JP2019166867A - Air conditioner for vehicle - Google Patents

Air conditioner for vehicle Download PDF

Info

Publication number
JP2019166867A
JP2019166867A JP2018054207A JP2018054207A JP2019166867A JP 2019166867 A JP2019166867 A JP 2019166867A JP 2018054207 A JP2018054207 A JP 2018054207A JP 2018054207 A JP2018054207 A JP 2018054207A JP 2019166867 A JP2019166867 A JP 2019166867A
Authority
JP
Japan
Prior art keywords
battery
temperature
air
refrigerant
conditioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018054207A
Other languages
Japanese (ja)
Inventor
徹也 石関
Tetsuya Ishizeki
徹也 石関
武史 東宮
Takeshi Tomiya
武史 東宮
岡本 佳之
Yoshiyuki Okamoto
佳之 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Automotive Climate Systems Corp
Original Assignee
Sanden Automotive Climate Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Automotive Climate Systems Corp filed Critical Sanden Automotive Climate Systems Corp
Priority to JP2018054207A priority Critical patent/JP2019166867A/en
Priority to PCT/JP2019/005635 priority patent/WO2019181310A1/en
Publication of JP2019166867A publication Critical patent/JP2019166867A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide an air conditioner for vehicle capable of preventing deterioration of a battery when a temperature of a battery is low or high, in a pre-air conditioning time in a vehicle interior part.SOLUTION: An air conditioner for vehicle comprises an air conditioning controller comprising a pre-air conditioning function for starting air-condition of a vehicle interior part at a prescribed preset pre-air conditioning start scheduled time t1, the air conditioning controller heats a battery 55 before the pre-air conditioning start scheduled time t1 if temperature of the battery 55 is lower than a prescribed allowable lower limit temperature TL, and the air conditioning controller executes a pre-air conditioning time battery warming control for starting air conditioning of a vehicle interior, when the temperature of the battery 55 rises to equal to or more than the allowable lower limit temperature TL.SELECTED DRAWING: Figure 1

Description

本発明は、バッテリから給電されて車室内を空調すると共に、バッテリの温度も調整することが可能とされた車両用空気調和装置に関するものである。   The present invention relates to a vehicle air conditioner that is supplied with power from a battery to air-condition a vehicle interior and that can also adjust the temperature of the battery.

近年の環境問題の顕在化から、搭載されたバッテリから供給される電力で走行用モータを駆動するハイブリッド自動車や電気自動車等の車両が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、圧縮機と、放熱器と、吸熱器と、室外熱交換器が接続された冷媒回路を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させる暖房モード(暖房運転)と、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器において吸熱させる冷房モード(冷房運転)を切り換えて実行するものが開発されている(例えば、特許文献1参照)。   With the recent emergence of environmental problems, vehicles such as hybrid vehicles and electric vehicles that drive a traction motor with electric power supplied from an installed battery have become widespread. As an air conditioner that can be applied to such a vehicle, a refrigerant circuit that includes a compressor, a radiator, a heat absorber, and an outdoor heat exchanger is connected, and refrigerant discharged from the compressor is used. Heating mode (heating operation) in which heat is dissipated in the radiator and the refrigerant dissipated in the radiator is absorbed in the outdoor heat exchanger, and the refrigerant discharged from the compressor is dissipated in the outdoor heat exchanger and absorbed in the heat absorber. A device that switches and executes a cooling mode (cooling operation) has been developed (for example, see Patent Document 1).

また、上記のような電気自動車は、バッテリから車両用空気調和装置に給電して車室内を空調するものであるが、バッテリは高温の状態や極低温の状態では充放電が困難となるため、バッテリの温度を所定の温度範囲に調整するバッテリ温度調整装置を備えたものも開発されている(例えば、特許文献2、特許文献3参照)。   In addition, the electric vehicle as described above supplies air to the vehicle air conditioner from the battery and air-conditions the interior of the vehicle, but charging and discharging is difficult in a high temperature state or a very low temperature state. An apparatus including a battery temperature adjusting device that adjusts the temperature of the battery to a predetermined temperature range has been developed (see, for example, Patent Document 2 and Patent Document 3).

特開2014−213765号公報JP 2014-213765 A 特許第5860360号公報Japanese Patent No. 5860360 特許第5860361号公報Japanese Patent No. 5860361

ここで、この種車両用空気調和装置には、所謂プレ空調機能を有するものがある。このプレ空調機能とは、乗り出す際の車室内の温度を予め適温としておくことができる機能であり、使用者により予め設定された時刻(乗り出す前の時刻)に車室内の空調(プレ空調)を開始するものであるが、例えば極低温の状態で車室内のプレ空調を始めると、バッテリが出力可能な電流が低くなるため、過度な電力要求となってバッテリ自体の耐久性に悪影響を与えることになる。これはバッテリが高温の状態においても同様であり、プレ空調の開始時に極低温や高温の状態でバッテリを放電させると、著しくバッテリが劣化する。   Here, some of these types of vehicle air conditioners have a so-called pre-air conditioning function. This pre-air-conditioning function is a function that allows the temperature of the passenger compartment to be set to an appropriate temperature in advance. The air-conditioning (pre-air-conditioning) of the passenger compartment is performed at a time preset by the user (time before departure). For example, if pre-air conditioning in the passenger compartment starts at a very low temperature, for example, the current that can be output from the battery will be reduced, resulting in excessive power demand and adversely affecting the durability of the battery itself. become. This is the same even when the battery is at a high temperature. If the battery is discharged at a very low temperature or a high temperature at the start of pre-air conditioning, the battery will be significantly deteriorated.

本発明は、係る従来の技術的課題を解決するために成されたものであり、車室内のプレ空調時にバッテリの温度が低い状況や高い状況である場合、バッテリの劣化を防止することができる車両用空気調和装置を提供することを目的とする。   The present invention has been made to solve the conventional technical problem, and can prevent deterioration of the battery when the temperature of the battery is low or high during pre-air conditioning in the vehicle interior. An object of the present invention is to provide a vehicle air conditioner.

請求項1の発明の車両用空気調和装置は、バッテリから給電されて車室内を空調すると共に、バッテリの温度を調整するものであって、予め設定された所定のプレ空調開始予定時刻に車室内の空調を開始するプレ空調機能を有する制御装置を備え、この制御装置は、バッテリの温度が所定の許容下限温度より低い場合、プレ空調開始予定時刻より前にバッテリを加熱し、当該バッテリの温度が許容下限温度以上に上昇した場合、車室内の空調を開始するプレ空調時バッテリ温調制御を実行することを特徴とする。   The vehicle air conditioner according to the first aspect of the present invention is powered by the battery to air-condition the vehicle interior and adjusts the temperature of the battery, and the vehicle interior is set at a predetermined pre-air-conditioning start scheduled time. A control device having a pre-air-conditioning function for starting the air-conditioning, and when the temperature of the battery is lower than a predetermined allowable lower limit temperature, the control device heats the battery before the pre-air-conditioning start scheduled time, When the temperature rises above the allowable lower limit temperature, pre-air-conditioning battery temperature adjustment control is executed to start air conditioning in the passenger compartment.

請求項2の発明の車両用空気調和装置は、上記発明において制御装置は、プレ空調時バッテリ温調制御において、バッテリの温度が所定の許容上限温度より高い場合、プレ空調開始予定時刻より前にバッテリを冷却し、当該バッテリの温度が許容上限温度以下に低下した場合、車室内の空調を開始することを特徴とする。   According to a second aspect of the present invention, there is provided a vehicular air conditioner according to the present invention, wherein, in the pre-air-conditioning battery temperature control, the control device is prior to the pre-air conditioning start scheduled time when the battery temperature is higher than a predetermined allowable upper limit temperature. When the battery is cooled and the temperature of the battery falls below the allowable upper limit temperature, air conditioning in the vehicle interior is started.

請求項3の発明の車両用空気調和装置は、バッテリから給電されて車室内を空調すると共に、バッテリの温度を調整するものであって、予め設定された所定のプレ空調開始予定時刻に車室内の空調を開始するプレ空調機能を有する制御装置を備え、この制御装置は、バッテリの温度が所定の許容上限温度より高い場合、プレ空調開始予定時刻より前にバッテリを冷却し、当該バッテリの温度が許容上限温度以下に低下した場合、車室内の空調を開始するプレ空調時バッテリ温調制御を実行することを特徴とする。   According to a third aspect of the present invention, there is provided an air conditioner for a vehicle which is powered by a battery to air-condition the vehicle interior and adjusts the temperature of the battery. A control device having a pre-air conditioning function for starting the air conditioning of the battery, and when the temperature of the battery is higher than a predetermined allowable upper limit temperature, the control device cools the battery before the pre-air conditioning start scheduled time, When the temperature falls below the allowable upper limit temperature, pre-air-conditioning battery temperature adjustment control is executed to start air conditioning in the passenger compartment.

請求項4の発明の車両用空気調和装置は、上記各発明において制御装置は、プレ空調開始予定時刻が設定された場合、当該プレ空調開始予定時刻より前の時点でバッテリの温度を判断し、当該バッテリの温度が許容下限温度より低い場合、又は、バッテリの温度が許容上限温度より高い場合、プレ空調時バッテリ温調制御を実行することを特徴とする。   When the pre-air conditioning start scheduled time is set, the vehicle air conditioner of the invention of claim 4 determines the temperature of the battery at a time before the pre air conditioning start scheduled time, When the temperature of the battery is lower than the allowable lower limit temperature or when the temperature of the battery is higher than the allowable upper limit temperature, battery temperature adjustment control during pre-air conditioning is executed.

請求項5の発明の車両用空気調和装置は、上記発明において制御装置は、プレ空調開始予定時刻より所定時間前から一定時間毎にバッテリの温度を判断し、当該バッテリの温度が許容下限温度より低く、その差が大きい程、又は、バッテリの温度が許容上限温度より高く、その差が大きい程、早い時点からプレ空調時バッテリ温調制御を開始することを特徴とする。   According to a fifth aspect of the present invention, in the vehicle air conditioner according to the fifth aspect of the present invention, the control device determines the temperature of the battery every predetermined time from a predetermined time before the pre-air conditioning start scheduled time, and the temperature of the battery is lower than the allowable lower limit temperature. The lower the difference is, or the higher the difference is, or the higher the difference is, the more the battery temperature adjustment control is started at an earlier time.

請求項6の発明の車両用空気調和装置は、上記発明において制御装置がプレ空調時バッテリ温調制御を開始する時点は、プレ空調開始予定時刻までにバッテリの温度が許容下限温度以上となる時点、又は、許容上限温度以下となる時点であることを特徴とする。   In the vehicle air conditioner according to the sixth aspect of the present invention, the time when the control device starts pre-air conditioning battery temperature control in the above invention is the time when the temperature of the battery becomes equal to or higher than the allowable lower limit temperature by the pre-air conditioning start scheduled time. Or, it is a point of time when the temperature falls below the allowable upper limit temperature.

請求項7の発明の車両用空気調和装置は、上記各発明において冷媒を圧縮する圧縮機と、冷媒を放熱させて車室内に供給する空気を加熱する放熱器と、冷媒を吸熱させて車室内に供給する空気を冷却する吸熱器と、車室外に設けられて冷媒を吸熱、又は、放熱させる室外熱交換器と、バッテリに熱媒体を循環させて当該バッテリの温度を調整するバッテリ温度調整装置を備え、このバッテリ温度調整装置は、冷媒と熱媒体とを熱交換させる冷媒−熱媒体熱交換器と、熱媒体を加熱する加熱装置を有すると共に、制御装置は、バッテリ自体の温度、又は、熱媒体の温度をバッテリの温度としてプレ空調時バッテリ温調制御を実行することを特徴とする。   According to a seventh aspect of the present invention, there is provided an air conditioner for a vehicle according to the present invention, wherein the compressor compresses the refrigerant, the radiator that radiates the refrigerant and heats the air supplied to the vehicle interior, and the vehicle interior that absorbs the refrigerant. A heat absorber that cools the air supplied to the vehicle, an outdoor heat exchanger that is provided outside the passenger compartment to absorb or dissipate the refrigerant, and a battery temperature adjustment device that adjusts the temperature of the battery by circulating a heat medium in the battery The battery temperature adjusting device includes a refrigerant-heat medium heat exchanger that exchanges heat between the refrigerant and the heat medium, and a heating device that heats the heat medium. Battery temperature adjustment control during pre-air conditioning is executed using the temperature of the heat medium as the battery temperature.

請求項1の発明によれば、バッテリから給電されて車室内を空調すると共に、バッテリの温度を調整する車両用空気調和装置において、予め設定された所定のプレ空調開始予定時刻に車室内の空調を開始するプレ空調機能を有する制御装置を備えており、この制御装置が、バッテリの温度が所定の許容下限温度より低い場合、プレ空調開始予定時刻より前にバッテリを加熱し、当該バッテリの温度が許容下限温度以上に上昇した場合、車室内の空調を開始するプレ空調時バッテリ温調制御を実行するようにしたので、車室内のプレ空調を実行する際にバッテリの温度が低く、過度の電力要求となる状況下において、プレ空調を開始する前にバッテリを加熱することができるようになる。   According to the first aspect of the present invention, in the vehicle air conditioner that is powered from the battery to air-condition the vehicle interior and adjusts the temperature of the battery, the air-conditioning of the vehicle interior is performed at a predetermined preset pre-air-conditioning start scheduled time. When the temperature of the battery is lower than the predetermined allowable lower limit temperature, the control device heats the battery before the pre-air conditioning start scheduled time, and the temperature of the battery When the temperature of the battery rises above the allowable lower limit temperature, the pre-air-conditioning battery temperature adjustment control is started to start air conditioning in the vehicle interior. The battery can be heated before the pre-air-conditioning is started under the situation where the electric power is required.

そして、制御装置はバッテリの温度が許容下限温度以上に上昇してから車室内の空調を開始するようにしたので、車室内をプレ空調する際のバッテリの劣化を防止することが可能となり、その耐久性の向上を図りながら、車室内のプレ空調も円滑に行うことができるようになる。   And since the control device starts the air conditioning of the vehicle interior after the temperature of the battery rises above the allowable lower limit temperature, it becomes possible to prevent deterioration of the battery when pre-air conditioning the vehicle interior, Pre-air conditioning in the passenger compartment can be performed smoothly while improving durability.

また、請求項2又は請求項3の発明によれば、制御装置がプレ空調時バッテリ温調制御において、バッテリの温度が所定の許容上限温度より高い場合、プレ空調開始予定時刻より前にバッテリを冷却し、当該バッテリの温度が許容上限温度以下に低下した場合、車室内の空調を開始するようにしたので、車室内のプレ空調を実行する際にバッテリの温度が高い場合には、プレ空調を開始する前にバッテリを冷却することができるようになる。   According to the invention of claim 2 or claim 3, in the pre-air-conditioning battery temperature adjustment control, when the temperature of the battery is higher than a predetermined allowable upper limit temperature, the control device removes the battery before the pre-air-conditioning start scheduled time When cooling and the temperature of the battery falls below the allowable upper limit temperature, the air conditioning of the vehicle interior is started, so if the temperature of the battery is high when performing the pre air conditioning of the vehicle interior, The battery can be cooled before starting.

そして、制御装置はバッテリの温度が許容上限温度以下に低下してから車室内の空調を開始するので、同様に車室内をプレ空調する際のバッテリの劣化を防止し、その耐久性の向上を図りながら、車室内のプレ空調も円滑に行うことができるようになる。   And since the control device starts air conditioning in the vehicle interior after the temperature of the battery falls below the allowable upper limit temperature, it similarly prevents deterioration of the battery when pre-air conditioning the vehicle interior and improves its durability. As a result, the pre-air conditioning in the passenger compartment can be performed smoothly.

この場合、請求項4の発明の如く、プレ空調開始予定時刻が設定された場合、制御装置が当該プレ空調開始予定時刻より前の時点でバッテリの温度を判断し、当該バッテリの温度が許容下限温度より低い場合、又は、バッテリの温度が許容上限温度より高い場合、プレ空調時バッテリ温調制御を実行するようにすれば、円滑にプレ空調前のバッテリ温調を実現することができるようになる。   In this case, when the pre-air-conditioning start scheduled time is set as in the invention of claim 4, the control device determines the battery temperature at a time before the pre-air-conditioning start scheduled time, and the battery temperature falls within the allowable lower limit. If the temperature is lower than the temperature, or if the temperature of the battery is higher than the allowable upper limit temperature, the battery temperature control before the pre-air conditioning can be realized smoothly by executing the battery temperature control during the pre-air conditioning. Become.

特に、請求項5の発明の如く制御装置が、プレ空調開始予定時刻より所定時間前から一定時間毎にバッテリの温度を判断し、当該バッテリの温度が許容下限温度より低く、その差が大きい程、又は、バッテリの温度が許容上限温度より高く、その差が大きい程、早い時点からプレ空調時バッテリ温調制御を開始するようにすれば、プレ空調開始予定時刻にはバッテリの温度を支障無く許容下限温度以上、又は、許容上限温度以下としておくことが可能となる。   In particular, as in the invention of claim 5, the control device determines the temperature of the battery every predetermined time from the predetermined time before the pre-air conditioning start scheduled time, and the temperature of the battery is lower than the allowable lower limit temperature, and the difference is larger. Alternatively, if the temperature of the battery is higher than the allowable upper limit temperature and the difference is larger, the battery temperature adjustment control is started at the pre-air-conditioning start scheduled time if the pre-air-conditioning battery temperature control is started from an earlier time point. It becomes possible to set it more than an allowable minimum temperature or below an allowable upper limit temperature.

この場合、例えば請求項6の発明の如く、制御装置がプレ空調時バッテリ温調制御を開始する時点を、プレ空調開始予定時刻までにバッテリの温度が許容下限温度以上となる時点、又は、許容上限温度以下となる時点として予め設定しておくことで、プレ空調開始予定時刻にはバッテリの温度を確実に許容下限温度以上、又は、許容上限温度以下としておくことができるようになる。   In this case, for example, as in the sixth aspect of the present invention, the time when the control device starts the battery temperature adjustment control during pre-air conditioning is the time when the temperature of the battery becomes equal to or higher than the allowable lower limit temperature by the pre-air conditioning start scheduled time. By setting in advance as the time when the temperature becomes lower than or equal to the upper limit temperature, the battery temperature can be reliably set to be equal to or higher than the allowable lower limit temperature or lower than the allowable upper limit temperature at the pre-air conditioning start scheduled time.

