、空気流通路3内の空気は冷却され、且つ、除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。
 このとき、室外膨張弁6の弁開度は全閉とされているので、圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。更に、この除湿暖房モードにおいてヒートポンプコントローラ32は、補助ヒータ23に通電して発熱させる。これにより、吸熱器9にて冷却され、且つ、除湿された空気は補助ヒータ23を通過する過程で更に加熱され、温度が上昇するので車室内の除湿暖房が行われることになる。
 ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)と、空調コントローラ20が算出する吸熱器温度Teの目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御すると共に、補助ヒータ温度センサ50が検出する補助ヒータ温度Tptcと前述した目標ヒータ温度TCOに基づいて補助ヒータ23の通電(発熱による加熱)を制御することで、吸熱器9での空気の冷却と除湿を適切に行いながら、補助ヒータ23による加熱で各吹出口29A~29Cから車室内に吹き出される空気温度の低下を的確に防止する。これにより、車室内に吹き出される空気を除湿しながら、その温度を適切な暖房温度に制御することが可能となり、車室内の快適且つ効率的な除湿暖房を実現することができるようになる。
 尚、補助ヒータ23は放熱器4の空気上流側に配置されているので、補助ヒータ23で加熱された空気は放熱器4を通過することになるが、この除湿暖房モードでは放熱器4に冷媒は流されないので、補助ヒータ23にて加熱された空気から放熱器4が吸熱してしまう不都合も解消される。即ち、放熱器4によって車室内に吹き出される空気の温度が低下してしまうことが抑制され、COPも向上することになる。
 (3)除湿冷房モード
 次に、除湿冷房モードでは、ヒートポンプコントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を開放し、電磁弁40を閉じる。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量の調整も行う。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
 放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。この除湿冷房モードではヒートポンプコントローラ32は補助ヒータ23に通電しないので、吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱(暖房時よりも放熱能力は低い)される。これにより車室内の除湿冷房が行われることになる。
 ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEO(空調コントローラ20から送信される)に基づいて圧縮機2の回転数NCを制御する。また、ヒートポンプコントローラ32は前述した目標ヒータ温度TCOから目標放熱器圧力PCOを算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて室外膨張弁6の弁開度を制御し、放熱器4による加熱を制御する。
 (4)冷房モード
 次に、冷房モードでは、ヒートポンプコントローラ32は上記除湿冷房モードの状態において室外膨張弁6の弁開度を全開とする。そして、圧縮機2を運転し、補助ヒータ23には通電しない。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の空気が、暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風される割合を調整する状態とする。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入すると共に、放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので冷媒はそれを通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着する。
 吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気が各吹出口29A~29Cから車室内に吹き出されるので(一部は放熱器4を通過して熱交換する)、これにより車室内の冷房が行われることになる。また、この冷房モードにおいては、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である前述した目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御する。
 (5)MAX冷房モード(最大冷房モード)
 次に、最大冷房モードとしてのMAX冷房モードでは、ヒートポンプコントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2を運転し、補助ヒータ23には通電しない。空調コントローラ20は、各送風機15、27を運転し、エアミックスダンパ28は、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の空気が、暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風される割合を調整する状態とする。
 これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着するので、空気流通路3内の空気は除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。このとき、室外膨張弁6は全閉とされているので、同様に圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。
 ここで、前述した冷房モードでは放熱器4に高温の冷媒が流れているため、放熱器4からHVACユニット10への直接の熱伝導が少なからず生じるが、このMAX冷房モードでは放熱器4に冷媒が流れないため、放熱器4からHVACユニット10に伝達される熱で吸熱器9からの空気流通路3内の空気が加熱されることも無くなる。そのため、車室内の強力な冷房が行われ、特に外気温度Tamが高いような環境下では、迅速に車室内を冷房して快適な車室内空調を実現することができるようになる。また、このMAX冷房モードにおいても、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である前述した目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御する。
 (6)補助ヒータ単独モード
 尚、実施例の制御装置11は室外熱交換器7に過度の着霜が生じた場合などに、冷媒回路Rの圧縮機2と室外送風機15を停止し、補助ヒータ23に通電してこの補助ヒータ23のみで車室内を暖房する補助ヒータ単独モードを実行可能とされている。この場合にも、ヒートポンプコントローラ32は補助ヒータ温度センサ50が検出する補助ヒータ温度Tptcと前述した目標ヒータ温度TCOに基づいて補助ヒータ23の通電(発熱)を制御する。
 また、空調コントローラ20は室内送風機27を運転し、エアミックスダンパ28は、室内送風機27から吹き出された空気流通路3内の空気を暖房用熱交換通路3Aの補助ヒータ23に通風し、風量を調整する状態とする。補助ヒータ23にて加熱された空気が各吹出口29A~29Cから車室内に吹き出されるので、これにより車室内の暖房が行われることになる。
 (7)運転モードの切換
 空調コントローラ20は、下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、車室内に吹き出される空気の温度の目標値である。
 TAO=(Tset−Tin)×K+Tbal(f(Tset、SUN、Tam))
                                   ・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する室内温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
 ヒートポンプコントローラ32は、起動時には空調コントローラ20から車両通信バス65を介して送信される外気温度Tam(外気温度センサ33が検出する)と目標吹出温度TAOとに基づいて上記各運転モードのうちの何れかの運転モードを選択すると共に、各運転モードを車両通信バス65を介して空調コントローラ20に送信する。また、起動後は外気温度Tam、車室内の湿度、目標吹出温度TAO、後述する加熱温度TH(放熱器4の風下側の空気の温度。推定値)、目標ヒータ温度TCO、吸熱器温度Te、目標吸熱器温度TEO、車室内の除湿要求の有無、等のパラメータに基づいて各運転モードの切り換えを行うことで、環境条件や除湿の要否に応じて的確に暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード及び補助ヒータ単独モードを切り換えて車室内に吹き出される空気の温度を目標吹出温度TAOに制御し、快適且つ効率的な車室内空調を実現するものである。
 (8)ヒートポンプコントローラ32による暖房モードでの圧縮機2の制御
 次に、図4を用いて前述した暖房モードにおける圧縮機2の制御について詳述する。図4は暖房モード用の圧縮機2の目標回転数(圧縮機目標回転数)TGNChを決定するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F(フィードフォワード)操作量演算部58は外気温度センサ33から得られる外気温度Tamと、室内送風機27のブロワ電圧BLVと、SW=(TAO−Te)/(TH−Te)で得られるエアミックスダンパ28による風量割合SWと、放熱器4の出口における過冷却度SCの目標値である目標過冷却度TGSCと、加熱温度THの目標値である前述した目標ヒータ温度TCO(空調コントローラ20から送信される)と、放熱器4の圧力の目標値である目標放熱器圧力PCOに基づいて圧縮機目標回転数のF/F操作量TGNChffを演算する。
 ここで、風量割合SWを算出する上記THは、放熱器4の風下側の空気の温度(以下、加熱温度と云う)であり、ヒートポンプコントローラ32が下記に示す一次遅れ演算の式(II)から推定する。
 TH=(INTL×TH0+Tau×THz)/(Tau+INTL) ・・(II)
 ここで、INTLは演算周期(定数)、Tauは一次遅れの時定数、TH0は一次遅れ演算前の定常状態における加熱温度THの定常値、THzは加熱温度THの前回値である。このように加熱温度THを推定することで、格別な温度センサを設ける必要がなくなる。
 尚、ヒートポンプコントローラ32は前述した運転モードによって上記時定数Tau及び定常値TH0を変更することにより、上述した推定式(II)を運転モードによって異なるものとし、加熱温度THを推定する。そして、この加熱温度THは車両通信バス65を介して空調コントローラ20に送信される。
 前記目標放熱器圧力PCOは上記目標過冷却度TGSCと目標ヒータ温度TCOに基づいて目標値演算部59が演算する。更に、F/B(フィードバック)操作量演算部60はこの目標放熱器圧力PCOと放熱器4の冷媒圧力である放熱器圧力PCIに基づいて圧縮機目標回転数のF/B操作量TGNChfbを演算する。そして、F/F操作量演算部58が演算したF/F操作量TGNCnffとF/B操作量演算部60が演算したTGNChfbは加算器61で加算され、リミット設定部62で制御上限値ECNpdLimHiと制御下限値ECNpdLimLoのリミットが付けられた後、圧縮機目標回転数TGNChとして決定される。前記暖房モードにおいては、ヒートポンプコントローラ32はこの圧縮機目標回転数TGNChに基づいて圧縮機2の回転数NCを制御する。
 (9)ヒートポンプコントローラ32による除湿暖房モードでの圧縮機2及び補助ヒータ23の制御
 一方、図5は前記除湿暖房モード用の圧縮機2の目標回転数(圧縮機目標回転数)TGNCcを決定するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F操作量演算部63は外気温度Tamと、空気流通路3に流入した空気の体積風量Gaと、放熱器4の圧力(放熱器圧力PCI)の目標値である目標放熱器圧力PCOと、吸熱器9の温度(吸熱器温度Te)の目標値である目標吸熱器温度TEOに基づいて圧縮機目標回転数のF/F操作量TGNCcffを演算する。
 また、F/B操作量演算部64は目標吸熱器温度TEO(空調コントローラ20から送信される)と吸熱器温度Teに基づいて圧縮機目標回転数のF/B操作量TGNCcfbを演算する。そして、F/F操作量演算部63が演算したF/F操作量TGNCcffとF/B操作量演算部64が演算したF/B操作量TGNCcfbは加算器66で加算され、リミット設定部67で制御上限値TGNCcLimHiと制御下限値TGNCcLimLoのリミットが付けられた後、圧縮機目標回転数TGNCcとして決定される。除湿暖房モードにおいては、ヒートポンプコントローラ32はこの圧縮機目標回転数TGNCcに基づいて圧縮機2の回転数NCを制御する。
 また、図6は除湿暖房モードにおける補助ヒータ23の補助ヒータ要求能力TGQPTCを決定するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32の減算器73には目標ヒータ温度TCOと補助ヒータ温度Tptcが入力され、目標ヒータ温度TCOと補助ヒータ温度Tptcの偏差(TCO−Tptc)が算出される。この偏差(TCO−Tptc)はF/B制御部74に入力され、このF/B制御部74は偏差(TCO−Tptc)を無くして補助ヒータ温度Tptcが目標ヒータ温度TCOとなるように補助ヒータ要求能力F/B操作量を演算する。
 このF/B制御部74で算出された補助ヒータ要求能力F/B操作量Qafbはリミット設定部76で制御上限値QptcLimHiと制御下限値QptcLimLoのリミットが付けられた後、補助ヒータ要求能力TGQPTCとして決定される。除湿暖房モードにおいては、コントローラ32はこの補助ヒータ要求能力TGQPTCに基づいて補助ヒータ23の通電を制御することにより、補助ヒータ温度Tptcが目標ヒータ温度TCOとなるように補助ヒータ23の発熱(加熱)を制御する。
 このようにしてヒートポンプコントローラ32は、除湿暖房モードでは吸熱器温度Teと目標吸熱器温度TEOに基づいて圧縮機の運転を制御すると共に、目標ヒータ温度TCOに基づいて補助ヒータ23の発熱を制御することで、除湿暖房モードにおける吸熱器9による冷却と除湿、並びに、補助ヒータ23による加熱を的確に制御する。これにより、車室内に吹き出される空気をより適切に除湿しながら、その温度をより正確な暖房温度に制御することが可能となり、より一層快適且つ効率的な車室内の除湿暖房を実現することができるようになる。
 (10)エアミックスダンパ28の制御
 次に、図3を参照しながら空調コントローラ20によるエアミックスダンパ28の制御について説明する。図3においてGaは前述した空気流通路3に流入した空気の体積風量、Teは吸熱器温度、THは前述した加熱温度(放熱器4の風下側の空気の温度)である。
 空調コントローラ20は、前述した如き式(下記式(III))により算出される暖房用熱交換通路3Aの放熱器4と補助ヒータ23に通風する風量割合SWに基づき、当該割合の風量となるようにエアミックスダンパ28を制御することで放熱器4(及び補助ヒータ23)への通風量を調整する。
 SW=(TAO−Te)/(TH−Te)   ・・(III)
 即ち、暖房用熱交換通路3Aの放熱器4と補助ヒータ23に通風する風量割合SWは0≦SW≦1の範囲で変化し、「0」で暖房用熱交換通路3Aへの通風をせず、空気流通路3内の全ての空気をバイパス通路3Bに通風するエアミックス全閉状態、「1」で空気流通路3内の全ての空気を暖房用熱交換通路3Aに通風するエアミックス全開状態となる。即ち、放熱器4への風量はGa×SWとなる。
 (11)室外熱交換器の除霜
 前述した如く暖房モードでは、室外熱交換器7では冷媒が蒸発し、外気から吸熱して低温となるため、室外熱交換器7には外気中の水分が霜となって付着する。この着霜が成長すると、室外熱交換器7とそれに通風される外気との間の熱交換が阻害されるため、圧縮機2の運転効率が低下する。また、過着霜となれば室外送風機15等の破損が発生する場合もある。そこで、ヒートポンプコントローラ32は以下の如く室外熱交換器7の除霜制御を行う。
 (11−1)室外熱交換器7の除霜制御(その1)
 次に、図7を用いてこの室外熱交換器7の除霜制御の一例を説明する。この実施例では、ヒートポンプコントローラ32は先ず、図7のステップS1で車両が起動されたか否か、及び、車両用空気調和装置1による車室内の空調要求(以下、HP空調要求と称する)があるか否か判断する。この場合、車両が起動された否かはイグニッション(IG)のON情報(空調コントローラ20から送信される)から判断する。また、HP空調要求とは車両用空気調和装置1の稼働要求であり、このHP空調要求が有るか否かは、実施例では空調操作部53に設けられたエアコンのON/OFFスイッチがONされたか否かの情報(空調コントローラ20から送信される)から判断する。
 そして、車両が起動され、且つ、HP空調要求がある場合、ヒートポンプコントローラ32は車両用空気調和装置1による空調運転を開始し、ステップS2に進む。一方、ステップS1で否の場合にはステップS6に進む。尚、ステップS6でヒートポンプコントローラ32はHP空調要求が無いか否か判断し、HP空調要求が有る場合、即ち、車両の起動時であるか否かに拘わらずHP空調要求がある場合も車両用空気調和装置1による空調運転を開始し、ステップS2に進む。他方、ステップS6でHP空調要求が無い場合には車両用空気調和装置1による空調運転を停止し、ステップS7に進む。
 ステップS2ではヒートポンプコントローラ32は、車両用空気調和装置1(HP)が故障判定されていないか否か判断し、故障判定されていなければステップS3に進み、現在の運転モードが暖房モードか否か判断する。そして、現在の運転モードが暖房モードである場合は、即ち、暖房モードで空調運転を実行している場合、ステップS4に進んで除霜要求フラグfDFSTReqをセット(「1」)する。
 尚、ステップS3で現在の運転モードが暖房モード以外である場合、ステップS5に進んで除霜要求フラグfDFSTReqをリセット(「0」)する。また、ヒートポンプコントローラ32は不揮発性メモリ(EEP−ROM)80を備えており、上記除霜要求フラグfDFSTReqのセット(「1」)、リセット(「0」)の状態をこの不揮発性メモリ80に記憶し、車両用空気調和装置1が停止して制御装置11(空調コントローラ20、ヒートポンプコントローラ32)の電源が断たれた場合にも、除霜要求フラグfDFSTReqの状態は不揮発性メモリ80に保持されているものとする。
 一方、ステップS1で車両が起動され、且つ、HP空調要求がある状態では無く、ステップS6に進んでもHP空調要求が無い場合、ヒートポンプコントローラ32は車両用空気調和装置1による空調運転を停止する。そして、ヒートポンプコントローラ32はステップS7に進み、除霜要求フラグfDFSTReqがセット(「1」)されているか否か判断し、リセット(「0」)されていればステップS12に進み、不揮発性メモリ80に保持されている除霜要求フラグfDFSTReqの状態を前回の状態(前回値)として保持し続ける。
 他方、前述したステップS4で除霜要求フラグfDFSTReqがセット(「1」)された状態で空調運転が停止された場合、ヒートポンプコントローラ32は除霜要求フラグfDFSTReqがセット(「1」)されたことを除霜要求として空調コントローラ20に通知する(図2)。そして、ヒートポンプコントローラ32はステップS7からステップS8に進み、空調コントローラ20から除霜許可が通知されたか否か判断する。
 ここで、空調コントローラ20は、前述した如くヒートポンプコントローラ32から除霜要求フラグfDFSTReqがセットされたことが除霜要求として通知された場合、現在の車両の状態が室外熱交換器7の除霜許可条件を満たしているか否か判断することで、室外熱交換器7の除霜の可否判断を行う。実施例の場合の除霜許可条件は、前述したHP空調要求が無く、且つ、バッテリ75が充電中(車両は停車)であるかバッテリ75の残量が所定値以上あることである。
 空調コントローラ20は、現在の車両の状態が上記除霜許可条件を満たしている場合、除霜許可フラグfDFSTPermをセット(「1」)する。この除霜許可フラグfDFSTPermがセット(「1」)されたことは除霜許可として空調コントローラ20からヒートポンプコントローラ32に通知される(図2)。ヒートポンプコントローラ32は空調コントローラ20から除霜許可が通知された場合、ステップS8からステップS9に進んで室外熱交換器7の除霜運転を行い、通知されていない場合にはステップS12に進む。
 ヒートポンプコントローラ32はステップS9の除霜運転で、冷媒回路Rを暖房モードの状態とした上で、室外膨張弁6の弁開度を全開とし、エアミックスダンパ28による風量割合SWを「0」として暖房用熱交換通路3Aへの通風を行わない(放熱器4に通風しない)状態とする。そして、圧縮機2を運転し、当該圧縮機2から吐出された高温の冷媒を放熱器4、室外膨張弁6を経て室外熱交換器7に流入させて当該室外熱交換器7を加熱する。それにより、室外熱交換器7の着霜を融解させる。
 即ち、実施例では圧縮機2や室外膨張弁6、圧縮機2から吐出される高温冷媒が本発明における室外熱交換器7の除霜装置を構成することになる。尚、係る高温冷媒による加熱の他に、所定の電気ヒータや、例えばエンジンが搭載されている車両の場合にはエンジン冷却水の循環回路等を除霜装置として設置し、室外熱交換器7を加熱して除霜するようにしてもよい。
 そして、ステップS10でヒートポンプコントローラ32は室外熱交換器温度センサ54が検出する室外熱交換器7の温度(この場合、室外熱交換器温度TXO)が所定の除霜終了温度(例えば、+3℃等)より高くなった状態が所定時間(例えば、数分)継続しているか否か(除霜終了条件)を判断し、室外熱交換器7の除霜が終了して室外熱交換器温度TXOが係る除霜終了条件を満たした場合、ステップS11に進んで除霜を完了したものとし、前述した除霜要求フラグfDFSTReqをリセット(「0」)する(ステップS7~ステップS12が除霜制御)。
 以上のようにして、この制御例では室外熱交換器7への着霜の状況等を判断すること無く、空調コントローラ20から除霜許可通知があれば、ヒートポンプコントローラ32は暖房モードで空調運転を停止する毎に、室外熱交換器7の除霜を行うことになる。
 (11−2)室外熱交換器7の除霜制御(その2)
 次に、図8は室外熱交換器7の除霜制御の他の例を示している。尚、この図において、図7と同一符号で示すステップは同様の動作が行われるものとして説明を省略する。図8の制御例では、ヒートポンプコントローラ32はステップS3で現在の運転モードが暖房モードか否か判断し、現在の運転モードが暖房モードである場合は、ステップS13とステップS14で誤動作判定を行う。
 即ち、ヒートポンプコントローラ32は、ステップS3で現在の運転モードが暖房モードである場合、ステップS13に進んで第1の誤動作防止条件が成立しているか否か判断する。実施例の第1の誤動作防止条件は、圧縮機2を起動した後、その回転数が所定の閾値(例えば、3000rpm等)より高い状態が第1の所定時間t1(例えば、5分等)継続したか否かである。
 そして、暖房モードでの圧縮機2の起動後、当該圧縮機2の回転数が上記閾値より高い状態での運転が第1の所定時間t1継続している場合、ヒートポンプコントローラ32は第1の誤動作防止条件が成立したものと判断してステップS13からステップS4に進み、除霜要求フラグfDFSTReqをセット(「1」)する。
 他方、ステップS13で上記第1の誤動作防止条件が成立していない場合、ヒートポンプコントローラ32はステップS14に進んで今度は第2の誤動作防止条件が成立しているか否か判断する。実施例の第2の誤動作防止条件は、暖房モードでの空調運転が前記第1の所定時間t1より長い第2の所定時間t2(例えば、10分等)継続したか否かである。
 そして、暖房モードでの空調運転が第2の所定時間t2継続している場合、ヒートポンプコントローラ32は第2の誤動作防止条件が成立したものと判断してステップS14からステップS4に進み、除霜要求フラグfDFSTReqをセット(「1」)する。そして、上記第1の誤動作防止条件及び第2の誤動作防止条件の何れも成立していない場合、ヒートポンプコントローラ32はステップS5に進んで除霜要求フラグfDFSTReqをリセット(「0」)する。その他の制御は図7の場合と同様である。
 この場合の制御例では、暖房モードを実行したとしても、第1及び第2の誤動作防止条件が成立しない場合には、除霜要求フラグfDFSTReqをセットしないので、誤って空調操作部53が操作された場合や、車両が起動されても直ぐに停止された場合などには室外熱交換器7の除霜は行われなくなる。
 以上詳述した如く本発明の図7の制御では、ヒートポンプコントローラ32は、暖房モードで空調運転を停止する毎に、室外熱交換器7の除霜を行うようにしたので、室外熱交換器7への着霜の状況等を判断すること無く、暖房モードで空調運転を停止する毎に室外熱交換器7の除霜が行われるようになる。
 これにより、比較的簡単な制御で室外熱交換器7の着霜に伴う運転効率の低下を防止、若しくは、抑制することができるようになる。また、室外熱交換器7の除霜は空調運転が停止された後に行われるので、車室内の快適性の低下も防止、若しくは、抑制することができる。
 また、図8の制御では、ヒートポンプコントローラ32は暖房モードにおいて、圧縮機2の回転数が所定の閾値より高い状態が第1の所定時間t1継続した場合、第1の誤動作防止条件が成立したものと判断し、当該暖房モードで空調運転を停止した後、室外熱交換器7の除霜を行い、或いは、暖房モードを第1の所定時間t1よりも長い第2の所定時間t2継続して実行した場合、第2の誤動作防止条件が成立したものと判断し、当該暖房モードで空調運転を停止した後、室外熱交換器7の除霜を行うようにしたので、例えば、暖房モードが極めて短時間行われただけで室外熱交換器7の除霜が開始されてしまう等の不都合も解消することができる。
 また、実施例ではヒートポンプコントローラ32が、暖房モードを実行した場合、又は、第1又は第2の誤動作防止条件が成立したものと判断した場合、除霜要求フラグfDFSTReqをセット(「1」)し、暖房モード以外で空調運転を実行した場合、除霜要求フラグfDFSTReqをリセット(「0」)すると共に、当該除霜要求フラグfDFSTReqがセット(「1」)されている状態で空調運転を停止した後、室外熱交換器7の除霜可否を判断し、許可されている場合には、当該室外熱交換器7の除霜を行い、除霜要求フラグfDFSTReqをリセット(「0」)するようにしているので、実施例の如く圧縮機2が、車両に搭載されたバッテリ75により駆動される場合、空調コントローラ20が、車室内の空調要求が無く、且つ、バッテリ75が充電中であるか当該バッテリ75の残量が所定値以上あることを条件として、室外熱交換器7の除霜を許可するようにすることで、車両の走行に悪影響を及ぼすこと無く、適切に室外熱交換器7の除霜を行うことができるようになる。
 また、暖房モード以外で空調運転を実行した場合には、除霜要求フラグfDFSTReqはリセット(「0」)されるので、暖房モード以外で空調運転を停止したときに室外熱交換器7の除霜が行われる不都合も防止できる。
 また、実施例の如く制御装置11を、車室内の空調設定操作を行うための空調操作部53が接続された空調コントローラ20と、圧縮機2の運転を制御するヒートポンプコントローラ32とから構成し、空調コントローラ20とヒートポンプコントローラ32が、車両通信バス65を介して情報の送受信を行うようにした場合には、前述したようにヒートポンプコントローラ32が、暖房モードを実行した場合や、第1又は第2の誤動作防止条件が成立したものと判断した場合、除霜要求フラグfDFSTReqをセット(「1」)し、暖房モード以外で空調運転を実行した場合、除霜要求フラグfDFSTReqをリセット(「0」)し、当該除霜要求フラグfDFSTReqがセット(「1」)されている状態で空調運転を停止した場合、空調コントローラ20に対して除霜要求を行い、空調コントローラ20から除霜許可が通知されている場合、室外熱交換器7の除霜を行い、除霜要求フラグfDFSTReqをリセット(「0」)すると共に、空調コントローラ20が、ヒートポンプコントローラ32から除霜要求があった場合、室外熱交換器7の除霜可否を判断し、許可する場合には、当該室外熱交換器7の除霜許可をヒートポンプコントローラ32に通知することで、車室内の快適性と室外熱交換器7の着霜に伴う運転効率の低下を適切に防止、若しくは、抑制することができるようになる。
 そして、実施例では圧縮機2から吐出された高温冷媒等の除霜装置によって室外熱交換器7を加熱し、室外熱交換器7の除霜を行うようにしているので、室外熱交換器7の着霜を確実に融解除去することができるようになる。
FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention. The vehicle according to the embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and is used for traveling with electric power charged in a battery 75 (FIG. 2) mounted in the vehicle. The electric motor is driven to travel (not shown), and the vehicle air conditioner 1 of the present invention is also driven by the power of the battery 75.
That is, the vehicle air conditioner 1 of the embodiment performs the air conditioning operation by the heat pump using the refrigerant circuit in the electric vehicle which can not be heated by the engine waste heat, and in this air conditioning operation, the heating mode, the dehumidifying heating mode, the dehumidifying cooling Each operation mode of the mode, the cooling mode, the MAX cooling mode (maximum cooling mode), and the auxiliary heater single mode is selectively executed.
The present invention is applicable not only to electric vehicles as vehicles, but also to so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles traveling with an engine. Needless to say.
