WO2020110508A1 - Vehicle battery temperature adjustment apparatus and vehicle air-conditioner equipped with same - Google Patents

Vehicle battery temperature adjustment apparatus and vehicle air-conditioner equipped with same Download PDF

Info

Publication number
WO2020110508A1
WO2020110508A1 PCT/JP2019/041092 JP2019041092W WO2020110508A1 WO 2020110508 A1 WO2020110508 A1 WO 2020110508A1 JP 2019041092 W JP2019041092 W JP 2019041092W WO 2020110508 A1 WO2020110508 A1 WO 2020110508A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
temperature
charging
refrigerant
heat
Prior art date
Application number
PCT/JP2019/041092
Other languages
French (fr)
Japanese (ja)
Inventor
竜 宮腰
孝史 青木
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Priority to CN201980074327.4A priority Critical patent/CN112996689A/en
Publication of WO2020110508A1 publication Critical patent/WO2020110508A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • a vehicle battery temperature control device including the cooling device in each of the above inventions, the battery can be cooled using the cooling device, and the control device controls the battery power in the charging power priority mode.
  • the index indicating the temperature reaches a predetermined upper limit value
  • the battery is cooled and the index is set to a value lower than the upper limit value.
  • the battery can be charged by selecting the most suitable charging method according to the convenience and preference of the user, and the convenience is significantly improved.
  • the cooling device is provided as in the invention of claim 4, the battery can be cooled by using the cooling device, and in the charging power priority mode, the control device sets a predetermined index indicating the temperature of the battery.
  • the control device sets a predetermined index indicating the temperature of the battery.
  • the charging time priority mode and the charging power priority mode executed by the control device as in the above inventions are particularly effective when the battery is charged by the quick charger as in the invention of claim 6.
  • control device with an input device for selecting whether to execute the charging time priority mode or the charging power priority mode, the user can arbitrarily set the charging time priority mode. It becomes possible to select whether to execute the mode or the charging power priority mode.
  • the present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and a running motor.
  • the vehicle to which the vehicle air conditioner 1 of the embodiment is applied is one in which the battery 55 can be charged from an external charger (a quick charger or a normal charger).
  • the outdoor heat exchanger 7 is provided with an outdoor blower 15.
  • the outdoor blower 15 exchanges heat between the outdoor air and the refrigerant by forcibly ventilating the outdoor air through the outdoor heat exchanger 7, whereby the outdoor air is discharged while the vehicle is stopped (that is, the vehicle speed is 0 km/h).
  • the heat exchanger 7 is configured to ventilate outside air.
  • the intake switching damper 26 of the embodiment opens and closes the outside air intake port and the inside air intake port of the intake port 25 at an arbitrary ratio to remove the air (outside air and inside air) flowing into the heat absorber 9 of the air flow passage 3. It is configured so that the ratio of inside air can be adjusted between 0% and 100% (the ratio of outside air can also be adjusted between 100% and 0%).
  • the air conditioning controller 45 is a higher-level controller that controls the vehicle interior air conditioning.
  • the inputs of the air conditioning controller 45 are an outside air temperature sensor 33 that detects the outside air temperature Tam of the vehicle and an outside air humidity that detects outside air humidity.
  • the sensor 34, the HVAC suction temperature sensor 36 that detects the temperature of the air that is sucked into the air flow passage 3 from the suction port 25 and flows into the heat absorber 9, and the inside air temperature sensor 37 that detects the air (inside air) temperature in the vehicle interior.
  • An inside air humidity sensor 38 for detecting the humidity of the air in the vehicle compartment
  • an indoor CO 2 concentration sensor 39 for detecting the carbon dioxide concentration in the vehicle compartment
  • an outlet temperature sensor 41 for detecting the temperature of the air blown into the vehicle compartment.
  • the voltage (BLV) of 27, the information from the battery controller 73, the information from the GPS navigation device 74, and the information input to the air conditioning operation unit 53 are transmitted from the air conditioning controller 45 to the heat pump controller 32 via the vehicle communication bus 65.
  • the heat pump controller 32 controls the heat pump controller 32.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air and condensed and liquefied.
  • the liquefied refrigerant in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and pumps up heat from the outside air ventilated by traveling or by the outdoor blower 15 (heat absorption). That is, the refrigerant circuit R serves as a heat pump.
  • the heat pump controller 32 supplements this shortage with the heat generated by the auxiliary heater 23. As a result, the vehicle interior is heated without any trouble even when the outside temperature is low.
  • FIG. 6 shows how the refrigerant flows in the refrigerant circuit R in the dehumidifying and cooling mode (solid arrow).
  • the heat pump controller 32 opens the solenoid valve 17 and the solenoid valve 35, and closes the solenoid valve 20, the solenoid valve 21, the solenoid valve 22, and the solenoid valve 69.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the refrigerant is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates. Due to the heat absorbing action at this time, moisture in the air blown out from the indoor blower 27 is condensed and attached to the heat absorber 9, and the air is cooled and dehumidified.
  • the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. To do. As a result, dehumidifying and cooling are performed without lowering the temperature inside the vehicle compartment too much.
  • FIG. 8 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in the air conditioning (priority)+battery cooling mode.
  • the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, the solenoid valve 35, and the solenoid valve 69, and closes the solenoid valves 21 and 22.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and then is sucked into the compressor 2 via the refrigerant pipe 13K.
  • the air cooled by the heat absorber 9 is blown into the vehicle interior from the air outlet 29, so that the vehicle interior is cooled.
  • the rest of the refrigerant that has passed through the check valve 18 is split, flows into the branch pipe 67, and reaches the auxiliary expansion valve 68.
  • the refrigerant is decompressed, then flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 via the electromagnetic valve 69, and evaporates there. At this time, it exerts an endothermic effect.
  • the refrigerant evaporated in the refrigerant passage 64B repeats the circulation in which the refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K through the refrigerant pipe 71, the refrigerant pipe 13C and the accumulator 12 in sequence (shown by a solid arrow in FIG. 8).
  • the range therebetween is the temperature of the battery 55.
  • the target heat medium temperature TWO (TWObase described later) as the default target value of the heat medium temperature Tw is set in advance to a predetermined value A within this appropriate temperature range.
  • the solenoid valve 69 is opened (electromagnetic valve 69 opening instruction).
  • the refrigerant flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64, evaporates, and cools the heat medium flowing through the heat medium channel 64A. Therefore, the battery 55 is cooled by the cooled heat medium. To be done.
  • the solenoid valve 35 is opened (electromagnetic valve). Instruction to open valve 35). As a result, the refrigerant flows into the heat absorber 9 and evaporates, and cools the air flowing through the air flow passage 3.
  • the solenoid valve 35 is closed (solenoid valve 35 closing instruction). Thereafter, such opening/closing of the solenoid valve 35 is repeated to control the heat absorber temperature Te to the target heat absorber temperature TEO while prioritizing the cooling of the battery 55 to cool the vehicle interior.
  • the refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16. After passing through the check valve 18, all of the refrigerant flowing into the refrigerant pipe 13B flows into the branch pipe 67 and reaches the auxiliary expansion valve 68. Here, the refrigerant is decompressed, then flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 via the electromagnetic valve 69, and evaporates there. At this time, it exerts an endothermic effect.
  • the heat pump controller 32 sets the refrigerant circuit R to the heating mode described above, and then fully opens the valve opening degree of the outdoor expansion valve 6. Then, the compressor 2 is operated, the high-temperature refrigerant discharged from the compressor 2 is caused to flow into the outdoor heat exchanger 7 through the radiator 4 and the outdoor expansion valve 6, and the frost formation on the outdoor heat exchanger 7 is prevented. Thaw ( Figure 10). Then, the heat pump controller 32 defrosts the outdoor heat exchanger 7 when the outdoor heat exchanger temperature TXO detected by the outdoor heat exchanger temperature sensor 49 becomes higher than a predetermined defrosting end temperature (for example, +3° C.). Is completed and the defrosting mode is terminated.
  • a predetermined defrosting end temperature for example, +3° C.
  • the target rotation speed of the compressor 2 (compressor target rotation speed) TGNCw is calculated based on the heat medium temperature Tw by the control block diagram of FIG. To do.
  • FIG. 11 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCh of the compressor 2 based on the radiator pressure Pci.
  • the lower limit speed TGNCwLimLo for control and the upper limit speed TGNCwLimHi are set to TGNCw0, and then the compressor OFF control unit 97 is used to determine the target compressor speed TGNCw. Therefore, if the value TGNCw00 added by the adder 94 is within the upper limit rotational speed TGNCwLimHi and the lower limit rotational speed TGNCwLimLo and the ON-OFF mode described later does not occur, this value TGNCw00 is the target compressor rotational speed TGNCw (compressor 2 Will be the number of rotations).
  • the heat pump controller 32 uses the compressor target rotation speed TGNCw calculated based on the heat medium temperature Tw so that the heat medium temperature Tw becomes the target heat medium temperature TWO within the appropriate temperature range described above. Control the operation of 2.
  • the compressor OFF control unit 97 determines that the compressor target rotation speed TGNCw becomes the above-described lower limit rotation speed TGNCwLimLo, and the heat medium temperature Tw is set above and below the target heat medium temperature TWO and the control upper limit value TwUL and the control lower limit value TwLL are set.
  • the compressor 2 is stopped and the ON-OFF mode for ON-OFF controlling the compressor 2 is entered.
  • the charging current of the battery 55 is automatically adjusted by the quick charger and the battery controller 73 in accordance with the heat medium temperature Tw, so that the battery cooling (priority)+air conditioning mode or battery cooling described above is performed. If the battery 55 is cooled in the (single) mode and the battery 55 is heated in the battery heating mode so that the heat medium temperature Tw falls within the appropriate temperature range, the quick charger and the battery controller 73 do not limit the charging current, Since the battery 55 is charged with a large charging current, rapid charging can be performed. However, the electric power for cooling the battery 55 is mainly consumed in the compressor 2 and is heated. Since the electric power is consumed by the heat medium heating heater 63, the total charging power becomes large and the charge for charging also becomes high.
  • FIG. 18 is a control block diagram relating to control of the target heat medium temperature TWO in the charge time priority mode of the heat pump controller 32 in that case.
  • TWObase is the above-described default target heat medium temperature, which is a predetermined value A within the appropriate temperature range in the embodiment.
  • Reference numeral 104 is a data table showing the relationship between the maximum charging current value Imax of the battery 55 and the outside air temperature Tam, and is assumed to be preset in the heat pump controller 32 in the embodiment.
  • the maximum charging current value Imax and the actual charging current value Iact obtained from the battery controller 73 are input to the subtractor 106, and the deviation e(Imax-Iact) thereof is amplified by the amplifier 107 and input to the calculator 108.
  • the calculator 108 performs integral calculation of the heat medium temperature correction value at a predetermined integration period and integration time (integral control, or may be differential integration), and the adder 109 integrates the heat medium temperature correction value added with the previous value.
  • the value TWOHos is calculated. Then, after the control upper limit value and the control lower limit value are limited by the limit setting unit 101, the heat medium temperature correction value TWOHos (targeting the maximum current) is determined.
  • the battery heating mode is not executed as described above until the heat medium temperature Tw reaches the lower limit value TL in FIG. 17 described above.
  • the heat pump controller 32 energizes the heat medium heating heater 63 to execute the battery heating mode to heat the battery 55.
  • the heat medium temperature Tw rises to the above-described predetermined value C (the control lower limit value TwLL in the embodiment; FIG. 17) higher than the lower limit value TL, the energization is stopped.
  • the battery heating mode is restricted and the charging power (charge) is suppressed, and even in the charging power priority mode, deterioration of the battery 55 caused by charging at an abnormally low temperature can be avoided in advance.
  • the heat pump controller 32 selects one of the remaining amount of the battery 55, the outside air temperature Tam (environmental condition), the heat medium temperature Tw at the start of charging, the type of the quick charger, or a combination thereof, or , If the battery charging completion time calculated based on the battery charging completion time calculated from all of them satisfies the preset desired charging time, if the charging power priority mode is executed, the scheduled departure time is set. By presetting the desired charging time in accordance with the above conditions, the heat pump controller 32 automatically selects and executes the charging power priority mode in which the charge is reduced, and the convenience is significantly improved.
  • Tam environmental condition
  • Tw heat medium temperature

Abstract

[Problem] To provide a vehicle battery temperature adjustment apparatus that enables a user to select a charging method that is optimal in terms of charging time and charging power when charging a battery mounted on a vehicle. [Solution] A battery temperature adjustment apparatus 61 is for adjusting the temperature of a battery 55 mounted on a vehicle and chargeable by an external charger, and is provided with a control device. This control device has a charging time priority mode in which the control device adjusts the temperature of the battery 55 when the battery 55 is charged, and a charging power priority mode in which operation of the control device for adjusting the temperature of the battery 55 is restricted or in which said operation is halted when charging the battery 55.