そして、請求項7の発明の如く車両用空気調和装置が、冷媒を圧縮する圧縮機と、冷媒を放熱させて車室内に供給する空気を加熱する放熱器と、冷媒を吸熱させて車室内に供給する空気を冷却する吸熱器と、車室外に設けられて冷媒を吸熱、又は、放熱させる室外熱交換器と、バッテリに熱媒体を循環させて当該バッテリの温度を調整するバッテリ温度調整装置を備え、このバッテリ温度調整装置が、冷媒と熱媒体とを熱交換させる冷媒−熱媒体熱交換器と、熱媒体を加熱する加熱装置を有すると共に、制御装置が、バッテリ自体の温度、又は、熱媒体の温度をバッテリの温度としてプレ空調時バッテリ温調制御を実行するようにすれば、上記各発明を円滑に実現することができるようになるものである。   According to a seventh aspect of the present invention, a vehicle air conditioner includes a compressor that compresses a refrigerant, a radiator that heats the air that dissipates the refrigerant and supplies the air to the vehicle interior, and absorbs heat from the refrigerant into the vehicle interior. A heat absorber that cools the air to be supplied, an outdoor heat exchanger that is provided outside the passenger compartment to absorb or dissipate the refrigerant, and a battery temperature adjusting device that circulates a heat medium in the battery and adjusts the temperature of the battery. The battery temperature adjusting device includes a refrigerant-heat medium heat exchanger that exchanges heat between the refrigerant and the heat medium, and a heating device that heats the heat medium, and the controller is configured to control the temperature or heat of the battery itself. If the temperature control of the battery is performed using the temperature of the medium as the temperature of the battery, each of the above inventions can be realized smoothly.

本発明を適用した車両用空気調和装置の一実施例の構成図である。It is a block diagram of one Example of the air conditioning apparatus for vehicles to which this invention is applied. 図1の車両用空気調和装置の制御装置としての空調コントローラのブロック図である。It is a block diagram of the air-conditioning controller as a control apparatus of the vehicle air conditioner of FIG. 図2の空調コントローラによる暖房運転を説明する図である。It is a figure explaining the heating operation by the air-conditioning controller of FIG. 図2の空調コントローラによる除湿暖房運転を説明する図である。It is a figure explaining the dehumidification heating operation by the air-conditioning controller of FIG. 図2の空調コントローラによる内部サイクル運転を説明する図である。It is a figure explaining the internal cycle driving | operation by the air-conditioning controller of FIG. 図2の空調コントローラによる除湿冷房運転/冷房運転を説明する図である。It is a figure explaining the dehumidification cooling operation / cooling operation by the air-conditioning controller of FIG. 図2の空調コントローラによる暖房/バッテリ温調モードを説明する図である。It is a figure explaining the heating / battery temperature control mode by the air-conditioning controller of FIG. 図2の空調コントローラによる除湿冷房/バッテリ温調モード(冷房/バッテリ温調モード)を説明する図である。It is a figure explaining the dehumidification cooling / battery temperature control mode (cooling / battery temperature control mode) by the air-conditioning controller of FIG. 図2の空調コントローラによる内部サイクル/バッテリ温調モードを説明する図である。It is a figure explaining the internal cycle / battery temperature control mode by the air-conditioning controller of FIG. 図2の空調コントローラによる除湿暖房/バッテリ温調モードを説明する図である。It is a figure explaining the dehumidification heating / battery temperature control mode by the air-conditioning controller of FIG. 図2の空調コントローラによるバッテリ温調単独モードを説明する図である(プレ空調時バッテリ温調制御におけるバッテリ冷却モードも同じ)。It is a figure explaining the battery temperature control single mode by the air-conditioning controller of FIG. 2 (the battery cooling mode in the battery temperature control at the time of pre air conditioning is also the same). 図2の空調コントローラによるプレ空調時バッテリ温調制御におけるバッテリ加熱モードを説明する図である。It is a figure explaining the battery heating mode in the battery temperature control at the time of the pre air conditioning by the air conditioning controller of FIG. 図12のプレ空調時バッテリ温調制御におけるバッテリ加熱モードでのバッテリ温度の推移を示す図である。It is a figure which shows transition of the battery temperature in the battery heating mode in the battery temperature control at the time of the pre air conditioning of FIG.

以下、本発明の実施の形態について、図面に基づき詳細に説明する。図1は本発明を適用した一実施例の車両用空気調和装置1の構成図を示している。本発明の車両用空気調和装置1は車両に搭載されるものであって、実施例では車両用の制御システム(車両用制御システムVC)の一部を構成するものである。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment to which the present invention is applied. The vehicle air conditioner 1 of the present invention is mounted on a vehicle, and constitutes a part of a vehicle control system (vehicle control system VC) in the embodiment.

また、適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、車両にバッテリ55(例えば、リチウム電池)が搭載され、急速充電器や家庭用商用電源(普通充電)等の外部電源からバッテリ55に充電された電力を走行用の電動モータ65に供給することで駆動し、走行するものである。そして、車両用空気調和装置1も、バッテリ55から給電されて駆動されるものである。   Further, the vehicle of the embodiment to be applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and a battery 55 (for example, a lithium battery) is mounted on the vehicle, and a quick charger or a household commercial vehicle is used. Driving is performed by supplying electric power charged in the battery 55 from an external power source such as a power source (normal charging) to the electric motor 65 for traveling. The vehicle air conditioner 1 is also driven by power supplied from the battery 55.

即ち、車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路Rを用いたヒートポンプ運転により暖房運転を行い、更に、除湿暖房運転や内部サイクル運転、除湿冷房運転、冷房運転の各空調運転を選択的に実行することで車室内の空調を行うものである。尚、車両として係る電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明が有効であることは云うまでもない。   That is, the vehicle air conditioner 1 performs heating operation by heat pump operation using the refrigerant circuit R in an electric vehicle that cannot be heated by engine waste heat, and further performs dehumidification heating operation, internal cycle operation, dehumidification cooling operation, cooling The vehicle interior is air-conditioned by selectively executing each air-conditioning operation. Needless to say, the present invention is not limited to an electric vehicle as a vehicle, but also to a so-called hybrid vehicle using an engine and an electric motor for traveling.

実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を車室内に放熱させる放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6と、冷房時には冷媒を放熱させる放熱器として機能し、暖房時には冷媒を吸熱させる蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱させる吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。室外膨張弁6や室内膨張弁8は、冷媒を減圧膨張させると共に全開や全閉も可能とされている。   The vehicle air conditioner 1 according to the embodiment performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and includes an electric compressor 2 that compresses refrigerant and vehicle interior air. Is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G, and dissipates the refrigerant into the vehicle compartment. And an outdoor expansion valve 6 comprising an electric valve that decompresses and expands the refrigerant during heating, and functions as a radiator that radiates the refrigerant during cooling and functions as an evaporator that absorbs the refrigerant during heating. An outdoor heat exchanger 7 that performs heat exchange, an indoor expansion valve 8 that includes an electric valve that decompresses and expands the refrigerant, and heat absorption that is provided in the air flow passage 3 and that absorbs heat from outside the vehicle interior during cooling and dehumidification. Vessel 9 and Accu Regulator 12 and the like are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed. The outdoor expansion valve 6 and the indoor expansion valve 8 allow the refrigerant to expand under reduced pressure and can be fully opened and fully closed.

尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。また、図中の23はグリルシャッタと称されるシャッタである。このシャッタ23が閉じられると、走行風が室外熱交換器7に流入することが阻止される構成とされている。   The outdoor heat exchanger 7 is provided with an outdoor blower 15. The outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing outside air through the outdoor heat exchanger 7, so that the outdoor air blower 15 can also be used outdoors even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). It is comprised so that external air may be ventilated by the heat exchanger 7. FIG. Reference numeral 23 in the figure denotes a shutter called a grill shutter. When the shutter 23 is closed, the traveling wind is prevented from flowing into the outdoor heat exchanger 7.

また、室外熱交換器7の冷媒出口側に接続された冷媒配管13Aは、逆止弁18を介して冷媒配管13Bに接続されている。尚、逆止弁18は冷媒配管13B側が順方向とされ、この冷媒配管13Bは室内膨張弁8に接続されている。   The refrigerant pipe 13 </ b> A connected to the refrigerant outlet side of the outdoor heat exchanger 7 is connected to the refrigerant pipe 13 </ b> B via the check valve 18. The check valve 18 has a forward direction on the refrigerant pipe 13B side, and the refrigerant pipe 13B is connected to the indoor expansion valve 8.

また、室外熱交換器7から出た冷媒配管13Aは分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁21を介して吸熱器9の出口側に位置する冷媒配管13Cに連通接続されている。そして、この冷媒配管13Cがアキュムレータ12に接続され、アキュムレータ12は圧縮機2の冷媒吸込側に接続されている。   Further, the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched, and this branched refrigerant pipe 13D is a refrigerant pipe 13C located on the outlet side of the heat absorber 9 via an electromagnetic valve 21 opened during heating. It is connected in communication. The refrigerant pipe 13 </ b> C is connected to the accumulator 12, and the accumulator 12 is connected to the refrigerant suction side of the compressor 2.

更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6の手前(冷媒上流側)で冷媒配管13Jと冷媒配管13Fに分岐しており、分岐した一方の冷媒配管13Jが室外膨張弁6を介して室外熱交換器7の冷媒入口側に接続されている。また、分岐した他方の冷媒配管13Fは除湿時に開放される電磁弁22を介して逆止弁18の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Aと冷媒配管13Bとの接続部に連通接続されている。   Furthermore, the refrigerant pipe 13E on the outlet side of the radiator 4 is branched into a refrigerant pipe 13J and a refrigerant pipe 13F before the outdoor expansion valve 6 (the refrigerant upstream side), and one of the branched refrigerant pipes 13J is the outdoor expansion valve 6. Is connected to the refrigerant inlet side of the outdoor heat exchanger 7. The other branched refrigerant pipe 13 </ b> F is a refrigerant pipe 13 </ b> A and a refrigerant pipe located on the refrigerant downstream side of the check valve 18 and on the refrigerant upstream side of the indoor expansion valve 8 via an electromagnetic valve 22 opened during dehumidification. 13B is connected in communication with the connecting portion.

これにより、冷媒配管13Fは室外膨張弁6、室外熱交換器7及び逆止弁18の直列回路に対して並列に接続されたかたちとなり、室外膨張弁6、室外熱交換器7及び逆止弁18をバイパスする回路となる。   Thus, the refrigerant pipe 13F is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve 18, and the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve are connected. The circuit bypasses the circuit 18.

また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環)と、車室外の空気である外気(外気導入)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。   The air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG. 1). 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation) which is air inside the vehicle compartment and the outside air (outside air introduction) which is outside the vehicle compartment. Furthermore, an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.

また、放熱器4の空気上流側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を放熱器4に通風する割合を調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口から空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。   Further, the air (inside air and outside air) in the air flow passage 3 after flowing into the air flow passage 3 and passing through the heat absorber 9 is radiated into the air flow passage 3 on the air upstream side of the radiator 4. An air mix damper 28 that adjusts the rate of ventilation through the vessel 4 is provided. Further, FOOT (foot), VENT (vent), and DEF (def) outlets (represented by the outlet 29 as a representative in FIG. 1) are formed in the air flow passage 3 on the air downstream side of the radiator 4. The air outlet 29 is provided with an air outlet switching damper 31 that performs switching control of air blowing from the air outlets.

更に、車両用空気調和装置1は、バッテリ55に熱媒体を循環させて当該バッテリ55の温度を調整するためのバッテリ温度調整装置61を備えている。実施例のバッテリ温度調整装置61は、バッテリ55に熱媒体を循環させるための循環装置としての循環ポンプ62と、加熱装置としての熱媒体加熱ヒータ66と、冷媒−熱媒体熱交換器64を備え、それらとバッテリ55が熱媒体配管68にて環状に接続されている。   Furthermore, the vehicle air conditioner 1 includes a battery temperature adjustment device 61 for adjusting the temperature of the battery 55 by circulating a heat medium through the battery 55. The battery temperature adjustment device 61 of the embodiment includes a circulation pump 62 as a circulation device for circulating a heat medium through the battery 55, a heat medium heater 66 as a heating device, and a refrigerant-heat medium heat exchanger 64. These and the battery 55 are annularly connected by a heat medium pipe 68.

この実施例の場合、循環ポンプ62の吐出側に熱媒体加熱ヒータ66が接続され、熱媒体加熱ヒータ66の出口に冷媒−熱媒体熱交換器64の熱媒体流路64Aの入口が接続され、この熱媒体流路64Aの出口にバッテリ55の入口が接続され、バッテリ55の出口が循環ポンプ62の吸込側に接続されている。   In this embodiment, the heat medium heater 66 is connected to the discharge side of the circulation pump 62, the inlet of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 is connected to the outlet of the heat medium heater 66, The inlet of the battery 55 is connected to the outlet of the heat medium flow path 64 </ b> A, and the outlet of the battery 55 is connected to the suction side of the circulation pump 62.

このバッテリ温度調整装置61で使用される熱媒体としては、例えば水、HFO−1234yfのような冷媒、クーラント等の液体、空気等の気体が採用可能である。尚、実施例では水を熱媒体として採用している。また、熱媒体加熱ヒータ66はPTCヒータ等の電気ヒータから構成されている。更に、バッテリ55の周囲には例えば熱媒体が当該バッテリ55と熱交換関係で流通可能なジャケット構造が施されているものとする。   As the heat medium used in the battery temperature adjusting device 61, for example, water, a refrigerant such as HFO-1234yf, a liquid such as a coolant, or a gas such as air can be employed. In the embodiment, water is used as the heat medium. The heat medium heater 66 is composed of an electric heater such as a PTC heater. Furthermore, it is assumed that a jacket structure is provided around the battery 55 so that the heat medium can circulate with the battery 55 in a heat exchange relationship.

そして、循環ポンプ62が運転されると、循環ポンプ62から吐出された熱媒体は熱媒体加熱ヒータ66に至り、熱媒体加熱ヒータ66が発熱されている場合にはそこで加熱された後、次に冷媒−熱媒体熱交換器64の熱媒体流路64Aに流入する。この冷媒−熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体はバッテリ55に至る。熱媒体はそこでバッテリ55と熱交換した後、循環ポンプ62に吸い込まれることで熱媒体配管68内を循環される。   When the circulation pump 62 is operated, the heat medium discharged from the circulation pump 62 reaches the heat medium heater 66. If the heat medium heater 66 generates heat, it is heated there, and then It flows into the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64. The heat medium exiting the heat medium flow path 64 </ b> A of the refrigerant-heat medium heat exchanger 64 reaches the battery 55. The heat medium exchanges heat therewith with the battery 55 and is then circulated through the heat medium pipe 68 by being sucked into the circulation pump 62.

一方、冷媒回路Rの冷媒配管13Fの出口、即ち、冷媒配管13Fと冷媒配管13A及び冷媒配管13Bとの接続部には、逆止弁18の冷媒下流側(順方向側)であって、室内膨張弁8の冷媒上流側に位置して分岐回路としての分岐配管72の一端が接続されている。この分岐配管72には電動弁から構成された補助膨張弁73が設けられている。この補助膨張弁73は冷媒−熱媒体熱交換器64の後述する冷媒流路64Bに流入する冷媒を減圧膨張させると共に全閉も可能とされている。   On the other hand, the outlet of the refrigerant pipe 13F of the refrigerant circuit R, that is, the connecting portion between the refrigerant pipe 13F, the refrigerant pipe 13A, and the refrigerant pipe 13B is on the refrigerant downstream side (forward direction side) of the check valve 18, One end of a branch pipe 72 serving as a branch circuit is connected to the refrigerant upstream side of the expansion valve 8. The branch pipe 72 is provided with an auxiliary expansion valve 73 composed of an electric valve. The auxiliary expansion valve 73 decompresses and expands the refrigerant flowing into a refrigerant flow path 64B (described later) of the refrigerant-heat medium heat exchanger 64 and can be fully closed.

そして、分岐配管72の他端は冷媒−熱媒体熱交換器64の冷媒流路64Bに接続されており、この冷媒流路64Bの出口には冷媒配管74の一端が接続され、冷媒配管74の他端はアキュムレータ12の手前(冷媒上流側)の冷媒配管13Cに接続されている。そして、これら補助膨張弁73等も冷媒回路Rの一部を構成すると同時に、バッテリ温度調整装置61の一部をも構成することになる。   The other end of the branch pipe 72 is connected to the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, and one end of the refrigerant pipe 74 is connected to the outlet of the refrigerant flow path 64B. The other end is connected to the refrigerant pipe 13C in front of the accumulator 12 (the refrigerant upstream side). The auxiliary expansion valve 73 and the like also constitute part of the refrigerant circuit R and at the same time constitute part of the battery temperature adjusting device 61.

補助膨張弁73が開いている場合、冷媒配管13Fや室外熱交換器7から出た冷媒(一部又は全ての冷媒)はこの補助膨張弁73で減圧された後、冷媒−熱媒体熱交換器64の冷媒流路64Bに流入し、そこで蒸発する。冷媒は冷媒流路64Bを流れる過程で熱媒体流路64Aを流れる熱媒体から吸熱した後、アキュムレータ12を経て圧縮機2に吸い込まれることになる。   When the auxiliary expansion valve 73 is open, the refrigerant (a part or all of the refrigerant) discharged from the refrigerant pipe 13F and the outdoor heat exchanger 7 is decompressed by the auxiliary expansion valve 73, and then the refrigerant-heat medium heat exchanger. 64 flows into the refrigerant flow path 64B and evaporates there. The refrigerant absorbs heat from the heat medium flowing through the heat medium flow path 64A in the process of flowing through the refrigerant flow path 64B, and then is sucked into the compressor 2 through the accumulator 12.