The vehicle air conditioner 1 of the embodiment performs air conditioning (heating, cooling, dehumidifying, and ventilating) of a vehicle compartment of an electric vehicle, and is an electric type that receives power from a battery 75 to drive and compress a refrigerant. The compressor 2 and the air flow passage 3 of the HVAC unit 10 through which air in the passenger compartment is aerated and circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G. And an outdoor expansion valve 6 (pressure reducing device) including a motor-operated valve for decompressing and expanding the refrigerant during heating, and a radiator 4 provided outside the vehicle for radiating heat during cooling The outdoor heat exchanger 7, which functions as a heat exchanger and performs heat exchange between the refrigerant and the outside air so as to function as an evaporator during heating, and an indoor expansion valve 8 (pressure reduction device) including a motorized valve that decompresses and expands the refrigerant. , In the air flow passage 3 A heat sink 9 for cooling the air which absorbs heat from the outside of the vehicle interior by absorbing heat from the outside of the vehicle interior during cooling and dehumidification, the accumulator 12 and the like are sequentially connected by the refrigerant pipe 13, and the refrigerant circuit R is It is configured.
The refrigerant circuit R is filled with a predetermined amount of refrigerant and lubricating oil. The outdoor heat exchanger 7 is provided with an outdoor fan 15. The outdoor fan 15 exchanges heat between the outdoor air and the refrigerant by forcibly ventilating the outdoor air to the outdoor heat exchanger 7, whereby the outdoor fan 15 is also outdoors when the vehicle is stopped (that is, the vehicle speed is 0 km / h). The heat exchanger 7 is configured to ventilate outside air.
In addition, the outdoor heat exchanger 7 sequentially has the receiver dryer portion 14 and the subcooling portion 16 on the refrigerant downstream side, and the refrigerant pipe 13A that has come out of the outdoor heat exchanger 7 is a receiver via the solenoid valve 17 opened during cooling. The refrigerant pipe 13B connected to the dryer unit 14 and at the outlet side of the subcooling unit 16 is connected to the inlet side of the heat absorber 9 via the indoor expansion valve 8. The receiver dryer portion 14 and the subcooling portion 16 structurally constitute a part of the outdoor heat exchanger 7.
Further, the refrigerant pipe 13B between the supercooling unit 16 and the indoor expansion valve 8 is provided in heat exchange relation with the refrigerant pipe 13C on the outlet side of the heat absorber 9, and both constitute an internal heat exchanger 19. Thus, the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low temperature refrigerant that has exited the heat absorber 9.
Further, the refrigerant pipe 13A that has exited from the outdoor heat exchanger 7 is branched into the refrigerant pipe 13D, and the branched refrigerant pipe 13D is downstream of the internal heat exchanger 19 via the solenoid valve 21 opened during heating. It is connected in communication with the refrigerant pipe 13C in The refrigerant pipe 13C is connected to the accumulator 12, and the accumulator 12 is connected to the refrigerant suction side of the compressor 2. Further, the refrigerant pipe 13E on the outlet side of the radiator 4 is connected to the inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.
Further, the refrigerant pipe 13G between the discharge side of the compressor 2 and the inlet side of the radiator 4 is provided with a solenoid valve 30 (constituting a flow path switching device) closed during dehumidifying heating and MAX cooling described later. There is. In this case, the refrigerant pipe 13G is branched to a bypass pipe 35 on the upstream side of the solenoid valve 30, and the bypass pipe 35 is a solenoid valve 40 (also constituting a flow path switching device) opened during dehumidifying heating and MAX cooling. Is connected to the refrigerant pipe 13E on the downstream side of the outdoor expansion valve 6). The bypass pipe 45, the solenoid valve 30, and the solenoid valve 40 constitute a bypass device 45.
By configuring the bypass device 45 with the bypass pipe 35, the solenoid valve 30, and the solenoid valve 40 as described later, the dehumidifying heating mode or MAX for directly flowing the refrigerant discharged from the compressor 2 into the outdoor heat exchanger 7 as described later It is possible to smoothly switch between the cooling mode and the heating mode, the dehumidifying cooling mode, and the cooling mode in which the refrigerant discharged from the compressor 2 flows into the radiator 4.
Further, in the air flow passage 3 on the air upstream side of the heat absorber 9, suction ports for the outside air suction port and the inside air suction port are formed (represented by the suction port 25 in FIG. 1), this suction port A suction switching damper 26 is provided at 25 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) that is the air inside the vehicle compartment and the outside air (outside air introduction mode) that is the air outside the vehicle outside There is. Further, on the air downstream side of the suction switching damper 26, an indoor blower (blower fan) 27 for supplying the introduced internal air and the external air to the air flow passage 3 is provided.
Further, in FIG. 1, reference numeral 23 denotes an auxiliary heater as an auxiliary heating device provided in the vehicle air conditioner 1 of the embodiment. The auxiliary heater 23 of the embodiment is constituted by a PTC heater which is an electric heater, and the inside of the air flow passage 3 which is on the windward side (air upstream side) of the radiator 4 with respect to the air flow of the air flow passage 3. Provided in Then, when the auxiliary heater 23 is energized to generate heat, the air in the air flow passage 3 flowing into the radiator 4 through the heat absorber 9 is heated. That is, the auxiliary heater 23 serves as a so-called heater core to heat the vehicle interior or supplement it.
Here, the air flow passage 3 on the downwind side (air downstream side) of the heat absorber 9 of the HVAC unit 10 is partitioned by the partition wall 10A, and a heating heat exchange passage 3A and a bypass passage 3B bypassing it are formed. The radiator 4 and the auxiliary heater 23 described above are disposed in the heating heat exchange passage 3A.
In the air flow passage 3 on the windward side of the auxiliary heater 23, the air (internal air and outside air) in the air flow passage 3 after flowing into the air flow passage 3 and passing through the heat absorber 9 is assisted. An air mix damper 28 is provided to adjust the ratio of ventilation to the heating heat exchange passage 3A in which the heater 23 and the radiator 4 are disposed.
Furthermore, the HVAC unit 10 on the downwind side of the radiator 4 has a FOOT (foot) outlet 29A (first outlet) and a VENT (vent) outlet 29B (second outlet for the FOOT outlet 29A). An outlet, a first outlet for the DEF outlet 29C, and an outlet for the DEF (def) outlet 29C (second outlet) are formed. The FOOT blowout port 29A is a blowout port for blowing air under the foot of the vehicle compartment and is at the lowest position. Further, the VENT outlet 29B is an outlet for blowing air around the driver's chest and face in the vehicle compartment, and is above the FOOT outlet 29A. The DEF outlet 29C is a outlet for blowing air to the inner surface of the windshield of the vehicle, and is located at the highest position above the other outlets 29A and 29B.
The FOOT outlet 29A, the VENT outlet 29B, and the DEF outlet 29C are respectively provided with a FOOT outlet damper 31A, a VENT outlet damper 31B, and a DEF outlet damper 31C for controlling the amount of air blown out. It is done.
Next, FIG. 2 shows a block diagram of the control device 11 of the vehicle air conditioner 1 of the embodiment. The control device 11 is composed of an air conditioning controller 20 and a heat pump controller 32, each of which is constituted by a microcomputer which is an example of a computer having a processor, and these are CAN (Controller Area Network) and LIN (Local Interconnect Network). Are connected to a vehicle communication bus 65 that constitutes the The compressor 2 and the auxiliary heater 23 are also connected to the vehicle communication bus 65, and the air conditioning controller 20, the heat pump controller 32, the compressor 2 and the auxiliary heater 23 transmit and receive data via the vehicle communication bus 65. It is done.
The air conditioning controller 20 is a higher-level controller that controls the air conditioning inside the vehicle, and the outside air temperature sensor 33 for detecting the outside air temperature Tam of the vehicle and the outside air humidity for detecting the outside air humidity are input to the air conditioning controller 20. A sensor 34, an HVAC suction temperature sensor 36 for detecting the temperature of the air (suctioned air temperature Tas) sucked into the air flow passage 3 from the suction port 25 and flowing into the heat absorber 9, the temperature of the air (internal air) in the vehicle compartment An indoor air temperature sensor 37 for detecting (indoor temperature Tin), an indoor air humidity sensor 38 for detecting the humidity of air in the vehicle compartment, an indoor CO 2 concentration sensor 39 for detecting carbon dioxide concentration in the vehicle compartment, and And a discharge pressure sensor 42 for detecting the discharge refrigerant pressure Pd of the compressor 2 and a solar radiation amount into the vehicle compartment. For example, the photo sensor type solar radiation sensor 51, the outputs of the vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, and the air conditioning setting operation of the vehicle interior such as switching of the set temperature and the operation mode An air conditioning operation unit (air conditioning operation unit) 53 for the purpose is connected.
In addition, the outdoor air blower 15, the indoor air blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, and the air outlet dampers 31A to 31C are connected to the output of the air conditioning controller 20, and they are used for air conditioning It is controlled by the controller 20. The battery 75 incorporates a controller, and the controller of the battery 75 transmits and receives data to and from the air conditioning controller 20 via the vehicle communication bus 65. Whether the battery 75 is charging the air conditioning controller 20 or not Information and information on the remaining amount (charging amount) of the battery 75 are transmitted.
The heat pump controller 32 mainly controls the control of the refrigerant circuit R, and an input of the heat pump controller 32 is a discharge temperature sensor 43 for detecting a discharge refrigerant temperature Td of the compressor 2 and a suction refrigerant of the compressor 2 A suction pressure sensor 44 for detecting a pressure Ps, a suction temperature sensor 55 for detecting a suction refrigerant temperature Ts of the compressor 2, and a radiator temperature sensor 46 for detecting a refrigerant temperature (a radiator temperature TCI) of the radiator 4; A radiator pressure sensor 47 that detects the refrigerant pressure of the radiator 4 (radiator pressure PCI), a heat sink temperature sensor 48 that detects the refrigerant temperature (heat sink temperature Te) of the heat sink 9, and a refrigerant pressure of the heat sink 9 Heat sensor pressure sensor 49 for detecting the temperature, the auxiliary heater temperature sensor 50 for detecting the temperature of the auxiliary heater 23 (auxiliary heater temperature Tptc), and the outlet of the outdoor heat exchanger 7 The outdoor heat exchanger temperature sensor 54 for detecting the refrigerant temperature (refrigerant evaporation temperature TXO of the outdoor heat exchanger 7, the outdoor heat exchanger temperature TXO), and the refrigerant pressure at the outlet of the outdoor heat exchanger 7 (of the outdoor heat exchanger 7 The outputs of the outdoor heat exchanger pressure sensor 56 for detecting the refrigerant evaporation pressure PKO and the outdoor heat exchanger pressure PKO) are connected.
The heat pump controller 32 outputs the outdoor expansion valve 6, the indoor expansion valve 8, the solenoid valve 30 (for reheating), the solenoid valve 17 (for cooling), the solenoid valve 21 (for heating), the solenoid valve 40 (bypass) ) Are connected, and they are controlled by the heat pump controller 32. The compressor 2 and the auxiliary heater 23 each have a built-in controller, and the controller of the compressor 2 and the auxiliary heater 23 transmits / receives data to / from the heat pump controller 32 via the vehicle communication bus 65. It is controlled.
The heat pump controller 32 and the air conditioning controller 20 mutually transmit and receive data via the vehicle communication bus 65, and control each device based on the output of each sensor and the setting inputted by the air conditioning operation unit 53. In the embodiment in this case, the outside air temperature sensor 33, the discharge pressure sensor 42, the vehicle speed sensor 52, the volume air volume Ga of air flowing into the air flow passage 3 (calculated by the air conditioning controller 20), the air volume ratio SW by the air mix damper 28 ( The output of the air conditioning operation unit 53 is sent from the air conditioning controller 20 to the heat pump controller 32 via the vehicle communication bus 65, and provided for control by the heat pump controller 32.
Next, the operation of the vehicle air conditioner 1 of the embodiment having the above configuration will be described. In this embodiment, the controller 11 (the air conditioning controller 20 and the heat pump controller 32) performs the air conditioning operation in the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, the MAX cooling mode (maximum cooling mode) and the auxiliary heater. Switch between the operation modes in single mode and execute. First, an outline of the flow and control of the refrigerant in each operation mode will be described.
(1) Heating mode When the heating mode is selected by the heat pump controller 32 (automatic mode) or by the manual air conditioning setting operation (manual mode) to the air conditioning operation unit 53, the heat pump controller 32 sets the solenoid valve 21 (for heating). Open and close the solenoid valve 17 (for cooling). Also, the solenoid valve 30 (for reheating) is opened, and the solenoid valve 40 (for bypass) is closed. Then, the compressor 2 is operated. The air conditioning controller 20 operates the blowers 15 and 27, and the air mix damper 28 is basically blown out from the indoor blower 27 and passes through the heat absorber 9 and all the air in the air flow passage 3 is heated by the heat exchange passage 3A. In the state of ventilating to the auxiliary heater 23 and the radiator 4, the air volume may be adjusted.
