WO2019049636A1 - Vehicular air conditioning device - Google Patents

Vehicular air conditioning device Download PDF

Info

Publication number
WO2019049636A1
WO2019049636A1 PCT/JP2018/030589 JP2018030589W WO2019049636A1 WO 2019049636 A1 WO2019049636 A1 WO 2019049636A1 JP 2018030589 W JP2018030589 W JP 2018030589W WO 2019049636 A1 WO2019049636 A1 WO 2019049636A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
outdoor heat
refrigerant
air
defrosting
Prior art date
Application number
PCT/JP2018/030589
Other languages
French (fr)
Japanese (ja)
Inventor
耕平 山下
竜 宮腰
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Publication of WO2019049636A1 publication Critical patent/WO2019049636A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles

Definitions

  • the present invention relates to a heat pump type air conditioner for air conditioning a vehicle cabin of a vehicle.
  • the refrigerant evaporates in the outdoor heat exchanger and absorbs heat from the outside air, so frost formation occurs on the outdoor heat exchanger. If the operation of the compressor is continued in a state where frost formation on the outdoor heat exchanger has progressed, the heat absorption capacity from the outside air is reduced, so that the operation efficiency is significantly reduced. Therefore, it is necessary to stop the heating mode and perform defrosting of the outdoor heat exchanger, but in that case heating of the vehicle interior can not be performed, and the comfort of the driver and the passenger is impaired. For example, there is no air conditioning requirement, and defrosting of the outdoor heat exchanger is performed under conditions where defrosting is permitted during charging of the battery.
  • the frost formed on the outdoor heat exchanger melts naturally with the passage of time if the outside air temperature rises.
  • the outdoor heat exchanger serves as a radiator that radiates the refrigerant, so that the frost is melted and removed.
  • it is not necessary to defrost the outdoor heat exchanger but conventionally, once it is determined that defrosting of the outdoor heat exchanger is necessary, it is always required that defrosting be permitted. Defrosting was taking place.
  • the present invention has been made to solve such conventional technical problems, and an air conditioner for a vehicle that can prevent unnecessary defrosting of the outdoor heat exchanger from occurring. Intended to be provided.
  • the air conditioner for a vehicle heats the air supplied from the air flow passage to the vehicle compartment from the air flow passage by radiating the refrigerant and the air flow passage through which the air supplied to the vehicle is circulated.
  • the heating mode is performed by heating the vehicle interior by absorbing heat with the outdoor heat exchanger
  • the control device determines the progress of frost formation on the outdoor heat exchanger When it was determined that it was determined that defrosting was necessary, the outdoor heat exchanger was defrosted and it was determined that defrosting of the outdoor heat exchanger was necessary when a predetermined defrost permission condition was satisfied.
  • the air conditioning apparatus for a vehicle according to the invention of claim 2 is characterized in that the natural defrosting condition in the invention is:
  • the outside air temperature Tam is equal to or higher than a predetermined value Tam1
  • the refrigerant evaporation temperature TXO of the outdoor heat exchanger is equal to or higher than an outside air temperature Tam-predetermined value ⁇ .
  • the integrated value of the time during which the outside air temperature Tam is equal to or higher than the predetermined value Tam2 is equal to or longer than a predetermined time t3 while the vehicle is stopped.
  • the outside air temperature Tam becomes equal to or higher than the predetermined value Tam2, and the integral value obtained from the difference and the elapsed time becomes equal to or higher than the predetermined value X1.
  • a predetermined period t4 or more has elapsed since the vehicle stopped.
  • the operation mode not to absorb the refrigerant is selected by the outdoor heat exchanger, Or any combination thereof, or all of them.
  • the vehicle air conditioner of the invention of claim 3 is characterized in that, in each of the inventions described above, the control device causes the refrigerant evaporation temperature TXO of the outdoor heat exchanger to fall below the refrigerant evaporation temperature TXObase of the outdoor heat exchanger at the time of no frost formation.
  • the difference between the refrigerant evaporation temperature TXO of the outdoor heat exchanger and the refrigerant evaporation temperature TXObase of the outdoor heat exchanger at the time of no frost, based on .DELTA.TXO TXObase-TXO, or the refrigerant evaporation pressure PXO of the outdoor heat exchanger is not adhered
  • the difference ⁇ PXO between the refrigerant evaporation pressure PXO of the outdoor heat exchanger and the refrigerant evaporation pressure PXObase of the outdoor heat exchanger at the time of no frost when the temperature is lower than the refrigerant evaporation pressure PXObase of the outdoor heat exchanger at the time of frost ⁇ PXO PXObase ⁇ PXO
  • the present invention is characterized in that the progress of frost formation on the outdoor heat exchanger is determined on the basis of.
  • the control device is the refrigerant evaporation temperature TXObase of the outdoor heat exchanger at the time of frost-free based on the environmental condition and / or the index indicating the driving condition.
  • the refrigerant evaporation pressure PXObase of the outdoor heat exchanger at the time of no frost formation is estimated.
  • the compressor is driven by the battery mounted on the vehicle, and the defrost permission condition does not require air conditioning of the vehicle interior, and the battery Is that the battery is being charged or the remaining amount of the battery is equal to or more than a predetermined value.
  • the control device is an air conditioning controller to which an air conditioning operation unit for performing an air conditioning setting operation in the vehicle compartment is connected, and a heat pump for controlling the operation of the compressor.
  • the air conditioning controller and the heat pump controller transmit and receive information via the vehicle communication bus, and the heat pump controller determines that the outdoor heat exchanger needs to be defrosted, and the predetermined defrost request flag is set.
  • the air conditioning controller sets a predetermined defrost permission flag, the outdoor heat exchanger is defrosted, the defrost request flag is reset, and the defrost request flag is set, and then the natural defrost condition is set.
  • the defrost request flag is reset, and the air conditioning controller causes the heat pump controller to defrost the request flag. If set, it determines whether defrost permission condition is satisfied, when filled, characterized in that setting the defrost permission flag.
  • the air conditioning controller or the heat pump controller determines whether the natural defrosting condition holds in the above invention, natural defrosting is performed when the air conditioning controller determines. The heat pump controller is notified that the condition is satisfied.
  • the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle compartment flows, and the radiator for radiating the heat of the refrigerant and heating the air supplied from the air flow passage to the vehicle compartment And an outdoor heat exchanger provided outside the vehicle for absorbing heat of the refrigerant, and a control device, wherein the control device causes at least the refrigerant discharged from the compressor to be dissipated by the radiator and dissipated In a vehicle air conditioner that executes a heating mode of heating the vehicle interior by absorbing heat with the outdoor heat exchanger after depressurizing the refrigerant, the control device determines the progress of frost formation on the outdoor heat exchanger.
  • the outdoor heat exchanger is defrosted when it is determined that the predetermined defrost permission condition is satisfied, and after it is determined that defrosting of the outdoor heat exchanger is necessary, A place where a predetermined natural defrosting condition is established before defrosting In order to prevent defrosting of the outdoor heat exchanger, even if it is determined that defrosting of the outdoor heat exchanger is necessary, then a predetermined natural defrosting condition is satisfied and the outdoor heat exchanger is When frost formation is expected to be naturally melted, unnecessary defrosting of the outdoor heat exchanger can be avoided in advance without defrosting.
  • defrosting is not performed in a situation where heating of the vehicle interior can be performed, and comfortable heating and air conditioning of the vehicle interior can be realized while contributing to energy saving.
  • natural defrosting conditions as in the invention of claim 2 are
  • the outside air temperature Tam is equal to or higher than a predetermined value Tam1
  • the refrigerant evaporation temperature TXO of the outdoor heat exchanger is equal to or higher than an outside air temperature Tam-predetermined value ⁇ .
  • the integrated value of the time during which the outside air temperature Tam is equal to or higher than the predetermined value Tam2 is equal to or longer than a predetermined time t3 while the vehicle is stopped.
  • the outside air temperature Tam becomes equal to or higher than the predetermined value Tam2, and the integral value obtained from the difference and the elapsed time becomes equal to or higher than the predetermined value X1.
  • a predetermined period t4 or more has elapsed since the vehicle stopped.
  • the operation mode not to absorb the refrigerant is selected by the outdoor heat exchanger, By combining any or all of them, it is possible to properly predict that the frost formation on the outdoor heat exchanger has naturally melted.
  • control device controls the refrigerant evaporation of the outdoor heat exchanger when the refrigerant evaporation temperature TXO of the outdoor heat exchanger is lower than the refrigerant evaporation temperature TXObase of the outdoor heat exchanger when frost does not occur.
  • the control device controls the refrigerant evaporation temperature TXObase of the outdoor heat exchanger at the time of non-frosting based on the environmental condition and / or the index indicating the operating condition or at the time of non-frosting
  • the refrigerant evaporation pressure PKObase of the outdoor heat exchanger By estimating the refrigerant evaporation pressure PKObase of the outdoor heat exchanger in the above, it is possible to accurately detect the progress of frost formation on the outdoor heat exchanger.
  • the defrosting permission condition for example, there is no air conditioning requirement for the vehicle interior as in the invention of claim 5, and the battery for driving the compressor is charging or the remaining amount of the battery is a predetermined value or more It should be a certain thing.
  • the control device comprises an air conditioning controller connected to an air conditioning operation unit for performing an air conditioning setting operation in the vehicle compartment, and a heat pump controller for controlling the operation of the compressor.
  • the heat pump controller transmits and receives information via the vehicle communication bus
  • the heat pump controller sets a predetermined defrost request flag when it is determined that defrosting of the outdoor heat exchanger is necessary, and the air conditioning controller
  • the predetermined defrost permission flag is set, the outdoor heat exchanger is defrosted, the defrost request flag is reset, and the defrost request flag is set, and then the natural defrost condition is satisfied.
  • the air conditioning controller or the heat pump controller may determine whether or not the natural defrosting condition is satisfied as in the invention of claim 7, and if the air conditioning controller determines that By notifying the heat pump controller that the frost condition is established, it is possible to avoid unnecessary defrosting of the outdoor heat exchanger without any trouble.
  • FIG. 1 It is a block diagram of the air conditioning apparatus for vehicles of one Embodiment to which this invention is applied (Example 1). It is a block diagram of the control apparatus of the air conditioning apparatus for vehicles of FIG. It is a schematic diagram of the airflow path of the air conditioning apparatus for vehicles of FIG. It is a control block diagram regarding compressor control in heating mode of the heat pump controller of FIG. It is a control block diagram regarding compressor control in the dehumidification heating mode of the heat pump controller of FIG. It is a control block diagram regarding the auxiliary heater (auxiliary heating device) control in the dehumidification heating mode of the heat pump controller of FIG.
  • FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention.
  • the vehicle according to the embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and is used for traveling with electric power charged in a battery 75 (FIG. 2) mounted in the vehicle.
  • the electric motor is driven to travel (not shown), and the vehicle air conditioner 1 of the present invention is also driven by the power of the battery 75.
  • the vehicle air conditioner 1 of the embodiment performs a heating mode by heat pump operation using a refrigerant circuit in an electric vehicle that can not be heated by engine waste heat, and further performs a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode,
  • a heating mode by heat pump operation using a refrigerant circuit in an electric vehicle that can not be heated by engine waste heat
  • a dehumidifying heating mode a dehumidifying cooling mode
  • a cooling mode Each operation mode of the MAX cooling mode (maximum cooling mode) and the auxiliary heater only mode is selectively executed.
  • the present invention is applicable not only to electric vehicles as vehicles, but also to so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles traveling with an engine. Needless to say.
  • the vehicle air conditioner 1 of the embodiment performs air conditioning (heating, cooling, dehumidifying, and ventilating) of a vehicle compartment of an electric vehicle, and is an electric type that receives power from a battery 75 to drive and compress a refrigerant.
  • an outdoor expansion valve 6 pressure reducing device including a motor-operated valve for decompressing and expanding the refrigerant during heating, and a radiator 4 provided outside the vehicle for radiating heat during cooling
  • an indoor expansion valve 8 pressure reduction device including a motorized valve that decompresses and expands the refrigerant.
  • a heat sink 9 for cooling the air which absorbs heat from the outside of the vehicle interior by absorbing heat from the outside of the vehicle interior during cooling and dehumidification, the accumulator 12 and the like are sequentially connected by the refrigerant pipe 13, and the refrigerant circuit R is It is configured.
  • the refrigerant circuit R is filled with a predetermined amount of refrigerant and lubricating oil.
  • the outdoor heat exchanger 7 is provided with an outdoor fan 15. The outdoor fan 15 exchanges heat between the outdoor air and the refrigerant by forcibly ventilating the outdoor air to the outdoor heat exchanger 7, whereby the outdoor fan 15 is also outdoors when the vehicle is stopped (that is, the vehicle speed is 0 km / h).
  • the heat exchanger 7 is configured to ventilate outside air.
  • the outdoor heat exchanger 7 sequentially has the receiver dryer portion 14 and the subcooling portion 16 on the refrigerant downstream side, and the refrigerant pipe 13A that has come out of the outdoor heat exchanger 7 is a receiver via the solenoid valve 17 opened during cooling.
  • the refrigerant pipe 13B connected to the dryer unit 14 and at the outlet side of the subcooling unit 16 is connected to the inlet side of the heat absorber 9 via the indoor expansion valve 8.
  • the receiver dryer portion 14 and the subcooling portion 16 structurally constitute a part of the outdoor heat exchanger 7.
  • the refrigerant pipe 13B between the supercooling unit 16 and the indoor expansion valve 8 is provided in heat exchange relation with the refrigerant pipe 13C on the outlet side of the heat absorber 9, and both constitute an internal heat exchanger 19.
  • the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low temperature refrigerant that has exited the heat absorber 9.
  • the refrigerant pipe 13A that has exited from the outdoor heat exchanger 7 is branched into the refrigerant pipe 13D, and the branched refrigerant pipe 13D is downstream of the internal heat exchanger 19 via the solenoid valve 21 opened during heating.
  • the refrigerant pipe 13C is connected to the accumulator 12, and the accumulator 12 is connected to the refrigerant suction side of the compressor 2.
  • the refrigerant pipe 13E on the outlet side of the radiator 4 is connected to the inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.
  • the refrigerant pipe 13G between the discharge side of the compressor 2 and the inlet side of the radiator 4 is provided with a solenoid valve 30 (constituting a flow path switching device) closed during dehumidifying heating and MAX cooling described later. There is.
  • the refrigerant pipe 13G is branched to a bypass pipe 35 on the upstream side of the solenoid valve 30, and the bypass pipe 35 is a solenoid valve 40 (also constituting a flow path switching device) opened during dehumidifying heating and MAX cooling. Is connected to the refrigerant pipe 13E on the downstream side of the outdoor expansion valve 6).
  • the bypass pipe 45, the solenoid valve 30, and the solenoid valve 40 constitute a bypass device 45.
  • the dehumidifying heating mode or MAX for directly flowing the refrigerant discharged from the compressor 2 into the outdoor heat exchanger 7 as described later It is possible to smoothly switch between the cooling mode and the heating mode, the dehumidifying cooling mode, and the cooling mode in which the refrigerant discharged from the compressor 2 flows into the radiator 4. Further, in the air flow passage 3 on the air upstream side of the heat absorber 9, suction ports for the outside air suction port and the inside air suction port are formed (represented by the suction port 25 in FIG.
  • this suction port A suction switching damper 26 is provided at 25 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) that is the air inside the vehicle compartment and the outside air (outside air introduction mode) that is the air outside the vehicle outside There is. Further, on the air downstream side of the suction switching damper 26, an indoor blower (blower fan) 27 for supplying the introduced internal air and the external air to the air flow passage 3 is provided. Further, in FIG. 1, reference numeral 23 denotes an auxiliary heater as an auxiliary heating device provided in the vehicle air conditioner 1 of the embodiment.
  • the auxiliary heater 23 of the embodiment is constituted by a PTC heater which is an electric heater, and the inside of the air flow passage 3 which is on the windward side (air upstream side) of the radiator 4 with respect to the air flow of the air flow passage 3.
  • the auxiliary heater 23 is energized to generate heat, the air in the air flow passage 3 flowing into the radiator 4 through the heat absorber 9 is heated. That is, the auxiliary heater 23 serves as a so-called heater core to heat the vehicle interior or supplement it.
  • the air flow passage 3 on the downwind side (air downstream side) of the heat absorber 9 of the HVAC unit 10 is partitioned by the partition wall 10A, and a heating heat exchange passage 3A and a bypass passage 3B bypassing it are formed.
  • the radiator 4 and the auxiliary heater 23 described above are disposed in the heating heat exchange passage 3A.
  • the air (internal air and outside air) in the air flow passage 3 after flowing into the air flow passage 3 and passing through the heat absorber 9 is assisted.
  • An air mix damper 28 is provided to adjust the ratio of ventilation to the heating heat exchange passage 3A in which the heater 23 and the radiator 4 are disposed.
  • the HVAC unit 10 on the downwind side of the radiator 4 has a FOOT (foot) outlet 29A (first outlet) and a VENT (vent) outlet 29B (second outlet for the FOOT outlet 29A).
  • the FOOT blowout port 29A is a blowout port for blowing air under the foot of the vehicle compartment and is at the lowest position.
  • the VENT outlet 29B is an outlet for blowing air around the driver's chest and face in the vehicle compartment, and is above the FOOT outlet 29A.
  • the DEF outlet 29C is a outlet for blowing air to the inner surface of the windshield of the vehicle, and is located at the highest position above the other outlets 29A and 29B.
  • FIG. 2 shows a block diagram of the control device 11 of the vehicle air conditioner 1 of the embodiment.
  • the control device 11 is composed of an air conditioning controller 20 and a heat pump controller 32, each of which is constituted by a microcomputer which is an example of a computer having a processor, and these are CAN (Controller Area Network) and LIN (Local Interconnect Network).
  • the compressor 2 and the auxiliary heater 23 are also connected to the vehicle communication bus 65, and the air conditioning controller 20, the heat pump controller 32, the compressor 2 and the auxiliary heater 23 transmit and receive data via the vehicle communication bus 65. It is done.
  • the air conditioning controller 20 is a higher-level controller that controls the air conditioning inside the vehicle, and the outside air temperature sensor 33 for detecting the outside air temperature Tam of the vehicle and the outside air humidity for detecting the outside air humidity are input to the air conditioning controller 20.
  • a sensor 34 an HVAC suction temperature sensor 36 for detecting the temperature of the air (suctioned air temperature Tas) sucked into the air flow passage 3 from the suction port 25 and flowing into the heat absorber 9, the temperature of the air (internal air) in the vehicle compartment
  • An indoor air temperature sensor 37 for detecting (the indoor temperature Tin), an indoor air humidity sensor 38 for detecting the humidity of the air in the vehicle compartment, and an indoor CO for detecting the carbon dioxide concentration in the vehicle interior 2
  • a concentration sensor 39 an outlet temperature sensor 41 for detecting the temperature of the air blown into the vehicle compartment, a discharge pressure sensor 42 for detecting the discharge refrigerant pressure Pd of the compressor 2, and an amount of solar radiation into the vehicle compartment
  • each output of the photosensor type solar radiation sensor 51, the output of the vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, and the air conditioning setting operation of the vehicle interior such as switching of the set temperature and the operation mode.
  • An air conditioning operation unit (air conditioning operation unit) 53 is connected.
  • the outdoor air blower 15, the indoor air blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, and the air outlet dampers 31A to 31C are connected to the output of the air conditioning controller 20, and they are used for air conditioning It is controlled by the controller 20.
  • the battery 75 incorporates a controller, and the controller of the battery 75 transmits and receives data to and from the air conditioning controller 20 via the vehicle communication bus 65. Whether the battery 75 is charging the air conditioning controller 20 or not Information and information on the remaining amount (charging amount) of the battery 75 are transmitted.
  • the heat pump controller 32 mainly controls the control of the refrigerant circuit R, and an input of the heat pump controller 32 is a discharge temperature sensor 43 for detecting a discharge refrigerant temperature Td of the compressor 2 and a suction refrigerant of the compressor 2
  • a suction pressure sensor 44 for detecting a pressure Ps
  • a suction temperature sensor 55 for detecting a suction refrigerant temperature Ts of the compressor 2
  • a radiator temperature sensor 46 for detecting a refrigerant temperature (a radiator temperature TCI) of the radiator 4
  • a radiator pressure sensor 47 that detects the refrigerant pressure of the radiator 4 (radiator pressure PCI), a heat sink temperature sensor 48 that detects the refrigerant temperature (heat sink temperature Te) of the heat sink 9, and a refrigerant pressure of the heat sink 9
  • Heat sensor pressure sensor 49 for detecting the temperature
  • the auxiliary heater temperature sensor 50 for detecting the temperature of the auxiliary heater 23 (auxiliary heater temperature Tptc), and the outlet of the outdoor heat exchange
  • the heat pump controller 32 outputs the outdoor expansion valve 6, the indoor expansion valve 8, the solenoid valve 30 (for reheating), the solenoid valve 17 (for cooling), the solenoid valve 21 (for heating), the solenoid valve 40 (bypass) ) Are connected, and they are controlled by the heat pump controller 32.
  • the compressor 2 and the auxiliary heater 23 each have a built-in controller, and the controller of the compressor 2 and the auxiliary heater 23 transmits / receives data to / from the heat pump controller 32 via the vehicle communication bus 65. It is controlled.
  • the heat pump controller 32 and the air conditioning controller 20 mutually transmit and receive data via the vehicle communication bus 65, and control each device based on the output of each sensor and the setting inputted by the air conditioning operation unit 53.
  • the output of the outside air temperature sensor 33, the output of the discharge pressure sensor 42, the outputs of the vehicle speed sensor 52, the volumetric air flow rate Ga of the air flowing into the air flow passage 3 (calculated by the air conditioning controller 20), the air mix The air volume ratio SW (calculated by the air conditioning controller 20) by the damper 28, the output of the air conditioning operation unit 53 is transmitted from the air conditioning controller 20 to the heat pump controller 32 via the vehicle communication bus 65, and provided for control by the heat pump controller 32 It is done.
  • the operation of the vehicle air conditioner 1 of the embodiment having the above configuration will be described.
  • the control device 11 operates the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, the MAX cooling mode (maximum cooling mode) and the auxiliary heater sole mode. Switch and execute.
  • the heating mode is selected by the heat pump controller 32 (automatic mode) or by the manual air conditioning setting operation (manual mode) to the air conditioning operation unit 53, the heat pump controller 32 opens the solenoid valve 21 (for heating) to open the solenoid valve. Close 17 (for cooling).
  • the solenoid valve 30 (for reheating) is opened, and the solenoid valve 40 (for bypass) is closed. Then, the compressor 2 is operated.
  • the air conditioning controller 20 operates the blowers 15 and 27, and the air mix damper 28 is basically blown out from the indoor blower 27 and passes through the heat absorber 9 and all the air in the air flow passage 3 is heated by the heat exchange passage 3A. In the state of ventilating to the auxiliary heater 23 and the radiator 4, the air volume may be adjusted. As a result, the high temperature and high pressure gas refrigerant discharged from the compressor 2 passes through the solenoid valve 30 and flows into the radiator 4 from the refrigerant pipe 13G.
  • the air in the air flow passage 3 is ventilated to the radiator 4, the air in the air flow passage 3 is a high temperature refrigerant in the heat radiator 4 (when the auxiliary heater 23 is operated, the auxiliary heater 23 and the radiator 4 are While the refrigerant in the radiator 4 loses its heat by air, is cooled, and condenses and liquefies.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 evaporates, and heat is pumped up from the outside air ventilated by the traveling or the outdoor blower 15. That is, the refrigerant circuit R is a heat pump. Then, the low temperature refrigerant leaving the outdoor heat exchanger 7 passes through the refrigerant piping 13A, the solenoid valve 21 and the refrigerant piping 13D, enters the accumulator 12 from the refrigerant piping 13C, and is separated into gas and liquid there, and then the gas refrigerant is the compressor 2 Repeat the cycle of sucking in Since the air heated by the radiator 4 (the auxiliary heater 23 and the radiator 4 when the auxiliary heater 23 operates) is blown out from the outlets 29A to 29C, this heats the vehicle interior.
  • the heat pump controller 32 calculates a target radiator pressure PCO (target value of the radiator pressure PCI) from the target heater temperature TCO (target value of the heating temperature TH described later) calculated by the air conditioning controller 20 from the target outlet temperature TAO.
  • the rotational speed NC of the compressor 2 is controlled based on the target radiator pressure PCO and the refrigerant pressure (radiator pressure PCI, high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47, and the radiator Control heating by 4. Further, the heat pump controller 32 opens the outdoor expansion valve 6 based on the refrigerant temperature (the radiator temperature TCI) of the radiator 4 detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47.
  • the degree of subcooling SC of the refrigerant at the outlet of the radiator 4 is controlled.
  • the heat pump controller 32 compensates for the shortage by the heat generation of the auxiliary heater 23.
  • the energization of the auxiliary heater 23 is controlled. Thereby, comfortable heating of the vehicle interior is realized, and frost formation on the outdoor heat exchanger 7 is also suppressed.
  • the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air flowing through the air flow passage 3 is ventilated to the auxiliary heater 23 in front of the radiator 4.
  • the auxiliary heater 23 when the auxiliary heater 23 is disposed on the air downstream side of the radiator 4, when the auxiliary heater 23 is configured by the PTC heater as in the embodiment, the temperature of the air flowing into the auxiliary heater 23 is the radiator Because the resistance value of the PTC heater increases and the current value also decreases and the calorific value decreases, the auxiliary heater 23 is disposed on the air upstream side of the radiator 4 in the embodiment. As described above, the capability of the auxiliary heater 23 composed of a PTC heater can be sufficiently exhibited.
  • the heat pump controller 32 opens the solenoid valve 17 and closes the solenoid valve 21.
  • the solenoid valve 30 is closed, the solenoid valve 40 is opened, and the degree of opening of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 is operated.
  • the air conditioning controller 20 operates the blowers 15 and 27, and the air mix damper 28 is basically blown out from the indoor blower 27 and passes through the heat absorber 9 and all the air in the air flow passage 3 is heated by the heat exchange passage 3A. In the state of ventilating to the auxiliary heater 23 and the radiator 4, the air volume is also adjusted.
  • the high-temperature, high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, and passes through the solenoid valve 40 and the refrigerant pipe on the downstream side of the outdoor expansion valve 6 It will reach 13E.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 is air-cooled and condensed by traveling there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant leaving the outdoor heat exchanger 7 flows from the refrigerant pipe 13A through the solenoid valve 17 into the receiver dryer portion 14 and the supercooling portion 16 sequentially.
  • the refrigerant is subcooled.
  • the refrigerant leaving the subcooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13B, passes through the internal heat exchanger 19, and reaches the indoor expansion valve 8.
  • the refrigerant After the refrigerant is depressurized by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates.
  • the air blown out from the indoor blower 27 is cooled by the heat absorption action, and the moisture in the air condenses and adheres to the heat absorber 9, so the air in the air flow passage 3 is cooled, and Dehumidified.
  • the refrigerant evaporated by the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 via the refrigerant pipe 13C, and the circulation through which the refrigerant is sucked into the compressor 2 is repeated.
  • the valve opening degree of the outdoor expansion valve 6 is fully closed, it is possible to suppress or prevent the disadvantage that the refrigerant discharged from the compressor 2 flows back from the outdoor expansion valve 6 into the radiator 4 It becomes.
  • the heat pump controller 32 supplies power to the auxiliary heater 23 to generate heat.
  • the heat pump controller 32 is a compressor based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48 (heat absorber temperature Te) and the target heat absorber temperature TEO which is a target value of the heat absorber temperature Te calculated by the air conditioning controller 20.
  • the auxiliary heater 23 based on the auxiliary heater temperature Tptc detected by the auxiliary heater temperature sensor 50 and the aforementioned target heater temperature TCO (in this case, the target value of the auxiliary heater temperature Tptc).
  • the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air heated by the auxiliary heater 23 passes through the radiator 4, but in this dehumidifying and heating mode, the refrigerant 4 Since the air is not flowed, the problem that the radiator 4 absorbs heat from the air heated by the auxiliary heater 23 is also eliminated. That is, the decrease in the temperature of the air blown out into the vehicle interior by the radiator 4 is suppressed, and the COP is also improved.
  • the heat pump controller 32 opens the solenoid valve 17 and closes the solenoid valve 21. Also, the solenoid valve 30 is opened and the solenoid valve 40 is closed.
  • the air conditioning controller 20 operates the blowers 15 and 27, and the air mix damper 28 is basically blown out from the indoor blower 27 and passes through the heat absorber 9 and all the air in the air flow passage 3 is heated by the heat exchange passage 3A.
  • the air volume is also adjusted.
  • the high temperature and high pressure gas refrigerant discharged from the compressor 2 passes through the solenoid valve 30 and flows into the radiator 4 from the refrigerant pipe 13G. Since the air in the air flow passage 3 is ventilated to the radiator 4, the air in the air flow passage 3 is heated by the high temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air.
  • the refrigerant leaving the radiator 4 passes through the refrigerant pipe 13E to reach the outdoor expansion valve 6, and then flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 which is controlled to be open.
  • the refrigerant flowing into the outdoor heat exchanger 7 is air-cooled and condensed by traveling there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant leaving the outdoor heat exchanger 7 flows from the refrigerant pipe 13A through the solenoid valve 17 into the receiver dryer portion 14 and the supercooling portion 16 sequentially.
  • the refrigerant is subcooled.
  • the refrigerant leaving the subcooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13B, passes through the internal heat exchanger 19, and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates. At this time, the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat sink 9, so that the air is cooled and dehumidified. The refrigerant evaporated by the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 via the refrigerant pipe 13C, and the circulation through which the refrigerant is sucked into the compressor 2 is repeated.
  • the heat pump controller 32 does not energize the auxiliary heater 23, so the air cooled by the heat absorber 9 and dehumidified air passes through the radiator 4 and is reheated (heat radiation capacity is lower than that during heating) Be done. As a result, dehumidifying and cooling of the passenger compartment is performed.
  • the heat pump controller 32 detects the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO (sent from the air conditioning controller 20) as its target value. Control the rotational speed NC.
  • the heat pump controller 32 calculates the target radiator pressure PCO from the target heater temperature TCO described above, and the target radiator pressure PCO and the refrigerant pressure of the radiator 4 detected by the radiator pressure sensor 47 (the radiator pressure PCI.
  • the valve opening degree of the outdoor expansion valve 6 is controlled based on the high pressure of the refrigerant circuit R, and the heating by the radiator 4 is controlled.
  • Cooling mode Next, in the cooling mode, the heat pump controller 32 fully opens the outdoor expansion valve 6 in the dehumidifying and cooling mode. Then, the compressor 2 is operated and the auxiliary heater 23 is not energized.
  • the air conditioning controller 20 operates the blowers 15, 27.
  • the air mix damper 28 is blown out from the indoor blower 27 and the air in the air flow passage 3 which has passed through the heat absorber 9 is the auxiliary heater 23 of the heating heat exchange passage 3A. And let it be in the state which adjusts the ratio ventilated to the radiator 4.
  • FIG. 1 The air mix damper 28 is blown out from the indoor blower 27 and the air in the air flow passage 3 which has passed through the heat absorber 9 is the auxiliary heater 23 of the heating heat exchange passage 3A. And let it be in the state which adjusts the ratio ventilated to the radiator 4.
  • the high temperature / high pressure gas refrigerant discharged from the compressor 2 flows from the refrigerant pipe 13G to the radiator 4 through the solenoid valve 30, and the refrigerant leaving the radiator 4 passes through the refrigerant pipe 13E to the outdoor expansion valve 6 Lead to At this time, since the outdoor expansion valve 6 is fully opened, the refrigerant passes through it and flows into the outdoor heat exchanger 7 where it is cooled by air or by the outside air ventilated by the outdoor blower 15 by running. Liquefy.
  • the refrigerant leaving the outdoor heat exchanger 7 flows from the refrigerant pipe 13A through the solenoid valve 17 into the receiver dryer portion 14 and the supercooling portion 16 sequentially. Here, the refrigerant is subcooled.
  • the refrigerant leaving the subcooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13B, passes through the internal heat exchanger 19, and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 is cooled by the heat absorption action at this time. Further, the moisture in the air condenses and adheres to the heat absorber 9. The refrigerant evaporated by the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 via the refrigerant pipe 13C, and the circulation through which the refrigerant is sucked into the compressor 2 is repeated.
  • the air cooled by the heat absorber 9 and dehumidified is blown out from the blowout ports 29A to 29C into the vehicle compartment (a part of the air passes through the radiator 4 for heat exchange). It will be done. Further, in the cooling mode, the heat pump controller 32 generates the compressor 2 based on the temperature (heat absorber temperature Te) of the heat absorber 9 detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO described above, which is its target value. Control the number of revolutions NC. (5) MAX cooling mode (maximum cooling mode) Next, in the MAX cooling mode as the maximum cooling mode, the heat pump controller 32 opens the solenoid valve 17 and closes the solenoid valve 21.
  • the solenoid valve 30 is closed, the solenoid valve 40 is opened, and the degree of opening of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 is operated and the auxiliary heater 23 is not energized.
  • the air conditioning controller 20 operates the blowers 15 and 27, and the air mix damper 28 is blown out from the indoor blower 27 and the air in the air flow passage 3 having passed through the heat absorber 9 is an auxiliary heater of the heating heat exchange passage 3A. 23 and the radiator 4 are adjusted.
  • the high-temperature, high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, and passes through the solenoid valve 40 and the refrigerant pipe on the downstream side of the outdoor expansion valve 6 It will reach 13E.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 is air-cooled and condensed by traveling there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant leaving the outdoor heat exchanger 7 flows from the refrigerant pipe 13A through the solenoid valve 17 into the receiver dryer portion 14 and the supercooling portion 16 sequentially.
  • the refrigerant is subcooled.
  • the refrigerant leaving the subcooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13B, passes through the internal heat exchanger 19, and reaches the indoor expansion valve 8.
  • the refrigerant After the refrigerant is depressurized by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates.
  • the air blown out from the indoor blower 27 is cooled by the heat absorption action at this time. Further, since the moisture in the air condenses and adheres to the heat absorber 9, the air in the air flow passage 3 is dehumidified.
  • the refrigerant evaporated by the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 via the refrigerant pipe 13C, and the circulation through which the refrigerant is sucked into the compressor 2 is repeated.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully closed, it is possible to similarly suppress or prevent the problem that the refrigerant discharged from the compressor 2 flows back from the outdoor expansion valve 6 into the radiator 4 . As a result, it is possible to suppress or eliminate the decrease in the refrigerant circulation amount and secure the air conditioning capacity.
  • the heat pump controller 32 generates a compressor based on the temperature (heat absorber temperature Te) of the heat absorber 9 detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO described above, which is its target value. Control the rotation speed NC of 2.
  • the control device 11 of the embodiment stops the compressor 2 of the refrigerant circuit R and the outdoor fan 15 and applies electricity to the auxiliary heater 23 when excessive frost formation occurs on the outdoor heat exchanger 7 as described later.
  • the heat pump controller 32 controls the energization (heat generation) of the auxiliary heater 23 based on the auxiliary heater temperature Tptc detected by the auxiliary heater temperature sensor 50 and the target heater temperature TCO described above.
  • the air conditioning controller 20 operates the indoor fan 27, and the air mix damper 28 ventilates the air in the air flow path 3 blown out from the indoor fan 27 to the auxiliary heater 23 of the heating heat exchange path 3A to obtain the air volume. It will be in the state to adjust. Since the air heated by the auxiliary heater 23 is blown out into the vehicle compartment from the air outlets 29A to 29C, this heats the vehicle interior.
  • the air conditioning controller 20 calculates the above-described target blowout temperature TAO from the following formula (I).
  • the target blowing temperature TAO is a target value of the temperature of air blown out into the vehicle compartment.
  • TAO (Tset ⁇ Tin) ⁇ K + Tbal (f (Tset, SUN, Tam)) (I)
  • Tset is the set temperature of the vehicle interior set by the air conditioning operation unit 53
  • Tin is the indoor temperature detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is the set temperature Tset
  • the amount of solar radiation detected by the solar radiation sensor 51 SUN it is a balance value calculated from the outside air temperature Tam detected by the outside air temperature sensor 33.
  • the target blowing temperature TAO is higher as the outside air temperature Tam is lower, and decreases as the outside air temperature Tam increases.
  • the heat pump controller 32 selects one of the above operation modes based on the outside air temperature Tam (detected by the outside air temperature sensor 33) transmitted from the air conditioning controller 20 via the vehicle communication bus 65 at the time of startup and the target blowout temperature TAO. The operation mode is selected, and each operation mode is transmitted to the air conditioning controller 20 via the vehicle communication bus 65.
  • the outside air temperature Tam After startup, the outside air temperature Tam, the humidity inside the vehicle compartment, the target air outlet temperature TAO, the heating temperature TH (the temperature of the air on the downwind side of the radiator 4; estimated value), the target heater temperature TCO, the heat sink temperature Te,
  • heating mode, dehumidification heating mode, dehumidification can be properly performed according to environmental conditions and necessity of dehumidification
  • the cooling mode, the cooling mode, the MAX cooling mode, and the auxiliary heater single mode to control the temperature of the air blown into the vehicle compartment to the target blowing temperature TAO, a comfortable and efficient vehicle interior air conditioning is realized.
  • FIG. 4 is a control block diagram of the heat pump controller 32 for determining the target rotational speed (compressor target rotational speed) TGNCh of the compressor 2 for the heating mode.
  • the target supercooling degree TGSC which is the target value of the subcooling degree SC at the outlet of the radiator 4, and the target heater described above, which is the target value of the heating temperature TH described later.
  • the F / F operation amount TGNChff of the compressor target rotation number is calculated.
  • the above-mentioned TH for calculating the air volume ratio SW is the temperature of air on the leeward side of the radiator 4 (hereinafter referred to as a heating temperature), and the heat pump controller 32 calculates the first-order lag calculation formula (II) below. presume.
  • TH (INTL ⁇ TH0 + Tau ⁇ THz) / (Tau + INTL) ⁇ (II)
  • INTL is a calculation cycle (constant)
  • Tau is a first-order lag time constant
  • TH0 is a steady-state value of the heating temperature TH in a steady state before the first-order lag calculation
  • THz is a previous value of the heating temperature TH.
  • the heating temperature TH is transmitted to the air conditioning controller 20 via the vehicle communication bus 65.
  • the target radiator pressure PCO is calculated by the target value calculator 59 based on the target degree of supercooling TGSC and the target heater temperature TCO.
  • the F / B (feedback) manipulated variable computing unit 60 computes the F / B manipulated variable TGNChfb of the compressor target rotational speed based on the target radiator pressure PCO and the radiator pressure PCI which is the refrigerant pressure of the radiator 4 Do.
  • the F / F manipulated variable TGNCnff computed by the F / F manipulated variable computing unit 58 and TGNChfb computed by the F / B manipulated variable computing unit 60 are added by the adder 61, and the limit setting unit 62 sets the control upper limit value ECNpdLimHi After the control lower limit value ECNpdLimLo is limited, it is determined as the compressor target rotation speed TGNCh.
  • the heat pump controller 32 controls the rotation speed NC of the compressor 2 based on the compressor target rotation speed TGNCh. (9) Control of the compressor 2 and the auxiliary heater 23 in the dehumidifying and heating mode by the heat pump controller 32 On the other hand, FIG.
  • the F / F operation amount calculation unit 63 of the heat pump controller 32 is a target heat radiation that is a target value of the outside air temperature Tam, the volumetric air flow rate Ga of the air flowing into the air flow passage 3, and the pressure of the radiator 4 (radiator pressure PCI).
  • the F / F manipulated variable TGNCcff of the compressor target rotational speed is calculated based on the target pressure T.sub.o of the heat sink 9 and the target heat sink temperature T.sub.oO which is the target value of the temperature of the heat sink 9 (the heat sink temperature Te).
  • the F / B manipulated variable computing unit 64 computes the F / B manipulated variable TGNCcfb of the compressor target rotational speed based on the target heat absorber temperature TEO (transmitted from the air conditioning controller 20) and the heat absorber temperature Te.
  • the F / F operation amount TGNCcff calculated by the F / F operation amount calculation unit 63 and the F / B operation amount TGNCcfb calculated by the F / B operation amount calculation unit 64 are added by the adder 66 and the limit setting unit 67 After the control upper limit value TGNCcLimHi and the control lower limit value TGNCcLimLo are limited, the compressor target rotational speed TGNCc is determined.
  • the heat pump controller 32 controls the rotation speed NC of the compressor 2 based on the compressor target rotation speed TGNCc.
  • FIG. 6 is a control block diagram of the heat pump controller 32 for determining the auxiliary heater request capacity TGQPTC of the auxiliary heater 23 in the dehumidifying and heating mode.
  • the target heater temperature TCO and the auxiliary heater temperature Tptc are input to the subtractor 73 of the heat pump controller 32, and the deviation (TCO-Tptc) of the target heater temperature TCO and the auxiliary heater temperature Tptc is calculated.
  • the deviation (TCO-Tptc) is input to the F / B control unit 74, and the F / B control unit 74 eliminates the deviation (TCO-Tptc) and the auxiliary heater temperature Tptc becomes the target heater temperature TCO. Calculate the required ability F / B operation amount.
  • the auxiliary heater required capacity F / B manipulated variable Qafb calculated by the F / B control unit 74 is limited by the limit setting unit 76 with the control upper limit value QptcLimHi and the control lower limit value QptcLimLo as an auxiliary heater required capacity TGQPTC. It is determined.
  • the controller 32 controls the energization of the auxiliary heater 23 based on the auxiliary heater request capability TGQPTC to generate (heat) the auxiliary heater 23 so that the auxiliary heater temperature Tptc becomes the target heater temperature TCO. Control.
  • the heat pump controller 32 controls the operation of the compressor based on the heat absorber temperature Te and the target heat absorber temperature TEO, and controls the heat generation of the auxiliary heater 23 based on the target heater temperature TCO.
  • the cooling and the dehumidification by the heat absorber 9 in the dehumidifying and heating mode, and the heating by the auxiliary heater 23 are properly controlled.
  • the insufficient heating capacity by the radiator 4 is compensated by the heat generation of the auxiliary heater 23. Therefore, the target auxiliary heater temperature THO is derived from this deficiency, and the target auxiliary heater temperature THO and the auxiliary heater temperature derived.
  • the auxiliary heater 23 is F / B controlled by Tptc. (10) Control of the air mix damper 28 Next, control of the air mix damper 28 by the air conditioning controller 20 will be described with reference to FIG. In FIG. 3, Ga is the volumetric air volume of the air flowing into the air flow passage 3 described above, Te is the heat absorber temperature, and TH is the heating temperature described above (temperature of the air on the leeward side of the radiator 4).
  • the air conditioning controller 20 The air mix damper 28 is controlled to adjust the amount of ventilation to the radiator 4 (and the auxiliary heater 23).
