JP6855267B2 - Vehicle air conditioner - Google Patents

Vehicle air conditioner Download PDF

Info

Publication number
JP6855267B2
JP6855267B2 JP2017020422A JP2017020422A JP6855267B2 JP 6855267 B2 JP6855267 B2 JP 6855267B2 JP 2017020422 A JP2017020422 A JP 2017020422A JP 2017020422 A JP2017020422 A JP 2017020422A JP 6855267 B2 JP6855267 B2 JP 6855267B2
Authority
JP
Japan
Prior art keywords
air
heat
refrigerant
temperature
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017020422A
Other languages
Japanese (ja)
Other versions
JP2018127048A (en
Inventor
竜 宮腰
竜 宮腰
耕平 山下
耕平 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Automotive Climate Systems Corp
Original Assignee
Sanden Automotive Climate Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Automotive Climate Systems Corp filed Critical Sanden Automotive Climate Systems Corp
Priority to JP2017020422A priority Critical patent/JP6855267B2/en
Priority to DE112018000713.8T priority patent/DE112018000713T5/en
Priority to PCT/JP2018/001480 priority patent/WO2018147039A1/en
Publication of JP2018127048A publication Critical patent/JP2018127048A/en
Application granted granted Critical
Publication of JP6855267B2 publication Critical patent/JP6855267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00835Damper doors, e.g. position control
    • B60H1/00849Damper doors, e.g. position control for selectively commanding the induction of outside or inside air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3213Control means therefor for increasing the efficiency in a vehicle heat pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • B60H2001/3261Cooling devices information from a variable is obtained related to temperature of the air at an evaporating unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/327Cooling devices output of a control signal related to a compressing unit
    • B60H2001/3272Cooling devices output of a control signal related to a compressing unit to control the revolving speed of a compressor

Description

本発明は、車両の車室内を空調する車両用空気調和装置、特に空気流通路に流入する外気と内気の比率を調整可能とされたものに関するものである。 The present invention relates to an air conditioner for a vehicle that air-conditions the interior of a vehicle, particularly one in which the ratio of outside air and inside air flowing into an air flow passage can be adjusted.

近年の環境問題の顕在化から、ハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する電動式の圧縮機と、空気流通路内に設けられて冷媒を吸熱させる吸熱器と、この吸熱器の空気下流側の空気流通路内に設けられて冷媒を放熱させる放熱器と、車室外に設けられて冷媒を放熱又は吸熱させる室外熱交換器を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させる暖房モードと、圧縮機から吐出された冷媒を放熱器において放熱させ、放熱した冷媒を吸熱器と室外熱交換器において吸熱させる除湿暖房モードと、圧縮機から吐出された冷媒を放熱器及び室外熱交換器において放熱させ、放熱した冷媒を吸熱器において吸熱させる除湿冷房モードと、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器において吸熱させる冷房モード等の各運転モードを切り換えて実行するものが開発されている(例えば、特許文献1参照)。 Due to the emergence of environmental problems in recent years, hybrid vehicles and electric vehicles have become widespread. As an air conditioner that can be applied to such a vehicle, an electric compressor that compresses and discharges the refrigerant, a heat absorber that is provided in the air flow passage and absorbs the refrigerant, and the heat absorber. A radiator provided in the air flow passage on the downstream side of the air to dissipate the refrigerant and an outdoor heat exchanger provided outside the vehicle interior to dissipate or absorb the refrigerant, and dissipate the refrigerant discharged from the compressor. In the heating mode, the refrigerant radiated in the radiator is absorbed in the outdoor heat exchanger, and the refrigerant discharged from the compressor is radiated in the radiator, and the radiated refrigerant is absorbed in the heat absorber and the outdoor heat exchanger. A dehumidifying and heating mode that allows the refrigerant discharged from the compressor to dissipate heat in the radiator and the outdoor heat exchanger, and a dehumidifying and cooling mode in which the radiated refrigerant absorbs heat in the heat absorber, and the refrigerant discharged from the compressor exchanges outdoor heat. A device has been developed in which each operation mode such as a cooling mode in which heat is dissipated in a device and heat is absorbed in a heat absorber is switched and executed (see, for example, Patent Document 1).

この特許文献1では、吸熱器の空気上流側には吸込切換ダンパが設けられ、この吸込切換ダンパによって空気流通路に外気を導入するか(外気導入モード)、内気(車室内の空気)を導入するか(内気循環モード)を切り換えるようにしていたが、空気流通路(エアミックスチャンバ)に導入する外気と内気の比率を調整可能としたものも開発されている(例えば、特許文献2参照)。 In Patent Document 1, a suction switching damper is provided on the upstream side of the air of the heat absorber, and the outside air is introduced into the air flow passage by this suction switching damper (outside air introduction mode), or the inside air (air in the vehicle interior) is introduced. Although it was designed to switch between (inside air circulation mode), a system has also been developed in which the ratio of outside air to inside air introduced into the air flow passage (air mix chamber) can be adjusted (see, for example, Patent Document 2). ..

特開2014−94673号公報Japanese Unexamined Patent Publication No. 2014-94673 特開平10−166845号公報Japanese Unexamined Patent Publication No. 10-166845

ここで、外気の温度と内気の温度は環境条件や走行状況によって異なって来るので、空気流通路に流通される空気の外気と内気の比率(割合)が変化すると、車両用空気調和装置の負荷は大きく変化し、能力の過不足が発生する。特に、車室内の空気温度が安定した後に、外気導入と内気循環の切換があった場合、圧縮機の回転数が大きく異なるため、制御性も悪化することになる。 Here, since the temperature of the outside air and the temperature of the inside air differ depending on the environmental conditions and the running conditions, if the ratio (ratio) of the outside air to the inside air of the air flowing through the air flow passage changes, the load of the vehicle air conditioner is loaded. Will change drastically, causing excess or deficiency of ability. In particular, if the outside air is introduced and the inside air is circulated after the air temperature in the vehicle interior is stabilized, the rotation speed of the compressor is significantly different, and the controllability is also deteriorated.

本発明は、係る従来の技術的課題を解決するために成されたものであり、空気流通路に流入する外気と内気の比率が変化した場合にも、安定した車室内の空調制御を行うことができる車両用空気調和装置を提供することを目的とする。 The present invention has been made to solve the conventional technical problem, and stable air conditioning control in the vehicle interior is performed even when the ratio of the outside air and the inside air flowing into the air flow passage changes. It is an object of the present invention to provide an air conditioner for vehicles capable of performing.

請求項1の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられた室外熱交換器と、空気流通路に流入する外気と車室内の空気である内気の比率を調整可能な吸込切換ダンパと、制御装置を備え、この制御装置により、圧縮機から吐出された冷媒を室外熱交換器に流して当該室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる第1の運転モードを実行するものであって、制御装置は、吸込切換ダンパにより調整される外気と内気の比率に基づき、吸熱器に流入する空気の温度である吸熱器吸込空気温度Tevainを推定し、推定した当該吸熱器吸込空気温度Tevainに基づいて圧縮機の回転数を制御することを特徴とする。 The vehicle air conditioner according to the first aspect of the present invention includes a compressor that compresses the refrigerant, an air flow passage through which the air supplied to the vehicle interior flows, and air that absorbs the refrigerant and supplies it to the vehicle interior from the air flow passage. A heat absorber for cooling, an outdoor heat exchanger installed outside the vehicle interior, a suction switching damper that can adjust the ratio of the outside air flowing into the air flow passage and the inside air that is the air inside the vehicle, and a control device. First, the control device causes the refrigerant discharged from the compressor to flow through the outdoor heat exchanger to dissipate heat in the outdoor heat exchanger, depressurize the radiated refrigerant, and then absorb heat in the heat exchanger. The operation mode is executed, and the control device estimates and estimates the heat exchanger suction air temperature Tevain, which is the temperature of the air flowing into the heat exchanger, based on the ratio of the outside air to the inside air adjusted by the suction switching damper. It is characterized in that the rotation speed of the compressor is controlled based on the heat exchanger suction air temperature Tevain.

請求項2の発明の車両用空気調和装置は、上記発明において制御装置は、少なくとも吸熱器の温度Teの目標値である目標吸熱器温度TEOに基づくフィードフォワード演算により圧縮機の目標回転数のF/F操作量TGNCcffを算出し、吸熱器の温度Teと目標吸熱器温度TEOに基づくフィードバック演算により圧縮機の目標回転数のF/B操作量TGNCcfbを算出し、これらF/F操作量TGNCcffとF/B操作量TGNCcfbを加算することで、圧縮機の目標回転数TGNCcを算出すると共に、吸熱器吸込空気温度Tevainに基づいてF/F操作量TGNCcffを補正することを特徴とする。 In the vehicle air conditioner according to the second aspect of the present invention, in the above invention, the control device is at least F of the target rotation speed of the compressor by a feed forward calculation based on the target heat absorber temperature TEO which is the target value of the temperature Te of the heat absorber. The / F manipulated variable TGNCcff is calculated, and the F / B manipulated variable TGNCcffb of the target rotation speed of the compressor is calculated by feedback calculation based on the heat absorber temperature Te and the target heat absorber temperature TEO. By adding the F / B manipulated variable TGNCcfb, the target rotation speed TGNCc of the compressor is calculated, and the F / F manipulated variable TGNCcff is corrected based on the heat absorber suction air temperature Tevain.

請求項3の発明の車両用空気調和装置は、上記各発明において空気流通路の空気の流れに対して吸熱器の風下側に設けられ、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器を備え、第1の運転モードは、圧縮機から吐出された冷媒を放熱器から室外熱交換器に流して当該室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる冷房モード、及び/又は、圧縮機から吐出された冷媒を放熱器から室外熱交換器に流して当該放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる除湿冷房モード、であることを特徴とする。 In each of the above inventions, the vehicle air conditioner according to claim 3 is provided on the leeward side of the heat absorber with respect to the air flow in the air flow passage, dissipates heat from the refrigerant, and supplies the refrigerant to the vehicle interior through the air flow passage. A radiator for heating the air is provided, and in the first operation mode, the refrigerant discharged from the compressor is flowed from the radiator to the outdoor heat exchanger to be dissipated by the outdoor heat exchanger, and the heat is dissipated. After depressurizing, the cooling mode in which heat is absorbed by the heat absorber and / or the refrigerant discharged from the compressor is flowed from the radiator to the outdoor heat exchanger to dissipate heat in the radiator and the outdoor heat exchanger to dissipate heat. It is characterized in that it is a dehumidifying / cooling mode in which heat is absorbed by a heat exchanger after depressurizing the said refrigerant.

請求項4の発明の車両用空気調和装置は、上記各発明において空気流通路の空気の流れに対して吸熱器の風下側に設けられ、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、圧縮機から吐出された冷媒を、放熱器に流すこと無く室外熱交換器に直接流入させるためのバイパス装置と、空気流通路から車室内に供給する空気を加熱するための補助加熱装置を備え、第1の運転モードは、圧縮機から吐出された冷媒をバイパス装置により室外熱交換器に流して放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる最大冷房モード、及び/又は、圧縮機から吐出された冷媒をバイパス装置により室外熱交換器に流して放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させると共に、補助加熱装置を発熱させる除湿暖房モード、であることを特徴とする。 In each of the above inventions, the vehicle air conditioner according to claim 4 is provided on the leeward side of the heat exchanger with respect to the air flow in the air flow passage, dissipates heat from the refrigerant, and supplies the refrigerant to the vehicle interior through the air flow passage. A radiator for heating air, a bypass device for allowing the refrigerant discharged from the compressor to flow directly into the outdoor heat exchanger without flowing to the radiator, and air supplied to the passenger compartment from the air flow passage. An auxiliary heating device for heating is provided, and in the first operation mode, the refrigerant discharged from the compressor is passed through the outdoor heat exchanger by the bypass device to dissipate heat, the dissipated refrigerant is depressurized, and then the heat absorber is used. The maximum cooling mode to absorb heat and / or the refrigerant discharged from the compressor is passed through the outdoor heat exchanger by a bypass device to dissipate heat, and after depressurizing the dissipated refrigerant, the heat absorber absorbs heat and assists. It is characterized by a dehumidifying and heating mode in which the heating device generates heat.

請求項5の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、空気流通路の空気の流れに対して吸熱器の風下側に設けられ、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、車室外に設けられた室外熱交換器と、空気流通路に流入する外気と車室内の空気である内気の比率を調整可能な吸込切換ダンパと、制御装置を備え、この制御装置により、圧縮機から吐出された冷媒を放熱器に流して放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードを実行するものであって、制御装置は、吸込切換ダンパにより調整される外気と内気の比率に基づき、吸熱器に流入する空気の温度である吸熱器吸込空気温度Tevainを推定し、推定した当該吸熱器吸込空気温度Tevainに基づいて、要求される放熱器の暖房能力である要求暖房能力TGQを算出し、この要求暖房能力TGQに基づいて圧縮機の回転数を制御することを特徴とする。 The vehicle air conditioner according to claim 5 has a compressor that compresses a refrigerant, an air flow passage through which air supplied to the vehicle interior flows, and air that absorbs heat from the refrigerant and supplies it to the vehicle interior from the air flow passage. A heat exchanger for cooling the air flow passage and a radiator provided on the leeward side of the heat absorber with respect to the air flow in the air flow passage to dissipate the refrigerant and heat the air supplied from the air flow passage to the passenger compartment. It is equipped with an outdoor heat exchanger installed outside the vehicle interior, a suction switching damper that can adjust the ratio of the outside air flowing into the air flow passage to the inside air that is the air inside the vehicle, and a control device. A heating mode is executed in which the refrigerant discharged from the compressor is passed through a radiator to dissipate heat, the dissipated refrigerant is depressurized, and then heat is absorbed by an outdoor heat exchanger. The control device is a suction switching damper. The heat exchanger suction air temperature Tevine, which is the temperature of the air flowing into the heat exchanger, is estimated based on the ratio of the outside air to the inside air adjusted by, and the required radiator is based on the estimated heat exchanger suction air temperature Tevine. The required heating capacity TGQ, which is the heating capacity of the compressor, is calculated, and the number of revolutions of the compressor is controlled based on the required heating capacity TGQ.

請求項6の発明の車両用空気調和装置は、上記発明において制御装置は、少なくとも要求暖房能力TGQに基づくフィードフォワード演算により圧縮機の目標回転数のF/F操作量TGNChffを算出し、高圧圧力とその目標値に基づくフィードバック演算により圧縮機の目標回転数のF/B操作量TGNChfbを算出し、これらF/F操作量TGNChffとF/B操作量TGNChfbを加算することで、圧縮機の目標回転数TGNChを算出することを特徴とする。 In the vehicle air conditioner according to the sixth aspect, in the above invention, the control device calculates the F / F operation amount TGNChff of the target rotation speed of the compressor by at least the feed forward calculation based on the required heating capacity TGQ, and the high pressure pressure. The F / B operation amount TGNChfb of the target rotation speed of the compressor is calculated by the feedback calculation based on the target value and the target of the compressor by adding the F / F operation amount TGNChff and the F / B operation amount TGNChfb. It is characterized in that the rotation speed TGNCh is calculated.

請求項7の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、空気流通路の空気の流れに対して吸熱器の風下側に設けられ、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、車室外に設けられた室外熱交換器と、この室外熱交換器に流入する冷媒を減圧する室外膨張弁と、室外熱交換器及び室外膨張弁の直列回路に対して並列に接続されたバイパス回路と、吸熱器に流入する冷媒を減圧する室内膨張弁と、空気流通路に流入する外気と車室内の空気である内気の比率を調整可能な吸込切換ダンパと、制御装置を備え、この制御装置により、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を分流し、一部をバイパス回路から室内膨張弁に流し、当該室内膨張弁で減圧した後、吸熱器に流入させ、当該吸熱器にて吸熱させると共に、残りを室外膨張弁で減圧した後、室外熱交換器に流入させ、当該室外熱交換器にて吸熱させる除湿暖房モードを実行するものであって、制御装置は、吸込切換ダンパにより調整される外気と内気の比率に基づき、吸熱器に流入する空気の温度である吸熱器吸込空気温度Tevainを推定し、推定した当該吸熱器吸込空気温度Tevainに基づいて室外膨張弁の弁開度、及び/又は、圧縮機の回転数を制御することを特徴とする。 The vehicle air conditioner according to claim 7 has a compressor that compresses the refrigerant, an air flow passage through which the air supplied to the vehicle interior flows, and air that absorbs the refrigerant and supplies it to the vehicle interior from the air flow passage. A heat exchanger for cooling the air flow passage and a radiator provided on the leeward side of the heat exchanger with respect to the air flow in the air flow passage to dissipate the refrigerant and heat the air supplied from the air flow passage to the vehicle interior. The outdoor heat exchanger provided outside the vehicle interior, the outdoor expansion valve that reduces the pressure of the refrigerant flowing into the outdoor heat exchanger, and the series circuit of the outdoor heat exchanger and the outdoor expansion valve are connected in parallel. It is equipped with a bypass circuit, an indoor expansion valve that reduces the pressure of the refrigerant flowing into the heat exchanger, a suction switching damper that can adjust the ratio of the outside air flowing into the air flow passage and the inside air that is the air inside the vehicle, and a control device. The control device dissipates the refrigerant discharged from the compressor with a radiator, diverges the radiated refrigerant, partially flows it from the bypass circuit to the indoor expansion valve, decompresses it with the indoor expansion valve, and then heat absorbers. The dehumidifying and heating mode is executed, in which the heat is absorbed by the heat exchanger, the rest is depressurized by the outdoor expansion valve, and then the refrigerant flows into the outdoor heat exchanger and is absorbed by the outdoor heat exchanger. The control device estimates the heat exchanger suction air temperature Tevain, which is the temperature of the air flowing into the heat exchanger, based on the ratio of the outside air to the inside air adjusted by the suction switching damper, and determines the estimated heat exchanger suction air temperature Tevain. Based on this, the valve opening degree of the outdoor expansion valve and / or the rotation speed of the compressor is controlled.

請求項8の発明の車両用空気調和装置は、上記発明において制御装置は、少なくとも吸熱器の温度Teの目標値である目標吸熱器温度TEOに基づくフィードフォワード演算により室外膨張弁の目標弁開度のF/F操作量TGECCVteffを算出し、吸熱器の温度Teと目標吸熱器温度TEOに基づくフィードバック演算により室外膨張弁の目標弁開度のF/B操作量TGECCVtefbを算出し、これらF/F操作量TGECCVteffとF/B操作量TGECCVtefbを加算することで、室外膨張弁の目標弁開度TGECCVteを算出すると共に、少なくとも目標吸熱器温度TEOに基づくフィードフォワード演算により圧縮機の目標回転数のF/F操作量TGNCcffを算出し、吸熱器の温度Teと目標吸熱器温度TEOに基づくフィードバック演算により圧縮機の目標回転数のF/B操作量TGNCcfbを算出し、これらF/F操作量TGNCcffとF/B操作量TGNCcfbを加算することで、圧縮機の目標回転数TGNCcを算出し、吸熱器吸込空気温度Tevainに基づいてF/F操作量TGECCVteff、及び/又は、F/F操作量TGNCcffを補正することを特徴とする。 In the vehicle air conditioner according to claim 8, in the above invention, the control device is at least the target valve opening degree of the outdoor expansion valve by a feed forward calculation based on the target endothermic temperature TEO which is the target value of the temperature Te of the endothermic device. F / F manipulated variable TGECCVteff is calculated, and F / B manipulated variable TGECCVtefb of the target valve opening of the outdoor expansion valve is calculated by feedback calculation based on the endothermic temperature Te and the target endothermic temperature TEO. By adding the manipulated variable TGECCVteff and the F / B manipulated variable TGECCVtefb, the target valve opening TGECCVte of the outdoor expansion valve is calculated, and at least the feed forward calculation based on the target endothermic temperature TEO is performed to F The / F manipulated variable TGNCcff was calculated, and the F / B manipulated variable TGNCcffb of the target rotation speed of the compressor was calculated by feedback calculation based on the endothermic temperature Te and the target endothermic temperature TEO. By adding the F / B manipulated variable TGNCcfb, the target rotation speed TGNCc of the compressor is calculated, and the F / F manipulated variable TGECCVtiff and / or the F / F manipulated variable TGNCcff is calculated based on the endothermic suction air temperature Tevain. It is characterized by correction.

請求項9の発明の車両用空気調和装置は、上記各発明において制御装置は、外気と内気の比率に基づく一次遅れ演算により吸熱器吸込空気温度Tevainを算出することを特徴とする。 The vehicle air conditioner according to the ninth aspect of the present invention is characterized in that, in each of the above inventions, the control device calculates the endothermic suction air temperature Tevain by a first-order lag calculation based on the ratio of the outside air to the inside air.

請求項1の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられた室外熱交換器と、空気流通路に流入する外気と車室内の空気である内気の比率を調整可能な吸込切換ダンパと、制御装置を備え、この制御装置により、圧縮機から吐出された冷媒を室外熱交換器に流して当該室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる第1の運転モードを実行する車両用空気調和装置において、制御装置が、吸込切換ダンパにより調整される外気と内気の比率に基づき、吸熱器に流入する空気の温度である吸熱器吸込空気温度Tevainを推定し、推定した当該吸熱器吸込空気温度Tevainに基づいて圧縮機の回転数を制御するようにしたので、吸込切換ダンパにより空気流通路に流入する外気と内気の比率が変化した場合にも、当該比率に基づいて吸熱器吸込空気温度Tevainを推定し、圧縮機の回転数を制御することができるようになる。 According to the invention of claim 1, in order to cool the compressor that compresses the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air that absorbs the refrigerant and supplies the air from the air flow passage to the vehicle interior. It is equipped with a heat absorber, an outdoor heat exchanger installed outside the vehicle interior, a suction switching damper that can adjust the ratio of the outside air flowing into the air flow passage to the inside air that is the air inside the vehicle, and a control device. The device executes a first operation mode in which the refrigerant discharged from the compressor is passed through the outdoor heat exchanger to dissipate heat in the outdoor heat exchanger, the dissipated refrigerant is depressurized, and then the heat is absorbed by the heat absorber. In the vehicle air conditioner, the control device estimates and estimates the heat exchanger suction air temperature Tevain, which is the temperature of the air flowing into the heat exchanger, based on the ratio of the outside air to the inside air adjusted by the suction switching damper. Heat exchanger Since the number of revolutions of the compressor is controlled based on the suction air temperature Tevain, even if the ratio of the outside air and the inside air flowing into the air flow passage changes due to the suction switching damper, the heat absorption is based on the ratio. It will be possible to estimate the suction air temperature Tevain and control the number of revolutions of the compressor.