As a result, the high temperature and high pressure gas refrigerant discharged from the compressor 2 passes through the solenoid valve 30 and flows into the radiator 4 from the refrigerant pipe 13G. Since the air in the air flow passage 3 is ventilated to the radiator 4, the air in the air flow passage 3 is a high temperature refrigerant in the heat radiator 4 (when the auxiliary heater 23 is operated, the auxiliary heater 23 and the radiator 4 are While the refrigerant in the radiator 4 loses its heat by air, is cooled, and condenses and liquefies.
The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 evaporates, and heat is pumped up from the outside air ventilated by the traveling or the outdoor blower 15. That is, the refrigerant circuit R is a heat pump. Then, the low temperature refrigerant leaving the outdoor heat exchanger 7 passes through the refrigerant piping 13A, the solenoid valve 21 and the refrigerant piping 13D, enters the accumulator 12 from the refrigerant piping 13C, and is separated into gas and liquid there, and then the gas refrigerant is the compressor 2 Repeat the cycle of sucking in Since the air heated by the radiator 4 (the auxiliary heater 23 and the radiator 4 when the auxiliary heater 23 operates) is blown out from the outlets 29A to 29C, this heats the vehicle interior. become.
The heat pump controller 32 calculates a target radiator pressure PCO (target value of the radiator pressure PCI) from the target heater temperature TCO (target value of the heating temperature TH described later) calculated by the air conditioning controller 20 from the target outlet temperature TAO. The rotational speed NC of the compressor 2 is controlled based on the target radiator pressure PCO and the refrigerant pressure (radiator pressure PCI, high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47, and the radiator Control heating by 4. Further, the heat pump controller 32 opens the outdoor expansion valve 6 based on the refrigerant temperature (the radiator temperature TCI) of the radiator 4 detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47. The degree of subcooling SC of the refrigerant at the outlet of the radiator 4 is controlled.
In the heating mode, if the heating capacity required by the radiator 4 is insufficient with respect to the heating capacity required for air conditioning in the vehicle compartment, the heat pump controller 32 compensates for the shortage by the heat generation of the auxiliary heater 23. The energization of the auxiliary heater 23 is controlled. Thereby, comfortable heating of the vehicle interior is realized, and frost formation on the outdoor heat exchanger 7 is also suppressed. At this time, since the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air flowing through the air flow passage 3 is ventilated to the auxiliary heater 23 in front of the radiator 4.
Here, when the auxiliary heater 23 is disposed on the air downstream side of the radiator 4, when the auxiliary heater 23 is configured by the PTC heater as in the embodiment, the temperature of the air flowing into the auxiliary heater 23 is the radiator Because the resistance value of the PTC heater increases and the current value also decreases and the calorific value decreases, the auxiliary heater 23 is disposed on the air upstream side of the radiator 4 in the embodiment. As described above, the capability of the auxiliary heater 23 composed of a PTC heater can be sufficiently exhibited.
(2) Dehumidifying and Heating Mode Next, in the dehumidifying and heating mode, the heat pump controller 32 opens the solenoid valve 17 and closes the solenoid valve 21. Further, the solenoid valve 30 is closed, the solenoid valve 40 is opened, and the degree of opening of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 is operated. The air conditioning controller 20 operates the blowers 15 and 27, and the air mix damper 28 is basically blown out from the indoor blower 27 and passes through the heat absorber 9 and all the air in the air flow passage 3 is heated by the heat exchange passage 3A. In the state of ventilating to the auxiliary heater 23 and the radiator 4, the air volume is also adjusted.
As a result, the high-temperature, high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, and passes through the solenoid valve 40 and the refrigerant pipe on the downstream side of the outdoor expansion valve 6 It will reach 13E. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 is air-cooled and condensed by traveling there or by the outside air ventilated by the outdoor blower 15. The refrigerant leaving the outdoor heat exchanger 7 flows from the refrigerant pipe 13A through the solenoid valve 17 into the receiver dryer portion 14 and the supercooling portion 16 sequentially. Here, the refrigerant is subcooled.
The refrigerant leaving the subcooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13B, passes through the internal heat exchanger 19, and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates. At this time, the air blown out from the indoor blower 27 is cooled by the heat absorption action, and the moisture in the air condenses and adheres to the heat absorber 9, so the air in the air flow passage 3 is cooled, and Dehumidified. The refrigerant evaporated by the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 via the refrigerant pipe 13C, and the circulation through which the refrigerant is sucked into the compressor 2 is repeated.
At this time, since the valve opening degree of the outdoor expansion valve 6 is fully closed, it is possible to suppress or prevent the disadvantage that the refrigerant discharged from the compressor 2 flows back from the outdoor expansion valve 6 into the radiator 4 It becomes. As a result, it is possible to suppress or eliminate the decrease in the refrigerant circulation amount and secure the air conditioning capacity. Further, in the dehumidifying and heating mode, the heat pump controller 32 supplies power to the auxiliary heater 23 to generate heat. Thus, the air cooled by the heat absorber 9 and dehumidified is further heated in the process of passing through the auxiliary heater 23, and the temperature rises, so that dehumidifying and heating of the passenger compartment is performed.
The heat pump controller 32 is a compressor based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48 (heat absorber temperature Te) and the target heat absorber temperature TEO which is a target value of the heat absorber temperature Te calculated by the air conditioning controller 20. The heat absorber is controlled by controlling the rotation speed NC of 2 and controlling the energization (heating due to heat generation) of the auxiliary heater 23 based on the auxiliary heater temperature Tptc detected by the auxiliary heater temperature sensor 50 and the target heater temperature TCO described above. While appropriately cooling and dehumidifying the air in 9, the temperature of the air blown into the vehicle compartment from each of the outlets 29A to 29C by the heating by the auxiliary heater 23 is properly prevented. As a result, it is possible to control the temperature to an appropriate heating temperature while dehumidifying the air blown out into the vehicle compartment, and to realize comfortable and efficient dehumidifying and heating of the vehicle interior.
In addition, since the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air heated by the auxiliary heater 23 passes through the radiator 4, but in this dehumidifying and heating mode, the refrigerant 4 Since the air is not flowed, the problem that the radiator 4 absorbs heat from the air heated by the auxiliary heater 23 is also eliminated. That is, the decrease in the temperature of the air blown out into the vehicle interior by the radiator 4 is suppressed, and the COP is also improved.
(3) Dehumidifying / Cooling Mode Next, in the dehumidifying / cooling mode, the heat pump controller 32 opens the solenoid valve 17 and closes the solenoid valve 21. Also, the solenoid valve 30 is opened and the solenoid valve 40 is closed. Then, the compressor 2 is operated. The air conditioning controller 20 operates the blowers 15 and 27, and the air mix damper 28 is basically blown out from the indoor blower 27 and passes through the heat absorber 9 and all the air in the air flow passage 3 is heated by the heat exchange passage 3A. In the state of ventilating to the auxiliary heater 23 and the radiator 4, the air volume is also adjusted.
As a result, the high temperature and high pressure gas refrigerant discharged from the compressor 2 passes through the solenoid valve 30 and flows into the radiator 4 from the refrigerant pipe 13G. Since the air in the air flow passage 3 is ventilated to the radiator 4, the air in the air flow passage 3 is heated by the high temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is taken away, cooled, and condensed and liquefied.
The refrigerant leaving the radiator 4 passes through the refrigerant pipe 13E to reach the outdoor expansion valve 6, and then flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 which is controlled to be open. The refrigerant flowing into the outdoor heat exchanger 7 is air-cooled and condensed by traveling there or by the outside air ventilated by the outdoor blower 15. The refrigerant leaving the outdoor heat exchanger 7 flows from the refrigerant pipe 13A through the solenoid valve 17 into the receiver dryer portion 14 and the supercooling portion 16 sequentially. Here, the refrigerant is subcooled.
The refrigerant leaving the subcooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13B, passes through the internal heat exchanger 19, and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates. At this time, the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat sink 9, so that the air is cooled and dehumidified.
The refrigerant evaporated by the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 via the refrigerant pipe 13C, and the circulation through which the refrigerant is sucked into the compressor 2 is repeated. In this dehumidifying and cooling mode, the heat pump controller 32 does not energize the auxiliary heater 23, so the air cooled by the heat absorber 9 and dehumidified air passes through the radiator 4 and is reheated (heat radiation capacity is lower than that during heating) Be done. As a result, dehumidifying and cooling of the passenger compartment is performed.
The heat pump controller 32 detects the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO (sent from the air conditioning controller 20) as its target value. Control the rotational speed NC. Further, the heat pump controller 32 calculates the target radiator pressure PCO from the target heater temperature TCO described above, and the target radiator pressure PCO and the refrigerant pressure of the radiator 4 detected by the radiator pressure sensor 47 (the radiator pressure PCI. The valve opening degree of the outdoor expansion valve 6 is controlled based on the high pressure of the refrigerant circuit R, and the heating by the radiator 4 is controlled.
(4) Cooling Mode Next, in the cooling mode, the heat pump controller 32 fully opens the degree of the outdoor expansion valve 6 in the dehumidifying cooling mode. Then, the compressor 2 is operated and the auxiliary heater 23 is not energized. The air conditioning controller 20 operates the blowers 15, 27. The air mix damper 28 is blown out from the indoor blower 27 and the air in the air flow passage 3 which has passed through the heat absorber 9 is the auxiliary heater 23 of the heating heat exchange passage 3A. And let it be in the state which adjusts the ratio ventilated to the radiator 4. FIG.
As a result, the high temperature / high pressure gas refrigerant discharged from the compressor 2 flows from the refrigerant pipe 13G to the radiator 4 through the solenoid valve 30, and the refrigerant leaving the radiator 4 passes through the refrigerant pipe 13E to the outdoor expansion valve 6 Lead to At this time, since the outdoor expansion valve 6 is fully opened, the refrigerant passes through it and flows into the outdoor heat exchanger 7 where it is cooled by air or by the outside air ventilated by the outdoor blower 15 by running. Liquefy. The refrigerant leaving the outdoor heat exchanger 7 flows from the refrigerant pipe 13A through the solenoid valve 17 into the receiver dryer portion 14 and the supercooling portion 16 sequentially. Here, the refrigerant is subcooled.
The refrigerant leaving the subcooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13B, passes through the internal heat exchanger 19, and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 is cooled by the heat absorption action at this time. Further, the moisture in the air condenses and adheres to the heat absorber 9.
The refrigerant evaporated by the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 via the refrigerant pipe 13C, and the circulation through which the refrigerant is sucked into the compressor 2 is repeated. The air cooled by the heat absorber 9 and dehumidified is blown out from the blowout ports 29A to 29C into the vehicle compartment (a part of the air passes through the radiator 4 for heat exchange). It will be done. Further, in the cooling mode, the heat pump controller 32 generates the compressor 2 based on the temperature (heat absorber temperature Te) of the heat absorber 9 detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO described above, which is its target value. Control the number of revolutions NC.
(5) MAX cooling mode (maximum cooling mode)
Next, in the MAX cooling mode as the maximum cooling mode, the heat pump controller 32 opens the solenoid valve 17 and closes the solenoid valve 21. Further, the solenoid valve 30 is closed, the solenoid valve 40 is opened, and the degree of opening of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 is operated and the auxiliary heater 23 is not energized. The air conditioning controller 20 operates the blowers 15 and 27, and the air mix damper 28 is blown out from the indoor blower 27 and the air in the air flow passage 3 having passed through the heat absorber 9 is an auxiliary heater of the heating heat exchange passage 3A. 23 and the radiator 4 are adjusted.
As a result, the high-temperature, high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, and passes through the solenoid valve 40 and the refrigerant pipe on the downstream side of the outdoor expansion valve 6 It will reach 13E. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 is air-cooled and condensed by traveling there or by the outside air ventilated by the outdoor blower 15. The refrigerant leaving the outdoor heat exchanger 7 flows from the refrigerant pipe 13A through the solenoid valve 17 into the receiver dryer portion 14 and the supercooling portion 16 sequentially. Here, the refrigerant is subcooled.