  • SW (TAO-Te) / (TH-Te) ⁇ ⁇ (III) That is, the air volume ratio SW ventilated to the radiator 4 and the auxiliary heater 23 of the heating heat exchange passage 3A changes in the range of 0 ⁇ SW ⁇ 1, and “0” does not ventilate the heating heat exchange passage 3A.
  • the air volume to the radiator 4 is Ga ⁇ SW. (11) Determination of frost formation on the outdoor heat exchanger and control of the compressor etc. accompanying it As described above, in the heating mode, the refrigerant evaporates in the outdoor heat exchanger 7 and absorbs heat from the outside air to become a low temperature. Therefore, the moisture in the outside air adheres to the outdoor heat exchanger 7 as frost.
  • the heat pump controller 32 determines the progress of frost formation on the outdoor heat exchanger 7 as follows. (11-1) Determination of the progress of frost formation on the outdoor heat exchanger and control of the compressor, etc. (Part 1) Next, determination of the progress of frost formation on the outdoor heat exchanger 7 and an example of control of the compressor 2 and defrosting based on the determination will be described using FIG. 7.
  • the heat pump controller 32 detects the current refrigerant evaporation temperature TXO of the outdoor heat exchanger 7 obtained from the outdoor heat exchanger temperature sensor 54 and the outside air is not frosted on the outdoor heat exchanger 7 in a low humidity environment. Based on the refrigerant evaporation temperature TXObase of the outdoor heat exchanger 7 at the time of frost formation, the state of progress of frost formation on the outdoor heat exchanger 7 is determined.
  • the heat pump controller 32 first determines whether the vehicle has been activated (IG ON) in step S1 of FIG. 7 and whether there is a request for air conditioning of the passenger compartment by the air conditioning device 1 for the vehicle (hereinafter referred to as HP air conditioning request) Judge whether or not.
  • the HP air conditioning request is an operation request for the air conditioning system 1 for a vehicle, and in the embodiment, the ON / OFF switch of the air conditioner provided in the air conditioning operation unit 53 is turned ON whether or not there is the HP air conditioning request. It judges from the information (it transmitted from the air conditioning controller 20) of whether it was. Then, when the vehicle is activated and the HP air conditioning request is made, the heat pump controller 32 proceeds to step S2, and in the case of no, the heat pump controller 32 proceeds to step S18.
  • step S18 the heat pump controller 32 determines whether there is an HP air conditioning request, and if there is an HP air conditioning request, that is, if there is an HP air conditioning request regardless of whether the vehicle has been started or not. If it is determined in step S18 that there is no HP air conditioning request, the process proceeds to step S19. In step S2, the heat pump controller 32 determines whether or not the vehicle air conditioner 1 (HP) is determined to have a failure, and if the failure is determined, the heat pump controller 32 proceeds to step S12 and stops the compressor 2 Permission). On the other hand, if no failure determination is made in step S2, the process proceeds to step S3, and it is determined whether the heavy frost formation flag fFST2 is currently reset ("0").
  • the parameter Tam of equation (IV) is the outside air temperature obtained from the outside air temperature sensor 33
  • NC is the number of revolutions of the compressor 2
  • Ga * SW is the air flow to the radiator 4 (and the auxiliary heater 23)
  • VSP Is a vehicle speed obtained from the vehicle speed sensor 52
  • PCI is a radiator pressure
  • k1 to k5 are coefficients, which are obtained in advance by experiment.
  • the outside air temperature Tam is an index indicating the suction air temperature (environmental condition) of the outdoor heat exchanger 7.
  • the coefficient k1 is a positive value.
  • the index indicating the suction air temperature of the outdoor heat exchanger 7 is not limited to the outside air temperature Tam.
  • the rotation speed NC of the compressor 2 is an index indicating the flow rate (operating condition) of the refrigerant in the refrigerant circuit R, and the higher the rotation speed NC (the larger the flow rate of the refrigerant), the lower TXObase tends to be. Therefore, the coefficient k2 has a negative value.
  • Ga * SW is an index indicating the amount of air passing through the radiator 4 (operating condition), and the larger the value of Ga * SW (the larger the amount of air passing through the radiator 4), the lower TXObase tends to be. Therefore, the coefficient k3 has a negative value.
  • index which shows the passing air volume of the radiator 4 not only this but the blower voltage BLV of the indoor air blower 27 may be sufficient.
  • the vehicle speed VSP is an index indicating the passing wind speed (operating condition) of the outdoor heat exchanger 7, and as the vehicle speed VSP is lower (as the passing wind speed of the outdoor heat exchanger 7 is lower), TXObase tends to be lower. Therefore, the coefficient k4 has a positive value.
  • the radiator pressure PCI is an index indicating the refrigerant pressure (operating condition) of the radiator 4, and as the radiator pressure PCI is higher, TXObase tends to be lower. Therefore, the coefficient k5 has a negative value.
  • the outside air temperature Tam, the rotation speed NC of the compressor 2, the passing air amount Ga * SW of the radiator 4, the vehicle speed VSP, and the radiator pressure PCI are used as parameters of the equation (IV) of this embodiment, The parameters of IV) are not limited to all of the above, and any one of them or a combination thereof may be used.
  • step S6 the heat pump controller 32 determines in step S6 whether or not a predetermined time has elapsed after activation of the heating mode, and if it is in the initial stage of activation and the predetermined time has not elapsed, the process proceeds to step S17 to operate the compressor 2 Continue (HP operation). That is, the compressor 2 is not stopped, and the execution of the heating mode is permitted.
  • step S6 refrigerant evaporation temperature TXO falls rather than refrigerant evaporation temperature TXObase at the time of frost-free, and the difference deltaTXO is predetermined. It is determined whether the normal frosting determination condition of is satisfied.
  • the refrigerant evaporation temperature TXO is lower than the refrigerant evaporation temperature TXObase at the time of no frost formation, and the difference ⁇ TXO is larger than a first threshold A1 (for example, 3 deg) in the embodiment.
  • the heat pump controller 32 satisfies the normal frost formation determination condition (the outdoor heat exchanger 7 It is determined that light frost is generated) and defrosting of the outdoor heat exchanger 7 is necessary, and the process proceeds from step S7 to step S8.
  • the solid line indicates the change of the refrigerant evaporation temperature TXO of the outdoor heat exchanger 7
  • the broken line indicates the change of the refrigerant evaporation temperature TXObase at the time of no frost formation.
  • the refrigerant evaporation temperature TXO of the outdoor heat exchanger 7 and the refrigerant evaporation temperature TXObase at the time of non-frosting become substantially the same value.
  • the temperature of the vehicle interior is warmed with the progress of the heating mode, and the load of the vehicle air conditioner 1 decreases, so the above-described refrigerant flow rate and the passing air volume of the radiator 4 also decrease, and
  • the calculated TXObase (dotted line in FIG. 9) rises.
  • step S7 the heat pump controller 32 determines in step S7 that the difference .DELTA.TXO satisfies the above-described normal frosting determination condition (light frost is generated on the outdoor heat exchanger 7), and the outdoor heat is generated.
  • step S8 the normal frost formation flag fFST1 is set ("1") (step S7, step S8 is normal frost formation determination).
  • step S9 the heat pump controller 32 proceeds to step S9, and this time, the refrigerant evaporation temperature TXO falls below the refrigerant evaporation temperature TXObase at the time of no frosting, and the difference ⁇ TXO is a predetermined first heavy frosting judgment condition (first It is determined whether or not the severe frosting determination condition is satisfied.
  • the refrigerant evaporation temperature TXO is lower than the refrigerant evaporation temperature TXObase at the time of no frost formation, and the difference ⁇ TXO is a second threshold A2 (1) (for example, 15 deg, etc.). Outdoor heat exchange when the second predetermined time t 2 (1) (for example, 30 seconds etc.) continues and the difference ⁇ TXO satisfies the first severe frost formation determination condition. It can be judged that excessive frost formation has progressed to the vessel 7 in a short time.
  • ⁇ TXO is determined to be the predetermined second severe frost formation It is determined whether the condition (another severe frosting determination condition) is satisfied.
  • the refrigerant evaporation temperature TXO is lower than the refrigerant evaporation temperature TXObase at the time of no frost formation, and the difference ⁇ TXO is another second threshold value A2 (2) (for example, in the second heavy frost determination condition) , 5 deg etc.) continues for another second predetermined time t 2 (2) (eg 60 minutes etc.), and the difference ⁇ TXO satisfies this second severe frosting judgment condition. In this case, it can be determined that moderate frost formation continues on the outdoor heat exchanger 7 for a long time.
  • A2 (2) for example, in the second heavy frost determination condition
  • step S16 if the state in which ⁇ TXO is still larger than the second threshold A2 (2) does not continue for the second predetermined time t2 (2) in step S16, the process proceeds to step S17 and the operation (HP operation) of the compressor 2 is performed. continue.
  • the second threshold A2 (1) of the first severe frosting determination condition is extremely larger than the first threshold A1 of the normal frosting determination condition described above, and the second predetermined time t2 (1) is the first Is shorter than the predetermined time t1.
  • the second threshold A2 (2) of the second severe frosting determination condition is larger than the first threshold A1 of the normal frosting determination condition described above, and the second predetermined time t2 (2) is the second It is extremely longer than the predetermined time t1.
  • these 1st and 2nd severe frost formation determination conditions can determine that frost formation to the outdoor heat exchanger 7 advanced any more than a normal frost formation determination condition.
  • frost formation on the outdoor heat exchanger 7 further increases, and the decrease of the refrigerant evaporation temperature TXO shown in FIG. 9 further progresses, and the difference ⁇ TXO (TXObase-TXO) Is larger than the second threshold value A2 (1)
  • the heat pump controller 32 causes the difference .DELTA.TXO to satisfy the first severe frost formation determination condition in step S9 when the second predetermined time t2 (1) continues.
  • the heat pump controller 32 sets the heavy frost formation flag fFST2 ("1") in this step S10, and proceeds to step S11 (the heavy frost formation determination in step S9, step S16, and step S10).
  • the heat pump controller 32 includes a non-volatile memory (EEP-ROM) 80, and sets the normal frosting flag fFST1 and the heavy frosting flag fFST2 ("1") and resets ("0").
  • the normal frosting flag fFST1 and the heavy frosting flag are stored in the non-volatile memory 80 and the vehicle air conditioner 1 is stopped and the power of the control device 11 (the air conditioning controller 20 and the heat pump controller 32) is turned off. It is assumed that the state of fFST2 is held in the non-volatile memory 80.
  • step S11 the heat pump controller 32 determines whether the heating temperature TH, which is the temperature of the air downstream of the radiator 4, is lower than the target heater temperature TCO- ⁇ ( ⁇ is a relatively small differential), which is its target value. .
  • the target heater temperature TCO calculated from the target air outlet temperature TAO as described above is a required capacity in the heating mode of the air conditioning apparatus 1 for a vehicle.
  • the heating temperature TH indicates the current heating capacity of the radiator 4. Therefore, when TH ⁇ TCO ⁇ (ie, TCO ⁇ TH ⁇ ⁇ ), the heating capacity of the radiator 4 satisfies the required capacity.
  • step S11 the heat pump controller 32 proceeds to step S17 and continues the operation of the compressor 2.
  • the heat pump controller 32 proceeds to step S12. Proceed to stop the compressor 2 (HP operation not permitted). That is, when the difference ⁇ TXO satisfies the first or second heavy frosting determination condition described above and the heavy frosting flag fFST2 is set, and the heating temperature TH is lower than the target heater temperature TCO and the difference is larger than ⁇ .
  • the heat pump controller 32 prohibits the operation of the compressor 2 because it is determined that the heat pump operation more than this is difficult. Then, the heat pump controller 32 proceeds to step S13, and performs the same heating operation as the above-described auxiliary heater only mode in which the auxiliary heater 23 is energized to heat the vehicle interior. That is, the heat pump controller 32 stops the compressor 2 and the outdoor blower 15 of the refrigerant circuit R, energizes the auxiliary heater 23, and heats the vehicle interior only with the auxiliary heater 23.
  • step S3 the heat pump controller 32 proceeds from step S3 to step S11, so in a situation where the heating capacity of the radiator 4 satisfies the required capacity (step The process proceeds to step S17 to continue the operation of the compressor 2 and proceeds to step S12 to prohibit the operation of the compressor 2 in a situation where the operation is not satisfied (YES in step S11). A similar heating of the cabin will be performed.
  • step S14 it is determined whether the normal frost formation flag fFST1 described above is set (“1”) or the severe frost formation flag fFST2 is set (“1”), and the normal frost formation flag If fFST1 or severe frost formation flag fFST2 is set ("1"), that is, if it is determined that defrosting of the outdoor heat exchanger 7 is necessary, the process proceeds to step S15, and frosting request is made.
  • the flag fDFSTReq is set ("1"). It is notified from the heat pump controller 32 to the air conditioning controller 20 that the defrost request flag fDFSTReq is set ("1") as the defrost request (FIG. 2).
  • step S19 the heat pump controller 32 determines whether the defrost request flag fDFSTReq is set ("1"). If reset (“0"), the heat pump controller 32 proceeds to step S24 and is stored in the non-volatile memory 80.
  • the states of the normal frost formation flag fFST1 and the heavy frost formation flag fFST2 are kept as the previous state (previous value).
  • step S15 the heat pump controller 32 proceeds from step S19 to step S20, and whether the defrosting permission is notified from the air conditioning controller 20 or not to decide.
  • the air conditioning controller 20 is notified that the defrosting request flag fDFSTReq is set as the defrosting request from the heat pump controller 32 as described above, the current state of the vehicle is the defrosting permission of the outdoor heat exchanger 7 Whether the defrosting of the outdoor heat exchanger 7 is possible or not is determined by determining whether the conditions are satisfied.
  • the defrost permission condition in the case of the embodiment is that there is no HP air conditioning request described above, and the battery 75 is being charged (the vehicle is stopped) or the remaining amount of the battery 75 is equal to or more than a predetermined value. If the current state of the vehicle satisfies the defrosting permission condition, the air conditioning controller 20 sets ("1") the defrosting permission flag fDFSTPerm. The fact that the defrosting permission flag fDFSTPerm is set ("1") is notified from the air-conditioning controller 20 to the heat pump controller 32 as the defrosting permission (FIG. 2).
  • the heat pump controller 32 proceeds from step S20 to step S21 when the defrosting permission is notified from the air conditioning controller 20, and performs the defrosting operation of the outdoor heat exchanger 7, and proceeds to step S24 when not notified.
  • the heat pump controller 32 sets the refrigerant circuit R to the heating mode state in the defrosting operation in step S21, then fully opens the outdoor expansion valve 6 and sets the air volume ratio SW by the air mix damper 28 to "0". It is set as the state which does not ventilate to the heat exchange path 3A for heating (it does not ventilate to the radiator 4).
  • the heat pump controller 32 determines that the temperature of the outdoor heat exchanger 7 (in this case, the outdoor heat exchanger temperature TXO) detected by the outdoor heat exchanger temperature sensor 54 is a predetermined defrost end temperature (for example, + 3 ° C., etc.) It is judged whether the higher state continues for a predetermined time (for example, several minutes) (defrost completion condition), and defrost of the outdoor heat exchanger 7 is finished and the outdoor heat exchanger temperature TXO is If the defrost termination condition is satisfied, the process proceeds to step S23, and it is determined that the defrosting is completed, and the above-described normal frost formation flag fFST1 and the heavy frost formation flag fFST2 are reset ("0")
  • step S4 the process proceeds to step S4, so that the operation prohibition of the compressor 2 is canceled by the subsequent determination, and it is possible to heat the vehicle interior by the heating mode.
  • step S4 Determination of the progress of frost formation on the outdoor heat exchanger and control of the compressor, etc.
  • Part 2 Next, another example of the determination of the progress of frost formation of the outdoor heat exchanger 7 and the control of the compressor 2 and the like will be described with reference to FIG.
  • the heat pump controller 32 performs the same control as in FIG. 7 in this example, but the difference ⁇ TXO in FIG. 7 is replaced with the difference ⁇ PXO described later.
  • the heat pump controller 32 does not form the current refrigerant evaporation pressure PXO of the outdoor heat exchanger 7 obtained from the outdoor heat exchanger pressure sensor 56 and the outdoor air on the outdoor heat exchanger 7 in a low humidity environment. Based on the refrigerant evaporation pressure PXObase of the outdoor heat exchanger 7 at the time of no frost formation, the progress state of frost formation on the outdoor heat exchanger 7 is determined. The heat pump controller 32 in this case estimates the refrigerant evaporation pressure PXObase of the outdoor heat exchanger 7 at the time of no frosting by using the following equation (V).
  • each parameter of Formula (V) is the same as Formula (IV)
  • description is abbreviate
  • the coefficients k6 to k10 also have the same tendency (positive and negative) as the coefficients k1 to k5 described above.
  • the solid line indicates the change of the refrigerant evaporation pressure PXO of the outdoor heat exchanger 7, and the broken line indicates the change of the refrigerant evaporation pressure PKObase at the time of no frost formation.
  • the refrigerant evaporation pressure PKO of the outdoor heat exchanger 7 and the refrigerant evaporation pressure PXObase at the time of no frost formation become substantially the same value.
  • the temperature of the vehicle interior is warmed with the progress of the heating mode, and the load of the vehicle air conditioner 1 decreases, so the above-described refrigerant flow rate and the passing air volume of the radiator 4 also decrease, and in equation (V)
  • the calculated PXObase (dotted line in FIG. 10) rises.
  • the heat pump controller 32 substitutes the refrigerant evaporation pressure PXObase at the time of frost-free time obtained by substituting the current values of the parameters into the equation (V) in step S5 of FIG.
  • the first threshold A1 and the second threshold A2 (1), A2 (2), and the first predetermined time t1 and the second predetermined time t2 (1), t2 (2) are different from the case of the difference ⁇ TXO. It shall be different.
  • the indoor heat exchanger 7 performs the frost formation in the passenger compartment even when the normal frosting determination condition is satisfied. Heating will be continued. Further, since the state of the normal frost formation flag fFST1 is maintained even if the power of the control device 11 is turned off, the execution of the heating mode is permitted even when the vehicle is stopped and then started. That is, when the degree of frost formation of the outdoor heat exchanger 7 is such that the normal frost formation determination condition is satisfied, heating of the vehicle interior is continued when the vehicle and the air conditioner 1 for vehicle are in operation. When the vehicle and the vehicle air conditioner 1 are activated, heating can be performed from the time of activation to maintain comfort.
  • the air conditioning controller 20 determines whether the outdoor heat exchanger 7 can be defrosted or not and permits In this case, since the heat pump controller 32 performs defrosting of the outdoor heat exchanger 7 and resets the normal frost formation flag fFST1 ("0"), the outdoor heat exchanger 7 is defrosted, It becomes possible to suppress the fall of the operating efficiency accompanying frost formation.
  • the heat pump controller 32 maintains the state of the normal frost formation flag fFST1 even if the power is turned off, even after the vehicle is temporarily stopped and the power of the air conditioning device 1 for vehicles is turned off, Defrosting of the heat exchanger 7 will be performed reliably.
  • the air conditioning controller 20 does not have the air conditioning request for the vehicle interior (HP air conditioning request), and the battery 75 for driving the compressor 2 is Defrosting of the outdoor heat exchanger 7 may be permitted on condition that the battery 75 is charging or the remaining amount of the battery 75 is equal to or more than a predetermined value, or other conditions (environmental conditions such as the outside air temperature etc.
  • the control device 11 is configured of the air conditioning controller 20 to which the air conditioning operation unit 53 for performing the air conditioning setting operation of the vehicle compartment is connected, and the heat pump controller 32 for controlling the operation of the compressor 2;
  • the heat pump controller 32 calculates the difference ⁇ TXO or the difference ⁇ PXO as described above, and the difference ⁇ TXO
  • the normal frost formation flag fFST1 is set (“1”), a defrost request is issued to the air conditioning controller 20, and the defrost permission is issued from the air conditioning controller 20.
  • the outdoor heat exchanger 7 When notified, the outdoor heat exchanger 7 is defrosted, and the normal frost formation flag fFST1 is reset ("0"). If there is a request for defrosting from the heat pump controller 32, the adjustment controller 20 determines whether or not the outdoor heat exchanger 7 is defrostable, and if permitted, sets the defrosting permission flag fDFSTPerm ("1") to By notifying the heat pump controller 32 of the defrosting permission of the outdoor heat exchanger 7, the heating and air conditioning of the vehicle interior can be comfortably performed, and the decrease in the operating efficiency accompanying the frost formation of the outdoor heat exchanger 7 can be appropriately suppressed.
  • the heat pump controller 32 has first and second heavy frosting judgment conditions for judging that the frost formation on the outdoor heat exchanger 7 has progressed further than the normal frosting judgment condition.
  • the severe frost formation flag fFST2 is set (“1”)
  • the severe frost formation flag fFST2 is set
  • the defrost request is set by setting the defrost request flag fDFSTReq (“1”) and the defrost request is performed, and the state of the heavy frost formation flag fFST2 is maintained even when the heat pump controller 32 is turned off, and the compressor in the heating mode Since operation 2 is prohibited, frosting on the outdoor heat exchanger 7 proceeds further than the normal frosting decision condition described above, and the first or second severe frosting decision condition is satisfied.
  • the two-stage severe frosting determination of the first severe frosting determination condition and the second severe frosting determination condition is performed, but the determination is made on any one of the severe frosting determination conditions. It is good. However, by determining in two steps as in the embodiment, excessive frost formation in the outdoor heat exchanger 7 progresses in a short time, and moderate frost formation in the outdoor heat exchanger 7 continues for a long time Both of what is happening can be determined.
  • the auxiliary heater 23 is provided in the heating heat exchange passage 3A of the airflow passage 3, and the heat pump controller 32 determines that the difference ⁇ TXO or the difference ⁇ PXO is the first or second severe frost formation determination.
  • the passenger compartment is heated by the auxiliary heater 23. Therefore, the progress of frost formation on the outdoor heat exchanger 7 is the first or second severity. Even after the frost formation determination condition is satisfied and the operation of the compressor 2 is prohibited, heating of the vehicle interior can be continued by the auxiliary heater 23.
  • the air conditioning controller 20 controls the outdoor heat exchanger If it is judged that the defrosting of 7 is possible and permitted, the heat pump controller 32 defrosts the outdoor heat exchanger 7 and resets the heavy frost formation flag fFST 2. Defrosting can be performed to suppress a decrease in operating efficiency associated with frost formation.
  • the heat pump controller 32 maintains the state of the heavy frost formation flag fFST2 even if the power is turned off, even after the vehicle is temporarily stopped and the power of the vehicle air conditioner 1 is turned off, Defrosting of the outdoor heat exchanger 7 will be performed reliably.
  • the air conditioning controller 20 does not have a request for air conditioning of the vehicle interior (HP air conditioning request) as in the embodiment, and for driving the compressor 2
  • the defrosting of the outdoor heat exchanger 7 may be permitted under the condition that the battery 75 is being charged or the remaining amount of the battery 75 is equal to or more than a predetermined value.
  • the control device 11 includes the air conditioning controller 20 to which the air conditioning operation unit 53 for performing the air conditioning setting operation of the passenger compartment is connected, and the heat pump controller 32 for controlling the operation of the compressor 2. If the air conditioning controller 20 and the heat pump controller 32 transmit and receive information via the vehicle communication bus 65, the heat pump controller 32 also calculates the difference ⁇ TXO or the difference ⁇ PXO in this case, and When the difference ⁇ TXO or the difference ⁇ PXO satisfies the first or second heavy frosting determination condition, the heavy frost formation flag fFST2 is set (“1”), and the defrost request flag fDFSTReq is set (“1”) When the defrost request is issued to the air conditioning controller 20 and the defrost permission is notified from the air conditioning controller 20, the outdoor heat exchanger 7 is removed.
  • the heavy frost formation flag fFST2 is reset (“0”), and the air conditioning controller 20 determines whether or not the outdoor heat exchanger 7 is capable of defrosting if the defrost request is received from the heat pump controller 32, and permits it.
  • the defrosting permission flag fDFSTPerm is set (“1”), and the defrosting permission of the outdoor heat exchanger 7 is notified to the heat pump controller 32, so that the vehicle interior can be comfortably heated and air-conditioned, It is possible to appropriately suppress the decrease in the operating efficiency associated with the frost formation on the outdoor heat exchanger 7.
  • the normal frosting determination condition is that the difference ⁇ TXO or the state where the difference ⁇ PXO is larger than the first threshold A1 continues for the first predetermined time t1, and the first and second severe frost formations
  • the determination condition at least the state in which the difference ⁇ TXO or the state in which the difference ⁇ PXO is larger than the second threshold A2 (1) or A2 (2) continues for the second predetermined time t2 (1), t2 (2)
  • the compressor 2 is operated to continue the heating mode according to the degree of frost formation on the outdoor heat exchanger 7.
  • the first predetermined time t1 and the second predetermined times t2 (1) and t2 (2) of each frost formation determination condition are not limited to the conditions of the embodiment, and for example, the first predetermined time t1 and the second predetermined time Predetermined time t2 (1), t2 (2) are the same, or the second predetermined time t2 (1) is longer than the first predetermined time t1, and the second predetermined time t2 (2) is the first predetermined time.
  • the heat pump controller 32 generates the refrigerant evaporation temperature TXObase of the outdoor heat exchanger at the time of no frosting based on the environmental condition and / or the index indicating the operating condition, or the outdoor heat at the time of no frosting.
  • frost formed on the outdoor heat exchanger 7 naturally melts.
  • frost formed on the outdoor heat exchanger 7 in the heating mode is also the refrigerant in the outdoor heat exchanger 7 if the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode or the MAX cooling mode in this other embodiment is performed.
  • frost is also heated from the high-temperature refrigerant to naturally melt (de-ice) and be removed. Therefore, in this embodiment, after the heat pump controller 32 once determines that the outdoor heat exchanger 7 needs to be defrosted, the outdoor heat exchanger 7 naturally defrosts (de-icing) before the defrosting operation is performed.
  • step S25 of FIG. 8 the heat pump controller 32 determines whether the vehicle is activated (during ON). Then, if it is activated, the process proceeds to step S26, and in this embodiment, it is determined whether or not the above-described heavy frost formation flag fFST2 is set ("1"). As described above, when it is determined that defrosting of the outdoor heat exchanger 7 is necessary, and the heavy frost formation flag fFST2 is set in step S10 of FIG.
  • step S27 it is determined whether the defrosting operation of the outdoor heat exchanger 7 is not performed. If the heavy frost formation flag fFST2 is set, but the defrost permission condition is not satisfied and the defrost operation in step S21 of FIG. 7 is not yet executed, the heat pump controller 32 proceeds to step S28 to perform the first natural removal. It is determined whether the frost condition is satisfied. (12-1) First natural defrosting condition In the first natural defrosting condition of the embodiment, the outside air temperature Tam detected by the outside air temperature sensor 33 is a predetermined value Tam1 (for example, + 5 ° C.
  • the heat pump controller 32 proceeds to step S29 and all frost-related flags, that is, the light frost flag stored in the non-volatile memory 80. fFST1, the heavy frost formation flag fFST2, and the defrost request flag fDFSTReq are reset.
  • the air conditioning controller 20 does not set the defrosting permission flag fDFSTPerm, and the heat pump controller 32 does not proceed from step S19 to step S20 either, so the process does not proceed to step S21, and the defrost of the outdoor heat exchanger 7 is performed. Will not take place.
  • the heat pump controller 32 proceeds to step S30 to determine whether the vehicle is stopped (state of IG OFF not activated), and when stopped, proceeds to step S31. Next, it is determined whether there is a frosting history of the outdoor heat exchanger 7, that is, it is determined whether the light frosting flag fFST1 or the heavy frosting flag fFST2 is set ("1").
  • step S2 Second natural defrosting condition If the light frost formation flag fFST1 or the heavy frost formation flag fFST2 is set in step S7 and the defrosting operation has not been performed yet and they have not been reset, the heat pump controller 32 proceeds to step S32 and is currently starting the vehicle. It is determined whether it is (from IG OFF to ON). Then, if it is in operation, the process proceeds to step S33, and an operation mode other than the heating mode, dehumidifying heating mode in which the refrigerant is not absorbed by the outdoor heat exchanger 7 in the embodiment, dehumidifying cooling mode, cooling mode, MAX cooling mode It is determined whether any one of the above is selected and the operation mode is continued for a predetermined time or more.
  • An operation mode other than the heating mode is selected, and the fact that the operation mode is continued for a predetermined time or more is a second natural defrost condition.
  • the dehumidifying / heating mode, the dehumidifying / cooling mode, the cooling mode, and the MAX cooling mode are selected, the refrigerant dissipates heat in the outdoor heat exchanger 7 in this embodiment, so frost formation is melted by the heat of the high temperature refrigerant. It is removed. Therefore, the heat pump controller 32 proceeds to step S29 also when the second natural defrosting condition is satisfied in step S33, and all frost-related flags (light frosting flag fFST1, heavy frosting flag fFST2, and defrosting request) Reset the flag fDFSTReq).
  • step S21 the air conditioning controller 20 does not set the defrosting permission flag fDFSTPerm, and the heat pump controller 32 does not proceed from step S19 to step S20 either, so the process does not proceed to step S21. Defrosting ceases to occur.
  • step S32 Natural defrosting determination based on outside air temperature history (third and fourth natural defrosting conditions)
  • step S34 Natural defrosting determination based on outside air temperature history (third and fourth natural defrosting conditions)
  • the heat pump controller 32 proceeds to step S34 and the nature of the outdoor heat exchanger 7 based on the outdoor temperature history. Perform defrost determination.
  • the air conditioning controller 20 and the heat pump controller 32 constituting the control device 11 are activated at a predetermined sampling cycle (for example, every one minute) even while the vehicle is stopped, and acquire the outside air temperature Tam detected by the outside air temperature sensor 33 Is stored in the non-volatile memory 80 as a history.
  • the third natural defrosting condition of the embodiment is, as shown in FIG. 11, a predetermined value Tam2 (for example, Tam1) in which the outside air temperature Tam detected by the outside air temperature sensor 33 is relatively higher than the freezing point while the vehicle is stopped.
  • the integrated value of the time which is the same as + 5 ° C. etc. (which may be a different value) is equal to or more than a predetermined time t3 (eg, several tens of minutes).
  • a predetermined time t3 eg, several tens of minutes.
  • the times at which the outside air temperature Tam is equal to or higher than the predetermined value Tam2 are a, b, and c, and their integrated value (a + b + c) is equal to or longer than the predetermined time t3. If it is determined that the heat pump controller 32 determines that the third natural defrosting condition is satisfied in step S34, the process proceeds to step S35, and all frost-related flags (light frosting flag fFST1, heavy frosting The flag fFST2 and the defrost request flag fDFSTReq) are reset.
  • the air conditioning controller 20 does not set the defrosting permission flag fDFSTPerm as described above, and the heat pump controller 32 does not proceed from step S19 to step S20 either, so it does not proceed to step S21. Defrosting is no longer performed.
  • (12-3-2) Fourth natural defrosting condition Further, as shown in FIG. 12, under the fourth natural defrosting condition of natural defrosting determination based on the outside air temperature history in step S34, the outside air temperature Tam detected by the outside air temperature sensor 33 is a freezing point while the vehicle is stopped. The integral value determined from the difference between the outside air temperature Tam and the predetermined value Tam2 and the elapsed time becomes equal to or greater than the predetermined value X1.
  • the outdoor heat exchanger As in the case of the fourth natural defrosting condition, if the outside air temperature Tam becomes relatively high while the vehicle is stopped, and the integral value obtained from the difference from the predetermined value Tam2 and the elapsed time becomes the predetermined value X1, the outdoor heat exchanger The frost formation of 7 is considered to be naturally melted (de-icing) and removed. Therefore, while the vehicle is stopped as shown in FIG. 12, the outside air temperature Tam becomes equal to or higher than the predetermined value Tam2, and a value obtained by integrating the difference (Tam-Tam2) with the elapsed time (the range shown by hatching in FIG.
  • the heat pump controller 32 determines in step S34 that the fourth natural defrosting condition is satisfied, and proceeds to step S35, and all the frost-related flags (mild The frost formation flag fFST1, the heavy frost formation flag fFST2, and the defrost request flag fDFSTReq) are reset. As a result, the air conditioning controller 20 does not set the defrosting permission flag fDFSTPerm as described above, and the heat pump controller 32 does not proceed from step S19 to step S20 either, so it does not proceed to step S21. Defrosting is no longer performed.
  • the state of natural defrosting of the outdoor heat exchanger 7 can be determined more accurately. Will be able to (12-4) Fifth natural defrosting condition
  • the present invention is not limited thereto, and any one of them or a combination thereof may be used.
  • the outdoor heat exchanger may also be operated, for example, when a relatively long predetermined period t4 (for example, one month) has elapsed since the vehicle stopped in the determination of step S34 of FIG.
  • step S34 the process proceeds from step S34 to step S35 so that all frost formation related flags are reset also when the fifth natural defrost condition related to the heat pump controller 32 is satisfied, with the above condition as the fifth natural defrost condition.
  • the outside air temperature sensor 33 is connected to the air conditioning controller 20, and the outside air temperature Tam is sent to the heat pump controller 32, and the heat pump controller 32 determines the establishment of the natural defrosting condition.
  • the controller 20 may determine the establishment of the natural defrosting condition and notify the heat pump controller 32 of the condition. In that case, the determination in step S28, step S33, and step S34 in FIG.
  • the heat pump controller 32 receives a notification from the air conditioning controller 20 and resets all frost formation related flags. become. Thereby, it is possible to avoid unnecessary defrosting of the outdoor heat exchanger 7 without any trouble.
  • the outside air temperature sensor 33 may be connected to the heat pump controller 32, and the outside air temperature Tam may be taken in all by the heat pump controller 32 to make the above-described determination. As described above, if it is determined that defrosting of the outdoor heat exchanger 7 is necessary, the defrosting of the outdoor heat exchanger 7 is performed if a predetermined natural defrosting condition is satisfied before performing the defrosting operation.
  • the outside air temperature Tam is the predetermined value Tam1 or more
  • the refrigerant evaporation temperature TXO of the outdoor heat exchanger 7 is the outside air temperature Tam-predetermined value ⁇ or more.
  • the second natural defrost condition is selected as an operation mode other than the heating mode (an operation mode in which the refrigerant is not absorbed by the outdoor heat exchanger 7 in this embodiment).
  • the fourth natural defrost condition is While the vehicle is stopped, the outside air temperature Tam is equal to or higher than the predetermined value Tam2, and the integral value obtained from the difference and the elapsed time is equal to or higher than the predetermined value X1, and the vehicle is further subjected to the fifth natural defrost condition.
  • a predetermined period of time t4 As having passed, it is accurately predicted that the frost formation on the outdoor heat exchanger 7 has naturally melted by judging any of them, a combination thereof, or all of them. become able to.
  • the control device 11 when the control device 11 is configured of the air conditioning controller 20 and the heat pump controller 32, and the air conditioning controller 20 and the heat pump controller 32 transmit and receive information via the vehicle communication bus 65, the heat pump controller 32 However, if it is determined that defrosting of the outdoor heat exchanger 7 is necessary, the predetermined defrost request flag fDFSTReq is set, and if the air conditioning controller 20 sets the predetermined defrost permission flag fDFSTperm, the outdoor heat exchanger 7 is selected.
  • the defrosting request flag fDFSTReq is also reset when the natural defrosting condition is satisfied, and the air conditioning controller 20 performs the defrosting request flag fDFSTReq.
  • the defrosting request flag fDFSTReq is set, it is determined whether the defrosting permission condition is satisfied, and when satisfied, the defrosting permission flag fDFSTPerm is set to make the vehicle interior comfortable. Unnecessary defrosting can also be avoided while appropriately suppressing heating and air conditioning and further lowering the operating efficiency associated with frost formation on the outdoor heat exchanger 7.
  • FIG. 13 shows a configuration diagram of a vehicle air conditioner 1 of another embodiment to which the present invention is applied.
  • the same reference numerals as in FIG. 1 have the same or similar functions.
  • the outlet of the supercooling unit 16 is connected to the check valve 18, and the outlet of the check valve 18 is connected to the refrigerant pipe 13B.
  • the refrigerant pipe 13B (indoor expansion valve 8) side is in the forward direction.
  • the refrigerant pipe 13E on the outlet side of the radiator 4 is branched in front of the outdoor expansion valve 6, and the branched refrigerant pipe (hereinafter referred to as a second bypass pipe) 13F is a solenoid valve 22 (for dehumidification) Is connected in communication with the refrigerant pipe 13B on the downstream side of the check valve 18.
  • an evaporation pressure adjusting valve 70 is connected to the refrigerant pipe 13C on the outlet side of the heat absorber 9 on the refrigerant downstream side of the internal heat exchanger 19 and on the refrigerant upstream side from the junction with the refrigerant pipe 13D. .
  • the solenoid valve 22 and the evaporation pressure regulating valve 70 are also connected to the output of the heat pump controller 32.
  • the bypass pipe 45, the solenoid valve 30, and the bypass device 45 including the solenoid valve 40 in FIG. 1 of the embodiment described above are not provided.
  • the other parts are the same as those in FIG.
  • the operation of the vehicle air conditioner 1 of this embodiment will be described with the above configuration.
  • the heat pump controller 32 switches and executes each operation mode of the heating mode, the dehumidifying heating mode, the internal cycle mode, the dehumidifying cooling mode, the cooling mode and the auxiliary heater sole mode (MAX cooling mode is present in this embodiment) do not do).
  • the solenoid valve 22 is closed in the heating mode, the dehumidifying cooling mode and the cooling mode.
  • the heat pump controller 32 opens the solenoid valve 21 (for heating) in this embodiment, Close for cooling. Also, the solenoid valve 22 (for dehumidification) is opened.
  • the air conditioning controller 20 operates the blowers 15 and 27, and the air mix damper 28 is basically blown out from the indoor blower 27 and passes through the heat absorber 9 and all the air in the air flow passage 3 is heated by the heat exchange passage 3A. In the state of ventilating to the auxiliary heater 23 and the radiator 4, the air volume is also adjusted. As a result, the high-temperature, high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G.
  • the air in the air flow passage 3 which has flowed into the heating heat exchange passage 3A is ventilated in the radiator 4, the air in the air flow passage 3 is heated by the high temperature refrigerant in the radiator 4, while the radiator is The refrigerant in 4 is cooled by the heat taken by the air and condenses and liquefies.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 evaporates, and heat is pumped up from the outside air ventilated by the traveling or the outdoor blower 15.
  • the refrigerant circuit R is a heat pump. Then, the low temperature refrigerant leaving the outdoor heat exchanger 7 passes through the refrigerant pipe 13A, the solenoid valve 21 and the refrigerant pipe 13D, enters the accumulator 12 from the refrigerant pipe 13C, and is gas-liquid separated there, and then the gas refrigerant is the compressor 2 Repeat the cycle of sucking in Further, a part of the condensed refrigerant flowing through the refrigerant pipe 13E through the radiator 4 is diverted, and passes through the solenoid valve 22 to the indoor expansion valve 8 through the internal heat exchanger 19 from the second bypass pipe 13F and the refrigerant pipe 13B. It will be.
  • the refrigerant After the refrigerant is depressurized by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates. At this time, the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat sink 9, so that the air is cooled and dehumidified.
  • the refrigerant evaporated by the heat absorber 9 passes through the internal heat exchanger 19 and the evaporation pressure adjusting valve 70 sequentially, joins with the refrigerant from the refrigerant pipe 13D in the refrigerant pipe 13C, and then passes through the accumulator 12 and is sucked into the compressor 2 repeat.
  • the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, whereby dehumidifying and heating of the vehicle interior is performed.
  • the air conditioning controller 20 transmits the target heater temperature TCO (target value of the heating temperature TH) calculated from the target outlet temperature TAO to the heat pump controller 32.
  • the heat pump controller 32 calculates a target radiator pressure PCO (a target value of the radiator pressure PCI) from the target heater temperature TCO, and the refrigerant of the radiator 4 detected by the target radiator pressure PCO and the radiator pressure sensor 47
  • the rotation speed NC of the compressor 2 is controlled based on the pressure (radiator pressure PCI, high pressure of the refrigerant circuit R), and heating by the radiator 4 is controlled.
  • the heat pump controller 32 controls the degree of opening of the outdoor expansion valve 6 based on the temperature Te of the heat absorber 9 detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO transmitted from the air conditioning controller 20. Further, the heat pump controller 32 opens the evaporation pressure control valve 70 (enlarges the flow path) / closes (a small amount of refrigerant flows) based on the temperature Te of the heat absorber 9 detected by the heat absorber temperature sensor 48. Prevent the problem of freezing due to too low temperature. (14) Internal cycle mode of vehicle air conditioner 1 in FIG. 13 In internal cycle mode, the heat pump controller 32 fully closes the outdoor expansion valve 6 in the dehumidifying and heating mode (fully closed position), Close the solenoid valve 21.
  • the radiator 4 By closing the outdoor expansion valve 6 and the solenoid valve 21, the inflow of the refrigerant to the outdoor heat exchanger 7 and the outflow of the refrigerant from the outdoor heat exchanger 7 are prevented, so the radiator 4
  • the condensed refrigerant flowing through the refrigerant pipe 13E passes through the solenoid valve 22 and all flows to the second bypass pipe 13F.
  • the refrigerant flowing through the second bypass pipe 13F passes from the refrigerant pipe 13B to the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates.
  • the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat sink 9, so that the air is cooled and dehumidified.
  • the refrigerant evaporated by the heat absorber 9 flows through the refrigerant pipe 13C sequentially through the internal heat exchanger 19 and the evaporation pressure adjusting valve 70, and repeats the circulation sucked into the compressor 2 through the accumulator 12.
  • the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, this means that dehumidifying and heating of the passenger compartment is performed, but in this internal cycle mode, the air flow on the indoor side Since the refrigerant is circulated between the radiator 4 (heat radiation) and the heat absorber 9 (heat absorption) in the passage 3, heating of heat from the outside air is not performed, and heating for the power consumption of the compressor 2 is performed.
  • the dehumidifying ability is higher than the dehumidifying and heating mode, but the heating ability is lowered.
  • the air conditioning controller 20 transmits the target heater temperature TCO (target value of the heating temperature TH) calculated from the target blowing temperature TAO to the heat pump controller 32.
  • the heat pump controller 32 calculates a target radiator pressure PCO (target value of the radiator pressure PCI) from the transmitted target heater temperature TCO, and the target radiator pressure PCO and the radiator 4 detected by the radiator pressure sensor 47
  • the rotation speed NC of the compressor 2 is controlled based on the refrigerant pressure (the radiator pressure PCI, the high pressure of the refrigerant circuit R), and the heating by the radiator 4 is controlled. And also in the case of this embodiment, the frosting determination of the outdoor heat exchanger 7 of (11) and the control of the compressor 2 etc.
  • the operation modes other than the heating mode in step S33 of FIG. 8 in the case of this embodiment are the dehumidifying and cooling mode and the cooling mode, which are operation modes in which the outdoor heat exchanger 7 does not absorb the refrigerant.
  • the numerical values and the like shown in the respective embodiments are not limited to them as described above, and should be appropriately set in accordance with the apparatus to be applied.
  • auxiliary heating device is not limited to the auxiliary heater 23 shown in the embodiment, and a heat medium circulation circuit which heats the air in the air flow passage 3 by circulating a heat medium heated by the heater and an engine You may utilize the heater core etc. which circulate the heated radiator water.
  • Air conditioner 1 Vehicle air conditioner 2 Compressor 3 Air flow passage 4 Radiator 6 Outdoor expansion valve 7 Outdoor heat exchanger 8 Indoor expansion valve 9 Heat sink 10 HVAC unit 11 Control device 20 Air conditioning controller 23 Auxiliary heater (auxiliary heating device) 27 Indoor blower (blower fan) 28 air mix damper 32 heat pump controller 33 outside temperature sensor 53 air conditioning control unit 54 outdoor heat exchanger temperature sensor 56 outdoor heat exchanger pressure sensor 65 vehicle communication bus 75 battery