次に、図2において30は実施例の車両用制御システムVCの制御部であり、この制御部30は、主として車両用空気調和装置1の制御を司る制御装置としての空調コントローラ32と、車両全般の制御を司る車両コントローラ35(ECU)と、バッテリ55の充放電の制御を司るバッテリコントローラ40を備えて構成されており、これらが車両通信バス45を介して接続され、情報の送受信を行う構成とされている。前記空調コントローラ32、車両コントローラ35(ECU)、バッテリコントローラ40は何れもプロセッサを備えたコンピュータの一例としてのマイクロコンピュータから構成されている。   Next, in FIG. 2, reference numeral 30 denotes a control unit of the vehicle control system VC according to the embodiment. The control unit 30 mainly includes an air conditioning controller 32 as a control device that controls the vehicle air conditioner 1, and the vehicle in general. The vehicle controller 35 (ECU) that controls the control of the battery 55 and the battery controller 40 that controls the charge and discharge of the battery 55 are connected via the vehicle communication bus 45 to transmit and receive information. It is said that. Each of the air conditioning controller 32, the vehicle controller 35 (ECU), and the battery controller 40 is constituted by a microcomputer as an example of a computer including a processor.

空調コントローラ32(制御装置)の入力には、車両の外気温度(Tam)を検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力(吐出圧力Pd)を検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒温度を検出する吸込温度センサ44と、放熱器4の温度(放熱器4を経た空気の温度、又は、放熱器4自体の温度:放熱器温度TCI)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器4内、又は、放熱器4を出た直後の冷媒の圧力:放熱器圧力PCI)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9を経た空気の温度、又は、吸熱器9自体の温度:吸熱器温度Te)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た直後の冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、設定温度や空調運転の切り換えを設定するための空調操作部53と、室外熱交換器7の温度(室外熱交換器7から出た直後の冷媒の温度、又は、室外熱交換器7自体の温度:室外熱交換器温度TXO。室外熱交換器7が蒸発器として機能するとき、室外熱交換器温度TXOは室外熱交換器7における冷媒の蒸発温度となる)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(室外熱交換器7内、又は、室外熱交換器7から出た直後の冷媒の圧力)を検出する室外熱交換器圧力センサ56の各出力が接続されている。 The input of the air conditioning controller 32 (control device) is sucked into the air flow passage 3 from the outside air temperature sensor 33 that detects the outside air temperature (Tam) of the vehicle, the outside air humidity sensor 34 that detects the outside air humidity, and the suction port 25. An HVAC suction temperature sensor 36 that detects the temperature of the air, an internal air temperature sensor 37 that detects the temperature of the air (inside air) in the vehicle interior, an internal air humidity sensor 38 that detects the humidity of the air in the vehicle interior, and a carbon dioxide in the vehicle interior An indoor CO 2 concentration sensor 39 that detects the carbon concentration, a blowout temperature sensor 41 that detects the temperature of the air blown into the vehicle compartment from the blowout port 29, and a refrigerant discharge pressure (discharge pressure Pd) of the compressor 2 are detected. The discharge pressure sensor 42, the discharge temperature sensor 43 that detects the discharge refrigerant temperature of the compressor 2, the suction temperature sensor 44 that detects the suction refrigerant temperature of the compressor 2, and the temperature of the radiator 4 The temperature of the air passing through the radiator 4 or the temperature of the radiator 4 itself: the radiator temperature sensor 46 for detecting the temperature of the radiator 4 and the refrigerant pressure of the radiator 4 (in the radiator 4 or in the radiator 4 The pressure of the refrigerant immediately after leaving the radiator: the radiator pressure sensor 47 for detecting the radiator pressure PCI) and the temperature of the heat absorber 9 (the temperature of the air passing through the heat absorber 9 or the temperature of the heat absorber 9 itself: the heat absorber) An endothermic temperature sensor 48 for detecting the temperature Te), an endothermic pressure sensor 49 for detecting the refrigerant pressure of the endothermic device 9 (the inside of the endothermic device 9 or the pressure of the refrigerant immediately after leaving the endothermic device 9), a vehicle For example, a photosensor-type solar radiation sensor 51 for detecting the amount of solar radiation into the room, a vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, and an air conditioner for setting the switching between the set temperature and the air-conditioning operation. Temperature of the operation unit 53 and the outdoor heat exchanger 7 (outdoor heat The temperature of the refrigerant immediately after leaving the exchanger 7 or the temperature of the outdoor heat exchanger 7 itself: the outdoor heat exchanger temperature TXO When the outdoor heat exchanger 7 functions as an evaporator, the outdoor heat exchanger temperature TXO is The outdoor heat exchanger temperature sensor 54 detects the refrigerant evaporating temperature in the outdoor heat exchanger 7 and the refrigerant pressure of the outdoor heat exchanger 7 (in the outdoor heat exchanger 7 or from the outdoor heat exchanger 7). Each output of the outdoor heat exchanger pressure sensor 56 for detecting the pressure of the refrigerant immediately after) is connected.

また、空調コントローラ32の入力には更に、バッテリ55の温度(バッテリ55自体の温度、又は、バッテリ55を出た熱媒体の温度、或いは、バッテリ55に入る熱媒体の温度:バッテリ温度Tb)を検出するバッテリ温度センサ76と、熱媒体加熱ヒータ66の温度(熱媒体加熱ヒータ66自体の温度、熱媒体加熱ヒータ66を出た熱媒体の温度)を検出する熱媒体加熱ヒータ温度センサ77と、冷媒−熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体の温度を検出する第1出口温度センサ78と、冷媒流路64Bを出た冷媒の温度を検出する第2の出口温度センサ79の各出力も接続されている。   Further, the input of the air conditioning controller 32 further includes the temperature of the battery 55 (the temperature of the battery 55 itself, the temperature of the heat medium exiting the battery 55, or the temperature of the heat medium entering the battery 55: battery temperature Tb). A battery temperature sensor 76 to detect, a heat medium heater temperature sensor 77 to detect the temperature of the heat medium heater 66 (the temperature of the heat medium heater 66 itself, the temperature of the heat medium that has exited the heat medium heater 66), A first outlet temperature sensor 78 that detects the temperature of the heat medium that has exited the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64, and a second outlet temperature that detects the temperature of the refrigerant that has exited the refrigerant flow path 64B. Each output of the sensor 79 is also connected.

一方、空調コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31と、室外膨張弁6、室内膨張弁8と、電磁弁22(除湿)、電磁弁21(暖房)の各電磁弁と、シャッタ23、循環ポンプ62、熱媒体加熱ヒータ66、補助膨張弁73が接続されている。更に、空調コントローラ32の出力には、後述する第1スイッチ(接点)81と第2スイッチ(接点)82も接続され、空調コントローラ32によりそれらのスイッチ81、82は開閉制御されるように構成されている。そして、空調コントローラ32は各センサの出力と空調操作部53にて入力された設定、車両コントローラ35やバッテリコントローラ40からの情報に基づいてこれらを制御するものである。   On the other hand, the output of the air conditioning controller 32 includes the compressor 2, the outdoor fan 15, the indoor fan (blower fan) 27, the suction switching damper 26, the air mix damper 28, the outlet switching damper 31, the outdoor The expansion valve 6, the indoor expansion valve 8, the electromagnetic valve 22 (dehumidification), the electromagnetic valve 21 (heating), the shutter 23, the circulation pump 62, the heat medium heater 66, and the auxiliary expansion valve 73 are connected. Yes. Further, a first switch (contact point) 81 and a second switch (contact point) 82, which will be described later, are also connected to the output of the air conditioning controller 32, and the switches 81 and 82 are controlled to be opened and closed by the air conditioning controller 32. ing. The air conditioning controller 32 controls these based on the output of each sensor, the setting input in the air conditioning operation unit 53, and information from the vehicle controller 35 and the battery controller 40.

前記車両コントローラ35は、車両(実施例では電気自動車)の走行を含む全般の制御を司るものであり、この車両コントローラ35の出力に走行用の電動モータ65が接続されている。尚、外部電源(急速充電器等)に接続される充電用のプラグ60は接点を有しており、プラグ60が外部電源に接続された場合、この接点の状態が変化し、変化した旨の接点情報は車両コントローラ35に送信される構成とされている。車両コントローラ35はこの接点情報からプラグ60が外部電源に接続されたことを検出すると共に、その旨の情報を空調コントローラ32やバッテリコントローラ40にも送信する。   The vehicle controller 35 governs overall control including traveling of the vehicle (electric vehicle in the embodiment), and an electric motor 65 for traveling is connected to the output of the vehicle controller 35. Note that the charging plug 60 connected to an external power source (such as a quick charger) has a contact, and when the plug 60 is connected to an external power source, the state of the contact changes, indicating that the change has occurred. The contact information is transmitted to the vehicle controller 35. The vehicle controller 35 detects that the plug 60 is connected to the external power source from the contact information, and transmits information to that effect to the air conditioning controller 32 and the battery controller 40.

前記バッテリコントローラ40には充電時に外部電源に接続される前述したプラグ60が接続されており、このバッテリコントローラ40はバッテリ55への外部電源からの充電やバッテリ55からの放電を制御する。実施例のバッテリコントローラ40は車両コントローラ35や空調コントローラ32から送信される情報に基づいてバッテリ55の充放電を制御すると共に、バッテリ55に残存する充電量(残存充電量)に関する情報を車両コントローラ35や空調コントローラ32に送信する。   The battery controller 40 is connected to the plug 60 described above, which is connected to an external power source during charging. The battery controller 40 controls charging from the external power source to the battery 55 and discharging from the battery 55. The battery controller 40 according to the embodiment controls charging / discharging of the battery 55 based on information transmitted from the vehicle controller 35 and the air conditioning controller 32, and provides information on the charge amount (remaining charge amount) remaining in the battery 55 to the vehicle controller 35. Or to the air conditioning controller 32.

尚、実施例ではバッテリ55からの電気配線83が前述した第1スイッチ81を介して圧縮機2を含む冷媒回路R側の電気機器に電気的に接続されており、この第1スイッチ81が閉じられて、バッテリ55から圧縮機2等に給電可能な状態となる。また、第1スイッチ81とバッテリ55の間の電気配線83からは更に電気配線84が分岐しており、この電気配線84が前述した第2スイッチ82を介して熱媒体加熱ヒータ66を含むバッテリ温度調整装置61の電気機器に電気的に接続されている。そして、この第2スイッチ82が閉じられて、バッテリ55から熱媒体加熱ヒータ66等に給電可能となる構成とされている(図1)。但し、圧縮機2や熱媒体加熱ヒータ66等の各電気機器のそれぞれの運転/通電制御は、制御部30の空調コントローラ32等により個々に行われることになる。   In the embodiment, the electric wiring 83 from the battery 55 is electrically connected to the electric device on the refrigerant circuit R side including the compressor 2 via the first switch 81 described above, and the first switch 81 is closed. Thus, power can be supplied from the battery 55 to the compressor 2 and the like. Further, an electrical wiring 84 is further branched from the electrical wiring 83 between the first switch 81 and the battery 55, and this electrical wiring 84 is connected to the battery temperature including the heat medium heater 66 via the second switch 82 described above. The adjustment device 61 is electrically connected to an electric device. The second switch 82 is closed so that power can be supplied from the battery 55 to the heat medium heater 66 and the like (FIG. 1). However, each operation / energization control of each electric device such as the compressor 2 and the heat medium heater 66 is individually performed by the air conditioning controller 32 of the control unit 30 or the like.

以上の構成で、次に実施例の車両用空気調和装置1の動作について説明する。空調コントローラ32(制御装置)は実施例では暖房運転と、除湿暖房運転と、内部サイクル運転と、除湿冷房運転と、冷房運転の各空調運転を切り換えて実行すると共に、バッテリ55の温度を所定の適温範囲内に調整する。先ず、車両の運転中における車両用空気調和装置1の冷媒回路Rの各空調運転について説明する。   Next, the operation of the vehicle air conditioner 1 of the embodiment having the above configuration will be described. In the embodiment, the air-conditioning controller 32 (control device) performs switching between the air-conditioning operation of the heating operation, the dehumidifying heating operation, the internal cycle operation, the dehumidifying and cooling operation, and the cooling operation, and sets the temperature of the battery 55 to a predetermined value. Adjust within the proper temperature range. First, each air conditioning operation of the refrigerant circuit R of the vehicle air conditioner 1 during operation of the vehicle will be described.

(1)暖房運転
最初に、図3を参照しながら暖房運転について説明する。図3は暖房運転における冷媒回路Rの冷媒の流れ(実線矢印)を示している。尚、空調コントローラ32は第1スイッチ81を閉じ、第2スイッチ82を開く。これにより、車両用空気調和装置1の圧縮機2を含む冷媒回路Rの電気機器には、バッテリ55から電気配線83を介して給電可能とされる(図4〜図6も同じ)。
(1) Heating Operation First, the heating operation will be described with reference to FIG. FIG. 3 shows a refrigerant flow (solid arrow) in the refrigerant circuit R in the heating operation. The air conditioning controller 32 closes the first switch 81 and opens the second switch 82. Thereby, electric power can be supplied from the battery 55 via the electric wiring 83 to the electric equipment of the refrigerant circuit R including the compressor 2 of the vehicle air conditioner 1 (the same applies to FIGS. 4 to 6).

空調コントローラ32により(オートモード)、或いは、空調操作部53へのマニュアル操作(マニュアルモード)により暖房運転が選択されると、空調コントローラ32は電磁弁21(暖房用)を開放し、室内膨張弁8を全閉とする。また、電磁弁22(除湿用)を閉じる。尚、シャッタ23は開放する。   When the heating operation is selected by the air conditioning controller 32 (auto mode) or by the manual operation (manual mode) to the air conditioning operation unit 53, the air conditioning controller 32 opens the electromagnetic valve 21 (for heating), and the indoor expansion valve 8 is fully closed. Further, the electromagnetic valve 22 (for dehumidification) is closed. The shutter 23 is opened.

そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4に通風される割合を調整する状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。   And the compressor 2 and each air blower 15 and 27 are drive | operated, and the air mix damper 28 sets it as the state which adjusts the ratio by which the air blown out from the indoor air blower 27 is ventilated by the heat radiator 4. FIG. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. Deprived, cooled, and condensed into liquid.

放熱器4内で液化した冷媒は放熱器4を出た後、冷媒配管13E、13Jを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる(吸熱)。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13D、電磁弁21を経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。   The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipes 13E and 13J. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15 (heat absorption). That is, the refrigerant circuit R becomes a heat pump. Then, the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 through the refrigerant pipe 13C through the refrigerant pipe 13A, the refrigerant pipe 13D, and the electromagnetic valve 21, and is separated into gas and liquid there. Repeated circulation inhaled. Since the air heated by the radiator 4 is blown out from the air outlet 29, the vehicle interior is thereby heated.

空調コントローラ32は、後述する目標吹出温度TAOから算出される目標ヒータ温度TCO(放熱器4の風下側の空気温度の目標値)から目標放熱器圧力PCO(放熱器4の圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、放熱器温度センサ46が検出する放熱器4の温度(放熱器温度TCI)及び放熱器圧力センサ47が検出する放熱器圧力PCIに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度を制御する。前記目標ヒータ温度TCOは基本的にはTCO=TAOとされるが、制御上の所定の制限が設けられる。   The air conditioning controller 32 determines a target radiator pressure PCO (a target value of the pressure PCI of the radiator 4) from a target heater temperature TCO (a target value of the air temperature on the leeward side of the radiator 4) calculated from a target outlet temperature TAO described later. And the rotational speed of the compressor 2 is controlled based on the target radiator pressure PCO and the refrigerant pressure of the radiator 4 (radiator pressure PCI; high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. And controlling the valve opening degree of the outdoor expansion valve 6 based on the temperature of the radiator 4 (the radiator temperature TCI) detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47, The degree of supercooling of the refrigerant at the outlet of the radiator 4 is controlled. The target heater temperature TCO is basically set to TCO = TAO, but a predetermined restriction on control is provided.

(2)除湿暖房運転
次に、図4を参照しながら除湿暖房運転について説明する。図4は除湿暖房運転における冷媒回路Rの冷媒の流れ(実線矢印)を示している。除湿暖房運転では、空調コントローラ32は上記暖房運転の状態において電磁弁22を開放し、室内膨張弁8を開いて冷媒を減圧膨張させる状態とする。また、シャッタ23は開放する。これにより、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部が分流され、この分流された冷媒が電磁弁22を経て冷媒配管13Fに流入し、冷媒配管13Bから室内膨張弁8に流れ、残りの冷媒が室外膨張弁6に流れるようになる。即ち、分流された一部の冷媒が室内膨張弁8にて減圧された後、吸熱器9に流入して蒸発する。
(2) Dehumidifying and Heating Operation Next, the dehumidifying and heating operation will be described with reference to FIG. FIG. 4 shows the refrigerant flow (solid arrow) in the refrigerant circuit R in the dehumidifying heating operation. In the dehumidifying heating operation, the air conditioning controller 32 opens the electromagnetic valve 22 in the heating operation state and opens the indoor expansion valve 8 so that the refrigerant is decompressed and expanded. Further, the shutter 23 is opened. Thereby, a part of the condensed refrigerant flowing through the refrigerant pipe 13E through the radiator 4 is divided, and the divided refrigerant flows into the refrigerant pipe 13F through the electromagnetic valve 22, and flows from the refrigerant pipe 13B to the indoor expansion valve 8. The remaining refrigerant flows into the outdoor expansion valve 6. That is, a part of the divided refrigerant is decompressed by the indoor expansion valve 8 and then flows into the heat absorber 9 to evaporate.

空調コントローラ32は吸熱器9の出口における冷媒の過熱度(SH)を所定値に維持するように室内膨張弁8の弁開度を制御するが、このときに吸熱器9で生じる冷媒の吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。分流されて冷媒配管13Jに流入した残りの冷媒は、室外膨張弁6で減圧された後、室外熱交換器7で蒸発することになる。   The air conditioning controller 32 controls the valve opening degree of the indoor expansion valve 8 so that the superheat degree (SH) of the refrigerant at the outlet of the heat absorber 9 is maintained at a predetermined value. Thus, since moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat absorber 9, the air is cooled and dehumidified. The remaining refrigerant that is divided and flows into the refrigerant pipe 13J is depressurized by the outdoor expansion valve 6 and then evaporated by the outdoor heat exchanger 7.