Description

車両のバッテリ温度調整装置及びそれを備えた車両用空気調和装置Vehicle battery temperature controller and vehicle air conditioner including the same
 本発明は、車両に搭載されたバッテリの温度を調整するバッテリ温度調整装置、及び、それを備えて車室内を空調するヒートポンプ方式の車両用空気調和装置に関するものである。 The present invention relates to a battery temperature adjusting device that adjusts the temperature of a battery mounted on a vehicle, and a heat pump type vehicle air conditioner that is equipped with the battery temperature adjusting device.
 近年の環境問題の顕在化から、車両に搭載されたバッテリから供給される電力で走行用モータを駆動する電気自動車やハイブリッド自動車等の車両が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、圧縮機と、放熱器と、吸熱器と、室外熱交換器が接続された冷媒回路を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させることで暖房し、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器(蒸発器)において蒸発させ、吸熱させることで冷房する等して車室内を空調するものが開発されている(例えば、特許文献1参照)。 Due to the emergence of environmental problems in recent years, vehicles such as electric vehicles and hybrid vehicles that drive a traveling motor with electric power supplied from a battery mounted on the vehicle have come into widespread use. Then, as an air conditioner that can be applied to such a vehicle, a compressor, a radiator, a heat absorber, and an outdoor heat exchanger are provided with a refrigerant circuit, and the refrigerant discharged from the compressor is provided. The radiator dissipates heat, and the refrigerant dissipated in this radiator absorbs heat in the outdoor heat exchanger to heat it. The refrigerant discharged from the compressor is dissipated in the outdoor heat exchanger and evaporated in the heat absorber (evaporator). An air conditioner has been developed to cool the interior of the vehicle by absorbing heat and cooling the air (for example, see Patent Document 1).
 一方、例えばバッテリは外部の急速充電器等の充電器から充電可能とされているが、充電時にバッテリは自己発熱して温度が上昇する。このような高温となった状態で充電を行うと劣化が進行するため、急速充電器は充電電流を制限するように動作するが、それでは充電時間が長くかかる問題が発生する。そこで、冷媒回路にバッテリ用の熱交換器を別途設け、冷媒回路を循環する冷媒とバッテリ用冷媒(熱媒体)とをこのバッテリ用の熱交換器で熱交換させ、この熱交換した熱媒体をバッテリに循環させることでバッテリを冷却することができるようにした車両用空気調和装置も開発されている(例えば、特許文献2、特許文献3参照)。 On the other hand, for example, the battery can be charged from an external quick charger or other charger, but the battery heats up during charging and the temperature rises. When charging is performed in such a high temperature state, deterioration progresses, so the quick charger operates to limit the charging current, but this causes a problem that the charging time is long. Therefore, a heat exchanger for the battery is separately provided in the refrigerant circuit, the refrigerant circulating in the refrigerant circuit and the refrigerant (heat medium) for the battery are heat-exchanged by the heat exchanger for the battery, and the heat medium thus heat-exchanged is used. A vehicle air conditioner has also been developed in which the battery can be cooled by circulating it in the battery (see, for example, Patent Documents 2 and 3).
特開2014-213765号公報JP, 2014-213765, A 特許第5860360号公報Patent No. 5860360 特許第5860361号公報Japanese Patent No. 5860361
 上記のような車両用空気調和装置でバッテリを冷却することで、充電電流を制限すること無く、急速充電を行うことができるようになるが、バッテリを冷却するための電力が主に圧縮機にて消費されることになるため、全体の充電電力は大きくなり、充電のための料金も高くなるという問題がある。一方、例えば使用者が買い物をしている間に充電を行う等の使用状況によっては、バッテリの充電には十分な時間があるため、バッテリの充電時間よりも料金(充電電力)を優先する場合もある。 By cooling the battery in the vehicle air conditioner as described above, it becomes possible to perform quick charge without limiting the charging current, but the power for cooling the battery is mainly supplied to the compressor. Therefore, there is a problem that the total charging power becomes large and the charge for charging becomes high. On the other hand, depending on the usage conditions such as charging while the user is shopping, there is sufficient time to charge the battery, so when the charge (charging power) is given priority over the battery charging time. There is also.
 本発明は、係る従来の技術的課題を解決するために成されたものであり、車両に搭載されたバッテリを充電する際、充電時間と充電電力に関して使用者に最適な充電方法を選択することができるようにした車両のバッテリ温度調整装置、及び、それを備えた車両用空気調和装置を提供することを目的とする。 The present invention has been made to solve the above-mentioned conventional technical problems, and when charging a battery mounted in a vehicle, it is necessary to select an optimal charging method for a user regarding charging time and charging power. It is an object of the present invention to provide a vehicle battery temperature adjustment device capable of performing the above, and a vehicle air conditioner including the same.
 本発明の車両のバッテリ温度調整装置は、外部の充電器により充電可能であり、車両に搭載されたバッテリの温度を調整するものであって、制御装置を備え、この制御装置は、バッテリを充電する際、当該バッテリの温度を調整する充電時間優先モードと、バッテリを充電する際に動作しない、又は、バッテリの温度を調整する動作を制限する、状態のうちの何れかの状態となる充電電力優先モードを有することを特徴とする。 The battery temperature adjusting device for a vehicle according to the present invention is capable of being charged by an external charger and adjusts the temperature of a battery mounted on the vehicle, and includes a control device, and the control device charges the battery. When charging, the charging time priority mode in which the temperature of the battery is adjusted, and the charging power that does not operate when charging the battery or restricts the operation that adjusts the battery temperature It is characterized by having a priority mode.
 請求項2の発明の車両のバッテリ温度調整装置は、上記発明において制御装置は、充電時間優先モードにおいて、バッテリの温度を示す指標を所定の適正温度範囲に制御することを特徴とする。 The vehicle battery temperature adjusting device according to the invention of claim 2 is characterized in that, in the above invention, the control device controls the index indicating the battery temperature within a predetermined appropriate temperature range in the charging time priority mode.
 請求項3の発明の車両のバッテリ温度調整装置は、上記各発明において制御装置は、充電時間優先モードにおいて、バッテリの充電電流に基づき、当該充電電流が最大となるようバッテリの温度を示す指標を制御することを特徴とする。 In the vehicle battery temperature adjusting device of the invention of claim 3, in each of the above inventions, the control device, in the charging time priority mode, based on the charging current of the battery, an index indicating the temperature of the battery so that the charging current becomes maximum. It is characterized by controlling.
 請求項4の発明の車両のバッテリ温度調整装置は、上記各発明において冷却装置を備え、この冷却装置を用いてバッテリを冷却可能とされており、制御装置は、充電電力優先モードにおいて、バッテリの温度を示す指標が所定の上限値に達した場合、バッテリを冷却し、前記指標を上限値より低い値とすることを特徴とする。 According to a fourth aspect of the present invention, there is provided a vehicle battery temperature control device including the cooling device in each of the above inventions, the battery can be cooled using the cooling device, and the control device controls the battery power in the charging power priority mode. When the index indicating the temperature reaches a predetermined upper limit value, the battery is cooled and the index is set to a value lower than the upper limit value.
 請求項5の発明の車両のバッテリ温度調整装置は、上記各発明において加熱装置を備え、この加熱装置を用いてバッテリを加熱可能とされており、制御装置は、充電電力優先モードにおいて、バッテリの温度を示す指標が所定の下限値に達した場合、バッテリを加熱し、前記指標を下限値より高い値とすることを特徴とする。 According to a fifth aspect of the present invention, there is provided a vehicle battery temperature control device including the heating device in each of the above inventions, and the heating device is used to heat the battery, and the control device controls the battery power in the charging power priority mode. When the index indicating the temperature reaches a predetermined lower limit value, the battery is heated, and the index is set to a value higher than the lower limit value.
 請求項6の発明の車両のバッテリ温度調整装置は、上記各発明において制御装置は、急速充電器によりバッテリに充電する際、充電時間優先モード、又は、充電電力優先モードを実行することを特徴とする。 A vehicle battery temperature control device according to a sixth aspect of the present invention is characterized in that, in each of the above inventions, the control device executes a charging time priority mode or a charging power priority mode when the battery is charged by the quick charger. To do.
 請求項7の発明の車両のバッテリ温度調整装置は、上記各発明において制御装置は、充電時間優先モードを実行するか、充電電力優先モードを実行するかを選択するための入力装置を有することを特徴とする。 According to a seventh aspect of the present invention, in the vehicle battery temperature adjusting device of the above invention, the control device has an input device for selecting whether to execute the charging time priority mode or the charging power priority mode. Characterize.
 請求項8の発明の車両のバッテリ温度調整装置は、上記各発明において制御装置は、所定の出力装置を有し、バッテリの残量、環境条件、充電開始時のバッテリの温度を示す指標、充電器の種類のうちの何れか、或いは、それらの組み合わせ、若しくは、それらの全てから算出されるバッテリ充電完了時間、及び、バッテリ充電電力を、充電時間優先モードと充電電力優先モード毎に出力することを特徴とする。 In the vehicle battery temperature adjusting device according to the invention of claim 8, in each of the above inventions, the control device has a predetermined output device, the remaining amount of the battery, environmental conditions, an index indicating the temperature of the battery at the start of charging, and charging. To output the battery charging completion time calculated from any of the types of appliances, their combination, or all of them, and the battery charging power for each charging time priority mode and charging power priority mode. Is characterized by.
 請求項9の発明の車両のバッテリ温度調整装置は、請求項1乃至請求項6の発明において制御装置は、バッテリの残量、環境条件、充電開始時のバッテリの温度を示す指標、充電器の種類のうちの何れか、或いは、それらの組み合わせ、若しくは、それらの全てから算出されるバッテリ充電完了時間に基づき、算出された当該バッテリ充電完了時間が予め設定された希望充電時間を満たす場合、充電電力優先モードを実行することを特徴とする。 According to a ninth aspect of the present invention, there is provided a vehicle battery temperature control device according to the first to sixth aspects, wherein the control device includes a battery remaining amount, an environmental condition, an index indicating a battery temperature at the start of charging, and a charger. Based on the battery charge completion time calculated from any of the types, or a combination thereof, or all of them, if the calculated battery charge completion time satisfies a preset desired charge time, charging is performed. It is characterized by executing the power priority mode.
 請求項10の発明の車両のバッテリ温度調整装置は、上記各発明において制御装置は、所定の出力装置を有し、充電時間優先モードを実行しているか、充電電力優先モードを実行しているかを出力することを特徴とする。 In the vehicle battery temperature adjusting device of the invention of claim 10, in each of the above inventions, the control device has a predetermined output device, and determines whether the charging time priority mode or the charging power priority mode is executed. It is characterized by outputting.
 請求項11の発明の車両用空気調和装置は、上記各発明の車両のバッテリ温度調整装置と、冷媒を圧縮する圧縮機と、車室内に供給する空気と冷媒を熱交換させるための室内熱交換器と、車室外に設けられた室外熱交換器を備えて車室内を空調すると共に、バッテリ温度調整装置は、冷媒を用いてバッテリを冷却可能とされており、制御装置は、充電時間優先モードにおいて、車室内の空調運転を制限し、又は、車室内の空調運転を禁止することを特徴とする。 An air conditioner for a vehicle according to the invention of claim 11 is a battery temperature adjusting device for a vehicle according to each of the above inventions, a compressor for compressing a refrigerant, and indoor heat exchange for exchanging heat between the air supplied to the vehicle interior and the refrigerant. And an outdoor heat exchanger provided outside the vehicle to air-condition the vehicle interior, the battery temperature control device is capable of cooling the battery using a refrigerant, and the control device is a charging time priority mode. In the above, the air conditioning operation in the vehicle interior is restricted or the air conditioning operation in the vehicle interior is prohibited.
 本発明によれば、外部の充電器により充電可能であり、車両に搭載されたバッテリの温度を調整する車両のバッテリ温度調整装置において、制御装置を備え、この制御装置が、バッテリを充電する際、当該バッテリの温度を調整する充電時間優先モードと、バッテリを充電する際に動作しない、又は、バッテリの温度を調整する動作を制限する、状態のうちの何れかの状態となる充電電力優先モードを有するようにしたので、バッテリの充電時に、充電時間を優先する場合には充電時間優先モードとしてバッテリの温度を調整することにより、当該バッテリを迅速に充電し、充電電力(料金)を優先する場合には充電電力優先モードとしてバッテリの温調を行わず、若しくは、バッテリ温度調整装置の動作を制限して、少ない電力でバッテリを充電することが可能となる。 According to the present invention, a vehicle battery temperature adjusting device that can be charged by an external charger and that adjusts the temperature of a battery mounted on a vehicle is provided with a control device, and when the control device charges the battery. , A charging time priority mode that adjusts the temperature of the battery and a charging power priority mode that does not operate when charging the battery or restricts the operation that adjusts the battery temperature. When the battery is being charged, when the charging time is prioritized, the battery temperature is adjusted as the charging time priority mode to quickly charge the battery and prioritize the charging power (charge). In this case, it is possible to charge the battery with a small amount of electric power by not adjusting the temperature of the battery as the charging power priority mode or by limiting the operation of the battery temperature adjusting device.
 即ち、使用者の都合や好みに応じて最適な充電方法を選択し、バッテリを充電することができるようになり、利便性が著しく向上するものである。 That is, the battery can be charged by selecting the most suitable charging method according to the convenience and preference of the user, and the convenience is significantly improved.
 この場合、例えば請求項2の発明の如く制御装置が、充電時間優先モードにおいては、バッテリの温度を示す指標を所定の適正温度範囲に制御することで、充電器が充電電流を制限することを回避して、迅速にバッテリを充電することができるようになる。 In this case, for example, in the charging time priority mode, the control device controls the indicator indicating the temperature of the battery within a predetermined appropriate temperature range so that the charger limits the charging current in the charging time priority mode. By doing so, the battery can be charged quickly.
 また、例えば請求項3の発明の如く制御装置が、充電時間優先モードにおいては、バッテリの充電電流に基づき、当該充電電流が最大となるようバッテリの温度を示す指標を制御することで、充電器が充電電流を最大としてバッテリを充電するように当該バッテリの温度を示す指標を制御し、最大の充電電流で極めて迅速にバッテリを充電することができるようになる。 Further, for example, in the charging time priority mode, the control device controls the index indicating the temperature of the battery so that the charging current becomes maximum, in the charging time priority mode. Controls the index indicating the temperature of the battery so that the charging current is maximized to charge the battery, and the battery can be charged extremely quickly with the maximum charging current.
 一方、請求項4の発明の発明の如く冷却装置を設け、この冷却装置を用いてバッテリを冷却可能とすると共に、制御装置が、充電電力優先モードにおいては、バッテリの温度を示す指標が所定の上限値に達した場合、バッテリを冷却し、前記指標を上限値より低い値とすることにより、充電電力優先モードにおいても、充電時の自己発熱でバッテリの温度が異常に高くなってしまう不都合を未然に回避することができるようになる。 On the other hand, the cooling device is provided as in the invention of claim 4, the battery can be cooled by using the cooling device, and in the charging power priority mode, the control device sets a predetermined index indicating the temperature of the battery. When the upper limit value is reached, by cooling the battery and setting the index to a value lower than the upper limit value, even in the charging power priority mode, there is a problem that the battery temperature becomes abnormally high due to self-heating during charging. You will be able to avoid it.
 他方、請求項5の発明の如く加熱装置を設け、この加熱装置を用いてバッテリを加熱可能とすると共に、制御装置が、充電電力優先モードにおいても、バッテリの温度を示す指標が所定の下限値に達した場合、バッテリを加熱し、前記指標を下限値より高い値とすることにより、異常に低い温度で充電することで生じるバッテリの劣化を未然に回避することができるようなる。 On the other hand, a heating device is provided as in the fifth aspect of the invention, the battery can be heated using this heating device, and the controller indicates a predetermined lower limit value of the battery temperature even in the charging power priority mode. When the temperature reaches, the battery is heated and the index is set to a value higher than the lower limit value, whereby deterioration of the battery caused by charging at an abnormally low temperature can be avoided in advance.
 また、上記各発明の如く制御装置が実行する充電時間優先モードや充電電力優先モードは、請求項6の発明のように急速充電器によりバッテリに充電する際に特に有効となる。 The charging time priority mode and the charging power priority mode executed by the control device as in the above inventions are particularly effective when the battery is charged by the quick charger as in the invention of claim 6.
 更に、請求項7の発明の如く制御装置に、充電時間優先モードを実行するか、充電電力優先モードを実行するかを選択するための入力装置を設けることで、使用者が任意に充電時間優先モードを実行するか、充電電力優先モードを実行するかを選択することができるようになる。 Furthermore, by providing the control device with an input device for selecting whether to execute the charging time priority mode or the charging power priority mode, the user can arbitrarily set the charging time priority mode. It becomes possible to select whether to execute the mode or the charging power priority mode.
 この場合、請求項8の発明の如く所定の出力装置を設け、制御装置が、バッテリの残量、環境条件、充電開始時のバッテリの温度を示す指標、充電器の種類のうちの何れか、或いは、それらの組み合わせ、若しくは、それらの全てから算出されるバッテリ充電完了時間、及び、バッテリ充電電力を、充電時間優先モードと充電電力優先モード毎に出力するようにすれば、出力されたバッテリ充電完了時間、及び、バッテリ充電電力から使用者が容易に充電時間優先モードか充電電力優先モードモードを選択することができるようになり、利便性が一段と向上する。 In this case, a predetermined output device is provided as in the invention of claim 8, and the control device is any one of the battery remaining amount, the environmental condition, the index indicating the temperature of the battery at the start of charging, and the type of the charger. Alternatively, if the battery charge completion time calculated from the combination thereof or all of them and the battery charge power are output for each of the charge time priority mode and the charge power priority mode, the output battery charge is output. The user can easily select the charging time priority mode or the charging power priority mode mode from the completion time and the battery charging power, and the convenience is further improved.
 更に、請求項9の発明の如く制御装置が、バッテリの残量、環境条件、充電開始時のバッテリの温度を示す指標、充電器の種類のうちの何れか、或いは、それらの組み合わせ、若しくは、それらの全てから算出されるバッテリ充電完了時間に基づき、算出された当該バッテリ充電完了時間が予め設定された希望充電時間を満たす場合、充電電力優先モードを実行するようにすれば、出発予定時刻等に応じて希望充電時間を予め設定しておくことで、料金が安くなる充電電力優先モードを制御装置が自動的に選択して実行するようになり、著しく利便性が向上する。 Further, the control device according to the invention of claim 9 is any one of the remaining amount of the battery, the environmental condition, the index indicating the temperature of the battery at the start of charging, the type of the charger, or a combination thereof, or Based on the battery charge completion time calculated from all of them, if the calculated battery charge completion time satisfies the preset desired charging time, the charging power priority mode is executed, and the scheduled departure time, etc. By presetting the desired charging time in accordance with the above, the control device automatically selects and executes the charging power priority mode in which the charge is reduced, and the convenience is significantly improved.
 また、請求項10の発明の如く制御装置が所定の出力装置を有し、充電時間優先モードを実行しているか、充電電力優先モードを実行しているかを出力するようにすれば、バッテリの充電時に何れのモードを実行しているかを使用者が容易に確認することができるようになる。 In addition, according to the invention of claim 10, the control device has a predetermined output device and outputs whether the charging time priority mode is executed or the charging power priority mode is executed. At some time, the user can easily confirm which mode is being executed.
 そして、請求項11の発明によれば、上記各発明の車両のバッテリ温度調整装置と、冷媒を圧縮する圧縮機と、車室内に供給する空気と冷媒を熱交換させるための室内熱交換器と、車室外に設けられた室外熱交換器を備えて車室内を空調すると共に、バッテリ温度調整装置が、冷媒を用いてバッテリを冷却可能とされた車両用空気調和装置において、制御装置が、充電時間優先モードにおいて、車室内の空調運転を制限し、又は、車室内の空調運転を禁止するようにしたので、車室内の空調に使用される冷却能力を制限し、又は、無くして、バッテリの冷却能力を向上させ、より一層迅速にバッテリを充電することができるようになるものである。 According to the invention of claim 11, a battery temperature adjusting device for a vehicle of each of the above inventions, a compressor for compressing a refrigerant, and an indoor heat exchanger for exchanging heat between the air supplied to the vehicle interior and the refrigerant. The vehicle air conditioner is provided with an outdoor heat exchanger provided outside the vehicle to air-condition the vehicle interior, and in the vehicle air conditioner in which the battery temperature adjusting device is capable of cooling the battery using a refrigerant, the control device charges the battery. In the time priority mode, the air conditioning operation in the vehicle interior is restricted or the air conditioning operation in the vehicle interior is prohibited. Therefore, the cooling capacity used for air conditioning in the vehicle interior is restricted or eliminated, and the battery By improving the cooling capacity, the battery can be charged more quickly.
本発明を適用した一実施形態の車両用空気調和装置(バッテリ温度調整装置を含む)の構成図である。1 is a configuration diagram of a vehicle air conditioner (including a battery temperature adjusting device) of an embodiment to which the present invention is applied. 図1の車両用空気調和装置の制御装置の電気回路のブロック図である。It is a block diagram of an electric circuit of a control device of an air harmony device for vehicles of Drawing 1. 図2の制御装置が実行する運転モードを説明する図である。It is a figure explaining the driving mode which the control apparatus of FIG. 2 performs. 図2の制御装置のヒートポンプコントローラによる暖房モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles explaining the heating mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる除湿暖房モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the vehicle air conditioner explaining the dehumidification heating mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる除湿冷房モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles explaining the dehumidification cooling mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる冷房モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the vehicle air conditioner explaining the cooling mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる空調(優先)+バッテリ冷却モードとバッテリ冷却(優先)+空調モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles explaining the air conditioning (priority) + battery cooling mode and battery cooling (priority) + air conditioning mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによるバッテリ冷却(単独)モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the vehicle air conditioning apparatus explaining the battery cooling (single) mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる除霜モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles explaining the defrost mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラの圧縮機制御に関する制御ブロック図である。It is a control block diagram regarding compressor control of the heat pump controller of the control device of FIG. 図2の制御装置のヒートポンプコントローラの圧縮機制御に関するもう一つの制御ブロック図である。FIG. 4 is another control block diagram related to compressor control of the heat pump controller of the control device in FIG. 2. 図2の制御装置のヒートポンプコントローラの空調(優先)+バッテリ冷却モードでの電磁弁69の制御を説明するブロック図である。It is a block diagram explaining control of the solenoid valve 69 in air conditioning (priority) + battery cooling mode of the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラの圧縮機制御に関する更にもう一つの制御ブロック図である。FIG. 7 is yet another control block diagram related to compressor control of the heat pump controller of the control device in FIG. 2. 図2の制御装置のヒートポンプコントローラのバッテリ冷却(優先)+空調モードでの電磁弁35の制御を説明するブロック図である。It is a block diagram explaining control of the solenoid valve 35 in battery cooling (priority) + air conditioning mode of the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラの熱媒体加熱ヒータ制御に関する制御ブロック図である。It is a control block diagram regarding the heat medium heating heater control of the heat pump controller of the control device of FIG. バッテリの温度調整に関する温度の値の関係を説明する図である。It is a figure explaining the relationship of the value of the temperature regarding the temperature adjustment of a battery. 図2の制御装置のヒートポンプコントローラの充電時間優先モードにおける目標熱媒体温度TWOの制御に関する制御ブロック図である。3 is a control block diagram related to control of a target heat medium temperature TWO in a charge time priority mode of the heat pump controller of the control device of FIG. 2. FIG. 図2の制御装置のヒートポンプコントローラによるバッテリ充電完了時間とバッテリ充電電力の出力制御を説明する図である。It is a figure explaining the output control of battery charge completion time and battery charge electric power by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる充電時間優先モードと充電電力優先モードの自動選択に関する制御ブロック図である。3 is a control block diagram regarding automatic selection of a charging time priority mode and a charging power priority mode by a heat pump controller of the control device of FIG. 2. FIG.
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。図1は本発明の車両のバッテリ温度調整装置を適用した一実施形態の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、車両に搭載されているバッテリ55に充電された電力を走行用モータ(電動モータ。図示せず)に供給することで駆動し、走行するものであり、本発明の車両用空気調和装置1の後述する冷媒回路Rの圧縮機2や、バッテリ温度調整装置61も、バッテリ55から供給される電力で駆動されるものとする。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 of an embodiment to which a vehicle battery temperature adjusting device of the present invention is applied. A vehicle of an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and electric power charged in a battery 55 mounted in the vehicle is used as a traveling motor (electric motor). The compressor 2 of the refrigerant circuit R, which will be described later, of the vehicle air conditioner 1 of the present invention and the battery temperature adjusting device 61 are also driven from the battery 55. It shall be driven by the supplied power.
 即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路Rを用いたヒートポンプ運転により暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、除霜モード、空調(優先)+バッテリ冷却モード、バッテリ冷却(優先)+空調モード、及び、バッテリ冷却(単独)モードの各運転モードを切り換えて実行することで車室内の空調やバッテリ55の温調を行うものである。 That is, the vehicle air conditioner 1 of the embodiment is a heating mode, a dehumidification heating mode, a dehumidification cooling mode, a cooling mode, and a defrosting mode in a heat pump operation using the refrigerant circuit R in an electric vehicle that cannot be heated by engine waste heat. , The air conditioning (priority)+battery cooling mode, the battery cooling (priority)+air conditioning mode, and the battery cooling (single) mode are switched and executed to perform air conditioning in the vehicle compartment and temperature control of the battery 55. It is a thing.
 尚、車両としては電気自動車に限らず、エンジンと走行用モータを供用する所謂ハイブリッド自動車にも本発明は有効である。また、実施例の車両用空気調和装置1を適用する車両は外部の充電器(急速充電器や通常の充電器)からバッテリ55に充電可能とされているものである。 The present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and a running motor. The vehicle to which the vehicle air conditioner 1 of the embodiment is applied is one in which the battery 55 can be charged from an external charger (a quick charger or a normal charger).
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内の空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒がマフラー5と冷媒配管13Gを介して流入し、この冷媒を車室内に放熱(冷媒の熱を放出)させる室内熱交換器としての放熱器4と、暖房時に冷媒を減圧膨張させる電動弁(電子膨張弁)から成る室外膨張弁6と、冷房時には冷媒を放熱させる放熱器として機能し、暖房時には冷媒を吸熱(冷媒に熱を吸収)させる蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる機械式膨張弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に冷媒を蒸発させて車室内外から冷媒に吸熱(冷媒に熱を吸収)させる室内熱交換器としての吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。 The vehicle air conditioner 1 of the embodiment is for performing air conditioning (heating, cooling, dehumidification, and ventilation) of a vehicle interior of an electric vehicle, and an electric compressor 2 for compressing a refrigerant and an interior of the vehicle interior. The high-temperature and high-pressure refrigerant discharged from the compressor 2, which is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated by ventilation, flows in through the muffler 5 and the refrigerant pipe 13G, and radiates this refrigerant into the vehicle interior. As a radiator 4 as an indoor heat exchanger (to release the heat of the refrigerant), an outdoor expansion valve 6 consisting of a motor-operated valve (electronic expansion valve) for decompressing and expanding the refrigerant during heating, and as a radiator for radiating the refrigerant during cooling An outdoor heat exchanger 7 that functions and performs heat exchange between the refrigerant and the outside air so as to function as an evaporator that absorbs the refrigerant (absorbs heat into the refrigerant) during heating, and a mechanical expansion valve that decompresses and expands the refrigerant. And an indoor expansion valve 8 made up of a heat exchanger as an indoor heat exchanger that is provided in the air flow passage 3 to evaporate the refrigerant during cooling and dehumidification to absorb the heat from the inside and outside of the vehicle (the refrigerant absorbs heat). 9, the accumulator 12 and the like are sequentially connected by a refrigerant pipe 13 to form a refrigerant circuit R.
 そして、室外膨張弁6は放熱器4から出て室外熱交換器7に流入する冷媒を減圧膨張させると共に、全閉も可能とされている。また、実施例では機械式膨張弁が使用された室内膨張弁8は、吸熱器9に流入する冷媒を減圧膨張させると共に、吸熱器9における冷媒の過熱度を調整する。 The outdoor expansion valve 6 decompresses and expands the refrigerant flowing out of the radiator 4 and flowing into the outdoor heat exchanger 7, and can be fully closed. Further, in the embodiment, the indoor expansion valve 8 using the mechanical expansion valve decompresses and expands the refrigerant flowing into the heat absorber 9, and adjusts the degree of superheat of the refrigerant in the heat absorber 9.
 尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。 The outdoor heat exchanger 7 is provided with an outdoor blower 15. The outdoor blower 15 exchanges heat between the outdoor air and the refrigerant by forcibly ventilating the outdoor air through the outdoor heat exchanger 7, whereby the outdoor air is discharged while the vehicle is stopped (that is, the vehicle speed is 0 km/h). The heat exchanger 7 is configured to ventilate outside air.
 また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7の冷媒出口側の冷媒配管13Aは、吸熱器9に冷媒を流す際に開放される開閉弁としての電磁弁17(冷房用)を介してレシーバドライヤ部14に接続され、過冷却部16の出口側の冷媒配管13Bは逆止弁18、室内膨張弁8、及び、電磁弁35(キャビン用)を順次介して吸熱器9の冷媒入口側に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成している。また、逆止弁18は室内膨張弁8の方向が順方向とされている。 Further, the outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 sequentially on the downstream side of the refrigerant, and the refrigerant pipe 13A on the refrigerant outlet side of the outdoor heat exchanger 7 is used when flowing the refrigerant to the heat absorber 9. The refrigerant pipe 13B on the outlet side of the supercooling unit 16 is connected to the receiver dryer unit 14 via an electromagnetic valve 17 (for cooling) as an open/close valve, and the check valve 18, the indoor expansion valve 8, and the electromagnetic valve It is connected to the refrigerant inlet side of the heat absorber 9 through the valve 35 (for cabin) in order. The receiver dryer unit 14 and the supercooling unit 16 structurally form a part of the outdoor heat exchanger 7. The check valve 18 has the forward direction of the indoor expansion valve 8.
 また、室外熱交換器7から出た冷媒配管13Aは冷媒配管13Dに分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される開閉弁としての電磁弁21(暖房用)を介して吸熱器9の冷媒出口側の冷媒配管13Cに連通接続されている。そして、この冷媒配管13Cがアキュムレータ12の入口側に接続され、アキュムレータ12の出口側は圧縮機2の冷媒吸込側の冷媒配管13Kに接続されている。 In addition, the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched into a refrigerant pipe 13D, and the branched refrigerant pipe 13D is passed through an electromagnetic valve 21 (for heating) as an on-off valve opened during heating. It is connected to the refrigerant pipe 13C on the refrigerant outlet side of the heat absorber 9 for communication. The refrigerant pipe 13C is connected to the inlet side of the accumulator 12, and the outlet side of the accumulator 12 is connected to the refrigerant suction side refrigerant pipe 13K of the compressor 2.