Abstract

Provided is a vehicular air conditioning device that can preemptively avoid unnecessary defrosting of an outside heat exchanger. A refrigerant discharged from a compressor 2 is made to release heat in a radiator 4, and, after the refrigerant that has released heat has been decompressed, a heating mode is executed in which the interior of a vehicle is heated by causing heat to be absorbed by an outside heat exchanger 7. A control device determines the state of progress of frost formation on the outside heat exchanger, and if defrosting has been determined to be unnecessary, causes defrosting to be performed on the outside heat exchanger once prescribed defrosting permission conditions have been met; and if prescribed natural defrosting conditions are met before defrosting is performed after defrosting of the outside heat exchanger has been determined to be necessary, the control device does not cause defrosting to be performed on the outside heat exchanger.

Description

車両用空気調和装置Vehicle air conditioner
 本発明は、車両の車室内を空調するヒートポンプ式の空気調和装置に関するものである。 The present invention relates to a heat pump type air conditioner for air conditioning a vehicle cabin of a vehicle.
 近年の環境問題の顕在化から、ハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する圧縮機と、車室内側に設けられて冷媒を放熱させる放熱器と、車室外側に設けられて冷媒を吸熱させる室外熱交換器を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させることで車室内を暖房する暖房モードを実行するものが開発されている(例えば、特許文献1、特許文献2参照)。 The recent emergence of environmental problems has led to the spread of hybrid vehicles and electric vehicles. And, as an air conditioner which can be applied to such a vehicle, a compressor which compresses and discharges a refrigerant, a radiator which is provided on the vehicle interior side and which radiates the refrigerant, and which is provided outside a vehicle interior An outdoor heat exchanger for absorbing heat of the refrigerant is provided, the refrigerant discharged from the compressor is dissipated by the radiator, and the refrigerant dissipated by the radiator is absorbed by the outdoor heat exchanger, thereby heating the vehicle interior by heating mode. What has been developed has been developed (see, for example, Patent Document 1 and Patent Document 2).
特開2015−39998号公報JP, 2015-39998, A 特開2015−229370号公報JP, 2015-229370, A
 ここで、暖房モードでは室外熱交換器で冷媒が蒸発し、外気から吸熱するため、当該室外熱交換器には着霜が生じる。室外熱交換器への着霜が進行した状態で圧縮機の運転を継続すると、外気からの吸熱能力が低下するために運転効率が著しく低下する。そこで、暖房モードを停止して室外熱交換器の除霜を行う必要があるが、その場合には車室内の暖房が行えず、運転者や搭乗者の快適性が損なわれてしまうため、実際には例えば空調要求が無く、バッテリを充電している最中等の除霜が許可される条件下で室外熱交換器の除霜を行うことになる。
 一方、室外熱交換器に成長した着霜は、外気温度が高くなれば時間の経過と共に自然に融解する。また、暖房モード以外の運転モード(例えば冷房モードや除湿モード)では室外熱交換器は冷媒を放熱させる放熱器となるので、着霜は融解除去されることになる。そのような場合には、室外熱交換器の除霜を行う必要がなくなるが、従来では一旦室外熱交換器の除霜が必要と判断された場合には、除霜が許可された時点で必ず除霜が行われていた。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、室外熱交換器の不必要な除霜が行われることを未然に回避することができる車両用空気調和装置を提供することを目的とする。
Here, in the heating mode, the refrigerant evaporates in the outdoor heat exchanger and absorbs heat from the outside air, so frost formation occurs on the outdoor heat exchanger. If the operation of the compressor is continued in a state where frost formation on the outdoor heat exchanger has progressed, the heat absorption capacity from the outside air is reduced, so that the operation efficiency is significantly reduced. Therefore, it is necessary to stop the heating mode and perform defrosting of the outdoor heat exchanger, but in that case heating of the vehicle interior can not be performed, and the comfort of the driver and the passenger is impaired. For example, there is no air conditioning requirement, and defrosting of the outdoor heat exchanger is performed under conditions where defrosting is permitted during charging of the battery.
On the other hand, the frost formed on the outdoor heat exchanger melts naturally with the passage of time if the outside air temperature rises. Further, in the operation mode other than the heating mode (for example, the cooling mode or the dehumidifying mode), the outdoor heat exchanger serves as a radiator that radiates the refrigerant, so that the frost is melted and removed. In such a case, it is not necessary to defrost the outdoor heat exchanger, but conventionally, once it is determined that defrosting of the outdoor heat exchanger is necessary, it is always required that defrosting be permitted. Defrosting was taking place.
The present invention has been made to solve such conventional technical problems, and an air conditioner for a vehicle that can prevent unnecessary defrosting of the outdoor heat exchanger from occurring. Intended to be provided.
 本発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、車室外に設けられて冷媒を吸熱させるための室外熱交換器と、制御装置とを備え、この制御装置により、少なくとも圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させて車室内を暖房する暖房モードを実行するものであって、制御装置は、室外熱交換器への着霜の進行状態を判定し、除霜が必要と判断した場合には、所定の除霜許可条件が満たされたときに、室外熱交換器の除霜を行うと共に、室外熱交換器の除霜が必要と判断した後、除霜を行う前に、所定の自然除霜条件が成立した場合には、室外熱交換器の除霜を行わないことを特徴とする。
 請求項2の発明の車両用空気調和装置は、上記発明において自然除霜条件は、
 外気温度Tamが所定値Tam1以上であって、且つ、室外熱交換器の冷媒蒸発温度TXOが外気温度Tam−所定値β以上であること、
 車両の停止中に、外気温度Tamが所定値Tam2以上となっている時間の積算値が、所定時間t3以上になったことであること、
 車両の停止中に、外気温度Tamが所定値Tam2以上となり、その差と経過時間から求められる積分値が、所定値X1以上になったことであること、
 車両が停止してから所定期間t4以上経過したこと、
 室外熱交換器で冷媒を吸熱させない運転モードが選択されたこと、
のうちの何れか、又は、それらの組み合わせ、若しくは、それらの全てであることを特徴とする。
 請求項3の発明の車両用空気調和装置は、上記各発明において制御装置は、室外熱交換器の冷媒蒸発温度TXOが無着霜時における当該室外熱交換器の冷媒蒸発温度TXObaseより低下したときの室外熱交換器の冷媒蒸発温度TXOと無着霜時における室外熱交換器の冷媒蒸発温度TXObaseとの差ΔTXO=TXObase−TXOに基づき、又は、室外熱交換器の冷媒蒸発圧力PXOが無着霜時における当該室外熱交換器の冷媒蒸発圧力PXObaseより低下したときの室外熱交換器の冷媒蒸発圧力PXOと無着霜時における室外熱交換器の冷媒蒸発圧力PXObaseとの差ΔPXO=PXObase−PXOに基づき、この室外熱交換器への着霜の進行状態を判定することを特徴とする。
 請求項4の発明の車両用空気調和装置は、上記発明において制御装置は、環境条件、及び/又は、運転状況を示す指標に基づいて無着霜時における室外熱交換器の冷媒蒸発温度TXObase、又は、無着霜時における室外熱交換器の冷媒蒸発圧力PXObaseを推定することを特徴とする。
 請求項5の発明の車両用空気調和装置は、上記各発明において圧縮機は、車両に搭載されたバッテリにより駆動されると共に、除霜許可条件は、車室内の空調要求が無く、且つ、バッテリが充電中であるか当該バッテリの残量が所定値以上あることであることを特徴とする。
 請求項6の発明の車両用空気調和装置は、上記各発明において制御装置は、車室内の空調設定操作を行うための空調操作部が接続された空調コントローラと、圧縮機の運転を制御するヒートポンプコントローラとから構成され、空調コントローラとヒートポンプコントローラは、車両通信バスを介して情報の送受信を行い、ヒートポンプコントローラは、室外熱交換器の除霜が必要と判断した場合、所定の除霜要求フラグをセットし、空調コントローラが所定の除霜許可フラグをセットした場合、室外熱交換器の除霜を行い、除霜要求フラグをリセットすると共に、この除霜要求フラグをセットした後、自然除霜条件が成立した場合にも、除霜要求フラグをリセットし、空調コントローラは、ヒートポンプコントローラにより除霜要求フラグがセットされている場合、除霜許可条件が満たされたか否か判定し、満たされた場合には、除霜許可フラグをセットすることを特徴とする。
 請求項7の発明の車両用空気調和装置は、上記発明において空調コントローラ又はヒートポンプコントローラが、自然除霜条件が成立するか否かを判定すると共に、空調コントローラが判定する場合には、自然除霜条件が成立したことをヒートポンプコントローラに通知することを特徴とする。
The air conditioner for a vehicle according to the present invention heats the air supplied from the air flow passage to the vehicle compartment from the air flow passage by radiating the refrigerant and the air flow passage through which the air supplied to the vehicle is circulated. A radiator, an outdoor heat exchanger provided outside the vehicle compartment for absorbing heat, and a control device, the control device causing the radiator to dissipate at least the refrigerant discharged from the compressor After decompressing the refrigerant that has dissipated the heat, the heating mode is performed by heating the vehicle interior by absorbing heat with the outdoor heat exchanger, and the control device determines the progress of frost formation on the outdoor heat exchanger When it was determined that it was determined that defrosting was necessary, the outdoor heat exchanger was defrosted and it was determined that defrosting of the outdoor heat exchanger was necessary when a predetermined defrost permission condition was satisfied. After that, a predetermined natural defrosting condition is satisfied before defrosting The, characterized in that it does not perform the defrosting of the outdoor heat exchanger.
The air conditioning apparatus for a vehicle according to the invention of claim 2 is characterized in that the natural defrosting condition in the invention is:
The outside air temperature Tam is equal to or higher than a predetermined value Tam1, and the refrigerant evaporation temperature TXO of the outdoor heat exchanger is equal to or higher than an outside air temperature Tam-predetermined value β.
The integrated value of the time during which the outside air temperature Tam is equal to or higher than the predetermined value Tam2 is equal to or longer than a predetermined time t3 while the vehicle is stopped.
During the stop of the vehicle, the outside air temperature Tam becomes equal to or higher than the predetermined value Tam2, and the integral value obtained from the difference and the elapsed time becomes equal to or higher than the predetermined value X1.
A predetermined period t4 or more has elapsed since the vehicle stopped.
The operation mode not to absorb the refrigerant is selected by the outdoor heat exchanger,
Or any combination thereof, or all of them.
The vehicle air conditioner of the invention of claim 3 is characterized in that, in each of the inventions described above, the control device causes the refrigerant evaporation temperature TXO of the outdoor heat exchanger to fall below the refrigerant evaporation temperature TXObase of the outdoor heat exchanger at the time of no frost formation. The difference between the refrigerant evaporation temperature TXO of the outdoor heat exchanger and the refrigerant evaporation temperature TXObase of the outdoor heat exchanger at the time of no frost, based on .DELTA.TXO = TXObase-TXO, or the refrigerant evaporation pressure PXO of the outdoor heat exchanger is not adhered The difference ΔPXO between the refrigerant evaporation pressure PXO of the outdoor heat exchanger and the refrigerant evaporation pressure PXObase of the outdoor heat exchanger at the time of no frost when the temperature is lower than the refrigerant evaporation pressure PXObase of the outdoor heat exchanger at the time of frost ΔPXO = PXObase−PXO The present invention is characterized in that the progress of frost formation on the outdoor heat exchanger is determined on the basis of.
In the vehicle air conditioner of the invention of claim 4, in the above invention, the control device is the refrigerant evaporation temperature TXObase of the outdoor heat exchanger at the time of frost-free based on the environmental condition and / or the index indicating the driving condition. Alternatively, the refrigerant evaporation pressure PXObase of the outdoor heat exchanger at the time of no frost formation is estimated.
In the vehicle air conditioner of the invention of claim 5, in each of the inventions described above, the compressor is driven by the battery mounted on the vehicle, and the defrost permission condition does not require air conditioning of the vehicle interior, and the battery Is that the battery is being charged or the remaining amount of the battery is equal to or more than a predetermined value.
In the vehicle air conditioner according to the invention of claim 6, according to each of the inventions described above, the control device is an air conditioning controller to which an air conditioning operation unit for performing an air conditioning setting operation in the vehicle compartment is connected, and a heat pump for controlling the operation of the compressor. The air conditioning controller and the heat pump controller transmit and receive information via the vehicle communication bus, and the heat pump controller determines that the outdoor heat exchanger needs to be defrosted, and the predetermined defrost request flag is set. When the air conditioning controller sets a predetermined defrost permission flag, the outdoor heat exchanger is defrosted, the defrost request flag is reset, and the defrost request flag is set, and then the natural defrost condition is set. Even when the above condition is established, the defrost request flag is reset, and the air conditioning controller causes the heat pump controller to defrost the request flag. If set, it determines whether defrost permission condition is satisfied, when filled, characterized in that setting the defrost permission flag.
In the air conditioner for a vehicle according to the invention of claim 7, when the air conditioning controller or the heat pump controller determines whether the natural defrosting condition holds in the above invention, natural defrosting is performed when the air conditioning controller determines. The heat pump controller is notified that the condition is satisfied.
 本発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、車室外に設けられて冷媒を吸熱させるための室外熱交換器と、制御装置とを備え、この制御装置により、少なくとも圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させて車室内を暖房する暖房モードを実行する車両用空気調和装置において、制御装置が、室外熱交換器への着霜の進行状態を判定し、除霜が必要と判断した場合には、所定の除霜許可条件が満たされたときに、室外熱交換器の除霜を行うと共に、室外熱交換器の除霜が必要と判断した後、除霜を行う前に、所定の自然除霜条件が成立した場合には、室外熱交換器の除霜を行わないようにしたので、室外熱交換器の除霜が必要と判断した場合にも、その後所定の自然除霜条件が成立して室外熱交換器の着霜が自然に融解したものと予想される場合には、除霜を行わないようにして不必要な室外熱交換器の除霜を未然に回避することができるようになる。
 これにより、室外熱交換器の除霜を行うこと無く、車室内の暖房を行うことが可能な状況では除霜を行わず、省エネルギーに寄与しながら、車室内の快適な暖房空調を実現することができるようになる。
 この場合、請求項2の発明の如く自然除霜条件を、
 外気温度Tamが所定値Tam1以上であって、且つ、室外熱交換器の冷媒蒸発温度TXOが外気温度Tam−所定値β以上であること、
 車両の停止中に、外気温度Tamが所定値Tam2以上となっている時間の積算値が、所定時間t3以上になったことであること、
 車両の停止中に、外気温度Tamが所定値Tam2以上となり、その差と経過時間から求められる積分値が、所定値X1以上になったことであること、
 車両が停止してから所定期間t4以上経過したこと、
 室外熱交換器で冷媒を吸熱させない運転モードが選択されたこと、
のうちの何れか、又は、それらの組み合わせ、若しくは、それらの全てとすることで、室外熱交換器の着霜が自然に融解したことを的確に予想することができるようになる。
 また、請求項3の発明の如く制御装置が、室外熱交換器の冷媒蒸発温度TXOが無着霜時における当該室外熱交換器の冷媒蒸発温度TXObaseより低下したときの室外熱交換器の冷媒蒸発温度TXOと無着霜時における室外熱交換器の冷媒蒸発温度TXObaseとの差ΔTXO=TXObase−TXOに基づき、又は、室外熱交換器の冷媒蒸発圧力PXOが無着霜時における当該室外熱交換器の冷媒蒸発圧力PXObaseより低下したときの室外熱交換器の冷媒蒸発圧力PXOと無着霜時における室外熱交換器の冷媒蒸発圧力PXObaseとの差ΔPXO=PXObase−PXOに基づき、この室外熱交換器への着霜の進行状態を判定するようにすることで、室外熱交換器への着霜の進行状態を的確に把握して除霜の必要性を正確に判断することができるようになる。
 この場合、請求項4の発明の如く制御装置が、環境条件、及び/又は、運転状況を示す指標に基づいて無着霜時における室外熱交換器の冷媒蒸発温度TXObase、又は、無着霜時における室外熱交換器の冷媒蒸発圧力PXObaseを推定することで、室外熱交換器の着霜の進行を的確に検知することができるようになる。
 尚、前記除霜許可条件は、例えば請求項5の発明の如く車室内の空調要求が無く、且つ、圧縮機を駆動するためのバッテリが充電中であるか当該バッテリの残量が所定値以上あることとすればよい。
 また、請求項6の発明の如く制御装置が、車室内の空調設定操作を行うための空調操作部が接続された空調コントローラと、圧縮機の運転を制御するヒートポンプコントローラとから構成され、空調コントローラとヒートポンプコントローラは、車両通信バスを介して情報の送受信を行う場合には、ヒートポンプコントローラが、室外熱交換器の除霜が必要と判断した場合、所定の除霜要求フラグをセットし、空調コントローラが所定の除霜許可フラグをセットした場合、室外熱交換器の除霜を行い、除霜要求フラグをリセットすると共に、この除霜要求フラグをセットした後、自然除霜条件が成立した場合にも、除霜要求フラグをリセットし、空調コントローラが、ヒートポンプコントローラにより除霜要求フラグがセットされている場合、除霜許可条件が満たされたか否か判定し、満たされた場合には、除霜許可フラグをセットするようにすることで、車室内を快適に暖房空調し、更に、室外熱交換器の着霜に伴う運転効率の低下を適切に抑制しながら、不必要な除霜も回避することができるようになる。
 尚、上記の場合、請求項7の発明の如く空調コントローラ又はヒートポンプコントローラが、自然除霜条件が成立するか否かを判定するようにすればよく、空調コントローラが判定する場合には、自然除霜条件が成立したことをヒートポンプコントローラに通知するようにすることで、支障無く不必要な室外熱交換器の除霜を回避することが可能となる。
According to the present invention, the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle compartment flows, and the radiator for radiating the heat of the refrigerant and heating the air supplied from the air flow passage to the vehicle compartment And an outdoor heat exchanger provided outside the vehicle for absorbing heat of the refrigerant, and a control device, wherein the control device causes at least the refrigerant discharged from the compressor to be dissipated by the radiator and dissipated In a vehicle air conditioner that executes a heating mode of heating the vehicle interior by absorbing heat with the outdoor heat exchanger after depressurizing the refrigerant, the control device determines the progress of frost formation on the outdoor heat exchanger. When it is determined that defrosting is necessary, the outdoor heat exchanger is defrosted when it is determined that the predetermined defrost permission condition is satisfied, and after it is determined that defrosting of the outdoor heat exchanger is necessary, A place where a predetermined natural defrosting condition is established before defrosting In order to prevent defrosting of the outdoor heat exchanger, even if it is determined that defrosting of the outdoor heat exchanger is necessary, then a predetermined natural defrosting condition is satisfied and the outdoor heat exchanger is When frost formation is expected to be naturally melted, unnecessary defrosting of the outdoor heat exchanger can be avoided in advance without defrosting.
By this, without performing defrosting of the outdoor heat exchanger, defrosting is not performed in a situation where heating of the vehicle interior can be performed, and comfortable heating and air conditioning of the vehicle interior can be realized while contributing to energy saving. Will be able to
In this case, natural defrosting conditions as in the invention of claim 2 are
The outside air temperature Tam is equal to or higher than a predetermined value Tam1, and the refrigerant evaporation temperature TXO of the outdoor heat exchanger is equal to or higher than an outside air temperature Tam-predetermined value β.
The integrated value of the time during which the outside air temperature Tam is equal to or higher than the predetermined value Tam2 is equal to or longer than a predetermined time t3 while the vehicle is stopped.
During the stop of the vehicle, the outside air temperature Tam becomes equal to or higher than the predetermined value Tam2, and the integral value obtained from the difference and the elapsed time becomes equal to or higher than the predetermined value X1.
A predetermined period t4 or more has elapsed since the vehicle stopped.
The operation mode not to absorb the refrigerant is selected by the outdoor heat exchanger,
By combining any or all of them, it is possible to properly predict that the frost formation on the outdoor heat exchanger has naturally melted.
Further, as in the invention of claim 3, the control device controls the refrigerant evaporation of the outdoor heat exchanger when the refrigerant evaporation temperature TXO of the outdoor heat exchanger is lower than the refrigerant evaporation temperature TXObase of the outdoor heat exchanger when frost does not occur. The outdoor heat exchanger based on the difference ΔTXO = TXObase-TXO between the temperature TXO and the refrigerant evaporation temperature TXObase of the outdoor heat exchanger at the time of no frost, or when the refrigerant evaporation pressure PXO of the outdoor heat exchanger is at no frost This outdoor heat exchanger is based on the difference ΔPXO = PXObase−PXO between the refrigerant evaporation pressure PXO of the outdoor heat exchanger and the refrigerant evaporation pressure PXObase of the outdoor heat exchanger at the time of no frost when the refrigerant evaporation pressure PXObase falls below By determining the progress of frost formation on the outdoor heat exchanger, it is possible to accurately grasp the progress of frost formation on the outdoor heat exchanger and correct the necessity of defrosting. You will be able to make a decision.
In this case, as in the invention of claim 4, the control device controls the refrigerant evaporation temperature TXObase of the outdoor heat exchanger at the time of non-frosting based on the environmental condition and / or the index indicating the operating condition or at the time of non-frosting By estimating the refrigerant evaporation pressure PKObase of the outdoor heat exchanger in the above, it is possible to accurately detect the progress of frost formation on the outdoor heat exchanger.
In the defrosting permission condition, for example, there is no air conditioning requirement for the vehicle interior as in the invention of claim 5, and the battery for driving the compressor is charging or the remaining amount of the battery is a predetermined value or more It should be a certain thing.
According to the invention of claim 6, the control device comprises an air conditioning controller connected to an air conditioning operation unit for performing an air conditioning setting operation in the vehicle compartment, and a heat pump controller for controlling the operation of the compressor. When the heat pump controller transmits and receives information via the vehicle communication bus, the heat pump controller sets a predetermined defrost request flag when it is determined that defrosting of the outdoor heat exchanger is necessary, and the air conditioning controller When the predetermined defrost permission flag is set, the outdoor heat exchanger is defrosted, the defrost request flag is reset, and the defrost request flag is set, and then the natural defrost condition is satisfied. Also, if the defrost request flag is reset and the air conditioning controller has the defrost request flag set by the heat pump controller It is determined whether the defrosting permission condition is satisfied, and if satisfied, the defrosting permission flag is set to comfortably heat and air the vehicle interior, and further, the arrival of the outdoor heat exchanger Unnecessary defrosting can be avoided while appropriately suppressing the decrease in the operating efficiency caused by the frost.
In the above case, the air conditioning controller or the heat pump controller may determine whether or not the natural defrosting condition is satisfied as in the invention of claim 7, and if the air conditioning controller determines that By notifying the heat pump controller that the frost condition is established, it is possible to avoid unnecessary defrosting of the outdoor heat exchanger without any trouble.
本発明を適用した一実施形態の車両用空気調和装置の構成図である(実施例1)。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the air conditioning apparatus for vehicles of one Embodiment to which this invention is applied (Example 1). 図1の車両用空気調和装置の制御装置のブロック図である。It is a block diagram of the control apparatus of the air conditioning apparatus for vehicles of FIG. 図1の車両用空気調和装置の空気流通路の模式図である。It is a schematic diagram of the airflow path of the air conditioning apparatus for vehicles of FIG. 図2のヒートポンプコントローラの暖房モードにおける圧縮機制御に関する制御ブロック図である。It is a control block diagram regarding compressor control in heating mode of the heat pump controller of FIG. 図2のヒートポンプコントローラの除湿暖房モードにおける圧縮機制御に関する制御ブロック図である。It is a control block diagram regarding compressor control in the dehumidification heating mode of the heat pump controller of FIG. 図2のヒートポンプコントローラの除湿暖房モードにおける補助ヒータ(補助加熱装置)制御に関する制御ブロック図である。It is a control block diagram regarding the auxiliary heater (auxiliary heating device) control in the dehumidification heating mode of the heat pump controller of FIG. 図2のヒートポンプコントローラによる室外熱交換器の着霜判定制御の部分の動作を説明するフローチャートである。It is a flowchart explaining the operation | movement of the part of frost formation determination control of the outdoor heat exchanger by the heat pump controller of FIG. 図2のヒートポンプコントローラによる室外熱交換器の自然除霜判定制御の部分の動作を説明するフローチャートである。It is a flowchart explaining the operation | movement of the part of natural defrost determination control of the outdoor heat exchanger by the heat pump controller of FIG. TXObaseとTXOに基づく図2のヒートポンプコントローラによる室外熱交換器の着霜判定を説明するタイミングチャートである。It is a timing chart explaining frost formation judgment of the outdoor heat exchanger by the heat pump controller of FIG. 2 based on TXObase and TXO. PXObaseとPXOに基づく図2のヒートポンプコントローラによる室外熱交換器の着霜判定を説明するタイミングチャートである。It is a timing chart explaining frost formation judgment of the outdoor heat exchanger by the heat pump controller of FIG. 2 based on PXObase and PKO. 図8の自然除霜判定制御における第3の自然除霜条件の一例を説明する図である。It is a figure explaining an example of the 3rd natural defrosting conditions in natural defrost determination control of FIG. 図8の自然除霜判定制御における第4の自然除霜条件の一例を説明する図である。It is a figure explaining an example of the 4th natural defrost conditions in natural defrost determination control of FIG. 本発明の他の実施例の車両用空気調和装置の構成図である(実施例2)。It is a block diagram of the air conditioning apparatus for vehicles of the other Example of this invention (Example 2).
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings.
 図1は本発明の一実施例の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、車両に搭載されたバッテリ75(図2)に充電された電力で走行用の電動モータを駆動して走行するものであり(何れも図示せず)、本発明の車両用空気調和装置1も、バッテリ75の電力で駆動されるものとする。
 即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路を用いたヒートポンプ運転により暖房モードを行い、更に、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード(最大冷房モード)及び補助ヒータ単独モードの各運転モードを選択的に実行するものである。
 尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明は有効であり、更には、エンジンで走行する通常の自動車にも適用可能であることは云うまでもない。
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、バッテリ75から給電されて駆動し、冷媒を圧縮する電動式の圧縮機2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を放熱させて車室内に供給する空気を加熱するための放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6(減圧装置)と、車室外に設けられて冷房時には放熱器として機能し、暖房時には蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る室内膨張弁8(減圧装置)と、空気流通路3内に設けられ、冷房時及び除湿時に冷媒を吸熱させて車室内外から吸い込んで車室内に供給する空気を冷却するための吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。
 そして、この冷媒回路Rには所定量の冷媒と潤滑用のオイルが充填されている。尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。
 また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7から出た冷媒配管13Aは冷房時に開放される電磁弁17を介してレシーバドライヤ部14に接続され、過冷却部16の出口側の冷媒配管13Bは室内膨張弁8介して吸熱器9の入口側に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成している。
 また、過冷却部16と室内膨張弁8間の冷媒配管13Bは、吸熱器9の出口側の冷媒配管13Cと熱交換関係に設けられ、両者で内部熱交換器19を構成している。これにより、冷媒配管13Bを経て室内膨張弁8に流入する冷媒は、吸熱器9を出た低温の冷媒により冷却(過冷却)される構成とされている。
 また、室外熱交換器7から出た冷媒配管13Aは冷媒配管13Dに分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁21を介して内部熱交換器19の下流側における冷媒配管13Cに連通接続されている。この冷媒配管13Cがアキュムレータ12に接続され、アキュムレータ12は圧縮機2の冷媒吸込側に接続されている。更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6を介して室外熱交換器7の入口側に接続されている。
 また、圧縮機2の吐出側と放熱器4の入口側の間の冷媒配管13Gには後述する除湿暖房とMAX冷房時に閉じられる電磁弁30(流路切換装置を構成する)が介設されている。この場合、冷媒配管13Gは電磁弁30の上流側でバイパス配管35に分岐しており、このバイパス配管35は除湿暖房とMAX冷房時に開放される電磁弁40(これも流路切換装置を構成する)を介して室外膨張弁6の下流側の冷媒配管13Eに連通接続されている。これらバイパス配管35、電磁弁30及び電磁弁40によりバイパス装置45が構成される。
 このようなバイパス配管35、電磁弁30及び電磁弁40によりバイパス装置45を構成したことで、後述する如く圧縮機2から吐出された冷媒を室外熱交換器7に直接流入させる除湿暖房モードやMAX冷房モードと、圧縮機2から吐出された冷媒を放熱器4に流入させる暖房モードや除湿冷房モード、冷房モードとの切り換えを円滑に行うことができるようになる。
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環モード)と、車室外の空気である外気(外気導入モード)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
 また、図1において23は実施例の車両用空気調和装置1に設けられた補助加熱装置としての補助ヒータである。実施例の補助ヒータ23は電気ヒータであるPTCヒータにて構成されており、空気流通路3の空気の流れに対して、放熱器4の風上側(空気上流側)となる空気流通路3内に設けられている。そして、補助ヒータ23に通電されて発熱すると、吸熱器9を経て放熱器4に流入する空気流通路3内の空気が加熱される。即ち、この補助ヒータ23が所謂ヒータコアとなり、車室内の暖房を行い、或いは、それを補完する。
 ここで、HVACユニット10の吸熱器9より風下側(空気下流側)の空気流通路3は仕切壁10Aにより区画され、暖房用熱交換通路3Aとそれをバイパスするバイパス通路3Bとが形成されており、前述した放熱器4と補助ヒータ23は暖房用熱交換通路3Aに配置されている。
 また、補助ヒータ23の風上側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を、補助ヒータ23及び放熱器4が配置された暖房用熱交換通路3Aに通風する割合を調整するエアミックスダンパ28が設けられている。
 更に、放熱器4の風下側におけるHVACユニット10には、FOOT(フット)吹出口29A(第1の吹出口)、VENT(ベント)吹出口29B(FOOT吹出口29Aに対しては第2の吹出口、DEF吹出口29Cに対しては第1の吹出口)、DEF(デフ)吹出口29C(第2の吹出口)の各吹出口が形成されている。FOOT吹出口29Aは車室内の足下に空気を吹き出すための吹出口で、最も低い位置にある。また、VENT吹出口29Bは車室内の運転者の胸や顔付近に空気を吹き出すための吹出口で、FOOT吹出口29Aより上方にある。そして、DEF吹出口29Cは車両のフロントガラス内面に空気を吹き出すための吹出口で、他の吹出口29A、29Bよりも上方の最も高い位置にある。
 そして、FOOT吹出口29A、VENT吹出口29B、及び、DEF吹出口29Cには、空気の吹き出し量を制御するFOOT吹出口ダンパ31A、VENT吹出口ダンパ31B、及び、DEF吹出口ダンパ31Cがそれぞれ設けられている。
 次に、図2は実施例の車両用空気調和装置1の制御装置11のブロック図を示している。制御装置11は、何れもプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成された空調コントローラ20及びヒートポンプコントローラ32から構成されており、これらがCAN(Controller Area Network)やLIN(Local Interconnect Network)を構成する車両通信バス65に接続されている。また、圧縮機2と補助ヒータ23も車両通信バス65に接続され、これら空調コントローラ20、ヒートポンプコントローラ32、圧縮機2及び補助ヒータ23が車両通信バス65を介してデータの送受信を行うように構成されている。
 空調コントローラ20は、車両の車室内空調の制御を司る上位のコントローラであり、この空調コントローラ20の入力には、車両の外気温度Tamを検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれて吸熱器9に流入する空気の温度(吸込空気温度Tas)を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度(室内温度Tin)を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO濃度センサ39と、車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力Pdを検出する吐出圧力センサ42と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52の各出力と、設定温度や運転モードの切り換え等の車室内の空調設定操作を行うための空調操作部(エアコン操作部)53が接続されている。
 また、空調コントローラ20の出力には、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、各吹出口ダンパ31A~31Cが接続され、それらは空調コントローラ20により制御される。尚、バッテリ75はコントローラを内蔵しており、バッテリ75のコントローラは車両通信バス65を介して空調コントローラ20とデータの送受信を行い、この空調コントローラ20にバッテリ75が充電中であるか否かの情報やバッテリ75の残量(充電量)に関する情報が送信される構成とされている。
 ヒートポンプコントローラ32は、主に冷媒回路Rの制御を司るコントローラであり、このヒートポンプコントローラ32の入力には、圧縮機2の吐出冷媒温度Tdを検出する吐出温度センサ43と、圧縮機2の吸込冷媒圧力Psを検出する吸込圧力センサ44と、圧縮機2の吸込冷媒温度Tsを検出する吸込温度センサ55と、放熱器4の冷媒温度(放熱器温度TCI)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器圧力PCI)を検出する放熱器圧力センサ47と、吸熱器9の冷媒温度(吸熱器温度Te)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力を検出する吸熱器圧力センサ49と、補助ヒータ23の温度(補助ヒータ温度Tptc)を検出する補助ヒータ温度センサ50と、室外熱交換器7の出口の冷媒温度(室外熱交換器7の冷媒蒸発温度TXO、室外熱交換器温度TXO)を検出する室外熱交換器温度センサ54と、室外熱交換器7の出口の冷媒圧力(室外熱交換器7の冷媒蒸発圧力PXO、室外熱交換器圧力PXO)を検出する室外熱交換器圧力センサ56の各出力が接続されている。
 また、ヒートポンプコントローラ32の出力には、室外膨張弁6、室内膨張弁8と、電磁弁30(リヒート用)、電磁弁17(冷房用)、電磁弁21(暖房用)、電磁弁40(バイパス用)の各電磁弁が接続され、それらはヒートポンプコントローラ32により制御される。尚、圧縮機2と補助ヒータ23はそれぞれコントローラを内蔵しており、圧縮機2と補助ヒータ23のコントローラは車両通信バス65を介してヒートポンプコントローラ32とデータの送受信を行い、このヒートポンプコントローラ32によって制御される。
 ヒートポンプコントローラ32と空調コントローラ20は車両通信バス65を介して相互にデータの送受信を行い、各センサの出力や空調操作部53にて入力された設定に基づき、各機器を制御するものであるが、この場合の実施例では外気温度センサ33の出力、吐出圧力センサ42の出力、車速センサ52の各出力、空気流通路3に流入した空気の体積風量Ga(空調コントローラ20が算出)、エアミックスダンパ28による風量割合SW(空調コントローラ20が算出)、空調操作部53の出力は空調コントローラ20から車両通信バス65を介してヒートポンプコントローラ32に送信され、ヒートポンプコントローラ32による制御に供される構成とされている。
 以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。この実施例では制御装置11(空調コントローラ20、ヒートポンプコントローラ32)は、暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード(最大冷房モード)及び補助ヒータ単独モードの各運転モードを切り換えて実行する。先ず、各運転モードにおける冷媒の流れと制御の概略について説明する。
 (1)暖房モード
 ヒートポンプコントローラ32により(オートモード)或いは空調操作部53へのマニュアルの空調設定操作(マニュアルモード)により暖房モードが選択されると、ヒートポンプコントローラ32は電磁弁21(暖房用)を開放し、電磁弁17(冷房用)を閉じる。また、電磁弁30(リヒート用)を開放し、電磁弁40(バイパス用)を閉じる。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量を調整してもよい。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)にて加熱された空気は各吹出口29A~29Cから吹き出されるので、これにより車室内の暖房が行われることになる。
 ヒートポンプコントローラ32は、空調コントローラ20が目標吹出温度TAOから算出する目標ヒータ温度TCO(後述する加熱温度THの目標値)から目標放熱器圧力PCO(放熱器圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数NCを制御し、放熱器4による加熱を制御する。また、ヒートポンプコントローラ32は、放熱器温度センサ46が検出する放熱器4の冷媒温度(放熱器温度TCI)及び放熱器圧力センサ47が検出する放熱器圧力PCIに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度SCを制御する。
 また、ヒートポンプコントローラ32はこの暖房モードにおいては、車室内空調に要求される暖房能力に対して放熱器4による暖房能力が不足する場合、その不足する分を補助ヒータ23の発熱で補完するように補助ヒータ23の通電を制御する。それにより、快適な車室内暖房を実現し、且つ、室外熱交換器7の着霜も抑制する。このとき、補助ヒータ23は放熱器4の空気上流側に配置されているので、空気流通路3を流通する空気は放熱器4の前に補助ヒータ23に通風されることになる。
 ここで、補助ヒータ23が放熱器4の空気下流側に配置されていると、実施例の如くPTCヒータで補助ヒータ23を構成した場合には、補助ヒータ23に流入する空気の温度が放熱器4によって上昇するため、PTCヒータの抵抗値が大きくなり、電流値も低くなって発熱量が低下してしまうが、放熱器4の空気上流側に補助ヒータ23を配置することで、実施例の如くPTCヒータから構成される補助ヒータ23の能力を十分に発揮させることができるようになる。
 (2)除湿暖房モード
 次に、除湿暖房モードでは、ヒートポンプコントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量の調整も行う。
 これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却され、且つ、当該空気中の水分が吸熱器9に凝結して付着するので、空気流通路3内の空気は冷却され、且つ、除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。
 このとき、室外膨張弁6の弁開度は全閉とされているので、圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。更に、この除湿暖房モードにおいてヒートポンプコントローラ32は、補助ヒータ23に通電して発熱させる。これにより、吸熱器9にて冷却され、且つ、除湿された空気は補助ヒータ23を通過する過程で更に加熱され、温度が上昇するので車室内の除湿暖房が行われることになる。
 ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)と、空調コントローラ20が算出する吸熱器温度Teの目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御すると共に、補助ヒータ温度センサ50が検出する補助ヒータ温度Tptcと前述した目標ヒータ温度TCO(この場合、補助ヒータ温度Tptcの目標値となる)に基づいて補助ヒータ23の通電(発熱による加熱)を制御することで、吸熱器9での空気の冷却と除湿を適切に行いながら、補助ヒータ23による加熱で各吹出口29A~29Cから車室内に吹き出される空気温度の低下を的確に防止する。これにより、車室内に吹き出される空気を除湿しながら、その温度を適切な暖房温度に制御することが可能となり、車室内の快適且つ効率的な除湿暖房を実現することができるようになる。
 尚、補助ヒータ23は放熱器4の空気上流側に配置されているので、補助ヒータ23で加熱された空気は放熱器4を通過することになるが、この除湿暖房モードでは放熱器4に冷媒は流されないので、補助ヒータ23にて加熱された空気から放熱器4が吸熱してしまう不都合も解消される。即ち、放熱器4によって車室内に吹き出される空気の温度が低下してしまうことが抑制され、COPも向上することになる。
 (3)除湿冷房モード
 次に、除湿冷房モードでは、ヒートポンプコントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を開放し、電磁弁40を閉じる。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量の調整も行う。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
 放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。この除湿冷房モードではヒートポンプコントローラ32は補助ヒータ23に通電しないので、吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱(暖房時よりも放熱能力は低い)される。これにより車室内の除湿冷房が行われることになる。
 ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEO(空調コントローラ20から送信される)に基づいて圧縮機2の回転数NCを制御する。また、ヒートポンプコントローラ32は前述した目標ヒータ温度TCOから目標放熱器圧力PCOを算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて室外膨張弁6の弁開度を制御し、放熱器4による加熱を制御する。
 (4)冷房モード
 次に、冷房モードでは、ヒートポンプコントローラ32は上記除湿冷房モードの状態において室外膨張弁6の弁開度を全開とする。そして、圧縮機2を運転し、補助ヒータ23には通電しない。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の空気が、暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風される割合を調整する状態とする。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入すると共に、放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので冷媒はそれを通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着する。
 吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気が各吹出口29A~29Cから車室内に吹き出されるので(一部は放熱器4を通過して熱交換する)、これにより車室内の冷房が行われることになる。また、この冷房モードにおいては、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である前述した目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御する。
 (5)MAX冷房モード(最大冷房モード)
 次に、最大冷房モードとしてのMAX冷房モードでは、ヒートポンプコントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2を運転し、補助ヒータ23には通電しない。空調コントローラ20は、各送風機15、27を運転し、エアミックスダンパ28は、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の空気が、暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風される割合を調整する状態とする。
 これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着するので、空気流通路3内の空気は除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。このとき、室外膨張弁6は全閉とされているので、同様に圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。
 ここで、前述した冷房モードでは放熱器4に高温の冷媒が流れているため、放熱器4からHVACユニット10への直接の熱伝導が少なからず生じるが、このMAX冷房モードでは放熱器4に冷媒が流れないため、放熱器4からHVACユニット10に伝達される熱で吸熱器9からの空気流通路3内の空気が加熱されることも無くなる。そのため、車室内の強力な冷房が行われ、特に外気温度Tamが高いような環境下では、迅速に車室内を冷房して快適な車室内空調を実現することができるようになる。また、このMAX冷房モードにおいても、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である前述した目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御する。
 (6)補助ヒータ単独モード
 尚、実施例の制御装置11は後述する如く室外熱交換器7に過度の着霜が生じた場合などに、冷媒回路Rの圧縮機2と室外送風機15を停止し、補助ヒータ23に通電してこの補助ヒータ23のみで車室内を暖房する補助ヒータ単独モードを有している。この場合にも、ヒートポンプコントローラ32は補助ヒータ温度センサ50が検出する補助ヒータ温度Tptcと前述した目標ヒータ温度TCOに基づいて補助ヒータ23の通電(発熱)を制御する。
 また、空調コントローラ20は室内送風機27を運転し、エアミックスダンパ28は、室内送風機27から吹き出された空気流通路3内の空気を暖房用熱交換通路3Aの補助ヒータ23に通風し、風量を調整する状態とする。補助ヒータ23にて加熱された空気が各吹出口29A~29Cから車室内に吹き出されるので、これにより車室内の暖房が行われることになる。
 (7)運転モードの切換
 空調コントローラ20は、下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、車室内に吹き出される空気の温度の目標値である。
 TAO=(Tset−Tin)×K+Tbal(f(Tset、SUN、Tam))
                                   ・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する室内温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
 ヒートポンプコントローラ32は、起動時には空調コントローラ20から車両通信バス65を介して送信される外気温度Tam(外気温度センサ33が検出する)と目標吹出温度TAOとに基づいて上記各運転モードのうちの何れかの運転モードを選択すると共に、各運転モードを車両通信バス65を介して空調コントローラ20に送信する。また、起動後は外気温度Tam、車室内の湿度、目標吹出温度TAO、後述する加熱温度TH(放熱器4の風下側の空気の温度。推定値)、目標ヒータ温度TCO、吸熱器温度Te、目標吸熱器温度TEO、車室内の除湿要求の有無、等のパラメータに基づいて各運転モードの切り換えを行うことで、環境条件や除湿の要否に応じて的確に暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード及び補助ヒータ単独モードを切り換えて車室内に吹き出される空気の温度を目標吹出温度TAOに制御し、快適且つ効率的な車室内空調を実現するものである。
 (8)ヒートポンプコントローラ32による暖房モードでの圧縮機2の制御
 次に、図4を用いて前述した暖房モードにおける圧縮機2の制御について詳述する。図4は暖房モード用の圧縮機2の目標回転数(圧縮機目標回転数)TGNChを決定するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F(フィードフォワード)操作量演算部58は外気温度センサ33から得られる外気温度Tamと、室内送風機27のブロワ電圧BLVと、SW=(TAO−Te)/(TH−Te)で得られるエアミックスダンパ28による風量割合SWと、放熱器4の出口における過冷却度SCの目標値である目標過冷却度TGSCと、後述する加熱温度THの目標値である前述した目標ヒータ温度TCO(空調コントローラ20から送信される)と、放熱器4の圧力の目標値である目標放熱器圧力PCOに基づいて圧縮機目標回転数のF/F操作量TGNChffを演算する。
 ここで、風量割合SWを算出する上記THは、放熱器4の風下側の空気の温度(以下、加熱温度と云う)であり、ヒートポンプコントローラ32が下記に示す一次遅れ演算の式(II)から推定する。