The refrigerant leaving the subcooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13B, passes through the internal heat exchanger 19, and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 is cooled by the heat absorption action at this time. Further, since the moisture in the air condenses and adheres to the heat absorber 9, the air in the air flow passage 3 is dehumidified. The refrigerant evaporated by the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 via the refrigerant pipe 13C, and the circulation through which the refrigerant is sucked into the compressor 2 is repeated. At this time, since the outdoor expansion valve 6 is fully closed, it is possible to similarly suppress or prevent the problem that the refrigerant discharged from the compressor 2 flows back from the outdoor expansion valve 6 into the radiator 4 . As a result, it is possible to suppress or eliminate the decrease in the refrigerant circulation amount and secure the air conditioning capacity.
Here, since a high temperature refrigerant flows to the radiator 4 in the cooling mode described above, direct heat conduction from the radiator 4 to the HVAC unit 10 occurs not a little, but the refrigerant in the radiator 4 in this MAX cooling mode Since the air does not flow, the heat transferred from the radiator 4 to the HVAC unit 10 also prevents the air in the air flow passage 3 from the heat absorber 9 from being heated. Therefore, strong cooling of the vehicle interior is performed, and particularly in an environment where the outside air temperature Tam is high, it is possible to cool the vehicle interior quickly to realize comfortable vehicle interior air conditioning. Also in the MAX cooling mode, the heat pump controller 32 generates a compressor based on the temperature (heat absorber temperature Te) of the heat absorber 9 detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO described above, which is its target value. Control the rotation speed NC of 2.
(6) Auxiliary heater only mode The controller 11 of the embodiment stops the compressor 2 of the refrigerant circuit R and the outdoor blower 15 when excessive frost formation occurs in the outdoor heat exchanger 7, etc., and the auxiliary heater In the auxiliary heater only mode, it is possible to energize the vehicle 23 and heat the vehicle interior only with the auxiliary heater 23. Also in this case, the heat pump controller 32 controls the energization (heat generation) of the auxiliary heater 23 based on the auxiliary heater temperature Tptc detected by the auxiliary heater temperature sensor 50 and the target heater temperature TCO described above.
In addition, the air conditioning controller 20 operates the indoor fan 27, and the air mix damper 28 ventilates the air in the air flow path 3 blown out from the indoor fan 27 to the auxiliary heater 23 of the heating heat exchange path 3A to obtain the air volume. It will be in the state to adjust. Since the air heated by the auxiliary heater 23 is blown out into the vehicle compartment from the air outlets 29A to 29C, this heats the vehicle interior.
(7) Switching of operation mode The air conditioning controller 20 calculates the above-mentioned target blowing temperature TAO from the following formula (I). The target blowing temperature TAO is a target value of the temperature of air blown out into the vehicle compartment.
TAO = (Tset−Tin) × K + Tbal (f (Tset, SUN, Tam))
(I)
Here, Tset is the set temperature of the vehicle interior set by the air conditioning operation unit 53, Tin is the indoor temperature detected by the inside air temperature sensor 37, K is a coefficient, Tbal is the set temperature Tset, and the amount of solar radiation detected by the solar radiation sensor 51 SUN, it is a balance value calculated from the outside air temperature Tam detected by the outside air temperature sensor 33. Generally, the target blowing temperature TAO is higher as the outside air temperature Tam is lower, and decreases as the outside air temperature Tam increases.
The heat pump controller 32 selects one of the above operation modes based on the outside air temperature Tam (detected by the outside air temperature sensor 33) transmitted from the air conditioning controller 20 via the vehicle communication bus 65 at the time of startup and the target blowout temperature TAO. The operation mode is selected, and each operation mode is transmitted to the air conditioning controller 20 via the vehicle communication bus 65. After startup, the outside air temperature Tam, the humidity inside the vehicle compartment, the target air outlet temperature TAO, the heating temperature TH (the temperature of the air on the downwind side of the radiator 4; estimated value), the target heater temperature TCO, the heat sink temperature Te, By switching each operation mode based on parameters such as target heat sink temperature TEO and presence or absence of dehumidification demand in the vehicle compartment, heating mode, dehumidification heating mode, dehumidification can be properly performed according to environmental conditions and necessity of dehumidification By switching the cooling mode, the cooling mode, the MAX cooling mode, and the auxiliary heater single mode to control the temperature of the air blown into the vehicle compartment to the target blowing temperature TAO, a comfortable and efficient vehicle interior air conditioning is realized.
(8) Control of Compressor 2 in Heating Mode by Heat Pump Controller 32 Next, control of the compressor 2 in the heating mode described above will be described in detail with reference to FIG. FIG. 4 is a control block diagram of the heat pump controller 32 for determining the target rotational speed (compressor target rotational speed) TGNCh of the compressor 2 for the heating mode. The F / F (feed forward) operation amount calculator 58 of the heat pump controller 32 calculates the outside air temperature Tam obtained from the outside air temperature sensor 33, the blower voltage BLV of the indoor fan 27, and SW = (TAO-Te) / (TH-Te). And the target subcooling degree TGSC, which is the target value of the subcooling degree SC at the outlet of the radiator 4, and the target heater temperature TCO described above, which is the target value of the heating temperature TH. The F / F operation amount TGNChff of the compressor target rotational speed is calculated based on the target radiator pressure PCO which is a target value of the pressure of the radiator 4 (transmitted from the air conditioning controller 20).
Here, the above-mentioned TH for calculating the air volume ratio SW is the temperature of air on the leeward side of the radiator 4 (hereinafter referred to as a heating temperature), and the heat pump controller 32 calculates the first-order lag calculation formula (II) below. presume.
TH = (INTL × TH0 + Tau × THz) / (Tau + INTL) ··· (II)
Here, INTL is a calculation cycle (constant), Tau is a first-order lag time constant, TH0 is a steady-state value of the heating temperature TH in a steady state before the first-order lag calculation, and THz is a previous value of the heating temperature TH. By estimating the heating temperature TH in this manner, it is not necessary to provide an extra temperature sensor.
The heat pump controller 32 changes the time constant Tau and the steady-state value TH0 in accordance with the above-described operation mode to make the above-described estimation equation (II) different depending on the operation mode, thereby estimating the heating temperature TH. The heating temperature TH is transmitted to the air conditioning controller 20 via the vehicle communication bus 65.
The target radiator pressure PCO is calculated by the target value calculator 59 based on the target degree of supercooling TGSC and the target heater temperature TCO. Further, the F / B (feedback) manipulated variable computing unit 60 computes the F / B manipulated variable TGNChfb of the compressor target rotational speed based on the target radiator pressure PCO and the radiator pressure PCI which is the refrigerant pressure of the radiator 4 Do. The F / F manipulated variable TGNCnff computed by the F / F manipulated variable computing unit 58 and TGNChfb computed by the F / B manipulated variable computing unit 60 are added by the adder 61, and the limit setting unit 62 sets the control upper limit value ECNpdLimHi After the control lower limit value ECNpdLimLo is limited, it is determined as the compressor target rotation speed TGNCh. In the heating mode, the heat pump controller 32 controls the rotation speed NC of the compressor 2 based on the compressor target rotation speed TGNCh.
(9) Control of the compressor 2 and the auxiliary heater 23 in the dehumidifying and heating mode by the heat pump controller 32 On the other hand, FIG. 5 determines the target rotational speed (compressor target rotational speed) TGNCc of the compressor 2 for the dehumidifying and heating mode. FIG. 6 is a control block diagram of the heat pump controller 32. The F / F operation amount calculation unit 63 of the heat pump controller 32 is a target heat radiation that is a target value of the outside air temperature Tam, the volumetric air flow rate Ga of the air flowing into the air flow passage 3, and the pressure of the radiator 4 (radiator pressure PCI). The F / F manipulated variable TGNCcff of the compressor target rotational speed is calculated based on the target pressure T.sub.o of the heat sink 9 and the target heat sink temperature T.sub.oO which is the target value of the temperature of the heat sink 9 (the heat sink temperature Te).
Further, the F / B manipulated variable computing unit 64 computes the F / B manipulated variable TGNCcfb of the compressor target rotational speed based on the target heat absorber temperature TEO (transmitted from the air conditioning controller 20) and the heat absorber temperature Te. The F / F operation amount TGNCcff calculated by the F / F operation amount calculation unit 63 and the F / B operation amount TGNCcfb calculated by the F / B operation amount calculation unit 64 are added by the adder 66 and the limit setting unit 67 After the control upper limit value TGNCcLimHi and the control lower limit value TGNCcLimLo are limited, the compressor target rotational speed TGNCc is determined. In the dehumidifying and heating mode, the heat pump controller 32 controls the rotation speed NC of the compressor 2 based on the compressor target rotation speed TGNCc.
FIG. 6 is a control block diagram of the heat pump controller 32 for determining the auxiliary heater request capacity TGQPTC of the auxiliary heater 23 in the dehumidifying and heating mode. The target heater temperature TCO and the auxiliary heater temperature Tptc are input to the subtractor 73 of the heat pump controller 32, and the deviation (TCO-Tptc) of the target heater temperature TCO and the auxiliary heater temperature Tptc is calculated. The deviation (TCO-Tptc) is input to the F / B control unit 74, and the F / B control unit 74 eliminates the deviation (TCO-Tptc) and the auxiliary heater temperature Tptc becomes the target heater temperature TCO. Calculate the required ability F / B operation amount.
The auxiliary heater required capacity F / B manipulated variable Qafb calculated by the F / B control unit 74 is limited by the limit setting unit 76 with the control upper limit value QptcLimHi and the control lower limit value QptcLimLo as an auxiliary heater required capacity TGQPTC. It is determined. In the dehumidifying and heating mode, the controller 32 controls the energization of the auxiliary heater 23 based on the auxiliary heater request capability TGQPTC to generate (heat) the auxiliary heater 23 so that the auxiliary heater temperature Tptc becomes the target heater temperature TCO. Control.
Thus, in the dehumidifying and heating mode, the heat pump controller 32 controls the operation of the compressor based on the heat absorber temperature Te and the target heat absorber temperature TEO, and controls the heat generation of the auxiliary heater 23 based on the target heater temperature TCO. Thus, the cooling and the dehumidification by the heat absorber 9 in the dehumidifying and heating mode, and the heating by the auxiliary heater 23 are properly controlled. As a result, it is possible to control the temperature to a more accurate heating temperature while dehumidifying the air blown out into the vehicle compartment more appropriately, and realize more comfortable and efficient dehumidifying heating of the vehicle interior. Will be able to
(10) Control of Air Mix Damper 28 Next, control of the air mix damper 28 by the air conditioning controller 20 will be described with reference to FIG. 3. In FIG. 3, Ga is the volumetric air volume of the air flowing into the air flow passage 3 described above, Te is the heat absorber temperature, and TH is the heating temperature described above (temperature of the air on the leeward side of the radiator 4).
Based on the air volume ratio SW for ventilating the radiator 4 and the auxiliary heater 23 of the heating heat exchange passage 3A calculated by the equation (following equation (III)) as described above, the air conditioning controller 20 The air mix damper 28 is controlled to adjust the amount of ventilation to the radiator 4 (and the auxiliary heater 23).
SW = (TAO-Te) / (TH-Te) · · (III)
That is, the air volume ratio SW ventilated to the radiator 4 and the auxiliary heater 23 of the heating heat exchange passage 3A changes in the range of 0 ≦ SW ≦ 1, and “0” does not ventilate the heating heat exchange passage 3A. Completely closes the air mix fully ventilating all the air in the air flow passage 3 to the bypass passage 3B, fully drafts all the air in the air flow passage 3 to the heating heat exchange passage 3A at "1". It becomes. That is, the air volume to the radiator 4 is Ga × SW.
(11) Defrosting of Outdoor Heat Exchanger As described above, in the heating mode, the refrigerant evaporates in the outdoor heat exchanger 7 and absorbs heat from the outside air to become low temperature, so the outdoor heat exchanger 7 has moisture in the outside air It adheres as frost. When this frost formation grows, the heat exchange between the outdoor heat exchanger 7 and the outside air ventilated thereto is hindered, so the operating efficiency of the compressor 2 is lowered. In addition, if the over frost occurs, the outdoor fan 15 or the like may be damaged. Therefore, the heat pump controller 32 performs the defrosting control of the outdoor heat exchanger 7 as follows.
(11-1) Defrosting control of the outdoor heat exchanger 7 (part 1)
