WO2020129493A1 - Vehicle air-conditioning apparatus - Google Patents

Vehicle air-conditioning apparatus Download PDF

Info

Publication number
WO2020129493A1
WO2020129493A1 PCT/JP2019/044841 JP2019044841W WO2020129493A1 WO 2020129493 A1 WO2020129493 A1 WO 2020129493A1 JP 2019044841 W JP2019044841 W JP 2019044841W WO 2020129493 A1 WO2020129493 A1 WO 2020129493A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat
refrigerant
target
air
Prior art date
Application number
PCT/JP2019/044841
Other languages
French (fr)
Japanese (ja)
Inventor
竜 宮腰
耕平 山下
孝史 青木
雄満 山崎
洪銘 張
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Priority to DE112019006280.8T priority Critical patent/DE112019006280T5/en
Priority to CN201980083730.3A priority patent/CN113165481A/en
Publication of WO2020129493A1 publication Critical patent/WO2020129493A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2225Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters arrangements of electric heaters for heating air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3213Control means therefor for increasing the efficiency in a vehicle heat pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32281Cooling devices using compression characterised by refrigerant circuit configurations comprising a single secondary circuit, e.g. at evaporator or condenser side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00928Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising a secondary circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21162Temperatures of a condenser of the refrigerant at the inlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a heat pump type air conditioner that air-conditions the interior of a vehicle, and in particular, relates to an apparatus capable of cooling a temperature-controlled object such as a battery mounted in the vehicle.
  • an air conditioner that can be applied to such a vehicle, a compressor, a radiator, a heat absorber, and an outdoor heat exchanger are provided with a refrigerant circuit, and refrigerant discharged from the compressor is provided.
  • the radiator dissipates heat, and the refrigerant dissipated in this radiator absorbs heat in the outdoor heat exchanger to heat it.
  • the refrigerant discharged from the compressor is dissipated in the outdoor heat exchanger and evaporated in the heat absorber (evaporator).
  • An air conditioner has been developed to cool the interior of the vehicle by absorbing heat and cooling the air (for example, see Patent Document 1).
  • a heat exchanger for the battery (heat exchanger for temperature adjustment) is separately provided in the refrigerant circuit, and the refrigerant circulating in the refrigerant circuit and the refrigerant for the battery (heat medium) are used as the heat exchanger for temperature adjustment.
  • the battery can be cooled by exchanging heat in the battery and circulating the heat medium that has undergone the heat exchange in the battery (see, for example, Patent Documents 2 and 3).
  • the present invention has been made to solve the conventional technical problems, and provides a vehicle air conditioner capable of avoiding the disadvantage that the temperature of a temperature-controlled object rises excessively.
  • the purpose is to provide.
  • the vehicle air conditioner of the present invention is provided with at least a compressor that compresses a refrigerant, a heat absorber that absorbs the refrigerant and cools the air that is supplied to the vehicle interior, and a controller to air-condition the vehicle interior. That is, the heat absorber valve device for controlling the flow of the refrigerant to the heat absorber, the object to be temperature-controlled directly by absorbing the refrigerant, or for the temperature-controlled object for cooling via the heat medium.
  • a heat exchanger and a temperature-controlled valve device for controlling the flow of the refrigerant to the temperature-controlled heat exchanger are provided, and the control device operates the compressor based on the temperature of the heat absorber.
  • It has an air conditioning + temperature controlled target cooling mode that controls and opens/closes the temperature controlled target heat exchanger or the temperature controlled target valve device based on the temperature of the heat medium.
  • the target cooling mode when the temperature of the temperature control target is equal to or higher than the predetermined upper limit value TcellUL1, or is higher than the upper limit value TcellUL1, fix the valve device for temperature control target in the open state. Is characterized by.
  • a vehicle air conditioner according to a second aspect of the present invention is the vehicle air conditioner according to the above aspect, wherein the control device is in an air conditioning+target temperature controlled cooling mode, when the temperature of the target temperature controlled is equal to or lower than a predetermined open fixation release value, or When the value is lower than the open/fixed release value, the valve device for the temperature-controlled object is returned to the state of opening/closing control.
  • the vehicle air conditioner according to a third aspect of the present invention is the vehicle air conditioner according to each of the above aspects, in which the control device includes a predetermined notification device, and in the air conditioning+target temperature control target cooling mode, the target temperature control target temperature is controlled by the temperature control target temperature.
  • the notification device performs a predetermined air conditioning capacity decrease notification operation.
  • the control device adds a predetermined margin to the target temperature when the temperature of the heat absorber is higher than the target temperature.
  • the air-conditioning capacity drop notification operation is executed.
  • the control device fixes the temperature-controlled object valve device in an open state and closes the heat absorber valve device to perform heat-controlled object heat exchange. It has a temperature controlled cooling (single) mode that controls the operation of the compressor based on the temperature of the air conditioner or heat medium, and in the air conditioning + temperature controlled cooling mode, the temperature of the temperature controlled target is the upper limit value.
  • TcellUL2 which is higher than TcellUL1
  • TcellUL2 it is characterized by shifting to the temperature controlled cooling (single) mode.
  • the control device causes the temperature of the temperature-controlled object to fall below a predetermined independent cooling release value after shifting to the temperature-controlled target cooling (single) mode.
  • the control device When it does, or when it falls below the independent cooling release value, it is characterized in that it shifts to the air conditioning + temperature controlled cooling mode.
  • a vehicle air conditioner according to a seventh aspect of the present invention is the vehicle air conditioning device according to the fifth or sixth aspect, wherein the control device includes a predetermined notification device, and in the air conditioning+controlled temperature control target cooling mode, the temperature of the controlled temperature control target.
  • the alarm device executes a predetermined air conditioning stop notification operation.