 TH=(INTL×TH0+Tau×THz)/(Tau+INTL) ・・(II)
 ここで、INTLは演算周期(定数)、Tauは一次遅れの時定数、TH0は一次遅れ演算前の定常状態における加熱温度THの定常値、THzは加熱温度THの前回値である。このように加熱温度THを推定することで、格別な温度センサを設ける必要がなくなる。
 尚、ヒートポンプコントローラ32は前述した運転モードによって上記時定数Tau及び定常値TH0を変更することにより、上述した推定式(II)を運転モードによって異なるものとし、加熱温度THを推定する。そして、この加熱温度THは車両通信バス65を介して空調コントローラ20に送信される。
 前記目標放熱器圧力PCOは上記目標過冷却度TGSCと目標ヒータ温度TCOに基づいて目標値演算部59が演算する。更に、F/B(フィードバック)操作量演算部60はこの目標放熱器圧力PCOと放熱器4の冷媒圧力である放熱器圧力PCIに基づいて圧縮機目標回転数のF/B操作量TGNChfbを演算する。そして、F/F操作量演算部58が演算したF/F操作量TGNCnffとF/B操作量演算部60が演算したTGNChfbは加算器61で加算され、リミット設定部62で制御上限値ECNpdLimHiと制御下限値ECNpdLimLoのリミットが付けられた後、圧縮機目標回転数TGNChとして決定される。前記暖房モードにおいては、ヒートポンプコントローラ32はこの圧縮機目標回転数TGNChに基づいて圧縮機2の回転数NCを制御する。
 (9)ヒートポンプコントローラ32による除湿暖房モードでの圧縮機2及び補助ヒータ23の制御
 一方、図5は前記除湿暖房モード用の圧縮機2の目標回転数(圧縮機目標回転数)TGNCcを決定するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F操作量演算部63は外気温度Tamと、空気流通路3に流入した空気の体積風量Gaと、放熱器4の圧力(放熱器圧力PCI)の目標値である目標放熱器圧力PCOと、吸熱器9の温度(吸熱器温度Te)の目標値である目標吸熱器温度TEOに基づいて圧縮機目標回転数のF/F操作量TGNCcffを演算する。
 また、F/B操作量演算部64は目標吸熱器温度TEO(空調コントローラ20から送信される)と吸熱器温度Teに基づいて圧縮機目標回転数のF/B操作量TGNCcfbを演算する。そして、F/F操作量演算部63が演算したF/F操作量TGNCcffとF/B操作量演算部64が演算したF/B操作量TGNCcfbは加算器66で加算され、リミット設定部67で制御上限値TGNCcLimHiと制御下限値TGNCcLimLoのリミットが付けられた後、圧縮機目標回転数TGNCcとして決定される。除湿暖房モードにおいては、ヒートポンプコントローラ32はこの圧縮機目標回転数TGNCcに基づいて圧縮機2の回転数NCを制御する。
 また、図6は除湿暖房モードにおける補助ヒータ23の補助ヒータ要求能力TGQPTCを決定するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32の減算器73には目標ヒータ温度TCOと補助ヒータ温度Tptcが入力され、目標ヒータ温度TCOと補助ヒータ温度Tptcの偏差(TCO−Tptc)が算出される。この偏差(TCO−Tptc)はF/B制御部74に入力され、このF/B制御部74は偏差(TCO−Tptc)を無くして補助ヒータ温度Tptcが目標ヒータ温度TCOとなるように補助ヒータ要求能力F/B操作量を演算する。
 このF/B制御部74で算出された補助ヒータ要求能力F/B操作量Qafbはリミット設定部76で制御上限値QptcLimHiと制御下限値QptcLimLoのリミットが付けられた後、補助ヒータ要求能力TGQPTCとして決定される。除湿暖房モードにおいては、コントローラ32はこの補助ヒータ要求能力TGQPTCに基づいて補助ヒータ23の通電を制御することにより、補助ヒータ温度Tptcが目標ヒータ温度TCOとなるように補助ヒータ23の発熱(加熱)を制御する。
 このようにしてヒートポンプコントローラ32は、除湿暖房モードでは吸熱器温度Teと目標吸熱器温度TEOに基づいて圧縮機の運転を制御すると共に、目標ヒータ温度TCOに基づいて補助ヒータ23の発熱を制御することで、除湿暖房モードにおける吸熱器9による冷却と除湿、並びに、補助ヒータ23による加熱を的確に制御する。これにより、車室内に吹き出される空気をより適切に除湿しながら、その温度をより正確な暖房温度に制御することが可能となり、より一層快適且つ効率的な車室内の除湿暖房を実現することができるようになる。尚、この実施例及び後述する実施例2における暖房モードでの補助ヒータ23の制御ブロックは、図6中の目標ヒータ温度TCOが目標補助ヒータ温度THO(補助ヒータ温度Tptcの目標値)に置き換えられたかたちとなる。また、この実施例の除湿暖房モードでは、目標補助ヒータ温度THO=目標ヒータ温度TCOとして補助ヒータ23を制御しているが(図6)、この実施例及び後述する実施例2における暖房モードでは、前述した如く放熱器4による暖房能力が不足する分を補助ヒータ23の発熱で補完することになるので、この不足分から目標補助ヒータ温度THOを導出し、導出した目標補助ヒータ温度THOと補助ヒータ温度Tptcにより、補助ヒータ23をF/B制御することになる。
 (10)エアミックスダンパ28の制御
 次に、図3を参照しながら空調コントローラ20によるエアミックスダンパ28の制御について説明する。図3においてGaは前述した空気流通路3に流入した空気の体積風量、Teは吸熱器温度、THは前述した加熱温度(放熱器4の風下側の空気の温度)である。
 空調コントローラ20は、前述した如き式(下記式(III))により算出される暖房用熱交換通路3Aの放熱器4と補助ヒータ23に通風する風量割合SWに基づき、当該割合の風量となるようにエアミックスダンパ28を制御することで放熱器4(及び補助ヒータ23)への通風量を調整する。
 SW=(TAO−Te)/(TH−Te)    ・・(III)
 即ち、暖房用熱交換通路3Aの放熱器4と補助ヒータ23に通風する風量割合SWは0≦SW≦1の範囲で変化し、「0」で暖房用熱交換通路3Aへの通風をせず、空気流通路3内の全ての空気をバイパス通路3Bに通風するエアミックス全閉状態、「1」で空気流通路3内の全ての空気を暖房用熱交換通路3Aに通風するエアミックス全開状態となる。即ち、放熱器4への風量はGa×SWとなる。
 (11)室外熱交換器の着霜判定とそれに伴う圧縮機等の制御
 前述した如く暖房モードでは、室外熱交換器7では冷媒が蒸発し、外気から吸熱して低温となるため、室外熱交換器7には外気中の水分が霜となって付着する。この着霜が成長すると、室外熱交換器7とそれに通風される外気との間の熱交換が阻害されるため、圧縮機2の運転効率が低下する。また、過着霜となれば室外送風機15等の破損が発生する場合もある。そこで、ヒートポンプコントローラ32は以下の如く室外熱交換器7への着霜の進行状態を判定する。
 (11−1)室外熱交換器への着霜の進行状態の判定と圧縮機等の制御(その1)
 次に、図7を用いてこの室外熱交換器7への着霜の進行状態の判定と、それに基づく圧縮機2や除霜の制御の一例を説明する。この実施例では、ヒートポンプコントローラ32は室外熱交換器温度センサ54から得られる室外熱交換器7の現在の冷媒蒸発温度TXOと、外気が低湿環境で室外熱交換器7に着霜していない無着霜時における当該室外熱交換器7の冷媒蒸発温度TXObaseとに基づき、室外熱交換器7への着霜の進行状態を判定する。
 ヒートポンプコントローラ32は先ず、図7のステップS1で車両が起動(IG ON)されたか否か、及び、車両用空気調和装置1による車室内の空調要求(以下、HP空調要求と称する)があるか否か判断する。この場合、車両が起動された否かはイグニッション(IG)のON情報(空調コントローラ20から送信される)から判断する。また、HP空調要求とは車両用空気調和装置1の稼働要求であり、このHP空調要求が有るか否かは、実施例では空調操作部53に設けられたエアコンのON/OFFスイッチがONされたか否かの情報(空調コントローラ20から送信される)から判断する。
 そして、車両が起動され、且つ、HP空調要求がある場合、ヒートポンプコントローラ32はステップS2に進み、否の場合にはステップS18に進む。尚、ステップS18でヒートポンプコントローラ32はHP空調要求が無いか否か判断し、HP空調要求が有る場合、即ち、車両の起動時であるか否かに拘わらずHP空調要求がある場合もステップS2に進み、ステップS18でHP空調要求が無い場合にはステップS19に進む。
 ステップS2ではヒートポンプコントローラ32は、車両用空気調和装置1(HP)が故障判定されていないか否か判断し、故障判定されていればステップS12に進んで圧縮機2を停止する(HP運転不許可)。一方、ステップS2で故障判定されていなければステップS3に進み、現在重度着霜フラグfFST2がリセット(「0」)されているか否か判定する。現在は重度着霜フラグfFST2はリセットされているものとすると、ヒートポンプコントローラ32はステップS4に進み、現在の運転モードが暖房モードか否か判断する。
 そして、現在の運転モードが暖房モードである場合はステップS5に進み、無着霜時における冷媒蒸発温度TXObaseと現在の冷媒蒸発温度TXOとの差ΔTXO(ΔTXO=TXObase−TXO)を演算(算出)する。この場合、ヒートポンプコントローラ32は、無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseを、次式(IV)を用いて演算することで推定する。
 TXObase=f(Tam、NC、Ga*SW、VSP、PCI)
 =k1×Tam+k2×NC+k3×Ga*SW+k4×VSP+k5×PCI
                                 ・・(IV)
 ここで、式(IV)のパラメータであるTamは外気温度センサ33から得られる外気温度、NCは圧縮機2の回転数、Ga*SWは放熱器4(及び補助ヒータ23)への風量、VSPは車速センサ52から得られる車速、PCIは放熱器圧力であり、k1~k5は係数で、予め実験により求めておく。
 外気温度Tamは室外熱交換器7の吸込空気温度(環境条件)を示す指標であり、外気温度Tam(室外熱交換器7の吸込空気温度)が低くなる程、TXObaseは低くなる傾向となる。従って、係数k1は正の値となる。尚、同様に室外熱交換器7の吸込空気温度を示す指標としては外気温度Tamに限られない。
 また、圧縮機2の回転数NCは冷媒回路R内の冷媒流量(運転状況)を示す指標であり、回転数NCが高い程(冷媒流量が多い程)、TXObaseは低くなる傾向となる。従って、係数k2は負の値となる。
 また、Ga*SWは放熱器4の通過風量(運転状況)を示す指標であり、Ga*SWが大きい程(放熱器4の通過風量が大きい程)、TXObaseは低くなる傾向となる。従って、係数k3は負の値となる。尚、放熱器4の通過風量を示す指標としてはこれに限らず、室内送風機27のブロワ電圧BLVでもよい。
 また、車速VSPは室外熱交換器7の通過風速(運転状況)を示す指標であり、車速VSPが低い程(室外熱交換器7の通過風速が低い程)、TXObaseは低くなる傾向となる。従って、係数k4は正の値となる。尚、室外熱交換器7の通過風速を示す指標としてはこれに限らず、室外送風機15の電圧でもよい。
 また、放熱器圧力PCIは放熱器4の冷媒圧力(運転状況)を示す指標であり、放熱器圧力PCIが高い程、TXObaseは低くなる傾向となる。従って、係数k5は負の値となる。
 尚、この実施例の式(IV)のパラメータとして外気温度Tam、圧縮機2の回転数NC、放熱器4の通過風量Ga*SW、車速VSP、放熱器圧力PCIを用いているが、式(IV)のパラメータとしては、上記全てに限らず、それらのうちの何れか一つ、若しくは、それらの組み合わせでもよい。
 そして、ステップS5でヒートポンプコントローラ32は、式(IV)に現在の各パラメータの値を代入することで得られる無着霜時における冷媒蒸発温度TXObaseと現在の冷媒蒸発温度TXOとの差ΔTXO(ΔTXO=TXObase−TXO)を算出する。次に、ヒートポンプコントローラ32はステップS6で暖房モードの起動後、所定時間経過しているか否か判断し、起動初期であって所定時間が経過していなければステップS17に進んで圧縮機2の運転(HP運転)を継続する。即ち、圧縮機2は停止せず、暖房モードの実行を許可する。
 ステップS6で暖房モードの起動から所定時間が経過している場合、ヒートポンプコントローラ32はステップS7に進み、冷媒蒸発温度TXOが無着霜時における冷媒蒸発温度TXObaseより低下して、その差ΔTXOが所定の通常着霜判定条件を満たしているか否か判断する。
 この通常着霜判定条件とは、実施例では冷媒蒸発温度TXOが無着霜時における冷媒蒸発温度TXObaseより低下し、その差ΔTXOが第1の閾値A1(例えば、3deg等)より大きくなっている状態が第1の所定時間t1(例えば、60秒等)継続したことであり、差ΔTXOがこの通常着霜判定条件を満たした場合、室外熱交換器7に軽度の着霜が成長しているものと判断することができる。
 そして、未だ差ΔTXOが第1の閾値A1より大きい状態が第1の所定時間t1継続していない場合はステップS17に進み、圧縮機2の運転(HP運転)を継続する。一方、ステップS7で差ΔTXOが第1の閾値A1より大きい状態が第1の所定時間t1継続している場合、ヒートポンプコントローラ32は差ΔTXOが通常着霜判定条件を満たし(室外熱交換器7に軽度の着霜が生じている)、室外熱交換器7の除霜が必要と判断し、ステップS7からステップS8に進む。
 ここで、図9で実線は室外熱交換器7の冷媒蒸発温度TXOの変化を示し、破線は無着霜時における冷媒蒸発温度TXObaseの変化を示している。運転を開始した初期状態(非着霜)では、室外熱交換器7の冷媒蒸発温度TXOと無着霜時における冷媒蒸発温度TXObaseは略同じ値となる。暖房モードの進行に伴って車室内の温度は暖められ、車両用空気調和装置1の負荷は低下してくるので、前述した冷媒流量や放熱器4の通過風量も低下し、式(IV)で算出されるTXObase(図9の破線)は上昇してくる。
 一方、室外熱交換器7に着霜が生じると外気との熱交換性能が阻害されるようになるので、冷媒蒸発温度TXO(実線)は低下していき、やがてTXObaseを下回る。そして、室外熱交換器7に軽度の着霜が成長して冷媒蒸発温度TXOが更に低下し、その差ΔTXO(TXObase−TXO)が第1の閾値A1より大きくなり、その状態が第1の所定時間t1継続した場合、ヒートポンプコントローラ32はステップS7で差ΔTXOが前述した通常着霜判定条件を満たしている(室外熱交換器7に軽度の着霜が生じている)ものと判定し、室外熱交換器7の除霜が必要と判断してステップS8に進み、通常着霜フラグfFST1をセット(「1」)する(ステップS7、ステップS8が通常着霜判定)。
 次に、ヒートポンプコントローラ32はステップS9に進み、今度は冷媒蒸発温度TXOが無着霜時における冷媒蒸発温度TXObaseより低下して、その差ΔTXOが所定の第1の重度着霜判定条件(最初の重度着霜判定条件)を満たしているか否か判断する。
 この第1の重度着霜判定条件とは、実施例では冷媒蒸発温度TXOが無着霜時における冷媒蒸発温度TXObaseより低下し、その差ΔTXOが第2の閾値A2(1)(例えば、15deg等)より大きくなっている状態が第2の所定時間t2(1)(例えば、30秒等)継続したことであり、差ΔTXOがこの第1の重度着霜判定条件を満たした場合、室外熱交換器7に過度の着霜が短時間で進行しているものと判断することができる。
 そして、未だΔTXOが第2の閾値A2(1)より大きい状態が第2の所定時間t2(1)継続していない場合はステップS16に進み、今度はΔTXOが所定の第2の重度着霜判定条件(もう一つの重度着霜判定条件)を満たしているか否か判断する。
 この第2の重度着霜判定条件とは、実施例では冷媒蒸発温度TXOが無着霜時における冷媒蒸発温度TXObaseより低下し、その差ΔTXOがもう一つの第2の閾値A2(2)(例えば、5deg等)より大きくなっている状態がもう一つの第2の所定時間t2(2)(例えば、60分等)継続したことであり、差ΔTXOがこの第2の重度着霜判定条件を満たした場合、室外熱交換器7に中程度の着霜が長時間継続していると判断することができる。
 そして、ステップS16で未だΔTXOが第2の閾値A2(2)より大きい状態が第2の所定時間t2(2)継続していない場合はステップS17に進み、圧縮機2の運転(HP運転)を継続する。
 上記第1の重度着霜判定条件の第2の閾値A2(1)は、前述した通常着霜判定条件の第1の閾値A1よりも極めて大きく、第2の所定時間t2(1)は第1の所定時間t1よりも短い。また、上記第2の重度着霜判定条件の第2の閾値A2(2)は、前述した通常着霜判定条件の第1の閾値A1よりも大きく、第2の所定時間t2(2)は第1の所定時間t1よりも極めて長い。そして、これら第1及び第2の重度着霜判定条件は、何れも通常着霜判定条件よりも更に室外熱交換器7への着霜が進行したことを判定することができるものである。
 ステップS8で通常着霜フラグfFST1をセットした後、室外熱交換器7への着霜が更に増大して図9に示す冷媒蒸発温度TXOの低下が更に進行し、その差ΔTXO(TXObase−TXO)が第2の閾値A2(1)より大きくなっている状態が第2の所定時間t2(1)継続した場合、ヒートポンプコントローラ32はステップS9で差ΔTXOが第1の重度着霜判定条件を満たし、室外熱交換器7に過度の着霜が短時間で進行しており、室外熱交換器7の除霜が必要と判断してステップS10に進む。
 また、差ΔTXOがもう一つの第2の閾値A2(2)より大きくなっている状態がもう一つの第2の所定時間t2(2)継続した場合、ヒートポンプコントローラ32はステップS16で差ΔTXOが第2の重度着霜判定条件を満たし、室外熱交換器7に中程度の着霜が長時間継続しており、室外熱交換器7の除霜が必要と判断してステップS10に進む。そして、ヒートポンプコントローラ32はこのステップS10で重度着霜フラグfFST2をセット(「1」)し、ステップS11に進む(ステップS9、ステップS16、ステップS10が重度着霜判定)。
 尚、ヒートポンプコントローラ32は不揮発性メモリ(EEP−ROM)80を備えており、上記通常着霜フラグfFST1と重度着霜フラグfFST2のセット(「1」)、リセット(「0」)の状態をこの不揮発性メモリ80に記憶し、車両用空気調和装置1が停止して制御装置11(空調コントローラ20、ヒートポンプコントローラ32)の電源が断たれた場合にも、通常着霜フラグfFST1と重度着霜フラグfFST2の状態は不揮発性メモリ80に保持されているものとする。
 ステップS11ではヒートポンプコントローラ32は放熱器4の下流側の空気の温度である加熱温度THが、その目標値である目標ヒータ温度TCO−α(αは比較的小さいディファレンシャル)より低いか否か判断する。前述した如く目標吹出温度TAOから算出されるこの目標ヒータ温度TCOは車両用空気調和装置1の暖房モードでの要求能力である。そして、補助ヒータ23が発熱していない場合、加熱温度THは現在の放熱器4の暖房能力を示している。従って、TH≧TCO−α(即ち、TCO−TH≦α)である場合は、放熱器4の暖房能力が要求能力を満たしている状況である。そして、ヒートポンプコントローラ32は放熱器4の暖房能力が要求能力を満たしている状況では(ステップS11でNo)、ステップS17に進んで圧縮機2の運転を継続する。
 一方、ステップS11で加熱温度THが目標ヒータ温度TCOより低く、その差がαより大きい場合(Yes:放熱器4の暖房能力が要求能力を満たしていない)には、ヒートポンプコントローラ32はステップS12に進んで圧縮機2を停止する(HP運転不許可)。即ち、差ΔTXOが前述した第1又は第2の重度着霜判定条件を満たして重度着霜フラグfFST2がセットされ、且つ、加熱温度THが目標ヒータ温度TCOより低く、その差がαより大きい場合、これ以上のヒートポンプ運転は困難と判断してヒートポンプコントローラ32は圧縮機2の運転を禁止する。
 そして、ヒートポンプコントローラ32はステップS13に進み、補助ヒータ23に通電して車室内を暖房する前述した補助ヒータ単独モードと同様の暖房運転を行う。即ち、ヒートポンプコントローラ32は冷媒回路Rの圧縮機2と室外送風機15を停止し、補助ヒータ23に通電してこの補助ヒータ23のみで車室内を暖房する。重度着霜フラグfFST2がセット(「1」)されている限り、ヒートポンプコントローラ32はステップS3からステップS11に進むようになるので、放熱器4の暖房能力が要求能力を満たしている状況では(ステップS11でNo)、ステップS17に進んで圧縮機2の運転を継続し、満たしていない状況では(ステップS11でYES)、ステップS12に進んで圧縮機2の運転を禁止し、補助ヒータ単独モードと同様の車室内の暖房が行うことになる。
 次に、ステップS14で前述した通常着霜フラグfFST1がセット(「1」)されているか、又は、重度着霜フラグfFST2がセット(「1」)されているか否か判断し、通常着霜フラグfFST1、又は、重度着霜フラグfFST2がセット(「1」)されている場合、即ち、室外熱交換器7の除霜が必要と判断している場合には、ステップS15に進んで着霜要求フラグfDFSTReqをセット(「1」)する。この除霜要求フラグfDFSTReqがセット(「1」)されたことは除霜要求としてヒートポンプコントローラ32から空調コントローラ20に通知される(図2)。
 一方、ステップS1で車両が起動され、且つ、HP空調要求がある状態では無く、ステップS18に進んでもHP空調要求が無い場合、ヒートポンプコントローラ32はステップS19に進む。このステップS19でヒートポンプコントローラ32は除霜要求フラグfDFSTReqがセット(「1」)されているか否か判断し、リセット(「0」)されていればステップS24に進み、不揮発性メモリ80に保持されている通常着霜フラグfFST1と重度着霜フラグfFST2の状態を前回の状態(前回値)として保持し続ける。
 他方、前述したステップS15で除霜要求フラグfDFSTReqがセット(「1」)されている場合、ヒートポンプコントローラ32はステップS19からステップS20に進み、空調コントローラ20から除霜許可が通知されているか否か判断する。
 ここで、空調コントローラ20は、前述した如くヒートポンプコントローラ32から除霜要求フラグfDFSTReqがセットされたことが除霜要求として通知された場合、現在の車両の状態が室外熱交換器7の除霜許可条件を満たしているか否か判定することで、室外熱交換器7の除霜の可否判定を行う。実施例の場合の除霜許可条件は、前述したHP空調要求が無く、且つ、バッテリ75が充電中(車両は停車)であるか、バッテリ75の残量が所定値以上あることである。
 空調コントローラ20は、現在の車両の状態が上記除霜許可条件を満たしている場合、除霜許可フラグfDFSTPermをセット(「1」)する。この除霜許可フラグfDFSTPermがセット(「1」)されたことは除霜許可として空調コントローラ20からヒートポンプコントローラ32に通知される(図2)。ヒートポンプコントローラ32は空調コントローラ20から除霜許可が通知された場合、ステップS20からステップS21に進んで室外熱交換器7の除霜運転を行い、通知されていない場合にはステップS24に進む。
 ヒートポンプコントローラ32はステップS21の除霜運転で、冷媒回路Rを暖房モードの状態とした上で、室外膨張弁6の弁開度を全開とし、エアミックスダンパ28による風量割合SWを「0」として暖房用熱交換通路3Aへの通風を行わない(放熱器4に通風しない)状態とする。そして、圧縮機2を運転し、当該圧縮機2から吐出された高温の冷媒を放熱器4、室外膨張弁6を経て室外熱交換器7に流入させ、当該室外熱交換器7の着霜を融解させる。
 そして、ステップS22でヒートポンプコントローラ32は室外熱交換器温度センサ54が検出する室外熱交換器7の温度(この場合、室外熱交換器温度TXO)が所定の除霜終了温度(例えば、+3℃等)より高くなった状態が所定時間(例えば、数分)継続しているか否か(除霜終了条件)を判断し、室外熱交換器7の除霜が終了して室外熱交換器温度TXOが係る除霜終了条件を満たした場合、ステップS23に進んで除霜を完了したものとし、前述した通常着霜フラグfFST1と重度着霜フラグfFST2をリセット(「0」)する(ステップS19~ステップS24が除霜制御)。
 これにより、以後はステップS1からステップS2、ステップS3に進んだ場合、ステップS4に進むようになるので、その後の判断で圧縮機2の運転禁止は解除され、暖房モードによる車室内暖房が可能となる。
 (11−2)室外熱交換器への着霜の進行状態の判定と圧縮機等の制御(その2)
 次に、図10を用いて室外熱交換器7の着霜の進行状態の判定と圧縮機2等の制御の他の例を説明する。尚、ヒートポンプコントローラ32はこの例の場合も図7と同様の制御を行うが、図7中の差ΔTXOは後述する差ΔPXOに置き換えるものとする。そして、この実施例ではヒートポンプコントローラ32は室外熱交換器圧力センサ56から得られる室外熱交換器7の現在の冷媒蒸発圧力PXOと、外気が低湿環境で室外熱交換器7に着霜していない無着霜時における当該室外熱交換器7の冷媒蒸発圧力PXObaseとに基づき、室外熱交換器7への着霜の進行状態を判定する。この場合のヒートポンプコントローラ32は、無着霜時における室外熱交換器7の冷媒蒸発圧力PXObaseを、次式(V)を用いて演算することで推定する。
 PXObase=f(Tam、NC、Ga*SW、VSP、PCI)
 =k6×Tam+k7×NC+k8×Ga*SW+k9×VSP+k10×PCI
                                 ・・(V)
 尚、式(V)の各パラメータは式(IV)と同様であるので説明を省略する。また、各係数k6~k10も前述した各係数k1~k5とそれぞれ同様の傾向(正負)となる。
 図10で実線は室外熱交換器7の冷媒蒸発圧力PXOの変化を示し、破線は無着霜時における冷媒蒸発圧力PXObaseの変化を示している。起動初期(非着霜)には室外熱交換器7の冷媒蒸発圧力PXOと無着霜時における冷媒蒸発圧力PXObaseは略同じ値となる。暖房モードの進行に伴って車室内の温度は暖められ、車両用空気調和装置1の負荷は低下してくるので、前述した冷媒流量や放熱器4の通過風量も低下し、式(V)で算出されるPXObase(図10の破線)は上昇してくる。
 一方、室外熱交換器7に着霜が生じると外気との熱交換性能が阻害されるようになるので、冷媒蒸発圧力PXO(実線)は低下していき、やがてPXObaseを下回る。ヒートポンプコントローラ32はこの実施例の場合には、図7のステップS5で式(V)に現在の各パラメータの値を代入することで得られる無着霜時における冷媒蒸発圧力PXObaseと現在の冷媒蒸発圧力PXOとの差ΔPXO(ΔPXO=PXObase−PXO)を演算(算出)する。以後は、図7のステップS7、ステップS9、ステップS16における差ΔTXOを差ΔPXOに置き換えて制御を行う。但し、第1の閾値A1や第2の閾値A2(1)、A2(2)、第1の所定時間t1や第2の所定時間t2(1)、t2(2)は差ΔTXOの場合とは異なるものとする。
 このようにヒートポンプコントローラ32が、室外熱交換器7の冷媒蒸発温度TXOが無着霜時における当該室外熱交換器7の冷媒蒸発温度TXObaseより低下したときの冷媒蒸発温度TXOと無着霜時における冷媒蒸発温度TXObaseとの差ΔTXO=TXObase−TXOに基づき、又は、室外熱交換器7の冷媒蒸発圧力PXOが無着霜時における当該室外熱交換器7の冷媒蒸発圧力PXObaseより低下したときの冷媒蒸発圧力PXOと無着霜時における冷媒蒸発圧力PXObaseとの差ΔPXO=PXObase−PXOに基づき、室外熱交換器7への着霜の進行状態を判定すると共に、差ΔTXO、又は、差ΔPXOが所定の通常着霜判定条件を満たした場合、通常着霜フラグfFST1をセット(「1」)し、この通常着霜フラグfFST1がセット(「1」)されている場合、除霜要求フラグfDFSTReqをセット(「1」)して所定の除霜要求を行い、制御装置11の電源が断たれた場合にも通常着霜フラグfFST1の状態を保持し、暖房モードの実行は許可するようにしたので、室外熱交換器7の着霜の進行状態が、通常着霜判定条件を満たした場合でも、車室内の暖房は継続されることになる。また、通常着霜フラグfFST1の状態は制御装置11の電源が断たれても保持されるので、車両が停止し、その後、起動されたときにも暖房モードの実行は許可されることになる。
 即ち、室外熱交換器7の着霜の度合いが、通常着霜判定条件を満たす程度である場合には、車両及び車両用空気調和装置1の運転中であるときは車室内の暖房を継続し、車両及び車両用空気調和装置1を起動したときには当該起動時から暖房を行って快適性を維持することができるようになる。
 そして、実施例ではヒートポンプコントローラ32が、除霜要求フラグfDFSTReqをセット(「1」)して除霜要求を行った場合、空調コントローラ20が室外熱交換器7の除霜可否を判断し、許可した場合にはヒートポンプコントローラ32が室外熱交換器7の除霜を行い、通常着霜フラグfFST1をリセット(「0)」するようにしているので、室外熱交換器7の除霜を行って、着霜に伴う運転効率の低下を抑制することが可能となる。この場合、ヒートポンプコントローラ32は電源が断たれても通常着霜フラグfFST1の状態を保持するので、一旦車両を停止し、車両用空気調和装置1の電源が断たれた後であっても、室外熱交換器7の除霜は確実に行われることになる。
 尚、室外熱交換器7の除霜の許可については、実施例の如く空調コントローラ20が、車室内の空調要求(HP空調要求)が無く、且つ、圧縮機2を駆動するためのバッテリ75が充電中であるか当該バッテリ75の残量が所定値以上あることを条件として、室外熱交換器7の除霜を許可するようにすれば良く、或いは、他の条件(外気温度等の環境条件や車両用空気調和装置1の状態)で判定しても良い。
 また、実施例の如く制御装置11を、車室内の空調設定操作を行うための空調操作部53が接続された空調コントローラ20と、圧縮機2の運転を制御するヒートポンプコントローラ32とから構成し、空調コントローラ20とヒートポンプコントローラ32が、車両通信バス65を介して情報の送受信を行うようにした場合には、上記の如くヒートポンプコントローラ32が、差ΔTXO、又は、差ΔPXOを算出し、当該差ΔTXO、又は、差ΔPXOが通常着霜判定条件を満たした場合、通常着霜フラグfFST1をセット(「1」)し、空調コントローラ20に対して除霜要求を行い、空調コントローラ20から除霜許可が通知された場合、室外熱交換器7の除霜を行い、通常着霜フラグfFST1をリセット(「0」)すると共に、空調コントローラ20が、ヒートポンプコントローラ32から除霜要求があった場合、室外熱交換器7の除霜可否を判断し、許可する場合には除霜許可フラグfDFSTPermをセット(「1」)して当該室外熱交換器7の除霜許可をヒートポンプコントローラ32に通知するようにすることで、車室内を快適に暖房空調しつつ、室外熱交換器7の着霜に伴う運転効率の低下を適切に抑制することができるようになる。
 更に、実施例ではヒートポンプコントローラ32が、通常着霜判定条件よりも更に室外熱交換器7への着霜が進行したことを判定するための第1及び第2の重度着霜判定条件を有しており、差ΔTXO、又は、差ΔPXOが何れかの重度着霜判定条件を満たした場合、重度着霜フラグfFST2をセット(「1」)し、この重度着霜フラグfFST2がセットされている場合も除霜要求フラグfDFSTReqをセット(「1」)して除霜要求を行い、ヒートポンプコントローラ32の電源が断たれた場合にも重度着霜フラグfFST2の状態を保持すると共に、暖房モードにおける圧縮機2の運転を禁止するようにしているので、前述した通常着霜判定条件よりも更に室外熱交換器7への着霜が進行し、第1又は第2の重度着霜判定条件を満たすようになった場合には、圧縮機2を停止して、それ以上の運転効率の低下と過着霜の発生を未然に防止することができようになる。
 尚、実施例では第1の重度着霜判定条件と第2の重度着霜判定条件という二段階の重度着霜判定を行っているが、何れか一つの重度着霜判定条件で判定するようにしても良い。但し、実施例の如く二段階で判定することで、室外熱交換器7に過度の着霜が短時間で進行してことと、室外熱交換器7に中程度の着霜が長時間継続して生じていることの双方を判定することができるようになる。
 また、実施例では空気流通路3の暖房用熱交換通路3A内に補助ヒータ23を設けられており、ヒートポンプコントローラ32が、差ΔTXO、又は、差ΔPXOが第1又は第2の重度着霜判定条件を満たしたことで圧縮機2の運転を禁止した場合、補助ヒータ23により車室内を暖房するようにしたので、室外熱交換器7の着霜の進行状態が、第1又は第2の重度着霜判定条件を満たして圧縮機2の運転を禁止した後も、補助ヒータ23によって車室内の暖房を継続することができるようになる。
 そして、上記のように室外熱交換器7の着霜の進行状態が第1又は第2の重度着霜判定条件を満たし、除霜要求を行った場合にも、空調コントローラ20が室外熱交換器7の除霜可否を判断し、許可した場合には、ヒートポンプコントローラ32が室外熱交換器7の除霜を行い、重度着霜フラグfFST2をリセットするようにしているので、室外熱交換器7の除霜を行って、着霜に伴う運転効率の低下を抑制することが可能となる。この場合もヒートポンプコントローラ32は、電源が断たれても重度着霜フラグfFST2の状態を保持するので、一旦車両を停止し、車両用空気調和装置1の電源が断たれた後であっても、室外熱交換器7の除霜は確実に行われることになる。
 尚、室外熱交換器7の除霜の許可については、この場合も実施例の如く空調コントローラ20が、車室内の空調要求(HP空調要求)が無く、且つ、圧縮機2を駆動するためのバッテリ75が充電中であるか当該バッテリ75の残量が所定値以上あることを条件として、室外熱交換器7の除霜を許可するようにすれば良い。
 また、同様に実施例の如く制御装置11を、車室内の空調設定操作を行うための空調操作部53が接続された空調コントローラ20と、圧縮機2の運転を制御するヒートポンプコントローラ32とから構成し、空調コントローラ20とヒートポンプコントローラ32が、車両通信バス65を介して情報の送受信を行うようにした場合には、この場合もヒートポンプコントローラ32が、差ΔTXO、又は、差ΔPXOを算出し、当該差ΔTXO、又は、差ΔPXOが第1又は第2の重度着霜判定条件を満たした場合、重度着霜フラグfFST2をセット(「1」)し、除霜要求フラグfDFSTReqをセット(「1」)して空調コントローラ20に除霜要求を行い、空調コントローラ20から除霜許可が通知された場合、室外熱交換器7の除霜を行い、重度着霜フラグfFST2をリセット(「0」)すると共に、空調コントローラ20が、ヒートポンプコントローラ32から除霜要求があった場合、室外熱交換器7の除霜可否を判断し、許可する場合には除霜許可フラグfDFSTPermをセット(「1」)して当該室外熱交換器7の除霜許可をヒートポンプコントローラ32に通知するようにすることで、車室内を快適に暖房空調しつつ、室外熱交換器7の着霜に伴う運転効率の低下を適切に抑制することができるようになる。
 また、実施例の如く通常着霜判定条件を、差ΔTXO、又は、差ΔPXOが第1の閾値A1より大きい状態が第1の所定時間t1継続したこととし、第1及び第2の重度着霜判定条件を、差ΔTXO、又は、差ΔPXOが第2の閾値A2(1)、A2(2)より大きい状態が第2の所定時間t2(1)、t2(2)継続したこととして、少なくとも第2の閾値A2(1)、A2(2)が第1の閾値A1より大きいこととすれば、室外熱交換器7の着霜の度合いに応じて、圧縮機2を運転して暖房モードを継続するか、圧縮機2の運転を禁止するかの段階的な判断を、的確に行うことができるようになる。
 尚、各着霜判定条件の第1の所定時間t1と、第2の所定時間t2(1)、t2(2)は実施例の条件に限らず、例えば、第1の所定時間t1と第2の所定時間t2(1)、t2(2)が同じ、若しくは、第2の所定時間t2(1)が第1の所定時間t1より長く、第2の所定時間t2(2)が第1の所定時間t1より短くてもよく、通常着霜判定条件と第1、第2の重度着霜判定条件の目的(段階的な判断)を逸脱しない範囲で、装置に応じて適宜設定すると良い。
 また、実施例の如くヒートポンプコントローラ32が、環境条件、及び/又は、運転状況を示す指標に基づいて無着霜時における室外熱交換器の冷媒蒸発温度TXObase、又は、無着霜時における室外熱交換器の冷媒蒸発圧力PXObaseを推定することで、室外熱交換器7の着霜の進行を的確に検知することができるようになる。
 (12)室外熱交換器の自然除霜判定制御
 次に、図8を参照しながらヒートポンプコントローラ32による室外熱交換器7の自然除霜判定とその場合の除霜に関する制御について説明する。上述した如くヒートポンプコントローラ32は室外熱交換器7の除霜の必要性と判断し、図7のステップS8で軽度着霜フラグfFST1をセットし、ステップS10で重度着霜フラグfFST2をセットし、最終的にステップS15で除霜要求フラグfDFSTReqをセットして、空調コントローラ20で除霜が許可されれば(除霜許可フラグfDFSTPermがセット)、ステップS21で室外熱交換器7の除霜運転を実行するものであるが、例えば、外気温度Tamが比較的高い環境であれば、室外熱交換器7に成長した着霜は自然に融解していく。
 また、暖房モードで室外熱交換器7に成長した着霜も、その他のこの実施例での除湿暖房モードや除湿冷房モード、冷房モードやMAX冷房モードが行われれば、室外熱交換器7では冷媒は放熱することになるので、その場合にも着霜は高温の冷媒から加熱されて自然に融解(解氷)し、除去されることになる。
 そこで、この実施例ではヒートポンプコントローラ32は、一旦室外熱交換器7の除霜が必要と判断した後、除霜運転が行われる前に、室外熱交換器7が自然に除霜(解氷)されたか否か判断して、除霜を行わないようにしている。以下、具体的な制御について説明する。即ち、図7のフローチャートに続く図8のステップS25で、ヒートポンプコントローラ32は車両が起動されているか否か判断する(IG ON中)。そして、起動されている場合には、ステップS26に進み、この実施例では前述した重度着霜フラグfFST2がセット(「1」)されているか否か判断する。
 前述した如く室外熱交換器7の除霜が必要と判断され、図7のステップS10で重度着霜フラグfFST2がセットされて、その状態が不揮発性メモリ80に保持されている場合、ヒートポンプコントローラ32はステップS27で室外熱交換器7の除霜運転が実行されていないか否か判断する。重度着霜フラグfFST2はセットされたが、除霜許可条件が満たされずに未だ図7のステップS21の除霜運転が実行されていない場合、ヒートポンプコントローラ32はステップS28に進んで第1の自然除霜条件が成立しているか否か判断する。
 (12−1)第1の自然除霜条件
 実施例の第1の自然除霜条件は、外気温度センサ33が検出する外気温度Tamが氷点より比較的高い所定値Tam1(例えば+5℃等)以上であって、且つ、室外熱交換器温度センサ54が検出する室外熱交換器7の冷媒蒸発温度TXO(室外熱交換器7で冷媒が放熱しているとき等、室外熱交換器7で冷媒が蒸発していないときには室外熱交換器7の出口の冷媒温度を云うものとする)が外気温度Tam−β(βは比較的小さい所定値)以上である状態が所定時間t5(例えば数十分等)継続していること、である。
 実施例の第1の自然除霜条件の如く、外気温度Tamが比較的高く、室外熱交換器7の冷媒蒸発温度TXOも外気温度Tam−β以上である状態が所定時間t5継続した場合、室外熱交換器7の着霜は自然に融解(解氷)されて除去されるものと考えられる。そこで、ヒートポンプコントローラ32はステップS28でこの第1の自然除霜条件が成立した場合、ステップS29に進んで全ての着霜関連のフラグ、即ち、不揮発性メモリ80に記憶されている軽度着霜フラグfFST1、重度着霜フラグfFST2及び除霜要求フラグfDFSTReqをリセットする。
 これにより、空調コントローラ20は除霜許可フラグfDFSTPermをセットすることは無くなり、ヒートポンプコントローラ32もステップS19からステップS20に進むことも無くなるので、ステップS21にも進まなくなり、室外熱交換器7の除霜は行われなくなる。
 他方、ステップS25で車両が起動されていない場合、ヒートポンプコントローラ32はステップS30に進んで車両が停止中(起動されていないIG OFFの状態)か否か判断し、停止中であるときにはステップS31に進み、室外熱交換器7の着霜履歴があるか否か、即ち、軽度着霜フラグfFST1、又は、重度着霜フラグfFST2がセット(「1」)されているか否か判断する。
 (12−2)第2の自然除霜条件
 ステップS7で軽度着霜フラグfFST1、又は、重度着霜フラグfFST2がセットされ、未だ除霜運転が未実施でそれらがリセットされていない場合、ヒートポンプコントローラ32はステップS32に進み、現在車両を起動中(IG OFFからON中)か否か判断する。そして、起動中である場合にはステップS33に進み、暖房モード以外の運転モード、実施例では室外熱交換器7で冷媒を吸熱させない除湿暖房モード、除湿冷房モード、冷房モード、及び、MAX冷房モードのうちの何れかが選択され、当該運転モードが所定時間以上継続されたか否か判断する。
 この暖房モード以外の運転モードが選択され、当該運転モードが所定時間以上継続されたこと、が第2の自然除霜条件となる。除湿暖房モード、除湿冷房モード、冷房モード、及び、MAX冷房モードが選択されると、この実施例では室外熱交換器7では冷媒が放熱することになるので、着霜は高温冷媒の熱で融解除去される。そこで、ヒートポンプコントローラ32はステップS33でこの第2の自然除霜条件が成立した場合もステップS29に進んで全ての着霜関連のフラグ(軽度着霜フラグfFST1、重度着霜フラグfFST2及び除霜要求フラグfDFSTReq)をリセットする。
 これにより、同様に空調コントローラ20は除霜許可フラグfDFSTPermをセットすることは無くなり、ヒートポンプコントローラ32もステップS19からステップS20に進むことも無くなるので、ステップS21にも進まなくなり、室外熱交換器7の除霜は行われなくなる。
 (12−3)外気温度履歴による自然除霜判定(第3、第4の自然除霜条件)
 一方、ステップS32で現在車両を起動中では無い場合、即ち、車両が停止中(IG OFF中)である場合、ヒートポンプコントローラ32はステップS34に進んで外気温度履歴に基づく室外熱交換器7の自然除霜判定を行う。実施例の外気温度履歴による自然除霜判定の条件は第3の自然除霜条件と第4の自然除霜条件の二種類ある。
 (12−3−1)第3の自然除霜条件
 尚、制御装置11を構成する空調コントローラ20及びヒートポンプコントローラ32は、車両の停止中にも所定のサンプリング周期(例えば1分毎)で起動し、外気温度センサ33が検出する外気温度Tamを取得して不揮発性メモリ80に履歴として記憶しているものとする。そして、実施例の第3の自然除霜条件は、図11に示されるように、車両が停止中に、外気温度センサ33が検出する外気温度Tamが氷点より比較的高い所定値Tam2(例えばTam1と同じ+5℃等。異なる値でもよい)以上となっている時間の積算値が所定時間t3(例えば数十分等)以上になったこと、である。
 第3の自然除霜条件の如く、車両の停止中に外気温度Tamが比較的高い時間が延べ所定時間t3以上続けば、室外熱交換器7の着霜は自然に融解(解氷)されて除去されるものと考えられる。そこで、図11に示す如く車両が停止している間に、外気温度Tamが所定値Tam2以上となっている時間がa、b、cとあり、これらの積算値(a+b+c)が所定時間t3以上となった場合、ヒートポンプコントローラ32はステップS34でこの第3の自然除霜条件が成立したものと判定してステップS35に進み、全ての着霜関連のフラグ(軽度着霜フラグfFST1、重度着霜フラグfFST2及び除霜要求フラグfDFSTReq)をリセットする。
 これにより、前述同様に空調コントローラ20は除霜許可フラグfDFSTPermをセットすることは無くなり、ヒートポンプコントローラ32もステップS19からステップS20に進むことも無くなるので、ステップS21にも進まなくなり、室外熱交換器7の除霜は行われなくなる。
 (12−3−2)第4の自然除霜条件
 また、ステップS34での外気温度履歴による自然除霜判定の第4の自然除霜条件は、図12に示されるように、車両が停止中に、外気温度センサ33が検出する外気温度Tamが氷点より比較的高い所定値Tam2以上となり、外気温度Tamと所定値Tam2との差と経過時間から求められる積分値が所定値X1以上になったこと、である。
 第4の自然除霜条件の如く、車両の停止中に外気温度Tamが比較的高くなり、所定値Tam2との差と経過時間から求められる積分値が所定値X1となれば、室外熱交換器7の着霜は自然に融解(解氷)されて除去されるものと考えられる。そこで、図12に示す如く車両が停止している間に、外気温度Tamが所定値Tam2以上となり、それらの差(Tam−Tam2)を経過時間で積分した値(図12中にハッチングで示す範囲の面積9が所定値X1以上となった場合、ヒートポンプコントローラ32はステップS34でこの第4の自然除霜条件が成立したものと判定してステップS35に進み、全ての着霜関連のフラグ(軽度着霜フラグfFST1、重度着霜フラグfFST2及び除霜要求フラグfDFSTReq)をリセットする。
 これにより、前述同様に空調コントローラ20は除霜許可フラグfDFSTPermをセットすることは無くなり、ヒートポンプコントローラ32もステップS19からステップS20に進むことも無くなるので、ステップS21にも進まなくなり、室外熱交換器7の除霜は行われなくなる。特に、第4の自然除霜条件の如く外気温度Tamと所定値Tam2との差を経過時間で積分するようにすれば、より精度良く室外熱交換器7の自然除霜の状態を判断することができるようになる。
 (12−4)第5の自然除霜条件
 尚、実施例では上記第1~第4の自然除霜条件を全て判断するようにしたが、それに限らず、それらの何れか、又は、それらの組み合わせで判断するようにしてもよい。また、上記各自然除霜条件以外にも、例えば図8のステップS34の判断で、車両が停止してから、比較的長い所定期間t4(例えば1ヶ月等)経過したときも、室外熱交換器7の着霜は自然に融解(解氷)されて無くなっているものと考えられる。そこで、これを第5の自然除霜条件として、ヒートポンプコントローラ32が係る第5の自然除霜条件が成立した場合にも、ステップS34からステップS35に進んで全ての着霜関連フラグをリセットするようにしてもよい。
 また、実施例では外気温度センサ33を空調コントローラ20に接続し、外気温度Tamをヒートポンプコントローラ32に送ってヒートポンプコントローラ32で自然除霜条件の成立を判定するようにしたが、それに限らず、空調コントローラ20で自然除霜条件の成立を判定し、ヒートポンプコントローラ32に通知するようにしてもよい。その場合には図8のステップS28やステップS33、ステップS34での判定は、空調コントローラ20側で行われ、ヒートポンプコントローラ32は空調コントローラ20からの通知を受けて全着霜関連フラグをリセットすることになる。それにより、支障無く不必要な室外熱交換器7の除霜を回避することが可能となる。逆に、外気温度センサ33をヒートポンプコントローラ32に接続して、全てヒートポンプコントローラ32側で外気温度Tamを取り込んで上述した判定を行うようにしてもよい。
 以上詳述した如く、室外熱交換器7の除霜が必要と判断した後、除霜運転を行う前に、所定の自然除霜条件が成立した場合、室外熱交換器7の除霜を行わないようにすれば、室外熱交換器7の除霜が必要と判断した場合にも、その後所定の自然除霜条件が成立して室外熱交換器7の着霜が自然に融解したものと予想される場合には、除霜を行わないようにして不必要な室外熱交換器7の除霜を未然に回避することができるようになる。これにより、室外熱交換器7の除霜を行うこと無く、車室内の暖房を行うことが可能な状況では除霜を行わず、省エネルギーに寄与しながら、車室内の快適な暖房空調を実現することができるようになる。
 また、実施例の如く第1の自然除霜条件を、外気温度Tamが所定値Tam1以上であって、且つ、室外熱交換器7の冷媒蒸発温度TXOが外気温度Tam−所定値β以上である状態が所定時間t5継続したこととし、第2の自然除霜条件を暖房モード以外の運転モード(この実施例での室外熱交換器7で冷媒を吸熱させない運転モード)が選択されたこととし、第3の自然除霜条件を車両の停止中に、外気温度Tamが所定値Tam2以上となっている時間の積算値が、所定時間t3以上になったこととし、第4の自然除霜条件を車両の停止中に、外気温度Tamが所定値Tam2以上となり、その差と経過時間から求められる積分値が、所定値X1以上になったこととし、更に、第5の自然除霜条件を車両が停止してから所定期間t4以上経過したこととして、それらのうちの何れか、又は、それらの組み合わせ、若しくは、それらの全てを判断することで、室外熱交換器7の着霜が自然に融解したことを的確に予想することができるようになる。
 また、実施例の如く制御装置11が空調コントローラ20とヒートポンプコントローラ32とから構成され、空調コントローラ20とヒートポンプコントローラ32が、車両通信バス65を介して情報の送受信を行う場合には、ヒートポンプコントローラ32が、室外熱交換器7の除霜が必要と判断した場合、所定の除霜要求フラグfDFSTReqをセットし、空調コントローラ20が所定の除霜許可フラグfDFSTPermをセットした場合、室外熱交換器7の除霜を行い、除霜要求フラグfDFSTReqをリセットすると共に、この除霜要求フラグfDFSTReqをセットした後、自然除霜条件が成立した場合にも、除霜要求フラグfDFSTReqをリセットし、空調コントローラ20が、ヒートポンプコントローラ32により除霜要求フラグfDFSTReqがセットされている場合、除霜許可条件が満たされたか否か判定し、満たされた場合には、除霜許可フラグfDFSTPermをセットするようにすることで、車室内を快適に暖房空調し、更に、室外熱交換器7の着霜に伴う運転効率の低下を適切に抑制しながら、不必要な除霜も回避することができるようになる。
FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention. The vehicle according to the embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and is used for traveling with electric power charged in a battery 75 (FIG. 2) mounted in the vehicle. The electric motor is driven to travel (not shown), and the vehicle air conditioner 1 of the present invention is also driven by the power of the battery 75.
That is, the vehicle air conditioner 1 of the embodiment performs a heating mode by heat pump operation using a refrigerant circuit in an electric vehicle that can not be heated by engine waste heat, and further performs a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode, Each operation mode of the MAX cooling mode (maximum cooling mode) and the auxiliary heater only mode is selectively executed.
The present invention is applicable not only to electric vehicles as vehicles, but also to so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles traveling with an engine. Needless to say.
The vehicle air conditioner 1 of the embodiment performs air conditioning (heating, cooling, dehumidifying, and ventilating) of a vehicle compartment of an electric vehicle, and is an electric type that receives power from a battery 75 to drive and compress a refrigerant. The compressor 2 and the air flow passage 3 of the HVAC unit 10 through which air in the passenger compartment is aerated and circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G. And an outdoor expansion valve 6 (pressure reducing device) including a motor-operated valve for decompressing and expanding the refrigerant during heating, and a radiator 4 provided outside the vehicle for radiating heat during cooling The outdoor heat exchanger 7, which functions as a heat exchanger and performs heat exchange between the refrigerant and the outside air so as to function as an evaporator during heating, and an indoor expansion valve 8 (pressure reduction device) including a motorized valve that decompresses and expands the refrigerant. , In the air flow passage 3 A heat sink 9 for cooling the air which absorbs heat from the outside of the vehicle interior by absorbing heat from the outside of the vehicle interior during cooling and dehumidification, the accumulator 12 and the like are sequentially connected by the refrigerant pipe 13, and the refrigerant circuit R is It is configured.
The refrigerant circuit R is filled with a predetermined amount of refrigerant and lubricating oil. The outdoor heat exchanger 7 is provided with an outdoor fan 15. The outdoor fan 15 exchanges heat between the outdoor air and the refrigerant by forcibly ventilating the outdoor air to the outdoor heat exchanger 7, whereby the outdoor fan 15 is also outdoors when the vehicle is stopped (that is, the vehicle speed is 0 km / h). The heat exchanger 7 is configured to ventilate outside air.
In addition, the outdoor heat exchanger 7 sequentially has the receiver dryer portion 14 and the subcooling portion 16 on the refrigerant downstream side, and the refrigerant pipe 13A that has come out of the outdoor heat exchanger 7 is a receiver via the solenoid valve 17 opened during cooling. The refrigerant pipe 13B connected to the dryer unit 14 and at the outlet side of the subcooling unit 16 is connected to the inlet side of the heat absorber 9 via the indoor expansion valve 8. The receiver dryer portion 14 and the subcooling portion 16 structurally constitute a part of the outdoor heat exchanger 7.
Further, the refrigerant pipe 13B between the supercooling unit 16 and the indoor expansion valve 8 is provided in heat exchange relation with the refrigerant pipe 13C on the outlet side of the heat absorber 9, and both constitute an internal heat exchanger 19. Thus, the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low temperature refrigerant that has exited the heat absorber 9.
Further, the refrigerant pipe 13A that has exited from the outdoor heat exchanger 7 is branched into the refrigerant pipe 13D, and the branched refrigerant pipe 13D is downstream of the internal heat exchanger 19 via the solenoid valve 21 opened during heating. It is connected in communication with the refrigerant pipe 13C in The refrigerant pipe 13C is connected to the accumulator 12, and the accumulator 12 is connected to the refrigerant suction side of the compressor 2. Further, the refrigerant pipe 13E on the outlet side of the radiator 4 is connected to the inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.
Further, the refrigerant pipe 13G between the discharge side of the compressor 2 and the inlet side of the radiator 4 is provided with a solenoid valve 30 (constituting a flow path switching device) closed during dehumidifying heating and MAX cooling described later. There is. In this case, the refrigerant pipe 13G is branched to a bypass pipe 35 on the upstream side of the solenoid valve 30, and the bypass pipe 35 is a solenoid valve 40 (also constituting a flow path switching device) opened during dehumidifying heating and MAX cooling. Is connected to the refrigerant pipe 13E on the downstream side of the outdoor expansion valve 6). The bypass pipe 45, the solenoid valve 30, and the solenoid valve 40 constitute a bypass device 45.
By configuring the bypass device 45 with the bypass pipe 35, the solenoid valve 30, and the solenoid valve 40 as described later, the dehumidifying heating mode or MAX for directly flowing the refrigerant discharged from the compressor 2 into the outdoor heat exchanger 7 as described later It is possible to smoothly switch between the cooling mode and the heating mode, the dehumidifying cooling mode, and the cooling mode in which the refrigerant discharged from the compressor 2 flows into the radiator 4.
Further, in the air flow passage 3 on the air upstream side of the heat absorber 9, suction ports for the outside air suction port and the inside air suction port are formed (represented by the suction port 25 in FIG. 1), this suction port A suction switching damper 26 is provided at 25 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) that is the air inside the vehicle compartment and the outside air (outside air introduction mode) that is the air outside the vehicle outside There is. Further, on the air downstream side of the suction switching damper 26, an indoor blower (blower fan) 27 for supplying the introduced internal air and the external air to the air flow passage 3 is provided.
Further, in FIG. 1, reference numeral 23 denotes an auxiliary heater as an auxiliary heating device provided in the vehicle air conditioner 1 of the embodiment. The auxiliary heater 23 of the embodiment is constituted by a PTC heater which is an electric heater, and the inside of the air flow passage 3 which is on the windward side (air upstream side) of the radiator 4 with respect to the air flow of the air flow passage 3. Provided in Then, when the auxiliary heater 23 is energized to generate heat, the air in the air flow passage 3 flowing into the radiator 4 through the heat absorber 9 is heated. That is, the auxiliary heater 23 serves as a so-called heater core to heat the vehicle interior or supplement it.
Here, the air flow passage 3 on the downwind side (air downstream side) of the heat absorber 9 of the HVAC unit 10 is partitioned by the partition wall 10A, and a heating heat exchange passage 3A and a bypass passage 3B bypassing it are formed. The radiator 4 and the auxiliary heater 23 described above are disposed in the heating heat exchange passage 3A.
In the air flow passage 3 on the windward side of the auxiliary heater 23, the air (internal air and outside air) in the air flow passage 3 after flowing into the air flow passage 3 and passing through the heat absorber 9 is assisted. An air mix damper 28 is provided to adjust the ratio of ventilation to the heating heat exchange passage 3A in which the heater 23 and the radiator 4 are disposed.
Furthermore, the HVAC unit 10 on the downwind side of the radiator 4 has a FOOT (foot) outlet 29A (first outlet) and a VENT (vent) outlet 29B (second outlet for the FOOT outlet 29A). An outlet, a first outlet for the DEF outlet 29C, and an outlet for the DEF (def) outlet 29C (second outlet) are formed. The FOOT blowout port 29A is a blowout port for blowing air under the foot of the vehicle compartment and is at the lowest position. Further, the VENT outlet 29B is an outlet for blowing air around the driver's chest and face in the vehicle compartment, and is above the FOOT outlet 29A. The DEF outlet 29C is a outlet for blowing air to the inner surface of the windshield of the vehicle, and is located at the highest position above the other outlets 29A and 29B.
The FOOT outlet 29A, the VENT outlet 29B, and the DEF outlet 29C are respectively provided with a FOOT outlet damper 31A, a VENT outlet damper 31B, and a DEF outlet damper 31C for controlling the amount of air blown out. It is done.
Next, FIG. 2 shows a block diagram of the control device 11 of the vehicle air conditioner 1 of the embodiment. The control device 11 is composed of an air conditioning controller 20 and a heat pump controller 32, each of which is constituted by a microcomputer which is an example of a computer having a processor, and these are CAN (Controller Area Network) and LIN (Local Interconnect Network). Are connected to a vehicle communication bus 65 that constitutes the The compressor 2 and the auxiliary heater 23 are also connected to the vehicle communication bus 65, and the air conditioning controller 20, the heat pump controller 32, the compressor 2 and the auxiliary heater 23 transmit and receive data via the vehicle communication bus 65. It is done.
The air conditioning controller 20 is a higher-level controller that controls the air conditioning inside the vehicle, and the outside air temperature sensor 33 for detecting the outside air temperature Tam of the vehicle and the outside air humidity for detecting the outside air humidity are input to the air conditioning controller 20. A sensor 34, an HVAC suction temperature sensor 36 for detecting the temperature of the air (suctioned air temperature Tas) sucked into the air flow passage 3 from the suction port 25 and flowing into the heat absorber 9, the temperature of the air (internal air) in the vehicle compartment An indoor air temperature sensor 37 for detecting (the indoor temperature Tin), an indoor air humidity sensor 38 for detecting the humidity of the air in the vehicle compartment, and an indoor CO for detecting the carbon dioxide concentration in the vehicle interior 2 A concentration sensor 39, an outlet temperature sensor 41 for detecting the temperature of the air blown into the vehicle compartment, a discharge pressure sensor 42 for detecting the discharge refrigerant pressure Pd of the compressor 2, and an amount of solar radiation into the vehicle compartment For example, each output of the photosensor type solar radiation sensor 51, the output of the vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, and the air conditioning setting operation of the vehicle interior such as switching of the set temperature and the operation mode. An air conditioning operation unit (air conditioning operation unit) 53 is connected.
In addition, the outdoor air blower 15, the indoor air blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, and the air outlet dampers 31A to 31C are connected to the output of the air conditioning controller 20, and they are used for air conditioning It is controlled by the controller 20. The battery 75 incorporates a controller, and the controller of the battery 75 transmits and receives data to and from the air conditioning controller 20 via the vehicle communication bus 65. Whether the battery 75 is charging the air conditioning controller 20 or not Information and information on the remaining amount (charging amount) of the battery 75 are transmitted.