Next, an example of the defrosting control of the outdoor heat exchanger 7 will be described using FIG. 7. In this embodiment, the heat pump controller 32 first determines whether the vehicle has been activated in step S1 of FIG. 7 and an air conditioning request for the passenger compartment (hereinafter referred to as an HP air conditioning request) by the air conditioning device 1 for a vehicle. Determine if it is. In this case, it is determined from the ON information (sent from the air conditioning controller 20) of the ignition (IG) whether or not the vehicle is activated. Further, the HP air conditioning request is an operation request for the air conditioning system 1 for a vehicle, and in the embodiment, the ON / OFF switch of the air conditioner provided in the air conditioning operation unit 53 is turned ON whether or not there is the HP air conditioning request. It judges from the information (it transmitted from the air conditioning controller 20) of whether it was.
Then, when the vehicle is started and the HP air conditioning request is made, the heat pump controller 32 starts the air conditioning operation by the air conditioning device 1 for a vehicle, and proceeds to step S2. On the other hand, if step S1 fails, the process proceeds to step S6. In step S6, the heat pump controller 32 determines whether or not there is an HP air conditioning request, and if there is an HP air conditioning request, that is, if there is an HP air conditioning request regardless of whether the vehicle is activated or not. The air conditioning operation by the air conditioner 1 is started, and the process proceeds to step S2. On the other hand, when there is no HP air conditioning request in step S6, the air conditioning operation by the vehicle air conditioner 1 is stopped, and the process proceeds to step S7.
In step S2, the heat pump controller 32 determines whether or not the vehicle air conditioner 1 (HP) is determined to have a failure. If the failure is not determined, the process proceeds to step S3 and the current operation mode is the heating mode to decide. Then, if the current operation mode is the heating mode, that is, if the air conditioning operation is performed in the heating mode, the process proceeds to step S4, and the defrost request flag fDFSTReq is set ("1").
If it is determined in step S3 that the current operation mode is other than the heating mode, the process proceeds to step S5, and the defrost request flag fDFSTReq is reset ("0"). Further, the heat pump controller 32 is provided with a non-volatile memory (EEP-ROM) 80, and the state of the defrost request flag fDFSTReq set (“1”) and reset (“0”) is stored in the non-volatile memory 80. Even when the vehicle air conditioner 1 is stopped and the power of the control device 11 (the air conditioning controller 20 and the heat pump controller 32) is cut off, the state of the defrost request flag fDFSTReq is held in the non-volatile memory 80 It is assumed that
On the other hand, when the vehicle is started in step S1 and there is no HP air conditioning request and there is no HP air conditioning request even if the process proceeds to step S6, the heat pump controller 32 stops the air conditioning operation by the vehicle air conditioner 1. Then, the heat pump controller 32 proceeds to step S7, determines whether the defrost request flag fDFSTReq is set (“1”), and if reset (“0”), proceeds to step S12, and the non-volatile memory 80 The state of the defrost request flag fDFSTReq held in is kept as the previous state (previous value).
On the other hand, when the air conditioning operation is stopped in a state where the defrost request flag fDFSTReq is set ("1") in step S4, the heat pump controller 32 sets the defrost request flag fDFSTReq ("1"). Is notified to the air conditioning controller 20 as a defrost request (FIG. 2). Then, the heat pump controller 32 proceeds from step S7 to step S8, and determines whether the defrosting permission has been notified from the air conditioning controller 20 or not.
Here, when the air conditioning controller 20 is notified that the defrosting request flag fDFSTReq is set as the defrosting request from the heat pump controller 32 as described above, the current state of the vehicle is the defrosting permission of the outdoor heat exchanger 7 Whether the defrosting of the outdoor heat exchanger 7 is possible or not is judged by judging whether the conditions are satisfied. The defrost permission condition in the case of the embodiment is that there is no HP air conditioning request described above, and the battery 75 is being charged (the vehicle is stopped) or the remaining amount of the battery 75 is equal to or more than a predetermined value.
If the current state of the vehicle satisfies the defrosting permission condition, the air conditioning controller 20 sets ("1") the defrosting permission flag fDFSTPerm. The fact that the defrosting permission flag fDFSTPerm is set ("1") is notified from the air-conditioning controller 20 to the heat pump controller 32 as the defrosting permission (FIG. 2). The heat pump controller 32 proceeds from step S8 to step S9 to perform the defrosting operation of the outdoor heat exchanger 7 when notified of the defrosting permission from the air conditioning controller 20, and proceeds to step S12 when not notified.
The heat pump controller 32 sets the refrigerant circuit R to the heating mode state in the defrosting operation in step S9, then fully opens the outdoor expansion valve 6 and sets the air volume ratio SW by the air mix damper 28 to "0". It is set as the state which does not ventilate to the heat exchange path 3A for heating (it does not ventilate to the radiator 4). Then, the compressor 2 is operated, and the high temperature refrigerant discharged from the compressor 2 flows through the radiator 4 and the outdoor expansion valve 6 into the outdoor heat exchanger 7 to heat the outdoor heat exchanger 7. Thereby, the frost formation of the outdoor heat exchanger 7 is melted.
That is, in the embodiment, the compressor 2, the outdoor expansion valve 6, and the high temperature refrigerant discharged from the compressor 2 constitute the defrosting device of the outdoor heat exchanger 7 in the present invention. In addition to heating by the high-temperature refrigerant, a predetermined electric heater, for example, in the case of a vehicle equipped with an engine, a circulation circuit of engine cooling water etc. is installed as a defroster, and the outdoor heat exchanger 7 is It may heat and defrost.
Then, in step S10, the heat pump controller 32 determines that the temperature of the outdoor heat exchanger 7 (in this case, the outdoor heat exchanger temperature TXO) detected by the outdoor heat exchanger temperature sensor 54 is a predetermined defrost end temperature (for example, + 3 ° C., etc.) It is judged whether the higher state continues for a predetermined time (for example, several minutes) (defrost completion condition), and defrost of the outdoor heat exchanger 7 is finished and the outdoor heat exchanger temperature TXO is If the defrost termination condition is satisfied, the process proceeds to step S11, and it is determined that the defrost is completed, and the above-described defrost request flag fDFSTReq is reset ("0") (step S7 to step S12 is defrost control).
As described above, in this control example, the heat pump controller 32 performs the air conditioning operation in the heating mode if the defrost permission notification is received from the air conditioning controller 20 without judging the frost formation condition on the outdoor heat exchanger 7 or the like. The outdoor heat exchanger 7 is defrosted each time it is stopped.
(11-2) Defrosting Control of the Outdoor Heat Exchanger 7 (Part 2)
Next, FIG. 8 shows another example of the defrosting control of the outdoor heat exchanger 7. In this figure, the steps denoted by the same reference numerals as those in FIG. 7 are the same as in FIG. In the control example of FIG. 8, the heat pump controller 32 determines in step S3 whether the current operation mode is the heating mode, and if the current operation mode is the heating mode, the malfunction determination is performed in steps S13 and S14.
That is, when the current operation mode is the heating mode in step S3, the heat pump controller 32 proceeds to step S13 and determines whether the first malfunction preventing condition is satisfied. As the first malfunction prevention condition of the embodiment, after the compressor 2 is started, the state in which the rotation speed is higher than a predetermined threshold (for example, 3000 rpm) continues for the first predetermined time t1 (for example, 5 minutes) It is whether or not.
Then, after startup of the compressor 2 in the heating mode, the heat pump controller 32 performs the first malfunction when the operation with the number of revolutions of the compressor 2 being higher than the threshold continues for the first predetermined time t1. It is determined that the prevention condition is established, and the process proceeds from step S13 to step S4, and the defrost request flag fDFSTReq is set ("1").
On the other hand, if the first malfunction prevention condition is not satisfied in step S13, the heat pump controller 32 proceeds to step S14 to determine whether the second malfunction prevention condition is satisfied this time. The second malfunction prevention condition of the embodiment is whether or not the air conditioning operation in the heating mode has continued for a second predetermined time t2 (for example, 10 minutes) longer than the first predetermined time t1.
Then, when the air conditioning operation in the heating mode continues for the second predetermined time t2, the heat pump controller 32 determines that the second malfunction prevention condition is satisfied, and proceeds from step S14 to step S4, and requests defrosting The flag fDFSTReq is set ("1"). When neither the first malfunction preventing condition nor the second malfunction preventing condition is satisfied, the heat pump controller 32 proceeds to step S5 and resets the defrosting request flag fDFSTReq (“0”). Other control is the same as in the case of FIG.
In the control example in this case, even if the heating mode is performed, the defrost request flag fDFSTReq is not set if the first and second malfunction prevention conditions are not satisfied, so the air conditioning operation unit 53 is erroneously operated. In the case where the outdoor heat exchanger 7 is stopped or when the vehicle is immediately stopped even when the vehicle is started, defrosting of the outdoor heat exchanger 7 is not performed.
As described above in detail, in the control of FIG. 7 of the present invention, the heat pump controller 32 performs defrosting of the outdoor heat exchanger 7 every time the air conditioning operation is stopped in the heating mode. Each time the air conditioning operation is stopped in the heating mode, defrosting of the outdoor heat exchanger 7 is performed without determining the state of frost formation and the like.
As a result, it is possible to prevent or suppress the decrease in the operating efficiency associated with the frost formation on the outdoor heat exchanger 7 with a relatively simple control. In addition, since the defrosting of the outdoor heat exchanger 7 is performed after the air conditioning operation is stopped, it is possible to prevent or suppress the decrease in the comfort of the vehicle interior.
Further, in the control of FIG. 8, in the heating mode, when the state in which the rotation speed of the compressor 2 is higher than the predetermined threshold continues for the first predetermined time t1 in the heating mode, the first malfunction prevention condition is satisfied. After the air conditioning operation is stopped in the heating mode, the outdoor heat exchanger 7 is defrosted, or the heating mode is continuously performed for a second predetermined time t2 longer than the first predetermined time t1. In this case, it is determined that the second malfunction prevention condition is satisfied, and after the air conditioning operation is stopped in the heating mode, defrosting of the outdoor heat exchanger 7 is performed. For example, the heating mode is extremely short. It is also possible to eliminate the inconvenience that, for example, defrosting of the outdoor heat exchanger 7 is started only when time is taken.
In the embodiment, when the heat pump controller 32 executes the heating mode or determines that the first or second malfunction preventing condition is satisfied, the defrost request flag fDFSTReq is set ("1"). When the air conditioning operation is performed other than the heating mode, the defrost request flag fDFSTReq is reset ("0") and the air conditioning operation is stopped in a state where the defrost request flag fDFSTReq is set ("1"). After that, it is judged whether the outdoor heat exchanger 7 is defrostable or not, and if permitted, the outdoor heat exchanger 7 is defrosted and the defrost request flag fDFSTReq is reset ("0"). Therefore, when the compressor 2 is driven by the battery 75 mounted on the vehicle as in the embodiment, the air conditioning controller 20 has no request for air conditioning in the vehicle compartment. Also, by allowing defrosting of the outdoor heat exchanger 7 under the condition that the battery 75 is being charged or the remaining amount of the battery 75 is equal to or more than a predetermined value, the traveling of the vehicle is adversely affected. The outdoor heat exchanger 7 can be appropriately defrosted without having to do so.
In addition, when the air conditioning operation is performed in a mode other than the heating mode, the defrost request flag fDFSTReq is reset ("0"). Therefore, when the air conditioning operation is stopped in a mode other than the heating mode, defrosting of the outdoor heat exchanger 7 is performed. It is also possible to prevent the inconvenience of