 更に、放熱器4の冷媒出口側の冷媒配管13Eにはストレーナ19が接続されており、更に、この冷媒配管13Eは室外膨張弁6の手前(冷媒上流側)で冷媒配管13Jと冷媒配管13Fに分岐し、分岐した一方の冷媒配管13Jが室外膨張弁6を介して室外熱交換器7の冷媒入口側に接続されている。また、分岐した他方の冷媒配管13Fは除湿時に開放される開閉弁としての電磁弁22(除湿用)を介し、逆止弁18の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Bに連通接続されている。 Furthermore, a strainer 19 is connected to the refrigerant pipe 13E on the refrigerant outlet side of the radiator 4, and the refrigerant pipe 13E is connected to the refrigerant pipes 13J and 13F before the outdoor expansion valve 6 (refrigerant upstream side). One of the branched and branched refrigerant pipes 13J is connected to the refrigerant inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6. Further, the other branched refrigerant pipe 13F is connected to the refrigerant downstream side of the check valve 18 and the refrigerant upstream side of the indoor expansion valve 8 via an electromagnetic valve 22 (for dehumidification) as an opening/closing valve that is opened during dehumidification. It is communicatively connected to the located refrigerant pipe 13B.
 これにより、冷媒配管13Fは室外膨張弁6、室外熱交換器7及び逆止弁18の直列回路に対して並列に接続されたかたちとなり、室外膨張弁6、室外熱交換器7及び逆止弁18をバイパスするバイパス回路となる。また、室外膨張弁6にはバイパス用の開閉弁としての電磁弁20が並列に接続されている。 As a result, the refrigerant pipe 13F is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve 18, and the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve are connected. It becomes a bypass circuit that bypasses 18. Further, a solenoid valve 20 as an opening/closing valve for bypass is connected in parallel to the outdoor expansion valve 6.
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環)と、車室外の空気である外気(外気導入)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。 Further, in the air flow passage 3 on the air upstream side of the heat absorber 9, respective intake ports of an outside air intake port and an inside air intake port are formed (represented by the intake port 25 in FIG. 1). An intake switching damper 26 is provided at 25 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation) which is the air inside the vehicle interior and the outside air (outside air introduction) which is the air outside the vehicle interior. Further, on the air downstream side of the suction switching damper 26, an indoor blower (blower fan) 27 for feeding the introduced inside air or outside air to the air flow passage 3 is provided.
 尚、実施例の吸込切換ダンパ26は、吸込口25の外気吸込口と内気吸込口を任意の比率で開閉することにより、空気流通路3の吸熱器9に流入する空気(外気と内気)のうちの内気の比率を0~100%の間で調整することができるように構成されている(外気の比率も100%~0%の間で調整可能)。 The intake switching damper 26 of the embodiment opens and closes the outside air intake port and the inside air intake port of the intake port 25 at an arbitrary ratio to remove the air (outside air and inside air) flowing into the heat absorber 9 of the air flow passage 3. It is configured so that the ratio of inside air can be adjusted between 0% and 100% (the ratio of outside air can also be adjusted between 100% and 0%).
 また、放熱器4の風下側(空気下流側)における空気流通路3内には、実施例ではPTCヒータ(電気ヒータ)から成る補助加熱装置としての補助ヒータ23が設けられ、放熱器4を経て車室内に供給される空気を加熱することが可能とされている。更に、放熱器4の空気上流側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を放熱器4及び補助ヒータ23に通風する割合を調整するエアミックスダンパ28が設けられている。 Further, in the air flow passage 3 on the leeward side (air downstream side) of the radiator 4, an auxiliary heater 23 as an auxiliary heating device including a PTC heater (electric heater) is provided in the embodiment, and passes through the radiator 4. It is possible to heat the air supplied to the passenger compartment. Further, in the air flow passage 3 on the air upstream side of the radiator 4, the air (inside air or outside air) flowing into the air flow passage 3 and passing through the heat absorber 9 is radiated. An air mix damper 28 that adjusts the ratio of ventilation to the device 4 and the auxiliary heater 23 is provided.
 更にまた、放熱器4の空気下流側における空気流通路3には、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口からの空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。 Furthermore, in the air flow passage 3 on the air downstream side of the radiator 4, FOOT (foot), VENT (vent), and DEF (def) outlets (represented by the outlet 29 in FIG. 1 as a representative) are provided. The blower outlet 29 is provided with a blower outlet switching damper 31 for controlling the blowout of air from each of the blower outlets.
 更に、車両用空気調和装置1は、バッテリ55に熱媒体を循環させて当該バッテリ55の温度を調整する本発明のバッテリ温度調整装置61を備えている。実施例のバッテリ温度調整装置61は、バッテリ55に熱媒体を循環させるための循環装置としての循環ポンプ62と、冷媒-熱媒体熱交換器64と、加熱装置としての熱媒体加熱ヒータ63を備え、それらとバッテリ55が熱媒体配管66にて環状に接続されている。 Further, the vehicle air conditioner 1 is provided with the battery temperature adjusting device 61 of the present invention that circulates a heat medium in the battery 55 to adjust the temperature of the battery 55. The battery temperature adjusting device 61 of the embodiment includes a circulation pump 62 as a circulating device for circulating the heat medium in the battery 55, a refrigerant-heat medium heat exchanger 64, and a heat medium heating heater 63 as a heating device. , And the battery 55 are annularly connected by a heat medium pipe 66.
 実施例の場合、循環ポンプ62の吐出側に冷媒-熱媒体熱交換器64の熱媒体流路64Aの入口が接続され、この熱媒体流路64Aの出口は熱媒体加熱ヒータ63の入口に接続されている。この熱媒体加熱ヒータ63の出口がバッテリ55の入口に接続され、バッテリ55の出口が循環ポンプ62の吸込側に接続されている。 In the case of the embodiment, the inlet of the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64 is connected to the discharge side of the circulation pump 62, and the outlet of this heat medium passage 64A is connected to the inlet of the heat medium heater 63. Has been done. The outlet of the heat medium heater 63 is connected to the inlet of the battery 55, and the outlet of the battery 55 is connected to the suction side of the circulation pump 62.
 このバッテリ温度調整装置61で使用される熱媒体としては、例えば水、HFO-1234yfのような冷媒、クーラント等の液体、空気等の気体が採用可能である。尚、実施例では水を熱媒体として採用している。また、熱媒体加熱ヒータ63はPTCヒータ等の電気ヒータから構成されている。更に、バッテリ55の周囲には例えば熱媒体が当該バッテリ55と熱交換関係で流通可能なジャケット構造が施されているものとする。 As the heat medium used in the battery temperature adjusting device 61, for example, water, a refrigerant such as HFO-1234yf, a liquid such as coolant, or a gas such as air can be adopted. In the examples, water is used as the heat medium. The heat medium heater 63 is composed of an electric heater such as a PTC heater. Further, it is assumed that, for example, a jacket structure is provided around the battery 55 so that a heat medium can flow in a heat exchange relationship with the battery 55.
 そして、循環ポンプ62が運転されると、循環ポンプ62から吐出された熱媒体は冷媒-熱媒体熱交換器64の熱媒体流路64Aに流入する。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は熱媒体加熱ヒータ63に至り、当該熱媒体加熱ヒータ63が発熱されている場合にはそこで加熱された後、バッテリ55に至り、熱媒体はそこでバッテリ55と熱交換する。そして、このバッテリ55と熱交換した熱媒体が循環ポンプ62に吸い込まれることで熱媒体配管66内を循環される。 When the circulation pump 62 is operated, the heat medium discharged from the circulation pump 62 flows into the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64. The heat medium exiting the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heating heater 63, and if the heat medium heating heater 63 is generating heat, the heat medium heating heater 63 heats the heat medium heating heater 63 and then the battery. 55, where the heat medium exchanges heat with the battery 55. The heat medium that has exchanged heat with the battery 55 is sucked into the circulation pump 62 and circulated in the heat medium pipe 66.
 一方、冷媒回路Rの冷媒配管13Fと冷媒配管13Bとの接続部の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Bには、分岐回路としての分岐配管67の一端が接続されている。この分岐配管67には実施例では機械式の膨張弁から構成された補助膨張弁68と、電磁弁(チラー用)69が順次設けられている。補助膨張弁68は冷媒-熱媒体熱交換器64の後述する冷媒流路64Bに流入する冷媒を減圧膨張させると共に、冷媒-熱媒体熱交換器64の冷媒流路64Bにおける冷媒の過熱度を調整する。 On the other hand, in the refrigerant pipe 13B located on the refrigerant downstream side of the connecting portion between the refrigerant pipe 13F and the refrigerant pipe 13B of the refrigerant circuit R and on the refrigerant upstream side of the indoor expansion valve 8, a branch pipe 67 as a branch circuit is provided. One end is connected. In this embodiment, an auxiliary expansion valve 68, which is a mechanical expansion valve, and an electromagnetic valve (for chiller) 69 are sequentially provided in the branch pipe 67. The auxiliary expansion valve 68 decompresses and expands the refrigerant flowing into a later-described refrigerant passage 64B of the refrigerant-heat medium heat exchanger 64, and adjusts the degree of superheat of the refrigerant in the refrigerant passage 64B of the refrigerant-heat medium heat exchanger 64. To do.
 そして、分岐配管67の他端は冷媒-熱媒体熱交換器64の冷媒流路64Bに接続されており、この冷媒流路64Bの出口には冷媒配管71の一端が接続され、冷媒配管71の他端は冷媒配管13Dとの合流点より冷媒上流側(アキュムレータ12の冷媒上流側)の冷媒配管13Cに接続されている。そして、これら補助膨張弁68や電磁弁69、冷媒-熱媒体熱交換器64の冷媒流路64B、圧縮機2、放熱器5、室外熱交換器7等も冷媒回路Rの一部を構成すると同時に、バッテリ温度調整装置61の一部である本発明における冷却装置をも構成することになる。 The other end of the branch pipe 67 is connected to the refrigerant flow passage 64B of the refrigerant-heat medium heat exchanger 64, and one end of the refrigerant pipe 71 is connected to the outlet of the refrigerant flow passage 64B. The other end is connected to a refrigerant pipe 13C on the refrigerant upstream side (refrigerant upstream side of the accumulator 12) from the confluence with the refrigerant pipe 13D. When the auxiliary expansion valve 68, the electromagnetic valve 69, the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, the compressor 2, the radiator 5, the outdoor heat exchanger 7 and the like also constitute a part of the refrigerant circuit R. At the same time, it also constitutes the cooling device in the present invention which is a part of the battery temperature adjusting device 61.
 電磁弁69が開いている場合、室外熱交換器7から出た冷媒(一部又は全ての冷媒)は分岐配管67に流入し、補助膨張弁68で減圧された後、電磁弁69を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して、そこで蒸発する。冷媒は冷媒流路64Bを流れる過程で熱媒体流路64Aを流れる熱媒体から吸熱した後、冷媒配管71、冷媒配管13C、アキュムレータ12を経て冷媒配管13Kから圧縮機2に吸い込まれることになる。 When the solenoid valve 69 is open, the refrigerant (a part or all of the refrigerant) discharged from the outdoor heat exchanger 7 flows into the branch pipe 67, the pressure is reduced by the auxiliary expansion valve 68, and then the refrigerant is passed through the solenoid valve 69. -The refrigerant flows into the refrigerant channel 64B of the heat medium heat exchanger 64 and evaporates there. The refrigerant absorbs heat from the heat medium flowing through the heat medium passage 64A in the process of flowing through the refrigerant passage 64B, and then is sucked into the compressor 2 through the refrigerant pipe 71, the refrigerant pipe 13C, and the accumulator 12 through the refrigerant pipe 13K.
 次に、図2は実施例の車両用空気調和装置1の制御装置11のブロック図を示している。尚、この制御装置11も本発明のバッテリ温度調整装置61を構成するものである。制御装置11は、何れもプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成された空調コントローラ45及びヒートポンプコントローラ32から構成されており、これらがCAN(Controller Area Network)やLIN(Local Interconnect Network)を構成する車両通信バス65に接続されている。また、圧縮機2と補助ヒータ23、循環ポンプ62と熱媒体加熱ヒータ63も車両通信バス65に接続され、これら空調コントローラ45、ヒートポンプコントローラ32、圧縮機2、補助ヒータ23、循環ポンプ62及び熱媒体加熱ヒータ63が車両通信バス65を介してデータの送受信を行うように構成されている。 Next, FIG. 2 shows a block diagram of the control device 11 of the vehicle air conditioner 1 of the embodiment. The control device 11 also constitutes the battery temperature adjusting device 61 of the present invention. The control device 11 includes an air conditioning controller 45 and a heat pump controller 32 each of which includes a microcomputer that is an example of a computer including a processor, and these include a CAN (Controller Area Network) and a LIN (Local Interconnect Network). Is connected to the vehicle communication bus 65 that constitutes the. Further, the compressor 2 and the auxiliary heater 23, the circulation pump 62 and the heat medium heating heater 63 are also connected to the vehicle communication bus 65, and the air conditioning controller 45, the heat pump controller 32, the compressor 2, the auxiliary heater 23, the circulation pump 62 and the heat generator. The medium heater 63 is configured to send and receive data via the vehicle communication bus 65.
 更に、車両通信バス65には走行を含む車両全般の制御を司る車両コントローラ72(ECU)と、バッテリ55の充放電の制御を司るバッテリコントローラ(BMS:Battery Management system)73と、GPSナビゲーション装置74が接続されている。車両コントローラ72やバッテリコントローラ73、GPSナビゲーション装置74もプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成されており、制御装置11を構成する空調コントローラ45とヒートポンプコントローラ32は、車両通信バス65を介してこれら車両コントローラ72やバッテリコントローラ73、GPSナビゲーション装置74と情報(データ)の送受信を行う構成とされている。 Further, the vehicle communication bus 65 includes a vehicle controller 72 (ECU) that controls the entire vehicle including traveling, a battery controller (BMS: Battery Management System) 73 that controls the charging and discharging of the battery 55, and a GPS navigation device 74. Are connected. The vehicle controller 72, the battery controller 73, and the GPS navigation device 74 are also configured by a microcomputer that is an example of a computer including a processor. The air conditioning controller 45 and the heat pump controller 32 that configure the control device 11 connect the vehicle communication bus 65 to each other. Information (data) is transmitted and received to and from the vehicle controller 72, the battery controller 73, and the GPS navigation device 74 via the above.
 空調コントローラ45は、車両の車室内空調の制御を司る上位のコントローラであり、この空調コントローラ45の入力には、車両の外気温度Tamを検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれて吸熱器9に流入する空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、車室内に吹き出される空気の温度を検出する吹出温度センサ41と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52の各出力と、車室内の設定温度や運転モードの切り換え等の車室内の空調設定操作や情報の表示を行うための空調操作部53が接続されている。尚、図中53Aはこの空調操作部53に設けられた出力装置としてのディスプレイであり、53Bは空調操作部53に設けられた入力装置としてのスイッチである。 The air conditioning controller 45 is a higher-level controller that controls the vehicle interior air conditioning. The inputs of the air conditioning controller 45 are an outside air temperature sensor 33 that detects the outside air temperature Tam of the vehicle and an outside air humidity that detects outside air humidity. The sensor 34, the HVAC suction temperature sensor 36 that detects the temperature of the air that is sucked into the air flow passage 3 from the suction port 25 and flows into the heat absorber 9, and the inside air temperature sensor 37 that detects the air (inside air) temperature in the vehicle interior. An inside air humidity sensor 38 for detecting the humidity of the air in the vehicle compartment, an indoor CO 2 concentration sensor 39 for detecting the carbon dioxide concentration in the vehicle compartment, and an outlet temperature sensor 41 for detecting the temperature of the air blown into the vehicle compartment. A photosensor type solar radiation sensor 51 for detecting the amount of solar radiation into the passenger compartment, outputs of the vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, a set temperature in the passenger compartment and driving. An air conditioning operation unit 53 for performing air conditioning setting operations in the vehicle interior such as mode switching and information display is connected. In the figure, 53A is a display as an output device provided in the air conditioning operating unit 53, and 53B is a switch as an input device provided in the air conditioning operating unit 53.
 また、空調コントローラ45の出力には、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31が接続され、それらは空調コントローラ45により制御される。 Further, the output of the air conditioning controller 45 is connected to the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, and the outlet switching damper 31, which are connected to the air conditioning controller 45. Controlled by.
 ヒートポンプコントローラ32は、主に冷媒回路Rの制御を司るコントローラであり、このヒートポンプコントローラ32の入力には、放熱器4の冷媒入口温度Tcxin(圧縮機2の吐出冷媒温度でもある)を検出する放熱器入口温度センサ43と、放熱器4の冷媒出口温度Tciを検出する放熱器出口温度センサ44と、圧縮機2の吸込冷媒温度Tsを検出する吸込温度センサ46と、放熱器4の冷媒出口側の冷媒圧力(放熱器4の圧力:放熱器圧力Pci)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9自体の温度、又は、吸熱器9により冷却された直後の空気(冷却対象)の温度:以下、吸熱器温度Te)を検出する吸熱器温度センサ48と、室外熱交換器7の出口の冷媒温度(室外熱交換器7の冷媒蒸発温度:室外熱交換器温度TXO)を検出する室外熱交換器温度センサ49と、補助ヒータ23の温度を検出する補助ヒータ温度センサ50A(運転席側)及び50B(助手席側)の各出力が接続されている。 The heat pump controller 32 is a controller that mainly controls the refrigerant circuit R, and the heat pump controller 32 has an input that releases heat to detect the refrigerant inlet temperature Tcxin of the radiator 4 (which is also the refrigerant temperature discharged from the compressor 2 ). The inlet temperature sensor 43, the radiator outlet temperature sensor 44 that detects the refrigerant outlet temperature Tci of the radiator 4, the suction temperature sensor 46 that detects the suction refrigerant temperature Ts of the compressor 2, and the refrigerant outlet side of the radiator 4. Radiator pressure sensor 47 for detecting the refrigerant pressure (pressure of radiator 4; radiator pressure Pci), and temperature of heat absorber 9 (temperature of heat absorber 9 itself, or air immediately after being cooled by heat absorber 9) Temperature of (cooling target): Heat absorber temperature sensor 48 for detecting heat absorber temperature Te, and refrigerant temperature at the outlet of the outdoor heat exchanger 7 (refrigerant evaporation temperature of the outdoor heat exchanger 7: outdoor heat exchanger temperature) Outputs of the outdoor heat exchanger temperature sensor 49 for detecting TXO) and the auxiliary heater temperature sensors 50A (driver side) and 50B (passenger side) for detecting the temperature of the auxiliary heater 23 are connected.
 また、ヒートポンプコントローラ32の出力には、室外膨張弁6、電磁弁22(除湿用)、電磁弁17(冷房用)、電磁弁21(暖房用)、電磁弁20(バイパス用)、電磁弁35(キャビン用)及び電磁弁69(チラー用)の各電磁弁が接続され、それらはヒートポンプコントローラ32により制御される。尚、圧縮機2、補助ヒータ23、循環ポンプ62及び熱媒体加熱ヒータ63はそれぞれコントローラを内蔵しており、実施例では圧縮機2や補助ヒータ23、循環ポンプ62や熱媒体加熱ヒータ63のコントローラは車両通信バス65を介してヒートポンプコントローラ32とデータの送受信を行い、このヒートポンプコントローラ32によって制御される。 The output of the heat pump controller 32 includes the outdoor expansion valve 6, the solenoid valve 22 (for dehumidification), the solenoid valve 17 (for cooling), the solenoid valve 21 (for heating), the solenoid valve 20 (for bypass), and the solenoid valve 35. The electromagnetic valves (for the cabin) and the electromagnetic valve 69 (for the chiller) are connected, and they are controlled by the heat pump controller 32. The compressor 2, the auxiliary heater 23, the circulation pump 62, and the heat medium heating heater 63 each have a built-in controller, and in the embodiment, the controller of the compressor 2, the auxiliary heater 23, the circulation pump 62, and the heat medium heating heater 63. Transmits and receives data to and from the heat pump controller 32 via the vehicle communication bus 65, and is controlled by the heat pump controller 32.
 尚、バッテリ温度調整装置61を構成する循環ポンプ62や熱媒体加熱ヒータ63はバッテリコントローラ73により制御されるようにしてもよい。更に、このバッテリコントローラ73にはバッテリ温度調整装置61の冷媒-熱媒体熱交換器64の熱媒体流路64Aの出口側の熱媒体の温度(熱媒体温度Tw:バッテリ55の温度を示す指標)を検出する熱媒体温度センサ76と、バッテリ55の温度(バッテリ55自体の温度:バッテリ温度Tcell:これもバッテリ55の温度を示す指標)を検出するバッテリ温度センサ77の出力が接続されている。 The circulation pump 62 and the heat medium heater 63 that constitute the battery temperature adjusting device 61 may be controlled by the battery controller 73. Further, in the battery controller 73, the temperature of the heat medium on the outlet side of the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64 of the battery temperature adjusting device 61 (heat medium temperature Tw: an index indicating the temperature of the battery 55). The output of the heat medium temperature sensor 76 for detecting the temperature is connected to the output of the battery temperature sensor 77 for detecting the temperature of the battery 55 (temperature of the battery 55 itself: battery temperature Tcell: this is also an index indicating the temperature of the battery 55).
 そして、実施例ではバッテリ55の残量(蓄電量)やバッテリ55の充電に関する情報(充電中であることの情報や充電完了時間、残充電時間等)、熱媒体温度Twやバッテリ温度Tcellは、バッテリコントローラ73から車両通信バス65を介して空調コントローラ45や車両コントローラ72に送信される。尚、バッテリ55の充電時におけるバッテリ充電完了時間やバッテリ充電電力(料金)に関する情報は、実施例では後述する急速充電器等の外部の充電器から供給される情報に基づいてヒートポンプコントローラ32が予測演算するが、急速充電器等から供給される情報としてもよい。また、バッテリ55の充電電流は、熱媒体温度Twに応じて急速充電器等の充電器とバッテリコントローラ73が協働して自動調整する。 Then, in the embodiment, the remaining amount of the battery 55 (the amount of stored electricity), the information regarding the charging of the battery 55 (information indicating that the battery is being charged, the charging completion time, the remaining charging time, etc.), the heat medium temperature Tw and the battery temperature Tcell are It is transmitted from the battery controller 73 to the air conditioning controller 45 and the vehicle controller 72 via the vehicle communication bus 65. Note that the information about the battery charging completion time and the battery charging power (charge) at the time of charging the battery 55 is predicted by the heat pump controller 32 based on the information supplied from an external charger such as a quick charger described later in the embodiment. Although calculated, it may be information supplied from a quick charger or the like. Further, the charging current of the battery 55 is automatically adjusted by the battery controller 73 in cooperation with a charger such as a quick charger according to the heat medium temperature Tw.
 ヒートポンプコントローラ32と空調コントローラ45は車両通信バス65を介して相互にデータの送受信を行い、各センサの出力や空調操作部53にて入力された設定に基づき、各機器を制御するものであるが、この場合の実施例では外気温度センサ33、外気湿度センサ34、HVAC吸込温度センサ36、内気温度センサ37、内気湿度センサ38、室内CO2濃度センサ39、吹出温度センサ41、日射センサ51、車速センサ52、空気流通路3に流入して当該空気流通路3内を流通する空気の風量Ga(空調コントローラ45が算出)、エアミックスダンパ28による風量割合SW(空調コントローラ45が算出)、室内送風機27の電圧(BLV)、前述したバッテリコントローラ73からの情報、GPSナビゲーション装置74からの情報、空調操作部53に入力された情報は空調コントローラ45から車両通信バス65を介してヒートポンプコントローラ32に送信され、ヒートポンプコントローラ32による制御に供される構成とされている。 The heat pump controller 32 and the air conditioning controller 45 send and receive data to and from each other via the vehicle communication bus 65, and control each device based on the output of each sensor and the setting input by the air conditioning operation unit 53. In this embodiment, the outside air temperature sensor 33, the outside air humidity sensor 34, the HVAC suction temperature sensor 36, the inside air temperature sensor 37, the inside air humidity sensor 38, the indoor CO 2 concentration sensor 39, the outlet temperature sensor 41, the solar radiation sensor 51, the vehicle speed. The sensor 52, the air volume Ga of the air flowing into the air flow passage 3 and flowing in the air flow passage 3 (calculated by the air conditioning controller 45), the air flow rate SW by the air mix damper 28 (calculated by the air conditioning controller 45), the indoor blower The voltage (BLV) of 27, the information from the battery controller 73, the information from the GPS navigation device 74, and the information input to the air conditioning operation unit 53 are transmitted from the air conditioning controller 45 to the heat pump controller 32 via the vehicle communication bus 65. The heat pump controller 32 controls the heat pump controller 32.
 また、ヒートポンプコントローラ32からも冷媒回路Rやバッテリ温度調整装置61の制御(後述するバッテリ55の充電時の制御を含む)に関するデータ(情報)、空調操作部53に出力する情報が車両通信バス65を介して空調コントローラ45に送信される。尚、前述したエアミックスダンパ28による風量割合SWは、0≦SW≦1の範囲で空調コントローラ45が算出する。そして、SW=1のときはエアミックスダンパ28により、吸熱器9を経た空気の全てが放熱器4及び補助ヒータ23に通風されることになる。 Further, the vehicle communication bus 65 includes data (information) regarding the control of the refrigerant circuit R and the battery temperature adjusting device 61 (including control at the time of charging the battery 55 described later) from the heat pump controller 32, and information output to the air conditioning operation unit 53. Is transmitted to the air conditioning controller 45 via. The air volume ratio SW by the air mix damper 28 described above is calculated by the air conditioning controller 45 in the range of 0≦SW≦1. Then, when SW=1, all of the air that has passed through the heat absorber 9 is ventilated by the radiator 4 and the auxiliary heater 23 by the air mix damper 28.
 以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。この実施例では制御装置11(空調コントローラ45、ヒートポンプコントローラ32)は、暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、及び、空調(優先)+バッテリ冷却モードの各空調運転と、バッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モードの各バッテリ冷却運転と、除霜モードを切り換えて実行する。これらが図3に示されている。 Next, the operation of the vehicle air conditioner 1 of the embodiment having the above configuration will be described. In this embodiment, the control device 11 (air conditioning controller 45, heat pump controller 32) controls the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, and the air conditioning operation of the air conditioning (priority)+battery cooling mode and the battery cooling. Each battery cooling operation of (priority)+air conditioning mode and battery cooling (single) mode and defrosting mode are switched and executed. These are shown in FIG.
 このうち、暖房モードと、除湿暖房モードと、除湿冷房モードと、冷房モードと、空調(優先)+バッテリ冷却モードの各空調運転は、実施例ではバッテリ55を充電しておらず、車両のイグニッション(IGN)がONされ、空調操作部53の空調スイッチがONされている場合に実行されるものである。但し、リモート運転時(プレ空調等)にはイグニッションがOFFの場合にも実行される。また、バッテリ55を充電中でもバッテリ冷却要求が無く、空調スイッチがONされているときは実行される。一方、バッテリ冷却(優先)+空調モードと、バッテリ冷却(単独)モードの各バッテリ冷却運転は、例えば急速充電器(外部電源)のプラグを接続し、バッテリ55に充電しているときに実行されるものである。但し、バッテリ冷却(単独)モードは、バッテリ55の充電中以外にも、空調スイッチがOFFで、バッテリ冷却要求があった場合(高外気温で走行時等)には実行される。 Among these, in each of the air conditioning operations of the heating mode, the dehumidification heating mode, the dehumidification cooling mode, the cooling mode, and the air conditioning (priority)+battery cooling mode, the battery 55 is not charged in the embodiment, and the ignition of the vehicle is performed. This is executed when (IGN) is turned on and the air conditioning switch of the air conditioning operation unit 53 is turned on. However, it is executed even when the ignition is OFF during remote operation (pre-air conditioning, etc.). Even when the battery 55 is being charged, there is no battery cooling request, and the process is executed when the air conditioning switch is ON. On the other hand, each battery cooling operation in the battery cooling (priority)+air conditioning mode and the battery cooling (single) mode is executed, for example, when the plug of the quick charger (external power source) is connected and the battery 55 is being charged. It is something. However, the battery cooling (single) mode is executed when the air conditioning switch is OFF and there is a battery cooling request (during traveling at a high outside air temperature, etc.) other than during charging of the battery 55.
 また、実施例ではヒートポンプコントローラ32は、イグニッションがONされているときや、イグニッションがOFFされていてもバッテリ55が充電中であるときは、バッテリ温度調整装置61の循環ポンプ62を運転し、図4~図10に破線で示す如く熱媒体配管66内に熱媒体を循環させるものとする。更に、図3には示していないが、実施例のヒートポンプコントローラ32は、バッテリ温度調整装置61の熱媒体加熱ヒータ63を発熱させることでバッテリ55を加熱するバッテリ加熱モードも実行する。 In the embodiment, the heat pump controller 32 operates the circulation pump 62 of the battery temperature adjusting device 61 when the ignition is turned on, or when the battery 55 is being charged even when the ignition is turned off. It is assumed that the heat medium is circulated in the heat medium pipe 66 as indicated by broken lines in FIGS. Further, although not shown in FIG. 3, the heat pump controller 32 of the embodiment also executes a battery heating mode for heating the battery 55 by causing the heat medium heating heater 63 of the battery temperature adjusting device 61 to generate heat.
 (1)暖房モード
 先ず、図4を参照しながら暖房モードについて説明する。尚、各機器の制御はヒートポンプコントローラ32と空調コントローラ45の協働により実行されるものであるが、以下の説明ではヒートポンプコントローラ32を制御主体とし、簡略化して説明する。図4には暖房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。ヒートポンプコントローラ32により(オートモード)或いは空調コントローラ45の空調操作部53へのマニュアルの空調設定操作(マニュアルモード)により暖房モードが選択されると、ヒートポンプコントローラ32は電磁弁21を開き、電磁弁17、電磁弁20、電磁弁22、電磁弁35、電磁弁69を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
(1) Heating Mode First, the heating mode will be described with reference to FIG. The control of each device is executed by the cooperation of the heat pump controller 32 and the air conditioning controller 45, but in the following description, the heat pump controller 32 will be the control main body and will be briefly described. FIG. 4 shows how the refrigerant flows in the refrigerant circuit R in the heating mode (solid arrow). When the heating mode is selected by the heat pump controller 32 (auto mode) or the manual air conditioning setting operation (manual mode) to the air conditioning operation unit 53 of the air conditioning controller 45, the heat pump controller 32 opens the solenoid valve 21 and the solenoid valve 17 , The solenoid valve 20, the solenoid valve 22, the solenoid valve 35, and the solenoid valve 69 are closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air and condensed and liquefied.
 放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13E、13Jを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15により通風される外気中から熱を汲み上げる(吸熱)。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13D、電磁弁21を経て冷媒配管13Cに至り、更にこの冷媒配管13Cを経てアキュムレータ12に入り、そこで気液分離された後、冷媒配管13Kからガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。 The liquefied refrigerant in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7. The refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and pumps up heat from the outside air ventilated by traveling or by the outdoor blower 15 (heat absorption). That is, the refrigerant circuit R serves as a heat pump. Then, the low-temperature refrigerant that has exited the outdoor heat exchanger 7 reaches the refrigerant pipe 13C via the refrigerant pipes 13A and 13D, the solenoid valve 21, and further enters the accumulator 12 via this refrigerant pipe 13C, where it is gas-liquid separated. After that, the circulation in which the gas refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K is repeated. The air heated by the radiator 4 is blown out from the air outlet 29, so that the interior of the vehicle is heated.
 ヒートポンプコントローラ32は、車室内に吹き出される空気の目標温度(車室内に吹き出される空気の温度の目標値)である後述する目標吹出温度TAOから算出される目標ヒータ温度TCO(放熱器4の目標温度)から目標放熱器圧力PCOを算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、放熱器出口温度センサ44が検出する放熱器4の冷媒出口温度Tci及び放熱器圧力センサ47が検出する放熱器圧力Pciに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度を制御する。 The heat pump controller 32 calculates a target heater temperature TCO (of the radiator 4) calculated from a target outlet temperature TAO, which will be described later, which is a target temperature of the air blown into the vehicle interior (a target value of the temperature of the air blown into the vehicle interior). The target radiator pressure PCO is calculated from the target temperature), and the rotational speed of the compressor 2 is based on the target radiator pressure PCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. And controlling the valve opening degree of the outdoor expansion valve 6 based on the refrigerant outlet temperature Tci of the radiator 4 detected by the radiator outlet temperature sensor 44 and the radiator pressure Pci detected by the radiator pressure sensor 47, The degree of supercooling of the refrigerant at the outlet of the radiator 4 is controlled.
 また、ヒートポンプコントローラ32は、必要とされる暖房能力に対して放熱器4による暖房能力(加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、低外気温時等にも車室内を支障無く暖房する。 Further, when the heating capacity (heating capacity) of the radiator 4 is insufficient with respect to the required heating capacity, the heat pump controller 32 supplements this shortage with the heat generated by the auxiliary heater 23. As a result, the vehicle interior is heated without any trouble even when the outside temperature is low.
 (2)除湿暖房モード
 次に、図5を参照しながら除湿暖房モードについて説明する。図5は除湿暖房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。除湿暖房モードでは、ヒートポンプコントローラ32は電磁弁21、電磁弁22、電磁弁35を開き、電磁弁17、電磁弁20、電磁弁69は閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