The heat pump controller 32 mainly controls the control of the refrigerant circuit R, and an input of the heat pump controller 32 is a discharge temperature sensor 43 for detecting a discharge refrigerant temperature Td of the compressor 2 and a suction refrigerant of the compressor 2 A suction pressure sensor 44 for detecting a pressure Ps, a suction temperature sensor 55 for detecting a suction refrigerant temperature Ts of the compressor 2, and a radiator temperature sensor 46 for detecting a refrigerant temperature (a radiator temperature TCI) of the radiator 4; A radiator pressure sensor 47 that detects the refrigerant pressure of the radiator 4 (radiator pressure PCI), a heat sink temperature sensor 48 that detects the refrigerant temperature (heat sink temperature Te) of the heat sink 9, and a refrigerant pressure of the heat sink 9 Heat sensor pressure sensor 49 for detecting the temperature, the auxiliary heater temperature sensor 50 for detecting the temperature of the auxiliary heater 23 (auxiliary heater temperature Tptc), and the outlet of the outdoor heat exchanger 7 The outdoor heat exchanger temperature sensor 54 for detecting the refrigerant temperature (refrigerant evaporation temperature TXO of the outdoor heat exchanger 7, the outdoor heat exchanger temperature TXO), and the refrigerant pressure at the outlet of the outdoor heat exchanger 7 (of the outdoor heat exchanger 7 The outputs of the outdoor heat exchanger pressure sensor 56 for detecting the refrigerant evaporation pressure PKO and the outdoor heat exchanger pressure PKO) are connected.
The heat pump controller 32 outputs the outdoor expansion valve 6, the indoor expansion valve 8, the solenoid valve 30 (for reheating), the solenoid valve 17 (for cooling), the solenoid valve 21 (for heating), the solenoid valve 40 (bypass) ) Are connected, and they are controlled by the heat pump controller 32. The compressor 2 and the auxiliary heater 23 each have a built-in controller, and the controller of the compressor 2 and the auxiliary heater 23 transmits / receives data to / from the heat pump controller 32 via the vehicle communication bus 65. It is controlled.
The heat pump controller 32 and the air conditioning controller 20 mutually transmit and receive data via the vehicle communication bus 65, and control each device based on the output of each sensor and the setting inputted by the air conditioning operation unit 53. In the embodiment in this case, the output of the outside air temperature sensor 33, the output of the discharge pressure sensor 42, the outputs of the vehicle speed sensor 52, the volumetric air flow rate Ga of the air flowing into the air flow passage 3 (calculated by the air conditioning controller 20), the air mix The air volume ratio SW (calculated by the air conditioning controller 20) by the damper 28, the output of the air conditioning operation unit 53 is transmitted from the air conditioning controller 20 to the heat pump controller 32 via the vehicle communication bus 65, and provided for control by the heat pump controller 32 It is done.
Next, the operation of the vehicle air conditioner 1 of the embodiment having the above configuration will be described. In this embodiment, the control device 11 (the air conditioning controller 20 and the heat pump controller 32) operates the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, the MAX cooling mode (maximum cooling mode) and the auxiliary heater sole mode. Switch and execute. First, an outline of the flow and control of the refrigerant in each operation mode will be described.
(1) Heating mode
When the heating mode is selected by the heat pump controller 32 (automatic mode) or by the manual air conditioning setting operation (manual mode) to the air conditioning operation unit 53, the heat pump controller 32 opens the solenoid valve 21 (for heating) to open the solenoid valve. Close 17 (for cooling). Also, the solenoid valve 30 (for reheating) is opened, and the solenoid valve 40 (for bypass) is closed. Then, the compressor 2 is operated. The air conditioning controller 20 operates the blowers 15 and 27, and the air mix damper 28 is basically blown out from the indoor blower 27 and passes through the heat absorber 9 and all the air in the air flow passage 3 is heated by the heat exchange passage 3A. In the state of ventilating to the auxiliary heater 23 and the radiator 4, the air volume may be adjusted.
As a result, the high temperature and high pressure gas refrigerant discharged from the compressor 2 passes through the solenoid valve 30 and flows into the radiator 4 from the refrigerant pipe 13G. Since the air in the air flow passage 3 is ventilated to the radiator 4, the air in the air flow passage 3 is a high temperature refrigerant in the heat radiator 4 (when the auxiliary heater 23 is operated, the auxiliary heater 23 and the radiator 4 are While the refrigerant in the radiator 4 loses its heat by air, is cooled, and condenses and liquefies.
The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 evaporates, and heat is pumped up from the outside air ventilated by the traveling or the outdoor blower 15. That is, the refrigerant circuit R is a heat pump. Then, the low temperature refrigerant leaving the outdoor heat exchanger 7 passes through the refrigerant piping 13A, the solenoid valve 21 and the refrigerant piping 13D, enters the accumulator 12 from the refrigerant piping 13C, and is separated into gas and liquid there, and then the gas refrigerant is the compressor 2 Repeat the cycle of sucking in Since the air heated by the radiator 4 (the auxiliary heater 23 and the radiator 4 when the auxiliary heater 23 operates) is blown out from the outlets 29A to 29C, this heats the vehicle interior. become.
The heat pump controller 32 calculates a target radiator pressure PCO (target value of the radiator pressure PCI) from the target heater temperature TCO (target value of the heating temperature TH described later) calculated by the air conditioning controller 20 from the target outlet temperature TAO. The rotational speed NC of the compressor 2 is controlled based on the target radiator pressure PCO and the refrigerant pressure (radiator pressure PCI, high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47, and the radiator Control heating by 4. Further, the heat pump controller 32 opens the outdoor expansion valve 6 based on the refrigerant temperature (the radiator temperature TCI) of the radiator 4 detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47. The degree of subcooling SC of the refrigerant at the outlet of the radiator 4 is controlled.
In the heating mode, if the heating capacity required by the radiator 4 is insufficient with respect to the heating capacity required for air conditioning in the vehicle compartment, the heat pump controller 32 compensates for the shortage by the heat generation of the auxiliary heater 23. The energization of the auxiliary heater 23 is controlled. Thereby, comfortable heating of the vehicle interior is realized, and frost formation on the outdoor heat exchanger 7 is also suppressed. At this time, since the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air flowing through the air flow passage 3 is ventilated to the auxiliary heater 23 in front of the radiator 4.
Here, when the auxiliary heater 23 is disposed on the air downstream side of the radiator 4, when the auxiliary heater 23 is configured by the PTC heater as in the embodiment, the temperature of the air flowing into the auxiliary heater 23 is the radiator Because the resistance value of the PTC heater increases and the current value also decreases and the calorific value decreases, the auxiliary heater 23 is disposed on the air upstream side of the radiator 4 in the embodiment. As described above, the capability of the auxiliary heater 23 composed of a PTC heater can be sufficiently exhibited.
(2) Dehumidifying heating mode
Next, in the dehumidifying and heating mode, the heat pump controller 32 opens the solenoid valve 17 and closes the solenoid valve 21. Further, the solenoid valve 30 is closed, the solenoid valve 40 is opened, and the degree of opening of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 is operated. The air conditioning controller 20 operates the blowers 15 and 27, and the air mix damper 28 is basically blown out from the indoor blower 27 and passes through the heat absorber 9 and all the air in the air flow passage 3 is heated by the heat exchange passage 3A. In the state of ventilating to the auxiliary heater 23 and the radiator 4, the air volume is also adjusted.
As a result, the high-temperature, high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, and passes through the solenoid valve 40 and the refrigerant pipe on the downstream side of the outdoor expansion valve 6 It will reach 13E. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 is air-cooled and condensed by traveling there or by the outside air ventilated by the outdoor blower 15. The refrigerant leaving the outdoor heat exchanger 7 flows from the refrigerant pipe 13A through the solenoid valve 17 into the receiver dryer portion 14 and the supercooling portion 16 sequentially. Here, the refrigerant is subcooled.
The refrigerant leaving the subcooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13B, passes through the internal heat exchanger 19, and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates. At this time, the air blown out from the indoor blower 27 is cooled by the heat absorption action, and the moisture in the air condenses and adheres to the heat absorber 9, so the air in the air flow passage 3 is cooled, and Dehumidified. The refrigerant evaporated by the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 via the refrigerant pipe 13C, and the circulation through which the refrigerant is sucked into the compressor 2 is repeated.
At this time, since the valve opening degree of the outdoor expansion valve 6 is fully closed, it is possible to suppress or prevent the disadvantage that the refrigerant discharged from the compressor 2 flows back from the outdoor expansion valve 6 into the radiator 4 It becomes. As a result, it is possible to suppress or eliminate the decrease in the refrigerant circulation amount and secure the air conditioning capacity. Further, in the dehumidifying and heating mode, the heat pump controller 32 supplies power to the auxiliary heater 23 to generate heat. Thus, the air cooled by the heat absorber 9 and dehumidified is further heated in the process of passing through the auxiliary heater 23, and the temperature rises, so that dehumidifying and heating of the passenger compartment is performed.
The heat pump controller 32 is a compressor based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48 (heat absorber temperature Te) and the target heat absorber temperature TEO which is a target value of the heat absorber temperature Te calculated by the air conditioning controller 20. Of the auxiliary heater 23 based on the auxiliary heater temperature Tptc detected by the auxiliary heater temperature sensor 50 and the aforementioned target heater temperature TCO (in this case, the target value of the auxiliary heater temperature Tptc). By controlling the energization (heating by heat generation) and appropriately performing cooling and dehumidifying of the air in the heat absorber 9, the temperature of the air blown out into the vehicle compartment from the respective blowout ports 29A to 29C by heating by the auxiliary heater 23. Prevent the decline properly. As a result, it is possible to control the temperature to an appropriate heating temperature while dehumidifying the air blown out into the vehicle compartment, and to realize comfortable and efficient dehumidifying and heating of the vehicle interior.
In addition, since the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air heated by the auxiliary heater 23 passes through the radiator 4, but in this dehumidifying and heating mode, the refrigerant 4 Since the air is not flowed, the problem that the radiator 4 absorbs heat from the air heated by the auxiliary heater 23 is also eliminated. That is, the decrease in the temperature of the air blown out into the vehicle interior by the radiator 4 is suppressed, and the COP is also improved.
(3) Dehumidifying cooling mode
Next, in the dehumidifying and cooling mode, the heat pump controller 32 opens the solenoid valve 17 and closes the solenoid valve 21. Also, the solenoid valve 30 is opened and the solenoid valve 40 is closed. Then, the compressor 2 is operated. The air conditioning controller 20 operates the blowers 15 and 27, and the air mix damper 28 is basically blown out from the indoor blower 27 and passes through the heat absorber 9 and all the air in the air flow passage 3 is heated by the heat exchange passage 3A. In the state of ventilating to the auxiliary heater 23 and the radiator 4, the air volume is also adjusted.
As a result, the high temperature and high pressure gas refrigerant discharged from the compressor 2 passes through the solenoid valve 30 and flows into the radiator 4 from the refrigerant pipe 13G. Since the air in the air flow passage 3 is ventilated to the radiator 4, the air in the air flow passage 3 is heated by the high temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is taken away, cooled, and condensed and liquefied.
The refrigerant leaving the radiator 4 passes through the refrigerant pipe 13E to reach the outdoor expansion valve 6, and then flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 which is controlled to be open. The refrigerant flowing into the outdoor heat exchanger 7 is air-cooled and condensed by traveling there or by the outside air ventilated by the outdoor blower 15. The refrigerant leaving the outdoor heat exchanger 7 flows from the refrigerant pipe 13A through the solenoid valve 17 into the receiver dryer portion 14 and the supercooling portion 16 sequentially. Here, the refrigerant is subcooled.
The refrigerant leaving the subcooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13B, passes through the internal heat exchanger 19, and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates. At this time, the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat sink 9, so that the air is cooled and dehumidified.
The refrigerant evaporated by the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 via the refrigerant pipe 13C, and the circulation through which the refrigerant is sucked into the compressor 2 is repeated. In this dehumidifying and cooling mode, the heat pump controller 32 does not energize the auxiliary heater 23, so the air cooled by the heat absorber 9 and dehumidified air passes through the radiator 4 and is reheated (heat radiation capacity is lower than that during heating) Be done. As a result, dehumidifying and cooling of the passenger compartment is performed.
The heat pump controller 32 detects the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO (sent from the air conditioning controller 20) as its target value. Control the rotational speed NC. Further, the heat pump controller 32 calculates the target radiator pressure PCO from the target heater temperature TCO described above, and the target radiator pressure PCO and the refrigerant pressure of the radiator 4 detected by the radiator pressure sensor 47 (the radiator pressure PCI. The valve opening degree of the outdoor expansion valve 6 is controlled based on the high pressure of the refrigerant circuit R, and the heating by the radiator 4 is controlled.
(4) Cooling mode
Next, in the cooling mode, the heat pump controller 32 fully opens the outdoor expansion valve 6 in the dehumidifying and cooling mode. Then, the compressor 2 is operated and the auxiliary heater 23 is not energized. The air conditioning controller 20 operates the blowers 15, 27. The air mix damper 28 is blown out from the indoor blower 27 and the air in the air flow passage 3 which has passed through the heat absorber 9 is the auxiliary heater 23 of the heating heat exchange passage 3A. And let it be in the state which adjusts the ratio ventilated to the radiator 4. FIG.
As a result, the high temperature / high pressure gas refrigerant discharged from the compressor 2 flows from the refrigerant pipe 13G to the radiator 4 through the solenoid valve 30, and the refrigerant leaving the radiator 4 passes through the refrigerant pipe 13E to the outdoor expansion valve 6 Lead to At this time, since the outdoor expansion valve 6 is fully opened, the refrigerant passes through it and flows into the outdoor heat exchanger 7 where it is cooled by air or by the outside air ventilated by the outdoor blower 15 by running. Liquefy. The refrigerant leaving the outdoor heat exchanger 7 flows from the refrigerant pipe 13A through the solenoid valve 17 into the receiver dryer portion 14 and the supercooling portion 16 sequentially. Here, the refrigerant is subcooled.
The refrigerant leaving the subcooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13B, passes through the internal heat exchanger 19, and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 is cooled by the heat absorption action at this time. Further, the moisture in the air condenses and adheres to the heat absorber 9.
The refrigerant evaporated by the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 via the refrigerant pipe 13C, and the circulation through which the refrigerant is sucked into the compressor 2 is repeated. The air cooled by the heat absorber 9 and dehumidified is blown out from the blowout ports 29A to 29C into the vehicle compartment (a part of the air passes through the radiator 4 for heat exchange). It will be done. Further, in the cooling mode, the heat pump controller 32 generates the compressor 2 based on the temperature (heat absorber temperature Te) of the heat absorber 9 detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO described above, which is its target value. Control the number of revolutions NC.
(5) MAX cooling mode (maximum cooling mode)
Next, in the MAX cooling mode as the maximum cooling mode, the heat pump controller 32 opens the solenoid valve 17 and closes the solenoid valve 21. Further, the solenoid valve 30 is closed, the solenoid valve 40 is opened, and the degree of opening of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 is operated and the auxiliary heater 23 is not energized. The air conditioning controller 20 operates the blowers 15 and 27, and the air mix damper 28 is blown out from the indoor blower 27 and the air in the air flow passage 3 having passed through the heat absorber 9 is an auxiliary heater of the heating heat exchange passage 3A. 23 and the radiator 4 are adjusted.
As a result, the high-temperature, high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, and passes through the solenoid valve 40 and the refrigerant pipe on the downstream side of the outdoor expansion valve 6 It will reach 13E. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 is air-cooled and condensed by traveling there or by the outside air ventilated by the outdoor blower 15. The refrigerant leaving the outdoor heat exchanger 7 flows from the refrigerant pipe 13A through the solenoid valve 17 into the receiver dryer portion 14 and the supercooling portion 16 sequentially. Here, the refrigerant is subcooled.
The refrigerant leaving the subcooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13B, passes through the internal heat exchanger 19, and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 is cooled by the heat absorption action at this time. Further, since the moisture in the air condenses and adheres to the heat absorber 9, the air in the air flow passage 3 is dehumidified. The refrigerant evaporated by the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 via the refrigerant pipe 13C, and the circulation through which the refrigerant is sucked into the compressor 2 is repeated. At this time, since the outdoor expansion valve 6 is fully closed, it is possible to similarly suppress or prevent the problem that the refrigerant discharged from the compressor 2 flows back from the outdoor expansion valve 6 into the radiator 4 . As a result, it is possible to suppress or eliminate the decrease in the refrigerant circulation amount and secure the air conditioning capacity.
Here, since a high temperature refrigerant flows to the radiator 4 in the cooling mode described above, direct heat conduction from the radiator 4 to the HVAC unit 10 occurs not a little, but the refrigerant in the radiator 4 in this MAX cooling mode Since the air does not flow, the heat transferred from the radiator 4 to the HVAC unit 10 also prevents the air in the air flow passage 3 from the heat absorber 9 from being heated. Therefore, strong cooling of the vehicle interior is performed, and particularly in an environment where the outside air temperature Tam is high, it is possible to cool the vehicle interior quickly to realize comfortable vehicle interior air conditioning. Also in the MAX cooling mode, the heat pump controller 32 generates a compressor based on the temperature (heat absorber temperature Te) of the heat absorber 9 detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO described above, which is its target value. Control the rotation speed NC of 2.
(6) Auxiliary heater only mode
In addition, the control device 11 of the embodiment stops the compressor 2 of the refrigerant circuit R and the outdoor fan 15 and applies electricity to the auxiliary heater 23 when excessive frost formation occurs on the outdoor heat exchanger 7 as described later. There is an auxiliary heater only mode in which the passenger compartment is heated with only the auxiliary heater 23. Also in this case, the heat pump controller 32 controls the energization (heat generation) of the auxiliary heater 23 based on the auxiliary heater temperature Tptc detected by the auxiliary heater temperature sensor 50 and the target heater temperature TCO described above.
In addition, the air conditioning controller 20 operates the indoor fan 27, and the air mix damper 28 ventilates the air in the air flow path 3 blown out from the indoor fan 27 to the auxiliary heater 23 of the heating heat exchange path 3A to obtain the air volume. It will be in the state to adjust. Since the air heated by the auxiliary heater 23 is blown out into the vehicle compartment from the air outlets 29A to 29C, this heats the vehicle interior.
(7) Switching of operation mode
The air conditioning controller 20 calculates the above-described target blowout temperature TAO from the following formula (I). The target blowing temperature TAO is a target value of the temperature of air blown out into the vehicle compartment.
TAO = (Tset−Tin) × K + Tbal (f (Tset, SUN, Tam))
(I)
Here, Tset is the set temperature of the vehicle interior set by the air conditioning operation unit 53, Tin is the indoor temperature detected by the inside air temperature sensor 37, K is a coefficient, Tbal is the set temperature Tset, and the amount of solar radiation detected by the solar radiation sensor 51 SUN, it is a balance value calculated from the outside air temperature Tam detected by the outside air temperature sensor 33. Generally, the target blowing temperature TAO is higher as the outside air temperature Tam is lower, and decreases as the outside air temperature Tam increases.
The heat pump controller 32 selects one of the above operation modes based on the outside air temperature Tam (detected by the outside air temperature sensor 33) transmitted from the air conditioning controller 20 via the vehicle communication bus 65 at the time of startup and the target blowout temperature TAO. The operation mode is selected, and each operation mode is transmitted to the air conditioning controller 20 via the vehicle communication bus 65. After startup, the outside air temperature Tam, the humidity inside the vehicle compartment, the target air outlet temperature TAO, the heating temperature TH (the temperature of the air on the downwind side of the radiator 4; estimated value), the target heater temperature TCO, the heat sink temperature Te, By switching each operation mode based on parameters such as target heat sink temperature TEO and presence or absence of dehumidification demand in the vehicle compartment, heating mode, dehumidification heating mode, dehumidification can be properly performed according to environmental conditions and necessity of dehumidification By switching the cooling mode, the cooling mode, the MAX cooling mode, and the auxiliary heater single mode to control the temperature of the air blown into the vehicle compartment to the target blowing temperature TAO, a comfortable and efficient vehicle interior air conditioning is realized.
(8) Control of the compressor 2 in the heating mode by the heat pump controller 32
Next, the control of the compressor 2 in the heating mode described above will be described in detail with reference to FIG. FIG. 4 is a control block diagram of the heat pump controller 32 for determining the target rotational speed (compressor target rotational speed) TGNCh of the compressor 2 for the heating mode. The F / F (feed forward) operation amount calculator 58 of the heat pump controller 32 calculates the outside air temperature Tam obtained from the outside air temperature sensor 33, the blower voltage BLV of the indoor fan 27, and SW = (TAO-Te) / (TH-Te). And the target supercooling degree TGSC, which is the target value of the subcooling degree SC at the outlet of the radiator 4, and the target heater described above, which is the target value of the heating temperature TH described later. Based on the temperature TCO (sent from the air conditioning controller 20) and the target radiator pressure PCO which is the target value of the pressure of the radiator 4, the F / F operation amount TGNChff of the compressor target rotation number is calculated.
Here, the above-mentioned TH for calculating the air volume ratio SW is the temperature of air on the leeward side of the radiator 4 (hereinafter referred to as a heating temperature), and the heat pump controller 32 calculates the first-order lag calculation formula (II) below. presume.
TH = (INTL × TH0 + Tau × THz) / (Tau + INTL) ··· (II)
Here, INTL is a calculation cycle (constant), Tau is a first-order lag time constant, TH0 is a steady-state value of the heating temperature TH in a steady state before the first-order lag calculation, and THz is a previous value of the heating temperature TH. By estimating the heating temperature TH in this manner, it is not necessary to provide an extra temperature sensor.
The heat pump controller 32 changes the time constant Tau and the steady-state value TH0 in accordance with the above-described operation mode to make the above-described estimation equation (II) different depending on the operation mode, thereby estimating the heating temperature TH. The heating temperature TH is transmitted to the air conditioning controller 20 via the vehicle communication bus 65.
The target radiator pressure PCO is calculated by the target value calculator 59 based on the target degree of supercooling TGSC and the target heater temperature TCO. Further, the F / B (feedback) manipulated variable computing unit 60 computes the F / B manipulated variable TGNChfb of the compressor target rotational speed based on the target radiator pressure PCO and the radiator pressure PCI which is the refrigerant pressure of the radiator 4 Do. The F / F manipulated variable TGNCnff computed by the F / F manipulated variable computing unit 58 and TGNChfb computed by the F / B manipulated variable computing unit 60 are added by the adder 61, and the limit setting unit 62 sets the control upper limit value ECNpdLimHi After the control lower limit value ECNpdLimLo is limited, it is determined as the compressor target rotation speed TGNCh. In the heating mode, the heat pump controller 32 controls the rotation speed NC of the compressor 2 based on the compressor target rotation speed TGNCh.
(9) Control of the compressor 2 and the auxiliary heater 23 in the dehumidifying and heating mode by the heat pump controller 32
On the other hand, FIG. 5 is a control block diagram of the heat pump controller 32 for determining the target rotational speed (compressor target rotational speed) TGNCc of the compressor 2 for the dehumidifying and heating mode. The F / F operation amount calculation unit 63 of the heat pump controller 32 is a target heat radiation that is a target value of the outside air temperature Tam, the volumetric air flow rate Ga of the air flowing into the air flow passage 3, and the pressure of the radiator 4 (radiator pressure PCI). The F / F manipulated variable TGNCcff of the compressor target rotational speed is calculated based on the target pressure T.sub.o of the heat sink 9 and the target heat sink temperature T.sub.oO which is the target value of the temperature of the heat sink 9 (the heat sink temperature Te).
Further, the F / B manipulated variable computing unit 64 computes the F / B manipulated variable TGNCcfb of the compressor target rotational speed based on the target heat absorber temperature TEO (transmitted from the air conditioning controller 20) and the heat absorber temperature Te. The F / F operation amount TGNCcff calculated by the F / F operation amount calculation unit 63 and the F / B operation amount TGNCcfb calculated by the F / B operation amount calculation unit 64 are added by the adder 66 and the limit setting unit 67 After the control upper limit value TGNCcLimHi and the control lower limit value TGNCcLimLo are limited, the compressor target rotational speed TGNCc is determined. In the dehumidifying and heating mode, the heat pump controller 32 controls the rotation speed NC of the compressor 2 based on the compressor target rotation speed TGNCc.
FIG. 6 is a control block diagram of the heat pump controller 32 for determining the auxiliary heater request capacity TGQPTC of the auxiliary heater 23 in the dehumidifying and heating mode. The target heater temperature TCO and the auxiliary heater temperature Tptc are input to the subtractor 73 of the heat pump controller 32, and the deviation (TCO-Tptc) of the target heater temperature TCO and the auxiliary heater temperature Tptc is calculated. The deviation (TCO-Tptc) is input to the F / B control unit 74, and the F / B control unit 74 eliminates the deviation (TCO-Tptc) and the auxiliary heater temperature Tptc becomes the target heater temperature TCO. Calculate the required ability F / B operation amount.
The auxiliary heater required capacity F / B manipulated variable Qafb calculated by the F / B control unit 74 is limited by the limit setting unit 76 with the control upper limit value QptcLimHi and the control lower limit value QptcLimLo as an auxiliary heater required capacity TGQPTC. It is determined. In the dehumidifying and heating mode, the controller 32 controls the energization of the auxiliary heater 23 based on the auxiliary heater request capability TGQPTC to generate (heat) the auxiliary heater 23 so that the auxiliary heater temperature Tptc becomes the target heater temperature TCO. Control.
Thus, in the dehumidifying and heating mode, the heat pump controller 32 controls the operation of the compressor based on the heat absorber temperature Te and the target heat absorber temperature TEO, and controls the heat generation of the auxiliary heater 23 based on the target heater temperature TCO. Thus, the cooling and the dehumidification by the heat absorber 9 in the dehumidifying and heating mode, and the heating by the auxiliary heater 23 are properly controlled. As a result, it is possible to control the temperature to a more accurate heating temperature while dehumidifying the air blown out into the vehicle compartment more appropriately, and realize more comfortable and efficient dehumidifying heating of the vehicle interior. Will be able to In the control block of the auxiliary heater 23 in the heating mode in this embodiment and the embodiment 2 described later, the target heater temperature TCO in FIG. 6 is replaced with the target auxiliary heater temperature THO (target value of the auxiliary heater temperature Tptc). Become a shape. Further, in the dehumidifying and heating mode of this embodiment, the auxiliary heater 23 is controlled as target auxiliary heater temperature THO = target heater temperature TCO (FIG. 6), but in the heating mode in this embodiment and embodiment 2 described later As described above, the insufficient heating capacity by the radiator 4 is compensated by the heat generation of the auxiliary heater 23. Therefore, the target auxiliary heater temperature THO is derived from this deficiency, and the target auxiliary heater temperature THO and the auxiliary heater temperature derived. The auxiliary heater 23 is F / B controlled by Tptc.
(10) Control of the air mix damper 28
Next, control of the air mix damper 28 by the air conditioning controller 20 will be described with reference to FIG. In FIG. 3, Ga is the volumetric air volume of the air flowing into the air flow passage 3 described above, Te is the heat absorber temperature, and TH is the heating temperature described above (temperature of the air on the leeward side of the radiator 4).
Based on the air volume ratio SW for ventilating the radiator 4 and the auxiliary heater 23 of the heating heat exchange passage 3A calculated by the equation (following equation (III)) as described above, the air conditioning controller 20 The air mix damper 28 is controlled to adjust the amount of ventilation to the radiator 4 (and the auxiliary heater 23).
SW = (TAO-Te) / (TH-Te) · · (III)
That is, the air volume ratio SW ventilated to the radiator 4 and the auxiliary heater 23 of the heating heat exchange passage 3A changes in the range of 0 ≦ SW ≦ 1, and “0” does not ventilate the heating heat exchange passage 3A. Completely closes the air mix fully ventilating all the air in the air flow passage 3 to the bypass passage 3B, fully drafts all the air in the air flow passage 3 to the heating heat exchange passage 3A at "1". It becomes. That is, the air volume to the radiator 4 is Ga × SW.
(11) Determination of frost formation on the outdoor heat exchanger and control of the compressor etc. accompanying it
As described above, in the heating mode, the refrigerant evaporates in the outdoor heat exchanger 7 and absorbs heat from the outside air to become a low temperature. Therefore, the moisture in the outside air adheres to the outdoor heat exchanger 7 as frost. When this frost formation grows, the heat exchange between the outdoor heat exchanger 7 and the outside air ventilated thereto is hindered, so the operating efficiency of the compressor 2 is lowered. In addition, if the over frost occurs, the outdoor fan 15 or the like may be damaged. Therefore, the heat pump controller 32 determines the progress of frost formation on the outdoor heat exchanger 7 as follows.
(11-1) Determination of the progress of frost formation on the outdoor heat exchanger and control of the compressor, etc. (Part 1)