これにより、請求項3の発明の冷房モードや除湿冷房モード、請求項4の発明の最大冷房モードや除湿暖房モードの如く吸熱器にて冷媒を吸熱させる第1の運転モードにおいて、外気と内気の比率が変化したことに伴う負荷変動に迅速に対応し、過不足の無い空調能力を実現して、車室内の温度を目標とする値に良好に収束させ、快適性と省エネ性の双方を向上させることができるようになる。 As a result, in the first operation mode in which the refrigerant is absorbed by the heat absorber, such as the cooling mode and the dehumidifying cooling mode of the invention of claim 3 and the maximum cooling mode and the dehumidifying and heating mode of the invention of claim 4, the outside air and the inside air It quickly responds to load fluctuations due to changes in the ratio, realizes just enough air conditioning capacity, and satisfactorily converges the temperature inside the vehicle to the target value, improving both comfort and energy saving. You will be able to make it.

この場合、請求項2の発明の如く制御装置が、少なくとも吸熱器の温度Teの目標値である目標吸熱器温度TEOに基づくフィードフォワード演算により圧縮機の目標回転数のF/F操作量TGNCcffを算出し、吸熱器の温度Teと目標吸熱器温度TEOに基づくフィードバック演算により圧縮機の目標回転数のF/B操作量TGNCcfbを算出し、これらF/F操作量TGNCcffとF/B操作量TGNCcfbを加算することで、圧縮機の目標回転数TGNCcを算出するときに、吸熱器吸込空気温度Tevainに基づいてF/F操作量TGNCcffを補正するようにすれば、外気と内気の比率が変化したことに伴う負荷変動に迅速に対応して、吸熱器による冷房/除湿能力を的確に制御することができるようになる。 In this case, as in the invention of claim 2, the control device obtains the F / F manipulated variable TGNCcff of the target rotation speed of the compressor by feed-forward calculation based on at least the target value of the endothermic temperature Te, which is the target value of the endothermic temperature Te. The F / B manipulated variable TGNCcffb of the target rotation speed of the compressor is calculated by the feedback calculation based on the endothermic temperature Te and the target endothermic temperature TEO, and these F / F manipulated variable TGNCcff and the F / B manipulated variable TGNCcfb. When calculating the target rotation speed TGNCc of the compressor by adding, if the F / F manipulated variable TGNCcff is corrected based on the endothermic suction air temperature Tevain, the ratio of the outside air to the inside air changes. It becomes possible to accurately control the cooling / dehumidifying capacity of the endothermic device in response to the load fluctuations that accompany it.

請求項5の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、空気流通路の空気の流れに対して吸熱器の風下側に設けられ、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、車室外に設けられた室外熱交換器と、空気流通路に流入する外気と車室内の空気である内気の比率を調整可能な吸込切換ダンパと、制御装置を備え、この制御装置により、圧縮機から吐出された冷媒を放熱器に流して放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードを実行する車両用空気調和装置において、制御装置が、吸込切換ダンパにより調整される外気と内気の比率に基づき、吸熱器に流入する空気の温度である吸熱器吸込空気温度Tevainを推定し、推定した当該吸熱器吸込空気温度Tevainに基づいて、要求される放熱器の暖房能力である要求暖房能力TGQを算出し、この要求暖房能力TGQに基づいて圧縮機の回転数を制御するようにしたので、吸込切換ダンパにより空気流通路に流入する外気と内気の比率が変化した場合にも、当該比率に基づいて吸熱器吸込空気温度Tevainを推定し、それに基づいて要求暖房能力TGQを算出して、圧縮機の回転数を制御することができるようになる。 According to the invention of claim 5, in order to cool the compressor that compresses the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air that absorbs the refrigerant and supplies the air from the air flow passage to the vehicle interior. Heat exchanger, a radiator provided on the leeward side of the heat absorber with respect to the air flow in the air flow passage, to dissipate the refrigerant and heat the air supplied from the air flow passage to the passenger compartment, and the outside of the passenger compartment. It is equipped with an outdoor heat exchanger provided in the compressor, a suction switching damper that can adjust the ratio of the outside air flowing into the air flow passage and the inside air that is the air inside the vehicle, and a control device, which discharges from the compressor. In an air conditioner for vehicles that executes a heating mode in which the generated refrigerant is passed through a radiator to dissipate heat, the dissipated refrigerant is decompressed, and then heat is absorbed by an outdoor heat exchanger, the control device is adjusted by a suction switching damper. The heat exchanger suction air temperature Tevine, which is the temperature of the air flowing into the heat exchanger, is estimated based on the ratio of the outside air to the inside air, and the required heat radiator heating based on the estimated heat exchanger suction air temperature Tevine. Since the required heating capacity TGQ, which is the capacity, was calculated and the number of revolutions of the compressor was controlled based on this required heating capacity TGQ, the ratio of the outside air and the inside air flowing into the air flow passage was changed by the suction switching damper. Even in this case, the heat exchanger suction air temperature Tevain can be estimated based on the ratio, the required heating capacity TGQ can be calculated based on the estimation, and the number of revolutions of the compressor can be controlled.

これにより、暖房モードにおいて、外気と内気の比率が変化したことに伴う負荷変動に迅速に対応し、過不足の無い暖房能力を実現して、車室内の温度を目標とする値に良好に収束させ、快適性と省エネ性の双方を向上させることができるようになる。 As a result, in the heating mode, it quickly responds to load fluctuations due to changes in the ratio of outside air to inside air, realizes just enough heating capacity, and satisfactorily converges the temperature inside the vehicle to the target value. It will be possible to improve both comfort and energy saving.

この場合、請求項6の発明の如く制御装置が、少なくとも要求暖房能力TGQに基づくフィードフォワード演算により圧縮機の目標回転数のF/F操作量TGNChffを算出し、高圧圧力とその目標値に基づくフィードバック演算により圧縮機の目標回転数のF/B操作量TGNChfbを算出し、これらF/F操作量TGNChffとF/B操作量TGNChfbを加算することで、圧縮機の目標回転数TGNChを算出するようにすれば、外気と内気の比率が変化したことに伴う負荷変動に迅速に対応して、放熱器による暖房能力を的確に制御することができるようになる。 In this case, as in the invention of claim 6, the control device calculates the F / F manipulated variable TGNChff of the target rotation speed of the compressor by at least the feed forward calculation based on the required heating capacity TGQ, and is based on the high pressure and its target value. The F / B operation amount TGNChfb of the target rotation speed of the compressor is calculated by the feedback calculation, and the target rotation speed TGNCh of the compressor is calculated by adding these F / F operation amount TGNChff and the F / B operation amount TGNChfb. By doing so, it becomes possible to accurately control the heating capacity of the radiator by quickly responding to the load fluctuation caused by the change in the ratio of the outside air and the inside air.

請求項7の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、空気流通路の空気の流れに対して吸熱器の風下側に設けられ、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、車室外に設けられた室外熱交換器と、この室外熱交換器に流入する冷媒を減圧する室外膨張弁と、室外熱交換器及び室外膨張弁の直列回路に対して並列に接続されたバイパス回路と、吸熱器に流入する冷媒を減圧する室内膨張弁と、空気流通路に流入する外気と車室内の空気である内気の比率を調整可能な吸込切換ダンパと、制御装置を備え、この制御装置により、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を分流し、一部をバイパス回路から室内膨張弁に流し、当該室内膨張弁で減圧した後、吸熱器に流入させ、当該吸熱器にて吸熱させると共に、残りを室外膨張弁で減圧した後、室外熱交換器に流入させ、当該室外熱交換器にて吸熱させる除湿暖房モードを実行する車両用空気調和装置において、制御装置が、吸込切換ダンパにより調整される外気と内気の比率に基づき、吸熱器に流入する空気の温度である吸熱器吸込空気温度Tevainを推定し、推定した当該吸熱器吸込空気温度Tevainに基づいて室外膨張弁の弁開度、及び/又は、圧縮機の回転数を制御するようにしたので、吸込切換ダンパにより空気流通路に流入する外気と内気の比率が変化した場合にも、当該比率に基づいて吸熱器吸込空気温度Tevainを推定し、室外膨張弁の弁開度、及び/又は、圧縮機の回転数を制御することができるようになる。 According to the invention of claim 7, in order to cool the compressor that compresses the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air that absorbs the refrigerant and supplies the air to the vehicle interior from the air flow passage. A heat exchanger, a radiator provided on the leeward side of the heat exchanger with respect to the air flow in the air flow passage, and a radiator for radiating the refrigerant and heating the air supplied from the air flow passage to the passenger compartment, and the outside of the passenger compartment. An outdoor heat exchanger provided in the above, an outdoor expansion valve for reducing the amount of refrigerant flowing into the outdoor heat exchanger, and a bypass circuit connected in parallel to a series circuit of the outdoor heat exchanger and the outdoor expansion valve. It is equipped with an indoor expansion valve that reduces the pressure of the refrigerant flowing into the heat exchanger, a suction switching damper that can adjust the ratio of the outside air flowing into the air flow passage and the inside air that is the air inside the vehicle, and a control device. The refrigerant discharged from the compressor is radiated by the radiator, the radiated refrigerant is divided, a part of the refrigerant is flowed from the bypass circuit to the indoor expansion valve, the pressure is reduced by the indoor expansion valve, and then the refrigerant flows into the heat exchanger. Controlled in a vehicle air conditioner that executes a dehumidifying / heating mode in which heat is absorbed by the heat exchanger and the rest is decompressed by the outdoor expansion valve, then flows into the outdoor heat exchanger, and is absorbed by the outdoor heat exchanger. The device estimates the heat exchanger suction air temperature Tevain, which is the temperature of the air flowing into the heat exchanger, based on the ratio of the outside air to the inside air adjusted by the suction switching damper, and based on the estimated heat exchanger suction air temperature Tevain. Since the valve opening of the outdoor expansion valve and / or the rotation speed of the compressor are controlled, even if the ratio of the outside air and the inside air flowing into the air flow passage is changed by the suction switching damper, the ratio is changed to the relevant ratio. Based on this, the heat exchanger suction air temperature Tevain can be estimated, and the valve opening degree of the outdoor expansion valve and / or the rotation speed of the compressor can be controlled.

これにより、除湿暖房モードにおいて、外気と内気の比率が変化したことに伴う負荷変動に迅速に対応し、吸熱器による過不足の無い除湿能力を実現することができるようになる。 As a result, in the dehumidifying / heating mode, it is possible to quickly respond to load fluctuations due to changes in the ratio of outside air to inside air, and to realize a dehumidifying capacity that is just right with the heat absorber.

この場合、請求項8の発明の如く制御装置が、少なくとも吸熱器の温度Teの目標値である目標吸熱器温度TEOに基づくフィードフォワード演算により室外膨張弁の目標弁開度のF/F操作量TGECCVteffを算出し、吸熱器の温度Teと目標吸熱器温度TEOに基づくフィードバック演算により室外膨張弁の目標弁開度のF/B操作量TGECCVtefbを算出し、これらF/F操作量TGECCVteffとF/B操作量TGECCVtefbを加算することで、室外膨張弁の目標弁開度TGECCVteを算出し、少なくとも目標吸熱器温度TEOに基づくフィードフォワード演算により圧縮機の目標回転数のF/F操作量TGNCcffを算出し、吸熱器の温度Teと目標吸熱器温度TEOに基づくフィードバック演算により圧縮機の目標回転数のF/B操作量TGNCcfbを算出し、これらF/F操作量TGNCcffとF/B操作量TGNCcfbを加算することで、圧縮機の目標回転数TGNCcを算出するときに、吸熱器吸込空気温度Tevainに基づいてF/F操作量TGECCVteff、及び/又は、F/F操作量TGNCcffを補正するようにすれば、外気と内気の比率が変化したことに伴う負荷変動に迅速に対応して、吸熱器による除湿能力を的確に制御し、快適な除湿暖房を実現することができるようになる。 In this case, as in the invention of claim 8, the control device performs F / F operation amount of the target valve opening degree of the outdoor expansion valve by feed forward calculation based on at least the target value of the endothermic temperature Te, which is the target value of the endothermic temperature Te. TGECCVteff is calculated, and the F / B manipulated variable TGECCVtefb of the target valve opening of the outdoor expansion valve is calculated by feedback calculation based on the endothermic temperature Te and the target endothermic temperature TEO. By adding B operation amount TGECCVtefb, the target valve opening TGECCVte of the outdoor expansion valve is calculated, and at least the F / F operation amount TGNCff of the target rotation speed of the compressor is calculated by the feed forward calculation based on the target endothermic temperature TEO. Then, the F / B manipulated variable TGNCcfb of the target rotation speed of the compressor is calculated by the feedback calculation based on the endothermic temperature Te and the target endothermic temperature TEO, and these F / F manipulated variable TGNCcff and the F / B manipulated variable TGNCcffb are calculated. By adding, when calculating the target rotation speed TGNCc of the compressor, the F / F manipulated variable TGECCVteff and / or the F / F manipulated variable TGNCcff should be corrected based on the endothermic suction air temperature Tevain. For example, it becomes possible to accurately control the dehumidifying capacity of the endothermic device and realize comfortable dehumidifying and heating by quickly responding to load fluctuations caused by a change in the ratio of outside air to inside air.

ここで、外気と内気の比率が変化した場合、吸熱器吸込空気温度Tevainに反映されるまでは或る程度時間がかかる。即ち、外気と内気の比率が変化しても吸熱器吸込空気温度Tevainは直ぐに変化するものでは無い。そこで、請求項9の発明の如く制御装置が、外気と内気の比率に基づく一次遅れ演算により吸熱器吸込空気温度Tevainを算出するようにすれば、実際の吸熱器吸込空気温度Tevainの変化に合わせて圧縮機の回転数や室外膨張弁の弁開度を制御することができるようになる。 Here, when the ratio of the outside air to the inside air changes, it takes some time before it is reflected in the heat absorber suction air temperature Tevain. That is, even if the ratio of the outside air to the inside air changes, the endothermic suction air temperature Tevain does not change immediately. Therefore, if the control device calculates the endothermic suction air temperature Tevain by a first-order lag calculation based on the ratio of the outside air and the inside air as in the invention of claim 9, it is adjusted to the change of the actual heat absorber suction air temperature Tevain. It becomes possible to control the rotation speed of the compressor and the valve opening of the outdoor expansion valve.

本発明を適用した一実施形態の車両用空気調和装置の構成図である。It is a block diagram of the air conditioner for a vehicle of one Embodiment to which this invention was applied. 図1の車両用空気調和装置の制御装置のブロック図である。It is a block diagram of the control device of the air conditioner for a vehicle of FIG. 図1の車両用空気調和装置のHVACユニットの縦断側面図である。It is a vertical sectional side view of the HVAC unit of the air conditioner for a vehicle of FIG. 図2のヒートポンプコントローラによる冷房モード等における圧縮機制御に関する制御ブロック図である。FIG. 3 is a control block diagram relating to compressor control in a cooling mode or the like by the heat pump controller of FIG. 内外気比率と冷房モードの冷房負荷との関係を説明する図である。It is a figure explaining the relationship between the inside-out air ratio and the cooling load of a cooling mode. 図1の車両用空気調和装置のHVACユニットのもう一つの縦断側面図である。It is another longitudinal side view of the HVAC unit of the air conditioner for a vehicle of FIG. 図2のヒートポンプコントローラによる暖房モードにおける圧縮機制御に関する制御ブロック図である。It is a control block diagram concerning the compressor control in the heating mode by the heat pump controller of FIG. 内外気比率と暖房モードの暖房負荷との関係を説明する図である。It is a figure explaining the relationship between the inside-out air ratio and the heating load of a heating mode. 本発明の他の実施例の車両用空気調和装置の構成図である。It is a block diagram of the air conditioner for a vehicle of another Example of this invention. 図9の場合のヒートポンプコントローラによる除湿暖房モードにおける室外膨張弁制御に関する制御ブロック図である。FIG. 5 is a control block diagram relating to outdoor expansion valve control in a dehumidifying and heating mode by a heat pump controller in the case of FIG. 9.

以下、本発明の実施の形態について、図面に基づき詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の一実施例の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、バッテリに充電された電力で走行用の電動モータを駆動して走行するものであり(何れも図示せず)、本発明の車両用空気調和装置1も、バッテリの電力で駆動されるものとする。即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路を用いたヒートポンプ運転により暖房モードを行い、更に、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード(最大冷房モード)及び補助ヒータ単独モードの各運転モードを選択的に実行する。この実施例では、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モードが本出願における第1の運転モードである。 FIG. 1 shows a configuration diagram of an air conditioner 1 for a vehicle according to an embodiment of the present invention. The vehicle of the embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and travels by driving an electric motor for traveling with electric power charged in a battery. Yes (neither is shown), and the vehicle air conditioner 1 of the present invention is also driven by the power of the battery. That is, the vehicle air conditioner 1 of the embodiment performs the heating mode by the heat pump operation using the refrigerant circuit in the electric vehicle that cannot be heated by the waste heat of the engine, and further, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, Each operation mode of MAX cooling mode (maximum cooling mode) and auxiliary heater independent mode is selectively executed. In this embodiment, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, and the MAX cooling mode are the first operation modes in the present application.

尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明は有効であり、更には、エンジンで走行する通常の自動車にも適用可能であることは云うまでもない。 It should be noted that the present invention is effective not only for electric vehicles as vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and further, it can be applied to ordinary vehicles traveling with an engine. Needless to say.

実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、外気や車室内の空気が通気/循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を放熱させて車室内に供給する空気を加熱するための放熱器4(ヒータ)と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6(減圧装置)と、車室外に設けられて冷房時には放熱器として機能し、暖房時には蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る室内膨張弁8(減圧装置)と、空気流通路3内に設けられ、冷房時及び除湿時に冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。この場合、放熱器4は空気流通路3の空気の流れに対して吸熱器9の風下側(空気下流側)に配置されている。 The vehicle air conditioner 1 of the embodiment air-conditions (heats, cools, dehumidifies, and ventilates) the interior of the electric vehicle, and includes an electric compressor 2 that compresses the refrigerant, and outside air and a vehicle. A high-temperature and high-pressure refrigerant discharged from the compressor 2 is provided in the air flow passage 3 of the HVAC unit 10 through which indoor air is ventilated / circulated, flows in through the refrigerant pipe 13G, and the refrigerant is dissipated to dissipate the vehicle. A radiator 4 (heater) for heating the air supplied to the room, an outdoor expansion valve 6 (pressure reducing device) consisting of an electric valve that decompresses and expands the refrigerant during heating, and a radiator provided outside the vehicle interior as a radiator during cooling. An outdoor heat exchanger 7 that functions and exchanges heat between the refrigerant and the outside air to function as an evaporator during heating, an indoor expansion valve 8 (pressure reducing device) consisting of an electric valve that decompresses and expands the refrigerant, and air. A heat absorber 9 provided in the flow passage 3 for absorbing heat of the refrigerant during cooling and dehumidification to cool the air supplied to the vehicle interior, an accumulator 12 and the like are sequentially connected by a refrigerant pipe 13, and a refrigerant circuit R is formed. It is configured. In this case, the radiator 4 is arranged on the leeward side (downstream side of the air) of the heat absorber 9 with respect to the air flow in the air flow passage 3.

そして、この冷媒回路Rには所定量の冷媒と潤滑用のオイルが充填されている。尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。 The refrigerant circuit R is filled with a predetermined amount of refrigerant and lubricating oil. The outdoor heat exchanger 7 is provided with an outdoor blower 15. The outdoor blower 15 forcibly ventilates the outdoor air to the outdoor heat exchanger 7 to exchange heat between the outside air and the refrigerant, whereby the outdoor air is outdoors even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). The heat exchanger 7 is configured to ventilate outside air.

また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7から出た冷媒配管13Aは冷房時に開放される電磁弁17を介してレシーバドライヤ部14に接続され、過冷却部16の出口側の冷媒配管13Bは室内膨張弁8介して吸熱器9の入口側に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成している。 Further, the outdoor heat exchanger 7 has a receiver dryer portion 14 and a supercooling portion 16 in sequence on the downstream side of the refrigerant, and the refrigerant pipe 13A coming out of the outdoor heat exchanger 7 receives the receiver via an electromagnetic valve 17 opened during cooling. The refrigerant pipe 13B on the outlet side of the supercooling unit 16 is connected to the dryer unit 14 and is connected to the inlet side of the heat exchanger 9 via the indoor expansion valve 8. The receiver dryer section 14 and the supercooling section 16 structurally form a part of the outdoor heat exchanger 7.

また、過冷却部16と室内膨張弁8間の冷媒配管13Bは、吸熱器9の出口側の冷媒配管13Cと熱交換関係に設けられ、両者で内部熱交換器19を構成している。これにより、冷媒配管13Bを経て室内膨張弁8に流入する冷媒は、吸熱器9を出た低温の冷媒により冷却(過冷却)される構成とされている。 Further, the refrigerant pipe 13B between the supercooling unit 16 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C on the outlet side of the heat absorber 9, and both constitute the internal heat exchanger 19. As a result, the refrigerant flowing into the indoor expansion valve 8 via the refrigerant pipe 13B is configured to be cooled (supercooled) by the low-temperature refrigerant leaving the heat absorber 9.