吸熱器9で蒸発した冷媒は、冷媒配管13Cに出て冷媒配管13Dからの冷媒(室外熱交換器7からの冷媒)と合流した後、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。   The refrigerant evaporated in the heat absorber 9 flows out into the refrigerant pipe 13C and joins with the refrigerant from the refrigerant pipe 13D (the refrigerant from the outdoor heat exchanger 7), and then repeats circulation that is sucked into the compressor 2 through the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed.

空調コントローラ32は目標ヒータ温度TCOから算出される目標放熱器圧力PCOと放熱器圧力センサ47が検出する放熱器圧力PCI(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて室外膨張弁6の弁開度を制御する。   The air conditioning controller 32 controls the rotational speed of the compressor 2 based on the target radiator pressure PCO calculated from the target heater temperature TCO and the radiator pressure PCI (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. At the same time, the valve opening degree of the outdoor expansion valve 6 is controlled based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.

(3)内部サイクル運転
次に、図5を参照しながら内部サイクル運転について説明する。図5は内部サイクル運転における冷媒回路Rの冷媒の流れ(実線矢印)を示している。内部サイクル運転では、空調コントローラ32は上記除湿暖房運転の状態において室外膨張弁6を全閉とする(全閉位置)。但し、電磁弁21は開いた状態を維持し、室外熱交換器7の冷媒出口は圧縮機2の冷媒吸込側に連通させておく。即ち、この内部サイクル運転は除湿暖房運転における室外膨張弁6の制御で当該室外膨張弁6を全閉とした状態であるので、この内部サイクル運転も除湿暖房運転の一部と捉えることができる(シャッタ23は開)。
(3) Internal cycle operation Next, the internal cycle operation will be described with reference to FIG. FIG. 5 shows a refrigerant flow (solid arrow) in the refrigerant circuit R in the internal cycle operation. In the internal cycle operation, the air conditioning controller 32 fully closes the outdoor expansion valve 6 in the dehumidifying and heating operation state (fully closed position). However, the solenoid valve 21 is kept open, and the refrigerant outlet of the outdoor heat exchanger 7 is communicated with the refrigerant suction side of the compressor 2. That is, since this internal cycle operation is a state in which the outdoor expansion valve 6 is fully closed by the control of the outdoor expansion valve 6 in the dehumidifying and heating operation, this internal cycle operation can also be regarded as a part of the dehumidifying and heating operation ( The shutter 23 is open).

但し、室外膨張弁6が閉じられることにより、室外熱交換器7への冷媒の流入は阻止されることになるので、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒は電磁弁22を経て冷媒配管13Fに全て流れるようになる。そして、冷媒配管13Fを流れる冷媒は冷媒配管13Bを経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。   However, since the inflow of the refrigerant to the outdoor heat exchanger 7 is blocked by closing the outdoor expansion valve 6, the condensed refrigerant flowing through the refrigerant pipe 13 </ b> E via the radiator 4 passes through the electromagnetic valve 22 and becomes refrigerant. All flows into the pipe 13F. The refrigerant flowing through the refrigerant pipe 13F reaches the indoor expansion valve 8 through the refrigerant pipe 13B. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.

吸熱器9で蒸発した冷媒は冷媒配管13Cを流れ、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより、車室内の除湿暖房が行われることになるが、この内部サイクル運転では室内側の空気流通路3内にある放熱器4(放熱)と吸熱器9(吸熱)の間で冷媒が循環されることになるので、外気からの熱の汲み上げは行われず、圧縮機2の消費動力分の暖房能力が発揮される。除湿作用を発揮する吸熱器9には冷媒の全量が流れるので、上記除湿暖房運転に比較すると除湿能力は高いが、暖房能力は低くなる。   The refrigerant evaporated in the heat absorber 9 flows through the refrigerant pipe 13 </ b> C and repeats circulation that is sucked into the compressor 2 through the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed. Since the refrigerant is circulated between the radiator 4 (radiation) and the heat absorber 9 (heat absorption) in the passage 3, heat from the outside air is not pumped up, and heating for the consumed power of the compressor 2 is performed. Ability is demonstrated. Since the entire amount of the refrigerant flows through the heat absorber 9 that exhibits the dehumidifying action, the dehumidifying capacity is higher than the dehumidifying and heating operation, but the heating capacity is lowered.

また、室外膨張弁6は閉じられるものの、電磁弁21は開いており、室外熱交換器7の冷媒出口は圧縮機2の冷媒吸込側に連通しているので、室外熱交換器7内の液冷媒は冷媒配管13D及び電磁弁21を経て冷媒配管13Cに流出し、アキュムレータ12に回収され、室外熱交換器7内はガス冷媒の状態となる。これにより、電磁弁21を閉じたときに比して、冷媒回路R内を循環する冷媒量が増え、放熱器4における暖房能力と吸熱器9における除湿能力を向上させることができるようになる。   Although the outdoor expansion valve 6 is closed, the electromagnetic valve 21 is open, and the refrigerant outlet of the outdoor heat exchanger 7 communicates with the refrigerant suction side of the compressor 2, so that the liquid in the outdoor heat exchanger 7 is The refrigerant flows out through the refrigerant pipe 13D and the electromagnetic valve 21 to the refrigerant pipe 13C, is collected by the accumulator 12, and the outdoor heat exchanger 7 is in a gas refrigerant state. Thereby, compared with when the solenoid valve 21 is closed, the amount of refrigerant circulating in the refrigerant circuit R increases, and the heating capacity in the radiator 4 and the dehumidifying capacity in the heat absorber 9 can be improved.

空調コントローラ32は吸熱器9の温度、又は、前述した放熱器圧力PCI(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御する。このとき、空調コントローラ32は吸熱器9の温度によるか放熱器圧力PCIによるか、何れかの演算から得られる圧縮機目標回転数の低い方を選択して圧縮機2を制御する。   The air conditioning controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 or the above-described radiator pressure PCI (high pressure of the refrigerant circuit R). At this time, the air conditioning controller 32 controls the compressor 2 by selecting the lower one of the compressor target rotational speeds obtained from either calculation, depending on the temperature of the heat absorber 9 or the radiator pressure PCI.

(4)除湿冷房運転
次に、図6を参照しながら除湿冷房運転について説明する。図6は除湿冷房運転における冷媒回路Rの冷媒の流れ(実線矢印)を示している。除湿冷房運転では、空調コントローラ32は室内膨張弁8を開いて冷媒を減圧膨張させる状態とし、電磁弁21と電磁弁22を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4に通風される割合を調整する状態とする。また、シャッタ23は開放する。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
(4) Dehumidifying and Cooling Operation Next, the dehumidifying and cooling operation will be described with reference to FIG. FIG. 6 shows a refrigerant flow (solid arrow) in the refrigerant circuit R in the dehumidifying and cooling operation. In the dehumidifying and cooling operation, the air conditioning controller 32 opens the indoor expansion valve 8 to make the refrigerant decompress and expand, and closes the electromagnetic valve 21 and the electromagnetic valve 22. And the compressor 2 and each air blower 15 and 27 are drive | operated, and the air mix damper 28 sets it as the state which adjusts the ratio by which the air blown out from the indoor air blower 27 is ventilated by the heat radiator 4. FIG. Further, the shutter 23 is opened. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.

放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13A、逆止弁18を経て冷媒配管13Bに入り、室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。   The refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A and the check valve 18, and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.

吸熱器9で蒸発した冷媒は冷媒配管13Cを経てアキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程でリヒート(再加熱:暖房時よりも放熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。   The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C, and repeats circulation that is sucked into the compressor 2 through the refrigerant pipe 13C. Air that has been cooled and dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4 (reheating: lower heat dissipation capacity than during heating), so that dehumidification and cooling of the passenger compartment is performed. become.

空調コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づき、吸熱器温度Teを目標吸熱器温度TEOにするように圧縮機2の回転数を制御すると共に、放熱器圧力センサ47が検出する放熱器圧力PCI(冷媒回路Rの高圧圧力)と目標ヒータ温度TCOから算出される目標放熱器圧力PCO(放熱器圧力PCIの目標値)に基づき、放熱器圧力PCIを目標放熱器圧力PCOにするように室外膨張弁6の弁開度を制御することで放熱器4による必要なリヒート量を得る。   The air conditioning controller 32 sets the heat absorber temperature Te to the target heat absorber temperature TEO based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO that is the target value. And the target radiator pressure PCO (radiator pressure) calculated from the radiator pressure PCI (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47 and the target heater temperature TCO. The necessary reheat amount by the radiator 4 is obtained by controlling the valve opening degree of the outdoor expansion valve 6 so that the radiator pressure PCI becomes the target radiator pressure PCO based on the PCI target value).

(5)冷房運転
次に、冷房運転について説明する。冷媒回路Rの流れは図6の除湿冷房運転と同様である。冷房運転では、空調コントローラ32は上記除湿冷房運転の状態において室外膨張弁6の弁開度を全開とする。尚、エアミックスダンパ28は放熱器4に空気が通風される割合を調整する状態とする。また、シャッタ23は開放する。
(5) Cooling operation Next, the cooling operation will be described. The flow of the refrigerant circuit R is the same as in the dehumidifying and cooling operation of FIG. In the cooling operation, the air conditioning controller 32 fully opens the valve opening degree of the outdoor expansion valve 6 in the dehumidifying and cooling operation state. Note that the air mix damper 28 is in a state of adjusting the ratio of air passing through the radiator 4. Further, the shutter 23 is opened.

これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒートのみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので冷媒はそのまま室外膨張弁6を経て冷媒配管13Jを通過し、室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13A、逆止弁18を経て冷媒配管13Bに入り、室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着し、空気は冷却される。   Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Although the air in the air flow passage 3 is ventilated to the radiator 4, the ratio is small (because of only reheating during cooling), so this almost passes through, and the refrigerant exiting the radiator 4 is The refrigerant reaches the outdoor expansion valve 6 through the refrigerant pipe 13E. At this time, since the outdoor expansion valve 6 is fully opened, the refrigerant passes through the refrigerant expansion pipe 13J through the outdoor expansion valve 6 and flows into the outdoor heat exchanger 7, where it is ventilated by running or by the outdoor blower 15. It is air-cooled by the outside air and is condensed and liquefied. The refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A and the check valve 18, and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, and the air is cooled.

吸熱器9で蒸発した冷媒は冷媒配管13Cを経てアキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房運転においては、空調コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて圧縮機2の回転数を制御する。   The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C, and repeats circulation that is sucked into the compressor 2 through the refrigerant pipe 13C. The air cooled and dehumidified by the heat absorber 9 is blown out from the outlet 29 into the vehicle interior, thereby cooling the vehicle interior. In this cooling operation, the air conditioning controller 32 controls the rotational speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.

(6)空調運転の切り換え
空調コントローラ32は下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、吹出口29から車室内に吹き出される空気の温度の目標値である。
TAO=(Tset−Tin)×K+Tbal(f(Tset、SUN、Tam))
・・(I)
ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する車室内空気の温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
(6) Switching of air conditioning operation The air conditioning controller 32 calculates the target blowout temperature TAO described above from the following formula (I). This target blowing temperature TAO is a target value of the temperature of the air blown out from the blowout port 29 into the vehicle interior.
TAO = (Tset−Tin) × K + Tbal (f (Tset, SUN, Tam))
.. (I)
Here, Tset is the set temperature in the passenger compartment set by the air conditioning operation unit 53, Tin is the temperature of the passenger compartment air detected by the inside air temperature sensor 37, K is a coefficient, Tbal is the set temperature Tset, and the solar radiation sensor 51 detects This is a balance value calculated from the amount of solar radiation SUN to be performed and the outside air temperature Tam detected by the outside air temperature sensor 33. And generally this target blowing temperature TAO is so high that the outside temperature Tam is low, and it falls as the outside temperature Tam rises.

そして、空調コントローラ32は起動時には外気温度センサ33が検出する外気温度Tamと目標吹出温度TAOとに基づいて上記各空調運転のうちの何れかの空調運転を選択する。また、起動後は外気温度Tamや目標吹出温度TAO等の環境や設定条件の変化に応じて前記各空調運転を選択し、切り換えていくものである。   The air conditioning controller 32 selects one of the above air conditioning operations based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target outlet temperature TAO at the time of activation. In addition, after the activation, the air conditioning operations are selected and switched in accordance with changes in the environment and setting conditions such as the outside air temperature Tam and the target blowing temperature TAO.

(7)バッテリ55の温度調整
次に、図7〜図11を参照しながら空調コントローラ32によるバッテリ55の温度調整制御について説明する。ここで、バッテリ55は外気温度により温度が変化すると共に、自己発熱によっても温度が変化する。そして、外気温度が高温環境であるときや極低温環境であるときには、バッテリ55の温度が極めて高くなり、或いは、極めて低くなって、充放電が困難となる。
(7) Temperature Adjustment of Battery 55 Next, temperature adjustment control of the battery 55 by the air conditioning controller 32 will be described with reference to FIGS. Here, the temperature of the battery 55 changes depending on the outside air temperature, and the temperature also changes due to self-heating. When the outside air temperature is a high temperature environment or a very low temperature environment, the temperature of the battery 55 becomes extremely high or extremely low, and charging / discharging becomes difficult.

そこで、実施例の車両用空気調和装置1の空調コントローラ32は、上記の如き空調運転を実行しながら、バッテリ温度調整装置61により、バッテリ55の温度を所定の適温範囲内(使用温度範囲内)に調整する。このバッテリ55の適温範囲は一般的に知られているものであるが、この出願では0℃以上+40℃以下とする。また、実施例ではこの適温範囲の下限値である0℃を所定の許容下限温度TLとし、+40℃を所定の許容上限温度THとする。そして、実施例ではこの適温範囲内にバッテリ温度センサ76が検出するバッテリ55の温度(バッテリ温度Tb)の目標値である目標バッテリ温度TBO(例えば、+15℃)を設定するものとする。   Therefore, the air conditioning controller 32 of the vehicle air conditioner 1 according to the embodiment performs the air conditioning operation as described above, and the battery temperature adjusting device 61 controls the temperature of the battery 55 within a predetermined appropriate temperature range (within the use temperature range). Adjust to. The appropriate temperature range of the battery 55 is generally known, but in this application, it is 0 ° C. or higher and + 40 ° C. or lower. In the embodiment, 0 ° C., which is the lower limit value of the appropriate temperature range, is set as a predetermined allowable lower limit temperature TL, and + 40 ° C. is set as a predetermined allowable upper limit temperature TH. In this embodiment, a target battery temperature TBO (for example, + 15 ° C.), which is a target value of the temperature of the battery 55 (battery temperature Tb) detected by the battery temperature sensor 76, is set within this appropriate temperature range.

(7−1)暖房/バッテリ温調モード
前述した暖房運転においてバッテリ55の温度を調整することが必要となった場合、空調コントローラ32は暖房/バッテリ温調モードを実行する。図7はこの暖房/バッテリ温調モードにおける冷媒回路Rの冷媒の流れ(実線矢印)とバッテリ温度調整装置61の熱媒体の流れ(破線矢印)を示している。尚、空調コントローラ32は第1スイッチ81及び第2スイッチ82を閉じる。これにより、車両用空気調和装置1の圧縮機2を含む冷媒回路Rの電気機器と、熱媒体加熱ヒータ66を含むバッテリ温度調整装置61の電気機器には、バッテリ55から電気配線83及び84を介して給電可能とされる(図7〜図11も同じ)。
(7-1) Heating / Battery Temperature Control Mode When it is necessary to adjust the temperature of the battery 55 in the heating operation described above, the air conditioning controller 32 executes the heating / battery temperature control mode. FIG. 7 shows the refrigerant flow (solid arrow) in the refrigerant circuit R and the heat medium flow (broken arrow) in the battery temperature adjusting device 61 in the heating / battery temperature control mode. The air conditioning controller 32 closes the first switch 81 and the second switch 82. As a result, electrical wiring 83 and 84 are connected from the battery 55 to the electrical equipment of the refrigerant circuit R including the compressor 2 of the vehicle air conditioner 1 and the electrical equipment of the battery temperature adjustment device 61 including the heat medium heater 66. Power supply is possible through the same (FIGS. 7 to 11 are also the same).

この暖房/バッテリ温調モードでは、空調コントローラ32は図3に示した冷媒回路Rの暖房運転の状態で、更に電磁弁22を開き、補助膨張弁73も開いてその弁開度を制御する状態とする。そして、バッテリ温度調整装置61の循環ポンプ62を運転する。これにより、放熱器4から出た冷媒の一部が室外膨張弁6の冷媒上流側で分流され、冷媒配管13Fを経て室内膨張弁8の冷媒上流側に至る。冷媒は次に分岐配管72に入り、補助膨張弁73で減圧された後、分岐配管72を経て冷媒−熱媒体熱交換器64の冷媒流路64Bに流入して蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管74、冷媒配管13C及びアキュムレータ12を順次経て圧縮機2に吸い込まれる循環を繰り返す(図7に実線矢印で示す)。   In this heating / battery temperature control mode, the air conditioning controller 32 further opens the electromagnetic valve 22 and opens the auxiliary expansion valve 73 to control the valve opening degree in the heating operation state of the refrigerant circuit R shown in FIG. And Then, the circulation pump 62 of the battery temperature adjusting device 61 is operated. Thereby, a part of the refrigerant discharged from the radiator 4 is diverted on the refrigerant upstream side of the outdoor expansion valve 6 and reaches the refrigerant upstream side of the indoor expansion valve 8 through the refrigerant pipe 13F. The refrigerant then enters the branch pipe 72 and is depressurized by the auxiliary expansion valve 73, and then flows into the refrigerant flow path 64 </ b> B of the refrigerant-heat medium heat exchanger 64 through the branch pipe 72 and evaporates. At this time, an endothermic effect is exhibited. The refrigerant evaporated in the refrigerant flow path 64B is repeatedly circulated through the refrigerant pipe 74, the refrigerant pipe 13C, and the accumulator 12 and then sucked into the compressor 2 (indicated by solid arrows in FIG. 7).