Next, determination of the progress of frost formation on the outdoor heat exchanger 7 and an example of control of the compressor 2 and defrosting based on the determination will be described using FIG. 7. In this embodiment, the heat pump controller 32 detects the current refrigerant evaporation temperature TXO of the outdoor heat exchanger 7 obtained from the outdoor heat exchanger temperature sensor 54 and the outside air is not frosted on the outdoor heat exchanger 7 in a low humidity environment. Based on the refrigerant evaporation temperature TXObase of the outdoor heat exchanger 7 at the time of frost formation, the state of progress of frost formation on the outdoor heat exchanger 7 is determined.
The heat pump controller 32 first determines whether the vehicle has been activated (IG ON) in step S1 of FIG. 7 and whether there is a request for air conditioning of the passenger compartment by the air conditioning device 1 for the vehicle (hereinafter referred to as HP air conditioning request) Judge whether or not. In this case, it is determined from the ON information (sent from the air conditioning controller 20) of the ignition (IG) whether or not the vehicle is activated. Further, the HP air conditioning request is an operation request for the air conditioning system 1 for a vehicle, and in the embodiment, the ON / OFF switch of the air conditioner provided in the air conditioning operation unit 53 is turned ON whether or not there is the HP air conditioning request. It judges from the information (it transmitted from the air conditioning controller 20) of whether it was.
Then, when the vehicle is activated and the HP air conditioning request is made, the heat pump controller 32 proceeds to step S2, and in the case of no, the heat pump controller 32 proceeds to step S18. In step S18, the heat pump controller 32 determines whether there is an HP air conditioning request, and if there is an HP air conditioning request, that is, if there is an HP air conditioning request regardless of whether the vehicle has been started or not. If it is determined in step S18 that there is no HP air conditioning request, the process proceeds to step S19.
In step S2, the heat pump controller 32 determines whether or not the vehicle air conditioner 1 (HP) is determined to have a failure, and if the failure is determined, the heat pump controller 32 proceeds to step S12 and stops the compressor 2 Permission). On the other hand, if no failure determination is made in step S2, the process proceeds to step S3, and it is determined whether the heavy frost formation flag fFST2 is currently reset ("0"). Assuming that the heavy frost formation flag fFST2 is currently reset, the heat pump controller 32 proceeds to step S4, and determines whether the current operation mode is the heating mode.
Then, if the current operation mode is the heating mode, the process proceeds to step S5, and the difference ΔTXO (ΔTXO = TXObase-TXO) between the refrigerant evaporation temperature TXObase at the time of no frosting and the current refrigerant evaporation temperature TXO is calculated (calculated) Do. In this case, the heat pump controller 32 estimates the refrigerant evaporation temperature TXObase of the outdoor heat exchanger 7 at the time of no frosting by using the following equation (IV).
TXObase = f (Tam, NC, Ga * SW, VSP, PCI)
= K1 x Tam + k2 x NC + k3 x Ga * SW + k4 x VSP + k5 x PCI
(IV)
Here, the parameter Tam of equation (IV) is the outside air temperature obtained from the outside air temperature sensor 33, NC is the number of revolutions of the compressor 2, Ga * SW is the air flow to the radiator 4 (and the auxiliary heater 23), VSP Is a vehicle speed obtained from the vehicle speed sensor 52, PCI is a radiator pressure, and k1 to k5 are coefficients, which are obtained in advance by experiment.
The outside air temperature Tam is an index indicating the suction air temperature (environmental condition) of the outdoor heat exchanger 7. The lower the outside air temperature Tam (the suction air temperature of the outdoor heat exchanger 7), the lower TXObase tends to be. Therefore, the coefficient k1 is a positive value. Similarly, the index indicating the suction air temperature of the outdoor heat exchanger 7 is not limited to the outside air temperature Tam.
Further, the rotation speed NC of the compressor 2 is an index indicating the flow rate (operating condition) of the refrigerant in the refrigerant circuit R, and the higher the rotation speed NC (the larger the flow rate of the refrigerant), the lower TXObase tends to be. Therefore, the coefficient k2 has a negative value.
Further, Ga * SW is an index indicating the amount of air passing through the radiator 4 (operating condition), and the larger the value of Ga * SW (the larger the amount of air passing through the radiator 4), the lower TXObase tends to be. Therefore, the coefficient k3 has a negative value. In addition, as a parameter | index which shows the passing air volume of the radiator 4, not only this but the blower voltage BLV of the indoor air blower 27 may be sufficient.
The vehicle speed VSP is an index indicating the passing wind speed (operating condition) of the outdoor heat exchanger 7, and as the vehicle speed VSP is lower (as the passing wind speed of the outdoor heat exchanger 7 is lower), TXObase tends to be lower. Therefore, the coefficient k4 has a positive value. In addition, as a parameter | index which shows the passing wind speed of the outdoor heat exchanger 7, it may not be this but the voltage of the outdoor air blower 15 may be sufficient.
Further, the radiator pressure PCI is an index indicating the refrigerant pressure (operating condition) of the radiator 4, and as the radiator pressure PCI is higher, TXObase tends to be lower. Therefore, the coefficient k5 has a negative value.
In addition, although the outside air temperature Tam, the rotation speed NC of the compressor 2, the passing air amount Ga * SW of the radiator 4, the vehicle speed VSP, and the radiator pressure PCI are used as parameters of the equation (IV) of this embodiment, The parameters of IV) are not limited to all of the above, and any one of them or a combination thereof may be used.
Then, in step S5, the heat pump controller 32 determines the difference ΔTXO between the refrigerant evaporation temperature TXObase at the time of non-frosting and the current refrigerant evaporation temperature TXO obtained by substituting the current values of the parameters into equation (IV) (ΔTXO Calculate = TXObase-TXO). Next, the heat pump controller 32 determines in step S6 whether or not a predetermined time has elapsed after activation of the heating mode, and if it is in the initial stage of activation and the predetermined time has not elapsed, the process proceeds to step S17 to operate the compressor 2 Continue (HP operation). That is, the compressor 2 is not stopped, and the execution of the heating mode is permitted.
When predetermined time has passed since starting of heating mode by step S6, heat pump controller 32 progresses to step S7, refrigerant evaporation temperature TXO falls rather than refrigerant evaporation temperature TXObase at the time of frost-free, and the difference deltaTXO is predetermined. It is determined whether the normal frosting determination condition of is satisfied.
In this embodiment, in the embodiment, the refrigerant evaporation temperature TXO is lower than the refrigerant evaporation temperature TXObase at the time of no frost formation, and the difference ΔTXO is larger than a first threshold A1 (for example, 3 deg) in the embodiment. When the state continues for the first predetermined time t1 (for example, 60 seconds etc.) and the difference ΔTXO satisfies this normal frosting determination condition, a slight frost is grown on the outdoor heat exchanger 7 It can be judged as a thing.
Then, if the state where the difference ΔTXO is still larger than the first threshold A1 does not continue for the first predetermined time t1, the process proceeds to step S17, and the operation (HP operation) of the compressor 2 is continued. On the other hand, when the state in which the difference ΔTXO is larger than the first threshold A1 continues in the step S7 for the first predetermined time t1, the heat pump controller 32 satisfies the normal frost formation determination condition (the outdoor heat exchanger 7 It is determined that light frost is generated) and defrosting of the outdoor heat exchanger 7 is necessary, and the process proceeds from step S7 to step S8.
Here, in FIG. 9, the solid line indicates the change of the refrigerant evaporation temperature TXO of the outdoor heat exchanger 7, and the broken line indicates the change of the refrigerant evaporation temperature TXObase at the time of no frost formation. In the initial state (non-frosted state) in which the operation is started, the refrigerant evaporation temperature TXO of the outdoor heat exchanger 7 and the refrigerant evaporation temperature TXObase at the time of non-frosting become substantially the same value. The temperature of the vehicle interior is warmed with the progress of the heating mode, and the load of the vehicle air conditioner 1 decreases, so the above-described refrigerant flow rate and the passing air volume of the radiator 4 also decrease, and The calculated TXObase (dotted line in FIG. 9) rises.
On the other hand, when frost formation occurs in the outdoor heat exchanger 7, the heat exchange performance with the outside air is hindered, so the refrigerant evaporation temperature TXO (solid line) gradually decreases and eventually falls below TXObase. Then, a slight frost formation on the outdoor heat exchanger 7 causes the refrigerant evaporation temperature TXO to further decrease, the difference ΔTXO (TXObase-TXO) becomes larger than the first threshold A1, and the state is the first predetermined state. When the time t1 is continued, the heat pump controller 32 determines in step S7 that the difference .DELTA.TXO satisfies the above-described normal frosting determination condition (light frost is generated on the outdoor heat exchanger 7), and the outdoor heat is generated. In step S8, the normal frost formation flag fFST1 is set ("1") (step S7, step S8 is normal frost formation determination).
Next, the heat pump controller 32 proceeds to step S9, and this time, the refrigerant evaporation temperature TXO falls below the refrigerant evaporation temperature TXObase at the time of no frosting, and the difference ΔTXO is a predetermined first heavy frosting judgment condition (first It is determined whether or not the severe frosting determination condition is satisfied.
In the first embodiment, the refrigerant evaporation temperature TXO is lower than the refrigerant evaporation temperature TXObase at the time of no frost formation, and the difference ΔTXO is a second threshold A2 (1) (for example, 15 deg, etc.). Outdoor heat exchange when the second predetermined time t 2 (1) (for example, 30 seconds etc.) continues and the difference ΔTXO satisfies the first severe frost formation determination condition. It can be judged that excessive frost formation has progressed to the vessel 7 in a short time.
Then, if the state in which ΔTXO is still larger than the second threshold A2 (1) does not continue for the second predetermined time t2 (1), the process proceeds to step S16, and this time, ΔTXO is determined to be the predetermined second severe frost formation It is determined whether the condition (another severe frosting determination condition) is satisfied.
In this embodiment, the refrigerant evaporation temperature TXO is lower than the refrigerant evaporation temperature TXObase at the time of no frost formation, and the difference ΔTXO is another second threshold value A2 (2) (for example, in the second heavy frost determination condition) , 5 deg etc.) continues for another second predetermined time t 2 (2) (eg 60 minutes etc.), and the difference ΔTXO satisfies this second severe frosting judgment condition. In this case, it can be determined that moderate frost formation continues on the outdoor heat exchanger 7 for a long time.
Then, if the state in which ΔTXO is still larger than the second threshold A2 (2) does not continue for the second predetermined time t2 (2) in step S16, the process proceeds to step S17 and the operation (HP operation) of the compressor 2 is performed. continue.
The second threshold A2 (1) of the first severe frosting determination condition is extremely larger than the first threshold A1 of the normal frosting determination condition described above, and the second predetermined time t2 (1) is the first Is shorter than the predetermined time t1. The second threshold A2 (2) of the second severe frosting determination condition is larger than the first threshold A1 of the normal frosting determination condition described above, and the second predetermined time t2 (2) is the second It is extremely longer than the predetermined time t1. And these 1st and 2nd severe frost formation determination conditions can determine that frost formation to the outdoor heat exchanger 7 advanced any more than a normal frost formation determination condition.
After the normal frost formation flag fFST1 is set in step S8, frost formation on the outdoor heat exchanger 7 further increases, and the decrease of the refrigerant evaporation temperature TXO shown in FIG. 9 further progresses, and the difference ΔTXO (TXObase-TXO) Is larger than the second threshold value A2 (1), the heat pump controller 32 causes the difference .DELTA.TXO to satisfy the first severe frost formation determination condition in step S9 when the second predetermined time t2 (1) continues. Excessive frost formation has progressed to the outdoor heat exchanger 7 in a short time, and it is determined that defrosting of the outdoor heat exchanger 7 is necessary, and the process proceeds to step S10.
When the difference ΔTXO continues to be larger than another second threshold A2 (2) continues for another second predetermined time t2 (2), the heat pump controller 32 generates the difference ΔTXO at step S16. The severe frost formation determination condition of 2 is satisfied, and moderate frost formation continues for a long time in the outdoor heat exchanger 7, and it is determined that defrosting of the outdoor heat exchanger 7 is necessary, and the process proceeds to step S10. Then, the heat pump controller 32 sets the heavy frost formation flag fFST2 ("1") in this step S10, and proceeds to step S11 (the heavy frost formation determination in step S9, step S16, and step S10).
The heat pump controller 32 includes a non-volatile memory (EEP-ROM) 80, and sets the normal frosting flag fFST1 and the heavy frosting flag fFST2 ("1") and resets ("0"). The normal frosting flag fFST1 and the heavy frosting flag are stored in the non-volatile memory 80 and the vehicle air conditioner 1 is stopped and the power of the control device 11 (the air conditioning controller 20 and the heat pump controller 32) is turned off. It is assumed that the state of fFST2 is held in the non-volatile memory 80.
In step S11, the heat pump controller 32 determines whether the heating temperature TH, which is the temperature of the air downstream of the radiator 4, is lower than the target heater temperature TCO-α (α is a relatively small differential), which is its target value. . The target heater temperature TCO calculated from the target air outlet temperature TAO as described above is a required capacity in the heating mode of the air conditioning apparatus 1 for a vehicle. When the auxiliary heater 23 does not generate heat, the heating temperature TH indicates the current heating capacity of the radiator 4. Therefore, when TH ≧ TCO−α (ie, TCO−TH ≦ α), the heating capacity of the radiator 4 satisfies the required capacity. Then, in a situation where the heating capacity of the radiator 4 satisfies the required capacity (No in step S11), the heat pump controller 32 proceeds to step S17 and continues the operation of the compressor 2.
On the other hand, if the heating temperature TH is lower than the target heater temperature TCO in step S11 and the difference is larger than α (Yes: the heating capacity of the radiator 4 does not satisfy the required capacity), the heat pump controller 32 proceeds to step S12. Proceed to stop the compressor 2 (HP operation not permitted). That is, when the difference ΔTXO satisfies the first or second heavy frosting determination condition described above and the heavy frosting flag fFST2 is set, and the heating temperature TH is lower than the target heater temperature TCO and the difference is larger than α. The heat pump controller 32 prohibits the operation of the compressor 2 because it is determined that the heat pump operation more than this is difficult.
Then, the heat pump controller 32 proceeds to step S13, and performs the same heating operation as the above-described auxiliary heater only mode in which the auxiliary heater 23 is energized to heat the vehicle interior. That is, the heat pump controller 32 stops the compressor 2 and the outdoor blower 15 of the refrigerant circuit R, energizes the auxiliary heater 23, and heats the vehicle interior only with the auxiliary heater 23. As long as the severe frost formation flag fFST2 is set (“1”), the heat pump controller 32 proceeds from step S3 to step S11, so in a situation where the heating capacity of the radiator 4 satisfies the required capacity (step The process proceeds to step S17 to continue the operation of the compressor 2 and proceeds to step S12 to prohibit the operation of the compressor 2 in a situation where the operation is not satisfied (YES in step S11). A similar heating of the cabin will be performed.
Next, in step S14, it is determined whether the normal frost formation flag fFST1 described above is set (“1”) or the severe frost formation flag fFST2 is set (“1”), and the normal frost formation flag If fFST1 or severe frost formation flag fFST2 is set ("1"), that is, if it is determined that defrosting of the outdoor heat exchanger 7 is necessary, the process proceeds to step S15, and frosting request is made. The flag fDFSTReq is set ("1"). It is notified from the heat pump controller 32 to the air conditioning controller 20 that the defrost request flag fDFSTReq is set ("1") as the defrost request (FIG. 2).
On the other hand, when the vehicle is activated in step S1 and the HP air conditioning request is not present and the process proceeds to step S18 and there is no HP air conditioning request, the heat pump controller 32 proceeds to step S19. In step S19, the heat pump controller 32 determines whether the defrost request flag fDFSTReq is set ("1"). If reset ("0"), the heat pump controller 32 proceeds to step S24 and is stored in the non-volatile memory 80. The states of the normal frost formation flag fFST1 and the heavy frost formation flag fFST2 are kept as the previous state (previous value).
On the other hand, if the defrosting request flag fDFSTReq is set ("1") in step S15 described above, the heat pump controller 32 proceeds from step S19 to step S20, and whether the defrosting permission is notified from the air conditioning controller 20 or not to decide.
Here, when the air conditioning controller 20 is notified that the defrosting request flag fDFSTReq is set as the defrosting request from the heat pump controller 32 as described above, the current state of the vehicle is the defrosting permission of the outdoor heat exchanger 7 Whether the defrosting of the outdoor heat exchanger 7 is possible or not is determined by determining whether the conditions are satisfied. The defrost permission condition in the case of the embodiment is that there is no HP air conditioning request described above, and the battery 75 is being charged (the vehicle is stopped) or the remaining amount of the battery 75 is equal to or more than a predetermined value.
If the current state of the vehicle satisfies the defrosting permission condition, the air conditioning controller 20 sets ("1") the defrosting permission flag fDFSTPerm. The fact that the defrosting permission flag fDFSTPerm is set ("1") is notified from the air-conditioning controller 20 to the heat pump controller 32 as the defrosting permission (FIG. 2). The heat pump controller 32 proceeds from step S20 to step S21 when the defrosting permission is notified from the air conditioning controller 20, and performs the defrosting operation of the outdoor heat exchanger 7, and proceeds to step S24 when not notified.
The heat pump controller 32 sets the refrigerant circuit R to the heating mode state in the defrosting operation in step S21, then fully opens the outdoor expansion valve 6 and sets the air volume ratio SW by the air mix damper 28 to "0". It is set as the state which does not ventilate to the heat exchange path 3A for heating (it does not ventilate to the radiator 4). Then, the compressor 2 is operated, the high temperature refrigerant discharged from the compressor 2 is made to flow into the outdoor heat exchanger 7 through the radiator 4 and the outdoor expansion valve 6, and the frost formation of the outdoor heat exchanger 7 is performed. Thaw.
Then, in step S22, the heat pump controller 32 determines that the temperature of the outdoor heat exchanger 7 (in this case, the outdoor heat exchanger temperature TXO) detected by the outdoor heat exchanger temperature sensor 54 is a predetermined defrost end temperature (for example, + 3 ° C., etc.) It is judged whether the higher state continues for a predetermined time (for example, several minutes) (defrost completion condition), and defrost of the outdoor heat exchanger 7 is finished and the outdoor heat exchanger temperature TXO is If the defrost termination condition is satisfied, the process proceeds to step S23, and it is determined that the defrosting is completed, and the above-described normal frost formation flag fFST1 and the heavy frost formation flag fFST2 are reset ("0") (step S19 to step S24). Is defrost control).
As a result, when the process proceeds from step S1 to step S2 and step S3 thereafter, the process proceeds to step S4, so that the operation prohibition of the compressor 2 is canceled by the subsequent determination, and it is possible to heat the vehicle interior by the heating mode. Become.
(11-2) Determination of the progress of frost formation on the outdoor heat exchanger and control of the compressor, etc. (Part 2)
Next, another example of the determination of the progress of frost formation of the outdoor heat exchanger 7 and the control of the compressor 2 and the like will be described with reference to FIG. The heat pump controller 32 performs the same control as in FIG. 7 in this example, but the difference ΔTXO in FIG. 7 is replaced with the difference ΔPXO described later. And in this embodiment, the heat pump controller 32 does not form the current refrigerant evaporation pressure PXO of the outdoor heat exchanger 7 obtained from the outdoor heat exchanger pressure sensor 56 and the outdoor air on the outdoor heat exchanger 7 in a low humidity environment. Based on the refrigerant evaporation pressure PXObase of the outdoor heat exchanger 7 at the time of no frost formation, the progress state of frost formation on the outdoor heat exchanger 7 is determined. The heat pump controller 32 in this case estimates the refrigerant evaporation pressure PXObase of the outdoor heat exchanger 7 at the time of no frosting by using the following equation (V).
PXObase = f (Tam, NC, Ga * SW, VSP, PCI)
= K6 x Tam + k7 x NC + k8 x Ga * SW + k9 x VSP + k10 x PCI
(V)
In addition, since each parameter of Formula (V) is the same as Formula (IV), description is abbreviate | omitted. Further, the coefficients k6 to k10 also have the same tendency (positive and negative) as the coefficients k1 to k5 described above.
In FIG. 10, the solid line indicates the change of the refrigerant evaporation pressure PXO of the outdoor heat exchanger 7, and the broken line indicates the change of the refrigerant evaporation pressure PKObase at the time of no frost formation. At the initial stage of startup (non-frost formation), the refrigerant evaporation pressure PKO of the outdoor heat exchanger 7 and the refrigerant evaporation pressure PXObase at the time of no frost formation become substantially the same value. The temperature of the vehicle interior is warmed with the progress of the heating mode, and the load of the vehicle air conditioner 1 decreases, so the above-described refrigerant flow rate and the passing air volume of the radiator 4 also decrease, and in equation (V) The calculated PXObase (dotted line in FIG. 10) rises.
On the other hand, when frost formation occurs in the outdoor heat exchanger 7, the heat exchange performance with the outside air is hindered, so the refrigerant evaporation pressure PKO (solid line) gradually decreases and eventually falls below PKObase. In the case of this embodiment, the heat pump controller 32 substitutes the refrigerant evaporation pressure PXObase at the time of frost-free time obtained by substituting the current values of the parameters into the equation (V) in step S5 of FIG. A difference ΔPXO with the pressure PXO (ΔPXO = PXObase−PXO) is calculated (calculated). Thereafter, control is performed by replacing the difference ΔTXO in step S7, step S9, and step S16 of FIG. 7 with the difference ΔPXO. However, the first threshold A1 and the second threshold A2 (1), A2 (2), and the first predetermined time t1 and the second predetermined time t2 (1), t2 (2) are different from the case of the difference ΔTXO. It shall be different.
Thus, the refrigerant evaporation temperature TXO when the heat pump controller 32 lowers the refrigerant evaporation temperature TXO of the outdoor heat exchanger 7 than the refrigerant evaporation temperature TXObase of the outdoor heat exchanger 7 at the time of no frosting and at the time of no frosting The refrigerant when the refrigerant evaporation pressure PXO of the outdoor heat exchanger 7 is lower than the refrigerant evaporation pressure PXObase of the outdoor heat exchanger 7 at the time of no frost formation based on the difference ΔTXO = TXObase-TXO with the refrigerant evaporation temperature TXObase Based on the difference ΔPXO = PXObase−PXO between the evaporation pressure PXO and the refrigerant evaporation pressure PXObase at the time of no frost formation, the progress of frost formation on the outdoor heat exchanger 7 is determined, and the difference ΔTXO or the difference ΔPXO is predetermined The normal frost formation flag fFST1 is set ("1") when the normal frost formation determination condition of When the frost formation flag fFST1 is set ("1"), the defrost request flag fDFSTReq is set ("1") and a predetermined defrost request is made, and the power of the control device 11 is turned off. Since the normal frosting flag fFST1 is maintained and the heating mode is allowed to be executed, the indoor heat exchanger 7 performs the frost formation in the passenger compartment even when the normal frosting determination condition is satisfied. Heating will be continued. Further, since the state of the normal frost formation flag fFST1 is maintained even if the power of the control device 11 is turned off, the execution of the heating mode is permitted even when the vehicle is stopped and then started.
That is, when the degree of frost formation of the outdoor heat exchanger 7 is such that the normal frost formation determination condition is satisfied, heating of the vehicle interior is continued when the vehicle and the air conditioner 1 for vehicle are in operation. When the vehicle and the vehicle air conditioner 1 are activated, heating can be performed from the time of activation to maintain comfort.
Then, in the embodiment, when the heat pump controller 32 sets the defrost request flag fDFSTReq (“1”) and performs the defrost request, the air conditioning controller 20 determines whether the outdoor heat exchanger 7 can be defrosted or not and permits In this case, since the heat pump controller 32 performs defrosting of the outdoor heat exchanger 7 and resets the normal frost formation flag fFST1 ("0"), the outdoor heat exchanger 7 is defrosted, It becomes possible to suppress the fall of the operating efficiency accompanying frost formation. In this case, since the heat pump controller 32 maintains the state of the normal frost formation flag fFST1 even if the power is turned off, even after the vehicle is temporarily stopped and the power of the air conditioning device 1 for vehicles is turned off, Defrosting of the heat exchanger 7 will be performed reliably.
As for the permission of defrosting of the outdoor heat exchanger 7, as in the embodiment, the air conditioning controller 20 does not have the air conditioning request for the vehicle interior (HP air conditioning request), and the battery 75 for driving the compressor 2 is Defrosting of the outdoor heat exchanger 7 may be permitted on condition that the battery 75 is charging or the remaining amount of the battery 75 is equal to or more than a predetermined value, or other conditions (environmental conditions such as the outside air temperature etc. Or the state of the air conditioner 1 for a vehicle).
Further, as in the embodiment, the control device 11 is configured of the air conditioning controller 20 to which the air conditioning operation unit 53 for performing the air conditioning setting operation of the vehicle compartment is connected, and the heat pump controller 32 for controlling the operation of the compressor 2; When the air conditioning controller 20 and the heat pump controller 32 transmit and receive information via the vehicle communication bus 65, the heat pump controller 32 calculates the difference ΔTXO or the difference ΔPXO as described above, and the difference ΔTXO Or, when the difference ΔPXO satisfies the normal frost formation determination condition, the normal frost formation flag fFST1 is set (“1”), a defrost request is issued to the air conditioning controller 20, and the defrost permission is issued from the air conditioning controller 20. When notified, the outdoor heat exchanger 7 is defrosted, and the normal frost formation flag fFST1 is reset ("0"). If there is a request for defrosting from the heat pump controller 32, the adjustment controller 20 determines whether or not the outdoor heat exchanger 7 is defrostable, and if permitted, sets the defrosting permission flag fDFSTPerm ("1") to By notifying the heat pump controller 32 of the defrosting permission of the outdoor heat exchanger 7, the heating and air conditioning of the vehicle interior can be comfortably performed, and the decrease in the operating efficiency accompanying the frost formation of the outdoor heat exchanger 7 can be appropriately suppressed. You will be able to
Furthermore, in the embodiment, the heat pump controller 32 has first and second heavy frosting judgment conditions for judging that the frost formation on the outdoor heat exchanger 7 has progressed further than the normal frosting judgment condition. When the difference ΔTXO or the difference ΔPXO satisfies any of the severe frost formation determination conditions, the severe frost formation flag fFST2 is set (“1”), and the severe frost formation flag fFST2 is set Also, the defrost request is set by setting the defrost request flag fDFSTReq (“1”) and the defrost request is performed, and the state of the heavy frost formation flag fFST2 is maintained even when the heat pump controller 32 is turned off, and the compressor in the heating mode Since operation 2 is prohibited, frosting on the outdoor heat exchanger 7 proceeds further than the normal frosting decision condition described above, and the first or second severe frosting decision condition is satisfied. In the case where it becomes dry, it is possible to stop the compressor 2 to prevent the further reduction of the operating efficiency and the occurrence of excessive frost formation.
In the embodiment, the two-stage severe frosting determination of the first severe frosting determination condition and the second severe frosting determination condition is performed, but the determination is made on any one of the severe frosting determination conditions. It is good. However, by determining in two steps as in the embodiment, excessive frost formation in the outdoor heat exchanger 7 progresses in a short time, and moderate frost formation in the outdoor heat exchanger 7 continues for a long time Both of what is happening can be determined.
In the embodiment, the auxiliary heater 23 is provided in the heating heat exchange passage 3A of the airflow passage 3, and the heat pump controller 32 determines that the difference ΔTXO or the difference ΔPXO is the first or second severe frost formation determination. When the operation of the compressor 2 is prohibited because the conditions are satisfied, the passenger compartment is heated by the auxiliary heater 23. Therefore, the progress of frost formation on the outdoor heat exchanger 7 is the first or second severity. Even after the frost formation determination condition is satisfied and the operation of the compressor 2 is prohibited, heating of the vehicle interior can be continued by the auxiliary heater 23.
Then, as described above, even when the progress state of frost formation of the outdoor heat exchanger 7 satisfies the first or second severe frost formation determination condition and the defrost request is performed, the air conditioning controller 20 controls the outdoor heat exchanger If it is judged that the defrosting of 7 is possible and permitted, the heat pump controller 32 defrosts the outdoor heat exchanger 7 and resets the heavy frost formation flag fFST 2. Defrosting can be performed to suppress a decrease in operating efficiency associated with frost formation. Also in this case, since the heat pump controller 32 maintains the state of the heavy frost formation flag fFST2 even if the power is turned off, even after the vehicle is temporarily stopped and the power of the vehicle air conditioner 1 is turned off, Defrosting of the outdoor heat exchanger 7 will be performed reliably.
In addition, as for the permission of defrosting of the outdoor heat exchanger 7, also in this case, the air conditioning controller 20 does not have a request for air conditioning of the vehicle interior (HP air conditioning request) as in the embodiment, and for driving the compressor 2 The defrosting of the outdoor heat exchanger 7 may be permitted under the condition that the battery 75 is being charged or the remaining amount of the battery 75 is equal to or more than a predetermined value.