また、室外熱交換器7から出た冷媒配管13Aは冷媒配管13Dに分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁21を介して内部熱交換器19の下流側における冷媒配管13Cに連通接続されている。この冷媒配管13Cがアキュムレータ12に接続され、アキュムレータ12は圧縮機2の冷媒吸込側に接続されている。更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6を介して室外熱交換器7の入口側に接続されている。 Further, the refrigerant pipe 13A coming out of the outdoor heat exchanger 7 is branched into the refrigerant pipe 13D, and the branched refrigerant pipe 13D is on the downstream side of the internal heat exchanger 19 via the electromagnetic valve 21 opened at the time of heating. Is connected to the refrigerant pipe 13C in the above. The refrigerant pipe 13C is connected to the accumulator 12, and the accumulator 12 is connected to the refrigerant suction side of the compressor 2. Further, the refrigerant pipe 13E on the outlet side of the radiator 4 is connected to the inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.

また、圧縮機2の吐出側と放熱器4の入口側の間の冷媒配管13Gには後述する除湿暖房とMAX冷房時に閉じられる電磁弁30(流路切換装置を構成する)が介設されている。この場合、冷媒配管13Gは電磁弁30の上流側でバイパス配管35に分岐しており、このバイパス配管35は除湿暖房とMAX冷房時に開放される電磁弁40(これも流路切換装置を構成する)を介して室外膨張弁6の下流側の冷媒配管13Eに連通接続されている。これらバイパス配管35、電磁弁30及び電磁弁40によりバイパス装置45が構成される。 Further, the refrigerant pipe 13G between the discharge side of the compressor 2 and the inlet side of the radiator 4 is provided with a solenoid valve 30 (which constitutes a flow path switching device) which is closed during dehumidifying heating and MAX cooling, which will be described later. There is. In this case, the refrigerant pipe 13G branches to the bypass pipe 35 on the upstream side of the solenoid valve 30, and the bypass pipe 35 also constitutes the solenoid valve 40 (which also constitutes the flow path switching device) that is opened during dehumidifying heating and MAX cooling. ) Is communicated with the refrigerant pipe 13E on the downstream side of the outdoor expansion valve 6. The bypass device 45 is composed of the bypass pipe 35, the solenoid valve 30, and the solenoid valve 40.

このようなバイパス配管35、電磁弁30及び電磁弁40によりバイパス装置45を構成したことで、後述する如く圧縮機2から吐出された冷媒を室外熱交換器7に直接流入させる除湿暖房モードやMAX冷房モードと、圧縮機2から吐出された冷媒を放熱器4に流入させる暖房モードや除湿冷房モード、冷房モードとの切り換えを円滑に行うことができるようになる。 By configuring the bypass device 45 with such a bypass pipe 35, a solenoid valve 30, and a solenoid valve 40, a dehumidifying / heating mode or MAX in which the refrigerant discharged from the compressor 2 directly flows into the outdoor heat exchanger 7 as described later. It becomes possible to smoothly switch between the cooling mode and the heating mode, the dehumidifying cooling mode, and the cooling mode in which the refrigerant discharged from the compressor 2 flows into the radiator 4.

また、吸熱器9の空気上流側における空気流通路3には、外気吸込口25Aと内気吸込口25Bの各吸込口が形成されており、外気吸込口25Aからは車室外の空気である外気が吸い込まれ、内気吸込口25Bからは車室内の空気である内気が吸い込まれる構成とされている。更に、空気流通路3には吸込切換ダンパ26が設けられ、この吸込切換ダンパ26の空気下流側には、各吸込口25A、25Bから吸い込まれた外気や内気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。 Further, in the air flow passage 3 on the air upstream side of the heat absorber 9, each suction port of the outside air suction port 25A and the inside air suction port 25B is formed, and the outside air which is the air outside the vehicle interior is discharged from the outside air suction port 25A. It is sucked in, and the inside air, which is the air inside the vehicle, is sucked in from the inside air suction port 25B. Further, a suction switching damper 26 is provided in the air flow passage 3, and outside air and inside air sucked from the suction ports 25A and 25B are supplied to the air flow passage 3 on the air downstream side of the suction switching damper 26. An indoor blower fan 27 for this purpose is provided.

上記吸込切換ダンパ26は、外気吸込口25Aと内気吸込口25Bを任意の比率で開閉することにより、空気流通路3の吸熱器9に流入する外気と内気の比率を0〜100%の間で調整することができるように構成されている。尚、本出願では吸込切換ダンパ26により調整される外気と内気の比率を内外気比率RECrateと称し、この内外気比率RECrate=1のときに内気が100%、外気が0%の内気循環モードとなり、内外気比率RECrate=0のときに外気が100%、内気が0%の外気導入モードとなる。そして、0<内外気比率RECrate<1のときに0%<内気<100%、且つ、100%>外気>0%の内外気中間位置となる。即ち、本出願において内外気比率RECrateは空気流通路3の吸熱器9に流入する空気のうちの内気の割合を意味する。 The suction switching damper 26 opens and closes the outside air suction port 25A and the inside air suction port 25B at an arbitrary ratio, so that the ratio of the outside air and the inside air flowing into the heat absorber 9 of the air flow passage 3 is between 0 and 100%. It is configured to be adjustable. In the present application, the ratio of the outside air to the inside air adjusted by the suction switching damper 26 is referred to as an inside / outside air ratio RECRATE, and when the inside / outside air ratio RECrate = 1, the inside air is 100% and the outside air is 0%. When the inside / outside air ratio is RECrate = 0, the outside air introduction mode is set so that the outside air is 100% and the inside air is 0%. Then, when 0 <inside / outside air ratio Recrate <1, the inside / outside air intermediate position is 0% <inside air <100% and 100%> outside air> 0%. That is, in the present application, the inside / outside air ratio Recrate means the ratio of the inside air to the air flowing into the heat absorber 9 of the air flow passage 3.

この吸込切換ダンパ26は後述する空調コントローラ20により制御され、後述するオートモード或いは空調操作部53へのマニュアル操作(マニュアルモード)によって上記内気循環モード、外気導入モード及び内外気中間位置が選択される。この場合、クールダウン時等の冷房負荷が大きいときや市街地等の外気臭が気になるときに内気循環モードとされ、換気が必要なときや暖房時の窓曇り防止を行うときにデフロスタスイッチ(後述する空調操作部53に設けられる)との連動等で外気導入モードが選択される。また、暖房時の暖房負荷の低減と窓曇り防止の両立を行うときに内外気中間位置が選択されることになる。 The suction switching damper 26 is controlled by the air conditioning controller 20 described later, and the inside air circulation mode, the outside air introduction mode, and the inside / outside air intermediate position are selected by the auto mode described later or the manual operation (manual mode) to the air conditioning operation unit 53. .. In this case, the inside air circulation mode is set when the cooling load is heavy such as during cool-down or when the outside air odor is anxious in urban areas, and the defroster switch (defroster switch) is used when ventilation is required or when window fogging is prevented during heating. The outside air introduction mode is selected by interlocking with (provided in the air conditioning operation unit 53, which will be described later). In addition, the intermediate position between the inside and outside air is selected when both the reduction of the heating load during heating and the prevention of window fogging are achieved.

また、図1において23は実施例の車両用空気調和装置1に設けられた補助加熱装置としての補助ヒータである。実施例の補助ヒータ23はPTCヒータ(電気ヒータ)にて構成されており、空気流通路3の空気の流れに対して、放熱器4の風上側(空気上流側)であって吸熱器9の風下側(空気下流側)となる空気流通路3内に設けられている。そして、補助ヒータ23に通電されて発熱すると、吸熱器9を経て放熱器4に流入する前の空気流通路3内の空気が加熱される。即ち、この補助ヒータ23が所謂ヒータコアとなり、車室内の暖房を行い、或いは、それを補完する。 Further, in FIG. 1, 23 is an auxiliary heater as an auxiliary heating device provided in the vehicle air conditioner 1 of the embodiment. The auxiliary heater 23 of the embodiment is composed of a PTC heater (electric heater), and is on the windward side (air upstream side) of the radiator 4 with respect to the air flow of the air flow passage 3, and is the heat absorber 9. It is provided in the air flow passage 3 on the leeward side (downstream side of the air). Then, when the auxiliary heater 23 is energized and generates heat, the air in the air flow passage 3 before flowing into the radiator 4 via the endothermic 9 is heated. That is, the auxiliary heater 23 serves as a so-called heater core, which heats or complements the interior of the vehicle.

ここで、HVACユニット10の吸熱器9より風下側(空気下流側)の空気流通路3は仕切壁10Aにより区画され、暖房用熱交換通路3Aとそれをバイパスするバイパス通路3Bとが形成されており、前述した放熱器4と補助ヒータ23は暖房用熱交換通路3Aに配置されている。 Here, the air flow passage 3 on the leeward side (air downstream side) of the heat absorber 9 of the HVAC unit 10 is partitioned by the partition wall 10A, and the heat exchange passage 3A for heating and the bypass passage 3B bypassing the heat exchange passage 3A are formed. The above-mentioned radiator 4 and auxiliary heater 23 are arranged in the heating heat exchange passage 3A.

また、補助ヒータ23の風上側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を、補助ヒータ23及び放熱器4が配置された暖房用熱交換通路3Aに通風する割合を調整するエアミックスダンパ28Dr、28Asが設けられている。 Further, in the air flow passage 3 on the wind side of the auxiliary heater 23, the air (inside air or outside air) in the air flow passage 3 that has flowed into the air flow passage 3 and passed through the heat absorber 9 is assisted. Air mix dampers 28Dr and 28As are provided to adjust the ratio of ventilation to the heating heat exchange passage 3A in which the heater 23 and the radiator 4 are arranged.

更に、放熱器4の風下側におけるHVACユニット10には、FOOT(フット)吹出口29A、VENT(ベント)吹出口29B、DEF(デフ)吹出口29Cの各吹出口が形成されている。FOOT吹出口29Aは車室内の足下に空気を吹き出すための吹出口で、最も低い位置にある。また、VENT吹出口29Bは車室内の運転者の胸や顔付近に空気を吹き出すための吹出口で、FOOT吹出口29Aより上方にある。そして、DEF吹出口29Cは車両のフロントガラス内面に空気を吹き出すための吹出口で、他の吹出口29A、29Bよりも上方の最も高い位置にある。 Further, the HVAC unit 10 on the leeward side of the radiator 4 is formed with outlets of FOOT (foot) outlet 29A, VENT (vent) outlet 29B, and DEF (def) outlet 29C. The FOOT outlet 29A is an outlet for blowing air under the feet in the vehicle interior, and is located at the lowest position. The VENT outlet 29B is an outlet for blowing air near the driver's chest and face in the vehicle interior, and is above the FOOT outlet 29A. The DEF outlet 29C is an outlet for blowing air onto the inner surface of the windshield of the vehicle, and is located at the highest position above the other outlets 29A and 29B.

そして、FOOT吹出口29A、VENT吹出口29B、及び、DEF吹出口29Cには、空気の吹き出し量を制御するFOOT吹出口ダンパ31A、VENT吹出口ダンパ31B、及び、DEF吹出口ダンパ31Cがそれぞれ設けられている。 The FOOT outlet 29A, the VENT outlet 29B, and the DEF outlet 29C are provided with a FOOT outlet damper 31A, a VENT outlet damper 31B, and a DEF outlet damper 31C, respectively, which control the amount of air blown out. Has been done.

尚、実施例の車両用空気調和装置1は、車両の運転席と助手席で、左右独立空調制御が可能とされており、放熱器4及び補助ヒータ23が設けられた空気流通路3内は図示しない仕切板により左右に仕切られている。そして、前述したエアミックスダンパ28Drは運転席用(右用)のエアミックスダンパとされて右側の空気流通路3に設けられ、エアミックスダンパ28Asは助手席用(左用)のエアミックスダンパとされて左側の空気流通路3に設けられている。また、上記FOOT吹出口ダンパ31A、VENT吹出口ダンパ31B、及び、DEF吹出口ダンパ31Cの各吹出口も、運転席用(右用)と助手席用(左用)が前記仕切板で仕切られる左右の空気流通路3にそれぞれ設けられているものとする。そして、それらにより運転席・助手席同一空調制御(左右同一空調制御)と、運転席・助手席独立空調制御(左右独立空調制御)とを実行可能とされている。 In the vehicle air conditioner 1 of the embodiment, left and right independent air conditioning control is possible at the driver's seat and the passenger seat of the vehicle, and the inside of the air flow passage 3 provided with the radiator 4 and the auxiliary heater 23 is It is partitioned to the left and right by a partition plate (not shown). The above-mentioned air mix damper 28Dr is used as an air mix damper for the driver's seat (for the right) and is provided in the air flow passage 3 on the right side, and the air mix damper 28As is used as the air mix damper for the passenger seat (for the left). It is provided in the air flow passage 3 on the left side. Further, the left and right outlets of the FOOT outlet damper 31A, the VENT outlet damper 31B, and the DEF outlet damper 31C are also separated from the driver's seat (for the right) and the passenger's seat (for the left) by the partition plate. It is assumed that each of the air flow passages 3 of the above is provided. Then, it is possible to execute the same air conditioning control for the driver's seat and the passenger seat (same air conditioning control for the left and right) and the independent air conditioning control for the driver's seat and the passenger seat (independent air conditioning control for the left and right).

即ち、後述する空調操作部53での設定で、運転席・助手席同一空調制御(左右同一空調制御)となったときには、エアミックスダンパ28Dr及びエアミックスダンパ28Asは同一の動作を行い、運転席用と助手席用の各吹出口ダンパ31A〜31Cも同一の動作を行う。一方、運転席・助手席独立空調制御(左右独立空調制御)となったときには、エアミックスダンパ28Dr及びエアミックスダンパ28Asは独立して動作し、運転席用と助手席用の各吹出口ダンパ31A〜31Cも独立して動作することになる。 That is, when the driver's seat and the passenger seat have the same air conditioning control (the left and right same air conditioning control) in the setting of the air conditioning operation unit 53 described later, the air mix damper 28Dr and the air mix damper 28As perform the same operation, and the driver's seat The air outlet dampers 31A to 31C for the passenger seat and the passenger seat also perform the same operation. On the other hand, when the driver's seat / passenger's seat independent air conditioning control (left and right independent air conditioning control) is applied, the air mix damper 28Dr and the air mix damper 28As operate independently, and the air outlet dampers 31A for the driver's seat and the passenger seat are operated independently. ~ 31C will also operate independently.

次に、図2は実施例の車両用空気調和装置1の制御装置11のブロック図を示している。制御装置11は、何れもプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成された空調コントローラ20及びヒートポンプコントローラ32から構成されており、これらがCAN(Controller Area Network)やLIN(Local Interconnect Network)を構成する車両通信バス65に接続されている。また、圧縮機2と補助ヒータ23も車両通信バス65に接続され、これら空調コントローラ20、ヒートポンプコントローラ32、圧縮機2及び補助ヒータ23が車両通信バス65を介してデータの送受信を行うように構成されている。 Next, FIG. 2 shows a block diagram of the control device 11 of the vehicle air conditioner 1 of the embodiment. The control device 11 is composed of an air conditioning controller 20 and a heat pump controller 32, each of which is composed of a microcomputer which is an example of a computer equipped with a processor, and these are CAN (Controller Area Network) and LIN (Local Interconnect Network). It is connected to the vehicle communication bus 65 constituting the above. Further, the compressor 2 and the auxiliary heater 23 are also connected to the vehicle communication bus 65, and the air conditioning controller 20, the heat pump controller 32, the compressor 2 and the auxiliary heater 23 are configured to transmit and receive data via the vehicle communication bus 65. Has been done.

空調コントローラ20は、車両の車室内空調の制御を司る上位のコントローラであり、この空調コントローラ20の入力には、車両の外気温度Tam(車室外の空気の温度)を検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、車室内の空気(内気)の温度(内気温度Tin)を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力(吐出圧力Pd)を検出する吐出圧力センサ42と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52の各出力と、設定温度や運転モードの切り換えを設定するための空調(エアコン)操作部53が接続されている。 The air conditioning controller 20 is a higher-level controller that controls the air conditioning inside the vehicle interior, and the input of the air conditioning controller 20 includes an outside air temperature sensor 33 that detects the outside air temperature Tam (the temperature of the air outside the vehicle interior) of the vehicle. , The outside air humidity sensor 34 that detects the outside air humidity, the inside air temperature sensor 37 that detects the temperature of the air (inside air) in the vehicle interior (inside air temperature Tin), the inside air humidity sensor 38 that detects the humidity of the air inside the vehicle interior, The indoor CO 2 concentration sensor 39 that detects the carbon dioxide concentration in the vehicle interior, the blowout temperature sensor 41 that detects the temperature of the air blown into the vehicle interior, and the discharge refrigerant pressure (discharge pressure Pd) of the compressor 2 are detected. The discharge pressure sensor 42, the output of, for example, a photosensor type solar radiation sensor 51 for detecting the amount of solar radiation into the vehicle interior, the vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, and the set temperature and An air conditioner (air conditioner) operation unit 53 for setting the switching of the operation mode is connected.

また、空調コントローラ20の出力には、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28Dr、28Asと、各吹出口ダンパ31A〜31Cが接続され、それらは空調コントローラ20により制御される。 Further, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix dampers 28Dr and 28As, and the outlet dampers 31A to 31C are connected to the output of the air conditioning controller 20. Is controlled by the air conditioning controller 20.

ヒートポンプコントローラ32は、主に冷媒回路Rの制御を司るコントローラであり、このヒートポンプコントローラ32の入力には、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒圧力を検出する吸込圧力センサ44と、圧縮機2の吸込冷媒温度Tsを検出する吸込温度センサ55と、放熱器4の冷媒温度(放熱器温度TCI)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器圧力PCI)を検出する放熱器圧力センサ47と、吸熱器9の冷媒温度(吸熱器温度Te)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力を検出する吸熱器圧力センサ49と、室外熱交換器7の出口の冷媒温度(室外熱交換器温度TXO)を検出する室外熱交換器温度センサ54と、室外熱交換器7の出口の冷媒圧力(室外熱交換器圧力PXO)を検出する室外熱交換器圧力センサ56の各出力が接続されている。 The heat pump controller 32 is a controller that mainly controls the refrigerant circuit R, and the input of the heat pump controller 32 includes a discharge temperature sensor 43 that detects the discharge refrigerant temperature of the compressor 2 and a suction refrigerant pressure of the compressor 2. The suction pressure sensor 44 for detecting the above, the suction temperature sensor 55 for detecting the suction refrigerant temperature Ts of the compressor 2, the radiator temperature sensor 46 for detecting the refrigerant temperature (radiator temperature TCI) of the radiator 4, and the radiator. The radiator pressure sensor 47 that detects the refrigerant pressure (radiator pressure PCI) of 4, the heat absorber temperature sensor 48 that detects the refrigerant temperature (heat absorber temperature Te) of the heat absorber 9, and the refrigerant pressure of the heat absorber 9 are detected. The heat absorber pressure sensor 49, the outdoor heat exchanger temperature sensor 54 that detects the refrigerant temperature at the outlet of the outdoor heat exchanger 7 (outdoor heat exchanger temperature TXO), and the refrigerant pressure at the outlet of the outdoor heat exchanger 7 (outdoor). Each output of the outdoor heat exchanger pressure sensor 56 that detects the heat exchanger pressure PXO) is connected.

更に、ヒートポンプコントローラ32の入力には、補助ヒータ23の温度(補助ヒータ温度Tptc)を検出する複数の温度センサとしての補助ヒータ温度センサ50Dr、50Asの各出力も接続されている。この場合、補助ヒータ温度センサ50Drは前記仕切板で仕切られた右側(運転席側)の部分の補助ヒータ23の温度を検出し、補助ヒータ温度センサ50Asは左側(助手席側)の部分の補助ヒータ23の温度を検出することができるように取り付けられている。 Further, the outputs of the auxiliary heater temperature sensors 50Dr and 50As as a plurality of temperature sensors for detecting the temperature of the auxiliary heater 23 (auxiliary heater temperature Tptc) are also connected to the input of the heat pump controller 32. In this case, the auxiliary heater temperature sensor 50Dr detects the temperature of the auxiliary heater 23 on the right side (driver's seat side) partitioned by the partition plate, and the auxiliary heater temperature sensor 50As assists the left side (passenger seat side). It is attached so that the temperature of the heater 23 can be detected.

また、ヒートポンプコントローラ32の出力には、室外膨張弁6、室内膨張弁8と、電磁弁30(リヒート用)、電磁弁17(冷房用)、電磁弁21(暖房用)、電磁弁40(バイパス用)の各電磁弁が接続され、それらはヒートポンプコントローラ32により制御される。尚、圧縮機2と補助ヒータ23はそれぞれコントローラを内蔵しており、圧縮機2と補助ヒータ23のコントローラは車両通信バス65を介してヒートポンプコントローラ32とデータの送受信を行い、このヒートポンプコントローラ32によって制御される。 Further, the outputs of the heat pump controller 32 include an outdoor expansion valve 6, an indoor expansion valve 8, a solenoid valve 30 (for reheating), a solenoid valve 17 (for cooling), a solenoid valve 21 (for heating), and a solenoid valve 40 (bypass). Each solenoid valve is connected and they are controlled by the heat pump controller 32. The compressor 2 and the auxiliary heater 23 each have a built-in controller, and the controllers of the compressor 2 and the auxiliary heater 23 transmit and receive data to and from the heat pump controller 32 via the vehicle communication bus 65, and the heat pump controller 32 transmits and receives data. Be controlled.