一方、循環ポンプ62から吐出された熱媒体は熱媒体加熱ヒータ66に至り、そこで加熱された後(熱媒体加熱ヒータ66が発熱している場合)、熱媒体配管68内を冷媒−熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒により吸熱され、熱媒体は冷却される。熱媒体加熱ヒータ66で加熱され、及び/又は、冷媒の吸熱作用で冷却された熱媒体は、冷媒−熱媒体熱交換器64を出てバッテリ55に至り、当該バッテリ55と熱交換した後、循環ポンプ62に吸い込まれる循環を繰り返す(図7に破線矢印で示す)。   On the other hand, the heat medium discharged from the circulation pump 62 reaches the heat medium heater 66, where it is heated (when the heat medium heater 66 generates heat), and then in the heat medium pipe 68, refrigerant-heat medium heat is generated. The heat medium flow path 64A of the exchanger 64 is reached, where heat is absorbed by the refrigerant evaporated in the refrigerant flow path 64B, and the heat medium is cooled. The heat medium heated by the heat medium heater 66 and / or cooled by the endothermic action of the refrigerant leaves the refrigerant-heat medium heat exchanger 64 and reaches the battery 55, and after exchanging heat with the battery 55, The circulation sucked into the circulation pump 62 is repeated (indicated by broken line arrows in FIG. 7).

空調コントローラ32は、例えば常時冷媒−熱媒体熱交換器64の冷媒流路64Bに冷媒を流し、熱媒体を常時冷却しながら、バッテリ温度センサ76が検出するバッテリ温度Tbと目標バッテリ温度TBOに基づいて熱媒体加熱ヒータ66の発熱を制御することで、バッテリ温度Tbが目標バッテリ温度TBOとなるようにする(その場合は、実際には暖房運転に代えて暖房/バッテリ温調モードを常時実行するか、又は、暖房運転と暖房/バッテリ温調モードを切り換えて実行することになる)。或いは、暖房運転中にバッテリ温度Tb>目標バッテリ温度TBO+αとなった場合に、暖房/バッテリ温調モードに移行し、補助膨張弁73を制御してバッテリ温度Tbを低下させ、バッテリ温度Tb<目標バッテリ温度TBO−αとなった場合にも暖房運転から暖房/バッテリ温調モードに移行し、熱媒体加熱ヒータ66を発熱させてバッテリ温度Tbを上昇させることで、バッテリ温度Tbが目標バッテリ温度TBOとなるようにする。以上のようにして空調コントローラ32は、バッテリ55の温度Tbを適温範囲内である目標バッテリ温度TBOに調整するものである。   The air conditioning controller 32 is based on the battery temperature Tb and the target battery temperature TBO detected by the battery temperature sensor 76 while constantly flowing the refrigerant through the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64 and constantly cooling the heat medium, for example. Thus, the heat generation of the heat medium heater 66 is controlled so that the battery temperature Tb becomes the target battery temperature TBO (in that case, actually, the heating / battery temperature adjustment mode is always executed instead of the heating operation). Or, the heating operation and the heating / battery temperature control mode are switched and executed). Alternatively, when the battery temperature Tb> the target battery temperature TBO + α is satisfied during the heating operation, the mode shifts to the heating / battery temperature control mode, the auxiliary expansion valve 73 is controlled to lower the battery temperature Tb, and the battery temperature Tb <target Even when the battery temperature TBO-α is reached, the heating operation is shifted to the heating / battery temperature control mode, and the heat medium heater 66 generates heat to raise the battery temperature Tb, whereby the battery temperature Tb becomes the target battery temperature TBO. To be. As described above, the air conditioning controller 32 adjusts the temperature Tb of the battery 55 to the target battery temperature TBO within the appropriate temperature range.

(7−2)冷房/バッテリ温調モード
次に、前述した冷房運転においてバッテリ55の温度を調整することが必要となった場合、空調コントローラ32は冷房/バッテリ温調モードを実行する。図8はこの冷房/バッテリ温調モードにおける冷媒回路Rの冷媒の流れ(実線矢印)とバッテリ温度調整装置61の熱媒体の流れ(破線矢印)を示している。
(7-2) Cooling / Battery Temperature Control Mode Next, when it is necessary to adjust the temperature of the battery 55 in the above-described cooling operation, the air conditioning controller 32 executes the cooling / battery temperature control mode. FIG. 8 shows the refrigerant flow (solid arrow) in the refrigerant circuit R and the heat medium flow (broken arrow) in the battery temperature adjusting device 61 in the cooling / battery temperature control mode.

この冷房/バッテリ温調モードでは、空調コントローラ32は前述した図6の冷房運転の冷媒回路Rの状態において、補助膨張弁73を開いてその弁開度を制御し、バッテリ温度調整装置61の循環ポンプ62も運転して、冷媒−熱媒体熱交換器64において冷媒と熱媒体とを熱交換させる状態とする。   In the cooling / battery temperature control mode, the air conditioning controller 32 opens the auxiliary expansion valve 73 to control the valve opening degree in the state of the refrigerant circuit R in the cooling operation of FIG. The pump 62 is also operated to bring the refrigerant and the heat medium into heat exchange in the refrigerant-heat medium heat exchanger 64.

これにより、圧縮機2から吐出された高温の冷媒は、放熱器4を経て室外熱交換器7に流入し、そこで室外送風機15により通風される外気や走行風と熱交換して放熱し、凝縮する。室外熱交換器7で凝縮した冷媒の一部は室内膨張弁8に至り、そこで減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で空気流通路3内の空気が冷却されるので、車室内は冷房される。   As a result, the high-temperature refrigerant discharged from the compressor 2 flows into the outdoor heat exchanger 7 through the radiator 4, where it exchanges heat with the outside air and running air that is ventilated by the outdoor blower 15 to dissipate and condense. To do. A part of the refrigerant condensed in the outdoor heat exchanger 7 reaches the indoor expansion valve 8 and is decompressed there, and then flows into the heat absorber 9 and evaporates. Since the air in the air flow passage 3 is cooled by the heat absorption action at this time, the passenger compartment is cooled.

室外熱交換器7で凝縮した冷媒の残りは分岐配管72に分流され、補助膨張弁73で減圧された後、冷媒−熱媒体熱交換器64の冷媒流路64Bで蒸発する。冷媒はここでバッテリ温度調整装置61内を循環する熱媒体から吸熱するのでバッテリ55は前述同様に冷却される。尚、吸熱器9から出た冷媒は冷媒配管13C、アキュムレータ12を経て圧縮機2に吸い込まれ、冷媒−熱媒体熱交換器64を出た冷媒も冷媒配管74からアキュムレータ12を経て圧縮機2に吸い込まれることになる。   The remainder of the refrigerant condensed in the outdoor heat exchanger 7 is diverted to the branch pipe 72, decompressed by the auxiliary expansion valve 73, and then evaporated in the refrigerant flow path 64 </ b> B of the refrigerant-heat medium heat exchanger 64. Since the refrigerant absorbs heat from the heat medium circulating in the battery temperature adjusting device 61, the battery 55 is cooled in the same manner as described above. The refrigerant from the heat absorber 9 is sucked into the compressor 2 through the refrigerant pipe 13C and the accumulator 12, and the refrigerant from the refrigerant-heat medium heat exchanger 64 is also passed from the refrigerant pipe 74 through the accumulator 12 to the compressor 2. Will be inhaled.

空調コントローラ32はこの冷房/バッテリ温調モードでも、前述した暖房/バッテリ温調モードの場合と同様に、冷房運転に代え、又は、冷房運転と冷房/バッテリ温調モードを切り換え、或いは、冷房運転から冷房/バッテリ温調モードに移行して補助膨張弁73と熱媒体加熱ヒータ66を制御することで、バッテリ55の温度Tbを適温範囲内である目標バッテリ温度TBOに調整する。   In this cooling / battery temperature control mode, the air-conditioning controller 32 replaces the cooling operation, or switches between the cooling operation and the cooling / battery temperature control mode, as in the above-described heating / battery temperature control mode, or Then, the cooling / battery temperature adjustment mode is shifted to control the auxiliary expansion valve 73 and the heat medium heater 66 to adjust the temperature Tb of the battery 55 to the target battery temperature TBO within the appropriate temperature range.

(7−3)除湿冷房/バッテリ温調モード
次に、前述した除湿冷房運転中においてバッテリ55の温度を調整することが必要となった場合、空調コントローラ32は除湿冷房/バッテリ温調モードを実行する。尚、この除湿冷房/バッテリ温調モードにおける冷媒回路Rの冷媒の流れ(実線矢印)とバッテリ温度調整装置61の熱媒体の流れ(破線矢印)は図8と同様であるが、室外膨張弁6は全開では無く開き気味で制御される。そして、空調コントローラ32は冷房/バッテリ温調モードの場合と同様に、除湿冷房運転に代え、又は、除湿冷房運転と除湿冷房/バッテリ温調モードを切り換え、或いは、除湿冷房運転から除湿冷房/バッテリ温調モードに移行して補助膨張弁73と熱媒体加熱ヒータ66を制御することで、バッテリ55の温度Tbを適温範囲内である目標バッテリ温度TBOに調整する。
(7-3) Dehumidifying and Cooling / Battery Temperature Control Mode Next, when it is necessary to adjust the temperature of the battery 55 during the above-described dehumidifying and cooling operation, the air conditioning controller 32 executes the dehumidifying cooling / battery temperature control mode. To do. The refrigerant flow (solid arrow) in the refrigerant circuit R and the heat medium flow (broken arrow) in the battery temperature adjusting device 61 in this dehumidifying cooling / battery temperature control mode are the same as those in FIG. Is controlled by opening rather than fully opening. In the same manner as in the cooling / battery temperature control mode, the air conditioning controller 32 replaces the dehumidifying cooling operation, or switches between the dehumidifying cooling operation and the dehumidifying cooling / battery temperature control mode, or switches from the dehumidifying cooling operation to the dehumidifying cooling / battery. By shifting to the temperature control mode and controlling the auxiliary expansion valve 73 and the heat medium heater 66, the temperature Tb of the battery 55 is adjusted to the target battery temperature TBO within the appropriate temperature range.

(7−4)内部サイクル/バッテリ温調モード
次に、前述した内部サイクル運転においてバッテリ55の温度を調整することが必要となった場合、空調コントローラ32は内部サイクル/バッテリ温調モードを実行する。この内部サイクル/バッテリ温調モードでは、空調コントローラ32は前述した図5の内部サイクル運転の冷媒回路Rの状態において、補助膨張弁73を開いてその弁開度を制御し、バッテリ温度調整装置61の循環ポンプ62も運転して、冷媒−熱媒体熱交換器64において冷媒と熱媒体とを熱交換させる状態とする。図9はこの内部サイクル/バッテリ温調モードにおける冷媒回路Rの冷媒の流れ(実線矢印)とバッテリ温度調整装置61の熱媒体の流れ(破線矢印)を示している。
(7-4) Internal cycle / battery temperature adjustment mode Next, when it is necessary to adjust the temperature of the battery 55 in the internal cycle operation described above, the air conditioning controller 32 executes the internal cycle / battery temperature adjustment mode. . In this internal cycle / battery temperature control mode, the air conditioning controller 32 opens the auxiliary expansion valve 73 to control the valve opening degree in the state of the refrigerant circuit R in the internal cycle operation of FIG. The circulation pump 62 is also operated, so that the refrigerant and the heat medium heat exchanger 64 exchange heat between the refrigerant and the heat medium. FIG. 9 shows the refrigerant flow (solid arrow) in the refrigerant circuit R and the heat medium flow (broken arrow) in the battery temperature adjusting device 61 in the internal cycle / battery temperature control mode.

これにより、圧縮機2から吐出された高温の冷媒は放熱器4で放熱した後、電磁弁22を経て冷媒配管13Fに全て流れるようになる。そして、冷媒配管13Fを出た冷媒の一部は冷媒配管13Bを経て室内膨張弁8に至り、そこで減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。   Thereby, after the high-temperature refrigerant | coolant discharged from the compressor 2 is thermally radiated with the heat radiator 4, it will flow to the refrigerant | coolant piping 13F via the electromagnetic valve 22 all. A part of the refrigerant exiting the refrigerant pipe 13F reaches the indoor expansion valve 8 through the refrigerant pipe 13B, and is decompressed there, and then flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.

冷媒配管13Fを出た冷媒の残りは分岐配管72に分流され、補助膨張弁73で減圧された後、冷媒−熱媒体熱交換器64の冷媒流路64Bで蒸発する。冷媒はここでバッテリ温度調整装置61内を循環する熱媒体から吸熱するのでバッテリ55は前述同様に冷却される。尚、吸熱器9から出た冷媒は冷媒配管13C、アキュムレータ12を経て圧縮機2に吸い込まれ、冷媒−熱媒体熱交換器64を出た冷媒も冷媒配管74からアキュムレータ12を経て圧縮機2に吸い込まれることになる。   The remaining refrigerant exiting the refrigerant pipe 13F is diverted to the branch pipe 72, decompressed by the auxiliary expansion valve 73, and then evaporated in the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64. Since the refrigerant absorbs heat from the heat medium circulating in the battery temperature adjusting device 61, the battery 55 is cooled in the same manner as described above. The refrigerant from the heat absorber 9 is sucked into the compressor 2 through the refrigerant pipe 13C and the accumulator 12, and the refrigerant from the refrigerant-heat medium heat exchanger 64 is also passed from the refrigerant pipe 74 through the accumulator 12 to the compressor 2. Will be inhaled.

空調コントローラ32はこの内部サイクル/バッテリ温調モードでも、前述した暖房/バッテリ温調モードの場合と同様に、内部サイクル運転に代え、又は、内部サイクル運転と内部サイクル/バッテリ温調モードを切り換え、或いは、内部サイクル運転から内部サイクル/バッテリ温調モードに移行して補助膨張弁73と熱媒体加熱ヒータ66を制御することで、バッテリ55の温度Tbを適温範囲内である目標バッテリ温度TBOに調整する。   In this internal cycle / battery temperature adjustment mode, the air conditioning controller 32 replaces the internal cycle operation or switches between the internal cycle operation and the internal cycle / battery temperature adjustment mode, as in the heating / battery temperature adjustment mode described above. Alternatively, the temperature Tb of the battery 55 is adjusted to the target battery temperature TBO within the appropriate temperature range by shifting from the internal cycle operation to the internal cycle / battery temperature control mode and controlling the auxiliary expansion valve 73 and the heat medium heater 66. To do.

(7−5)除湿暖房/バッテリ温調モード
次に、前述した除湿暖房運転においてバッテリ55の温度を調整することが必要となった場合、空調コントローラ32は除湿暖房/バッテリ温調モードを実行する。この除湿暖房/バッテリ温調モードでは、空調コントローラ32は前述した図4の除湿暖房運転の冷媒回路Rの状態において、補助膨張弁73を開いてその弁開度を制御し、バッテリ温度調整装置61の循環ポンプ62も運転して、冷媒−熱媒体熱交換器64において冷媒と熱媒体とを熱交換させる状態とする。図10はこの除湿暖房/バッテリ温調モードにおける冷媒回路Rの冷媒の流れ(実線矢印)とバッテリ温度調整装置61の熱媒体の流れ(破線矢印)を示している。
(7-5) Dehumidifying Heating / Battery Temperature Control Mode Next, when it is necessary to adjust the temperature of the battery 55 in the above-described dehumidifying heating operation, the air conditioning controller 32 executes the dehumidifying heating / battery temperature control mode. . In the dehumidifying heating / battery temperature control mode, the air conditioning controller 32 opens the auxiliary expansion valve 73 and controls the valve opening degree in the state of the refrigerant circuit R in the dehumidifying heating operation of FIG. The circulation pump 62 is also operated, so that the refrigerant and the heat medium heat exchanger 64 exchange heat between the refrigerant and the heat medium. FIG. 10 shows the refrigerant flow (solid arrow) in the refrigerant circuit R and the heat medium flow (broken arrow) in the battery temperature adjusting device 61 in the dehumidifying heating / battery temperature control mode.

これにより、放熱器4を出た凝縮冷媒の一部が分流され、この分流された冷媒が電磁弁22を経て冷媒配管13Fに流入し、冷媒配管13Fから出てその内の一部が冷媒配管13Bから室内膨張弁8に流れ、残りの冷媒が室外膨張弁6に流れるようになる。即ち、分流された冷媒の内の一部が室内膨張弁8にて減圧された後、吸熱器9に流入して蒸発する。このときに吸熱器9で生じる冷媒の吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。また、放熱器4から出た凝縮冷媒の残りは、室外膨張弁6で減圧された後、室外熱交換器7で蒸発し、外気から吸熱する。   As a result, a part of the condensed refrigerant exiting the radiator 4 is diverted, and the diverted refrigerant flows into the refrigerant pipe 13F through the electromagnetic valve 22, and comes out of the refrigerant pipe 13F, and a part of the refrigerant pipe is refrigerant pipe. The refrigerant flows from 13B to the indoor expansion valve 8, and the remaining refrigerant flows to the outdoor expansion valve 6. That is, after a part of the divided refrigerant is decompressed by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. At this time, moisture in the air blown out from the indoor blower 27 is condensed and attached to the heat absorber 9 by the heat absorption action of the refrigerant generated in the heat absorber 9, so that the air is cooled and dehumidified. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed. In addition, the remaining condensed refrigerant from the radiator 4 is depressurized by the outdoor expansion valve 6 and then evaporated by the outdoor heat exchanger 7 to absorb heat from the outside air.