Similarly, as in the embodiment, the control device 11 includes the air conditioning controller 20 to which the air conditioning operation unit 53 for performing the air conditioning setting operation of the passenger compartment is connected, and the heat pump controller 32 for controlling the operation of the compressor 2. If the air conditioning controller 20 and the heat pump controller 32 transmit and receive information via the vehicle communication bus 65, the heat pump controller 32 also calculates the difference ΔTXO or the difference ΔPXO in this case, and When the difference ΔTXO or the difference ΔPXO satisfies the first or second heavy frosting determination condition, the heavy frost formation flag fFST2 is set (“1”), and the defrost request flag fDFSTReq is set (“1”) When the defrost request is issued to the air conditioning controller 20 and the defrost permission is notified from the air conditioning controller 20, the outdoor heat exchanger 7 is removed. And the heavy frost formation flag fFST2 is reset (“0”), and the air conditioning controller 20 determines whether or not the outdoor heat exchanger 7 is capable of defrosting if the defrost request is received from the heat pump controller 32, and permits it. In this case, the defrosting permission flag fDFSTPerm is set (“1”), and the defrosting permission of the outdoor heat exchanger 7 is notified to the heat pump controller 32, so that the vehicle interior can be comfortably heated and air-conditioned, It is possible to appropriately suppress the decrease in the operating efficiency associated with the frost formation on the outdoor heat exchanger 7.
Further, as in the embodiment, the normal frosting determination condition is that the difference ΔTXO or the state where the difference ΔPXO is larger than the first threshold A1 continues for the first predetermined time t1, and the first and second severe frost formations As the determination condition, at least the state in which the difference ΔTXO or the state in which the difference ΔPXO is larger than the second threshold A2 (1) or A2 (2) continues for the second predetermined time t2 (1), t2 (2) Assuming that the thresholds A2 (1) and A2 (2) of 2 are larger than the first threshold A1, the compressor 2 is operated to continue the heating mode according to the degree of frost formation on the outdoor heat exchanger 7. In this case, it is possible to properly make a step-wise determination as to whether to prohibit the operation of the compressor 2.
Note that the first predetermined time t1 and the second predetermined times t2 (1) and t2 (2) of each frost formation determination condition are not limited to the conditions of the embodiment, and for example, the first predetermined time t1 and the second predetermined time Predetermined time t2 (1), t2 (2) are the same, or the second predetermined time t2 (1) is longer than the first predetermined time t1, and the second predetermined time t2 (2) is the first predetermined time. It may be shorter than the time t1, and may be appropriately set according to the apparatus within a range that does not deviate from the purpose (stepwise determination) of the normal frost formation determination condition and the first and second severe frost formation determination conditions.
In addition, as in the embodiment, the heat pump controller 32 generates the refrigerant evaporation temperature TXObase of the outdoor heat exchanger at the time of no frosting based on the environmental condition and / or the index indicating the operating condition, or the outdoor heat at the time of no frosting. By estimating the refrigerant evaporation pressure PXObase of the exchanger, the progress of frost formation on the outdoor heat exchanger 7 can be accurately detected.
(12) Natural defrosting determination control of outdoor heat exchanger
Next, natural defrosting determination of the outdoor heat exchanger 7 by the heat pump controller 32 and control regarding defrosting in that case will be described with reference to FIG. 8. As described above, the heat pump controller 32 determines that defrosting of the outdoor heat exchanger 7 is necessary, sets the slight frosting flag fFST1 in step S8 of FIG. 7, sets the heavy frosting flag fFST2 in step S10, and finally In step S15, the defrosting request flag fDFSTReq is set, and if defrosting is permitted by the air conditioning controller 20 (defrosting permission flag fDFSTPerm is set), defrosting operation of the outdoor heat exchanger 7 is executed in step S21. However, in an environment where the outside air temperature Tam is relatively high, for example, the frost formed on the outdoor heat exchanger 7 naturally melts.
In addition, frost formed on the outdoor heat exchanger 7 in the heating mode is also the refrigerant in the outdoor heat exchanger 7 if the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode or the MAX cooling mode in this other embodiment is performed. In this case, frost is also heated from the high-temperature refrigerant to naturally melt (de-ice) and be removed.
Therefore, in this embodiment, after the heat pump controller 32 once determines that the outdoor heat exchanger 7 needs to be defrosted, the outdoor heat exchanger 7 naturally defrosts (de-icing) before the defrosting operation is performed. Judging whether or not it has been done, it does not defrost. Specific control will be described below. That is, in step S25 of FIG. 8 following the flowchart of FIG. 7, the heat pump controller 32 determines whether the vehicle is activated (during ON). Then, if it is activated, the process proceeds to step S26, and in this embodiment, it is determined whether or not the above-described heavy frost formation flag fFST2 is set ("1").
As described above, when it is determined that defrosting of the outdoor heat exchanger 7 is necessary, and the heavy frost formation flag fFST2 is set in step S10 of FIG. 7 and the state is held in the non-volatile memory 80, the heat pump controller 32 In step S27, it is determined whether the defrosting operation of the outdoor heat exchanger 7 is not performed. If the heavy frost formation flag fFST2 is set, but the defrost permission condition is not satisfied and the defrost operation in step S21 of FIG. 7 is not yet executed, the heat pump controller 32 proceeds to step S28 to perform the first natural removal. It is determined whether the frost condition is satisfied.
(12-1) First natural defrosting condition
In the first natural defrosting condition of the embodiment, the outside air temperature Tam detected by the outside air temperature sensor 33 is a predetermined value Tam1 (for example, + 5 ° C. or the like) relatively higher than the freezing point, and an outdoor heat exchanger temperature sensor Refrigerant evaporation temperature TXO of the outdoor heat exchanger 7 detected by 54 (when the refrigerant is radiating by the outdoor heat exchanger 7, etc., when the refrigerant is not evaporated by the outdoor heat exchanger 7, the outlet of the outdoor heat exchanger 7 The state where the refrigerant temperature of (1) is equal to or higher than the outside air temperature Tam-.beta. (.Beta. Is a relatively small predetermined value) continues for a predetermined time t5 (e.g. several tens of minutes etc.).
As in the first natural defrosting condition of the embodiment, when the state where the outside air temperature Tam is relatively high and the refrigerant evaporation temperature TXO of the outdoor heat exchanger 7 is also the outside air temperature Tam-β or more continues for a predetermined time t5, outdoor The frost formation of the heat exchanger 7 is considered to be melted (de-icing) naturally and removed. Therefore, when the first natural defrost condition is satisfied in step S28, the heat pump controller 32 proceeds to step S29 and all frost-related flags, that is, the light frost flag stored in the non-volatile memory 80. fFST1, the heavy frost formation flag fFST2, and the defrost request flag fDFSTReq are reset.
As a result, the air conditioning controller 20 does not set the defrosting permission flag fDFSTPerm, and the heat pump controller 32 does not proceed from step S19 to step S20 either, so the process does not proceed to step S21, and the defrost of the outdoor heat exchanger 7 is performed. Will not take place.
On the other hand, when the vehicle is not activated in step S25, the heat pump controller 32 proceeds to step S30 to determine whether the vehicle is stopped (state of IG OFF not activated), and when stopped, proceeds to step S31. Next, it is determined whether there is a frosting history of the outdoor heat exchanger 7, that is, it is determined whether the light frosting flag fFST1 or the heavy frosting flag fFST2 is set ("1").
(12-2) Second natural defrosting condition
If the light frost formation flag fFST1 or the heavy frost formation flag fFST2 is set in step S7 and the defrosting operation has not been performed yet and they have not been reset, the heat pump controller 32 proceeds to step S32 and is currently starting the vehicle. It is determined whether it is (from IG OFF to ON). Then, if it is in operation, the process proceeds to step S33, and an operation mode other than the heating mode, dehumidifying heating mode in which the refrigerant is not absorbed by the outdoor heat exchanger 7 in the embodiment, dehumidifying cooling mode, cooling mode, MAX cooling mode It is determined whether any one of the above is selected and the operation mode is continued for a predetermined time or more.
An operation mode other than the heating mode is selected, and the fact that the operation mode is continued for a predetermined time or more is a second natural defrost condition. When the dehumidifying / heating mode, the dehumidifying / cooling mode, the cooling mode, and the MAX cooling mode are selected, the refrigerant dissipates heat in the outdoor heat exchanger 7 in this embodiment, so frost formation is melted by the heat of the high temperature refrigerant. It is removed. Therefore, the heat pump controller 32 proceeds to step S29 also when the second natural defrosting condition is satisfied in step S33, and all frost-related flags (light frosting flag fFST1, heavy frosting flag fFST2, and defrosting request) Reset the flag fDFSTReq).
As a result, the air conditioning controller 20 does not set the defrosting permission flag fDFSTPerm, and the heat pump controller 32 does not proceed from step S19 to step S20 either, so the process does not proceed to step S21. Defrosting ceases to occur.
(12-3) Natural defrosting determination based on outside air temperature history (third and fourth natural defrosting conditions)
On the other hand, if the vehicle is not currently activated at step S32, that is, if the vehicle is at rest (IG OFF), the heat pump controller 32 proceeds to step S34 and the nature of the outdoor heat exchanger 7 based on the outdoor temperature history. Perform defrost determination. There are two conditions of the natural defrosting determination based on the outside air temperature history of the embodiment, the third natural defrosting condition and the fourth natural defrosting condition.
(12-3-1) Third natural defrosting condition
The air conditioning controller 20 and the heat pump controller 32 constituting the control device 11 are activated at a predetermined sampling cycle (for example, every one minute) even while the vehicle is stopped, and acquire the outside air temperature Tam detected by the outside air temperature sensor 33 Is stored in the non-volatile memory 80 as a history. The third natural defrosting condition of the embodiment is, as shown in FIG. 11, a predetermined value Tam2 (for example, Tam1) in which the outside air temperature Tam detected by the outside air temperature sensor 33 is relatively higher than the freezing point while the vehicle is stopped. The integrated value of the time which is the same as + 5 ° C. etc. (which may be a different value) is equal to or more than a predetermined time t3 (eg, several tens of minutes).
As in the third natural defrosting condition, if the time when the outside air temperature Tam is relatively high continues for a predetermined time t3 or more while the vehicle is stopped, the frost formation on the outdoor heat exchanger 7 is naturally melted (de-icing) It is believed to be removed. Therefore, while the vehicle is stopped as shown in FIG. 11, the times at which the outside air temperature Tam is equal to or higher than the predetermined value Tam2 are a, b, and c, and their integrated value (a + b + c) is equal to or longer than the predetermined time t3. If it is determined that the heat pump controller 32 determines that the third natural defrosting condition is satisfied in step S34, the process proceeds to step S35, and all frost-related flags (light frosting flag fFST1, heavy frosting The flag fFST2 and the defrost request flag fDFSTReq) are reset.
As a result, the air conditioning controller 20 does not set the defrosting permission flag fDFSTPerm as described above, and the heat pump controller 32 does not proceed from step S19 to step S20 either, so it does not proceed to step S21. Defrosting is no longer performed.
(12-3-2) Fourth natural defrosting condition
Further, as shown in FIG. 12, under the fourth natural defrosting condition of natural defrosting determination based on the outside air temperature history in step S34, the outside air temperature Tam detected by the outside air temperature sensor 33 is a freezing point while the vehicle is stopped. The integral value determined from the difference between the outside air temperature Tam and the predetermined value Tam2 and the elapsed time becomes equal to or greater than the predetermined value X1.
As in the case of the fourth natural defrosting condition, if the outside air temperature Tam becomes relatively high while the vehicle is stopped, and the integral value obtained from the difference from the predetermined value Tam2 and the elapsed time becomes the predetermined value X1, the outdoor heat exchanger The frost formation of 7 is considered to be naturally melted (de-icing) and removed. Therefore, while the vehicle is stopped as shown in FIG. 12, the outside air temperature Tam becomes equal to or higher than the predetermined value Tam2, and a value obtained by integrating the difference (Tam-Tam2) with the elapsed time (the range shown by hatching in FIG. The heat pump controller 32 determines in step S34 that the fourth natural defrosting condition is satisfied, and proceeds to step S35, and all the frost-related flags (mild The frost formation flag fFST1, the heavy frost formation flag fFST2, and the defrost request flag fDFSTReq) are reset.
As a result, the air conditioning controller 20 does not set the defrosting permission flag fDFSTPerm as described above, and the heat pump controller 32 does not proceed from step S19 to step S20 either, so it does not proceed to step S21. Defrosting is no longer performed. In particular, if the difference between the outside air temperature Tam and the predetermined value Tam2 is integrated with the elapsed time as in the fourth natural defrosting condition, the state of natural defrosting of the outdoor heat exchanger 7 can be determined more accurately. Will be able to
(12-4) Fifth natural defrosting condition
Although all of the first to fourth natural defrosting conditions are determined in the embodiment, the present invention is not limited thereto, and any one of them or a combination thereof may be used. In addition to the above-described natural defrosting conditions, the outdoor heat exchanger may also be operated, for example, when a relatively long predetermined period t4 (for example, one month) has elapsed since the vehicle stopped in the determination of step S34 of FIG. The frost formation of 7 is considered to be melted (de-icing) naturally and disappear. Therefore, the process proceeds from step S34 to step S35 so that all frost formation related flags are reset also when the fifth natural defrost condition related to the heat pump controller 32 is satisfied, with the above condition as the fifth natural defrost condition. You may
In the embodiment, the outside air temperature sensor 33 is connected to the air conditioning controller 20, and the outside air temperature Tam is sent to the heat pump controller 32, and the heat pump controller 32 determines the establishment of the natural defrosting condition. The controller 20 may determine the establishment of the natural defrosting condition and notify the heat pump controller 32 of the condition. In that case, the determination in step S28, step S33, and step S34 in FIG. 8 is performed on the air conditioning controller 20 side, and the heat pump controller 32 receives a notification from the air conditioning controller 20 and resets all frost formation related flags. become. Thereby, it is possible to avoid unnecessary defrosting of the outdoor heat exchanger 7 without any trouble. Conversely, the outside air temperature sensor 33 may be connected to the heat pump controller 32, and the outside air temperature Tam may be taken in all by the heat pump controller 32 to make the above-described determination.
As described above, if it is determined that defrosting of the outdoor heat exchanger 7 is necessary, the defrosting of the outdoor heat exchanger 7 is performed if a predetermined natural defrosting condition is satisfied before performing the defrosting operation. If it is not so, even if it is determined that defrosting of the outdoor heat exchanger 7 is necessary, then it is predicted that the predetermined natural defrosting condition is satisfied and the frost formation on the outdoor heat exchanger 7 is naturally melted. In this case, unnecessary defrosting of the outdoor heat exchanger 7 can be avoided in advance by preventing defrosting. Thereby, without performing defrosting of the outdoor heat exchanger 7, in a situation where it is possible to heat the vehicle interior, defrosting is not performed, and comfortable heating and air conditioning of the vehicle interior is realized while contributing to energy saving. Will be able to
In the first natural defrosting condition as in the embodiment, the outside air temperature Tam is the predetermined value Tam1 or more, and the refrigerant evaporation temperature TXO of the outdoor heat exchanger 7 is the outside air temperature Tam-predetermined value β or more. Assuming that the state continues for a predetermined time t5, the second natural defrost condition is selected as an operation mode other than the heating mode (an operation mode in which the refrigerant is not absorbed by the outdoor heat exchanger 7 in this embodiment). Assuming that the integrated value of the time during which the outside air temperature Tam is equal to or higher than the predetermined value Tam2 becomes equal to or longer than the predetermined time t3 while the vehicle is stopped under the third natural defrost condition, the fourth natural defrost condition is While the vehicle is stopped, the outside air temperature Tam is equal to or higher than the predetermined value Tam2, and the integral value obtained from the difference and the elapsed time is equal to or higher than the predetermined value X1, and the vehicle is further subjected to the fifth natural defrost condition. After a predetermined period of time t4 As having passed, it is accurately predicted that the frost formation on the outdoor heat exchanger 7 has naturally melted by judging any of them, a combination thereof, or all of them. become able to.
Further, as in the embodiment, when the control device 11 is configured of the air conditioning controller 20 and the heat pump controller 32, and the air conditioning controller 20 and the heat pump controller 32 transmit and receive information via the vehicle communication bus 65, the heat pump controller 32 However, if it is determined that defrosting of the outdoor heat exchanger 7 is necessary, the predetermined defrost request flag fDFSTReq is set, and if the air conditioning controller 20 sets the predetermined defrost permission flag fDFSTperm, the outdoor heat exchanger 7 is selected. After the defrosting request flag fDFSTReq is reset and the defrosting request flag fDFSTReq is set, the defrosting request flag fDFSTReq is also reset when the natural defrosting condition is satisfied, and the air conditioning controller 20 performs the defrosting request flag fDFSTReq. , By the heat pump controller 32 When the defrosting request flag fDFSTReq is set, it is determined whether the defrosting permission condition is satisfied, and when satisfied, the defrosting permission flag fDFSTPerm is set to make the vehicle interior comfortable. Unnecessary defrosting can also be avoided while appropriately suppressing heating and air conditioning and further lowering the operating efficiency associated with frost formation on the outdoor heat exchanger 7.
 次に、図13は本発明を適用した他の実施例の車両用空気調和装置1の構成図を示している。尚、この図において図1と同一符号で示すものは同一若しくは同様の機能を奏するものである。この実施例の場合、過冷却部16の出口は逆止弁18に接続され、この逆止弁18の出口が冷媒配管13Bに接続されている。尚、逆止弁18は冷媒配管13B(室内膨張弁8)側が順方向とされている。
 また、放熱器4の出口側の冷媒配管13Eは室外膨張弁6の手前で分岐しており、この分岐した冷媒配管(以下、第2のバイパス配管と称する)13Fは電磁弁22(除湿用)を介して逆止弁18の下流側の冷媒配管13Bに連通接続されている。更に、吸熱器9の出口側の冷媒配管13Cには、内部熱交換器19の冷媒下流側であって、冷媒配管13Dとの合流点より冷媒上流側に蒸発圧力調整弁70が接続されている。そして、これら電磁弁22や蒸発圧力調整弁70もヒートポンプコントローラ32の出力に接続されている。尚、前述の実施例の図1中のバイパス配管35、電磁弁30及び電磁弁40から成るバイパス装置45は設けられていない。その他は図1と同様であるので説明を省略する。
 以上の構成で、この実施例の車両用空気調和装置1の動作を説明する。ヒートポンプコントローラ32はこの実施例では、暖房モード、除湿暖房モード、内部サイクルモード、除湿冷房モード、冷房モード及び補助ヒータ単独モードの各運転モードを切り換えて実行する(MAX冷房モードはこの実施例では存在しない)。尚、暖房モード、除湿冷房モード及び冷房モードが選択されたときの動作及び冷媒の流れと、補助ヒータ単独モードは前述の実施例(実施例1)の場合と同様であるので説明を省略する。但し、この実施例(実施例3)ではこれら暖房モード、除湿冷房モード及び冷房モードにおいては電磁弁22を閉じるものとする。
 (13)図13の車両用空気調和装置1の除湿暖房モード
 他方、除湿暖房モードが選択された場合、この実施例ではヒートポンプコントローラ32は電磁弁21(暖房用)を開放し、電磁弁17(冷房用)を閉じる。また、電磁弁22(除湿用)を開放する。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量の調整も行う。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は冷媒配管13Gから放熱器4に流入する。放熱器4には暖房用熱交換通路3Aに流入した空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A、電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。
 また、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部は分流され、電磁弁22を経て第2のバイパス配管13F及び冷媒配管13Bより内部熱交換器19を経て室内膨張弁8に至るようになる。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は、内部熱交換器19、蒸発圧力調整弁70を順次経て冷媒配管13Cにて冷媒配管13Dからの冷媒と合流した後、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。
 空調コントローラ20は、目標吹出温度TAOから算出される目標ヒータ温度TCO(加熱温度THの目標値)をヒートポンプコントローラ32に送信する。ヒートポンプコントローラ32は、この目標ヒータ温度TCOから目標放熱器圧力PCO(放熱器圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数NCを制御し、放熱器4による加熱を制御する。また、ヒートポンプコントローラ32は、吸熱器温度センサ48が検出する吸熱器9の温度Teと、空調コントローラ20から送信された目標吸熱器温度TEOに基づいて室外膨張弁6の弁開度を制御する。また、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度Teに基づき、蒸発圧力調整弁70を開(流路を拡大する)/閉(少許冷媒が流れる)して吸熱器9の温度が下がり過ぎて凍結する不都合を防止する。
 (14)図13の車両用空気調和装置1の内部サイクルモード
 また、内部サイクルモードでは、ヒートポンプコントローラ32は上記除湿暖房モードの状態において室外膨張弁6を全閉とする(全閉位置)と共に、電磁弁21を閉じる。この室外膨張弁6と電磁弁21が閉じられることにより、室外熱交換器7への冷媒の流入、及び、室外熱交換器7からの冷媒の流出は阻止されることになるので、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒は電磁弁22を経て第2のバイパス配管13Fに全て流れるようになる。そして、第2のバイパス配管13Fを流れる冷媒は冷媒配管13Bより内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は、内部熱交換器19、蒸発圧力調整弁70を順次経て冷媒配管13Cを流れ、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより、車室内の除湿暖房が行われることになるが、この内部サイクルモードでは室内側の空気流通路3内にある放熱器4(放熱)と吸熱器9(吸熱)の間で冷媒が循環されることになるので、外気からの熱の汲み上げは行われず、圧縮機2の消費動力分の暖房能力が発揮される。除湿作用を発揮する吸熱器9には冷媒の全量が流れるので、上記除湿暖房モードに比較すると除湿能力は高いが、暖房能力は低くなる。
 空調コントローラ20は目標吹出温度TAOから算出される目標ヒータ温度TCO(加熱温度THの目標値)をヒートポンプコントローラ32に送信する。ヒートポンプコントローラ32は送信された目標ヒータ温度TCOから目標放熱器圧力PCO(放熱器圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数NCを制御し、放熱器4による加熱を制御する。
 そして、この実施例の場合にも前述した(11)の室外熱交換器7の着霜判定と圧縮機2等の制御、及び、(12)の室外熱交換器7の自然除霜判定制御を行うことで、車室内を快適に暖房空調しつつ、室外熱交換器7の着霜に伴う運転効率の低下を抑制しながら、不必要な除霜も回避することができるようになる。但し、この実施例の場合の図8のステップS33における暖房モード以外の運転モードは、室外熱交換器7で冷媒を吸熱させない運転モードである除湿冷房モード及び冷房モードとなる。
 尚、各実施例で示した数値等は前述した如くそれらに限られるものでは無く、適用する装置に応じて適宜設定すべきものである。また、補助加熱装置は実施例で示した補助ヒータ23に限られるものでは無く、ヒータで加熱された熱媒体を循環させて空気流通路3内の空気を加熱する熱媒体循環回路や、エンジンで加熱されたラジエター水を循環するヒータコア等を利用してもよい。
Next, FIG. 13 shows a configuration diagram of a vehicle air conditioner 1 of another embodiment to which the present invention is applied. In this figure, the same reference numerals as in FIG. 1 have the same or similar functions. In the case of this embodiment, the outlet of the supercooling unit 16 is connected to the check valve 18, and the outlet of the check valve 18 is connected to the refrigerant pipe 13B. In the check valve 18, the refrigerant pipe 13B (indoor expansion valve 8) side is in the forward direction.
Further, the refrigerant pipe 13E on the outlet side of the radiator 4 is branched in front of the outdoor expansion valve 6, and the branched refrigerant pipe (hereinafter referred to as a second bypass pipe) 13F is a solenoid valve 22 (for dehumidification) Is connected in communication with the refrigerant pipe 13B on the downstream side of the check valve 18. Furthermore, an evaporation pressure adjusting valve 70 is connected to the refrigerant pipe 13C on the outlet side of the heat absorber 9 on the refrigerant downstream side of the internal heat exchanger 19 and on the refrigerant upstream side from the junction with the refrigerant pipe 13D. . The solenoid valve 22 and the evaporation pressure regulating valve 70 are also connected to the output of the heat pump controller 32. Incidentally, the bypass pipe 45, the solenoid valve 30, and the bypass device 45 including the solenoid valve 40 in FIG. 1 of the embodiment described above are not provided. The other parts are the same as those in FIG.
The operation of the vehicle air conditioner 1 of this embodiment will be described with the above configuration. In this embodiment, the heat pump controller 32 switches and executes each operation mode of the heating mode, the dehumidifying heating mode, the internal cycle mode, the dehumidifying cooling mode, the cooling mode and the auxiliary heater sole mode (MAX cooling mode is present in this embodiment) do not do). The operation and the flow of the refrigerant when the heating mode, the dehumidifying and cooling mode, and the cooling mode are selected, and the auxiliary heater only mode are the same as those in the above-described embodiment (Embodiment 1), and thus the description thereof is omitted. However, in this embodiment (embodiment 3), the solenoid valve 22 is closed in the heating mode, the dehumidifying cooling mode and the cooling mode.
(13) Dehumidifying / heating mode of vehicle air conditioner 1 in FIG. 13 On the other hand, when the dehumidifying / heating mode is selected, the heat pump controller 32 opens the solenoid valve 21 (for heating) in this embodiment, Close for cooling. Also, the solenoid valve 22 (for dehumidification) is opened. Then, the compressor 2 is operated. The air conditioning controller 20 operates the blowers 15 and 27, and the air mix damper 28 is basically blown out from the indoor blower 27 and passes through the heat absorber 9 and all the air in the air flow passage 3 is heated by the heat exchange passage 3A. In the state of ventilating to the auxiliary heater 23 and the radiator 4, the air volume is also adjusted.
As a result, the high-temperature, high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G. Since the air in the air flow passage 3 which has flowed into the heating heat exchange passage 3A is ventilated in the radiator 4, the air in the air flow passage 3 is heated by the high temperature refrigerant in the radiator 4, while the radiator is The refrigerant in 4 is cooled by the heat taken by the air and condenses and liquefies.
The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 evaporates, and heat is pumped up from the outside air ventilated by the traveling or the outdoor blower 15. That is, the refrigerant circuit R is a heat pump. Then, the low temperature refrigerant leaving the outdoor heat exchanger 7 passes through the refrigerant pipe 13A, the solenoid valve 21 and the refrigerant pipe 13D, enters the accumulator 12 from the refrigerant pipe 13C, and is gas-liquid separated there, and then the gas refrigerant is the compressor 2 Repeat the cycle of sucking in
Further, a part of the condensed refrigerant flowing through the refrigerant pipe 13E through the radiator 4 is diverted, and passes through the solenoid valve 22 to the indoor expansion valve 8 through the internal heat exchanger 19 from the second bypass pipe 13F and the refrigerant pipe 13B. It will be. After the refrigerant is depressurized by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates. At this time, the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat sink 9, so that the air is cooled and dehumidified.
The refrigerant evaporated by the heat absorber 9 passes through the internal heat exchanger 19 and the evaporation pressure adjusting valve 70 sequentially, joins with the refrigerant from the refrigerant pipe 13D in the refrigerant pipe 13C, and then passes through the accumulator 12 and is sucked into the compressor 2 repeat. The air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, whereby dehumidifying and heating of the vehicle interior is performed.
The air conditioning controller 20 transmits the target heater temperature TCO (target value of the heating temperature TH) calculated from the target outlet temperature TAO to the heat pump controller 32. The heat pump controller 32 calculates a target radiator pressure PCO (a target value of the radiator pressure PCI) from the target heater temperature TCO, and the refrigerant of the radiator 4 detected by the target radiator pressure PCO and the radiator pressure sensor 47 The rotation speed NC of the compressor 2 is controlled based on the pressure (radiator pressure PCI, high pressure of the refrigerant circuit R), and heating by the radiator 4 is controlled. Further, the heat pump controller 32 controls the degree of opening of the outdoor expansion valve 6 based on the temperature Te of the heat absorber 9 detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO transmitted from the air conditioning controller 20. Further, the heat pump controller 32 opens the evaporation pressure control valve 70 (enlarges the flow path) / closes (a small amount of refrigerant flows) based on the temperature Te of the heat absorber 9 detected by the heat absorber temperature sensor 48. Prevent the problem of freezing due to too low temperature.
(14) Internal cycle mode of vehicle air conditioner 1 in FIG. 13 In internal cycle mode, the heat pump controller 32 fully closes the outdoor expansion valve 6 in the dehumidifying and heating mode (fully closed position), Close the solenoid valve 21. By closing the outdoor expansion valve 6 and the solenoid valve 21, the inflow of the refrigerant to the outdoor heat exchanger 7 and the outflow of the refrigerant from the outdoor heat exchanger 7 are prevented, so the radiator 4 The condensed refrigerant flowing through the refrigerant pipe 13E passes through the solenoid valve 22 and all flows to the second bypass pipe 13F. Then, the refrigerant flowing through the second bypass pipe 13F passes from the refrigerant pipe 13B to the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates. At this time, the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat sink 9, so that the air is cooled and dehumidified.
The refrigerant evaporated by the heat absorber 9 flows through the refrigerant pipe 13C sequentially through the internal heat exchanger 19 and the evaporation pressure adjusting valve 70, and repeats the circulation sucked into the compressor 2 through the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, this means that dehumidifying and heating of the passenger compartment is performed, but in this internal cycle mode, the air flow on the indoor side Since the refrigerant is circulated between the radiator 4 (heat radiation) and the heat absorber 9 (heat absorption) in the passage 3, heating of heat from the outside air is not performed, and heating for the power consumption of the compressor 2 is performed. Ability is demonstrated. Since the whole amount of the refrigerant flows through the heat absorber 9 which exerts the dehumidifying action, the dehumidifying ability is higher than the dehumidifying and heating mode, but the heating ability is lowered.
The air conditioning controller 20 transmits the target heater temperature TCO (target value of the heating temperature TH) calculated from the target blowing temperature TAO to the heat pump controller 32. The heat pump controller 32 calculates a target radiator pressure PCO (target value of the radiator pressure PCI) from the transmitted target heater temperature TCO, and the target radiator pressure PCO and the radiator 4 detected by the radiator pressure sensor 47 The rotation speed NC of the compressor 2 is controlled based on the refrigerant pressure (the radiator pressure PCI, the high pressure of the refrigerant circuit R), and the heating by the radiator 4 is controlled.
And also in the case of this embodiment, the frosting determination of the outdoor heat exchanger 7 of (11) and the control of the compressor 2 etc. described above and the natural defrosting determination control of the outdoor heat exchanger 7 of (12) By performing this, it is possible to avoid unnecessary defrosting while suppressing a decrease in operating efficiency accompanying frost formation of the outdoor heat exchanger 7 while heating and air-conditioning the vehicle interior comfortably. However, the operation modes other than the heating mode in step S33 of FIG. 8 in the case of this embodiment are the dehumidifying and cooling mode and the cooling mode, which are operation modes in which the outdoor heat exchanger 7 does not absorb the refrigerant.
The numerical values and the like shown in the respective embodiments are not limited to them as described above, and should be appropriately set in accordance with the apparatus to be applied. Further, the auxiliary heating device is not limited to the auxiliary heater 23 shown in the embodiment, and a heat medium circulation circuit which heats the air in the air flow passage 3 by circulating a heat medium heated by the heater and an engine You may utilize the heater core etc. which circulate the heated radiator water.
 1 車両用空気調和装置
 2 圧縮機
 3 空気流通路
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器
 10 HVACユニット
 11 制御装置
 20 空調コントローラ
 23 補助ヒータ(補助加熱装置)
 27 室内送風機(ブロワファン)
 28 エアミックスダンパ
 32 ヒートポンプコントローラ
 33 外気温度センサ
 53 空調操作部
 54 室外熱交換器温度センサ
 56 室外熱交換器圧力センサ
 65 車両通信バス
 75 バッテリ
1 Vehicle air conditioner 2 Compressor 3 Air flow passage 4 Radiator 6 Outdoor expansion valve 7 Outdoor heat exchanger 8 Indoor expansion valve 9 Heat sink 10 HVAC unit 11 Control device 20 Air conditioning controller 23 Auxiliary heater (auxiliary heating device)
27 Indoor blower (blower fan)
28 air mix damper 32 heat pump controller 33 outside temperature sensor 53 air conditioning control unit 54 outdoor heat exchanger temperature sensor 56 outdoor heat exchanger pressure sensor 65 vehicle communication bus 75 battery