(2) Dehumidification Heating Mode Next, the dehumidification heating mode will be described with reference to FIG. FIG. 5 shows how the refrigerant flows in the refrigerant circuit R in the dehumidifying and heating mode (solid arrow). In the dehumidifying and heating mode, the heat pump controller 32 opens the solenoid valve 21, the solenoid valve 22, and the solenoid valve 35, and closes the solenoid valve 17, the solenoid valve 20, and the solenoid valve 69. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air and condensed and liquefied.
 放熱器4内で液化した冷媒は放熱器4を出た後、冷媒配管13Eを経て一部は冷媒配管13Jに入り、室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15により通風される外気中から熱を汲み上げる(吸熱)。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13D、電磁弁21を経て冷媒配管13Cに至り、この冷媒配管13Cを経てアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。 After the refrigerant liquefied in the radiator 4 exits the radiator 4, a part of it enters the refrigerant pipe 13J through the refrigerant pipe 13E and reaches the outdoor expansion valve 6. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7. The refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and pumps up heat from the outside air ventilated by traveling or by the outdoor blower 15 (heat absorption). Then, the low-temperature refrigerant leaving the outdoor heat exchanger 7 reaches the refrigerant pipe 13C via the refrigerant pipes 13A and 13D and the solenoid valve 21, enters the accumulator 12 via the refrigerant pipe 13C, and is separated into gas and liquid there. After that, the circulation in which the gas refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K is repeated.
 一方、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の残りは分流され、この分流された冷媒が電磁弁22を経て冷媒配管13Fに流入し、冷媒配管13Bに至る。次に、冷媒は室内膨張弁8に至り、この室内膨張弁8にて減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときに吸熱器9で生じる冷媒の吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。 On the other hand, the rest of the condensed refrigerant flowing through the radiator pipe 13E via the radiator 4 is diverted, and the diverted refrigerant flows into the refrigerant pipe 13F via the solenoid valve 22 and reaches the refrigerant pipe 13B. Next, the refrigerant reaches the indoor expansion valve 8, is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 via the electromagnetic valve 35, and is evaporated. At this time, the water in the air blown out from the indoor blower 27 is condensed and adheres to the heat absorber 9 due to the heat absorbing action of the refrigerant generated in the heat absorber 9, so that the air is cooled and dehumidified.
 吸熱器9で蒸発した冷媒は、冷媒配管13Cに出て冷媒配管13Dからの冷媒(室外熱交換器7からの冷媒)と合流した後、アキュムレータ12を経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4や補助ヒータ23(発熱している場合)を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。 The refrigerant evaporated in the heat absorber 9 flows out into the refrigerant pipe 13C, joins the refrigerant from the refrigerant pipe 13D (refrigerant from the outdoor heat exchanger 7), and then is sucked into the compressor 2 from the refrigerant pipe 13K via the accumulator 12. Repeat the cycle. The air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4 and the auxiliary heater 23 (when heat is generated), so that dehumidification and heating of the vehicle interior is performed.
 ヒートポンプコントローラ32は、実施例では目標ヒータ温度TCOから算出される目標放熱器圧力PCOと放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御するか、又は、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数を制御する。このとき、ヒートポンプコントローラ32は放熱器圧力Pciによるか吸熱器温度Teによるか、何れかの演算から得られる圧縮機目標回転数の低い方を選択して圧縮機2を制御する。また、吸熱器温度Teに基づいて室外膨張弁6の弁開度を制御する。 In the embodiment, the heat pump controller 32 rotates the compressor 2 based on the target radiator pressure PCO calculated from the target heater temperature TCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. Or the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is its target value. .. At this time, the heat pump controller 32 controls the compressor 2 by selecting whichever of the radiator target pressure Pci and the heat absorber temperature Te, whichever is lower than the target compressor speed obtained from the calculation. Further, the valve opening degree of the outdoor expansion valve 6 is controlled based on the heat absorber temperature Te.
 また、ヒートポンプコントローラ32は、この除湿暖房モードにおいても必要とされる暖房能力に対して放熱器4による暖房能力(加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、低外気温時等にも車室内を支障無く除湿暖房する。 Further, when the heating capacity (heating capacity) of the radiator 4 is insufficient with respect to the heating capacity required also in the dehumidifying and heating mode, the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. .. As a result, the vehicle interior is dehumidified and heated even when the outside temperature is low.
 (3)除湿冷房モード
 次に、図6を参照しながら除湿冷房モードについて説明する。図6は除湿冷房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。除湿冷房モードでは、ヒートポンプコントローラ32は電磁弁17、及び、電磁弁35を開き、電磁弁20、電磁弁21、電磁弁22、及び、電磁弁69を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
(3) Dehumidifying and Cooling Mode Next, the dehumidifying and cooling mode will be described with reference to FIG. FIG. 6 shows how the refrigerant flows in the refrigerant circuit R in the dehumidifying and cooling mode (solid arrow). In the dehumidifying and cooling mode, the heat pump controller 32 opens the solenoid valve 17 and the solenoid valve 35, and closes the solenoid valve 20, the solenoid valve 21, the solenoid valve 22, and the solenoid valve 69. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air, and is condensed and liquefied.
 放熱器4を出た冷媒は冷媒配管13E、13Jを経て室外膨張弁6に至り、暖房モードや除湿暖房モードよりも開き気味(大きい弁開度の領域)で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入り、逆止弁18を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着し、空気は冷却され、且つ、除湿される。 The refrigerant exiting the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipes 13E and 13J, and then passes through the outdoor expansion valve 6 controlled to open more (a region of a larger valve opening) than the heating mode or the dehumidifying and heating mode. It flows into the outdoor heat exchanger 7. The refrigerant that has flowed into the outdoor heat exchanger 7 is condensed by being cooled there by traveling or by the outside air ventilated by the outdoor blower 15. The refrigerant discharged from the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16, and reaches the indoor expansion valve 8 via the check valve 18. The refrigerant is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates. Due to the heat absorbing action at this time, moisture in the air blown out from the indoor blower 27 is condensed and attached to the heat absorber 9, and the air is cooled and dehumidified.
 吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこを経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4や補助ヒータ23(発熱している場合)を通過する過程で再加熱(除湿暖房時よりも加熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。 The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is repeatedly sucked into the compressor 2 from the refrigerant pipe 13K via the refrigerant pipe 13K. The air cooled and dehumidified by the heat absorber 9 is reheated (has a lower heating capacity than that during dehumidification heating) in the process of passing through the radiator 4 and the auxiliary heater 23 (when heat is generated). As a result, dehumidification and cooling of the vehicle interior are performed.
 ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)と吸熱器9の目標温度(吸熱器温度Teの目標値)である目標吸熱器温度TEOに基づき、吸熱器温度Teを目標吸熱器温度TEOにするように圧縮機2の回転数を制御すると共に、放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)と目標放熱器圧力PCO(放熱器圧力Pciの目標値)に基づき、放熱器圧力Pciを目標放熱器圧力PCOにするように室外膨張弁6の弁開度を制御することで放熱器4による必要なリヒート量(再加熱量)を得る。 The heat pump controller 32 absorbs heat based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is the target temperature of the heat absorber 9 (target value of the heat absorber temperature Te). The rotation speed of the compressor 2 is controlled so that the device temperature Te becomes the target heat absorber temperature TEO, and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47 and the target radiator pressure PCO. Based on (the target value of the radiator pressure Pci), the valve opening of the outdoor expansion valve 6 is controlled so that the radiator pressure Pci becomes the target radiator pressure PCO. Amount).
 また、ヒートポンプコントローラ32は、この除湿冷房モードにおいても必要とされる暖房能力に対して放熱器4による暖房能力(再加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、車室内の温度を下げ過ぎること無く、除湿冷房する。 Further, when the heating capacity (reheating capacity) by the radiator 4 is insufficient with respect to the heating capacity required also in the dehumidifying and cooling mode, the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. To do. As a result, dehumidifying and cooling are performed without lowering the temperature inside the vehicle compartment too much.
 (4)冷房モード
 次に、図7を参照しながら冷房モードについて説明する。図7は冷房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。冷房モードでは、ヒートポンプコントローラ32は電磁弁17、電磁弁20、及び、電磁弁35を開き、電磁弁21、電磁弁22、及び、電磁弁69を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。尚、補助ヒータ23には通電されない。
(4) Cooling Mode Next, the cooling mode will be described with reference to FIG. 7. FIG. 7 shows how the refrigerant flows in the refrigerant circuit R in the cooling mode (solid arrow). In the cooling mode, the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, and the solenoid valve 35, and closes the solenoid valve 21, the solenoid valve 22, and the solenoid valve 69. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23. The auxiliary heater 23 is not energized.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒート(再加熱)のみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。このとき電磁弁20は開放されているので冷媒は電磁弁20を通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮液化する。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Although the air in the air flow passage 3 is ventilated through the radiator 4, since the proportion thereof is small (because of only reheating (reheating) during cooling), it almost passes through the radiator 4, The discharged refrigerant reaches the refrigerant pipe 13J via the refrigerant pipe 13E. At this time, since the electromagnetic valve 20 is open, the refrigerant passes through the electromagnetic valve 20 and flows into the outdoor heat exchanger 7 as it is, and is cooled there by traveling or by the outside air ventilated by the outdoor blower 15 to be condensed and liquefied. To do.
 室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入り、逆止弁18を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときの吸熱作用で室内送風機27から吹き出されて吸熱器9と熱交換する空気は冷却される。 The refrigerant discharged from the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16, and reaches the indoor expansion valve 8 via the check valve 18. The refrigerant is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates. Due to the heat absorbing action at this time, the air blown out from the indoor blower 27 and exchanging heat with the heat absorber 9 is cooled.
 吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこから冷媒配管13Kを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房モードにおいては、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて圧縮機2の回転数を制御する。 The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and then is sucked into the compressor 2 via the refrigerant pipe 13K. The air cooled by the heat absorber 9 is blown into the vehicle interior from the air outlet 29, so that the vehicle interior is cooled. In this cooling mode, the heat pump controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
 (5)空調(優先)+バッテリ冷却モード
 次に、図8を参照しながら空調(優先)+バッテリ冷却モードについて説明する。図8は空調(優先)+バッテリ冷却モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。空調(優先)+バッテリ冷却モードでは、ヒートポンプコントローラ32は電磁弁17、電磁弁20、電磁弁35、及び、電磁弁69を開き、電磁弁21、及び、電磁弁22を閉じる。
(5) Air Conditioning (Priority)+Battery Cooling Mode Next, the air conditioning (priority)+battery cooling mode will be described with reference to FIG. FIG. 8 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in the air conditioning (priority)+battery cooling mode. In the air conditioning (priority)+battery cooling mode, the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, the solenoid valve 35, and the solenoid valve 69, and closes the solenoid valves 21 and 22.
 そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。尚、この運転モードでは補助ヒータ23には通電されない。また、熱媒体加熱ヒータ63にも通電されない。 Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23. In this operation mode, the auxiliary heater 23 is not energized. Further, the heat medium heater 63 is not energized.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒート(再加熱)のみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。このとき電磁弁20は開放されているので冷媒は電磁弁20を通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮液化する。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Although the air in the air flow passage 3 is ventilated through the radiator 4, since the proportion thereof is small (because of only reheating (reheating) during cooling), it almost passes through the radiator 4, The discharged refrigerant reaches the refrigerant pipe 13J via the refrigerant pipe 13E. At this time, since the electromagnetic valve 20 is open, the refrigerant passes through the electromagnetic valve 20 and flows into the outdoor heat exchanger 7 as it is, and is cooled there by traveling or by the outside air ventilated by the outdoor blower 15 to be condensed and liquefied. To do.
 室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入る。この冷媒配管13Bに流入した冷媒は、逆止弁18を経た後に分流され、一方はそのまま冷媒配管13Bを流れて室内膨張弁8に至る。この室内膨張弁8に流入した冷媒はそこで減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときの吸熱作用で室内送風機27から吹き出されて吸熱器9と熱交換する空気は冷却される。 The refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16. The refrigerant flowing into the refrigerant pipe 13B is branched after passing through the check valve 18, and one of the refrigerant flows through the refrigerant pipe 13B as it is to reach the indoor expansion valve 8. The refrigerant flowing into the indoor expansion valve 8 is decompressed there, then flows into the heat absorber 9 through the electromagnetic valve 35, and is evaporated. Due to the heat absorbing action at this time, the air blown out from the indoor blower 27 and exchanging heat with the heat absorber 9 is cooled.
 吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこから冷媒配管13Kを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。 The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and then is sucked into the compressor 2 via the refrigerant pipe 13K. The air cooled by the heat absorber 9 is blown into the vehicle interior from the air outlet 29, so that the vehicle interior is cooled.
 他方、逆止弁18を経た冷媒の残りは分流され、分岐配管67に流入して補助膨張弁68に至る。ここで冷媒は減圧された後、電磁弁69を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入し、そこで蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管71、冷媒配管13C及びアキュムレータ12を順次経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す(図8に実線矢印で示す)。 On the other hand, the rest of the refrigerant that has passed through the check valve 18 is split, flows into the branch pipe 67, and reaches the auxiliary expansion valve 68. Here, the refrigerant is decompressed, then flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 via the electromagnetic valve 69, and evaporates there. At this time, it exerts an endothermic effect. The refrigerant evaporated in the refrigerant passage 64B repeats the circulation in which the refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K through the refrigerant pipe 71, the refrigerant pipe 13C and the accumulator 12 in sequence (shown by a solid arrow in FIG. 8).
 一方、循環ポンプ62が運転されているので、この循環ポンプ62から吐出された熱媒体が熱媒体配管66内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒と熱交換し、吸熱されて熱媒体は冷却される。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は、熱媒体加熱ヒータ63に至る。但し、この運転モードでは熱媒体加熱ヒータ63は発熱されないので、熱媒体はそのまま通過してバッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は冷却されると共に、バッテリ55を冷却した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す(図8に破線矢印で示す)。 On the other hand, since the circulation pump 62 is operating, the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 66, and the refrigerant flow passage there. The heat medium is cooled by exchanging heat with the refrigerant that evaporates in 64B and absorbing heat. The heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heater 63. However, since the heat medium heating heater 63 does not generate heat in this operation mode, the heat medium passes through as it is to the battery 55 and exchanges heat with the battery 55. As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 is repeatedly sucked into the circulation pump 62 and repeatedly circulated (indicated by a dashed arrow in FIG. 8 ).
 この空調(優先)+バッテリ冷却モードにおいては、ヒートポンプコントローラ32は電磁弁35を開いた状態を維持し、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて後述する図12に示す如く圧縮機2の回転数を制御する。また、実施例では熱媒体温度センサ76が検出する熱媒体の温度(熱媒体温度Tw:バッテリコントローラ73から送信される)に基づき、電磁弁69を以下の如く開閉制御する。 In this air conditioning (priority)+battery cooling mode, the heat pump controller 32 maintains the electromagnetic valve 35 in the open state, and will be described later based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48. The rotation speed of the compressor 2 is controlled as shown in FIG. In the embodiment, the solenoid valve 69 is controlled to open and close as follows based on the temperature of the heat medium detected by the heat medium temperature sensor 76 (heat medium temperature Tw: transmitted from the battery controller 73).
 ここで、図17にバッテリ55の温度調整に関する各温度の値の関係を示す。THはバッテリ55の使用限界の上限温度である上限値(例えば、+60℃等)、TLは使用限界の下限温度である下限値である(例えば、+10℃等)。また、TwULは制御上限値、TwLLは制御下限値である。制御上限値TwULは上限値THより低い値(例えば+40℃等)、制御下限値TwLLは下限値TLより高い値(例えば、+15℃等)に設定され、それらの間の範囲がバッテリ55の温度を示す指標である熱媒体温度Twの適正温度範囲とする。実施例の熱媒体温度Twはバッテリ55の温度を示す指標であるので、これが即ちバッテリ55の適正温度範囲となる。そして、熱媒体温度Twのデフォルトの目標値としての目標熱媒体温度TWO(後述するTWObase)は、この適正温度範囲内の所定値Aに予め設定しておくものとする。 Here, FIG. 17 shows the relationship between the values of the respective temperatures related to the temperature adjustment of the battery 55. TH is an upper limit value that is the upper limit temperature of the battery 55 (for example, +60° C. or the like), and TL is a lower limit value that is the lower limit temperature of the use limit (for example, +10° C. or the like). Further, TwUL is a control upper limit value, and TwLL is a control lower limit value. The control upper limit value TwUL is set to a value lower than the upper limit value TH (for example, +40° C. or the like), the control lower limit value TwLL is set to a value higher than the lower limit value TL (for example, +15° C. or the like), and the range therebetween is the temperature of the battery 55. Is set as an appropriate temperature range of the heat medium temperature Tw which is an index indicating. Since the heat medium temperature Tw of the embodiment is an index showing the temperature of the battery 55, this is the proper temperature range of the battery 55. Then, the target heat medium temperature TWO (TWObase described later) as the default target value of the heat medium temperature Tw is set in advance to a predetermined value A within this appropriate temperature range.
 そして、図13は空調(優先)+バッテリ冷却モードにおける電磁弁69の開閉制御のブロック図を示している。ヒートポンプコントローラ32のバッテリ用電磁弁制御部90には熱媒体温度センサ76が検出する熱媒体温度Twと、前述した熱媒体温度Twの目標値としての目標熱媒体温度TWOが入力される。そして、バッテリ用電磁弁制御部90は、電磁弁69を閉じている状態からバッテリ55の発熱等により熱媒体温度Twが高くなり、制御上限値TwULまで上昇した場合(制御上限値TwULを上回った場合、又は、制御上限値TwUL以上となった場合。以下、同じ)、電磁弁69を開放する(電磁弁69開指示)。これにより、冷媒は冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して蒸発し、熱媒体流路64Aを流れる熱媒体を冷却するので、この冷却された熱媒体によりバッテリ55は冷却される。 Then, FIG. 13 shows a block diagram of opening/closing control of the solenoid valve 69 in the air conditioning (priority)+battery cooling mode. The heat medium temperature Tw detected by the heat medium temperature sensor 76 and the target heat medium temperature TWO as the target value of the heat medium temperature Tw described above are input to the battery solenoid valve control unit 90 of the heat pump controller 32. Then, when the heat medium temperature Tw increases due to heat generation of the battery 55 or the like from the state where the solenoid valve 69 is closed and the heat medium temperature Tw rises to the control upper limit value TwUL (exceeds the control upper limit value TwUL). If, or if the control upper limit value TwUL or more. The same applies hereinafter), the solenoid valve 69 is opened (electromagnetic valve 69 opening instruction). As a result, the refrigerant flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64, evaporates, and cools the heat medium flowing through the heat medium channel 64A. Therefore, the battery 55 is cooled by the cooled heat medium. To be done.
 その後、熱媒体温度Twが制御下限値TwLLまで低下した場合(制御下限値TwLLを下回った場合、又は、制御下限値TwLL以下となった場合。以下、同じ)、電磁弁69を閉じる(電磁弁69閉指示)。以後、このような電磁弁69の開閉を繰り返して、車室内の冷房を優先しながら、熱媒体温度Twを目標熱媒体温度TWOに制御し、バッテリ55の冷却を行う。 After that, when the heat medium temperature Tw drops to the control lower limit value TwLL (when it falls below the control lower limit value TwLL or becomes equal to or lower than the control lower limit value TwLL. The same applies hereinafter), the solenoid valve 69 is closed (solenoid valve). 69 Close instruction). After that, the solenoid valve 69 is repeatedly opened and closed as described above to control the heat medium temperature Tw to the target heat medium temperature TWO while giving priority to the cooling in the vehicle compartment, to cool the battery 55.
 (6)空調運転の切り換え
 ヒートポンプコントローラ32は下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、吹出口29から車室内に吹き出される空気の温度の目標値である。
 TAO=(Tset-Tin)×K+Tbal(f(Tset、SUN、Tam))
                                   ・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する車室内空気の温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
(6) Switching of air conditioning operation The heat pump controller 32 calculates the above-mentioned target outlet temperature TAO from the following formula (I). The target outlet temperature TAO is a target value of the temperature of the air blown into the vehicle compartment from the outlet 29.
TAO=(Tset-Tin)×K+Tbal(f(Tset, SUN, Tam))
..(I)
Here, Tset is the set temperature of the vehicle interior set by the air conditioning operation unit 53, Tin is the temperature of the vehicle interior air detected by the inside air temperature sensor 37, K is a coefficient, Tbal is the set temperature Tset, and the solar radiation sensor 51 detects the temperature. It is a balance value calculated from the amount of solar radiation SUN and the outside air temperature Tam detected by the outside air temperature sensor 33. Then, in general, the target outlet temperature TAO is higher as the outside air temperature Tam is lower, and is decreased as the outside air temperature Tam is increased.
 そして、ヒートポンプコントローラ32は起動時には外気温度センサ33が検出する外気温度Tamと目標吹出温度TAOとに基づいて上記各空調運転のうちの何れかの空調運転を選択する。また、起動後は外気温度Tamや目標吹出温度TAO、熱媒体温度Tw等の運転条件や環境条件、設定条件の変化に応じ、前記各空調運転を選択して切り換えていく。例えば、冷房モードから空調(優先)+バッテリ冷却モードへの移行は、バッテリコントローラ73からのバッテリ冷却要求が入力されたことに基づいて実行される。この場合、バッテリコントローラ73は例えば熱媒体温度Twやバッテリ温度Tcellが所定値以上に上昇した場合にバッテリ冷却要求を出力し、ヒートポンプコントローラ32や空調コントローラ45に送信するものである。 Then, the heat pump controller 32 selects any one of the above air conditioning operations based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target outlet temperature TAO at the time of startup. Further, after the start-up, each of the air conditioning operations is selected and switched according to changes in operating conditions such as the outside air temperature Tam, the target outlet temperature TAO, and the heat medium temperature Tw, environmental conditions, and setting conditions. For example, the transition from the cooling mode to the air conditioning (priority)+battery cooling mode is executed based on the input of the battery cooling request from the battery controller 73. In this case, the battery controller 73 outputs a battery cooling request and transmits it to the heat pump controller 32 and the air conditioning controller 45, for example, when the heat medium temperature Tw or the battery temperature Tcell rises above a predetermined value.
 (7)バッテリ冷却(優先)+空調モード
 次に、バッテリ55の充電中の動作について説明する。例えば急速充電器(外部電源)の充電用のプラグが接続され、バッテリ55が充電されているときに(これらの情報はバッテリコントローラ73から送信される)、車両のイグニッション(IGN)のON/OFFに拘わらず、バッテリ冷却要求があり、空調操作部53の空調スイッチがONされた場合、ヒートポンプコントローラ32はバッテリ冷却(優先)+空調モードを実行する。このバッテリ冷却(優先)+空調モードにおける冷媒回路Rの冷媒の流れ方は、図8に示した空調(優先)+バッテリ冷却モードの場合と同様である。
(7) Battery Cooling (Priority)+Air Conditioning Mode Next, the operation during charging of the battery 55 will be described. For example, when the plug for charging a quick charger (external power source) is connected and the battery 55 is being charged (these information is transmitted from the battery controller 73), the ignition (IGN) of the vehicle is turned on/off. Regardless of the above, when there is a battery cooling request and the air conditioning switch of the air conditioning operation unit 53 is turned on, the heat pump controller 32 executes battery cooling (priority)+air conditioning mode. The way the refrigerant flows in the refrigerant circuit R in the battery cooling (priority)+air conditioning mode is the same as in the air conditioning (priority)+battery cooling mode shown in FIG.
 但し、このバッテリ冷却(優先)+空調モードの場合、実施例ではヒートポンプコントローラ32は電磁弁69を開いた状態に維持し、熱媒体温度センサ76(バッテリコントローラ73から送信される)が検出する熱媒体温度Twに基づいて後述する図14に示す如く圧縮機2の回転数を制御する。また、実施例では吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づき、電磁弁35を以下の如く開閉制御する。尚、後述する充電時間優先モードと充電電力優先モードの切り換えにより、動作は異なって来るが、これについては後に詳述する。 However, in the case of this battery cooling (priority)+air conditioning mode, in the embodiment, the heat pump controller 32 maintains the electromagnetic valve 69 in an open state, and the heat detected by the heat medium temperature sensor 76 (transmitted from the battery controller 73) is detected. Based on the medium temperature Tw, the rotation speed of the compressor 2 is controlled as shown in FIG. 14 described later. In the embodiment, the solenoid valve 35 is controlled to open and close as follows based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48. The operation differs depending on the switching between the charging time priority mode and the charging power priority mode, which will be described later, but this will be described in detail later.
 図15はこのバッテリ冷却(優先)+空調モードにおける電磁弁35の開閉制御のブロック図を示している。ヒートポンプコントローラ32の吸熱器用電磁弁制御部95には吸熱器温度センサ48が検出する吸熱器温度Teと、当該吸熱器温度Teの目標値としての所定の目標吸熱器温度TEOが入力される。そして、吸熱器用電磁弁制御部95は、目標吸熱器温度TEOの上下に所定の温度差を有して制御上限値TeULと制御下限値TeLLを設定し、電磁弁35を閉じている状態から吸熱器温度Teが高くなり、制御上限値TeULまで上昇した場合(制御上限値TeULを上回った場合、又は、制御上限値TeUL以上となった場合。以下、同じ)、電磁弁35を開放する(電磁弁35開指示)。これにより、冷媒は吸熱器9に流入して蒸発し、空気流通路3を流通する空気を冷却する。 FIG. 15 shows a block diagram of opening/closing control of the solenoid valve 35 in this battery cooling (priority)+air conditioning mode. The heat absorber electromagnetic valve control unit 95 of the heat pump controller 32 is input with the heat absorber temperature Te detected by the heat absorber temperature sensor 48 and a predetermined target heat absorber temperature TEO as a target value of the heat absorber temperature Te. The heat absorber electromagnetic valve control unit 95 sets the control upper limit value TeUL and the control lower limit value TeLL with a predetermined temperature difference above and below the target heat absorber temperature TEO, and absorbs heat from the state where the solenoid valve 35 is closed. When the device temperature Te rises and rises to the control upper limit value TeUL (when it exceeds the control upper limit value TeUL, or when it becomes equal to or higher than the control upper limit value TeUL. The same applies hereinafter), the solenoid valve 35 is opened (electromagnetic valve). Instruction to open valve 35). As a result, the refrigerant flows into the heat absorber 9 and evaporates, and cools the air flowing through the air flow passage 3.
 その後、吸熱器温度Teが制御下限値TeLLまで低下した場合(制御下限値TeLLを下回った場合、又は、制御下限値TeLL以下となった場合。以下、同じ)、電磁弁35を閉じる(電磁弁35閉指示)。以後、このような電磁弁35の開閉を繰り返して、バッテリ55の冷却を優先しながら、吸熱器温度Teを目標吸熱器温度TEOに制御し、車室内の冷房を行う。 After that, when the heat absorber temperature Te decreases to the control lower limit value TeLL (when it falls below the control lower limit value TeLL or becomes equal to or lower than the control lower limit value TeLL. The same applies hereinafter), the solenoid valve 35 is closed (solenoid valve 35 closing instruction). Thereafter, such opening/closing of the solenoid valve 35 is repeated to control the heat absorber temperature Te to the target heat absorber temperature TEO while prioritizing the cooling of the battery 55 to cool the vehicle interior.
 (8)バッテリ冷却(単独)モード
 次に、イグニッションのON/OFFに拘わらず、空調操作部53の空調スイッチがOFFされた状態で、急速充電器の充電用のプラグが接続され、バッテリ55が充電されているとき、バッテリ冷却要求があった場合、ヒートポンプコントローラ32はバッテリ冷却(単独)モードを実行する。但し、バッテリ55の充電中以外にも、空調スイッチがOFFで、バッテリ冷却要求があった場合(高外気温で走行時等)には実行される。図9はこのバッテリ冷却(単独)モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。バッテリ冷却(単独)モードでは、ヒートポンプコントローラ32は電磁弁17、電磁弁20、及び、電磁弁69を開き、電磁弁21、電磁弁22、及び、電磁弁35を閉じる。
(8) Battery Cooling (Independent) Mode Next, regardless of whether the ignition is ON or OFF, the charging plug of the quick charger is connected while the air conditioning switch of the air conditioning operation unit 53 is OFF, and the battery 55 is When being charged, if there is a battery cooling request, the heat pump controller 32 executes the battery cooling (single) mode. However, it is executed when the air conditioning switch is OFF and there is a battery cooling request (during traveling at a high outside air temperature) other than during charging of the battery 55. FIG. 9 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in the battery cooling (single) mode. In the battery cooling (single) mode, the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, and the solenoid valve 69, and closes the solenoid valve 21, the solenoid valve 22, and the solenoid valve 35.
 そして、圧縮機2、及び、室外送風機15を運転する。尚、室内送風機27は運転されず、補助ヒータ23にも通電されない。また、この運転モードでは熱媒体加熱ヒータ63も通電されない。 Then, the compressor 2 and the outdoor blower 15 are operated. The indoor blower 27 is not operated and the auxiliary heater 23 is not energized. Further, the heat medium heater 63 is not energized in this operation mode.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されないので、ここは通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。このとき、電磁弁20は開放されているので冷媒は電磁弁20を通過し、そのまま室外熱交換器7に流入し、そこで室外送風機15により通風される外気によって空冷され、凝縮液化する。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is not ventilated to the radiator 4, it passes only here, and the refrigerant exiting the radiator 4 reaches the refrigerant pipe 13J via the refrigerant pipe 13E. At this time, since the electromagnetic valve 20 is open, the refrigerant passes through the electromagnetic valve 20 and flows into the outdoor heat exchanger 7 as it is, where it is air-cooled by the outside air ventilated by the outdoor blower 15 to be condensed and liquefied.