一方、冷媒配管13Fを出た冷媒の残りは分岐配管72に流入し、補助膨張弁73で減圧された後、冷媒−熱媒体熱交換器64の冷媒流路64Bで蒸発する。冷媒はここでバッテリ温度調整装置61内を循環する熱媒体から吸熱するのでバッテリ55は前述同様に冷却される。尚、吸熱器9から出た冷媒は冷媒配管13C、アキュムレータ12を経て圧縮機2に吸い込まれ、室外熱交換器7から出た冷媒は冷媒配管13D、電磁弁21、冷媒配管13C及びアキュムレータ12を経て圧縮機2に吸い込まれ、冷媒−熱媒体熱交換器64を出た冷媒も冷媒配管74からアキュムレータ12を経て圧縮機2に吸い込まれることになる。   On the other hand, the remainder of the refrigerant exiting the refrigerant pipe 13F flows into the branch pipe 72, is decompressed by the auxiliary expansion valve 73, and evaporates in the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64. Since the refrigerant absorbs heat from the heat medium circulating in the battery temperature adjusting device 61, the battery 55 is cooled in the same manner as described above. Note that the refrigerant discharged from the heat absorber 9 is sucked into the compressor 2 through the refrigerant pipe 13C and the accumulator 12, and the refrigerant discharged from the outdoor heat exchanger 7 passes through the refrigerant pipe 13D, the electromagnetic valve 21, the refrigerant pipe 13C, and the accumulator 12. Then, the refrigerant that is sucked into the compressor 2 and exits the refrigerant-heat medium heat exchanger 64 is also sucked into the compressor 2 from the refrigerant pipe 74 through the accumulator 12.

空調コントローラ32はこの除湿暖房/バッテリ温調モードでも、前述した暖房/バッテリ温調モードの場合と同様に、除湿暖房運転に代え、又は、除湿暖房運転と除湿暖房/バッテリ温調モードを切り換え、或いは、除湿暖房運転から除湿暖房/バッテリ温調モードに移行して補助膨張弁73と熱媒体加熱ヒータ66を制御することで、バッテリ55の温度Tbを適温範囲内である目標バッテリ温度TBOに調整する。   In the dehumidifying heating / battery temperature control mode, the air conditioning controller 32 replaces the dehumidifying heating operation or switches between the dehumidifying heating operation and the dehumidifying heating / battery temperature control mode, as in the above-described heating / battery temperature control mode. Alternatively, the temperature Tb of the battery 55 is adjusted to the target battery temperature TBO within the appropriate temperature range by shifting from the dehumidifying heating operation to the dehumidifying heating / battery temperature control mode and controlling the auxiliary expansion valve 73 and the heat medium heater 66. To do.

(7−6)バッテリ温調単独モード
次に、バッテリ55を充電する際等に、車室内の空調を行うこと無く、バッテリ55の温調を行うバッテリ温調単独モードについて説明する。図11はこのバッテリ温調単独モードにおける冷媒回路Rの冷媒の流れ(実線矢印)とバッテリ温度調整装置61の熱媒体の流れ(破線矢印)を示している。空調コントローラ32圧縮機2を運転し、室外送風機15も運転する。また、室内膨張弁8を全閉とし、補助膨張弁37は開いて冷媒を減圧する状態とする。尚、室外膨張弁6は全開とする。更に、空調コントローラ32は電磁弁17、電磁弁21を閉じ、室内送風機27を停止する。そして、循環ポンプ62を運転し、冷媒−熱媒体熱交換器64において冷媒と熱媒体を熱交換させる状態とする。
(7-6) Battery Temperature Control Single Mode Next, a battery temperature control single mode for controlling the temperature of the battery 55 without performing air conditioning of the vehicle interior when the battery 55 is charged will be described. FIG. 11 shows the refrigerant flow (solid arrow) in the refrigerant circuit R and the heat medium flow (broken arrow) in the battery temperature adjusting device 61 in the battery temperature adjustment single mode. The air conditioning controller 32 operates the compressor 2 and also operates the outdoor fan 15. The indoor expansion valve 8 is fully closed and the auxiliary expansion valve 37 is opened to depressurize the refrigerant. The outdoor expansion valve 6 is fully opened. Further, the air conditioning controller 32 closes the electromagnetic valve 17 and the electromagnetic valve 21 and stops the indoor blower 27. Then, the circulation pump 62 is operated so that the refrigerant and the heat medium are exchanged in the refrigerant-heat medium heat exchanger 64.

これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4を経て冷媒配管13Eから室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので、冷媒は冷媒配管13Jを通過し、そのまま室外熱交換器7に流入し、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7に着霜が成長していた場合は、このときの放熱作用で室外熱交換器7は除霜されることになる。   Thus, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 passes through the radiator 4 and reaches the outdoor expansion valve 6 from the refrigerant pipe 13E. At this time, since the outdoor expansion valve 6 is fully opened, the refrigerant passes through the refrigerant pipe 13J, flows into the outdoor heat exchanger 7 as it is, is cooled by the outside air ventilated by the outdoor blower 15, and is condensed and liquefied. In the case where frost has grown on the outdoor heat exchanger 7, the outdoor heat exchanger 7 is defrosted by the heat dissipation action at this time.

室外熱交換器7を出た冷媒は冷媒配管13Aに入るが、このとき室内膨張弁8は全閉とされているので、室外熱交換器7を出た全ての冷媒は分岐配管72を経て補助膨張弁73に至る。冷媒はこの補助膨張弁73で減圧された後、冷媒−熱媒体熱交換器64の冷媒流路64Bに流入して蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は冷媒配管74、冷媒配管13C、及び、アキュムレータ12を順次経て圧縮機2に吸い込まれる循環を繰り返す。   The refrigerant that has exited the outdoor heat exchanger 7 enters the refrigerant pipe 13A. At this time, since the indoor expansion valve 8 is fully closed, all the refrigerant that has exited the outdoor heat exchanger 7 is supplemented via the branch pipe 72. It reaches the expansion valve 73. The refrigerant is decompressed by the auxiliary expansion valve 73 and then flows into the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64 to evaporate. At this time, an endothermic effect is exhibited. The refrigerant evaporated in the refrigerant flow path 64B is repeatedly circulated through the refrigerant pipe 74, the refrigerant pipe 13C, and the accumulator 12 in order and sucked into the compressor 2.

一方、循環ポンプ62から吐出された熱媒体は熱媒体加熱ヒータ66を経て加熱され(熱媒体加熱ヒータ66が発熱している場合)、熱媒体配管68内を冷媒−熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒により吸熱され、熱媒体は冷却される。熱媒体加熱ヒータ66で加熱され、及び/又は、冷媒の吸熱作用で冷却された熱媒体は、冷媒−熱媒体熱交換器64を出てバッテリ55に至り、当該バッテリ55と熱交換した後、循環ポンプ62に吸い込まれる循環を繰り返す(図11に破線矢印で示す)。   On the other hand, the heat medium discharged from the circulation pump 62 is heated through the heat medium heater 66 (when the heat medium heater 66 generates heat), and the heat medium pipe 68 is filled with the refrigerant-heat medium heat exchanger 64. The heat medium channel 64A is reached, where heat is absorbed by the refrigerant evaporated in the refrigerant channel 64B, and the heat medium is cooled. The heat medium heated by the heat medium heater 66 and / or cooled by the endothermic action of the refrigerant leaves the refrigerant-heat medium heat exchanger 64 and reaches the battery 55, and after exchanging heat with the battery 55, The circulation sucked into the circulation pump 62 is repeated (indicated by broken line arrows in FIG. 11).

空調コントローラ32はこのバッテリ温調単独モードでも、前述した暖房/バッテリ温調モードの場合と同様に、補助膨張弁73と熱媒体加熱ヒータ66を制御することで、バッテリ55の温度(バッテリ温度Tb)を適温範囲内である目標バッテリ温度TBOに調整するものである。   The air conditioning controller 32 controls the temperature of the battery 55 (battery temperature Tb) by controlling the auxiliary expansion valve 73 and the heat medium heater 66 in this battery temperature control single mode as well as in the heating / battery temperature control mode described above. ) Is adjusted to the target battery temperature TBO within the appropriate temperature range.

(8)空調コントローラ32のプレ空調機能
ここで、前述した空調コントローラ32は、所謂プレ空調機能を有している。このプレ空調機能とは、予め設定された所定のプレ空調開始予定時刻t1に車両を始動し、車両用空気調和装置1による車室内の空調を開始することができる機能である。尚、この出願において車両の始動時とは、車両が発進(走行が開始)されるということではなく、電気自動車の電源が入り(キーが回される、或いは、起動ボタンが押された状態となる等:電源ON)、車両用空気調和装置1も運転可能となる状態を意味するものとする。
(8) Pre-air-conditioning function of air-conditioning controller 32 Here, the air-conditioning controller 32 mentioned above has what is called a pre-air-conditioning function. The pre-air-conditioning function is a function that starts the vehicle at a predetermined preset pre-air-conditioning start scheduled time t1 and starts air-conditioning of the vehicle interior by the vehicle air conditioner 1. In this application, when the vehicle starts, it does not mean that the vehicle starts (runs), but that the electric vehicle is turned on (the key is turned or the start button is pressed). It means that the vehicle air conditioner 1 is also operable.

例えば、使用者が空調操作部53を操作して翌日の午前7時(AM7:00)をプレ空調開始予定時刻t1として設定したものとすると、空調コントローラ32は、このプレ空調開始予定時刻t1となった時点で車両を始動し(電源が入る:電源ON)、車両用空気調和装置1による車室内の空調(プレ空調)を開始する。それにより、車両を乗り出す時刻までに車室内の温度を予め適温としておくことができるように構成されている。   For example, assuming that the user operates the air conditioning operation unit 53 and sets 7:00 am (AM 7:00) the next day as the scheduled pre-air conditioning start time t1, the air conditioning controller 32 sets the scheduled pre-air conditioning start time t1. At that time, the vehicle is started (the power is turned on: the power is turned on), and the air conditioning (pre-air conditioning) of the vehicle interior by the vehicle air conditioner 1 is started. Thereby, it is comprised so that the temperature in a vehicle interior can be previously set as a suitable temperature by the time which gets on a vehicle.

(9)空調コントローラ32によるプレ空調時バッテリ温調制御
次に、図12(図11)、図13を参照しながら、上記のようなプレ空調を行う際に空調コントローラ32が実行するプレ空調時バッテリ温調制御について説明する。上述した如く、使用者によりプレ空調開始予定時刻t1が設定されると、空調コントローラ32はプレ空調開始予定時刻t1に車両用空気調和装置1を運転して車室内の空調(プレ空調)を開始するものであるが、空調コントローラ32は、プレ空調開始予定時刻t1が設定された場合、実施例ではこのプレ空調開始予定時刻t1より所定時間(例えば、30分)前から、一定時間(例えば、5分)毎にバッテリ温度センサ76が検出するバッテリ55の温度(バッテリ温度Tb)を取り込み、このバッテリ温度Tbが前述した許容下限温度TL(0℃)より低いか否か、前述した許容上限温度TH(+40℃)より高いか否か、について判断する。
(9) Pre-air-conditioning battery temperature control by the air-conditioning controller 32 Next, referring to FIG. 12 (FIG. 11) and FIG. 13, the pre-air-conditioning time executed by the air-conditioning controller 32 when performing the pre-air-conditioning as described above. Battery temperature control will be described. As described above, when the pre-air conditioning start scheduled time t1 is set by the user, the air conditioning controller 32 starts the air conditioning (pre-air conditioning) in the vehicle interior by operating the vehicle air conditioner 1 at the pre-air conditioning start scheduled time t1. However, when the pre-air-conditioning start scheduled time t1 is set, the air-conditioning controller 32, in the embodiment, for a predetermined time (for example, 30 minutes) before the predetermined pre-air-conditioning start time t1 (for example, 30 minutes). The temperature of the battery 55 (battery temperature Tb) detected by the battery temperature sensor 76 is taken every 5 minutes), and whether or not the battery temperature Tb is lower than the aforementioned allowable lower limit temperature TL (0 ° C.). It is judged whether or not the temperature is higher than TH (+ 40 ° C.).

(9−1)プレ空調時バッテリ温調制御におけるバッテリ加熱モード
ここで、前述した如く極低温の状態で車室内のプレ空調を始めると、バッテリ55が出力可能な電流が低くなるため、過度な電力要求となってバッテリ55が劣化してしまうことになる。そこで、空調コントローラ32はプレ空調開始予定時刻t1より前の時点のバッテリ55の温度(バッテリ温度Tb)を判断し、このバッテリ温度Tbが前述した許容下限温度TL(0℃)より低い場合、プレ空調時バッテリ温調制御を実行し、このプレ空調時バッテリ温調制御におけるバッテリ加熱モードを開始する。
(9-1) Battery Heating Mode in Pre-Air Conditioning Battery Temperature Control Control Here, as described above, when pre-air conditioning in the vehicle interior is started at a very low temperature, the current that can be output by the battery 55 becomes low. The battery 55 will deteriorate due to the power demand. Therefore, the air conditioning controller 32 determines the temperature of the battery 55 (battery temperature Tb) before the pre-air conditioning start scheduled time t1, and if this battery temperature Tb is lower than the aforementioned allowable lower limit temperature TL (0 ° C.), The air conditioning battery temperature control is executed, and the battery heating mode in the pre-air conditioning battery temperature control is started.

また、実施例の空調コントローラ32は、バッテリ温度Tbが許容下限温度TLより低く、その差ΔTが大きい程、早い時点からプレ空調時バッテリ温調制御におけるバッテリ加熱モードを開始する。図13を用いてこれを説明する。例えば、プレ空調開始予定時刻t1より30分前の時点でバッテリ温度Tbが許容下限温度TLより低く、それらの差ΔT=TL−Tbが所定の小さい差ΔT1(例えば、5deg)であった場合、空調コントローラ32はこの30分前の時点ではプレ空調時バッテリ温調制御のバッテリ加熱モードを開始しない。   Further, the air conditioning controller 32 of the embodiment starts the battery heating mode in the pre-air-conditioning battery temperature control from an earlier time point as the battery temperature Tb is lower than the allowable lower limit temperature TL and the difference ΔT is larger. This will be described with reference to FIG. For example, when the battery temperature Tb is lower than the allowable lower limit temperature TL 30 minutes before the pre-air-conditioning start scheduled time t1, and the difference ΔT = TL−Tb is a predetermined small difference ΔT1 (for example, 5 deg), The air conditioning controller 32 does not start the battery heating mode of the pre-air-conditioning battery temperature control at the time 30 minutes before.

そして、そのままの状態でプレ空調開始予定時刻t1より例えば10分前の時点t2まで来た場合、空調コントローラ32はプレ空調時バッテリ温調制御のバッテリ加熱モードを開始する。即ち、この10分前の時点t2(AM6:50)がプレ空調時バッテリ温調制御の開始時刻となる。   If the air conditioning controller 32 reaches the time t2, for example, 10 minutes before the pre-air conditioning start scheduled time t1 in the state as it is, the air conditioning controller 32 starts the battery heating mode of the battery temperature control during pre-air conditioning. That is, the time t2 (AM6: 50) 10 minutes before this time is the start time of the pre-air-conditioning battery temperature control.

一方、プレ空調開始予定時刻t1より30分前の時点でバッテリ温度Tbと許容下限温度TLとの差ΔT(=TL−Tb)が所定の大きい差ΔT2(例えば、15deg)であった場合、空調コントローラ32はこの30分前の時点でプレ空調時バッテリ温調制御のバッテリ加熱モードを開始する。従って、この場合には30分前の時点t2(AM6:30)がプレ空調時バッテリ温調制御の開始時刻となる。   On the other hand, if the difference ΔT (= TL−Tb) between the battery temperature Tb and the allowable lower limit temperature TL is a predetermined large difference ΔT2 (for example, 15 deg) 30 minutes before the scheduled pre-air conditioning start time t1, the air conditioning The controller 32 starts the battery heating mode of the pre-air-conditioning battery temperature control at a time point 30 minutes before. Accordingly, in this case, the time t2 (AM6: 30) 30 minutes before is the start time of the pre-air-conditioning battery temperature control.

このプレ空調時バッテリ温調制御におけるバッテリ加熱モードでは、空調コントローラ32は図12に示す如く第1スイッチ81を開き、第2スイッチ82を閉じる。これにより、圧縮機2を含む冷媒回路Rの電気機器には給電が行われないようになり、車室内の空調が禁止される。一方、熱媒体加熱ヒータ66を含むバッテリ温度調整装置61の電気機器には給電可能な状態となる。   In the battery heating mode in the pre-air conditioning battery temperature control, the air conditioning controller 32 opens the first switch 81 and closes the second switch 82 as shown in FIG. As a result, power is not supplied to the electrical equipment of the refrigerant circuit R including the compressor 2, and air conditioning in the passenger compartment is prohibited. On the other hand, the electric equipment of the battery temperature adjusting device 61 including the heat medium heater 66 can be supplied with power.

そして、空調コントローラ32はバッテリ温度調整装置61の循環ポンプ62を運転し、熱媒体加熱ヒータ66に通電して発熱させる。これにより、循環ポンプ62から吐出された熱媒体は熱媒体加熱ヒータ66に至り、そこで加熱された後、熱媒体配管68内を冷媒−熱媒体熱交換器64の熱媒体流路64Aに至り、そこを通過してバッテリ55に至るようになる。バッテリ55は熱媒体加熱ヒータ66で加熱された熱媒体により加熱されるので、図13に示す如くバッテリ温度Tbが上昇していく。   Then, the air conditioning controller 32 operates the circulation pump 62 of the battery temperature adjusting device 61 and energizes the heat medium heater 66 to generate heat. Thereby, the heat medium discharged from the circulation pump 62 reaches the heat medium heater 66, and after being heated there, reaches the heat medium flow path 64 </ b> A of the refrigerant-heat medium heat exchanger 64 through the heat medium pipe 68. The battery 55 passes through the battery 55. Since the battery 55 is heated by the heat medium heated by the heat medium heater 66, the battery temperature Tb rises as shown in FIG.

この場合、差ΔTが小さい差ΔT1であったときは、バッテリ加熱モードの開始に伴ってバッテリ温度Tbは直ぐに所定の上昇率で上昇し始めるが、差ΔTが大きい差ΔT2であったときには、バッテリ加熱モードが開始された後、バッテリ温度Tbは始め緩やかに上昇し、或いは、殆ど上昇せず、数分後に差ΔT1の場合と同様の上昇率で上昇していくようになる。図13はその様子を表現している。そして、バッテリ55と熱交換した後の熱媒体は、循環ポンプ62に再び吸い込まれる循環を繰り返す(図12に破線矢印で示す)。   In this case, when the difference ΔT is a small difference ΔT1, the battery temperature Tb immediately starts increasing at a predetermined rate as the battery heating mode starts, but when the difference ΔT is a large difference ΔT2, After the heating mode is started, the battery temperature Tb gradually increases at the beginning, or hardly increases, and after a few minutes, increases at the same increase rate as in the case of the difference ΔT1. FIG. 13 expresses such a situation. Then, the heat medium after heat exchange with the battery 55 repeats circulation (represented by broken line arrows in FIG. 12) that is sucked into the circulation pump 62 again.