ヒートポンプコントローラ32と空調コントローラ20は車両通信バス65を介して相互にデータの送受信を行い、各センサの出力や空調操作部53にて入力された設定に基づき、各機器を制御するものであるが、この場合の実施例では外気温度センサ33、吐出圧力センサ42、車速センサ52、空気流通路3に流入した空気の実際の体積風量Ga(実システム風量。空調コントローラ20が算出)、エアミックスダンパ28Dr、28Asによる風量割合SWDr、SWAs(空調コントローラ20が算出)、前記内外気比率RECrate(空調コントローラ20が調整)、空調操作部53の出力は空調コントローラ20から車両通信バス65を介してヒートポンプコントローラ32に送信され、ヒートポンプコントローラ32による制御に供される構成とされている。 The heat pump controller 32 and the air conditioning controller 20 send and receive data to and from each other via the vehicle communication bus 65, and control each device based on the output of each sensor and the settings input by the air conditioning operation unit 53. In the embodiment in this case, the outside air temperature sensor 33, the discharge pressure sensor 42, the vehicle speed sensor 52, the actual volume air volume Ga of the air flowing into the air flow passage 3 (actual system air volume, calculated by the air conditioning controller 20), and the air mix damper. The output of the air volume ratio SWDr, SWAs (calculated by the air conditioning controller 20), the inside / outside air ratio RECrate (adjusted by the air conditioning controller 20), and the air conditioning operation unit 53 by 28Dr and 28As is from the air conditioning controller 20 to the heat pump controller via the vehicle communication bus 65. It is configured to be transmitted to 32 and used for control by the heat pump controller 32.

以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。この実施例では制御装置11(空調コントローラ20、ヒートポンプコントローラ32)は、暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード(最大冷房モード)及び補助ヒータ単独モードの各運転モードを切り換えて実行する。先ず、各運転モードにおける冷媒の流れと制御の概略について説明する。 With the above configuration, the operation of the vehicle air conditioner 1 of the embodiment will be described next. In this embodiment, the control device 11 (air conditioning controller 20, heat pump controller 32) sets each operation mode of heating mode, dehumidifying heating mode, dehumidifying cooling mode, cooling mode, MAX cooling mode (maximum cooling mode), and auxiliary heater independent mode. Switch and execute. First, the outline of the flow and control of the refrigerant in each operation mode will be described.

(1)暖房モード
ヒートポンプコントローラ32により(オートモード)或いは空調操作部53へのマニュアル操作により(マニュアルモード)暖房モードが選択されると、ヒートポンプコントローラ32は電磁弁21(暖房用)を開放し、電磁弁17(冷房用)を閉じる。また、電磁弁30(リヒート用)を開放し、電磁弁40(バイパス用)を閉じる。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28Dr、28Asは、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量を調整してもよい。
(1) Heating mode When the heating mode is selected by the heat pump controller 32 (auto mode) or by manual operation to the air conditioning operation unit 53 (manual mode), the heat pump controller 32 opens the solenoid valve 21 (for heating). Close the solenoid valve 17 (for cooling). Further, the solenoid valve 30 (for reheating) is opened, and the solenoid valve 40 (for bypass) is closed. Then, the compressor 2 is operated. The air conditioning controller 20 operates the blowers 15 and 27, and the air mix dampers 28Dr and 28As basically exchange heat for heating all the air in the air flow passage 3 that has been blown out from the indoor blower 27 and passed through the heat absorber 9. Although the state is such that the auxiliary heater 23 and the radiator 4 of the passage 3A are ventilated, the air volume may be adjusted.

これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。 As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the solenoid valve 30. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is the high-temperature refrigerant in the radiator 4 (when the auxiliary heater 23 operates, the auxiliary heater 23 and the radiator 4 are used. ), On the other hand, the refrigerant in the radiator 4 is deprived of heat by the air and cooled to be condensed.

放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)にて加熱された空気は各吹出口29A〜29Cから吹き出されるので、これにより車室内の暖房が行われることになる。 The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 via the refrigerant pipe 13E. The refrigerant that has flowed into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7. The refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and draws heat by running or from the outside air that is ventilated by the outdoor blower 15. That is, the refrigerant circuit R serves as a heat pump. Then, the low-temperature refrigerant that has exited the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C via the refrigerant pipe 13A, the solenoid valve 21, and the refrigerant pipe 13D, and after gas-liquid separation there, the gas refrigerant is used in the compressor 2. Repeat the circulation sucked into. Since the air heated by the radiator 4 (when the auxiliary heater 23 operates, the auxiliary heater 23 and the radiator 4) is blown out from the outlets 29A to 29C, the interior of the vehicle is heated by this. become.

ヒートポンプコントローラ32は、空調コントローラ20が目標吹出温度TAOから算出する目標ヒータ温度TCO(放熱器温度TCIの目標値)から目標放熱器圧力PCO(放熱器圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数NCを制御し、放熱器4による加熱を制御する。また、ヒートポンプコントローラ32は、放熱器温度センサ46が検出する放熱器4の冷媒温度(放熱器温度TCI)及び放熱器圧力センサ47が検出する放熱器圧力PCIに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度SCをその目標値である目標過冷却度TGSCに制御する。 The heat pump controller 32 calculates the target radiator pressure PCO (target value of the radiator pressure PCI) from the target heater temperature TCO (target value of the radiator temperature TCI) calculated by the air conditioning controller 20 from the target outlet temperature TAO, and this target. The rotation speed NC of the compressor 2 is controlled based on the radiator pressure PCO and the refrigerant pressure of the radiator 4 (radiator pressure PCI. High pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47, and the radiator 4 Control the heating by. Further, the heat pump controller 32 opens the outdoor expansion valve 6 based on the refrigerant temperature (radiator temperature TCI) of the radiator 4 detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47. The degree is controlled, and the supercooling degree SC of the refrigerant at the outlet of the radiator 4 is controlled to the target supercooling degree TGSC which is the target value.

また、ヒートポンプコントローラ32はこの暖房モードにおいては、車室内空調に要求される暖房能力(要求暖房能力TGQ)に対して放熱器4による暖房能力が不足する場合、その不足する分を補助ヒータ23の発熱で補完するように補助ヒータ23の通電を制御する。それにより、快適な車室内暖房を実現し、且つ、室外熱交換器7の着霜も抑制する。実施例では補助ヒータ23は放熱器4の空気上流側に配置されているので、空気流通路3を流通する空気は放熱器4の前に補助ヒータ23に通風されることになる。 Further, in this heating mode, when the heating capacity by the radiator 4 is insufficient for the heating capacity (required heating capacity TGQ) required for the air conditioning in the vehicle interior, the heat pump controller 32 uses the auxiliary heater 23 for the insufficient heating capacity. The energization of the auxiliary heater 23 is controlled so as to supplement with heat generation. As a result, comfortable vehicle interior heating is realized, and frost formation of the outdoor heat exchanger 7 is also suppressed. In the embodiment, since the auxiliary heater 23 is arranged on the upstream side of the air of the radiator 4, the air flowing through the air flow passage 3 is ventilated to the auxiliary heater 23 in front of the radiator 4.

この場合、実施例ではヒートポンプコントローラ32は、補助ヒータ温度センサ50Drの検出値TptcDrと補助ヒータ温度センサ50Asの検出値TptcAsの平均値を補助ヒータ温度Tptcとして補助ヒータ23の通電を制御する。 In this case, in the embodiment, the heat pump controller 32 controls the energization of the auxiliary heater 23 by using the average value of the detected value TptcDr of the auxiliary heater temperature sensor 50Dr and the detected value TptcAs of the auxiliary heater temperature sensor 50As as the auxiliary heater temperature Tptc.

(2)除湿暖房モード
次に、除湿暖房モードでは、ヒートポンプコントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28Dr、28Asは、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量の調整も行う。
(2) Dehumidifying and heating mode Next, in the dehumidifying and heating mode, the heat pump controller 32 opens the solenoid valve 17 and closes the solenoid valve 21. Further, the solenoid valve 30 is closed, the solenoid valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 is operated. The air conditioning controller 20 operates the blowers 15 and 27, and the air mix dampers 28Dr and 28As basically exchange heat for heating all the air in the air flow passage 3 that has been blown out from the indoor blower 27 and passed through the heat absorber 9. The auxiliary heater 23 and the radiator 4 in the passage 3A are ventilated, but the air volume is also adjusted.

これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。 As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the solenoid valve 40, and flows into the refrigerant pipe on the downstream side of the outdoor expansion valve 6. It will reach 13E. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 is air-cooled and condensed by traveling there or by the outside air ventilated by the outdoor blower 15. The refrigerant exiting the outdoor heat exchanger 7 flows sequentially from the refrigerant pipe 13A through the solenoid valve 17 to the receiver dryer section 14 and the supercooling section 16. Here the refrigerant is supercooled.

室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却され、且つ、当該空気中の水分が吸熱器9に凝結して付着するので、空気流通路3内の空気は冷却され、且つ、除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。 The refrigerant exiting the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13B, passes through the internal heat exchanger 19, and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 is cooled by the endothermic action at this time, and the moisture in the air condenses and adheres to the heat absorber 9, so that the air in the air flow passage 3 is cooled and It is dehumidified. The refrigerant evaporated in the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 via the refrigerant pipe 13C, and repeats the circulation of being sucked into the compressor 2 through the accumulator 12.

このとき、室外膨張弁6の弁開度は全閉とされているので、圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。更に、この除湿暖房モードにおいてヒートポンプコントローラ32は、補助ヒータ23に通電して発熱させる。これにより、吸熱器9にて冷却され、且つ、除湿された空気は補助ヒータ23を通過する過程で更に加熱され、温度が上昇するので車室内の除湿暖房が行われることになる。 At this time, since the valve opening degree of the outdoor expansion valve 6 is fully closed, it is possible to suppress or prevent the inconvenience that the refrigerant discharged from the compressor 2 flows back from the outdoor expansion valve 6 into the radiator 4. It becomes. As a result, it becomes possible to suppress or eliminate the decrease in the amount of refrigerant circulation and secure the air conditioning capacity. Further, in this dehumidifying / heating mode, the heat pump controller 32 energizes the auxiliary heater 23 to generate heat. As a result, the air cooled and dehumidified by the heat absorber 9 is further heated in the process of passing through the auxiliary heater 23, and the temperature rises, so that the dehumidifying and heating of the vehicle interior is performed.

ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)と、空調コントローラ20が算出する吸熱器温度Teの目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御すると共に、補助ヒータ温度センサ50Drの検出値TptcDrと補助ヒータ温度センサ50Asの検出値TptcAsの平均値を補助ヒータ温度Tptcとし、この補助ヒータ温度Tptcと前記目標ヒータ温度TCO(この場合、補助ヒータ温度Tptcの目標値となる)に基づいて補助ヒータ23の通電(発熱による加熱)を制御することで、吸熱器9での空気の冷却と除湿を適切に行いながら、補助ヒータ23による加熱で各吹出口29A〜29Cから車室内に吹き出される空気温度の低下を的確に防止する。これにより、車室内に吹き出される空気を除湿しながら、その温度を適切な暖房温度に制御することが可能となり、車室内の快適且つ効率的な除湿暖房を実現することができるようになる。 The heat pump controller 32 is a compressor based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is a target value of the heat absorber temperature Te calculated by the air conditioner controller 20. While controlling the rotation speed NC of 2, the average value of the detected value TptcDr of the auxiliary heater temperature sensor 50Dr and the detected value TptcAs of the auxiliary heater temperature sensor 50As is set as the auxiliary heater temperature Tptc, and the auxiliary heater temperature Tptc and the target heater temperature TCO By controlling the energization (heating by heat generation) of the auxiliary heater 23 based on (in this case, the target value of the auxiliary heater temperature Tptc), the air is appropriately cooled and dehumidified by the heat absorber 9 while assisting. The heating by the heater 23 accurately prevents a decrease in the temperature of the air blown into the vehicle interior from the outlets 29A to 29C. As a result, it becomes possible to control the temperature to an appropriate heating temperature while dehumidifying the air blown into the vehicle interior, and it becomes possible to realize comfortable and efficient dehumidification heating in the vehicle interior.

尚、補助ヒータ23は放熱器4の空気上流側に配置されているので、補助ヒータ23で加熱された空気は放熱器4を通過することになるが、この除湿暖房モードでは放熱器4に冷媒は流されないので、補助ヒータ23にて加熱された空気から放熱器4が吸熱してしまう不都合も解消される。即ち、放熱器4によって車室内に吹き出される空気の温度が低下してしまうことが抑制され、COPも向上することになる。 Since the auxiliary heater 23 is arranged on the upstream side of the air of the radiator 4, the air heated by the auxiliary heater 23 passes through the radiator 4, but in this dehumidifying and heating mode, the refrigerant is sent to the radiator 4. Since the heat is not washed away, the inconvenience that the radiator 4 absorbs heat from the air heated by the auxiliary heater 23 is also eliminated. That is, it is suppressed that the temperature of the air blown into the vehicle interior is lowered by the radiator 4, and the COP is also improved.

(3)除湿冷房モード
次に、除湿冷房モードでは、ヒートポンプコントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を開放し、電磁弁40を閉じる。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28Dr、28Asは、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量の調整も行う。
(3) Dehumidifying / cooling mode Next, in the dehumidifying / cooling mode, the heat pump controller 32 opens the solenoid valve 17 and closes the solenoid valve 21. Further, the solenoid valve 30 is opened and the solenoid valve 40 is closed. Then, the compressor 2 is operated. The air conditioning controller 20 operates the blowers 15 and 27, and the air mix dampers 28Dr and 28As basically exchange heat for heating all the air in the air flow passage 3 that has been blown out from the indoor blower 27 and passed through the heat absorber 9. The auxiliary heater 23 and the radiator 4 in the passage 3A are ventilated, but the air volume is also adjusted.

これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。 As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the solenoid valve 30. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by the high temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived, cooled, and condensed.

放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。 The refrigerant exiting the radiator 4 reaches the outdoor expansion valve 6 via the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 via the outdoor expansion valve 6 which is slightly opened and controlled. The refrigerant flowing into the outdoor heat exchanger 7 is air-cooled and condensed by traveling there or by the outside air ventilated by the outdoor blower 15. The refrigerant exiting the outdoor heat exchanger 7 flows sequentially from the refrigerant pipe 13A through the solenoid valve 17 to the receiver dryer section 14 and the supercooling section 16. Here the refrigerant is supercooled.

室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。 The refrigerant exiting the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13B, passes through the internal heat exchanger 19, and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Due to the endothermic action at this time, the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat absorber 9, so that the air is cooled and dehumidified.

吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。この除湿冷房モードではヒートポンプコントローラ32は補助ヒータ23に通電しないので、吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱(暖房時よりも放熱能力は低い)される。これにより車室内の除湿冷房が行われることになる。 The refrigerant evaporated in the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 via the refrigerant pipe 13C, and repeats the circulation of being sucked into the compressor 2 through the accumulator 12. In this dehumidifying / cooling mode, since the heat pump controller 32 does not energize the auxiliary heater 23, it is cooled by the heat absorber 9, and the dehumidified air is reheated in the process of passing through the radiator 4 (the heat dissipation capacity is lower than that during heating). Will be done. As a result, the interior of the vehicle is dehumidified and cooled.

ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEO(空調コントローラ20から送信される)に基づいて圧縮機2の回転数NCを制御する。また、ヒートポンプコントローラ32は前述した目標ヒータ温度TCOから目標放熱器圧力PCOを算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて室外膨張弁6の弁開度を制御し、放熱器4による加熱を制御する。 The heat pump controller 32 of the compressor 2 is based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO (transmitted from the air conditioning controller 20) which is the target value thereof. Controls the number of revolutions NC. Further, the heat pump controller 32 calculates the target radiator pressure PCO from the above-mentioned target heater temperature TCO, and the target radiator pressure PCO and the refrigerant pressure (radiator pressure PCI) of the radiator 4 detected by the radiator pressure sensor 47. The valve opening degree of the outdoor expansion valve 6 is controlled based on the high pressure of the refrigerant circuit R), and the heating by the radiator 4 is controlled.

(4)冷房モード
次に、冷房モードでは、ヒートポンプコントローラ32は上記除湿冷房モードの状態において室外膨張弁6の弁開度を全開とする。そして、圧縮機2を運転し、補助ヒータ23には通電しない。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28Dr、28Asは、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の空気が、暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風される割合を調整する状態とする。
(4) Cooling Mode Next, in the cooling mode, the heat pump controller 32 fully opens the valve opening degree of the outdoor expansion valve 6 in the state of the dehumidifying cooling mode. Then, the compressor 2 is operated and the auxiliary heater 23 is not energized. The air conditioning controller 20 operates the blowers 15 and 27, and in the air mix dampers 28Dr and 28As, the air in the air flow passage 3 blown out from the indoor blower 27 and passed through the heat absorber 9 assists the heat exchange passage 3A for heating. The ratio of ventilation to the heater 23 and the radiator 4 is adjusted.

これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入すると共に、放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので冷媒はそれを通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。 As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the solenoid valve 30, and the refrigerant discharged from the radiator 4 passes through the refrigerant pipe 13E and the outdoor expansion valve 6 To. At this time, since the outdoor expansion valve 6 is fully opened, the refrigerant passes through it and flows into the outdoor heat exchanger 7 as it is, where it is air-cooled by running or by the outside air ventilated by the outdoor blower 15 and condensed. Liquefaction. The refrigerant exiting the outdoor heat exchanger 7 flows sequentially from the refrigerant pipe 13A through the solenoid valve 17 to the receiver dryer section 14 and the supercooling section 16. Here the refrigerant is supercooled.

室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着する。 The refrigerant exiting the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13B, passes through the internal heat exchanger 19, and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 is cooled by the endothermic action at this time. Further, the moisture in the air condenses and adheres to the heat absorber 9.

吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気が各吹出口29A〜29Cから車室内に吹き出されるので(一部は放熱器4を通過して熱交換する)、これにより車室内の冷房が行われることになる。また、この冷房モードにおいては、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である前述した目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御する。 The refrigerant evaporated in the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 via the refrigerant pipe 13C, and repeats the circulation of being sucked into the compressor 2 through the accumulator 12. Since the dehumidified air cooled by the heat absorber 9 is blown out into the vehicle interior from the outlets 29A to 29C (a part of the air passes through the radiator 4 to exchange heat), the air inside the vehicle interior is cooled. It will be done. Further, in this cooling mode, the heat pump controller 32 uses the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the above-mentioned target heat absorber temperature TEO which is the target value thereof. Controls the number of rotations NC.

(5)MAX冷房モード(最大冷房モード)
次に、最大冷房モードとしてのMAX冷房モードでは、ヒートポンプコントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2を運転し、補助ヒータ23には通電しない。空調コントローラ20は、各送風機15、27を運転し、エアミックスダンパ28Dr、28Asは、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の空気が、暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風される割合を調整する状態とする。
(5) MAX cooling mode (maximum cooling mode)
Next, in the MAX cooling mode as the maximum cooling mode, the heat pump controller 32 opens the solenoid valve 17 and closes the solenoid valve 21. Further, the solenoid valve 30 is closed, the solenoid valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 is operated and the auxiliary heater 23 is not energized. The air conditioning controller 20 operates the blowers 15 and 27, and the air mix dampers 28Dr and 28As are blown out from the indoor blower 27 and the air in the air flow passage 3 passing through the heat absorber 9 is introduced into the heat exchange passage 3A for heating. The ratio of ventilation to the auxiliary heater 23 and the radiator 4 is adjusted.

これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。 As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the solenoid valve 40, and flows into the refrigerant pipe on the downstream side of the outdoor expansion valve 6. It will reach 13E. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 is air-cooled and condensed by traveling there or by the outside air ventilated by the outdoor blower 15. The refrigerant exiting the outdoor heat exchanger 7 flows sequentially from the refrigerant pipe 13A through the solenoid valve 17 to the receiver dryer section 14 and the supercooling section 16. Here the refrigerant is supercooled.

室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着するので、空気流通路3内の空気は除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。このとき、室外膨張弁6は全閉とされているので、同様に圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。 The refrigerant exiting the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13B, passes through the internal heat exchanger 19, and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 is cooled by the endothermic action at this time. Further, since the moisture in the air condenses and adheres to the heat absorber 9, the air in the air flow passage 3 is dehumidified. The refrigerant evaporated in the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 via the refrigerant pipe 13C, and repeats the circulation of being sucked into the compressor 2 through the accumulator 12. At this time, since the outdoor expansion valve 6 is fully closed, it is possible to suppress or prevent the inconvenience that the refrigerant discharged from the compressor 2 flows back from the outdoor expansion valve 6 into the radiator 4. .. As a result, it becomes possible to suppress or eliminate the decrease in the amount of refrigerant circulation and secure the air conditioning capacity.

ここで、前述した冷房モードでは放熱器4に高温の冷媒が流れているため、放熱器4からHVACユニット10への直接の熱伝導が少なからず生じるが、このMAX冷房モードでは放熱器4に冷媒が流れないため、放熱器4からHVACユニット10に伝達される熱で吸熱器9からの空気流通路3内の空気が加熱されることも無くなる。そのため、車室内の強力な冷房が行われ、特に外気温度Tamが高いような環境下では、迅速に車室内を冷房して快適な車室内空調を実現することができるようになる。また、このMAX冷房モードにおいても、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である前述した目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御する。 Here, since the high-temperature refrigerant is flowing through the radiator 4 in the above-mentioned cooling mode, direct heat conduction from the radiator 4 to the HVAC unit 10 is not a little generated, but in this MAX cooling mode, the refrigerant is transferred to the radiator 4. Does not flow, so that the heat transferred from the radiator 4 to the HVAC unit 10 does not heat the air in the air flow passage 3 from the heat absorber 9. Therefore, the interior of the vehicle is strongly cooled, and particularly in an environment where the outside air temperature Tam is high, the interior of the vehicle can be quickly cooled to realize comfortable air conditioning in the vehicle interior. Further, even in this MAX cooling mode, the heat pump controller 32 is a compressor based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the above-mentioned target heat absorber temperature TEO which is the target value thereof. The number of rotations NC of 2 is controlled.