Further, as in the embodiment, the control device 11 is configured of the air conditioning controller 20 to which the air conditioning operation unit 53 for performing the air conditioning setting operation of the vehicle compartment is connected, and the heat pump controller 32 for controlling the operation of the compressor 2; When the air conditioning controller 20 and the heat pump controller 32 transmit and receive information via the vehicle communication bus 65, as described above, the heat pump controller 32 executes the heating mode, or the first or second When it is determined that the anti-malfunction condition is satisfied, the defrost request flag fDFSTReq is set (“1”), and when the air conditioning operation is performed except in the heating mode, the defrost request flag fDFSTReq is reset (“0”) When the air conditioning operation is stopped with the defrost request flag fDFSTReq set (“1”) When the defrost request is issued to the air conditioning controller 20 and the defrost permission is notified from the air conditioning controller 20, the outdoor heat exchanger 7 is defrosted, and the defrost request flag fDFSTReq is reset ("0"). At the same time, when the air conditioning controller 20 receives a defrost request from the heat pump controller 32, the air conditioner controller 20 determines whether the outdoor heat exchanger 7 can be defrosted or not, and when permitting it, the defrosting permission of the outdoor heat exchanger 7 is By notifying the controller 32, it is possible to appropriately prevent or suppress the comfort in the vehicle interior and the decrease in the operating efficiency caused by the frost formation on the outdoor heat exchanger 7.
Then, in the embodiment, the outdoor heat exchanger 7 is heated by the defrosting apparatus such as high temperature refrigerant discharged from the compressor 2 and the outdoor heat exchanger 7 is defrosted, so the outdoor heat exchanger 7 is It will be possible to melt and remove the frost formation reliably.
 次に、図9は本発明を適用した他の実施例の車両用空気調和装置1の構成図を示している。尚、この図において図1と同一符号で示すものは同一若しくは同様の機能を奏するものである。この実施例の場合、過冷却部16の出口は逆止弁18に接続され、この逆止弁18の出口が冷媒配管13Bに接続されている。尚、逆止弁18は冷媒配管13B(室内膨張弁8)側が順方向とされている。
 また、放熱器4の出口側の冷媒配管13Eは室外膨張弁6の手前で分岐しており、この分岐した冷媒配管(以下、第2のバイパス配管と称する)13Fは電磁弁22(除湿用)を介して逆止弁18の下流側の冷媒配管13Bに連通接続されている。更に、吸熱器9の出口側の冷媒配管13Cには、内部熱交換器19の冷媒下流側であって、冷媒配管13Dとの合流点より冷媒上流側に蒸発圧力調整弁70が接続されている。そして、これら電磁弁22や蒸発圧力調整弁70もヒートポンプコントローラ32の出力に接続されている。尚、前述の実施例の図1中のバイパス配管35、電磁弁30及び電磁弁40から成るバイパス装置45は設けられていない。その他は図1と同様であるので説明を省略する。
 以上の構成で、この実施例の車両用空気調和装置1の動作を説明する。ヒートポンプコントローラ32はこの実施例の空調運転では、暖房モード、除湿暖房モード、内部サイクルモード、除湿冷房モード、冷房モード及び補助ヒータ単独モードの各運転モードを切り換えて実行する(MAX冷房モードはこの実施例では存在しない)。尚、暖房モード、除湿冷房モード及び冷房モードが選択されたときの動作及び冷媒の流れと、補助ヒータ単独モードは前述の実施例(実施例1)の場合と同様であるので説明を省略する。但し、この実施例(実施例2)ではこれら暖房モード(除霜を含む)、除湿冷房モード及び冷房モードにおいては電磁弁22を閉じるものとする。
 (12)図9の車両用空気調和装置1の除湿暖房モード
 他方、除湿暖房モードが選択された場合、この実施例ではヒートポンプコントローラ32は電磁弁21(暖房用)を開放し、電磁弁17(冷房用)を閉じる。また、電磁弁22(除湿用)を開放する。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量の調整も行う。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は冷媒配管13Gから放熱器4に流入する。放熱器4には暖房用熱交換通路3Aに流入した空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A、電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。
 また、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部は分流され、電磁弁22を経て第2のバイパス配管13F及び冷媒配管13Bより内部熱交換器19を経て室内膨張弁8に至るようになる。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は、内部熱交換器19、蒸発圧力調整弁70を順次経て冷媒配管13Cにて冷媒配管13Dからの冷媒と合流した後、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。
 空調コントローラ20は、目標吹出温度TAOから算出される目標ヒータ温度TCO(加熱温度THの目標値)をヒートポンプコントローラ32に送信する。ヒートポンプコントローラ32は、この目標ヒータ温度TCOから目標放熱器圧力PCO(放熱器圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数NCを制御し、放熱器4による加熱を制御する。また、ヒートポンプコントローラ32は、吸熱器温度センサ48が検出する吸熱器9の温度Teと、空調コントローラ20から送信された目標吸熱器温度TEOに基づいて室外膨張弁6の弁開度を制御する。また、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度Teに基づき、蒸発圧力調整弁70を開(流路を拡大する)/閉(少許冷媒が流れる)して吸熱器9の温度が下がり過ぎて凍結する不都合を防止する。
 (13)図9の車両用空気調和装置1の内部サイクルモード
 また、内部サイクルモードでは、ヒートポンプコントローラ32は上記除湿暖房モードの状態において室外膨張弁6を全閉とする(全閉位置)と共に、電磁弁21を閉じる。この室外膨張弁6と電磁弁21が閉じられることにより、室外熱交換器7への冷媒の流入、及び、室外熱交換器7からの冷媒の流出は阻止されることになるので、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒は電磁弁22を経て第2のバイパス配管13Fに全て流れるようになる。そして、第2のバイパス配管13Fを流れる冷媒は冷媒配管13Bより内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は、内部熱交換器19、蒸発圧力調整弁70を順次経て冷媒配管13Cを流れ、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより、車室内の除湿暖房が行われることになるが、この内部サイクルモードでは室内側の空気流通路3内にある放熱器4(放熱)と吸熱器9(吸熱)の間で冷媒が循環されることになるので、外気からの熱の汲み上げは行われず、圧縮機2の消費動力分の暖房能力が発揮される。除湿作用を発揮する吸熱器9には冷媒の全量が流れるので、上記除湿暖房モードに比較すると除湿能力は高いが、暖房能力は低くなる。
 空調コントローラ20は目標吹出温度TAOから算出される目標ヒータ温度TCO(加熱温度THの目標値)をヒートポンプコントローラ32に送信する。ヒートポンプコントローラ32は送信された目標ヒータ温度TCOから目標放熱器圧力PCO(放熱器圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数NCを制御し、放熱器4による加熱を制御する。
 そして、この実施例の場合にも前述した(11)の室外熱交換器7の除霜制御を行うことで、比較的簡単な制御で室外熱交換器7の着霜に伴う運転効率の低下を防止、若しくは、抑制することができるようになる。
 尚、各実施例で示した数値等は前述した如くそれらに限られるものでは無く、適用する装置に応じて適宜設定すべきものである。また、補助加熱装置は実施例で示した補助ヒータ23に限られるものでは無く、ヒータで加熱された熱媒体を循環させて空気流通路3内の空気を加熱する熱媒体循環回路や、エンジンで加熱されたラジエター水を循環するヒータコア等を利用してもよい。
Next, FIG. 9 shows a configuration diagram of a vehicle air conditioner 1 of another embodiment to which the present invention is applied. In this figure, the same reference numerals as in FIG. 1 have the same or similar functions. In the case of this embodiment, the outlet of the supercooling unit 16 is connected to the check valve 18, and the outlet of the check valve 18 is connected to the refrigerant pipe 13B. In the check valve 18, the refrigerant pipe 13B (indoor expansion valve 8) side is in the forward direction.
Further, the refrigerant pipe 13E on the outlet side of the radiator 4 is branched in front of the outdoor expansion valve 6, and the branched refrigerant pipe (hereinafter referred to as a second bypass pipe) 13F is a solenoid valve 22 (for dehumidification) Is connected in communication with the refrigerant pipe 13B on the downstream side of the check valve 18. Furthermore, an evaporation pressure adjusting valve 70 is connected to the refrigerant pipe 13C on the outlet side of the heat absorber 9 on the refrigerant downstream side of the internal heat exchanger 19 and on the refrigerant upstream side from the junction with the refrigerant pipe 13D. . The solenoid valve 22 and the evaporation pressure regulating valve 70 are also connected to the output of the heat pump controller 32. Incidentally, the bypass pipe 45, the solenoid valve 30, and the bypass device 45 including the solenoid valve 40 in FIG. 1 of the embodiment described above are not provided. The other parts are the same as those in FIG.
The operation of the vehicle air conditioner 1 of this embodiment will be described with the above configuration. The heat pump controller 32 switches and executes each operation mode of heating mode, dehumidifying heating mode, internal cycle mode, dehumidifying cooling mode, cooling mode and auxiliary heater single mode in the air conditioning operation of this embodiment (MAX cooling mode is implemented Not present in the example). The operation and the flow of the refrigerant when the heating mode, the dehumidifying and cooling mode, and the cooling mode are selected, and the auxiliary heater only mode are the same as those in the above-described embodiment (Embodiment 1), and thus the description thereof is omitted. However, in this embodiment (embodiment 2), the solenoid valve 22 is closed in the heating mode (including defrosting) and in the dehumidifying / cooling mode and the cooling mode.
(12) Dehumidifying and heating mode of vehicle air conditioner 1 of FIG. 9 On the other hand, when the dehumidifying and heating mode is selected, the heat pump controller 32 opens the solenoid valve 21 (for heating) in this embodiment, and the solenoid valve 17 ( Close for cooling. Also, the solenoid valve 22 (for dehumidification) is opened. Then, the compressor 2 is operated. The air conditioning controller 20 operates the blowers 15 and 27, and the air mix damper 28 is basically blown out from the indoor blower 27 and passes through the heat absorber 9 and all the air in the air flow passage 3 is heated by the heat exchange passage 3A. In the state of ventilating to the auxiliary heater 23 and the radiator 4, the air volume is also adjusted.
As a result, the high-temperature, high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G. Since the air in the air flow passage 3 which has flowed into the heating heat exchange passage 3A is ventilated in the radiator 4, the air in the air flow passage 3 is heated by the high temperature refrigerant in the radiator 4, while the radiator is The refrigerant in 4 is cooled by the heat taken by the air and condenses and liquefies.
The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 evaporates, and heat is pumped up from the outside air ventilated by the traveling or the outdoor blower 15. That is, the refrigerant circuit R is a heat pump. Then, the low temperature refrigerant leaving the outdoor heat exchanger 7 passes through the refrigerant pipe 13A, the solenoid valve 21 and the refrigerant pipe 13D, enters the accumulator 12 from the refrigerant pipe 13C, and is gas-liquid separated there, and then the gas refrigerant is the compressor 2 Repeat the cycle of sucking in
Further, a part of the condensed refrigerant flowing through the refrigerant pipe 13E through the radiator 4 is diverted, and passes through the solenoid valve 22 to the indoor expansion valve 8 through the internal heat exchanger 19 from the second bypass pipe 13F and the refrigerant pipe 13B. It will be. After the refrigerant is depressurized by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates. At this time, the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat sink 9, so that the air is cooled and dehumidified.
The refrigerant evaporated by the heat absorber 9 passes through the internal heat exchanger 19 and the evaporation pressure adjusting valve 70 sequentially, joins with the refrigerant from the refrigerant pipe 13D in the refrigerant pipe 13C, and then passes through the accumulator 12 and is sucked into the compressor 2 repeat. The air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, whereby dehumidifying and heating of the vehicle interior is performed.
The air conditioning controller 20 transmits the target heater temperature TCO (target value of the heating temperature TH) calculated from the target outlet temperature TAO to the heat pump controller 32. The heat pump controller 32 calculates a target radiator pressure PCO (a target value of the radiator pressure PCI) from the target heater temperature TCO, and the refrigerant of the radiator 4 detected by the target radiator pressure PCO and the radiator pressure sensor 47 The rotation speed NC of the compressor 2 is controlled based on the pressure (radiator pressure PCI, high pressure of the refrigerant circuit R), and heating by the radiator 4 is controlled. Further, the heat pump controller 32 controls the degree of opening of the outdoor expansion valve 6 based on the temperature Te of the heat absorber 9 detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO transmitted from the air conditioning controller 20. Further, the heat pump controller 32 opens the evaporation pressure control valve 70 (enlarges the flow path) / closes (a small amount of refrigerant flows) based on the temperature Te of the heat absorber 9 detected by the heat absorber temperature sensor 48. Prevent the problem of freezing due to too low temperature.
(13) Internal cycle mode of vehicle air conditioner 1 in FIG. 9 In internal cycle mode, the heat pump controller 32 fully closes the outdoor expansion valve 6 in the dehumidifying and heating mode (fully closed position), Close the solenoid valve 21. By closing the outdoor expansion valve 6 and the solenoid valve 21, the inflow of the refrigerant to the outdoor heat exchanger 7 and the outflow of the refrigerant from the outdoor heat exchanger 7 are prevented, so the radiator 4 The condensed refrigerant flowing through the refrigerant pipe 13E passes through the solenoid valve 22 and all flows to the second bypass pipe 13F. Then, the refrigerant flowing through the second bypass pipe 13F passes from the refrigerant pipe 13B to the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates. At this time, the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat sink 9, so that the air is cooled and dehumidified.
The refrigerant evaporated by the heat absorber 9 flows through the refrigerant pipe 13C sequentially through the internal heat exchanger 19 and the evaporation pressure adjusting valve 70, and repeats the circulation sucked into the compressor 2 through the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, this means that dehumidifying and heating of the passenger compartment is performed, but in this internal cycle mode, the air flow on the indoor side Since the refrigerant is circulated between the radiator 4 (heat radiation) and the heat absorber 9 (heat absorption) in the passage 3, heating of heat from the outside air is not performed, and heating for the power consumption of the compressor 2 is performed. Ability is demonstrated. Since the whole amount of the refrigerant flows through the heat absorber 9 which exerts the dehumidifying action, the dehumidifying ability is higher than the dehumidifying and heating mode, but the heating ability is lowered.
The air conditioning controller 20 transmits the target heater temperature TCO (target value of the heating temperature TH) calculated from the target blowing temperature TAO to the heat pump controller 32. The heat pump controller 32 calculates a target radiator pressure PCO (target value of the radiator pressure PCI) from the transmitted target heater temperature TCO, and the target radiator pressure PCO and the radiator 4 detected by the radiator pressure sensor 47 The rotation speed NC of the compressor 2 is controlled based on the refrigerant pressure (the radiator pressure PCI, the high pressure of the refrigerant circuit R), and the heating by the radiator 4 is controlled.
And by performing defrost control of the outdoor heat exchanger 7 of (11) mentioned above also in the case of this Example, the fall of the operating efficiency accompanying frost formation of the outdoor heat exchanger 7 by comparatively easy control is carried out. It becomes possible to prevent or suppress.
The numerical values and the like shown in the respective embodiments are not limited to them as described above, and should be appropriately set in accordance with the apparatus to be applied. Further, the auxiliary heating device is not limited to the auxiliary heater 23 shown in the embodiment, and a heat medium circulation circuit which heats the air in the air flow passage 3 by circulating a heat medium heated by the heater and an engine You may utilize the heater core etc. which circulate the heated radiator water.
 1 車両用空気調和装置
 2 圧縮機
 3 空気流通路
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器
 10 HVACユニット
 11 制御装置
 20 空調コントローラ
 23 補助ヒータ(補助加熱装置)
 27 室内送風機(ブロワファン)
 28 エアミックスダンパ
 32 ヒートポンプコントローラ
 53 空調操作部
 65 車両通信バス
 75 バッテリ
 R 冷媒回路
1 Vehicle air conditioner 2 Compressor 3 Air flow passage 4 Radiator 6 Outdoor expansion valve 7 Outdoor heat exchanger 8 Indoor expansion valve 9 Heat sink 10 HVAC unit 11 Control device 20 Air conditioning controller 23 Auxiliary heater (auxiliary heating device)
27 Indoor blower (blower fan)
28 air mix damper 32 heat pump controller 53 air conditioning control unit 65 vehicle communication bus 75 battery R refrigerant circuit