 室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入る。この冷媒配管13Bに流入した冷媒は、逆止弁18を経た後、全てが分岐配管67に流入して補助膨張弁68に至る。ここで冷媒は減圧された後、電磁弁69を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入し、そこで蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管71、冷媒配管13C及びアキュムレータ12を順次経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す(図9に実線矢印で示す)。 The refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16. After passing through the check valve 18, all of the refrigerant flowing into the refrigerant pipe 13B flows into the branch pipe 67 and reaches the auxiliary expansion valve 68. Here, the refrigerant is decompressed, then flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 via the electromagnetic valve 69, and evaporates there. At this time, it exerts an endothermic effect. The refrigerant evaporated in the refrigerant flow path 64B repeatedly passes through the refrigerant pipe 71, the refrigerant pipe 13C, and the accumulator 12 and is repeatedly sucked into the compressor 2 from the refrigerant pipe 13K (represented by a solid arrow in FIG. 9).
 一方、循環ポンプ62が運転されているので、この循環ポンプ62から吐出された熱媒体が熱媒体配管66内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒により吸熱され、熱媒体は冷却されるようになる。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は、熱媒体加熱ヒータ63に至る。但し、この運転モードでは熱媒体加熱ヒータ63は発熱されないので、熱媒体はそのまま通過してバッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は冷却されると共に、バッテリ55を冷却した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す(図9に破線矢印で示す)。 On the other hand, since the circulation pump 62 is operating, the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 66, and the refrigerant flow passage there. The heat medium is cooled by being absorbed by the refrigerant evaporated in 64B. The heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heater 63. However, since the heat medium heating heater 63 does not generate heat in this operation mode, the heat medium passes through as it is to the battery 55 and exchanges heat with the battery 55. As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 is repeatedly sucked into the circulation pump 62 and repeatedly circulated (indicated by a dashed arrow in FIG. 9 ).
 このバッテリ冷却(単独)モードにおいても、ヒートポンプコントローラ32は熱媒体温度センサ76が検出する熱媒体温度Twに基づいて後述する如く圧縮機2の回転数を制御することにより、バッテリ55を冷却する。尚、後述する充電時間優先モードと充電電力優先モードの切り換えにより、動作は異なって来るが、これについては後に詳述する。 Also in this battery cooling (single) mode, the heat pump controller 32 cools the battery 55 by controlling the number of revolutions of the compressor 2 based on the heat medium temperature Tw detected by the heat medium temperature sensor 76 as described later. The operation differs depending on the switching between the charging time priority mode and the charging power priority mode, which will be described later, but this will be described in detail later.
 (9)除霜モード
 次に、図10を参照しながら室外熱交換器7の除霜モードについて説明する。図10は除霜モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。前述した如く暖房モードでは、室外熱交換器7では冷媒が蒸発し、外気から吸熱して低温となるため、室外熱交換器7には外気中の水分が霜となって付着する。
(9) Defrost Mode Next, the defrost mode of the outdoor heat exchanger 7 will be described with reference to FIG. 10. FIG. 10 shows how the refrigerant flows in the refrigerant circuit R in the defrosting mode (solid arrow). As described above, in the heating mode, the refrigerant evaporates in the outdoor heat exchanger 7 and absorbs heat from the outside air to reach a low temperature, so that the moisture in the outside air adheres to the outdoor heat exchanger 7 as frost.
 そこで、ヒートポンプコントローラ32は室外熱交換器温度センサ49が検出する室外熱交換器温度TXO(室外熱交換器7における冷媒蒸発温度)と、室外熱交換器7の無着霜時における冷媒蒸発温度TXObaseとの差ΔTXO(=TXObase-TXO)を算出しており、室外熱交換器温度TXOが無着霜時における冷媒蒸発温度TXObaseより低下して、その差ΔTXOが所定値以上に拡大した状態が所定時間継続した場合、室外熱交換器7に着霜しているものと判定して所定の着霜フラグをセットする。 Therefore, the heat pump controller 32 detects the outdoor heat exchanger temperature TXO detected by the outdoor heat exchanger temperature sensor 49 (refrigerant evaporation temperature in the outdoor heat exchanger 7) and the refrigerant evaporation temperature TXObase when the outdoor heat exchanger 7 is not frosted. And the difference ΔTXO (=TXObase−TXO) is calculated, and the condition that the outdoor heat exchanger temperature TXO is lower than the refrigerant evaporation temperature TXObase in the non-frosting state and the difference ΔTXO is expanded to a predetermined value or more is predetermined. When the time has continued, it is determined that the outdoor heat exchanger 7 is frosted, and a predetermined frosting flag is set.
 そして、この着霜フラグがセットされており、空調操作部53の前述した空調スイッチがOFFされた状態で、急速充電器の充電用のプラグが接続され、バッテリ55が充電されるとき、ヒートポンプコントローラ32は以下の如く室外熱交換器7の除霜モードを実行する。 When the frost flag is set and the above-mentioned air conditioning switch of the air conditioning operation unit 53 is turned off, the charging plug of the quick charger is connected and the battery 55 is charged. 32 performs the defrosting mode of the outdoor heat exchanger 7 as follows.
 ヒートポンプコントローラ32はこの除霜モードでは、冷媒回路Rを前述した暖房モードの状態とした上で、室外膨張弁6の弁開度を全開とする。そして、圧縮機2を運転し、当該圧縮機2から吐出された高温の冷媒を放熱器4、室外膨張弁6を経て室外熱交換器7に流入させ、当該室外熱交換器7の着霜を融解させる(図10)。そして、ヒートポンプコントローラ32は室外熱交換器温度センサ49が検出する室外熱交換器温度TXOが所定の除霜終了温度(例えば、+3℃等)より高くなった場合、室外熱交換器7の除霜が完了したものとして除霜モードを終了する。 In this defrosting mode, the heat pump controller 32 sets the refrigerant circuit R to the heating mode described above, and then fully opens the valve opening degree of the outdoor expansion valve 6. Then, the compressor 2 is operated, the high-temperature refrigerant discharged from the compressor 2 is caused to flow into the outdoor heat exchanger 7 through the radiator 4 and the outdoor expansion valve 6, and the frost formation on the outdoor heat exchanger 7 is prevented. Thaw (Figure 10). Then, the heat pump controller 32 defrosts the outdoor heat exchanger 7 when the outdoor heat exchanger temperature TXO detected by the outdoor heat exchanger temperature sensor 49 becomes higher than a predetermined defrosting end temperature (for example, +3° C.). Is completed and the defrosting mode is terminated.
 (10)バッテリ加熱モード
 また、空調運転を実行しているとき、或いは、バッテリ55を充電しているとき、ヒートポンプコントローラ32はバッテリ加熱モードを実行する。このバッテリ加熱モードでは、ヒートポンプコントローラ32は循環ポンプ62を運転し、熱媒体加熱ヒータ63に通電する。尚、電磁弁69は閉じる。
(10) Battery Heating Mode Further, the heat pump controller 32 executes the battery heating mode when the air conditioning operation is executed or when the battery 55 is charged. In this battery heating mode, the heat pump controller 32 operates the circulation pump 62 to energize the heat medium heating heater 63. The solenoid valve 69 is closed.
 これにより、循環ポンプ62から吐出された熱媒体は熱媒体配管66内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこを通過して熱媒体加熱ヒータ63に至る。このとき熱媒体加熱ヒータ63は発熱されているので、熱媒体は熱媒体加熱ヒータ63により加熱されて温度上昇した後、バッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は加熱されると共に、バッテリ55を加熱した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す。 As a result, the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 through the heat medium pipe 66, and passes therethrough to reach the heat medium heater 63. At this time, since the heat medium heating heater 63 is generating heat, the heat medium is heated by the heat medium heating heater 63 to increase its temperature, and then reaches the battery 55 to exchange heat with the battery 55. As a result, the battery 55 is heated, and the heat medium after heating the battery 55 is repeatedly circulated by being sucked into the circulation pump 62.
 このバッテリ加熱モードにおいては、ヒートポンプコントローラ32は熱媒体温度センサ76が検出する熱媒体温度Twに基づいて後述する如く熱媒体加熱ヒータ63の発熱を制御することにより、熱媒体温度Twを所定の目標熱媒体温度TWOに調整し、バッテリ55を加熱する。尚、バッテリ55の充電時には後述する充電時間優先モードと充電電力優先モードの切り換えにより、動作は異なって来るが、これについては後に詳述する。 In this battery heating mode, the heat pump controller 32 controls the heat generation of the heat medium heating heater 63 based on the heat medium temperature Tw detected by the heat medium temperature sensor 76, so that the heat medium temperature Tw is set to a predetermined target. The heat medium temperature TWO is adjusted and the battery 55 is heated. When the battery 55 is charged, the operation differs depending on the switching between the charging time priority mode and the charging power priority mode, which will be described later, but this will be described in detail later.
 (11)ヒートポンプコントローラ32による圧縮機2の制御
 また、ヒートポンプコントローラ32は、暖房モードでは放熱器圧力Pciに基づき、図11の制御ブロック図により圧縮機2の目標回転数(圧縮機目標回転数)TGNChを算出し、除湿冷房モード、冷房モード、空調(優先)+バッテリ冷却モードでは、吸熱器温度Teに基づき、図12の制御ブロック図により圧縮機2の目標回転数(圧縮機目標回転数)TGNCcを算出する。尚、除湿暖房モードでは圧縮機目標回転数TGNChと圧縮機目標回転数TGNCcのうちの低い方向を選択する。また、バッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モードでは、熱媒体温度Twに基づき、図13の制御ブロック図により圧縮機2の目標回転数(圧縮機目標回転数)TGNCwを算出する。
(11) Control of the compressor 2 by the heat pump controller 32 Further, the heat pump controller 32 in the heating mode is based on the radiator pressure Pci and the target rotation speed of the compressor 2 (compressor target rotation speed) according to the control block diagram of FIG. 11. TGNCh is calculated, and in the dehumidifying cooling mode, the cooling mode, and the air conditioning (priority)+battery cooling mode, based on the heat absorber temperature Te, the target rotation speed of the compressor 2 (compressor target rotation speed) according to the control block diagram of FIG. Calculate TGNCc. In the dehumidifying and heating mode, the lower direction of the compressor target rotation speed TGNCh and the compressor target rotation speed TGNc is selected. In the battery cooling (priority)+air conditioning mode and the battery cooling (single) mode, the target rotation speed of the compressor 2 (compressor target rotation speed) TGNCw is calculated based on the heat medium temperature Tw by the control block diagram of FIG. To do.
 (11-1)放熱器圧力Pciに基づく圧縮機目標回転数TGNChの算出
 先ず、図11を用いて放熱器圧力Pciに基づく圧縮機2の制御について詳述する。図11は放熱器圧力Pciに基づいて圧縮機2の目標回転数(圧縮機目標回転数)TGNChを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F(フィードフォワード)操作量演算部78は外気温度センサ33から得られる外気温度Tamと、室内送風機27のブロワ電圧BLVと、SW=(TAO-Te)/(Thp-Te)で得られるエアミックスダンパ28による風量割合SWと、放熱器4の出口における冷媒の過冷却度SCの目標値である目標過冷却度TGSCと、ヒータ温度Thpの目標値である前述した目標ヒータ温度TCOと、放熱器4の圧力の目標値である目標放熱器圧力PCOに基づいて圧縮機目標回転数のF/F操作量TGNChffを算出する。
(11-1) Calculation of Compressor Target Rotational Speed TGNCh Based on Radiator Pressure Pci First, the control of the compressor 2 based on the radiator pressure Pci will be described in detail with reference to FIG. FIG. 11 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCh of the compressor 2 based on the radiator pressure Pci. The F/F (feed forward) manipulated variable calculation unit 78 of the heat pump controller 32 uses the outside air temperature Tam obtained from the outside air temperature sensor 33, the blower voltage BLV of the indoor blower 27, and SW=(TAO-Te)/(Thp-Te ) The air flow rate SW obtained by the air mix damper 28, the target supercooling degree TGSC that is the target value of the supercooling degree SC of the refrigerant at the outlet of the radiator 4, and the target heater described above that is the target value of the heater temperature Thp. Based on the temperature TCO and the target radiator pressure PCO, which is the target value of the pressure of the radiator 4, the F/F operation amount TGNChff of the compressor target rotation speed is calculated.
 尚、ヒータ温度Thpは放熱器4の風下側の空気温度(推定値)であり、放熱器圧力センサ47が検出する放熱器圧力Pciと放熱器出口温度センサ44が検出する放熱器4の冷媒出口温度Tciから算出(推定)する。また、過冷却度SCは放熱器入口温度センサ43と放熱器出口温度センサ44が検出する放熱器4の冷媒入口温度Tcxinと冷媒出口温度Tciから算出される。 The heater temperature Thp is an air temperature (estimated value) on the leeward side of the radiator 4, and the radiator pressure Pci detected by the radiator pressure sensor 47 and the refrigerant outlet of the radiator 4 detected by the radiator outlet temperature sensor 44. It is calculated (estimated) from the temperature Tci. The degree of supercooling SC is calculated from the refrigerant inlet temperature Tcxin and the refrigerant outlet temperature Tci of the radiator 4 detected by the radiator inlet temperature sensor 43 and the radiator outlet temperature sensor 44.
 前記目標放熱器圧力PCOは上記目標過冷却度TGSCと目標ヒータ温度TCOに基づいて目標値演算部79が算出する。更に、F/B(フィードバック)操作量演算部81はこの目標放熱器圧力PCOと放熱器圧力Pciに基づくPID演算若しくはPI演算により圧縮機目標回転数のF/B操作量TGNChfbを算出する。そして、F/F操作量演算部78が算出したF/F操作量TGNChffとF/B操作量演算部81が算出したF/B操作量TGNChfbは加算器82で加算され、TGNCh00としてリミット設定部83に入力される。 The target radiator pressure PCO is calculated by the target value calculator 79 based on the target supercooling degree TGSC and the target heater temperature TCO. Further, the F/B (feedback) manipulated variable calculation unit 81 calculates the F/B manipulated variable TGNChfb of the compressor target rotational speed by PID calculation or PI calculation based on the target radiator pressure PCO and the radiator pressure Pci. Then, the F/F operation amount TGNChff calculated by the F/F operation amount calculation unit 78 and the F/B operation amount TGNChfb calculated by the F/B operation amount calculation unit 81 are added by the adder 82 to obtain a limit setting unit as TGNCh00. It is input to 83.
 リミット設定部83では制御上の下限回転数ECNpdLimLoと上限回転数ECNpdLimHiのリミットが付けられてTGNCh0とされた後、圧縮機OFF制御部84を経て圧縮機目標回転数TGNChとして決定される。即ち、圧縮機2の回転数は上限回転数ECNpdLimHi以下に制限される。通常モードではヒートポンプコントローラ32は、この放熱器圧力Pciに基づいて算出された圧縮機目標回転数TGNChにより、放熱器圧力Pciが目標放熱器圧力PCOになるように圧縮機2の運転を制御する。 In the limit setting unit 83, the lower limit speed ECNpdLimLo and the upper limit speed ECNpdLimHi for control are set to TGNCh0, and then the compressor OFF control unit 84 is used to determine the target compressor speed TGNCh. That is, the rotation speed of the compressor 2 is limited to the upper limit rotation speed ECNpdLimHi or less. In the normal mode, the heat pump controller 32 controls the operation of the compressor 2 so that the radiator pressure Pci becomes the target radiator pressure PCO by the compressor target rotation speed TGNCh calculated based on the radiator pressure Pci.
 尚、圧縮機OFF制御部84は、圧縮機目標回転数TGNChが上述した下限回転数ECNpdLimLoとなり、放熱器圧力Pciが目標放熱器圧力PCOの上下に設定された所定の上限値PULと下限値PLLのうちの上限値PULまで上昇した状態(上限値PULを上回った状態、又は、上限値PUL以上となった状態。以下、同じ)が所定時間th1継続した場合、圧縮機2を停止させて圧縮機2をON-OFF制御するON-OFFモードに入る。 In addition, the compressor OFF control unit 84 sets the compressor target rotation speed TGNCh to the above-described lower limit rotation speed ECNpdLimLo, and the radiator pressure Pci is a predetermined upper limit value PUL and lower limit value PLL set above and below the target radiator pressure PCO. If the state of rising up to the upper limit value PUL (a state of exceeding the upper limit value PUL or a state of becoming equal to or more than the upper limit value PUL. The same applies hereinafter) continues for a predetermined time th1, the compressor 2 is stopped and compression is performed. It enters the ON-OFF mode that controls the ON-OFF of the machine 2.
 この圧縮機2のON-OFFモードでは、放熱器圧力Pciが下限値PLLまで低下した場合(下限値PLLを下回った場合、又は、下限値PLL以下となった場合。以下、同じ)、圧縮機2を起動して圧縮機目標回転数TGNChを下限回転数ECNpdLimLoとして運転し、その状態で放熱器圧力Pciが上限値PULまで上昇した場合は圧縮機2を再度停止させる。即ち、下限回転数ECNpdLimLoでの圧縮機2の運転(ON)と、停止(OFF)を繰り返す。そして、放熱器圧力Pciが下限値PULまで低下し、圧縮機2を起動した後、放熱器圧力Pciが下限値PULより高くならない状態が所定時間th2継続した場合、圧縮機2のON-OFFモードを終了し、通常モードに復帰するものである。 In the ON-OFF mode of the compressor 2, when the radiator pressure Pci drops to the lower limit value PLL (when it falls below the lower limit value PLL or becomes lower than or equal to the lower limit value PLL. The same applies hereinafter), the compressor 2 is started to operate the compressor target rotation speed TGNCh as the lower limit rotation speed ECNpdLimLo, and when the radiator pressure Pci rises to the upper limit value PUL in that state, the compressor 2 is stopped again. That is, the operation (ON) and the stop (OFF) of the compressor 2 at the lower limit rotation speed ECNpdLimLo are repeated. When the radiator pressure Pci decreases to the lower limit value PUL and the compressor 2 is started, and the radiator pressure Pci does not become higher than the lower limit value PUL for a predetermined time th2, the compressor 2 is turned on and off. Is completed and the normal mode is restored.
 (11-2)吸熱器温度Teに基づく圧縮機目標回転数TGNCcの算出
 次に、図12を用いて吸熱器温度Teに基づく圧縮機2の制御について詳述する。図12は吸熱器温度Teに基づいて圧縮機2の目標回転数(圧縮機目標回転数)TGNCcを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F操作量演算部86は外気温度Tamと、空気流通路3内を流通する空気の風量Ga(室内送風機27のブロワ電圧BLVでもよい)と、目標放熱器圧力PCOと、吸熱器温度Teの目標値である目標吸熱器温度TEOに基づいて圧縮機目標回転数のF/F操作量TGNCcffを算出する。
(11-2) Calculation of Compressor Target Rotational Speed TGNCc Based on Heat Absorber Temperature Te Next, control of the compressor 2 based on the heat absorber temperature Te will be described in detail with reference to FIG. FIG. 12 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCc of the compressor 2 based on the heat absorber temperature Te. The F/F operation amount calculation unit 86 of the heat pump controller 32 has an outside air temperature Tam, an air volume Ga of air flowing through the air flow passage 3 (may be the blower voltage BLV of the indoor blower 27), a target radiator pressure PCO, The F/F operation amount TGNCcff of the compressor target rotation speed is calculated based on the target heat absorber temperature TEO which is the target value of the heat absorber temperature Te.
 また、F/B操作量演算部87は目標吸熱器温度TEOと吸熱器温度Teに基づくPID演算若しくはPI演算により圧縮機目標回転数のF/B操作量TGNCcfbを算出する。そして、F/F操作量演算部86が算出したF/F操作量TGNCcffとF/B操作量演算部87が算出したF/B操作量TGNCcfbは加算器88で加算され、TGNCc00としてリミット設定部89に入力される。 The F/B manipulated variable calculation unit 87 also calculates the F/B manipulated variable TGNCcfb of the compressor target rotation speed by PID calculation or PI calculation based on the target heat absorber temperature TEO and the heat absorber temperature Te. Then, the F/F operation amount TGNCcff calculated by the F/F operation amount calculation unit 86 and the F/B operation amount TGNCcfb calculated by the F/B operation amount calculation unit 87 are added by the adder 88 to obtain a limit setting unit as TGNCc00. It is input to 89.
 リミット設定部89では制御上の下限回転数TGNCcLimLoと上限回転数TGNCcLimHiのリミットが付けられてTGNCc0とされた後、圧縮機OFF制御部91を経て圧縮機目標回転数TGNCcとして決定される。従って、加算器88で加算された値TGNCc00が上限回転数TGNCcLimHiと下限回転数TGNCcLimLo以内であり、後述するON-OFFモードにならなければ、この値TGNCc00が圧縮機目標回転数TGNCc(圧縮機2の回転数となる)。通常モードではヒートポンプコントローラ32は、この吸熱器温度Teに基づいて算出された圧縮機目標回転数TGNCcにより、吸熱器温度Teが目標吸熱器温度TEOになるように圧縮機2の運転を制御する。 In the limit setting unit 89, the lower limit rotational speed TGNCcLimLo and the upper limit rotational speed TGNCcLimHi in control are set to TGNCc0, and then the compressor OFF control unit 91 is used to determine the target compressor rotational speed TGNCc. Therefore, if the value TGNCc00 added by the adder 88 is within the upper limit rotation speed TGNCcLimHi and the lower limit rotation speed TGNCcLimLo and the ON-OFF mode described later does not occur, this value TGNCc00 is the target compressor rotation speed TGNCc (compressor 2 Will be the number of rotations). In the normal mode, the heat pump controller 32 controls the operation of the compressor 2 so that the heat absorber temperature Te becomes the target heat absorber temperature TEO by the compressor target rotation speed TGNCc calculated based on the heat absorber temperature Te.
 尚、圧縮機OFF制御部91は、圧縮機目標回転数TGNCcが上述した下限回転数TGNCcLimLoとなり、吸熱器温度Teが目標吸熱器温度TEOの上下に設定された制御上限値TeULと制御下限値TeLLのうちの制御下限値TeLLまで低下した状態が所定時間tc1継続した場合、圧縮機2を停止させて圧縮機2をON-OFF制御するON-OFFモードに入る。 The compressor OFF control unit 91 controls the compressor target rotation speed TGNCc to be the above-described lower limit rotation speed TGNCcLimLo, and the heat absorber temperature Te is set above and below the target heat absorber temperature TEO to set the control upper limit value TeUL and the control lower limit value TeLL. If the state in which the control lower limit value TeLL among them has been reduced continues for a predetermined time tc1, the compressor 2 is stopped and the ON-OFF mode for ON-OFF controlling the compressor 2 is entered.
 この場合の圧縮機2のON-OFFモードでは、吸熱器温度Teが制御上限値TeULまで上昇した場合、圧縮機2を起動して圧縮機目標回転数TGNCcを下限回転数TGNCcLimLoとして運転し、その状態で吸熱器温度Teが制御下限値TeLLまで低下した場合は圧縮機2を再度停止させる。即ち、下限回転数TGNCcLimLoでの圧縮機2の運転(ON)と、停止(OFF)を繰り返す。そして、吸熱器温度Teが制御上限値TeULまで上昇し、圧縮機2を起動した後、吸熱器温度Teが制御上限値TeULより低くならない状態が所定時間tc2継続した場合、この場合の圧縮機2のON-OFFモードを終了し、通常モードに復帰するものである。 In the ON-OFF mode of the compressor 2 in this case, when the heat absorber temperature Te rises to the control upper limit value TeUL, the compressor 2 is started to operate the compressor target revolution speed TGNCc as the lower limit revolution speed TGNCcLimLo, and When the heat absorber temperature Te falls to the control lower limit value TeLL in this state, the compressor 2 is stopped again. That is, the operation (ON) and the stop (OFF) of the compressor 2 at the lower limit rotation speed TGNCcLimLo are repeated. Then, after the heat absorber temperature Te rises to the control upper limit value TeUL and the compressor 2 is started, if the heat absorber temperature Te does not become lower than the control upper limit value TeUL for a predetermined time tc2, the compressor 2 in this case The ON-OFF mode of 1 is terminated and the normal mode is restored.
 (11-3)熱媒体温度Twに基づく圧縮機目標回転数TGNCwの算出
 次に、図14を用いて熱媒体温度Twに基づく圧縮機2の制御について詳述する。図14は熱媒体温度Twに基づいて圧縮機2の目標回転数(圧縮機目標回転数)TGNCwを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F操作量演算部92は外気温度Tamと、バッテリ温度調整装置61内の熱媒体の流量Gw(循環ポンプ62の出力から算出される)と、バッテリ55の発熱量(バッテリコントローラ73から送信される)と、バッテリ温度Tcell(バッテリコントローラ73から送信される)と、熱媒体温度Twの目標値である目標熱媒体温度TWOに基づいて圧縮機目標回転数のF/F操作量TGNCcwffを算出する。
(11-3) Calculation of Compressor Target Rotational Speed TGNCw Based on Heat Medium Temperature Tw Next, the control of the compressor 2 based on the heat medium temperature Tw will be described in detail with reference to FIG. FIG. 14 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCw of the compressor 2 based on the heat medium temperature Tw. The F/F operation amount calculation unit 92 of the heat pump controller 32 determines the outside air temperature Tam, the flow rate Gw of the heat medium in the battery temperature adjusting device 61 (calculated from the output of the circulation pump 62), and the heat generation amount of the battery 55 (the battery (Transmitted from the controller 73), battery temperature Tcell (transmitted from the battery controller 73), and target heat medium temperature TWO that is the target value of the heat medium temperature Tw, based on the F/F operation of the compressor target rotation speed. Calculate the quantity TGNCcwff.
 また、F/B操作量演算部93は目標熱媒体温度TWOと熱媒体温度Tw(バッテリコントローラ73から送信される)に基づくPID演算若しくはPI演算により圧縮機目標回転数のF/B操作量TGNCwfbを算出する。そして、F/F操作量演算部92が算出したF/F操作量TGNCwffとF/B操作量演算部93が算出したF/B操作量TGNCwfbは加算器94で加算され、TGNCw00としてリミット設定部96に入力される。 Further, the F/B operation amount calculation unit 93 performs the PID calculation or the PI calculation based on the target heat medium temperature TWO and the heat medium temperature Tw (transmitted from the battery controller 73) to perform the F/B operation amount TGNCwfb of the compressor target rotation speed. To calculate. Then, the F/F operation amount TGNCwff calculated by the F/F operation amount calculation unit 92 and the F/B operation amount TGNCwfb calculated by the F/B operation amount calculation unit 93 are added by the adder 94 to obtain a limit setting unit as TGNCw00. 96 is input.
 リミット設定部96では制御上の下限回転数TGNCwLimLoと上限回転数TGNCwLimHiのリミットが付けられてTGNCw0とされた後、圧縮機OFF制御部97を経て圧縮機目標回転数TGNCwとして決定される。従って、加算器94で加算された値TGNCw00が上限回転数TGNCwLimHiと下限回転数TGNCwLimLo以内であり、後述するON-OFFモードにならなければ、この値TGNCw00が圧縮機目標回転数TGNCw(圧縮機2の回転数となる)。通常モードではヒートポンプコントローラ32は、この熱媒体温度Twに基づいて算出された圧縮機目標回転数TGNCwにより、熱媒体温度Twが前述した適正温度範囲内の目標熱媒体温度TWOになるように圧縮機2の運転を制御する。 In the limit setting unit 96, the lower limit speed TGNCwLimLo for control and the upper limit speed TGNCwLimHi are set to TGNCw0, and then the compressor OFF control unit 97 is used to determine the target compressor speed TGNCw. Therefore, if the value TGNCw00 added by the adder 94 is within the upper limit rotational speed TGNCwLimHi and the lower limit rotational speed TGNCwLimLo and the ON-OFF mode described later does not occur, this value TGNCw00 is the target compressor rotational speed TGNCw (compressor 2 Will be the number of rotations). In the normal mode, the heat pump controller 32 uses the compressor target rotation speed TGNCw calculated based on the heat medium temperature Tw so that the heat medium temperature Tw becomes the target heat medium temperature TWO within the appropriate temperature range described above. Control the operation of 2.
 尚、圧縮機OFF制御部97は、圧縮機目標回転数TGNCwが上述した下限回転数TGNCwLimLoとなり、熱媒体温度Twが目標熱媒体温度TWOの上下に設定された制御上限値TwULと制御下限値TwLLのうちの制御下限値TwLLまで低下した状態が所定時間tw1継続した場合、圧縮機2を停止させて圧縮機2をON-OFF制御するON-OFFモードに入る。 The compressor OFF control unit 97 determines that the compressor target rotation speed TGNCw becomes the above-described lower limit rotation speed TGNCwLimLo, and the heat medium temperature Tw is set above and below the target heat medium temperature TWO and the control upper limit value TwUL and the control lower limit value TwLL are set. When the state in which the control lower limit value TwLL is decreased for a predetermined time tw1 continues, the compressor 2 is stopped and the ON-OFF mode for ON-OFF controlling the compressor 2 is entered.
 この場合の圧縮機2のON-OFFモードでは、熱媒体温度Twが制御上限値TwULまで上昇した場合、圧縮機2を起動して圧縮機目標回転数TGNCwを下限回転数TGNCwLimLoとして運転し、その状態で熱媒体温度Twが制御下限値TwLLまで低下した場合は圧縮機2を再度停止させる。即ち、下限回転数TGNCwLimLoでの圧縮機2の運転(ON)と、停止(OFF)を繰り返す。そして、熱媒体温度Twが制御上限値TwULまで上昇し、圧縮機2を起動した後、熱媒体温度Twが制御上限値TwULより低くならない状態が所定時間tw2継続した場合、この場合の圧縮機2のON-OFFモードを終了し、通常モードに復帰するものである。 In the ON-OFF mode of the compressor 2 in this case, when the heat medium temperature Tw rises to the control upper limit value TwUL, the compressor 2 is started and the compressor target rotation speed TGNCw is operated as the lower limit rotation speed TGNCwLimLo. When the heat medium temperature Tw falls to the control lower limit value TwLL in this state, the compressor 2 is stopped again. That is, the operation (ON) and the stop (OFF) of the compressor 2 at the lower limit rotation speed TGNCwLimLo are repeated. Then, when the heat medium temperature Tw rises to the control upper limit value TwUL and the compressor 2 is started, the state in which the heat medium temperature Tw does not become lower than the control upper limit value TwUL continues for a predetermined time tw2, and in this case, the compressor 2 The ON-OFF mode of 1 is terminated and the normal mode is restored.
 (12)ヒートポンプコントローラ32による熱媒体加熱ヒータ63の制御
 次に、図16を用いて前述したバッテリ加熱モードにおける熱媒体温度Twに基づいた熱媒体加熱ヒータ63の制御について詳述する。図16は熱媒体温度Twに基づいて熱媒体加熱ヒータ63の目標発熱量ECHtwを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F操作量演算部98は外気温度Tamと、バッテリ温度調整装置61内の熱媒体の流量Gw(循環ポンプ62の出力から算出される)と、バッテリ55の発熱量(バッテリコントローラ73から送信される)と、バッテリ温度Tcell(バッテリコントローラ73から送信される)と、熱媒体温度Twの目標値である目標熱媒体温度TWOに基づいて目標発熱量のF/F操作量ECHtffを算出する。
(12) Control of Heat Medium Heating Heater 63 by Heat Pump Controller 32 Next, the control of the heat medium heating heater 63 based on the heat medium temperature Tw in the battery heating mode described above will be described in detail with reference to FIG. FIG. 16 is a control block diagram of the heat pump controller 32 that calculates the target heat generation amount ECHtw of the heat medium heater 63 based on the heat medium temperature Tw. The F/F operation amount calculation unit 98 of the heat pump controller 32 determines the outside air temperature Tam, the flow rate Gw of the heat medium in the battery temperature adjusting device 61 (calculated from the output of the circulation pump 62), and the heat generation amount of the battery 55 (battery). Controller 73), battery temperature Tcell (transmitted from battery controller 73) and target heat medium temperature TWO which is the target value of heat medium temperature Tw, based on the target heat generation amount F/F manipulated variable ECHtff. To calculate.
 また、F/B操作量演算部99は目標熱媒体温度TWOと熱媒体温度Tw(バッテリコントローラ73から送信される)に基づくPID演算若しくはPI演算により目標発熱量のF/B操作量ECHtwfbを算出する。そして、F/F操作量演算部98が算出したF/F操作量ECHtwffとF/B操作量演算部99が算出したF/B操作量ECHtwfbは加算器101で加算され、ECHtw00としてリミット設定部102に入力される。 Further, the F/B operation amount calculation unit 99 calculates the F/B operation amount ECHtwfb of the target heat generation amount by PID calculation or PI calculation based on the target heat medium temperature TWO and the heat medium temperature Tw (transmitted from the battery controller 73). To do. Then, the F/F operation amount ECHtwff calculated by the F/F operation amount calculation unit 98 and the F/B operation amount ECHtwfb calculated by the F/B operation amount calculation unit 99 are added by the adder 101 to obtain ECHtw00 as a limit setting unit. It is input to 102.
 リミット設定部102では制御上の下限発熱量ECHtwLimLo(例えば、通電OFF)と上限発熱量ECHtwLimHiのリミットが付けられてECHtw0とされた後、熱媒体加熱ヒータOFF制御部103を経て目標発熱量ECHtwとして決定される。従って、加算器101で加算された値ECHtw00が上限発熱量ECHtwLimHiと下限発熱量ECHtwLimLo以内であり、後述するON-OFFモードにならなければ、この値ECHtw00が目標発熱量ECHtw(熱媒体加熱ヒータ63の発熱量となる)。通常モードではヒートポンプコントローラ32は、この熱媒体温度Twに基づいて算出された目標発熱量ECHtwにより、熱媒体温度Twが目標熱媒体温度TWOになるように熱媒体加熱ヒータ63の発熱を制御する。 In the limit setting unit 102, a lower limit calorific value ECHtwLimLo for control (for example, energization OFF) and an upper limit calorific value ECHtwLimHi are set to ECHtw0, and then the target heating value ECHtw is passed through the heat medium heating heater OFF control unit 103. It is determined. Therefore, the value ECHtw00 added by the adder 101 is within the upper limit calorific value ECHtwLimHi and the lower limit calorific value ECHtwLimLo, and this value ECHtw00 is the target calorific value ECHtw (heat medium heating heater 63 if the ON-OFF mode described later does not occur. And the amount of heat generated). In the normal mode, the heat pump controller 32 controls the heat generation of the heat medium heating heater 63 so that the heat medium temperature Tw becomes the target heat medium temperature TWO by the target heat generation amount ECHtw calculated based on the heat medium temperature Tw.
 尚、熱媒体加熱ヒータOFF制御部103は、目標発熱量ECHtwが上述した下限発熱量ECHtwLimLoとなり、熱媒体温度Twが目標熱媒体温度TWOの上下に設定された制御上限値TwULと制御下限値TwLLのうちの制御上限値TwULまで上昇した状態が所定時間tw1継続した場合、熱媒体加熱ヒータ63の通電を停止させて熱媒体加熱ヒータ63をON-OFF制御するON-OFFモードに入る。 The heat medium heating heater OFF control unit 103 controls the target heat generation amount ECHtw to be the above-described lower limit heat generation amount ECHtwLimLo and sets the heat medium temperature Tw above and below the target heat medium temperature TWO to the control upper limit value TwUL and the control lower limit value TwLL. If the control upper limit value TwUL has continued for a predetermined time tw1, the power supply to the heat medium heating heater 63 is stopped and the heat medium heating heater 63 is turned on and off to enter an on-off mode.