(6)補助ヒータ単独モード
尚、実施例の制御装置11は室外熱交換器7に過着霜が生じた場合などに、冷媒回路Rの圧縮機2と室外送風機15を停止し、補助ヒータ23に通電してこの補助ヒータ23のみで車室内を暖房する補助ヒータ単独モードを有している。この場合にも、ヒートポンプコントローラ32は補助ヒータ温度センサ50Drの検出値TptcDrと補助ヒータ温度センサ50Asの検出値TptcAsの平均値を補助ヒータ温度Tptcとし、この補助ヒータ温度Tptcと前述した目標ヒータ温度TCOに基づいて補助ヒータ23の通電(発熱)を制御する。
(6) Auxiliary heater independent mode The control device 11 of the embodiment stops the compressor 2 and the outdoor blower 15 of the refrigerant circuit R when over-frost occurs in the outdoor heat exchanger 7, and the auxiliary heater 23 It has an auxiliary heater independent mode in which the vehicle interior is heated only by the auxiliary heater 23 by energizing the vehicle interior. Also in this case, the heat pump controller 32 uses the average value of the detection value TptcDr of the auxiliary heater temperature sensor 50Dr and the detection value TptcAs of the auxiliary heater temperature sensor 50As as the auxiliary heater temperature Tptc, and the auxiliary heater temperature Tptc and the above-mentioned target heater temperature TCO. The energization (heat generation) of the auxiliary heater 23 is controlled based on the above.

また、空調コントローラ20は室内送風機27を運転し、エアミックスダンパ28Dr、28Asは、室内送風機27から吹き出された空気流通路3内の空気を暖房用熱交換通路3Aの補助ヒータ23に通風し、風量を調整する状態とする。補助ヒータ23にて加熱された空気が各吹出口29A〜29Cから車室内に吹き出されるので、これにより車室内の暖房が行われることになる。 Further, the air conditioning controller 20 operates the indoor blower 27, and the air mix dampers 28Dr and 28As ventilate the air in the air flow passage 3 blown from the indoor blower 27 to the auxiliary heater 23 of the heating heat exchange passage 3A. The air volume is adjusted. Since the air heated by the auxiliary heater 23 is blown into the vehicle interior from the outlets 29A to 29C, the interior of the vehicle is heated by this.

(7)運転モードの切換
空調コントローラ20は、下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、車室内に吹き出される空気の温度の目標値である。
TAO=(Tset−Tin)×K+Tbal(f(Tset、SUN、Tam))
・・(I)
ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する内気温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
(7) Switching of operation mode The air conditioning controller 20 calculates the target blowout temperature TAO described above from the following formula (I). This target blowing temperature TAO is a target value of the temperature of the air blown into the vehicle interior.
TAO = (Tset-Tin) x K + Tbal (f (Tset, SUN, Tam))
・ ・ (I)
Here, Tset is the set temperature in the vehicle interior set by the air conditioning operation unit 53, Tin is the inside air temperature detected by the inside air temperature sensor 37, K is a coefficient, Tbal is the set temperature Tset, and the amount of solar radiation detected by the solar radiation sensor 51. It is a balance value calculated from the outside air temperature Tam detected by the SUN and the outside air temperature sensor 33. In general, the target blowing temperature TAO increases as the outside air temperature Tam decreases, and decreases as the outside air temperature Tam increases.

ヒートポンプコントローラ32は、起動時には空調コントローラ20から車両通信バス65を介して送信される外気温度Tam(外気温度センサ33が検出する)と目標吹出温度TAOとに基づいて上記各運転モードのうちの何れかの運転モードを選択すると共に、各運転モードを車両通信バス65を介して空調コントローラ20に送信する。また、起動後は外気温度Tam、車室内の湿度、目標吹出温度TAO、後述する加熱温度TH(放熱器4の風下側の空気の温度。推定値)、目標ヒータ温度TCO、吸熱器温度Te、目標吸熱器温度TEO、車室内の除湿要求の有無、等のパラメータに基づいて各運転モードの切り換えを行うことで、環境条件や除湿の要否に応じて的確に暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード及び補助ヒータ単独モードを切り換えて車室内に吹き出される空気の温度を目標吹出温度TAOに制御し、快適且つ効率的な車室内空調を実現するものである。 The heat pump controller 32 is any of the above operation modes based on the outside air temperature Tam (detected by the outside air temperature sensor 33) and the target blowout temperature TAO transmitted from the air conditioning controller 20 via the vehicle communication bus 65 at the time of activation. The operation mode is selected, and each operation mode is transmitted to the air conditioning controller 20 via the vehicle communication bus 65. After startup, the outside air temperature Tam, the humidity inside the vehicle, the target blowout temperature TAO, the heating temperature TH (the temperature of the air on the leeward side of the radiator 4; estimated value), the target heater temperature TCO, and the heater temperature Te, which will be described later, By switching each operation mode based on parameters such as the target heat absorber temperature TEO and the presence or absence of dehumidification request in the vehicle interior, the heating mode, dehumidification heating mode, and dehumidification can be performed accurately according to the environmental conditions and the necessity of dehumidification. By switching between the cooling mode, the cooling mode, the MAX cooling mode, and the auxiliary heater independent mode, the temperature of the air blown into the vehicle interior is controlled to the target outlet temperature TAO, and comfortable and efficient vehicle interior air conditioning is realized.

ここで、上記加熱温度THは、放熱器4の風下側の空気の温度であり、ヒートポンプコントローラ32が下記に示す一次遅れ演算の式(II)から推定する。
TH=(INTL1×TH0+Tau1×THz)/(Tau1+INTL1)
・・(II)
ここで、INTL1は演算周期(定数)、Tau1は一次遅れの時定数、TH0は一次遅れ演算前の定常状態における加熱温度THの定常値、THzは加熱温度THの前回値である。このように加熱温度THを推定することで、格別な温度センサを設ける必要がなくなる。また、ヒートポンプコントローラ32は前述した運転モードによって上記時定数Tau1及び定常値TH0を変更することにより、上述した推定式(II)を運転モードによって異なるものとし、加熱温度THを推定する。そして、この加熱温度THは車両通信バス65を介して空調コントローラ20に送信される。
Here, the heating temperature TH is the temperature of the air on the leeward side of the radiator 4, and is estimated by the heat pump controller 32 from the equation (II) of the first-order lag calculation shown below.
TH = (INTL1 x TH0 + Tau1 x THz) / (Tau1 + INTL1)
・ ・ (II)
Here, INTL1 is a calculation cycle (constant), Tau1 is a time constant of the first-order delay, TH0 is a steady-state value of the heating temperature TH in the steady state before the first-order delay calculation, and THH is the previous value of the heating temperature TH. By estimating the heating temperature TH in this way, it is not necessary to provide a special temperature sensor. Further, the heat pump controller 32 changes the above-mentioned time constant Tau1 and the steady-state value TH0 according to the above-mentioned operation mode to make the above-mentioned estimation formula (II) different depending on the operation mode, and estimates the heating temperature TH. Then, this heating temperature TH is transmitted to the air conditioning controller 20 via the vehicle communication bus 65.

(8)内外気比率RECrateを用いた冷房モード、除湿冷房モード、除湿暖房モード及びMAX冷房モードにおける圧縮機2の制御
次に、図3〜図5を参照して前述した内外気比率RECrateを用いた冷房モード、除湿冷房モード、除湿暖房モード及びMAX冷房モードの各運転モード(第1の運転モード)における圧縮機2の制御について詳述する。図3はHVACユニット10の縦断側面図、図4はヒートポンプコントローラ32による冷房モード、除湿冷房モード、除湿暖房モード及びMAX冷房モードにおける圧縮機制御に関する制御ブロック図、図5は内外気比率RECrateと冷房モードの冷房負荷との関係を説明する図である。
(8) Control of the compressor 2 in the cooling mode, the dehumidifying cooling mode, the dehumidifying heating mode, and the MAX cooling mode using the inside / outside air ratio RECrate Next, the above-mentioned inside / outside air ratio RECrate is used with reference to FIGS. 3 to 5. The control of the compressor 2 in each operation mode (first operation mode) of the cooling mode, the dehumidifying cooling mode, the dehumidifying heating mode, and the MAX cooling mode will be described in detail. FIG. 3 is a longitudinal side view of the HVAC unit 10, FIG. 4 is a control block diagram relating to compressor control in the cooling mode, dehumidifying cooling mode, dehumidifying heating mode, and MAX cooling mode by the heat pump controller 32, and FIG. 5 is the inside / outside air ratio RECrate and cooling. It is a figure explaining the relationship with the cooling load of a mode.

空気流通路3に流通される空気の外気と内気の比率(内外気比率RECrate)が変化すると、吸熱器9に流入する空気の温度(吸熱器吸込空気温度Tevain)が変化するため、車両用空気調和装置1の冷房負荷は大きく変化し、能力の過不足が発生する。そこで、ヒートポンプコントローラ32は、後述する如く内外気比率RECrateに基づき、下記式(III)、(IV)を用いて、この吸熱器吸込空気温度Tevainを算出し、推定する。
Tevain=(INTL2×Tevain0+Tau2×Tevainz)/(Tau2+INTL2)
・・(III)
Tevain0=Tam×(1−RECrate)+Tin×RECrate
・・(IV)
ここで、INTL2は演算周期(定数)、Tau2は一次遅れの時定数、Tevain0は一次遅れ演算前の定常状態における吸熱器吸込空気温度Tevainの定常値、Tevainzは吸熱器吸込空気温度Tevainの前回値である。また、Tamは外気温度、Tinは内気温度である。例えば、外気温度Tamが+40℃、内気温度Tinが+25℃の条件において、図5の最上段の如く内外気比率RECrateが0(外気導入モード)の場合、吸熱器吸込空気温度Tevainは最終的に+40℃となり、冷房負荷は大きくなる。また、同じ条件において、図5の最下段の如く内外気比率RECrateが1(内気循環モード)の場合、吸熱器吸込空気温度Tevainは最終的に+25℃となり、冷房負荷は小さくなる。更に、同じ条件において、図5の中段の如く内外気比率RECrateが0.5(内外気中間位置)の場合、吸熱器吸込空気温度Tevainは最終的に+32.5℃となり、冷房負荷は中程度となる(これは冷房モード以外の第1の運転モードにおいても同様)。従って、特に内気温度Tin(車室内の空気の温度)が安定した後に、内外気比率RECrateが変化した場合には、圧縮機2の回転数NCが大きく変化するため、ヒートポンプコントローラ32は吸熱器吸込空気温度Tevainに基づいて圧縮機2の回転数NCを補正する制御を実行する。
When the ratio of the outside air to the inside air (inside / outside air ratio RECrate) of the air flowing through the air flow passage 3 changes, the temperature of the air flowing into the heat absorber 9 (heat absorber suction air temperature Tevain) changes, so that the air for the vehicle is used. The cooling load of the harmonizing device 1 changes greatly, causing excess or deficiency of capacity. Therefore, the heat pump controller 32 calculates and estimates the endothermic suction air temperature Tevain using the following equations (III) and (IV) based on the inside / outside air ratio RECrate as described later.
Tevain = (INTL2 x Tevain0 + Tau2 x Tevainz) / (Tau2 + INTL2)
・ ・ (III)
Tevain0 = Tam × (1-RECrate) + Tin × Recrate
・ ・ (IV)
Here, INTL2 is the calculation cycle (constant), Tau2 is the time constant of the first-order delay, Tevain0 is the steady-state value of the endothermic suction air temperature Tevain in the steady state before the first-order delay calculation, and Tevainz is the previous value of the endothermic suction air temperature Tevain. Is. Further, Tam is the outside air temperature and Tin is the inside air temperature. For example, when the outside air temperature Tam is + 40 ° C. and the inside air temperature Tin is + 25 ° C., and the inside / outside air ratio RECrate is 0 (outside air introduction mode) as shown in the uppermost part of FIG. 5, the heat absorber suction air temperature Tevain is finally set. It becomes + 40 ° C., and the cooling load becomes large. Further, under the same conditions, when the inside / outside air ratio RECrate is 1 (inside air circulation mode) as shown in the lowermost part of FIG. 5, the endothermic suction air temperature Tevain finally becomes + 25 ° C., and the cooling load becomes small. Further, under the same conditions, when the inside / outside air ratio RECrate is 0.5 (intermediate position between inside and outside air) as shown in the middle of FIG. 5, the endothermic suction air temperature Tevain finally becomes + 32.5 ° C., and the cooling load is medium. (This also applies to the first operation mode other than the cooling mode). Therefore, especially when the inside / outside air ratio RECrate changes after the inside air temperature Tin (the temperature of the air in the vehicle interior) stabilizes, the rotation speed NC of the compressor 2 changes significantly, so that the heat pump controller 32 sucks the heat absorber. The control for correcting the rotation speed NC of the compressor 2 is executed based on the air temperature Tevain.

図4のブロック図を参照しながら具体的な制御を説明する。ヒートポンプコントローラ32のF/F(フィードフォワード)操作量演算部63は外気温度Tamと、空気流通路3に流入した空気の体積風量Gaと、放熱器4の圧力(放熱器圧力PCI。高圧圧力)の目標値である目標放熱器圧力PCOと、吸熱器温度Teの目標値である目標吸熱器温度TEO(空調コントローラ20から送信される)に基づいて圧縮機目標回転数のF/F操作量TGNCcff0を算出する。 Specific control will be described with reference to the block diagram of FIG. The F / F (feed forward) operation amount calculation unit 63 of the heat pump controller 32 has the outside air temperature Tam, the volume air volume Ga of the air flowing into the air flow passage 3, and the pressure of the radiator 4 (heat radiator pressure PCI, high pressure). F / F operation amount of compressor target rotation speed TGNCff0 based on the target radiator pressure PCO, which is the target value of, and the target heat absorber temperature TEO (transmitted from the air conditioning controller 20), which is the target value of the heat absorber temperature Te. Is calculated.

ここで、F/F操作量演算部63で行われるフィードフォワード演算の式の一例を下記(V)に示す。即ち、
・冷房モードの場合
TGNCcff0=K1×Tam+K2×Ga+K3×TEO+K4
・除湿冷房モードの場合
TGNCcff0=K5×Tam+K6×Ga+K7×TEO+K8×PCO+K9
・除湿暖房モード/MAX冷房モードの場合
TGNCcff0=K10×Tam+K11×Ga+K12×TEO+K13
・・(V)
尚、K1〜K3、K5〜K8、K10〜K12は係数であり、K4、K9、K13は定数である。
Here, an example of the formula of the feedforward calculation performed by the F / F manipulated variable calculation unit 63 is shown in (V) below. That is,
・ In the case of cooling mode TGNCcff0 = K1 x Tam + K2 x Ga + K3 x TEO + K4
・ In the case of dehumidifying and cooling mode TGNCcff0 = K5 x Tam + K6 x Ga + K7 x TEO + K8 x PCO + K9
・ In the case of dehumidifying heating mode / MAX cooling mode TGNCcff0 = K10 x Tam + K11 x Ga + K12 x TEO + K13
・ ・ (V)
K1 to K3, K5 to K8, and K10 to K12 are coefficients, and K4, K9, and K13 are constants.

また、ヒートポンプコントローラ32の補正値演算部71は外気温度Tamと内気温度Tinと内外気比率RECrateから前記式(III)、(IV)を用いて吸熱器吸込空気温度Tevainを算出し、この吸熱器吸込空気温度Tevainに基づき、下記式(VI)を用いて補正値TGNCcffHosを算出する。
TGNCcffHos=K14×Tevain ・・(VI)
ここで、K14は温度を回転数に変換するための係数である。
Further, the correction value calculation unit 71 of the heat pump controller 32 calculates the endothermic suction air temperature Tevain from the outside air temperature Tam, the inside air temperature Tin, and the inside / outside air ratio RECrate using the above equations (III) and (IV), and this heat absorber Based on the endothermic air temperature Tevain, the correction value TGNCcffHos is calculated using the following formula (VI).
TGNCcffHos = K14 x Tevain ... (VI)
Here, K14 is a coefficient for converting the temperature into the number of revolutions.

そして、F/F操作量演算部63が算出したF/F操作量TGNCcff0と補正値演算部71が算出した補正値TGNCcffHosは加算器72で加算され、最終的にF/F操作量TGNCcff(TGNCcff=TGNCcff0+TGNCcffHos)とされる。即ち、F/F操作量演算部63が算出したF/F操作量TGNCcff0が補正値TGNCcffHosにより補正され、F/F操作量TGNCcffとして決定される。 Then, the F / F operation amount TGNCcff0 calculated by the F / F operation amount calculation unit 63 and the correction value TGNCcffHos calculated by the correction value calculation unit 71 are added by the adder 72, and finally the F / F operation amount TGNCcff (TGNCcff). = TGNCcff0 + TGNCcffHos). That is, the F / F manipulated variable TGNCcff0 calculated by the F / F manipulated variable calculation unit 63 is corrected by the correction value TGNCcffHos, and is determined as the F / F manipulated variable TGNCcff.

ここで、吸熱器吸込空気温度Tevainが高い程、即ち、内外気比率RECrateが0に近づいて図5で説明した如く冷房負荷が大きくなる程、補正値TGNCcffHosが大きくなり、F/F操作量TGNCcffも大きくなる方向に補正されることになる。 Here, the higher the endothermic air temperature Tevain, that is, the closer the internal / external air ratio RECrate approaches 0 and the larger the cooling load as described with reference to FIG. 5, the larger the correction value TGNCcffHos, and the larger the F / F operation amount TGNCcff. Will be corrected in the direction of increasing.

また、F/B(フィードバック)操作量演算部64は目標吸熱器温度TEOと吸熱器温度Teに基づいて圧縮機目標回転数のF/B操作量TGNCcfbを算出する。そして、加算器72で決定されたF/F操作量TGNCcffとF/B操作量演算部64で算出されたF/B操作量TGNCcfbは加算器66で加算され、リミット設定部67で制御上限値と制御下限値のリミットが付けられた後、圧縮機目標回転数TGNCcとして決定される。 Further, the F / B (feedback) manipulated variable calculation unit 64 calculates the F / B manipulated variable TGNCcfb of the compressor target rotation speed based on the target endothermic temperature TEO and the endothermic temperature Te. Then, the F / F manipulated variable TGNCcff determined by the adder 72 and the F / B manipulated variable TGNCcfb calculated by the F / B manipulated variable calculation unit 64 are added by the adder 66, and the control upper limit value is controlled by the limit setting unit 67. After the limit of the lower limit of control is added, it is determined as the compressor target rotation speed TGNCc.

冷房モード、除湿冷房モード、除湿暖房モード及びMAX冷房モードにおいては、ヒートポンプコントローラ32はこの圧縮機目標回転数TGNCcに基づいて圧縮機2の回転数NCを制御するので、吸熱器吸込空気温度Tevainが高い程、圧縮機2の回転数NCは高くなる方向に補正され、吸熱器9による冷房/除湿能力も増大することになる。特に、F/F操作量TGNCcffを補正するので、吸熱器吸込空気温度Tevainの変化に対して迅速に追従することができる。 In the cooling mode, the dehumidifying cooling mode, the dehumidifying heating mode, and the MAX cooling mode, the heat pump controller 32 controls the rotation speed NC of the compressor 2 based on the compressor target rotation speed TGNCc, so that the heat absorber suction air temperature Tevain is set. The higher the value, the higher the rotation speed NC of the compressor 2 is corrected, and the cooling / dehumidifying capacity of the heat absorber 9 also increases. In particular, since the F / F manipulated variable TGNCcff is corrected, it is possible to quickly follow the change in the endothermic suction air temperature Tevain.

このように、吸熱器9に冷媒を流す冷房モード、除湿冷房モード、除湿暖房モード及びMAX冷房モード(何れも第1の運転モード)においては、ヒートポンプコントローラ32は、吸込切換ダンパ26により調整される内外気比率RECrateに基づき、吸熱器9に流入する吸熱器吸込空気温度Tevainを推定し、推定した吸熱器吸込空気温度Tevainに基づいて圧縮機2の回転数を制御するので、吸込切換ダンパ26により空気流通路3に流入する外気と内気の比率が変化した場合にも、内外気比率RECrateに基づいて吸熱器吸込空気温度Tevainを推定し、圧縮機2の回転数NCを制御することができるようになる。 As described above, in the cooling mode in which the refrigerant flows through the heat absorber 9, the dehumidifying cooling mode, the dehumidifying heating mode, and the MAX cooling mode (all of which are the first operation modes), the heat pump controller 32 is adjusted by the suction switching damper 26. Based on the inside / outside air ratio RECrate, the heat absorber suction air temperature Tevain flowing into the heat absorber 9 is estimated, and the rotation speed of the compressor 2 is controlled based on the estimated heat absorber suction air temperature Tevain. Therefore, the suction switching damper 26 is used. Even when the ratio of the outside air and the inside air flowing into the air flow passage 3 changes, the heat pump suction air temperature Tevain can be estimated based on the inside / outside air ratio RECrate, and the rotation speed NC of the compressor 2 can be controlled. become.

これにより、外気と内気の比率が変化したことに伴う冷房負荷の変動に迅速に対応し、過不足の無い空調能力を実現して、車室内の温度を目標とする値に良好に収束させ、快適性と省エネ性の双方を向上させることができるようになる。 As a result, it quickly responds to fluctuations in the cooling load due to changes in the ratio of outside air to inside air, realizes just enough air conditioning capacity, and satisfactorily converges the temperature inside the vehicle to the target value. It will be possible to improve both comfort and energy saving.