Claims (7)

  1.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     車室外に設けられて冷媒を吸熱させるための室外熱交換器と、
     制御装置とを備え、
     該制御装置により、少なくとも前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させて前記車室内を暖房する暖房モードを含む空調運転を実行する車両用空気調和装置において、
     前記制御装置は、前記暖房モードで前記空調運転を停止する毎に、前記室外熱交換器の除霜を行うことを特徴とする車両用空気調和装置。
    A compressor for compressing a refrigerant,
    An air flow passage through which air supplied to the vehicle compartment flows;
    A radiator for radiating the refrigerant and heating the air supplied from the air flow passage to the vehicle compartment;
    An outdoor heat exchanger provided outside the vehicle for absorbing heat from the refrigerant;
    Equipped with a control unit,
    The controller dissipates at least the refrigerant discharged from the compressor by the radiator, decompresses the dissipated refrigerant, and heats the vehicle interior by absorbing heat by the outdoor heat exchanger In a vehicle air conditioner that performs an air conditioning operation including
    The air conditioner for a vehicle, wherein the control device performs defrosting of the outdoor heat exchanger each time the air conditioning operation is stopped in the heating mode.
  2.  前記制御装置は、前記暖房モードにおいて、前記圧縮機の回転数が所定の閾値より高い状態が第1の所定時間t1継続した場合、誤動作防止条件が成立したものと判断し、当該暖房モードで前記空調運転を停止した後、前記室外熱交換器の除霜を行うことを特徴とする請求項1に記載の車両用空気調和装置。 In the heating mode, the control device determines that the malfunction preventing condition is satisfied when the state where the number of revolutions of the compressor is higher than the predetermined threshold continues for the first predetermined time t1 in the heating mode, and The vehicle air conditioner according to claim 1, wherein the outdoor heat exchanger is defrosted after stopping the air conditioning operation.
  3.  前記制御装置は、前記暖房モードを前記第1の所定時間t1よりも長い第2の所定時間t2継続して実行した場合、誤動作防止条件が成立したものと判断し、当該暖房モードで前記空調運転を停止した後、前記室外熱交換器の除霜を行うことを特徴とする請求項1又は請求項2に記載の車両用空気調和装置。 When the control device continuously executes the heating mode for a second predetermined time t2 longer than the first predetermined time t1, the control device determines that the malfunction preventing condition is satisfied, and the air conditioning operation is performed in the heating mode. The air conditioner for a vehicle according to claim 1 or 2, wherein the outdoor heat exchanger is defrosted after stopping the air conditioner.
  4.  前記制御装置は、前記暖房モードを実行した場合、又は、前記誤動作防止条件が成立したものと判断した場合、所定の除霜要求フラグをセットし、前記暖房モード以外で前記空調運転を実行した場合、前記除霜要求フラグをリセットすると共に、
     当該除霜要求フラグがセットされている状態で前記空調運転を停止した後、前記室外熱交換器の除霜可否を判断し、許可されている場合には、当該室外熱交換器の除霜を行い、前記除霜要求フラグをリセットすることを特徴とする請求項1乃至請求項3のうちの何れかに記載の車両用空気調和装置。
    When the control device executes the heating mode or determines that the malfunction preventing condition is satisfied, the control device sets a predetermined defrost request flag and executes the air conditioning operation except for the heating mode. While resetting the defrost request flag
    After stopping the air conditioning operation in a state where the defrosting request flag is set, it is determined whether or not the outdoor heat exchanger can be defrosted, and if permitted, the outdoor heat exchanger is defrosted. The air conditioning apparatus for a vehicle according to any one of claims 1 to 3, wherein the defrost request flag is reset.
  5.  前記圧縮機は、車両に搭載されたバッテリにより駆動されると共に、
     前記制御装置は、前記車室内の空調要求が無く、且つ、前記バッテリが充電中であるか当該バッテリの残量が所定値以上あることを条件として、前記室外熱交換器の除霜を許可することを特徴とする請求項4に記載の車両用空気調和装置。
    The compressor is driven by a battery mounted on a vehicle, and
    The control device permits defrosting of the outdoor heat exchanger on the condition that there is no air conditioning request for the vehicle interior and that the battery is being charged or the remaining amount of the battery is equal to or more than a predetermined value. The air conditioner for vehicles according to claim 4 characterized by things.
  6.  前記制御装置は、前記車室内の空調設定操作を行うための空調操作部が接続された空調コントローラと、前記圧縮機の運転を制御するヒートポンプコントローラとから構成され、前記空調コントローラと前記ヒートポンプコントローラは、車両通信バスを介して情報の送受信を行い、
     前記ヒートポンプコントローラは、前記暖房モードを実行した場合、又は、前記誤動作防止条件が成立したものと判断した場合、前記除霜要求フラグをセットし、前記暖房モード以外で前記空調運転を実行した場合、前記除霜要求フラグをリセットし、当該除霜要求フラグがセットされている状態で前記空調運転を停止した場合、前記空調コントローラに対して除霜要求を行い、前記空調コントローラから除霜許可が通知されている場合、前記室外熱交換器の除霜を行い、前記除霜要求フラグをリセットすると共に、
     前記空調コントローラは、前記ヒートポンプコントローラから前記除霜要求があった場合、前記室外熱交換器の除霜可否を判断し、許可する場合には、当該室外熱交換器の前記除霜許可を前記ヒートポンプコントローラに通知することを特徴とする請求項4又は請求項5に記載の車両用空気調和装置。
    The control device includes an air conditioning controller connected to an air conditioning operation unit for performing an air conditioning setting operation of the vehicle compartment, and a heat pump controller for controlling the operation of the compressor, and the air conditioning controller and the heat pump controller Send and receive information via the vehicle communication bus,
    When the heat pump controller executes the heating mode or determines that the malfunction preventing condition is satisfied, the heat pump controller sets the defrost request flag and executes the air conditioning operation except for the heating mode. When the air conditioning operation is stopped in a state where the defrost request flag is reset and the defrost request flag is set, the defrost request is issued to the air conditioning controller, and the defrost permission is notified from the air conditioning controller. If it is, the outdoor heat exchanger is defrosted, the defrost request flag is reset, and
    The air conditioning controller determines whether the outdoor heat exchanger can be defrosted when the defrost request is received from the heat pump controller, and when permitting the outdoor heat exchanger, the defrosting permission of the outdoor heat exchanger is determined by the heat pump The vehicle air conditioner according to claim 4 or 5, wherein the controller is notified.
  7.  前記制御装置は、所定の除霜装置により前記室外熱交換器を加熱することで当該室外熱交換器を除霜することを特徴とする請求項1乃至請求項6のうちの何れかに記載の車両用空気調和装置。 The said control apparatus defrosts the said outdoor heat exchanger by heating the said outdoor heat exchanger with a predetermined | prescribed defrost apparatus, The said heat exchanger is described in any one of Claim 1 thru | or 6 Vehicle air conditioner.
PCT/JP2018/023916 2017-07-18 2018-06-18 Vehicular air conditioning device WO2019017149A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-138978 2017-07-18
JP2017138978A JP2019018708A (en) 2017-07-18 2017-07-18 Air conditioner for vehicle