このようなプレ空調時バッテリ温調制御におけるバッテリ加熱モードでバッテリ55の温度(バッテリ温度Tb)が上昇し、前述した許容下限温度TL以上となった場合、空調コントローラ32は図12の第1スイッチ81を閉じて圧縮機2等の冷媒回路Rの電気機器に給電可能な状態とし、以後はプレ空調開始予定時刻t1になるまで、前述同様にバッテリ温度Tbを適温範囲内である目標バッテリ温度TBOに調整する。   When the temperature of the battery 55 (battery temperature Tb) rises in the battery heating mode in such pre-air-conditioning battery temperature control, and becomes equal to or higher than the above-described allowable lower limit temperature TL, the air conditioning controller 32 displays the first switch in FIG. 81 is closed so that electric power can be supplied to the electric equipment of the refrigerant circuit R such as the compressor 2, and thereafter, the battery temperature Tb is within the appropriate temperature range as described above until the pre-air conditioning start scheduled time t1. Adjust to.

そして、時刻がプレ空調開始予定時刻t1となった場合、空調コントローラ32は車室内の空調を開始し、前述した図3の暖房運転、図4の除湿暖房運転、図5の内部サイクル運転、図6の除湿冷房運転/冷房運転を実行し、或いは、図7の暖房/バッテリ温調モード、図8の除湿冷房/バッテリ温調モード(冷房/バッテリ温調モード)、図9の内部サイクル/バッテリ温調モード、図10の除湿暖房/バッテリ温調モードにより車室内の空調を行いながらバッテリ温度Tbを許容下限温度TL以上の目標バッテリ温度TBOに維持し、若しくは、図11のバッテリ温調単独モードにより、バッテリ温度Tbを目標バッテリ温度TBOに維持する。   When the time reaches the pre-air conditioning start scheduled time t1, the air conditioning controller 32 starts air conditioning in the vehicle interior, and the heating operation in FIG. 3, the dehumidifying heating operation in FIG. 4, the internal cycle operation in FIG. 6 is performed, or the heating / battery temperature adjustment mode of FIG. 7, the dehumidification cooling / battery temperature adjustment mode (cooling / battery temperature adjustment mode) of FIG. 8, and the internal cycle / battery of FIG. The battery temperature Tb is maintained at the target battery temperature TBO equal to or higher than the allowable lower limit temperature TL while the vehicle interior is air-conditioned in the temperature adjustment mode, the dehumidifying heating / battery temperature adjustment mode of FIG. 10, or the battery temperature adjustment single mode of FIG. Thus, the battery temperature Tb is maintained at the target battery temperature TBO.

尚、前述したプレ空調時バッテリ温調制御開始時刻t2は、プレ空調開始予定時刻t1までにバッテリ55の温度が許容下限温度TL以上となる時点を、前述した差ΔTとの関係で予め実験により求め、空調コントローラ32に記憶させておくものとする。   The above-described pre-air-conditioning battery temperature adjustment control start time t2 is a time when the temperature of the battery 55 becomes equal to or higher than the allowable lower limit temperature TL by the pre-air-conditioning start scheduled time t1, and is previously experimentally related to the difference ΔT. It is calculated and stored in the air conditioning controller 32.

このように、空調コントローラ32は、バッテリ55の温度(バッテリ温度Tb)が所定の許容下限温度TLより低い場合、プレ空調開始予定時刻t1より前にバッテリ55を加熱し、当該バッテリ温度Tbが許容下限温度TL以上に上昇した場合、車室内の空調を開始するプレ空調時バッテリ温調制御を実行するので、車室内のプレ空調を実行する際にバッテリ55の温度が低く、過度の電力要求となる状況下において、プレ空調を開始する前にバッテリ55を加熱しておくことができるようになる。   Thus, when the temperature of the battery 55 (battery temperature Tb) is lower than the predetermined allowable lower limit temperature TL, the air conditioning controller 32 heats the battery 55 before the pre-air conditioning start scheduled time t1, and the battery temperature Tb is allowed. When the temperature rises above the lower limit temperature TL, pre-air-conditioning battery temperature control is started to start air-conditioning in the vehicle interior. Therefore, the temperature of the battery 55 is low when pre-air-conditioning in the vehicle interior is executed, Under such circumstances, the battery 55 can be heated before the pre-air conditioning is started.

そして、空調コントローラ32はバッテリ55の温度が許容下限温度TL以上に上昇してから車室内の空調を開始するので、車室内をプレ空調する際のバッテリ55の劣化を防止することが可能となり、その耐久性の向上を図りながら、車室内のプレ空調も円滑に行うことができるようになる。   And since the air conditioning controller 32 starts the air conditioning of the vehicle interior after the temperature of the battery 55 rises above the allowable lower limit temperature TL, it becomes possible to prevent the deterioration of the battery 55 when pre-air conditioning the vehicle interior, While improving the durability, it is possible to smoothly perform pre-air conditioning in the passenger compartment.

また、実施例ではプレ空調開始予定時刻t1が設定された場合、空調コントローラ32は当該プレ空調開始予定時刻t1より前の時点でバッテリ55の温度を判断し、当該バッテリ55の温度が許容下限温度TLより低い場合、プレ空調時バッテリ温調制御を実行するので、円滑にプレ空調前のバッテリ温調を実現することができるようになる。   In the embodiment, when the pre-air conditioning start scheduled time t1 is set, the air conditioning controller 32 determines the temperature of the battery 55 before the scheduled pre-air conditioning start time t1, and the temperature of the battery 55 is the allowable lower limit temperature. If it is lower than TL, the battery temperature adjustment control during pre-air conditioning is executed, so that the battery temperature adjustment before pre-air conditioning can be realized smoothly.

特に、実施例では空調コントローラ32は、プレ空調開始予定時刻t1より所定時間前(実施例では30分前)から一定時間毎(実施例では5分毎)にバッテリ55の温度を判断し、当該バッテリ55の温度が許容下限温度TLより低く、その差ΔTが大きい程、早い時点からプレ空調時バッテリ温調制御のバッテリ加熱モードを開始するので、プレ空調開始予定時刻t1にはバッテリ55の温度を支障無く許容下限温度TL以上としておくことが可能となる。   In particular, in the embodiment, the air conditioning controller 32 determines the temperature of the battery 55 every predetermined time (every 5 minutes in the embodiment) from a predetermined time (30 minutes in the embodiment) before the scheduled pre-air conditioning start time t1. As the temperature of the battery 55 is lower than the allowable lower limit temperature TL and the difference ΔT is larger, the battery heating mode of the pre-air conditioning battery temperature control is started from an earlier time point. Can be set to the allowable lower limit temperature TL or more without hindrance.

この場合、実施例では空調コントローラ32には、プレ空調時バッテリ温調制御を開始する時点t2として、プレ空調開始予定時刻t1までにバッテリ55の温度が許容下限温度TL以上となる時点が予め設定されているので、プレ空調開始予定時刻t1にはバッテリ55の温度を確実に許容下限温度TL以上としておくことができるようになる。   In this case, in the embodiment, the time when the temperature of the battery 55 becomes equal to or higher than the allowable lower limit temperature TL by the pre-air conditioning start scheduled time t1 is set in advance as the time t2 when the pre-air conditioning battery temperature control is started. Therefore, the temperature of the battery 55 can be reliably set to be equal to or higher than the allowable lower limit temperature TL at the pre-air conditioning start scheduled time t1.

そして、実施例の如く車両用空気調和装置1が、冷媒を圧縮する圧縮機2と、冷媒を放熱させて車室内に供給する空気を加熱する放熱器4と、冷媒を吸熱させて車室内に供給する空気を冷却する吸熱器9と、車室外に設けられて冷媒を吸熱、又は、放熱させる室外熱交換器7と、バッテリ55に熱媒体を循環させて当該バッテリ55の温度を調整するバッテリ温度調整装置61を備え、このバッテリ温度調整装置61が、冷媒と熱媒体とを熱交換させる冷媒−熱媒体熱交換器64と、熱媒体を加熱する熱媒体加熱ヒータ66を有すると共に、空調コントローラ32が、バッテリ55自体の温度、又は、熱媒体の温度をバッテリ55の温度としてプレ空調時バッテリ温調制御を実行するようにしたので、以上の制御を円滑に実現することができるようになる。   Then, as in the embodiment, the vehicle air conditioner 1 includes a compressor 2 that compresses the refrigerant, a radiator 4 that radiates the refrigerant and heats the air that is supplied to the vehicle interior, and absorbs the refrigerant into the vehicle interior. A heat absorber 9 that cools the air to be supplied, an outdoor heat exchanger 7 that is provided outside the passenger compartment to absorb or dissipate the refrigerant, and a battery that adjusts the temperature of the battery 55 by circulating a heat medium in the battery 55. The battery temperature adjusting device 61 includes a refrigerant-heat medium heat exchanger 64 that exchanges heat between the refrigerant and the heat medium, a heat medium heater 66 that heats the heat medium, and an air conditioning controller. 32 performs the pre-air-conditioning battery temperature adjustment control using the temperature of the battery 55 itself or the temperature of the heat medium as the temperature of the battery 55, so that the above control can be realized smoothly. So as to.

(9−2)プレ空調時バッテリ温調制御におけるバッテリ冷却モード
また、前述した如く外気温度が高温の環境であるときには、バッテリ55の温度も極めて高くなるため、そのような状態でもバッテリ55を放電させるとバッテリ55自体の耐久性に悪影響を与えることになる。
(9-2) Battery Cooling Mode in Pre-Air Conditioning Battery Temperature Control Control Further, as described above, when the outside air temperature is a high temperature environment, the temperature of the battery 55 becomes extremely high, so the battery 55 is discharged even in such a state. Doing so will adversely affect the durability of the battery 55 itself.

そこで、空調コントローラ32はプレ空調開始予定時刻t1より前の時点のバッテリ55の温度(バッテリ温度Tb)を判断し、このバッテリ温度Tbが前述した許容上限温度TH(+40℃)より高い場合、プレ空調時バッテリ温調制御を実行し、このプレ空調時バッテリ温調制御におけるバッテリ冷却モードを開始する。   Therefore, the air conditioning controller 32 determines the temperature of the battery 55 (battery temperature Tb) before the pre-air conditioning scheduled start time t1, and if this battery temperature Tb is higher than the above-described allowable upper limit temperature TH (+ 40 ° C.), The air-conditioning battery temperature control is executed, and the battery cooling mode in the pre-air-conditioning battery temperature control is started.

また、この場合も空調コントローラ32は、バッテリ温度Tbが許容上限温度THより高く、その差ΔTが大きい程、早い時点(同じくプレ空調時バッテリ温調制御開始時刻t2)からプレ空調時バッテリ温調制御におけるバッテリ冷却モードを開始する。但し、この場合の差ΔTはTb−THとなる。   Also in this case, the air-conditioning controller 32 increases the battery temperature Tb during pre-air conditioning from the earlier time point (also the battery temperature regulation start time t2 during pre-air conditioning) as the battery temperature Tb is higher than the allowable upper limit temperature TH and the difference ΔT is larger. The battery cooling mode in the control is started. However, the difference ΔT in this case is Tb−TH.

また、この場合も空調コントローラ32は、プレ空調開始予定時刻t1より所定時間前(30分前)から一定時間毎(5分毎)にバッテリ55の温度を判断し、当該バッテリ55の温度が許容上限温度THより高く、その差ΔTが大きい程、早い時点からプレ空調時バッテリ温調制御のバッテリ冷却モードを開始する。   Also in this case, the air conditioning controller 32 determines the temperature of the battery 55 every predetermined time (every 5 minutes) from a predetermined time (30 minutes before) the pre-air conditioning start scheduled time t1, and the temperature of the battery 55 is allowed. As the difference ΔT is higher than the upper limit temperature TH, the battery cooling mode of the pre-air-conditioning battery temperature adjustment control is started earlier.

そして、この場合もプレ空調時バッテリ温調制御開始時刻t2は、プレ空調開始予定時刻t1までにバッテリ55の温度が許容上限温度TH以下となる時点を、前述した差ΔTとの関係で予め実験により求め、空調コントローラ32に記憶させておくものとする。   Also in this case, the pre-air-conditioning battery temperature adjustment control start time t2 is an experiment in advance regarding the time when the temperature of the battery 55 becomes equal to or lower than the allowable upper limit temperature TH by the pre-air-conditioning start scheduled time t1, in relation to the above-described difference ΔT. And stored in the air conditioning controller 32.

このプレ空調時バッテリ温調制御におけるバッテリ冷却モードの冷媒と熱媒体の流れは前述した図11のバッテリ温調単独モードの場合と同様である。但し、熱媒体加熱ヒータ66には通電しない。即ち、空調コントローラ32は第1スイッチ81及び第2スイッチ82を閉じて圧縮機2を含む冷媒回路Rの電気機器とバッテリ温度調整装置61の電気機器に給電可能とする。そして、圧縮機2を運転し、室外送風機15も運転する。また、室内膨張弁8を全閉とし、補助膨張弁37は開いて冷媒を減圧する状態とする。尚、室外膨張弁6は全開とする。更に、空調コントローラ32は電磁弁17、電磁弁21を閉じ、室内送風機27を停止する。これにより、車室内の空調は禁止される。そして、循環ポンプ62を運転し、冷媒−熱媒体熱交換器64において冷媒と熱媒体を熱交換させる状態とする。   The flow of the refrigerant and the heat medium in the battery cooling mode in the pre-air-conditioning battery temperature control is the same as that in the battery temperature control single mode of FIG. 11 described above. However, the heat medium heater 66 is not energized. That is, the air-conditioning controller 32 closes the first switch 81 and the second switch 82 so that electric power can be supplied to the electric device of the refrigerant circuit R including the compressor 2 and the electric device of the battery temperature adjusting device 61. And the compressor 2 is drive | operated and the outdoor air blower 15 is also drive | operated. The indoor expansion valve 8 is fully closed and the auxiliary expansion valve 37 is opened to depressurize the refrigerant. The outdoor expansion valve 6 is fully opened. Further, the air conditioning controller 32 closes the electromagnetic valve 17 and the electromagnetic valve 21 and stops the indoor blower 27. As a result, air conditioning in the passenger compartment is prohibited. Then, the circulation pump 62 is operated so that the refrigerant and the heat medium are exchanged in the refrigerant-heat medium heat exchanger 64.

これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4を経て冷媒配管13Eから室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので、冷媒は冷媒配管13Jを通過し、そのまま室外熱交換器7に流入し、室外送風機15にて通風される外気により空冷され、凝縮液化する。   Thus, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 passes through the radiator 4 and reaches the outdoor expansion valve 6 from the refrigerant pipe 13E. At this time, since the outdoor expansion valve 6 is fully opened, the refrigerant passes through the refrigerant pipe 13J, flows into the outdoor heat exchanger 7 as it is, is cooled by the outside air ventilated by the outdoor blower 15, and is condensed and liquefied.

室外熱交換器7を出た冷媒は冷媒配管13Aに入るが、このとき室内膨張弁8は全閉とされているので、室外熱交換器7を出た全ての冷媒は分岐配管72を経て補助膨張弁73に至る。冷媒はこの補助膨張弁73で減圧された後、冷媒−熱媒体熱交換器64の冷媒流路64Bに流入して蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は冷媒配管74、冷媒配管13C、及び、アキュムレータ12を順次経て圧縮機2に吸い込まれる循環を繰り返す。   The refrigerant that has exited the outdoor heat exchanger 7 enters the refrigerant pipe 13A. At this time, since the indoor expansion valve 8 is fully closed, all the refrigerant that has exited the outdoor heat exchanger 7 is supplemented via the branch pipe 72. It reaches the expansion valve 73. The refrigerant is decompressed by the auxiliary expansion valve 73 and then flows into the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64 to evaporate. At this time, an endothermic effect is exhibited. The refrigerant evaporated in the refrigerant flow path 64B is repeatedly circulated through the refrigerant pipe 74, the refrigerant pipe 13C, and the accumulator 12 in order and sucked into the compressor 2.

一方、循環ポンプ62から吐出された熱媒体は、熱媒体加熱ヒータ66を通過して熱媒体配管68内を冷媒−熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒により吸熱され、熱媒体は冷却される。この冷媒の吸熱作用で冷却された熱媒体は、冷媒−熱媒体熱交換器64を出てバッテリ55に至り、当該バッテリ55と熱交換して冷却した後、循環ポンプ62に吸い込まれる循環を繰り返す(図11中の破線矢印)。   On the other hand, the heat medium discharged from the circulation pump 62 passes through the heat medium heater 66 and reaches the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 through the heat medium pipe 68, where the refrigerant flow path 64B. Heat is absorbed by the refrigerant evaporating inside, and the heat medium is cooled. The heat medium cooled by the heat absorption action of the refrigerant exits the refrigerant-heat medium heat exchanger 64 and reaches the battery 55, and after being cooled by exchanging heat with the battery 55, the circulation sucked into the circulation pump 62 is repeated. (Dotted line arrow in FIG. 11).