 この場合の熱媒体加熱ヒータ63のON-OFFモードでは、熱媒体温度Twが制御下限値TwLLまで低下した場合、熱媒体加熱ヒータ63に通電して所定の低発熱量として通電し、その状態で熱媒体温度Twが制御上限値TwULまで上昇した場合は熱媒体加熱ヒータ64の通電を再度停止させる。即ち、所定の低発熱量での熱媒体加熱ヒータ63の発熱(ON)と、発熱停止(OFF)を繰り返す。そして、熱媒体温度Twが制御下限値TwLLまで低下し、熱媒体加熱ヒータ63を通電した後、熱媒体温度Twが制御下限値TwLLより高くならない状態が所定時間tw2継続した場合、この場合の熱媒体加熱ヒータ63のON-OFFモードを終了し、通常モードに復帰するものである。 In the ON-OFF mode of the heat medium heating heater 63 in this case, when the heat medium temperature Tw drops to the control lower limit value TwLL, the heat medium heating heater 63 is energized to be energized with a predetermined low heat generation amount, and in that state. When the heat medium temperature Tw rises to the control upper limit value TwUL, the heat medium heater 64 is deenergized again. That is, heat generation (ON) and heat generation stop (OFF) of the heat medium heater 63 with a predetermined low heat generation amount are repeated. Then, when the heat medium temperature Tw decreases to the control lower limit value TwLL and the heat medium heater 63 is energized, the heat medium temperature Tw does not become higher than the control lower limit value TwLL for a predetermined time tw2. The ON-OFF mode of the medium heater 63 is terminated and the normal mode is restored.
 (13)バッテリ55の急速充電時の充電モード(充電時間優先モードと充電電力優先モード)
 次に、図17~図20を参照しながら、バッテリ55を急速充電器により充電する際の、充電時間優先モードと充電電力優先モードについて説明する。実施例の制御装置11のヒートポンプコントローラ32は、急速充電器(外部電源)の充電用のプラグが接続され、バッテリ55を急速充電する際に実行する充電モードとして、充電時間優先モードと充電電力優先モードを有している。尚、この充電時間優先モードと充電電力優先モードは、バッテリ55を充電する際の前述したバッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モード、及び、バッテリ加熱モードで実行されるものである。
(13) Charging mode during rapid charging of the battery 55 (charging time priority mode and charging power priority mode)
Next, the charging time priority mode and the charging power priority mode when the battery 55 is charged by the quick charger will be described with reference to FIGS. 17 to 20. The heat pump controller 32 of the control device 11 of the embodiment is connected to the charging plug of the quick charger (external power source), and the charging time priority mode and the charging power priority mode are the charging modes executed when the battery 55 is rapidly charged. Have a mode. The charging time priority mode and the charging power priority mode are executed in the above-described battery cooling (priority)+air conditioning mode, battery cooling (single) mode, and battery heating mode when charging the battery 55. is there.
 ここで、前述した如くバッテリ55の充電電流は、熱媒体温度Twに応じて急速充電器とバッテリコントローラ73が協働して自動調整するため、前述したバッテリ冷却(優先)+空調モードやバッテリ冷却(単独)モードでバッテリ55を冷却し、バッテリ加熱モードでバッテリ55を加熱して、熱媒体温度Twを適正温度範囲とすれば、急速充電器やバッテリコントローラ73は充電電流を制限すること無く、大きな充電電流でバッテリ55を充電するようになるため、急速充電を行うことができるようになるが、バッテリ55を冷却するための電力が主に圧縮機2にて消費され、加熱する場合には熱媒体加熱ヒータ63で電力が消費されることになるため、全体の充電電力は大きくなり、充電のための料金も高くなる。 Here, as described above, the charging current of the battery 55 is automatically adjusted by the quick charger and the battery controller 73 in accordance with the heat medium temperature Tw, so that the battery cooling (priority)+air conditioning mode or battery cooling described above is performed. If the battery 55 is cooled in the (single) mode and the battery 55 is heated in the battery heating mode so that the heat medium temperature Tw falls within the appropriate temperature range, the quick charger and the battery controller 73 do not limit the charging current, Since the battery 55 is charged with a large charging current, rapid charging can be performed. However, the electric power for cooling the battery 55 is mainly consumed in the compressor 2 and is heated. Since the electric power is consumed by the heat medium heating heater 63, the total charging power becomes large and the charge for charging also becomes high.
 一方、例えば大規模商業施設等で使用者が買い物をしている間に充電を行う等の使用状況では、バッテリ55の充電には十分な時間があるため、使用者はバッテリ55の充電時間よりも料金(充電電力)を優先すると考えられる。そこで、本発明ではバッテリ55を充電する際のバッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モード、及び、バッテリ加熱モードにおいて、充電時間を優先する充電時間優先モードと、充電電力(料金)を優先する充電電力優先モードの何れかを選択できるように、或いは、自動選択されるように構成されている。 On the other hand, in a usage situation such as charging while the user is shopping at a large-scale commercial facility, for example, the user has more time to charge the battery 55 than the charging time of the battery 55. Is also considered to give priority to charges (charging power). Therefore, in the present invention, in the battery cooling (priority)+air conditioning mode, the battery cooling (single) mode, and the battery heating mode when charging the battery 55, the charging time priority mode that prioritizes the charging time, and the charging power (charge) ), the charging power priority mode can be selected, or the charging power priority mode is automatically selected.
 (13-1)充電時間優先モードが選択されたときの制御(その1)
 先ず、充電時間優先モードが選択された場合、ヒートポンプコントローラ32はバッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モード及びバッテリ加熱モードで前述した如くバッテリ55を冷却し、或いは、加熱することで熱媒体温度Twを適正温度範囲に制御し、バッテリ55も適正温度範囲に維持する。これにより、急速充電器やバッテリコントローラ73が充電電流を制限することを回避して、迅速にバッテリ55を充電することができるようになる。
(13-1) Control when charging time priority mode is selected (Part 1)
First, when the charge time priority mode is selected, the heat pump controller 32 cools or heats the battery 55 as described above in the battery cooling (priority)+air conditioning mode, the battery cooling (single) mode, and the battery heating mode. The heat medium temperature Tw is controlled in the proper temperature range by the above, and the battery 55 is also maintained in the proper temperature range. As a result, it is possible to prevent the quick charger or the battery controller 73 from limiting the charging current and quickly charge the battery 55.
 (13-2)充電時間優先モードが選択されたときの制御(その2)
 尚、上述した制御(その1)において、バッテリ冷却(優先)+空調モードの場合には、車室内の空調運転を制限し、或いは、禁止するようにしてもよい。空調運転を制限する場合には、例えば前述した目標吸熱器温度TEOを所定値上昇させる。これにより、電磁弁35が開く期間が短くなるので、冷媒-熱媒体熱交換器64に向かう冷媒量が多くなる。また、空調運転を禁止する場合には、自動的にバッテリ冷却(単独)モードに切り換えることになる。これにより、車室内の空調(冷房)に使用される冷却能力を制限し、又は、無くして、バッテリ55の冷却能力を向上させ、より一層迅速にバッテリ55を充電することができるようになる。
(13-2) Control when the charging time priority mode is selected (Part 2)
In the control (first) described above, in the case of battery cooling (priority)+air conditioning mode, the air conditioning operation in the vehicle interior may be restricted or prohibited. When limiting the air conditioning operation, for example, the above-mentioned target heat absorber temperature TEO is increased by a predetermined value. As a result, the period in which the solenoid valve 35 is opened is shortened, and the amount of refrigerant flowing toward the refrigerant-heat medium heat exchanger 64 is increased. When the air conditioning operation is prohibited, the battery cooling (single) mode is automatically switched. As a result, the cooling capacity used for air conditioning (cooling) in the vehicle compartment is limited or eliminated to improve the cooling capacity of the battery 55, and the battery 55 can be charged more quickly.
 (13-3)充電時間優先モードが選択されたときの制御(その3)
 また、充電時間優先モードが選択された場合のバッテリ冷却(優先)+空調モード及びバッテリ冷却(単独)モードでは、バッテリ55の充電電流が最大となるようにヒートポンプコントローラ32が熱媒体温度Tw(目標熱媒体温度TWO:バッテリ55の温度を示す指標)をフィードバック制御するようにしてもよい。図18はその場合のヒートポンプコントローラ32の充電時間優先モードにおける目標熱媒体温度TWOの制御に関する制御ブロック図である。図中TWObaseは前述したデフォルトの目標熱媒体温度であり、実施例では適正温度範囲内の所定値Aとされている。また、104はバッテリ55の最大充電電流値Imaxと外気温度Tamの関係を示したデータテーブルであり、実施例ではヒートポンプコントローラ32に予め設定されているものとする。
(13-3) Control when the charging time priority mode is selected (Part 3)
Further, in the battery cooling (priority)+air conditioning mode and the battery cooling (single) mode when the charging time priority mode is selected, the heat pump controller 32 causes the heat medium temperature Tw (target) to maximize the charging current of the battery 55. The heat medium temperature TWO: an index indicating the temperature of the battery 55) may be feedback-controlled. FIG. 18 is a control block diagram relating to control of the target heat medium temperature TWO in the charge time priority mode of the heat pump controller 32 in that case. In the figure, TWObase is the above-described default target heat medium temperature, which is a predetermined value A within the appropriate temperature range in the embodiment. Reference numeral 104 is a data table showing the relationship between the maximum charging current value Imax of the battery 55 and the outside air temperature Tam, and is assumed to be preset in the heat pump controller 32 in the embodiment.
 そして、通常は図18の目標熱媒体温度TWObase(所定値A)が目標熱媒体温度TWOとして決定されるが、この場合の充電時間優先モードでは、ヒートポンプコントローラ32は最大充電電流値Imaxとバッテリ55の実際の充電電流値である実充電電流値Iactとの差の積分値に基づいて補正を加える。 Then, normally, the target heat medium temperature TWObase (predetermined value A) of FIG. 18 is determined as the target heat medium temperature TWO, but in the charge time priority mode in this case, the heat pump controller 32 causes the maximum charge current value Imax and the battery 55 to rise. The correction is added based on the integrated value of the difference from the actual charging current value Iact which is the actual charging current value of.
 即ち、最大充電電流値Imaxとバッテリコントローラ73から得られる実充電電流値Iactは減算器106に入力され、その偏差e(Imax-Iact)が増幅器107で増幅されて演算器108に入力される。演算器108では所定の積分周期と積分時間で熱媒体温度補正値の積分演算が行われ(積分制御。微分積分でもよい)、加算器109で前回値と加算された熱媒体温度補正値の積分値TWOHosが算出される。そして、リミット設定部101で制御上限値と制御下限値のリミットが付けられた後、熱媒体温度補正値TWOHos(最大電流狙い)として決定される。 That is, the maximum charging current value Imax and the actual charging current value Iact obtained from the battery controller 73 are input to the subtractor 106, and the deviation e(Imax-Iact) thereof is amplified by the amplifier 107 and input to the calculator 108. The calculator 108 performs integral calculation of the heat medium temperature correction value at a predetermined integration period and integration time (integral control, or may be differential integration), and the adder 109 integrates the heat medium temperature correction value added with the previous value. The value TWOHos is calculated. Then, after the control upper limit value and the control lower limit value are limited by the limit setting unit 101, the heat medium temperature correction value TWOHos (targeting the maximum current) is determined.
 熱媒体温度補正値TWOHosは減算器112にてデフォルトの目標熱媒体温度TWObaseから減算されて目標熱媒体温度TWOとして決定される。従って、熱媒体温度補正値TWOHosの分、目標熱媒体温度TWOが下げられ、それにより圧縮機2の圧縮機目標回転数TGNCwが引き上げられることになり、圧縮機2の回転数が上がり、圧縮機2の能力が増大する。このようなフィードバック制御により、冷媒-熱媒体熱交換器64にて最大充電電流値Imaxを得るためのバッテリ55の冷却能力を得ることができるようになるので、最大の充電電流で極めて迅速にバッテリ55を充電することができるようになる。 The heat medium temperature correction value TWOHos is subtracted from the default target heat medium temperature TWObase by the subtractor 112 to be determined as the target heat medium temperature TWO. Therefore, the target heat medium temperature TWO is reduced by the heat medium temperature correction value TWOHos, and thereby the compressor target rotation speed TGNCw of the compressor 2 is increased, and the rotation speed of the compressor 2 is increased and the compressor The ability of 2 is increased. By such feedback control, it becomes possible to obtain the cooling capacity of the battery 55 for obtaining the maximum charging current value Imax in the refrigerant-heat medium heat exchanger 64, so that the battery can be extremely quickly supplied with the maximum charging current. 55 can be charged.
 尚、リミット設定部101では熱媒体温度補正値TWOHosの上限がTWObase-LLTWOに設定されている。このLLTWOは実施例では前述した制御下限値TwLL(所定値Cとする)であるので、この場合の制御では目標熱媒体温度TWOは図17に示す如く所定値Aと所定値Cの間でフィードバック制御されることになる。 In the limit setting unit 101, the upper limit of the heat medium temperature correction value TWOHos is set to TWObase-LLTWO. Since this LLTWO is the control lower limit value TwLL (given as the predetermined value C) in the embodiment, the target heat medium temperature TWO is fed back between the predetermined value A and the predetermined value C in the control in this case as shown in FIG. Will be controlled.
 (13-4)充電電力優先モードが選択されたときの制御(その1)
 次に、充電電力優先モードが選択された場合、ヒートポンプコントローラ32はバッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モード及びバッテリ加熱モードを実行しないようにする。即ち、ヒートポンプコントローラ32はこの場合にはバッテリ55の充電中、バッテリ55の温調を行わないので、時間がかかる可能性はあるものの、少ない電力でバッテリ55を充電することができるようになる。
(13-4) Control when the charging power priority mode is selected (1)
Next, when the charging power priority mode is selected, the heat pump controller 32 does not execute the battery cooling (priority)+air conditioning mode, the battery cooling (single) mode, and the battery heating mode. That is, in this case, the heat pump controller 32 does not control the temperature of the battery 55 during charging of the battery 55, so that the battery 55 can be charged with a small amount of electric power although it may take time.
 (13-5)充電電力優先モードが選択されたときの制御(その2)
 尚、上述の如く充電電力優先モードではバッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モード及びバッテリ加熱モードを実行しないことに代えて、それを制限するようにしてもよい。その場合には、例えばヒートポンプコントローラ32は、バッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モードでは、熱媒体温度Twが前述した図17の上限値THに達するまでは上述同様にバッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モードを実行しない。
(13-5) Control when the charging power priority mode is selected (Part 2)
As described above, in the charging power priority mode, instead of not executing the battery cooling (priority)+air conditioning mode, the battery cooling (single) mode, and the battery heating mode, the charging power may be restricted. In that case, for example, in the battery cooling (priority)+air conditioning mode and the battery cooling (single) mode, the heat pump controller 32 cools the battery in the same manner as described above until the heat medium temperature Tw reaches the above-described upper limit TH of FIG. Do not execute (priority) + air conditioning mode, battery cooling (single) mode.
 一方、急速充電中に熱媒体温度Twが上限値THに達してしまった場合、ヒートポンプコントローラ32は圧縮機2他を起動してバッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モードを実行し、バッテリ55を冷却する。そして、例えば上限値THより低い所定値B(図17)まで熱媒体温度Twが低下した場合、運転を停止する。これにより、バッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モードを制限し、充電電力(料金)を抑制しながら、充電電力優先モードにおいても、充電時の自己発熱でバッテリ55の温度が異常に高くなってしまう不都合を未然に回避することができるようになる。 On the other hand, when the heat medium temperature Tw reaches the upper limit value TH during the rapid charge, the heat pump controller 32 starts the compressor 2 and the like to execute the battery cooling (priority)+air conditioning mode and the battery cooling (single) mode. Then, the battery 55 is cooled. Then, for example, when the heat medium temperature Tw decreases to a predetermined value B (FIG. 17) lower than the upper limit value TH, the operation is stopped. As a result, the battery cooling (priority)+air conditioning mode and the battery cooling (single) mode are limited to suppress the charging power (charge), and even in the charging power priority mode, the temperature of the battery 55 is raised by self-heating during charging. The inconvenience of becoming abnormally high can be avoided in advance.
 また、バッテリ加熱モードでも熱媒体温度Twが前述した図17の下限値TLに達するまでは上述同様にバッテリ加熱モードを実行しない。他方、熱媒体温度Twが下限値TLに達してしまった場合、ヒートポンプコントローラ32は熱媒体加熱ヒータ63に通電してバッテリ加熱モードを実行し、バッテリ55を加熱する。そして、例えば下限値TLより高い前述した所定値C(実施例の制御下限値TwLL。図17)まで熱媒体温度Twが上昇した場合、通電を停止する。これにより、バッテリ加熱モードを制限し、充電電力(料金)を抑制しながら、充電電力優先モードにおいても、異常な低温下で充電することで生じるバッテリ55の劣化を未然に回避することができるようなる。 Also in the battery heating mode, the battery heating mode is not executed as described above until the heat medium temperature Tw reaches the lower limit value TL in FIG. 17 described above. On the other hand, when the heat medium temperature Tw reaches the lower limit value TL, the heat pump controller 32 energizes the heat medium heating heater 63 to execute the battery heating mode to heat the battery 55. Then, for example, when the heat medium temperature Tw rises to the above-described predetermined value C (the control lower limit value TwLL in the embodiment; FIG. 17) higher than the lower limit value TL, the energization is stopped. As a result, the battery heating mode is restricted and the charging power (charge) is suppressed, and even in the charging power priority mode, deterioration of the battery 55 caused by charging at an abnormally low temperature can be avoided in advance. Become.
 (13-6)充電時間優先モードと充電電力優先モードの選択(その1)
 次に、図19を参照しながら空調操作部53のスイッチ53Bを用いて使用者が手動で充電時間優先モードと充電電力優先モードを選択する場合の一例を説明する。実施例ではヒートポンプコントローラ32(急速充電器とバッテリコントローラ73でもよい)の予測演算部116は、急速充電器の充電用のプラグが接続された場合、バッテリ55の残量(SOC)と、外気温度Tam(環境条件)と、充電開始時の熱媒体温度Tw(バッテリ温度Tcellでもよい)と、急速充電器の種類のうちの何れか、或いは、それらの組み合わせ、若しくは、それらの全て(実施例では全て)に基づいてバッテリ55の充電が完了するバッテリ充電完了時間と、料金としてのバッテリ充電電力を予測演算し、図19に示す如く空調操作部53のディスプレイ53Aに表示(出力)する。
(13-6) Selection of charging time priority mode and charging power priority mode (part 1)
Next, an example in which the user manually selects the charging time priority mode and the charging power priority mode using the switch 53B of the air conditioning operation unit 53 will be described with reference to FIG. In the embodiment, the predictive calculation unit 116 of the heat pump controller 32 (which may be the quick charger and the battery controller 73) uses the remaining charge (SOC) of the battery 55 and the outside air temperature when the plug for charging the quick charger is connected. Tam (environmental condition), heat medium temperature Tw at the start of charging (battery temperature Tcell may be used), any type of quick chargers, or a combination thereof, or all of them (in the embodiment, in the embodiment). Based on all), the battery charging completion time for completing the charging of the battery 55 and the battery charging power as a charge are predictively calculated and displayed (output) on the display 53A of the air conditioning operation unit 53 as shown in FIG.
 この場合、ヒートポンプコントローラ32の予測演算部116は、バッテリ充電完了時間とバッテリ充電電力(料金)を、前述した充電時間優先モードと充電電力優先モード毎に算出し、空調コントローラ45に送信してディスプレイ53Aに表示する。図19ではX1は充電時間優先モードを選択した場合のバッテリ充電完了時間、X2は充電電力優先モードを選択した場合のバッテリ充電完了時間であり、Y1は充電時間優先モードを選択した場合のバッテリ充電電力(料金)、Y2は充電電力優先モードを選択した場合のバッテリ充電電力(料金)である。 In this case, the prediction calculation unit 116 of the heat pump controller 32 calculates the battery charging completion time and the battery charging power (fee) for each of the charging time priority mode and the charging power priority mode described above, and sends the calculation result to the air conditioning controller 45 for display. It is displayed on 53A. In FIG. 19, X1 is the battery charging completion time when the charging time priority mode is selected, X2 is the battery charging completion time when the charging power priority mode is selected, and Y1 is the battery charging when the charging time priority mode is selected. Electric power (charge) and Y2 are battery charging power (charge) when the charging power priority mode is selected.
 予測演算の傾向としては、外気温度Tamや充電開始時の熱媒体温度Twが高い程、充電電力優先モードのバッテリ充電完了時間X2は長くなり、充電時間優先モードのバッテリ充電電力(料金)Y1は高くなる。また、バッテリ55の残量が多い程、何れのモードのバッテリ充電完了時間X1、X2は短くなり、バッテリ充電電力(料金)Y1、Y2は安くなる。 As a tendency of the prediction calculation, the higher the outside air temperature Tam and the heat medium temperature Tw at the start of charging, the longer the battery charging completion time X2 in the charging power priority mode becomes, and the battery charging power (charge) Y1 in the charging time priority mode becomes Get higher Further, as the remaining amount of the battery 55 is larger, the battery charging completion time X1 or X2 in any mode becomes shorter and the battery charging power (charge) Y1 or Y2 becomes cheaper.
 使用者はディスプレイ53に表示された予測演算の結果を基に判断し、スイッチ53Bを操作して充電時間優先モードか充電電力優先モードを選択することになる。スイッチ53Bで選択された充電モードは空調コントローラ45からヒートポンプコントローラ32に送信され、ヒートポンプコントローラ32は何れかの充電モードを実行する。このように、充電時間優先モードを実行するか、充電電力優先モードを実行するかを選択するためのスイッチ53Bを設けることで、使用者が任意に充電時間優先モードを実行するか、充電電力優先モードを実行するかを選択することができるようになる。 The user makes a judgment based on the result of the prediction calculation displayed on the display 53, and operates the switch 53B to select the charging time priority mode or the charging power priority mode. The charge mode selected by the switch 53B is transmitted from the air conditioning controller 45 to the heat pump controller 32, and the heat pump controller 32 executes any charge mode. In this way, by providing the switch 53B for selecting whether to execute the charging time priority mode or the charging power priority mode, the user arbitrarily executes the charging time priority mode or the charging power priority mode. You will be able to select whether to execute the mode.
 特に、ヒートポンプコントローラ32が、バッテリ55の残量、外気温度Tam(環境条件)、充電開始時の熱媒体温度Tw(バッテリ55の温度を示す指標)、急速充電器の種類のうちの何れか、或いは、それらの組み合わせ、若しくは、それらの全てから算出されるバッテリ充電完了時間(X1、X2)、及び、バッテリ充電電力(Y1、Y2)を、充電時間優先モードと充電電力優先モード毎にディスプレイ53Aに表示するようにしているので、表示されたバッテリ充電完了時間、及び、バッテリ充電電力から使用者が容易に充電時間優先モードか充電電力優先モードを選択することができるようになり、利便性が一段と向上する。 In particular, the heat pump controller 32 selects one of the remaining amount of the battery 55, the outside air temperature Tam (environmental condition), the heat medium temperature Tw at the start of charging (an index indicating the temperature of the battery 55), and the type of the quick charger, Alternatively, the battery charge completion time (X1, X2) and the battery charge power (Y1, Y2) calculated from a combination of them or all of them are displayed on the display 53A for each of the charge time priority mode and the charge power priority mode. Since it is displayed, the user can easily select the charging time priority mode or the charging power priority mode from the displayed battery charging completion time and battery charging power, which is convenient. Improve further.
 (13-7)充電時間優先モードと充電電力優先モードの選択(その2)
 次に、図20を参照しながらヒートポンプコントローラ32が自動で充電時間優先モードと充電電力優先モードを選択する場合の一例を説明する。図20はヒートポンプコントローラ32が充電時間優先モードと充電電力優先モードの選択を行う制御ブロック図である。尚、図20における予測演算結果は図19の場合と同様である。この場合もヒートポンプコントローラ32(急速充電器とバッテリコントローラ73でもよい)の予測演算部116は、急速充電器の充電用のプラグが接続された場合、バッテリ55の残量(SOC)と、外気温度Tam(環境条件)と、充電開始時の熱媒体温度Tw(バッテリ温度Tcellでもよい)と、急速充電器の種類のうちの何れか、或いは、それらの組み合わせ、若しくは、それらの全て(実施例では全て)に基づいてバッテリ充電完了時間とバッテリ充電電力を、充電時間優先モードと充電電力優先モード毎に予測演算により算出する。
(13-7) Selection of charging time priority mode and charging power priority mode (Part 2)
Next, an example in which the heat pump controller 32 automatically selects the charging time priority mode and the charging power priority mode will be described with reference to FIG. FIG. 20 is a control block diagram in which the heat pump controller 32 selects the charging time priority mode and the charging power priority mode. The prediction calculation result in FIG. 20 is the same as that in FIG. Also in this case, the predictive calculation unit 116 of the heat pump controller 32 (may be the quick charger and the battery controller 73), when the plug for charging the quick charger is connected, the remaining amount (SOC) of the battery 55 and the outside air temperature. Tam (environmental condition), heat medium temperature Tw at the start of charging (battery temperature Tcell may be used), any type of quick chargers, or a combination thereof, or all of them (in the embodiment, in the embodiment). All), the battery charging completion time and the battery charging power are calculated by the prediction calculation for each of the charging time priority mode and the charging power priority mode.
 一方、この場合使用者は空調操作部53のスイッチ53Bを用いて希望充電時間を空調コントローラ45経由でヒートポンプコントローラ32に入力する。この希望充電時間は、出発予定時間から逆算されるものである。そして、ヒートポンプコントローラ32の予測演算部116が予測演算した充電電力優先モードのバッテリ充電完了時間X2が比較器113に入力され、入力された希望充電時間と比較される。 On the other hand, in this case, the user inputs the desired charging time to the heat pump controller 32 via the air conditioning controller 45 by using the switch 53B of the air conditioning operating unit 53. This desired charging time is calculated back from the scheduled departure time. Then, the battery charging completion time X2 in the charging power priority mode calculated by the prediction calculation unit 116 of the heat pump controller 32 is input to the comparator 113 and compared with the input desired charging time.
 ヒートポンプコントローラ32は比較器113での比較で、X2≦希望充電時間となって充電電力優先モードのバッテリ充電完了時間X2が使用者の希望充電時間を満たす場合、切換器114で充電電力優先モードを選択し、充電モード選択結果として出力する。他方、比較器113での比較で、X2>希望充電時間となって充電電力優先モードのバッテリ充電完了時間X2が使用者の希望充電時間を満たさない場合、切換器114で充電時間優先モードを選択し、充電モード選択結果として出力する。ヒートポンプコントローラ32はこの出力結果に基づいて充電電力優先モードか充電時間優先モードを実行する。 When the heat pump controller 32 compares X2≦desired charging time in the comparison by the comparator 113 and the battery charging completion time X2 in the charging power priority mode satisfies the user's desired charging time, the switching switch 114 sets the charging power priority mode. Select and output as the charging mode selection result. On the other hand, in the comparison by the comparator 113, when X2>desired charging time and the battery charging completion time X2 in the charging power priority mode does not satisfy the user's desired charging time, the switcher 114 selects the charging time priority mode. Then, the result is output as the charging mode selection result. The heat pump controller 32 executes the charging power priority mode or the charging time priority mode based on the output result.
 このように、ヒートポンプコントローラ32が、バッテリ55の残量、外気温度Tam(環境条件)、充電開始時の熱媒体温度Tw、急速充電器の種類のうちの何れか、或いは、それらの組み合わせ、若しくは、それらの全てから算出されるバッテリ充電完了時間に基づき、算出された当該バッテリ充電完了時間が予め設定された希望充電時間を満たす場合、充電電力優先モードを実行するようにすれば、出発予定時刻等に応じて希望充電時間を予め設定しておくことで、料金が安くなる充電電力優先モードをヒートポンプコントローラ32が自動的に選択して実行するようになり、著しく利便性が向上する。 As described above, the heat pump controller 32 selects one of the remaining amount of the battery 55, the outside air temperature Tam (environmental condition), the heat medium temperature Tw at the start of charging, the type of the quick charger, or a combination thereof, or , If the battery charging completion time calculated based on the battery charging completion time calculated from all of them satisfies the preset desired charging time, if the charging power priority mode is executed, the scheduled departure time is set. By presetting the desired charging time in accordance with the above conditions, the heat pump controller 32 automatically selects and executes the charging power priority mode in which the charge is reduced, and the convenience is significantly improved.
 (13-8)充電時間優先モードと充電電力優先モードの表示
 また、ヒートポンプコントローラ32は、空調コントローラ45の空調操作部53のディスプレイ53Aに、現在実行している充電モードが充電時間優先モードであるか、充電電力優先モードであるかを表示(出力)する。これにより、バッテリ55の急速充電時に何れの充電モードを実行しているかを使用者が容易に確認することができるようになる。
(13-8) Display of Charging Time Priority Mode and Charging Power Priority Mode Further, in the heat pump controller 32, the charging mode currently being executed is the charging time priority mode on the display 53A of the air conditioning operation unit 53 of the air conditioning controller 45. It is displayed (output) whether it is in charging power priority mode. As a result, the user can easily confirm which charging mode is being executed when the battery 55 is rapidly charged.
 以上詳述した如く本発明によれば、ヒートポンプコントローラ32が、バッテリ55を充電する際、当該バッテリ55の温度を調整する充電時間優先モードと、バッテリ55を充電する際に動作しない、又は、バッテリ55の温度を調整する動作を制限する、状態のうちの何れかの状態となる充電電力優先モードを有するので、バッテリ55の充電時に、充電時間を優先する場合には充電時間優先モードとしてバッテリ55の温度を調整することにより、当該バッテリ55を迅速に充電し、充電電力(料金)を優先する場合には充電電力優先モードとしてバッテリ55の温調を行わず、若しくは、バッテリ温度調整装置61の動作を制限して、少ない電力でバッテリ55を充電することが可能となる。 As described above in detail, according to the present invention, when the heat pump controller 32 charges the battery 55, the charge time priority mode in which the temperature of the battery 55 is adjusted and the heat pump controller 32 does not operate when the battery 55 is charged, or the battery 55 does not operate. When the battery 55 is charged, when the battery 55 is being charged, the charging time priority mode is set as the charging time priority mode when the battery 55 is charged. When the battery 55 is quickly charged by adjusting the temperature of the battery 55 and the charging power (charge) is prioritized, the temperature of the battery 55 is not adjusted in the charging power priority mode, or the battery temperature adjusting device 61 It is possible to limit the operation and charge the battery 55 with less electric power.
 即ち、使用者の都合や好みに応じて最適な充電方法を選択し、バッテリ55を充電することができるようになり、利便性が著しく向上する。特に、実施例の如く急速充電器によりバッテリ55に充電する際に本発明は有効である。 That is, the battery 55 can be charged by selecting the most suitable charging method according to the convenience and preference of the user, and the convenience is significantly improved. The present invention is particularly effective when the battery 55 is charged by the quick charger as in the embodiment.
 尚、実施例では車室内を空調する車両用空気調和装置1に本発明のバッテリ温度調整装置61を設けたが、請求項11以外の発明ではそれに限らず、車室内の空調を行わず、バッテリ55の温度調整のみを行うバッテリ温度調整装置にも有効である。また、バッテリ55を冷却する冷却装置も、実施例の冷媒回路Rに限らず、例えばペルチェ素子等の電子冷却装置を用いる場合にも本発明は有効である。 In the embodiment, the vehicle air conditioner 1 for air-conditioning the vehicle compartment is provided with the battery temperature adjusting device 61 of the present invention. However, the invention other than claim 11 is not limited to this, and the air conditioning of the vehicle interior is not performed, and the battery is adjusted. It is also effective for a battery temperature adjusting device that only adjusts the temperature of 55. Further, the cooling device for cooling the battery 55 is not limited to the refrigerant circuit R of the embodiment, and the present invention is also effective when an electronic cooling device such as a Peltier element is used.
 また、前述した実施例では熱媒体温度Twをバッテリ55の温度を示す指標として採用したが、バッテリ温度Tcellを採用してもよい。更に、実施例では熱媒体を循環させてバッテリ55の温調を行うようにしたが、それに限らず、冷媒とバッテリ55を直接熱交換させるバッテリ用熱交換器を設けてもよい。その場合には、バッテリ温度Tcellがバッテリ55の温度を示す指標となる。 Although the heat medium temperature Tw is adopted as an index indicating the temperature of the battery 55 in the above-mentioned embodiment, the battery temperature Tcell may be adopted. Furthermore, in the embodiment, the heat medium is circulated to adjust the temperature of the battery 55, but the present invention is not limited to this, and a battery heat exchanger that directly exchanges heat between the refrigerant and the battery 55 may be provided. In that case, the battery temperature Tcell is an index indicating the temperature of the battery 55.
 更に、実施例では急速充電器を用いてバッテリ55に充電する場合について説明したが、請求項6以外の発明では通常の充電器を用いる場合にも本発明は有効である。また、実施例で説明した冷媒回路Rの構成や数値はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。 Furthermore, although the case where the battery 55 is charged by using the quick charger has been described in the embodiment, the present invention is effective even when a normal charger is used in the invention other than claim 6. Further, it goes without saying that the configuration and the numerical values of the refrigerant circuit R described in the embodiments are not limited thereto and can be changed without departing from the spirit of the present invention.
 1 車両用空気調和装置
 2 圧縮機
 3 空気流通路
 4 放熱器(室内熱交換器)
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器(室内熱交換器)
 11 制御装置
 32 ヒートポンプコントローラ(制御装置の一部を構成)
 35 電磁弁
 45 空調コントローラ(制御装置の一部を構成)
 48 吸熱器温度センサ
 55 バッテリ
 61 バッテリ温度調整装置
 64 冷媒-熱媒体熱交換器
 68 補助膨張弁
 69 電磁弁
 76 熱媒体温度センサ
 R 冷媒回路
1 Vehicle Air Conditioner 2 Compressor 3 Air Flow Path 4 Radiator (Indoor Heat Exchanger)
6 Outdoor expansion valve 7 Outdoor heat exchanger 8 Indoor expansion valve 9 Heat absorber (indoor heat exchanger)
11 control device 32 heat pump controller (constituting a part of control device)
35 solenoid valve 45 air conditioning controller (constituting a part of control device)
48 Heat Absorber Temperature Sensor 55 Battery 61 Battery Temperature Adjusting Device 64 Refrigerant-Heat Medium Heat Exchanger 68 Auxiliary Expansion Valve 69 Electromagnetic Valve 76 Heat Medium Temperature Sensor R Refrigerant Circuit