この場合、実施例ではヒートポンプコントローラ32は、少なくとも吸熱器温度Teの目標値である目標吸熱器温度TEOに基づくフィードフォワード演算により圧縮機2の目標回転数のF/F操作量TGNCcffを算出し、吸熱器温度Teと目標吸熱器温度TEOに基づくフィードバック演算により圧縮機2の目標回転数のF/B操作量TGNCcfbを算出し、これらF/F操作量TGNCcffとF/B操作量TGNCcfbを加算することで、圧縮機2の目標回転数TGNCcを算出しており、吸熱器吸込空気温度Tevainに基づいてF/F操作量TGNCcffを補正するので、内外気比率RECrateが変化したことに伴う冷房負荷の変動に迅速に対応して、吸熱器9による冷房/除湿能力を的確に制御することができるようになる。 In this case, in the embodiment, the heat pump controller 32 calculates the F / F manipulated variable TGNCcff of the target rotation speed of the compressor 2 by a feed forward calculation based on at least the target heat absorber temperature TEO, which is the target value of the heat absorber temperature Te. The F / B manipulated variable TGNCcfb of the target rotation speed of the compressor 2 is calculated by the feedback calculation based on the heat absorber temperature Te and the target heat absorber temperature TEO, and these F / F manipulated variable TGNCcff and the F / B manipulated variable TGNCcffb are added. Therefore, the target rotation speed TGNCc of the compressor 2 is calculated, and the F / F manipulated variable TGNCcff is corrected based on the heat pump suction air temperature Tevain. It becomes possible to accurately control the cooling / dehumidifying capacity of the heat absorber 9 in response to fluctuations quickly.

ここで、外気と内気の比率が変化した場合、吸熱器吸込空気温度Tevainに反映されるまでは或る程度時間がかかる。即ち、外気と内気の比率が変化しても吸熱器吸込空気温度Tevainは直ぐに変化するものでは無いが実施例ではヒートポンプコントローラ32が、内外気比率RECrate(外気と内気の比率)に基づく一次遅れ演算により吸熱器吸込空気温度Tevainを算出するので、実際の吸熱器吸込空気温度Tevainの変化に合わせて圧縮機2の回転数NCを制御することができるようになる。 Here, when the ratio of the outside air to the inside air changes, it takes some time before it is reflected in the heat absorber suction air temperature Tevain. That is, even if the ratio of the outside air to the inside air changes, the endothermic air temperature Tevain does not change immediately, but in the embodiment, the heat pump controller 32 performs a primary delay calculation based on the inside / outside air ratio RECrate (ratio of outside air to inside air). Since the heat pump suction air temperature Tevain is calculated by the above method, the rotation speed NC of the compressor 2 can be controlled according to the change of the actual heat pump suction air temperature Tevain.

(9)内外気比率RECrateを用いた暖房モードにおける圧縮機2の制御
次に、図6〜図8を参照して前述した内外気比率RECrateを用いた暖房モードにおける圧縮機2の制御について詳述する。図6は吸熱器温度センサ48が設けられない場合のHVACユニット10の縦断側面図、図7はヒートポンプコントローラ32による暖房モードにおける圧縮機制御に関する制御ブロック図、図8は内外気比率RECrateと暖房モードの暖房負荷との関係を説明する図である。
(9) Control of the Compressor 2 in the Heating Mode Using the Inside / Outside Air Ratio RECrate Next, with reference to FIGS. 6 to 8, the control of the compressor 2 in the heating mode using the inside / outside air ratio Recrate will be described in detail. To do. FIG. 6 is a vertical sectional side view of the HVAC unit 10 when the heater temperature sensor 48 is not provided, FIG. 7 is a control block diagram relating to compressor control in the heating mode by the heat pump controller 32, and FIG. 8 is the inside / outside air ratio RECrate and the heating mode. It is a figure explaining the relationship with the heating load of.

(9−1)吸熱器温度センサ48が設けられている場合の暖房モードにおける圧縮機2の制御
先ず、比較のために図2や図3の例の如く吸熱器温度センサ48が設けられている場合の圧縮機2の制御について図7を参照しながら説明する。ヒートポンプコントローラ32のF/F(フィードフォワード)操作量演算部58は、要求される放熱器4の暖房能力である後述する要求暖房能力TGQと、空気流通路3に流入した空気の体積風量Gaと、外気温度センサ33から得られる外気温度Tamと、放熱器4の温度の目標値である前述した目標ヒータ温度TCOと、放熱器4の圧力の目標値である目標放熱器圧力PCOに基づくフィードフォワード演算により、圧縮機目標回転数のF/F操作量TGNChffを算出する。
(9-1) Control of Compressor 2 in Heating Mode When Heat Absorber Temperature Sensor 48 is Provided First, for comparison, a heat absorber temperature sensor 48 is provided as in the examples of FIGS. 2 and 3. The control of the compressor 2 in this case will be described with reference to FIG. 7. The F / F (feed forward) operation amount calculation unit 58 of the heat pump controller 32 includes the required heating capacity TGQ, which is the required heating capacity of the radiator 4, and the volume air volume Ga of the air flowing into the air flow passage 3. , Feed forward based on the outside air temperature Tam obtained from the outside air temperature sensor 33, the above-mentioned target heater temperature TCO which is the target value of the temperature of the radiator 4, and the target radiator pressure PCO which is the target value of the pressure of the radiator 4. The F / F operation amount TGNChff of the compressor target rotation speed is calculated by the calculation.

ここで、F/F操作量演算部58で行われるフィードフォワード演算の式の一例を下記(VII)に示す。
TGNChff=K15×TGQ+K16×Ga+K17×Tam+K18
・・(VII)
尚、K15〜K17は係数であり、K18は定数である。
Here, an example of the formula of the feedforward calculation performed by the F / F manipulated variable calculation unit 58 is shown below (VII).
TGNChff = K15 x TGQ + K16 x Ga + K17 x Tam + K18
・ ・ (VII)
K15 to K17 are coefficients, and K18 is a constant.

また、上記要求暖房能力TGQは要求暖房能力演算部74により下記式(VIII)を用いて算出され、F/F操作量演算部58に入力される。
TGQ=(TCO−Te)×Cpa×Ga×γaTe×1.16 ・・(VIII)
尚、Teは吸熱器温度、Cpaは空気の定圧比熱[kJ/m3・K]、Gaは空気流通路3を流入した空気の体積風量、γaTeは空気比重、1.16は単位を合わせるための係数である。吸熱器温度センサ48が設けられている場合には吸熱器温度Teが取得できる。この場合、吸熱器9は放熱器4の風上側に設けられているので、吸熱器温度Teは補助ヒータ23や放熱器4に流入する空気の温度となる。そこで、要求暖房能力演算部74は目標ヒータ温度TCOとこの吸熱器温度Teとの差から、要求暖房能力TGQを算出する。
Further, the required heating capacity TGQ is calculated by the required heating capacity calculation unit 74 using the following equation (VIII), and is input to the F / F operation amount calculation unit 58.
TGQ = (TCO-Te) x Cpa x Ga x γaTe x 1.16 ... (VIII)
In addition, Te is the endothermic temperature, Cpa is the constant pressure specific heat of air [kJ / m 3 · K], Ga is the volume air volume of the air flowing into the air flow passage 3, γaTe is the air specific gravity, and 1.16 is to match the unit. Is the coefficient of. When the endothermic temperature sensor 48 is provided, the endothermic temperature Te can be acquired. In this case, since the heat absorber 9 is provided on the windward side of the radiator 4, the endothermic temperature Te is the temperature of the air flowing into the auxiliary heater 23 and the radiator 4. Therefore, the required heating capacity calculation unit 74 calculates the required heating capacity TGQ from the difference between the target heater temperature TCO and the endothermic temperature Te.

また、前記目標放熱器圧力PCOは、放熱器4の出口における冷媒の過冷却度SCの目標値である目標過冷却度TGSCと目標放熱器温度TCOに基づいて目標値演算部59が演算する。更に、F/B(フィードバック)操作量演算部60はこの目標放熱器圧力PCOと放熱器4の冷媒圧力である放熱器圧力PCI(冷媒回路Rの高圧圧力)に基づくフィードバック演算により圧縮機目標回転数のF/B操作量TGNChfbを演算する。そして、F/F操作量演算部58が演算したF/F操作量TGNChffとF/B操作量演算部60が演算したTGNChfbは加算器61で加算され、リミット設定部62で制御上限値と制御下限値のリミットが付けられた後、圧縮機目標回転数TGNChとして決定される。暖房モードにおいては、ヒートポンプコントローラ32はこの圧縮機目標回転数TGNChに基づいて圧縮機2の回転数NCを制御する。 Further, the target radiator pressure PCO is calculated by the target value calculation unit 59 based on the target supercooling degree TGSC, which is the target value of the refrigerant supercooling degree SC at the outlet of the radiator 4, and the target radiator temperature TCO. Further, the F / B (feedback) operation amount calculation unit 60 performs a compressor target rotation by a feedback calculation based on the target radiator pressure PCO and the radiator pressure PCI (high pressure of the refrigerant circuit R) which is the refrigerant pressure of the radiator 4. Calculate the F / B operation amount TGNChfb of the number. Then, the F / F operation amount TGNChff calculated by the F / F operation amount calculation unit 58 and the TGNChfb calculated by the F / B operation amount calculation unit 60 are added by the adder 61, and are controlled by the limit setting unit 62 as the control upper limit value. After the lower limit is set, it is determined as the compressor target rotation speed TGNCh. In the heating mode, the heat pump controller 32 controls the rotation speed NC of the compressor 2 based on the compressor target rotation speed TGNCh.

(9−2)吸熱器温度センサ48が設けられていない場合の暖房モードにおける圧縮機2の制御
一方、図6の如く吸熱器温度センサ48が設けられていない場合は、吸熱器温度Te、即ち、放熱器4に流入する空気の温度が分からない。また、暖房モードでは吸熱器9に冷媒は流れないので、前述した吸熱器吸込空気温度Tevainが補助ヒータ23や放熱器4に流入する空気の温度となるが、前述同様に空気流通路3に流通される空気の外気と内気の比率(内外気比率RECrate)が変化すると、吸熱器吸込空気温度Tevainが変化するため、車両用空気調和装置1の暖房負荷は大きく変化し、能力の過不足が発生する。
(9-2) Control of the compressor 2 in the heating mode when the endothermic temperature sensor 48 is not provided On the other hand, when the endothermic temperature sensor 48 is not provided as shown in FIG. 6, the endothermic temperature Te, that is, , The temperature of the air flowing into the radiator 4 is unknown. Further, in the heating mode, since the refrigerant does not flow into the heat absorber 9, the above-mentioned heat absorber suction air temperature Tevain becomes the temperature of the air flowing into the auxiliary heater 23 and the radiator 4, but flows through the air flow passage 3 as described above. When the ratio of the outside air to the inside air (inside / outside air ratio RECrate) changes, the endothermic air suction air temperature Tevain changes, so that the heating load of the vehicle air conditioner 1 changes significantly, causing excess or deficiency of capacity. To do.

例えば、外気温度Tamが−10℃、内気温度Tinが+25℃の条件において、図8の最上段の如く内外気比率RECrateが0(外気導入モード)の場合、吸熱器吸込空気温度Tevainは最終的に−10℃となり、暖房負荷は大きくなる。また、同じ条件において、図8の最下段の如く内外気比率RECrateが1(内気循環モード)の場合、吸熱器吸込空気温度Tevainは最終的に+25℃となり、暖房負荷は小さくなる。更に、同じ条件において、図8の中段の如く内外気比率RECrateが0.5(内外気中間位置)の場合、吸熱器吸込空気温度Tevainは最終的に+7.5℃となり、暖房負荷は中程度となる。従って、特に内気温度Tin(車室内の空気の温度)が安定した後に、内外気比率RECrateが変化した場合には、圧縮機2の回転数NCが大きく変化することになる。 For example, when the outside air temperature Tam is -10 ° C and the inside air temperature Tin is + 25 ° C, and the inside / outside air ratio RECrate is 0 (outside air introduction mode) as shown in the uppermost part of FIG. 8, the heat absorber suction air temperature Tevain is final. The temperature becomes -10 ° C, and the heating load becomes large. Further, under the same conditions, when the inside / outside air ratio RECrate is 1 (inside air circulation mode) as shown in the lowermost part of FIG. 8, the endothermic suction air temperature Tevain finally becomes + 25 ° C., and the heating load becomes small. Further, under the same conditions, when the inside / outside air ratio RECrate is 0.5 (intermediate position between inside and outside air) as shown in the middle of FIG. 8, the endothermic suction air temperature Tevain finally becomes + 7.5 ° C., and the heating load is medium. It becomes. Therefore, especially when the inside / outside air ratio RECrate changes after the inside air temperature Tin (the temperature of the air in the vehicle interior) stabilizes, the rotation speed NC of the compressor 2 changes significantly.

そこで、吸熱器温度センサ48が設けられていない場合には、図7の要求暖房能力演算部74は、内外気比率RECrateに基づいて前記式(III)、(IV)で算出された吸熱器吸込空気温度Tevainを用いて、下記式(IX)により要求暖房能力TGQを算出し、F/F操作量演算部58に出力する。
TGQ=(TCO−Tevain)×Cpa×Ga×γaTe×1.16
・・(IX)
尚、各式中のTevain以外の各数値は前記式(VIII)と同様である。
Therefore, when the heat absorber temperature sensor 48 is not provided, the required heating capacity calculation unit 74 in FIG. 7 calculates the heat absorber suction by the above equations (III) and (IV) based on the inside / outside air ratio RECrate. Using the air temperature Tevain, the required heating capacity TGQ is calculated by the following formula (IX) and output to the F / F operation amount calculation unit 58.
TGQ = (TCO-Tevain) x Cpa x Ga x γaTe x 1.16
・ ・ (IX)
In addition, each numerical value other than Tevine in each formula is the same as the said formula (VIII).

ここで、吸熱器吸込空気温度Tevainが低い程、即ち、内外気比率RECrateが0に近づいて図8で説明した如く暖房負荷が大きくなる程、要求暖房能力TGQは大きくなるので、F/F操作量TGNChffも大きくなり、圧縮機目標回転数TGNChも高くなる。暖房モードにおいては、ヒートポンプコントローラ32はこの圧縮機目標回転数TGNChに基づいて圧縮機2の回転数NCを制御するので、吸熱器吸込空気温度Tevainが低い程、圧縮機2の回転数NCは高くなり、放熱器4による暖房能力も増大することになる。特に、この要求暖房能力TGQによりF/F操作量TGNChffが算出されるので、吸熱器吸込空気温度Tevainの変化に対して迅速に追従することができる。 Here, the lower the heat absorber suction air temperature Tevain, that is, the closer the internal / external air ratio RECrate is to 0 and the larger the heating load as described with reference to FIG. 8, the larger the required heating capacity TGQ is. The amount TGNChff also increases, and the compressor target rotation speed TGNCh also increases. In the heating mode, the heat pump controller 32 controls the rotation speed NC of the compressor 2 based on the compressor target rotation speed TGNCh. Therefore, the lower the heat absorber suction air temperature Tevain, the higher the rotation speed NC of the compressor 2. Therefore, the heating capacity of the radiator 4 will also increase. In particular, since the F / F operation amount TGNChff is calculated by this required heating capacity TGQ, it is possible to quickly follow the change of the endothermic suction air temperature Tevain.

このように、吸熱器温度センサ48が設けられていない場合には、暖房モードではヒートポンプコントローラ32は、吸込切換ダンパ26により調整される外気と内気の比率(内外気比率RECrate)に基づき、吸熱器吸込空気温度Tevainを推定し、推定した当該吸熱器吸込空気温度Tevainに基づいて要求暖房能力TGQを算出し、この要求暖房能力TGQに基づいて圧縮機2の回転数NCを制御するので、吸込切換ダンパ26により空気流通路3に流入する内外気比率RECrateが変化した場合にも、当該比率に基づいて吸熱器吸込空気温度Tevainを推定し、それに基づいて要求暖房能力TGQを算出して、圧縮機2の回転数NCを制御することができるようになる。 As described above, when the heat absorber temperature sensor 48 is not provided, in the heating mode, the heat pump controller 32 is a heat absorber based on the ratio of the outside air to the inside air (inside / outside air ratio RECrate) adjusted by the suction switching damper 26. Since the suction air temperature Tevain is estimated, the required heating capacity TGQ is calculated based on the estimated heat absorber suction air temperature Tevain, and the rotation speed NC of the compressor 2 is controlled based on this required heating capacity TGQ, the suction switching is performed. Even when the ratio of the inside / outside air flowing into the air flow passage 3 is changed by the damper 26, the heat pump suction air temperature Tevain is estimated based on the ratio, the required heating capacity TGQ is calculated based on the ratio, and the compressor It becomes possible to control the number of rotations NC of 2.

これにより、暖房モードにおいて、外気と内気の比率が変化したことに伴う暖房負荷の変動に迅速に対応し、過不足の無い暖房能力を実現して、車室内の温度を目標とする値に良好に収束させ、快適性と省エネ性の双方を向上させることができるようになる。特に、実施例ではヒートポンプコントローラ32は、少なくとも要求暖房能力TGQに基づくフィードフォワード演算により圧縮機2の目標回転数のF/F操作量TGNChffを算出し、高圧圧力とその目標値(PCO)に基づくフィードバック演算により圧縮機2の目標回転数のF/B操作量TGNChfbを算出し、これらF/F操作量TGNChffとF/B操作量TGNChfbを加算することで、圧縮機2の目標回転数TGNChを算出しているので、外気と内気の比率が変化したことに伴う暖房負荷の変動に迅速に対応して、放熱器4による暖房能力を的確に制御することができるようになる。 As a result, in the heating mode, it quickly responds to fluctuations in the heating load due to changes in the ratio of outside air to inside air, realizes just enough heating capacity, and is good for the target value of the temperature inside the vehicle. It will be possible to improve both comfort and energy saving. In particular, in the embodiment, the heat pump controller 32 calculates the F / F manipulated variable TGNChff of the target rotation speed of the compressor 2 by at least the feed forward calculation based on the required heating capacity TGQ, and is based on the high pressure and its target value (PCO). The F / B operation amount TGNChfb of the target rotation speed of the compressor 2 is calculated by the feedback calculation, and the target rotation speed TGNCh of the compressor 2 is calculated by adding these F / F operation amount TGNChff and the F / B operation amount TGNChfb. Since the calculation is performed, it becomes possible to accurately control the heating capacity of the radiator 4 in response to a change in the heating load due to a change in the ratio of the outside air to the inside air.

この場合も、実施例ではヒートポンプコントローラ32が、内外気比率RECrate(外気と内気の比率)に基づく一次遅れ演算により吸熱器吸込空気温度Tevainを算出しているので、実際の吸熱器吸込空気温度Tevainの変化に合わせて圧縮機2の回転数NCを制御することができるようになる。 Also in this case, in the embodiment, the heat pump controller 32 calculates the endothermic suction air temperature Tevain by the first-order delay calculation based on the inside / outside air ratio RECrate (ratio of outside air to inside air). It becomes possible to control the rotation speed NC of the compressor 2 according to the change of.

次に、図9は本発明を適用した他の実施例の車両用空気調和装置1の構成図を示している。尚、この図において図1と同一符号で示すものは同一若しくは同様の機能を奏するものである。この実施例の場合、過冷却部16の出口は逆止弁18に接続され、この逆止弁18の出口が冷媒配管13Bに接続されている。尚、逆止弁18は冷媒配管13B(室内膨張弁8)側が順方向とされている。 Next, FIG. 9 shows a block diagram of the vehicle air conditioner 1 of another embodiment to which the present invention is applied. In this figure, those shown by the same reference numerals as those in FIG. 1 have the same or similar functions. In the case of this embodiment, the outlet of the supercooling unit 16 is connected to the check valve 18, and the outlet of the check valve 18 is connected to the refrigerant pipe 13B. The check valve 18 is in the forward direction on the refrigerant pipe 13B (indoor expansion valve 8) side.

また、放熱器4の出口側の冷媒配管13Eは室外膨張弁6の手前で分岐しており、この分岐した冷媒配管(以下、バイパス回路と称する)13Fは電磁弁22(除湿用)を介して逆止弁18の下流側の冷媒配管13Bに連通接続されている。更に、吸熱器9の出口側の冷媒配管13Cには、内部熱交換器19の冷媒下流側であって、冷媒配管13Dとの合流点より冷媒上流側に蒸発圧力調整弁70が接続されている。そして、これら電磁弁22や蒸発圧力調整弁70もヒートポンプコントローラ32の出力に接続されて制御される。尚、前述の実施例の図1中のバイパス配管35、電磁弁30及び電磁弁40から成るバイパス装置45は設けられていない。その他は図1と同様であるので説明を省略する。 Further, the refrigerant pipe 13E on the outlet side of the radiator 4 is branched in front of the outdoor expansion valve 6, and the branched refrigerant pipe (hereinafter referred to as a bypass circuit) 13F is routed via a solenoid valve 22 (for dehumidification). It is communicatively connected to the refrigerant pipe 13B on the downstream side of the check valve 18. Further, an evaporation pressure adjusting valve 70 is connected to the refrigerant pipe 13C on the outlet side of the heat absorber 9 on the downstream side of the refrigerant of the internal heat exchanger 19 and on the upstream side of the refrigerant from the confluence with the refrigerant pipe 13D. .. The solenoid valve 22 and the evaporation pressure adjusting valve 70 are also connected to the output of the heat pump controller 32 and controlled. The bypass device 45 including the bypass pipe 35, the solenoid valve 30, and the solenoid valve 40 in FIG. 1 of the above-described embodiment is not provided. Others are the same as in FIG. 1, and the description thereof will be omitted.