このようなプレ空調時バッテリ温調制御におけるバッテリ冷却モードでバッテリ55の温度(バッテリ温度Tb)が低下し、前述した許容上限温度TH以下となった場合、以後は空調コントローラ32はプレ空調開始予定時刻t1になるまで、前述同様にバッテリ温度Tbを適温範囲内である目標バッテリ温度TBOに調整する。そして、時刻がプレ空調開始予定時刻t1となった場合、空調コントローラ32は車室内の空調を開始し、前述した図3の暖房運転、図4の除湿暖房運転、図5の内部サイクル運転、図6の除湿冷房運転/冷房運転を実行し、或いは、図7の暖房/バッテリ温調モード、図8の除湿冷房/バッテリ温調モード(冷房/バッテリ温調モード)、図9の内部サイクル/バッテリ温調モード、図10の除湿暖房/バッテリ温調モードにより車室内の空調を行いながらバッテリ温度Tbを許容下限温度TL以上の目標バッテリ温度TBOに維持し、若しくは、図11のバッテリ温調単独モードにより、バッテリ温度Tbを目標バッテリ温度TBOに維持する。   When the temperature of the battery 55 (battery temperature Tb) decreases in the battery cooling mode in such pre-air-conditioning battery temperature control, and falls below the above-described allowable upper limit temperature TH, the air-conditioning controller 32 is scheduled to start pre-air-conditioning thereafter. Until time t1, the battery temperature Tb is adjusted to the target battery temperature TBO within the appropriate temperature range as described above. When the time reaches the pre-air conditioning start scheduled time t1, the air conditioning controller 32 starts air conditioning in the vehicle interior, and the heating operation in FIG. 3, the dehumidifying heating operation in FIG. 4, the internal cycle operation in FIG. 6 is performed, or the heating / battery temperature adjustment mode of FIG. 7, the dehumidification cooling / battery temperature adjustment mode (cooling / battery temperature adjustment mode) of FIG. 8, and the internal cycle / battery of FIG. The battery temperature Tb is maintained at the target battery temperature TBO equal to or higher than the allowable lower limit temperature TL while the vehicle interior is air-conditioned in the temperature adjustment mode, the dehumidifying heating / battery temperature adjustment mode of FIG. 10, or the battery temperature adjustment single mode of FIG. Thus, the battery temperature Tb is maintained at the target battery temperature TBO.

このように、空調コントローラ32はバッテリ55の温度が所定の許容上限温度より高い場合、プレ空調開始予定時刻t1より前にバッテリ55を冷却し、当該バッテリ55の温度が許容上限温度TH以下に低下した場合、車室内の空調を開始するプレ空調時バッテリ温調制御のバッテリ冷却モードを実行するので、車室内のプレ空調を実行する際にバッテリ55の温度が高い場合には、プレ空調を開始する前にバッテリ55を冷却しておくことができるようになる。   As described above, when the temperature of the battery 55 is higher than the predetermined allowable upper limit temperature, the air conditioning controller 32 cools the battery 55 before the pre-air conditioning start scheduled time t1, and the temperature of the battery 55 decreases below the allowable upper limit temperature TH. In this case, the battery cooling mode of the battery temperature adjustment control at the time of pre-air conditioning for starting the air conditioning of the vehicle interior is executed. Therefore, when the temperature of the battery 55 is high when executing the pre air conditioning of the vehicle interior, the pre air conditioning is started. The battery 55 can be cooled before starting.

そして、空調コントローラ32はバッテリ55の温度が許容上限温度TH以下に低下してから車室内の空調を開始するので、同様に車室内をプレ空調する際のバッテリ55の劣化を防止し、その耐久性の向上を図りながら、車室内のプレ空調も円滑に行うことができるようになる。   Since the air conditioning controller 32 starts air conditioning in the vehicle interior after the temperature of the battery 55 falls below the allowable upper limit temperature TH, similarly, the battery 55 is prevented from deteriorating when pre-air conditioning is performed in the vehicle interior, and its durability is improved. As a result, the pre-air conditioning in the passenger compartment can be performed smoothly.

また、同様に実施例ではプレ空調開始予定時刻t1が設定された場合、空調コントローラ32は当該プレ空調開始予定時刻t1より前の時点でバッテリ55の温度を判断し、当該バッテリ55の温度が許容上限温度THより高い場合、プレ空調時バッテリ温調制御のバッテリ冷却モードを実行するので、円滑にプレ空調前のバッテリ温調を実現することができるようになる。   Similarly, in the embodiment, when the pre-air conditioning start scheduled time t1 is set, the air conditioning controller 32 determines the temperature of the battery 55 before the scheduled pre air conditioning start scheduled time t1, and the temperature of the battery 55 is allowed. When the temperature is higher than the upper limit temperature TH, the battery cooling mode of the pre-air-conditioning battery temperature control is executed, so that the battery temperature control before the pre-air-conditioning can be realized smoothly.

更に、この場合も実施例では空調コントローラ32は、プレ空調開始予定時刻t1より所定時間前(30分前)から一定時間毎(5分毎)にバッテリ55の温度を判断し、当該バッテリ55の温度が許容上限温度THより高く、その差ΔTが大きい程、早い時点からプレ空調時バッテリ温調制御のバッテリ冷却モードを開始するので、プレ空調開始予定時刻t1にはバッテリ55の温度を支障無く許容上限温度TH以下としておくことが可能となる。   In this case as well, in this embodiment, the air conditioning controller 32 determines the temperature of the battery 55 every predetermined time (every 5 minutes) from a predetermined time before (30 minutes before) the pre-air conditioning start scheduled time t1. As the temperature is higher than the allowable upper limit temperature TH and the difference ΔT is larger, the battery cooling mode of the pre-air-conditioning battery temperature control is started from an earlier time point. Therefore, the temperature of the battery 55 is not affected at the pre-air-conditioning start scheduled time t1. The allowable upper limit temperature TH can be kept below.

また、この場合も実施例では空調コントローラ32には、プレ空調時バッテリ温調制御を開始する時点t2として、プレ空調開始予定時刻t1までにバッテリ55の温度が許容上限温度TH以下となる時点が予め設定されているので、プレ空調開始予定時刻t1にはバッテリ55の温度を確実に許容上限温度TH以下としておくことができるようになる。   Also in this case, in this embodiment, the air conditioning controller 32 has a time point when the temperature of the battery 55 becomes equal to or lower than the allowable upper limit temperature TH by the pre-air conditioning start scheduled time t1 as the time point t2 when the pre-air conditioning battery temperature control is started. Since it is set in advance, the temperature of the battery 55 can be surely set to the allowable upper limit temperature TH or less at the pre-air conditioning start scheduled time t1.

尚、実施例では空調コントローラ32が、プレ空調時バッテリ温調制御において、バッテリ加熱モードとバッテリ冷却モードの双方を実行するようにしたが、それに限らず、請求項1の発明ではバッテリ加熱モードのみを実行するものでもよく、請求項3の発明ではバッテリ冷却モードのみを実行するものでもよい。また、上記実施例で説明した空調コントローラ32を含む車両用制御システムVCの制御部30の構成、車両用空気調和装置1の冷媒回路Rやバッテリ温度調整装置61の構成はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。   In the embodiment, the air conditioning controller 32 executes both the battery heating mode and the battery cooling mode in the pre-air-conditioning battery temperature adjustment control. In the invention of claim 3, only the battery cooling mode may be executed. Further, the configuration of the control unit 30 of the vehicle control system VC including the air conditioning controller 32 described in the above embodiment, the configuration of the refrigerant circuit R of the vehicle air conditioner 1 and the battery temperature adjustment device 61 are not limited thereto. Needless to say, changes can be made without departing from the spirit of the present invention.

1 車両用空気調和装置
2 圧縮機
4 放熱器
6 室外膨張弁
7 室外熱交換器
8 室内膨張弁
9 吸熱器
21、22 電磁弁
32 空調コントローラ(制御装置)
55 バッテリ
61 バッテリ温度調整装置
62 循環ポンプ
64 冷媒−熱媒体熱交換器
66 熱媒体加熱ヒータ(加熱装置)
72 分岐配管(分岐回路)
73 補助膨張弁
81 第1スイッチ
82 第2スイッチ
DESCRIPTION OF SYMBOLS 1 Vehicle air conditioner 2 Compressor 4 Radiator 6 Outdoor expansion valve 7 Outdoor heat exchanger 8 Indoor expansion valve 9 Heat absorber 21, 22 Solenoid valve 32 Air-conditioning controller (control device)
55 Battery 61 Battery temperature adjusting device 62 Circulation pump 64 Refrigerant-heat medium heat exchanger 66 Heat medium heater (heating device)
72 Branch piping (branch circuit)
73 Auxiliary expansion valve 81 First switch 82 Second switch

Claims (7)

バッテリから給電されて車室内を空調すると共に、前記バッテリの温度を調整する車両用空気調和装置であって、
予め設定された所定のプレ空調開始予定時刻に前記車室内の空調を開始するプレ空調機能を有する制御装置を備え、
該制御装置は、前記バッテリの温度が所定の許容下限温度より低い場合、前記プレ空調開始予定時刻より前に前記バッテリを加熱し、当該バッテリの温度が前記許容下限温度以上に上昇した場合、前記車室内の空調を開始するプレ空調時バッテリ温調制御を実行することを特徴とする車両用空気調和装置。
A vehicle air conditioner that is powered by a battery to air-condition the vehicle interior and adjusts the temperature of the battery,
A control device having a pre-air-conditioning function for starting air-conditioning in the vehicle interior at a predetermined pre-air-conditioning start scheduled time set in advance;
When the temperature of the battery is lower than a predetermined allowable lower limit temperature, the control device heats the battery before the pre-air-conditioning start scheduled time, and when the temperature of the battery rises above the allowable lower limit temperature, A vehicle air conditioner that performs pre-air-conditioning battery temperature control that starts air conditioning in a vehicle interior.
前記制御装置は、前記プレ空調時バッテリ温調制御において、前記バッテリの温度が所定の許容上限温度より高い場合、前記プレ空調開始予定時刻より前に前記バッテリを冷却し、当該バッテリの温度が前記許容上限温度以下に低下した場合、前記車室内の空調を開始することを特徴とする請求項1に記載の車両用空気調和装置。   In the pre-air conditioning battery temperature adjustment control, the control device cools the battery before the pre-air conditioning start scheduled time when the temperature of the battery is higher than a predetermined allowable upper limit temperature, and the temperature of the battery is The vehicle air conditioner according to claim 1, wherein air conditioning of the vehicle interior is started when the temperature falls below an allowable upper limit temperature. バッテリから給電されて車室内を空調すると共に、前記バッテリの温度を調整する車両用空気調和装置であって、
予め設定された所定のプレ空調開始予定時刻に前記車室内の空調を開始するプレ空調機能を有する制御装置を備え、
該制御装置は、前記バッテリの温度が所定の許容上限温度より高い場合、前記プレ空調開始予定時刻より前に前記バッテリを冷却し、当該バッテリの温度が前記許容上限温度以下に低下した場合、前記車室内の空調を開始するプレ空調時バッテリ温調制御を実行することを特徴とする車両用空気調和装置。
A vehicle air conditioner that is powered by a battery to air-condition the vehicle interior and adjusts the temperature of the battery,
A control device having a pre-air-conditioning function for starting air-conditioning in the vehicle interior at a predetermined pre-air-conditioning start scheduled time set in advance;
When the temperature of the battery is higher than a predetermined allowable upper limit temperature, the control device cools the battery before the pre-air conditioning start scheduled time, and when the temperature of the battery decreases below the allowable upper limit temperature, A vehicle air conditioner that performs pre-air-conditioning battery temperature control that starts air conditioning in a vehicle interior.
前記制御装置は、前記プレ空調開始予定時刻が設定された場合、当該プレ空調開始予定時刻より前の時点で前記バッテリの温度を判断し、当該バッテリの温度が前記許容下限温度より低い場合、又は、前記バッテリの温度が前記許容上限温度より高い場合、前記プレ空調時バッテリ温調制御を実行することを特徴とする請求項1乃至請求項3のうちの何れかに記載の車両用空気調和装置。   When the pre-air conditioning start scheduled time is set, the control device determines the temperature of the battery at a time before the pre air conditioning start scheduled time, and when the temperature of the battery is lower than the allowable lower limit temperature, or 4. The vehicle air conditioner according to claim 1, wherein when the temperature of the battery is higher than the allowable upper limit temperature, the pre-air-conditioning battery temperature adjustment control is executed. 5. . 前記制御装置は、前記プレ空調開始予定時刻より所定時間前から一定時間毎に前記バッテリの温度を判断し、当該バッテリの温度が前記許容下限温度より低く、その差が大きい程、又は、前記バッテリの温度が前記許容上限温度より高く、その差が大きい程、早い時点から前記プレ空調時バッテリ温調制御を開始することを特徴とする請求項4に記載の車両用空気調和装置。   The control device determines the temperature of the battery every predetermined time from a predetermined time before the pre-air-conditioning start scheduled time, and the temperature of the battery is lower than the allowable lower limit temperature and the difference is larger, or the battery 5. The vehicle air conditioner according to claim 4, wherein the pre-air-conditioning battery temperature control is started from an earlier time point as the temperature of the vehicle is higher than the allowable upper limit temperature and the difference is larger. 前記制御装置が前記プレ空調時バッテリ温調制御を開始する時点は、前記プレ空調開始予定時刻までに前記バッテリの温度が前記許容下限温度以上となる時点、又は、前記許容上限温度以下となる時点であることを特徴とする請求項5に記載の車両用空気調和装置。   The time when the control device starts the pre-air-conditioning battery temperature control is the time when the temperature of the battery becomes equal to or higher than the allowable lower limit temperature or the allowable upper limit temperature before the pre-air-conditioning start scheduled time. The vehicle air conditioner according to claim 5, wherein 冷媒を圧縮する圧縮機と、
前記冷媒を放熱させて前記車室内に供給する空気を加熱する放熱器と、
前記冷媒を吸熱させて前記車室内に供給する空気を冷却する吸熱器と、
車室外に設けられて前記冷媒を吸熱、又は、放熱させる室外熱交換器と、
前記バッテリに熱媒体を循環させて当該バッテリの温度を調整するバッテリ温度調整装置を備え、
該バッテリ温度調整装置は、前記冷媒と前記熱媒体とを熱交換させる冷媒−熱媒体熱交換器と、前記熱媒体を加熱する加熱装置を有すると共に、
前記制御装置は、前記バッテリ自体の温度、又は、前記熱媒体の温度を前記バッテリの温度として前記プレ空調時バッテリ温調制御を実行することを特徴とする請求項1乃至請求項6のうちの何れかに記載の車両用空気調和装置。
A compressor for compressing the refrigerant;
A heat radiator that radiates the refrigerant and heats the air supplied to the vehicle interior;
A heat absorber that absorbs heat of the refrigerant and cools the air supplied to the vehicle interior;
An outdoor heat exchanger that is provided outside the passenger compartment to absorb heat or dissipate the refrigerant;
A battery temperature adjusting device for adjusting the temperature of the battery by circulating a heat medium in the battery;
The battery temperature adjusting device includes a refrigerant-heat medium heat exchanger that exchanges heat between the refrigerant and the heat medium, and a heating device that heats the heat medium.
The said control apparatus performs the battery temperature adjustment control at the time of the said pre air conditioning by using the temperature of the said battery itself, or the temperature of the said heat medium as the temperature of the said battery, Of Claim 1 thru | or 6 characterized by the above-mentioned. The vehicle air conditioning apparatus according to any one of the above.
JP2018054207A 2018-03-22 2018-03-22 Air conditioner for vehicle Pending JP2019166867A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018054207A JP2019166867A (en) 2018-03-22 2018-03-22 Air conditioner for vehicle
PCT/JP2019/005635 WO2019181310A1 (en) 2018-03-22 2019-02-15 Vehicle air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018054207A JP2019166867A (en) 2018-03-22 2018-03-22 Air conditioner for vehicle

Publications (1)

Publication Number Publication Date
JP2019166867A true JP2019166867A (en) 2019-10-03

Family

ID=67986476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018054207A Pending JP2019166867A (en) 2018-03-22 2018-03-22 Air conditioner for vehicle

Country Status (2)

Country Link
JP (1) JP2019166867A (en)
WO (1) WO2019181310A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102410857B1 (en) * 2017-07-19 2022-06-21 현대자동차주식회사 Method for managing battery of vehicle, and vehicle thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4238364A1 (en) * 1992-11-13 1994-05-26 Behr Gmbh & Co Device for cooling drive components and for heating a passenger compartment of an electric vehicle
US7975757B2 (en) * 2008-07-21 2011-07-12 GM Global Technology Operations LLC Vehicle HVAC and RESS thermal management
US8620506B2 (en) * 2011-12-21 2013-12-31 Ford Global Technologies, Llc Method and system for thermal management of a high voltage battery for a vehicle
WO2013101519A1 (en) * 2011-12-29 2013-07-04 Magna E-Car Systems Of America, Inc. Thermal management system for vehicle having traction motor
US8751085B2 (en) * 2012-08-03 2014-06-10 Chrysler Group Llc Method and system for battery charging and thermal management control in electrified vehicles
JP6192435B2 (en) * 2013-08-23 2017-09-06 サンデンホールディングス株式会社 Air conditioner for vehicles

Also Published As

Publication number Publication date
WO2019181310A1 (en) 2019-09-26

Similar Documents

Publication Publication Date Title
JP6997558B2 (en) Vehicle air conditioner
JP6192434B2 (en) Air conditioner for vehicles
WO2020066719A1 (en) Vehicle air conditioner
JP2020026196A (en) Vehicular air-conditioning system
JP2020026197A (en) Vehicular air-conditioning system
WO2020110509A1 (en) Vehicle air conditioner
WO2018198582A1 (en) Vehicular air conditioner
JP7164994B2 (en) Vehicle air conditioner
WO2019181311A1 (en) Control system for vehicle
WO2020075446A1 (en) Vehicle air conditioning device
JP2020097362A (en) Vehicle air conditioning device
WO2019163398A1 (en) Vehicle control system
WO2019163399A1 (en) Vehicle control system
WO2020110508A1 (en) Vehicle battery temperature adjustment apparatus and vehicle air-conditioner equipped with same
JP6997567B2 (en) Vehicle air conditioner
WO2020241613A1 (en) Vehicular air-conditioning device
CN112384392B (en) Air conditioning device for vehicle
WO2020129493A1 (en) Vehicle air-conditioning apparatus
WO2019181310A1 (en) Vehicle air conditioner
WO2020235262A1 (en) Vehicle air conditioner
JP2020079004A (en) Vehicle air conditioner
WO2022064944A1 (en) Air conditioner for vehicle
JP2019018709A (en) Air conditioner for vehicle
WO2020100523A1 (en) Vehicular air-conditioning device
WO2020100524A1 (en) Vehicle air-conditioning device