Claims (11)

  1.  外部の充電器により充電可能であり、車両に搭載されたバッテリの温度を調整するバッテリ温度調整装置であって、
     制御装置を備え、該制御装置は、
     前記バッテリを充電する際、当該バッテリの温度を調整する充電時間優先モードと、
     前記バッテリを充電する際に動作しない、又は、前記バッテリの温度を調整する動作を制限する、状態のうちの何れかの状態となる充電電力優先モードを有することを特徴とする車両のバッテリ温度調整装置。
    A battery temperature adjusting device that can be charged by an external charger and adjusts the temperature of a battery mounted on a vehicle,
    A control device, the control device comprising:
    When charging the battery, a charging time priority mode for adjusting the temperature of the battery,
    Battery temperature adjustment of a vehicle having a charging power priority mode that does not operate when charging the battery or restricts an operation of adjusting the temperature of the battery apparatus.
  2.  前記制御装置は、前記充電時間優先モードにおいて、前記バッテリの温度を示す指標を所定の適正温度範囲に制御することを特徴とする請求項1に記載の車両のバッテリ温度調整装置。 The battery temperature adjusting device for a vehicle according to claim 1, wherein the control device controls an index indicating the temperature of the battery within a predetermined appropriate temperature range in the charging time priority mode.
  3.  前記制御装置は、前記充電時間優先モードにおいて、前記バッテリの充電電流に基づき、当該充電電流が最大となるよう前記バッテリの温度を示す指標を制御することを特徴とする請求項1又は請求項2に記載の車両のバッテリ温度調整装置。 3. The control device controls, in the charging time priority mode, an index indicating the temperature of the battery based on the charging current of the battery so that the charging current is maximized. The battery temperature control device for a vehicle according to item 1.
  4.  冷却装置を備え、該冷却装置を用いて前記バッテリを冷却可能とされており、
     前記制御装置は、前記充電電力優先モードにおいて、前記バッテリの温度を示す指標が所定の上限値に達した場合、前記バッテリを冷却し、前記指標を前記上限値より低い値とすることを特徴とする請求項1乃至請求項3のうちの何れかに記載の車両のバッテリ温度調整装置。
    A cooling device is provided, and the battery can be cooled using the cooling device.
    In the charging power priority mode, the control device cools the battery when the index indicating the temperature of the battery reaches a predetermined upper limit value, and sets the index to a value lower than the upper limit value. The battery temperature adjusting device for a vehicle according to any one of claims 1 to 3.
  5.  加熱装置を備え、該加熱装置を用いて前記バッテリを加熱可能とされており、
     前記制御装置は、前記充電電力優先モードにおいて、前記バッテリの温度を示す指標が所定の下限値に達した場合、前記バッテリを加熱し、前記指標を前記下限値より高い値とすることを特徴とする請求項1乃至請求項4のうちの何れかに記載の車両のバッテリ温度調整装置。
    A heating device is provided, and the battery can be heated using the heating device.
    In the charging power priority mode, the control device heats the battery when the index indicating the temperature of the battery reaches a predetermined lower limit value, and sets the index to a value higher than the lower limit value. The battery temperature adjusting device for a vehicle according to any one of claims 1 to 4.
  6.  前記制御装置は、急速充電器により前記バッテリに充電する際、前記充電時間優先モード、又は、前記充電電力優先モードを実行することを特徴とする請求項1乃至請求項5のうちの何れかに記載の車両のバッテリ温度調整装置。 6. The control device executes the charging time priority mode or the charging power priority mode when charging the battery with a quick charger, according to any one of claims 1 to 5. A battery temperature control device for a vehicle as described.
  7.  前記制御装置は、前記充電時間優先モードを実行するか、前記充電電力優先モードを実行するかを選択するための入力装置を有することを特徴とする請求項1乃至請求項6のうちの何れかに記載の車両のバッテリ温度調整装置。 7. The control device according to claim 1, further comprising an input device for selecting whether to execute the charging time priority mode or the charging power priority mode. The battery temperature control device for a vehicle according to item 1.
  8.  前記制御装置は、所定の出力装置を有し、
     前記バッテリの残量、環境条件、充電開始時の前記バッテリの温度を示す指標、前記充電器の種類のうちの何れか、或いは、それらの組み合わせ、若しくは、それらの全てから算出されるバッテリ充電完了時間、及び、バッテリ充電電力を、前記充電時間優先モードと前記充電電力優先モード毎に出力することを特徴とする請求項1乃至請求項7のうちの何れかに記載の車両のバッテリ温度調整装置。
    The control device has a predetermined output device,
    Battery charge completion calculated from any one of the remaining capacity of the battery, environmental conditions, an index indicating the temperature of the battery at the start of charging, the type of the charger, or a combination thereof, or all of them. 8. The battery temperature adjusting device for a vehicle according to claim 1, wherein time and battery charging power are output for each of the charging time priority mode and the charging power priority mode. ..
  9.  前記制御装置は、前記バッテリの残量、環境条件、充電開始時の前記バッテリの温度を示す指標、前記充電器の種類のうちの何れか、或いは、それらの組み合わせ、若しくは、それらの全てから算出されるバッテリ充電完了時間に基づき、算出された当該バッテリ充電完了時間が予め設定された希望充電時間を満たす場合、前記充電電力優先モードを実行することを特徴とする請求項1乃至請求項8のうちの何れかに記載の車両のバッテリ温度調整装置。 The control device calculates from any one of the remaining amount of the battery, environmental conditions, an index indicating the temperature of the battery at the start of charging, the type of the charger, or a combination thereof, or all of them. 9. The charging power priority mode is executed when the calculated battery charging completion time satisfies a preset desired charging time based on the battery charging completion time. The vehicle battery temperature control device according to any one of the above.
  10.  前記制御装置は、所定の出力装置を有し、
     前記充電時間優先モードを実行しているか、前記充電電力優先モードを実行しているかを出力することを特徴とする請求項1乃至請求項9のうちの何れかに記載の車両のバッテリ温度調整装置。
    The control device has a predetermined output device,
    The battery temperature adjusting device for a vehicle according to claim 1, wherein the battery temperature adjusting device outputs whether the charging time priority mode is being executed or the charging power priority mode is being executed. ..
  11.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気と前記冷媒を熱交換させるための室内熱交換器と、
     車室外に設けられた室外熱交換器を備えて前記車室内を空調すると共に、
     前記バッテリ温度調整装置は、前記冷媒を用いて前記バッテリを冷却可能とされており、
     前記制御装置は、前記充電時間優先モードにおいて、前記車室内の空調運転を制限し、又は、前記車室内の空調運転を禁止することを特徴とする請求項1乃至請求項10のうちの何れかに記載の車両のバッテリ温度調整装置を備えた車両用空気調和装置。
    A compressor for compressing the refrigerant,
    An indoor heat exchanger for exchanging heat between the air supplied to the vehicle interior and the refrigerant,
    While air-conditioning the interior of the vehicle with an outdoor heat exchanger provided outside the vehicle,
    The battery temperature adjusting device is capable of cooling the battery using the refrigerant,
    11. The control device limits air conditioning operation in the vehicle compartment or prohibits air conditioning operation in the vehicle compartment in the charging time priority mode. An air conditioner for a vehicle, comprising the battery temperature adjusting device for a vehicle according to.
PCT/JP2019/041092 2018-11-27 2019-10-18 Vehicle battery temperature adjustment apparatus and vehicle air-conditioner equipped with same WO2020110508A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980074327.4A CN112996689A (en) 2018-11-27 2019-10-18 Battery temperature adjusting device for vehicle and vehicle air conditioner comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018221253A JP7213665B2 (en) 2018-11-27 2018-11-27 VEHICLE BATTERY TEMPERATURE ADJUSTMENT DEVICE AND VEHICLE AIR CONDITIONER WITH SAME
JP2018-221253 2018-11-27