Publications (1)

Publication Number Publication Date
WO2019017149A1 true WO2019017149A1 (en) 2019-01-24

Family

ID=65016404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023916 WO2019017149A1 (en) 2017-07-18 2018-06-18 Vehicular air conditioning device

Country Status (2)

Country Link
JP (1) JP2019018708A (en)
WO (1) WO2019017149A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113853313A (en) * 2019-05-28 2021-12-28 三电汽车空调系统株式会社 Air conditioner for vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022148724A (en) * 2021-03-24 2022-10-06 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05162535A (en) * 1991-12-10 1993-06-29 Hitachi Ltd Air conditioner for automobile
JPH07186710A (en) * 1993-12-27 1995-07-25 Nippondenso Co Ltd Air conditioner for electric vehicle
JPH08268031A (en) * 1995-03-31 1996-10-15 Nippondenso Co Ltd Vehicular air conditioner
US5791407A (en) * 1995-06-15 1998-08-11 Rapids Defrost System, Inc. Remote and programmable indash defrost/cooling system
JP2013129353A (en) * 2011-12-22 2013-07-04 Mitsubishi Heavy Ind Ltd Air conditioning apparatus for vehicle
JP2014088152A (en) * 2012-10-31 2014-05-15 Mitsubishi Motors Corp Vehicle air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05162535A (en) * 1991-12-10 1993-06-29 Hitachi Ltd Air conditioner for automobile
JPH07186710A (en) * 1993-12-27 1995-07-25 Nippondenso Co Ltd Air conditioner for electric vehicle
JPH08268031A (en) * 1995-03-31 1996-10-15 Nippondenso Co Ltd Vehicular air conditioner
US5791407A (en) * 1995-06-15 1998-08-11 Rapids Defrost System, Inc. Remote and programmable indash defrost/cooling system
JP2013129353A (en) * 2011-12-22 2013-07-04 Mitsubishi Heavy Ind Ltd Air conditioning apparatus for vehicle
JP2014088152A (en) * 2012-10-31 2014-05-15 Mitsubishi Motors Corp Vehicle air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113853313A (en) * 2019-05-28 2021-12-28 三电汽车空调系统株式会社 Air conditioner for vehicle

Also Published As

Publication number Publication date
JP2019018708A (en) 2019-02-07

Similar Documents

Publication Publication Date Title
CN109715422B (en) Air conditioner for vehicle
JP6900271B2 (en) Vehicle air conditioner
US20210094391A1 (en) Vehicle air-conditioning device
WO2019049636A1 (en) Vehicular air conditioning device
WO2018211957A1 (en) Vehicle air-conditioning device
CN110062708B (en) Air conditioner for vehicle
JP6767857B2 (en) Vehicle air conditioner
JP6831239B2 (en) Vehicle air conditioner
JP6831209B2 (en) Vehicle air conditioner
WO2019017149A1 (en) Vehicular air conditioning device
WO2018225486A1 (en) Air-conditioning device for vehicles
WO2018088124A1 (en) Vehicular air conditioner
JP6871745B2 (en) Vehicle air conditioner
WO2018061785A1 (en) Air-conditioning device for vehicle
WO2017146269A1 (en) Vehicular air-conditioning device
US11247536B2 (en) Vehicle air conditioner
WO2019049637A1 (en) Vehicular air conditioning device
WO2018225485A1 (en) Vehicle air conditioner
JP6853036B2 (en) Vehicle air conditioner
JP6807710B2 (en) Vehicle air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835266

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18835266

Country of ref document: EP

Kind code of ref document: A1