Claims (7)

  1.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     車室外に設けられて冷媒を吸熱させるための室外熱交換器と、
     制御装置とを備え、
     該制御装置により、少なくとも前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させて前記車室内を暖房する暖房モードを実行する車両用空気調和装置において、
     前記制御装置は、前記室外熱交換器への着霜の進行状態を判定し、除霜が必要と判断した場合には、所定の除霜許可条件が満たされたときに、前記室外熱交換器の除霜を行うと共に、
     前記室外熱交換器の除霜が必要と判断した後、除霜を行う前に、所定の自然除霜条件が成立した場合には、前記室外熱交換器の除霜を行わないことを特徴とする車両用空気調和装置。
    A compressor for compressing a refrigerant,
    An air flow passage through which air supplied to the vehicle compartment flows;
    A radiator for radiating the refrigerant and heating the air supplied from the air flow passage to the vehicle compartment;
    An outdoor heat exchanger provided outside the vehicle for absorbing heat from the refrigerant;
    Equipped with a control unit,
    The controller dissipates at least the refrigerant discharged from the compressor by the radiator, decompresses the dissipated refrigerant, and heats the vehicle interior by absorbing heat by the outdoor heat exchanger In a vehicle air conditioner performing
    The control device determines the progress of frost formation on the outdoor heat exchanger, and when it is determined that defrosting is necessary, the outdoor heat exchanger is satisfied when a predetermined defrost permission condition is satisfied. As well as defrosting
    After defrosting of the outdoor heat exchanger is determined to be necessary, if a predetermined natural defrosting condition is satisfied before defrosting, the outdoor heat exchanger is not defrosted. Air conditioner for vehicles.
  2.  前記自然除霜条件は、
     外気温度Tamが所定値Tam1以上であって、且つ、前記室外熱交換器の冷媒蒸発温度TXOが外気温度Tam−所定値β以上であること、
     車両の停止中に、外気温度Tamが所定値Tam2以上となっている時間の積算値が、所定時間t3以上になったことであること、
     車両の停止中に、外気温度Tamが所定値Tam2以上となり、その差と経過時間から求められる積分値が、所定値X1以上になったことであること、
     車両が停止してから所定期間t4以上経過したこと、
     前記室外熱交換器で冷媒を吸熱させない運転モードが選択されたこと、
    のうちの何れか、又は、それらの組み合わせ、若しくは、それらの全てであることを特徴とする請求項1に記載の車両用空気調和装置。
    The natural defrosting condition is
    The outside air temperature Tam is equal to or higher than a predetermined value Tam1, and the refrigerant evaporation temperature TXO of the outdoor heat exchanger is equal to or higher than an outside air temperature Tam-predetermined value β.
    The integrated value of the time during which the outside air temperature Tam is equal to or higher than the predetermined value Tam2 is equal to or longer than a predetermined time t3 while the vehicle is stopped.
    During the stop of the vehicle, the outside air temperature Tam becomes equal to or higher than the predetermined value Tam2, and the integral value obtained from the difference and the elapsed time becomes equal to or higher than the predetermined value X1.
    A predetermined period t4 or more has elapsed since the vehicle stopped.
    Selecting an operation mode in which the refrigerant is not absorbed by the outdoor heat exchanger;
    The vehicle air conditioner according to claim 1, characterized in that any one or a combination thereof or all of them.
  3.  前記制御装置は、前記室外熱交換器の冷媒蒸発温度TXOが無着霜時における当該室外熱交換器の冷媒蒸発温度TXObaseより低下したときの前記室外熱交換器の冷媒蒸発温度TXOと前記無着霜時における室外熱交換器の冷媒蒸発温度TXObaseとの差ΔTXO=TXObase−TXOに基づき、又は、前記室外熱交換器の冷媒蒸発圧力PXOが無着霜時における当該室外熱交換器の冷媒蒸発圧力PXObaseより低下したときの前記室外熱交換器の冷媒蒸発圧力PXOと前記無着霜時における室外熱交換器の冷媒蒸発圧力PXObaseとの差ΔPXO=PXObase−PXOに基づき、該室外熱交換器への着霜の進行状態を判定することを特徴とする請求項1又は請求項2に記載の車両用空気調和装置。 The control device determines the non-adherent refrigerant evaporation temperature TXO of the outdoor heat exchanger when the refrigerant evaporation temperature TXO of the outdoor heat exchanger is lower than the refrigerant evaporation temperature TXObase of the outdoor heat exchanger at the time of no frosting. Refrigerant evaporation pressure of the outdoor heat exchanger based on the difference ΔTXO = TXObase-TXO with the refrigerant evaporation temperature TXObase of the outdoor heat exchanger at the time of frost, or when the refrigerant evaporation pressure PXO of the outdoor heat exchanger does not frost. Based on the difference ΔPXO = PXObase−PXO between the refrigerant evaporation pressure PKO of the outdoor heat exchanger and the refrigerant evaporation pressure PXObase of the outdoor heat exchanger at the time of no frost when the temperature is lower than PXObase, the outdoor heat exchanger can The air conditioning apparatus for a vehicle according to claim 1 or 2, wherein a progress state of frost formation is determined.
  4.  前記制御装置は、環境条件、及び/又は、運転状況を示す指標に基づいて前記無着霜時における室外熱交換器の冷媒蒸発温度TXObase、又は、前記無着霜時における室外熱交換器の冷媒蒸発圧力PXObaseを推定することを特徴とする請求項3に記載の車両用空気調和装置。 The control device is a refrigerant evaporation temperature TXObase of the outdoor heat exchanger at the time of the non-frosted state, or a refrigerant of the outdoor heat exchanger at the time of the non-frosted state based on the environmental condition and / or the index indicating the operating condition. The air conditioning apparatus for a vehicle according to claim 3, wherein the evaporation pressure P Xobase is estimated.
  5.  前記圧縮機は、車両に搭載されたバッテリにより駆動されると共に、
     前記除霜許可条件は、前記車室内の空調要求が無く、且つ、前記バッテリが充電中であるか当該バッテリの残量が所定値以上あることであることを特徴とする請求項1乃至請求項4のうちの何れかに記載の車両用空気調和装置。
    The compressor is driven by a battery mounted on a vehicle, and
    The defrosting permission condition is that there is no air conditioning request for the vehicle interior, and that the battery is being charged or the remaining amount of the battery is equal to or more than a predetermined value. The air conditioning apparatus for vehicles in any one of 4.
  6.  前記制御装置は、前記車室内の空調設定操作を行うための空調操作部が接続された空調コントローラと、前記圧縮機の運転を制御するヒートポンプコントローラとから構成され、前記空調コントローラと前記ヒートポンプコントローラは、車両通信バスを介して情報の送受信を行い、
     前記ヒートポンプコントローラは、前記室外熱交換器の除霜が必要と判断した場合、所定の除霜要求フラグをセットし、前記空調コントローラが所定の除霜許可フラグをセットした場合、前記室外熱交換器の除霜を行い、前記除霜要求フラグをリセットすると共に、前記除霜要求フラグをセットした後、前記自然除霜条件が成立した場合にも、前記除霜要求フラグをリセットし、
     前記空調コントローラは、前記ヒートポンプコントローラにより前記除霜要求フラグがセットされている場合、前記除霜許可条件が満たされたか否か判定し、満たされた場合には、前記除霜許可フラグをセットすることを特徴とする請求項1乃至請求項5のうちの何れかに記載の車両用空気調和装置。
    The control device includes an air conditioning controller connected to an air conditioning operation unit for performing an air conditioning setting operation of the vehicle compartment, and a heat pump controller for controlling the operation of the compressor, and the air conditioning controller and the heat pump controller Send and receive information via the vehicle communication bus,
    When the heat pump controller determines that defrosting of the outdoor heat exchanger is necessary, the heat pump controller sets a predetermined defrost request flag, and when the air conditioning controller sets the predetermined defrost permission flag, the outdoor heat exchanger After the defrost request flag is set and the natural defrost condition is satisfied, the defrost request flag is also reset.
    The air conditioning controller determines whether the defrosting permission condition is satisfied when the defrosting request flag is set by the heat pump controller, and sets the defrosting permission flag when the defrosting permission condition is satisfied. The air conditioning apparatus for vehicles according to any one of claims 1 to 5, characterized in that:
  7.  前記空調コントローラ又は前記ヒートポンプコントローラが、前記自然除霜条件が成立するか否かを判定すると共に、
     前記空調コントローラが判定する場合には、前記自然除霜条件が成立したことを前記ヒートポンプコントローラに通知することを特徴とする請求項6に記載の車両用空気調和装置。
    The air conditioning controller or the heat pump controller determines whether the natural defrosting condition is satisfied or not.
    The air conditioner for a vehicle according to claim 6, wherein when the air conditioning controller makes a determination, the heat pump controller is notified that the natural defrosting condition is satisfied.
PCT/JP2018/030589 2017-09-05 2018-08-13 Vehicular air conditioning device WO2019049636A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-170226 2017-09-05
JP2017170226A JP2019043422A (en) 2017-09-05 2017-09-05 Air conditioner for vehicle

Publications (1)

Publication Number Publication Date
WO2019049636A1 true WO2019049636A1 (en) 2019-03-14

Family

ID=65633989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030589 WO2019049636A1 (en) 2017-09-05 2018-08-13 Vehicular air conditioning device

Country Status (2)

Country Link
JP (1) JP2019043422A (en)
WO (1) WO2019049636A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112781180A (en) * 2021-02-09 2021-05-11 珠海格力电器股份有限公司 Heat exchange device, air conditioner and control method of heat exchange device
CN113137787A (en) * 2020-01-20 2021-07-20 株式会社电装 Air conditioning system, air conditioning communication device, air conditioning control method, and air conditioning control device
CN113561734A (en) * 2021-08-24 2021-10-29 珠海格力电器股份有限公司 Control method and device of air conditioner, automobile air conditioner, storage medium and processor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4439995A (en) * 1982-04-05 1984-04-03 General Electric Company Air conditioning heat pump system having an initial frost monitoring control means
JPS6111539A (en) * 1984-06-12 1986-01-18 ヨ−ク・インタ−ナショナル・コ−ポレ−ション Controller and method for defrosting outdoor coil of heat pump
JPS61184351A (en) * 1985-02-04 1986-08-18 アメリカン スタンダ−ド インコ−ポレイテイツド Defrosting controller for temperature regulating system and method of controlling defrosting of outdoor heat exchanger in temperature regulating system
US5257506A (en) * 1991-03-22 1993-11-02 Carrier Corporation Defrost control
JP2010111222A (en) * 2008-11-05 2010-05-20 Denso Corp Air-conditioner for vehicle
JP2012176660A (en) * 2011-02-25 2012-09-13 Sanden Corp Air conditioning device for vehicle
JP2014088153A (en) * 2012-10-31 2014-05-15 Mitsubishi Motors Corp Vehicle air conditioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4439995A (en) * 1982-04-05 1984-04-03 General Electric Company Air conditioning heat pump system having an initial frost monitoring control means
JPS6111539A (en) * 1984-06-12 1986-01-18 ヨ−ク・インタ−ナショナル・コ−ポレ−ション Controller and method for defrosting outdoor coil of heat pump
JPS61184351A (en) * 1985-02-04 1986-08-18 アメリカン スタンダ−ド インコ−ポレイテイツド Defrosting controller for temperature regulating system and method of controlling defrosting of outdoor heat exchanger in temperature regulating system
US5257506A (en) * 1991-03-22 1993-11-02 Carrier Corporation Defrost control
JP2010111222A (en) * 2008-11-05 2010-05-20 Denso Corp Air-conditioner for vehicle
JP2012176660A (en) * 2011-02-25 2012-09-13 Sanden Corp Air conditioning device for vehicle
JP2014088153A (en) * 2012-10-31 2014-05-15 Mitsubishi Motors Corp Vehicle air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113137787A (en) * 2020-01-20 2021-07-20 株式会社电装 Air conditioning system, air conditioning communication device, air conditioning control method, and air conditioning control device
CN113137787B (en) * 2020-01-20 2024-02-27 株式会社电装 Air conditioning system, communication device for air conditioning, air conditioning control method, and air conditioning control device
CN112781180A (en) * 2021-02-09 2021-05-11 珠海格力电器股份有限公司 Heat exchange device, air conditioner and control method of heat exchange device
CN112781180B (en) * 2021-02-09 2021-11-16 珠海格力电器股份有限公司 Heat exchange device, air conditioner and control method of heat exchange device
CN113561734A (en) * 2021-08-24 2021-10-29 珠海格力电器股份有限公司 Control method and device of air conditioner, automobile air conditioner, storage medium and processor

Also Published As

Publication number Publication date
JP2019043422A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
JP6997558B2 (en) Vehicle air conditioner
JP6125330B2 (en) Air conditioner for vehicles
JP6192434B2 (en) Air conditioner for vehicles
WO2014192741A1 (en) Vehicular air-conditioning device
JP7300264B2 (en) Vehicle air conditioner
WO2020075446A1 (en) Vehicle air conditioning device
US20210094391A1 (en) Vehicle air-conditioning device
WO2019049636A1 (en) Vehicular air conditioning device
JP6900271B2 (en) Vehicle air conditioner
CN111629919A (en) Air conditioner for vehicle
JP6767857B2 (en) Vehicle air conditioner
WO2019058826A1 (en) Vehicle air conditioner
JP6917773B2 (en) Vehicle air conditioner
WO2019017149A1 (en) Vehicular air conditioning device
WO2018088124A1 (en) Vehicular air conditioner
JP6871745B2 (en) Vehicle air conditioner
JP6831239B2 (en) Vehicle air conditioner
WO2018110212A1 (en) Vehicle air-conditioning apparatus
WO2018061785A1 (en) Air-conditioning device for vehicle
WO2018079121A1 (en) Vehicle air-conditioning device
WO2017146269A1 (en) Vehicular air-conditioning device
US11247536B2 (en) Vehicle air conditioner
WO2019049637A1 (en) Vehicular air conditioning device
CN109922977B (en) Air conditioner for vehicle
JP7387520B2 (en) Vehicle air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18854467

Country of ref document: EP

Kind code of ref document: A1