Publications (1)

Publication Number Publication Date
WO2020110508A1 true WO2020110508A1 (en) 2020-06-04

Family

ID=70853982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041092 WO2020110508A1 (en) 2018-11-27 2019-10-18 Vehicle battery temperature adjustment apparatus and vehicle air-conditioner equipped with same

Country Status (3)

Country Link
JP (1) JP7213665B2 (en)
CN (1) CN112996689A (en)
WO (1) WO2020110508A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113306451A (en) * 2021-06-08 2021-08-27 侯静霞 Battery pack temperature control device, electric vehicle and control method thereof
CN113525108A (en) * 2021-06-16 2021-10-22 广汽本田汽车有限公司 Charging control method and charging control system for electric vehicle and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113829964B (en) * 2020-06-24 2023-11-14 比亚迪股份有限公司 Self-heating method and system of power battery pack, automobile and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001145213A (en) * 1999-11-11 2001-05-25 Honda Motor Co Ltd Battery charging method
WO2010061465A1 (en) * 2008-11-28 2010-06-03 トヨタ自動車株式会社 Vehicular charging system
JP2012066781A (en) * 2010-09-27 2012-04-05 Mitsubishi Electric Corp Power-supply device for vehicle
WO2013141090A1 (en) * 2012-03-19 2013-09-26 日産自動車株式会社 Battery-temperature adjustment apparatus
JP2015056935A (en) * 2013-09-11 2015-03-23 トヨタ自動車株式会社 On-vehicle battery charging system and on-vehicle battery charging method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3910384B2 (en) * 2000-10-13 2007-04-25 本田技研工業株式会社 Battery cooling device for vehicle
JP5024558B2 (en) * 2008-11-21 2012-09-12 本田技研工業株式会社 Charge control device
JP2010154646A (en) * 2008-12-25 2010-07-08 Omron Corp Apparatus and method for controlling charge, and program
DE102011079415B4 (en) * 2011-07-19 2018-10-25 Bayerische Motoren Werke Aktiengesellschaft Charging an electric vehicle comprising an electric air-conditioning system
US9114794B2 (en) * 2013-03-13 2015-08-25 Ford Global Technologies, Llc Method and system for controlling an electric vehicle while charging
JP6028756B2 (en) * 2014-03-19 2016-11-16 トヨタ自動車株式会社 Battery temperature control device
JP2015211500A (en) * 2014-04-24 2015-11-24 三菱自動車工業株式会社 Vehicle temperature regulator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001145213A (en) * 1999-11-11 2001-05-25 Honda Motor Co Ltd Battery charging method
WO2010061465A1 (en) * 2008-11-28 2010-06-03 トヨタ自動車株式会社 Vehicular charging system
JP2012066781A (en) * 2010-09-27 2012-04-05 Mitsubishi Electric Corp Power-supply device for vehicle
WO2013141090A1 (en) * 2012-03-19 2013-09-26 日産自動車株式会社 Battery-temperature adjustment apparatus
JP2015056935A (en) * 2013-09-11 2015-03-23 トヨタ自動車株式会社 On-vehicle battery charging system and on-vehicle battery charging method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113306451A (en) * 2021-06-08 2021-08-27 侯静霞 Battery pack temperature control device, electric vehicle and control method thereof
CN113306451B (en) * 2021-06-08 2023-01-31 侯静霞 Battery pack temperature control device, electric vehicle and control method thereof
CN113525108A (en) * 2021-06-16 2021-10-22 广汽本田汽车有限公司 Charging control method and charging control system for electric vehicle and storage medium

Also Published As

Publication number Publication date
JP2020089093A (en) 2020-06-04
JP7213665B2 (en) 2023-01-27
CN112996689A (en) 2021-06-18

Similar Documents

Publication Publication Date Title
WO2020235261A1 (en) Vehicle air conditioner
JP7300264B2 (en) Vehicle air conditioner
WO2020075446A1 (en) Vehicle air conditioning device
WO2020153032A1 (en) Vehicle battery temperature adjusting device, and vehicle air conditioning device provided with same
WO2020129494A1 (en) Vehicle air conditioning device
WO2020110508A1 (en) Vehicle battery temperature adjustment apparatus and vehicle air-conditioner equipped with same
WO2019181311A1 (en) Control system for vehicle
CN113165476A (en) Air conditioner for vehicle
JP7031105B2 (en) Vehicle control system
WO2020129493A1 (en) Vehicle air-conditioning apparatus
JP2019146441A (en) Vehicular control system
WO2020090255A1 (en) Air conditioning device for vehicle
WO2020100410A1 (en) Vehicle air-conditioning device
WO2020137235A1 (en) Vehicle air-conditioning device
CN113453926A (en) Air conditioner for vehicle
WO2020100523A1 (en) Vehicular air-conditioning device
JP2019166867A (en) Air conditioner for vehicle
WO2020100524A1 (en) Vehicle air-conditioning device
CN113412397B (en) Air conditioner for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19890535

Country of ref document: EP

Kind code of ref document: A1