以上の構成で、この実施例の車両用空気調和装置1の動作を説明する。ヒートポンプコントローラ32はこの実施例では、暖房モード、除湿暖房モード、内部サイクルモード、除湿冷房モード、冷房モード及び補助ヒータ単独モードの各運転モードを切り換えて実行する(MAX冷房モードはこの実施例では存在しない)。そして、この実施例では除湿暖房モード、内部サイクルモード、除湿冷房モード、冷房モードが本出願における第1の運転モードとなる。 With the above configuration, the operation of the vehicle air conditioner 1 of this embodiment will be described. In this embodiment, the heat pump controller 32 switches and executes each operation mode of the heating mode, the dehumidifying heating mode, the internal cycle mode, the dehumidifying cooling mode, the cooling mode, and the auxiliary heater independent mode (MAX cooling mode exists in this embodiment). do not). Then, in this embodiment, the dehumidifying / heating mode, the internal cycle mode, the dehumidifying / cooling mode, and the cooling mode are the first operation modes in the present application.

尚、暖房モード、除湿冷房モード及び冷房モードが選択されたときの動作及び冷媒の流れと、補助ヒータ単独モードは前述の実施例(実施例1)の場合と同様であるので説明を省略する。但し、この実施例(実施例2)ではこれら暖房モード、除湿冷房モード及び冷房モードにおいては電磁弁22を閉じるものとする。 Since the operation and the flow of the refrigerant when the heating mode, the dehumidifying cooling mode, and the cooling mode are selected, and the auxiliary heater independent mode are the same as those in the above-described embodiment (Example 1), the description thereof will be omitted. However, in this embodiment (Example 2), the solenoid valve 22 is closed in the heating mode, the dehumidifying cooling mode, and the cooling mode.

(10)図9の車両用空気調和装置1の除湿暖房モード
他方、除湿暖房モードが選択された場合、この実施例(実施例2)ではヒートポンプコントローラ32は電磁弁21(暖房用)を開放し、電磁弁17(冷房用)を閉じる。また、電磁弁22(除湿用)を開放する。そして、圧縮機2を運転する。空調コントローラ20は各送風機15、27を運転し、エアミックスダンパ28は、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を暖房用熱交換通路3Aの補助ヒータ23及び放熱器4に通風する状態とするが、風量の調整も行う。
(10) Dehumidifying and heating mode of the vehicle air conditioner 1 of FIG. 9 On the other hand, when the dehumidifying and heating mode is selected, the heat pump controller 32 opens the solenoid valve 21 (for heating) in this embodiment (Example 2). , Close the solenoid valve 17 (for cooling). Also, the solenoid valve 22 (for dehumidification) is opened. Then, the compressor 2 is operated. The air conditioning controller 20 operates the blowers 15 and 27, and the air mix damper 28 basically blows out all the air in the air flow passage 3 that has been blown out from the indoor blower 27 and passed through the heat absorber 9 to heat the heat exchange passage 3A for heating. The auxiliary heater 23 and the radiator 4 of the above are ventilated, but the air volume is also adjusted.

これにより、圧縮機2から吐出された高温高圧のガス冷媒は冷媒配管13Gから放熱器4に流入する。放熱器4には暖房用熱交換通路3Aに流入した空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。 As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G. Since the air in the air flow passage 3 flowing into the heat exchange passage 3A for heating is ventilated to the radiator 4, the air in the air flow passage 3 is heated by the high temperature refrigerant in the radiator 4, while the radiator The refrigerant in 4 is deprived of heat by air, cooled, and condensed.

放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A、電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。 The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 via the refrigerant pipe 13E. The refrigerant that has flowed into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7. The refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and draws heat by running or from the outside air that is ventilated by the outdoor blower 15. That is, the refrigerant circuit R serves as a heat pump. Then, the low-temperature refrigerant that has exited the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C via the refrigerant pipe 13A, the solenoid valve 21, and the refrigerant pipe 13D, and after gas-liquid separation there, the gas refrigerant is used in the compressor 2. Repeat the circulation sucked into.

また、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部は分流され、電磁弁22を経てバイパス回路13F及び冷媒配管13Bより内部熱交換器19を経て室内膨張弁8に至るようになる。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。 Further, a part of the condensed refrigerant flowing through the refrigerant pipe 13E via the radiator 4 is split, and reaches the indoor expansion valve 8 via the bypass circuit 13F and the refrigerant pipe 13B via the solenoid valve 22 and the internal heat exchanger 19. .. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Due to the endothermic action at this time, the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat absorber 9, so that the air is cooled and dehumidified.

吸熱器9で蒸発した冷媒は、内部熱交換器19、蒸発圧力調整弁70を順次経て冷媒配管13Cにて冷媒配管13Dからの冷媒と合流した後、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。 The refrigerant evaporated in the heat absorber 9 joins the refrigerant from the refrigerant pipe 13D in the refrigerant pipe 13C through the internal heat exchanger 19 and the evaporation pressure adjusting valve 70 in that order, and then is sucked into the compressor 2 through the accumulator 12. repeat. The air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, so that the dehumidifying and heating of the vehicle interior is performed.

空調コントローラ20は、目標吹出温度TAOから算出される目標ヒータ温度TCO(放熱器出口温度TCIの目標値)をヒートポンプコントローラ32に送信する。ヒートポンプコントローラ32は、図7で説明した暖房モードの場合と同様に目標放熱器圧力PCOと、放熱器圧力PCI(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数NCを制御するか、又は、図4で説明した冷房モードの場合と同様に吸熱器温度Teと、目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御する。その場合は、圧縮機目標回転数TGNChと圧縮機目標回転数TGNCcのうちの小さい方(MIN)を選択して圧縮機2の回転数NCを制御することになる。 The air conditioning controller 20 transmits the target heater temperature TCO (target value of radiator outlet temperature TCI) calculated from the target outlet temperature TAO to the heat pump controller 32. Does the heat pump controller 32 control the rotation speed NC of the compressor 2 based on the target radiator pressure PCO and the radiator pressure PCI (high pressure of the refrigerant circuit R) as in the case of the heating mode described with reference to FIG. Alternatively, the rotation speed NC of the compressor 2 is controlled based on the heat absorber temperature Te and the target heat absorber temperature TEO as in the case of the cooling mode described with reference to FIG. In that case, the smaller (MIN) of the compressor target rotation speed TGNCh and the compressor target rotation speed TGNCc is selected to control the rotation speed NC of the compressor 2.

即ち、圧縮機目標回転数TGNChが選択されるとき、吸熱器温度センサ48が設けられない場合には、前述同様に吸熱器吸込空気温度Tevainを推定し、それに基づいて要求暖房能力TGQを算出する(図7)。また、圧縮機目標回転数TGNCcが選択されるときには、吸熱器吸込空気温度Tevainに基づいてF/F操作量TGNCcffを補正するものである(図4)。 That is, when the compressor target rotation speed TGNCh is selected and the endothermic temperature sensor 48 is not provided, the endothermic suction air temperature Tevain is estimated in the same manner as described above, and the required heating capacity TGQ is calculated based on the estimation. (Fig. 7). Further, when the compressor target rotation speed TGNCc is selected, the F / F manipulated variable TGNCcff is corrected based on the endothermic suction air temperature Tevain (FIG. 4).

また、ヒートポンプコントローラ32は、吸熱器温度Teと、目標吸熱器温度TEOに基づいて室外膨張弁6の弁開度を制御するがこれについては後に詳述する。更に、ヒートポンプコントローラ32は吸熱器温度Teに基づき、蒸発圧力調整弁70を開(流路を拡大する)/閉(少許冷媒が流れる)して吸熱器9の温度が下がり過ぎて凍結する不都合を防止する。 Further, the heat pump controller 32 controls the valve opening degree of the outdoor expansion valve 6 based on the endothermic temperature Te and the target endothermic temperature TEO, which will be described in detail later. Further, the heat pump controller 32 has the inconvenience of opening / closing the evaporation pressure adjusting valve 70 (expanding the flow path) / closing (flowing a small amount of refrigerant) based on the endothermic temperature Te, causing the temperature of the endothermic 9 to drop too much and freeze. To prevent.

(11)図9の車両用空気調和装置1の内部サイクルモード
また、内部サイクルモードでは、ヒートポンプコントローラ32は上記除湿暖房モードの状態において室外膨張弁6を全閉とする(全閉位置)と共に、電磁弁21を閉じる。この室外膨張弁6と電磁弁21が閉じられることにより、室外熱交換器7への冷媒の流入、及び、室外熱交換器7からの冷媒の流出は阻止されることになるので、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒は電磁弁22を経てバイパス回路13Fに全て流れるようになる。そして、バイパス回路13Fを流れる冷媒は冷媒配管13Bより内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
(11) Internal Cycle Mode of Vehicle Air Conditioning Device 1 of FIG. 9 In the internal cycle mode, the heat pump controller 32 fully closes the outdoor expansion valve 6 (fully closed position) in the dehumidifying and heating mode. The solenoid valve 21 is closed. By closing the outdoor expansion valve 6 and the solenoid valve 21, the inflow of the refrigerant into the outdoor heat exchanger 7 and the outflow of the refrigerant from the outdoor heat exchanger 7 are prevented, so that the radiator 4 All of the condensed refrigerant flowing through the refrigerant pipe 13E flows through the solenoid valve 22 to the bypass circuit 13F. Then, the refrigerant flowing through the bypass circuit 13F reaches the indoor expansion valve 8 from the refrigerant pipe 13B via the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Due to the endothermic action at this time, the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat absorber 9, so that the air is cooled and dehumidified.

吸熱器9で蒸発した冷媒は、内部熱交換器19、蒸発圧力調整弁70を順次経て冷媒配管13Cを流れ、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより、車室内の除湿暖房が行われることになるが、この内部サイクルモードでは室内側の空気流通路3内にある放熱器4(放熱)と吸熱器9(吸熱)の間で冷媒が循環されることになるので、外気からの熱の汲み上げは行われず、圧縮機2の消費動力分の暖房能力が発揮される。除湿作用を発揮する吸熱器9には冷媒の全量が流れるので、上記除湿暖房モードに比較すると除湿能力は高いが、暖房能力は低くなる。このヒートポンプコントローラ32による圧縮機2の制御は除湿暖房モードと同様である。 The refrigerant evaporated in the heat absorber 9 flows through the refrigerant pipe 13C in sequence through the internal heat exchanger 19 and the evaporation pressure adjusting valve 70, and repeats the circulation of being sucked into the compressor 2 through the accumulator 12. Since the air dehumidified by the endothermic 9 is reheated in the process of passing through the radiator 4, dehumidifying and heating the interior of the vehicle is performed by this, but in this internal cycle mode, the air flow on the indoor side. Since the refrigerant is circulated between the radiator 4 (heat dissipation) and the endothermic 9 (endothermic) in the path 3, the heat from the outside air is not pumped up, and the heating for the power consumed by the compressor 2 is not performed. The ability is demonstrated. Since the entire amount of the refrigerant flows through the endothermic device 9 that exerts a dehumidifying action, the dehumidifying capacity is higher than that of the dehumidifying and heating mode, but the heating capacity is lower. The control of the compressor 2 by the heat pump controller 32 is the same as in the dehumidifying / heating mode.

(12)図9の車両用空気調和装置1の除湿暖房モードでの室外膨張弁6の制御
次に、図10のブロック図を参照しながら前述したこの実施例(実施例2)の除湿暖房モードにおける室外膨張弁6の具体的な制御について説明する。ヒートポンプコントローラ32のF/F(フィードフォワード)操作量演算部76は前述した目標ヒータ温度TCOと、空気流通路3に流入した空気の体積風量Gaと、外気温度Tamと、目標吸熱器温度TEOに基づいて室外膨張弁目標弁開度のF/F操作量TGECCVteff0を算出する。
(12) Control of the outdoor expansion valve 6 in the dehumidifying / heating mode of the vehicle air conditioner 1 of FIG. 9 Next, the dehumidifying / heating mode of the above-described embodiment (Example 2) with reference to the block diagram of FIG. The specific control of the outdoor expansion valve 6 in the above will be described. The F / F (feed forward) operation amount calculation unit 76 of the heat pump controller 32 sets the target heater temperature TCO, the volume air volume Ga of the air flowing into the air flow passage 3, the outside air temperature Tam, and the target heat absorber temperature TEO. Based on this, the F / F operation amount TGECCVteff0 of the outdoor expansion valve target valve opening is calculated.

また、ヒートポンプコントローラ32の補正値演算部81は外気温度Tamと内気温度Tinと内外気比率RECrateから前記式(III)、(IV)を用いて吸熱器吸込空気温度Tevainを算出し、この吸熱器吸込空気温度Tevainに基づき、下記式(X)を用いて補正値TGECCVteffHosを算出する。
TGECCVteffHos=K19×Tevain ・・(X)
ここで、K19は温度を弁開度に変換するための係数である。
Further, the correction value calculation unit 81 of the heat pump controller 32 calculates the endothermic suction air temperature Tevain from the outside air temperature Tam, the inside air temperature Tin, and the inside / outside air ratio RECrate using the above equations (III) and (IV), and this heat absorber Based on the endothermic air temperature Tevain, the correction value TGECCVteffHos is calculated using the following formula (X).
TGECCVteffHos = K19 × Tevain ・ ・ (X)
Here, K19 is a coefficient for converting the temperature into the valve opening degree.

そして、補正値演算部81が算出した補正値TGECCVteffHosは、F/F操作量演算部76が算出したF/F操作量TGECCVteff0から減算器82で減算され、最終的にF/F操作量TGECCVteff(TGECCVteff=TGECCVteff0−TGECCVteffHos)とされる。即ち、F/F操作量演算部76が算出したF/F操作量TGECCVteff0が補正値TGECCVteffHosにより補正され、F/F操作量TGECCVteffとして決定される。 Then, the correction value TGECCVteffHos calculated by the correction value calculation unit 81 is subtracted from the F / F operation amount TGECCVtiff0 calculated by the F / F operation amount calculation unit 76 by the subtractor 82, and finally the F / F operation amount TGECCVtiff ( TGECCVteff = TGECCVteff0-TGECCVtiffHos). That is, the F / F manipulated variable TGECCVteff0 calculated by the F / F manipulated variable calculation unit 76 is corrected by the correction value TGECCVteffHos, and is determined as the F / F manipulated variable TGECCVteff.

ここで、吸熱器吸込空気温度Tevainが高い程、即ち、内外気比率RECrateが0に近づいて図5で説明した如く冷房負荷が大きくなる程、補正値TGECCVteffHosが大きくなり、F/F操作量TGECCVteffは小さくなる方向(室外膨張弁6を閉じる方向)に補正されることになる。 Here, the higher the endothermic air temperature Tevain, that is, the closer the internal / external air ratio RECrate approaches 0 and the larger the cooling load as described with reference to FIG. 5, the larger the correction value TGECCVteffHos, and the larger the F / F operation amount TGECCVteff. Will be corrected in the direction of becoming smaller (the direction of closing the outdoor expansion valve 6).

また、F/B(フィードバック)操作量演算部77は目標吸熱器温度TEOと吸熱器温度Teに基づいて室外膨張弁目標弁開度のF/B操作量TGECCVtefbを算出する。そして、減算器82で決定されたF/F操作量TGECCVteffとF/B操作量演算部77で算出されたF/B操作量TGECCVtefbは加算器78で加算され、リミット設定部79で制御上限値と制御下限値のリミットが付けられた後、室外膨張弁目標弁開度TGECCVteとして決定される。 Further, the F / B (feedback) manipulated variable calculation unit 77 calculates the F / B manipulated variable TGECCVtefb of the outdoor expansion valve target valve opening degree based on the target endothermic temperature TEO and the endothermic temperature Te. Then, the F / F manipulated variable TGECCVteff determined by the subtractor 82 and the F / B manipulated variable TGECCVTefb calculated by the F / B manipulated variable calculation unit 77 are added by the adder 78, and the control upper limit value is controlled by the limit setting unit 79. After the limit of the control lower limit value is set, it is determined as the outdoor expansion valve target valve opening TGECCVte.

この実施例における除湿暖房モードにおいては、ヒートポンプコントローラ32はこの室外膨張弁目標弁開度TGECCVteに基づいて室外膨張弁6の弁開度を制御するので、吸熱器吸込空気温度Tevainが高い程、室外膨張弁6は閉じられる方向に補正される。室外膨張弁6が閉じられる方向に補正されると、バイパス回路13F及び冷媒配管13Bを経て吸熱器9に流入する冷媒量が増加するので、吸熱器9による冷房/除湿能力が増大することになる。特に、F/F操作量TGECCVteffを補正するので、吸熱器吸込空気温度Tevainの変化に対して迅速に追従することができる。 In the dehumidifying and heating mode in this embodiment, the heat pump controller 32 controls the valve opening of the outdoor expansion valve 6 based on the outdoor expansion valve target valve opening TGECCVte. The expansion valve 6 is corrected in the closing direction. When the outdoor expansion valve 6 is corrected in the closing direction, the amount of refrigerant flowing into the heat absorber 9 through the bypass circuit 13F and the refrigerant pipe 13B increases, so that the cooling / dehumidifying capacity of the heat absorber 9 increases. .. In particular, since the F / F operation amount TGECCVtiff is corrected, it is possible to quickly follow the change in the endothermic suction air temperature Tevain.

尚、上記実施例(実施例2)では吸熱器吸込空気温度Tevainに基づいて室外膨張弁6の弁開度及び圧縮機2の回転数を制御するようにしたが、それに限らず、それらのうちの何れか一方のみを吸熱器吸込空気温度Tevainに基づいて制御するようにしてもよい。 In the above embodiment (Example 2), the valve opening degree of the outdoor expansion valve 6 and the rotation speed of the compressor 2 are controlled based on the endothermic suction air temperature Tevain, but the present invention is not limited to these. Only one of the above may be controlled based on the heat absorber suction air temperature Tevain.

このように、この実施例の場合もヒートポンプコントローラ32は、吸込切換ダンパ26により調整される内外気比率RECrateに基づき、吸熱器9に流入する空気の温度である吸熱器吸込空気温度Tevainを推定し、推定した吸熱器吸込空気温度Tevainに基づいて室外膨張弁6の弁開度、及び/又は、圧縮機2の回転数を制御するようにしたので、吸込切換ダンパ26により空気流通路3に流入する外気と内気の比率が変化した場合にも、当該比率に基づいて吸熱器吸込空気温度Tevainを推定し、室外膨張弁6の弁開度、及び/又は、圧縮機2の回転数を制御することができるようになる。 As described above, also in this embodiment, the heat pump controller 32 estimates the heat absorber suction air temperature Tevain, which is the temperature of the air flowing into the heat absorber 9, based on the inside / outside air ratio RECrate adjusted by the suction switching damper 26. Since the valve opening of the outdoor expansion valve 6 and / or the rotation speed of the compressor 2 are controlled based on the estimated heat absorber suction air temperature Tevain, the air flows into the air flow passage 3 by the suction switching damper 26. Even when the ratio of the outside air to the inside air changes, the heat pump suction air temperature Tevain is estimated based on the ratio, and the valve opening of the outdoor expansion valve 6 and / or the rotation speed of the compressor 2 is controlled. You will be able to do it.

これにより、この実施例の除湿暖房モードにおいても、外気と内気の比率が変化したことに伴う負荷変動に迅速に対応し、吸熱器9による過不足の無い除湿能力を実現することができるようになる。 As a result, even in the dehumidifying / heating mode of this embodiment, it is possible to quickly respond to the load fluctuation caused by the change in the ratio of the outside air to the inside air, and to realize the dehumidifying capacity of the endothermic device 9 without excess or deficiency. Become.

この場合もヒートポンプコントローラ32は、少なくとも吸熱器温度Teの目標値である目標吸熱器温度TEOに基づくフィードフォワード演算により室外膨張弁6の目標弁開度のF/F操作量TGECCVteffを算出し、吸熱器温度Teと目標吸熱器温度TEOに基づくフィードバック演算により室外膨張弁6の目標弁開度のF/B操作量TGECCVtefbを算出し、これらF/F操作量TGECCVteffとF/B操作量TGECCVtefbを加算することで、室外膨張弁6の目標弁開度TGECCVteを算出し、少なくとも目標吸熱器温度TEOに基づくフィードフォワード演算により圧縮機2の目標回転数のF/F操作量TGNCcffを算出し、吸熱器温度Teと目標吸熱器温度TEOに基づくフィードバック演算により圧縮機2の目標回転数のF/B操作量TGNCcfbを算出し、これらF/F操作量TGNCcffとF/B操作量TGNCcfbを加算することで、圧縮機2の目標回転数TGNCcを算出し、圧縮機目標回転数TGNChとTGNCcのうち、TGNCcの方が小さい場合には当該目標回転数TGNCcを選択しており、吸熱器吸込空気温度Tevainに基づいてF/F操作量TGECCVteff、及び/又は、F/F操作量TGNCcffを補正するので、内外気比率RECrateが変化したことに伴う負荷変動に迅速に対応して、吸熱器8による除湿能力を的確に制御し、快適な除湿暖房を実現することができるようになる。 In this case as well, the heat pump controller 32 calculates the F / F manipulated variable TGECCVteff of the target valve opening of the outdoor expansion valve 6 by a feed forward calculation based on at least the target heat absorber temperature TEO, which is the target value of the endothermic temperature Te, and absorbs heat. The F / B manipulated variable TGECCVtefb of the target valve opening of the outdoor expansion valve 6 is calculated by the feedback calculation based on the vessel temperature Te and the target endothermic temperature TEO, and these F / F manipulated variable TGECCVteff and the F / B manipulated variable TGECCVtefb are added. By doing so, the target valve opening TGECCVte of the outdoor expansion valve 6 is calculated, and at least the F / F manipulated variable TGNCcff of the target rotation speed of the compressor 2 is calculated by the feed forward calculation based on the target endothermic temperature TEO, and the endothermic device is used. By calculating the F / B manipulated variable TGNCcfb of the target rotation speed of the compressor 2 by the feedback calculation based on the temperature Te and the target endothermic temperature TEO, and adding these F / F manipulated variable TGNCcff and the F / B manipulated variable TGNCcfb. , The target rotation speed TGNCc of the compressor 2 is calculated, and when TGNCc is smaller than the compressor target rotation speeds TGNCh and TGNCc, the target rotation speed TGNCc is selected and the endothermic suction air temperature Tevain is set. Since the F / F manipulated variable TGECCVteff and / or the F / F manipulated variable TGNCcff are corrected based on this, the dehumidifying capacity of the endothermic device 8 can be quickly responded to the load fluctuation caused by the change in the internal / external air ratio RECrate. It will be possible to control accurately and realize comfortable dehumidifying and heating.

この場合も、実施例ではヒートポンプコントローラ32が、内外気比率RECrate(外気と内気の比率)に基づく一次遅れ演算により吸熱器吸込空気温度Tevainを算出しているので、実際の吸熱器吸込空気温度Tevainの変化に合わせて室外膨張弁6の弁開度を制御することができるようになる。 Also in this case, in the embodiment, the heat pump controller 32 calculates the endothermic suction air temperature Tevain by the first-order lag calculation based on the inside / outside air ratio RECrate (ratio of outside air to inside air). It becomes possible to control the valve opening degree of the outdoor expansion valve 6 according to the change of.

尚、各実施例で示した制御に用いるパラメータや数値等はそれに限られるものでは無く、本発明の趣旨を逸脱しない範囲で、適用する装置に応じて適宜選択/設定すべきものである。 The parameters, numerical values, and the like used for control shown in each embodiment are not limited to these, and should be appropriately selected / set according to the device to be applied without departing from the spirit of the present invention.

1 車両用空気調和装置
2 圧縮機
3 空気流通路
4 放熱器
6 室外膨張弁
7 室外熱交換器
8 室内膨張弁
9 吸熱器
10 HVACユニット
11 制御装置
13F バイパス回路
20 空調コントローラ
23 補助ヒータ(補助加熱装置)
25A 外気吸込口
25B 内気吸込口
26 吸込切換ダンパ
27 室内送風機(ブロワファン)
32 ヒートポンプコントローラ
45 バイパス装置
48 吸熱器温度センサ
58、63、76 F/F操作量演算部
60、64、77 F/B操作量演算部
71、81 補正値演算部
R 冷媒回路
1 Vehicle air conditioner 2 Compressor 3 Air flow passage 4 Heater 6 Outdoor expansion valve 7 Outdoor heat exchanger 8 Indoor expansion valve 9 Heat absorber 10 HVAC unit 11 Control unit 13F Bypass circuit 20 Air conditioning controller 23 Auxiliary heater (auxiliary heating) apparatus)
25A Outside air suction port 25B Inside air suction port 26 Suction switching damper 27 Indoor blower (blower fan)
32 Heat pump controller 45 Bypass device 48 Heat absorber temperature sensor 58, 63, 76 F / F operation amount calculation unit 60, 64, 77 F / B operation amount calculation unit 71, 81 Correction value calculation unit R Refrigerant circuit

Claims (9)

冷媒を圧縮する圧縮機と、
車室内に供給する空気が流通する空気流通路と、
冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
車室外に設けられた室外熱交換器と、
前記空気流通路に流入する外気と前記車室内の空気である内気の比率を調整可能な吸込切換ダンパと、
制御装置を備え、
該制御装置により、前記圧縮機から吐出された冷媒を前記室外熱交換器に流して当該室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる第1の運転モードを実行する車両用空気調和装置において、
前記制御装置は、前記吸込切換ダンパにより調整される前記外気と内気の比率に基づき、前記吸熱器に流入する空気の温度である吸熱器吸込空気温度Tevainを推定し、推定した当該吸熱器吸込空気温度Tevainに基づいて前記圧縮機の回転数を制御することを特徴とする車両用空気調和装置。
A compressor that compresses the refrigerant and
An air flow passage through which the air supplied to the passenger compartment flows, and
An endothermic absorber for absorbing heat from the refrigerant and cooling the air supplied from the air flow passage to the passenger compartment.
An outdoor heat exchanger installed outside the passenger compartment,
A suction switching damper that can adjust the ratio of the outside air that flows into the air flow passage to the inside air that is the air inside the vehicle.
Equipped with a control device
The control device causes the refrigerant discharged from the compressor to flow through the outdoor heat exchanger to dissipate heat in the outdoor heat exchanger, depressurize the radiated refrigerant, and then absorb heat in the heat exchanger. In the vehicle air conditioner that executes the operation mode of
The control device estimates the heat absorber suction air temperature Tevain, which is the temperature of the air flowing into the heat absorber, based on the ratio of the outside air to the inside air adjusted by the suction switching damper, and estimates the heat absorber suction air. An air conditioner for a vehicle, characterized in that the rotation speed of the compressor is controlled based on the temperature Tevain.
前記制御装置は、少なくとも前記吸熱器の温度Teの目標値である目標吸熱器温度TEOに基づくフィードフォワード演算により前記圧縮機の目標回転数のF/F操作量TGNCcffを算出し、前記吸熱器の温度Teと前記目標吸熱器温度TEOに基づくフィードバック演算により前記圧縮機の目標回転数のF/B操作量TGNCcfbを算出し、これらF/F操作量TGNCcffとF/B操作量TGNCcfbを加算することで、前記圧縮機の目標回転数TGNCcを算出すると共に、
前記吸熱器吸込空気温度Tevainに基づいて前記F/F操作量TGNCcffを補正することを特徴とする請求項1に記載の車両用空気調和装置。
The control device calculates the F / F manipulated variable TGNCcff of the target rotation speed of the compressor by a feed forward calculation based on at least the target heat absorber temperature TEO, which is the target value of the temperature Te of the heat absorber, and of the heat absorber. The F / B manipulated variable TGNCcfb of the target rotation speed of the compressor is calculated by the feedback calculation based on the temperature Te and the target heat absorber temperature TEO, and these F / F manipulated variable TGNCcff and the F / B manipulated variable TGNCcfb are added. Then, while calculating the target rotation speed TGNCc of the compressor,
The vehicle air conditioner according to claim 1, wherein the F / F manipulated variable TGNCcff is corrected based on the endothermic suction air temperature Tevain.
前記空気流通路の空気の流れに対して前記吸熱器の風下側に設けられ、冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器を備え、
前記第1の運転モードは、
前記圧縮機から吐出された冷媒を前記放熱器から前記室外熱交換器に流して当該室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる冷房モード、及び/又は、
前記圧縮機から吐出された冷媒を前記放熱器から前記室外熱交換器に流して当該放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる除湿冷房モード、
であることを特徴とする請求項1又は請求項2に記載の車両用空気調和装置。
A radiator provided on the leeward side of the heat absorber with respect to the air flow in the air flow passage is provided to dissipate heat from the refrigerant and heat the air supplied from the air flow passage to the vehicle interior.
The first operation mode is
A cooling mode in which the refrigerant discharged from the compressor is flowed from the radiator to the outdoor heat exchanger to dissipate heat in the outdoor heat exchanger, the radiated refrigerant is depressurized, and then heat is absorbed by the heat exchanger. And / or
The refrigerant discharged from the compressor is allowed to flow from the radiator to the outdoor heat exchanger to dissipate heat in the radiator and the outdoor heat exchanger, depressurize the radiated refrigerant, and then absorb heat in the heat exchanger. Dehumidifying and cooling mode,
The vehicle air conditioner according to claim 1 or 2, wherein the air conditioner is for a vehicle.
前記空気流通路の空気の流れに対して前記吸熱器の風下側に設けられ、冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
前記圧縮機から吐出された冷媒を、前記放熱器に流すこと無く前記室外熱交換器に直接流入させるためのバイパス装置と、
前記空気流通路から前記車室内に供給する空気を加熱するための補助加熱装置を備え、
前記第1の運転モードは、
前記圧縮機から吐出された冷媒を前記バイパス装置により前記室外熱交換器に流して放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる最大冷房モード、及び/又は、
前記圧縮機から吐出された冷媒を前記バイパス装置により前記室外熱交換器に流して放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させると共に、前記補助加熱装置を発熱させる除湿暖房モード、
であることを特徴とする請求項1乃至請求項3のうちの何れかに記載の車両用空気調和装置。
A radiator provided on the leeward side of the heat absorber with respect to the air flow in the air flow passage and for radiating the refrigerant to heat the air supplied from the air flow passage to the vehicle interior.
A bypass device for allowing the refrigerant discharged from the compressor to flow directly into the outdoor heat exchanger without flowing into the radiator.
An auxiliary heating device for heating the air supplied from the air flow passage to the passenger compartment is provided.
The first operation mode is
The maximum cooling mode in which the refrigerant discharged from the compressor is passed through the outdoor heat exchanger by the bypass device to dissipate heat, the radiated refrigerant is depressurized, and then heat is absorbed by the heat absorber, and / or.
The refrigerant discharged from the compressor is passed through the outdoor heat exchanger by the bypass device to dissipate heat, and after depressurizing the radiated refrigerant, the heat absorber absorbs heat and dehumidifies the auxiliary heating device to generate heat. Heating mode,
The vehicle air conditioner according to any one of claims 1 to 3, wherein the air conditioner is for a vehicle.
冷媒を圧縮する圧縮機と、
車室内に供給する空気が流通する空気流通路と、
冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
前記空気流通路の空気の流れに対して前記吸熱器の風下側に設けられ、冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
車室外に設けられた室外熱交換器と、
前記空気流通路に流入する外気と前記車室内の空気である内気の比率を調整可能な吸込切換ダンパと、
制御装置を備え、
該制御装置により、前記圧縮機から吐出された冷媒を前記放熱器に流して放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させる暖房モードを実行する車両用空気調和装置において、
前記制御装置は、前記吸込切換ダンパにより調整される前記外気と内気の比率に基づき、前記吸熱器に流入する空気の温度である吸熱器吸込空気温度Tevainを推定し、推定した当該吸熱器吸込空気温度Tevainに基づいて、要求される前記放熱器の暖房能力である要求暖房能力TGQを算出し、該要求暖房能力TGQに基づいて前記圧縮機の回転数を制御することを特徴とする車両用空気調和装置。
A compressor that compresses the refrigerant and
An air flow passage through which the air supplied to the passenger compartment flows, and
An endothermic absorber for absorbing heat from the refrigerant and cooling the air supplied from the air flow passage to the passenger compartment.
A radiator provided on the leeward side of the heat absorber with respect to the air flow in the air flow passage and for radiating the refrigerant to heat the air supplied from the air flow passage to the vehicle interior.
An outdoor heat exchanger installed outside the passenger compartment,
A suction switching damper that can adjust the ratio of the outside air that flows into the air flow passage to the inside air that is the air inside the vehicle.
Equipped with a control device
Air conditioning for vehicles that executes a heating mode in which the refrigerant discharged from the compressor is allowed to flow through the radiator to dissipate heat by the control device, the radiated refrigerant is depressurized, and then heat is absorbed by the outdoor heat exchanger. In the device
The control device estimates the endothermic suction air temperature Tevain, which is the temperature of the air flowing into the endothermic device, based on the ratio of the outside air to the inside air adjusted by the suction switching damper, and estimates the endothermic suction air. Vehicle air characterized in that the required heating capacity TGQ, which is the required heating capacity of the radiator, is calculated based on the temperature Tevain, and the rotation speed of the compressor is controlled based on the required heating capacity TGQ. Harmonizer.
前記制御装置は、少なくとも前記要求暖房能力TGQに基づくフィードフォワード演算により前記圧縮機の目標回転数のF/F操作量TGNChffを算出し、高圧圧力とその目標値に基づくフィードバック演算により前記圧縮機の目標回転数のF/B操作量TGNChfbを算出し、これらF/F操作量TGNChffとF/B操作量TGNChfbを加算することで、前記圧縮機の目標回転数TGNChを算出することを特徴とする請求項5に記載の車両用空気調和装置。 The control device calculates the F / F manipulated variable TGNChff of the target rotation speed of the compressor by at least a feed forward calculation based on the required heating capacity TGQ, and performs a feedback calculation based on the high pressure pressure and the target value of the compressor. It is characterized in that the target rotation speed TGNCh of the compressor is calculated by calculating the F / B operation amount TGNChfb of the target rotation speed and adding these F / F operation amount TGNChff and the F / B operation amount TGNChfb. The vehicle air conditioner according to claim 5. 冷媒を圧縮する圧縮機と、
車室内に供給する空気が流通する空気流通路と、
冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
前記空気流通路の空気の流れに対して前記吸熱器の風下側に設けられ、冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
車室外に設けられた室外熱交換器と、
該室外熱交換器に流入する冷媒を減圧する室外膨張弁と、
前記室外熱交換器及び室外膨張弁の直列回路に対して並列に接続されたバイパス回路と、
前記吸熱器に流入する冷媒を減圧する室内膨張弁と、
前記空気流通路に流入する外気と前記車室内の空気である内気の比率を調整可能な吸込切換ダンパと、
制御装置を備え、
該制御装置により、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を分流し、一部を前記バイパス回路から前記室内膨張弁に流し、当該室内膨張弁で減圧した後、前記吸熱器に流入させ、当該吸熱器にて吸熱させると共に、残りを前記室外膨張弁で減圧した後、前記室外熱交換器に流入させ、当該室外熱交換器にて吸熱させる除湿暖房モードを実行する車両用空気調和装置において、
前記制御装置は、前記吸込切換ダンパにより調整される前記外気と内気の比率に基づき、前記吸熱器に流入する空気の温度である吸熱器吸込空気温度Tevainを推定し、推定した当該吸熱器吸込空気温度Tevainに基づいて前記室外膨張弁の弁開度、及び/又は、前記圧縮機の回転数を制御することを特徴とする車両用空気調和装置。
A compressor that compresses the refrigerant and
An air flow passage through which the air supplied to the passenger compartment flows, and
An endothermic absorber for absorbing heat from the refrigerant and cooling the air supplied from the air flow passage to the passenger compartment.
A radiator provided on the leeward side of the heat absorber with respect to the air flow in the air flow passage and for radiating the refrigerant to heat the air supplied from the air flow passage to the vehicle interior.
An outdoor heat exchanger installed outside the passenger compartment,
An outdoor expansion valve that reduces the pressure of the refrigerant flowing into the outdoor heat exchanger,
A bypass circuit connected in parallel to the series circuit of the outdoor heat exchanger and the outdoor expansion valve,
An indoor expansion valve that reduces the pressure of the refrigerant flowing into the heat absorber,
A suction switching damper that can adjust the ratio of the outside air that flows into the air flow passage to the inside air that is the air inside the vehicle.
Equipped with a control device
By the control device, the refrigerant discharged from the compressor is radiated by the radiator, the radiated refrigerant is diverted, a part of the refrigerant is flowed from the bypass circuit to the indoor expansion valve, and the pressure is reduced by the indoor expansion valve. After that, it flows into the heat exchanger and absorbs heat by the heat exchanger, and the rest is decompressed by the outdoor expansion valve, then flows into the outdoor heat exchanger and absorbs heat by the outdoor heat exchanger. In the vehicle air conditioner that executes the mode
The control device estimates the heat absorber suction air temperature Tevain, which is the temperature of the air flowing into the heat absorber, based on the ratio of the outside air to the inside air adjusted by the suction switching damper, and estimates the heat absorber suction air. An air conditioner for a vehicle, characterized in that the valve opening degree of the outdoor expansion valve and / or the rotation speed of the compressor is controlled based on the temperature Tevain.
前記制御装置は、少なくとも前記吸熱器の温度Teの目標値である目標吸熱器温度TEOに基づくフィードフォワード演算により前記室外膨張弁の目標弁開度のF/F操作量TGECCVteffを算出し、前記吸熱器の温度Teと前記目標吸熱器温度TEOに基づくフィードバック演算により前記室外膨張弁の目標弁開度のF/B操作量TGECCVtefbを算出し、これらF/F操作量TGECCVteffとF/B操作量TGECCVtefbを加算することで、前記室外膨張弁の目標弁開度TGECCVteを算出すると共に、
少なくとも前記目標吸熱器温度TEOに基づくフィードフォワード演算により前記圧縮機の目標回転数のF/F操作量TGNCcffを算出し、前記吸熱器の温度Teと前記目標吸熱器温度TEOに基づくフィードバック演算により前記圧縮機の目標回転数のF/B操作量TGNCcfbを算出し、これらF/F操作量TGNCcffとF/B操作量TGNCcfbを加算することで、前記圧縮機の目標回転数TGNCcを算出し、
前記吸熱器吸込空気温度Tevainに基づいて前記F/F操作量TGECCVteff、及び/又は、前記F/F操作量TGNCcffを補正することを特徴とする請求項7に記載の車両用空気調和装置。
The control device calculates the F / F operation amount TGECCVtiff of the target valve opening degree of the outdoor expansion valve by a feed forward calculation based on at least the target heat absorber temperature TEO, which is the target value of the temperature Te of the heat absorber, and obtains the heat absorption. The F / B operation amount TGECCVtefb of the target valve opening of the outdoor expansion valve is calculated by the feedback calculation based on the temperature Te of the vessel and the target heat absorber temperature TEO, and these F / F operation amounts TGECCVteff and the F / B operation amount TGECCVtefb By adding, the target valve opening TGECCVte of the outdoor expansion valve is calculated, and at the same time,
At least, the F / F manipulated variable TGNCcff of the target rotation speed of the compressor is calculated by the feed forward calculation based on the target heat absorber temperature TEO, and the feedback calculation based on the heat absorber temperature Te and the target heat absorber temperature TEO is used. The F / B operation amount TGNCcfb of the target rotation speed of the compressor is calculated, and the target rotation speed TGNCc of the compressor is calculated by adding the F / F operation amount TGNCcff and the F / B operation amount TGNCcfb.
The vehicle air conditioner according to claim 7, wherein the F / F manipulated variable TGECCVteff and / or the F / F manipulated variable TGNCcff is corrected based on the endothermic suction air temperature Tevain.
前記制御装置は、前記外気と内気の比率に基づく一次遅れ演算により前記吸熱器吸込空気温度Tevainを算出することを特徴とする請求項1乃至請求項8のうちの何れかに記載の車両用空気調和装置。 The vehicle air according to any one of claims 1 to 8, wherein the control device calculates the endothermic suction air temperature Tevain by a primary delay calculation based on the ratio of the outside air to the inside air. Harmonizer.
JP2017020422A 2017-02-07 2017-02-07 Vehicle air conditioner Active JP6855267B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017020422A JP6855267B2 (en) 2017-02-07 2017-02-07 Vehicle air conditioner
DE112018000713.8T DE112018000713T5 (en) 2017-02-07 2018-01-12 Vehicle air conditioning device
PCT/JP2018/001480 WO2018147039A1 (en) 2017-02-07 2018-01-12 Vehicle air-conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017020422A JP6855267B2 (en) 2017-02-07 2017-02-07 Vehicle air conditioner

Publications (2)

Publication Number Publication Date
JP2018127048A JP2018127048A (en) 2018-08-16
JP6855267B2 true JP6855267B2 (en) 2021-04-07

Family

ID=63107354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017020422A Active JP6855267B2 (en) 2017-02-07 2017-02-07 Vehicle air conditioner

Country Status (3)

Country Link
JP (1) JP6855267B2 (en)
DE (1) DE112018000713T5 (en)
WO (1) WO2018147039A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3640112B1 (en) * 2017-06-12 2021-11-17 Mitsubishi Electric Corporation Vehicular air-conditioning apparatus and air-conditioning method of vehicular air-conditioning apparatus
JP7233915B2 (en) * 2018-12-25 2023-03-07 サンデン株式会社 Vehicle air conditioner
JP2020131804A (en) * 2019-02-14 2020-08-31 株式会社日本クライメイトシステムズ Temperature estimation device for vehicle
JP2021031026A (en) * 2019-08-29 2021-03-01 株式会社ヴァレオジャパン Vehicle air-conditioning device
CN115257293A (en) * 2022-08-22 2022-11-01 浙江联控技术有限公司 Air conditioning system and vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3309504B2 (en) * 1993-07-21 2002-07-29 株式会社デンソー Air conditioner
JP4277373B2 (en) * 1998-08-24 2009-06-10 株式会社日本自動車部品総合研究所 Heat pump cycle
JP6073652B2 (en) * 2012-11-09 2017-02-01 サンデンホールディングス株式会社 Air conditioner for vehicles

Also Published As

Publication number Publication date
WO2018147039A1 (en) 2018-08-16
JP2018127048A (en) 2018-08-16
DE112018000713T5 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
JP6997558B2 (en) Vehicle air conditioner
JP6855267B2 (en) Vehicle air conditioner
JP6339419B2 (en) Air conditioner for vehicles
JP6723137B2 (en) Vehicle air conditioner
JP6496958B2 (en) Air conditioner for vehicles
JP6900271B2 (en) Vehicle air conditioner
JP6900186B2 (en) Vehicle air conditioner
JP6767857B2 (en) Vehicle air conditioner
JP6889548B2 (en) Vehicle air conditioner
JP2018058575A (en) Air conditioner for vehicle
JP6767856B2 (en) Vehicle air conditioner
JP6831209B2 (en) Vehicle air conditioner
JP6831239B2 (en) Vehicle air conditioner
WO2018061785A1 (en) Air-conditioning device for vehicle
JP6871745B2 (en) Vehicle air conditioner
JP6948183B2 (en) Vehicle air conditioner
JP2019073053A (en) Air-conditioner for vehicle
WO2019049637A1 (en) Vehicular air conditioning device
JP6853036B2 (en) Vehicle air conditioner
JP6807710B2 (en) Vehicle air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210317

R150 Certificate of patent or registration of utility model

Ref document number: 6855267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350