  • the compressor which compresses a refrigerant
  • the heat absorber for absorbing the refrigerant
  • the air conditioning apparatus for vehicles which air-conditions a vehicle interior at least provided with a control apparatus.
  • the heat absorber valve device for controlling the flow of the refrigerant to the heat absorber, the heat-controlled object heat exchange for cooling the heat-controlled object directly by absorbing heat of the refrigerant, or via the heat medium.
  • the control device controls the operation of the compressor based on the temperature of the heat absorber.
  • the compressor is controlled by the temperature of the heat absorber. While controlling the air conditioning of the vehicle interior, the heat exchanger for the temperature controlled object or the refrigerant flow to the heat exchanger for the temperature controlled object is controlled by the temperature of the heat medium to control the temperature of the temperature controlled object. Cooling can also be performed.
  • the control target object is controlled. Since the valve device is fixed in the open state, the temperature of the temperature-controlled object becomes equal to or higher than the upper limit value TcellUL1 or becomes higher than the upper limit value TcellUL1 to supply the refrigerant to the temperature-controlled object heat exchanger. It is possible to change the control of the valve device for temperature control so that it always flows, and to quickly reduce the temperature of the temperature control target. As a result, it is possible to avoid the disadvantage that the temperature of the temperature-controlled object rises excessively, prevent deterioration of the temperature-controlled object, and extend its life.
  • the control device is provided with a predetermined notification device, and in the air conditioning+target temperature controlled cooling mode, the temperature controlled target temperature control target
  • the notification device executes the predetermined air conditioning capacity decrease notification operation, so that the temperature of the temperature-controlled object becomes the upper limit value TcellUL1 or higher, or the upper limit value TcellUL1.
  • the air-conditioning capacity drop notification operation is executed, the air-conditioning capacity drop notification operation is executed only when the air-conditioning capacity actually drops, and it is possible to avoid the inconvenience of giving the passenger an uncomfortable feeling. ..
  • the valve device for temperature control is fixed in an open state, and the valve device for heat absorber is closed to control the temperature of the heat exchanger for temperature control or the temperature of the heat medium.
  • a controlled temperature controlled cooling (single) mode for controlling the operation of the compressor based on is set, and in the air conditioning+controlled cooling mode, another upper limit value TcellUL2 in which the temperature of the controlled temperature target is higher than the upper limit value TcellUL1 When it becomes the above or when it becomes higher than the upper limit value TcellUL2, if the control device shifts to the temperature controlled cooling (independent) mode, the temperature controlled valve device is in the open state.
  • the control device shifts to the temperature-controlled target cooling (single) mode and then the temperature of the temperature-controlled target falls below a predetermined single cooling release value, or the single cooling is performed. If the temperature falls below the release value, the temperature of the temperature controlled object has dropped below a predetermined independent cooling release value or the independent cooling release value can be set by shifting to the air conditioning + controlled temperature cooling mode. By further reducing the temperature, air conditioning in the vehicle interior can be restarted without any trouble, and cooling of the temperature-controlled object can be continued without any trouble.
  • the control device is provided with a predetermined notification device, and in the air conditioning + temperature controlled target cooling mode, the temperature controlled target temperature.
  • the notification device executes a predetermined air conditioning stop notification operation, so the temperature of the temperature control target becomes equal to or higher than the upper limit value TcellUL2, or When the temperature becomes higher than the upper limit value TcellUL2 and shifts to the temperature-controlled cooling (single) mode, it becomes possible to notify the occupant that the air conditioning in the vehicle compartment has been stopped. This allows the occupant to recognize that the air conditioning in the vehicle compartment has not stopped due to a failure.
  • FIG. 4 It is a block diagram of the vehicle air conditioner explaining the cooling mode by the heat pump controller of the control apparatus of FIG. It is a block diagram of the air conditioning apparatus for vehicles explaining the air conditioning (priority) + battery cooling mode and battery cooling (priority) + air conditioning mode by the heat pump controller of the control apparatus of FIG. It is a block diagram of the vehicle air conditioning apparatus explaining the battery cooling (single) mode by the heat pump controller of the control apparatus of FIG. It is a block diagram of the vehicle air conditioner explaining the defrost mode by the heat pump controller of the control apparatus of FIG. It is a control block diagram regarding compressor control of the heat pump controller of the control device of FIG. FIG. 4 is another control block diagram related to compressor control of the heat pump controller of the control device in FIG. 2.
  • FIG. 7 is yet another control block diagram related to compressor control of the heat pump controller of the control device in FIG. 2. It is a block diagram explaining control of the solenoid valve 35 in battery cooling (priority) + air conditioning mode of the heat pump controller of the control apparatus of FIG. It is a figure explaining the ALARM state and the ALARM cancellation
  • FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 of an embodiment of the present invention.
  • a vehicle of an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and electric power charged in a battery 55 mounted in the vehicle is used as a traveling motor (electric motor). (Not shown) to drive and run, and the compressor 2 described later of the vehicle air conditioner 1 of the present invention is also driven by the electric power supplied from the battery 55. ..
  • EV electric vehicle
  • an engine internal combustion engine
  • electric motor traveling motor
  • the vehicle air conditioner 1 of the embodiment is a heating mode, a dehumidification heating mode, a dehumidification cooling mode, a cooling mode, and a defrosting mode in a heat pump operation using the refrigerant circuit R in an electric vehicle that cannot be heated by engine waste heat.
  • the air conditioning (priority)+battery cooling mode, the battery cooling (priority)+air conditioning mode, and the battery cooling (single) mode are switched and executed to perform air conditioning in the vehicle compartment and temperature control of the battery 55. It is a thing.
  • the battery cooling (single) mode is an embodiment of the temperature controlled target cooling (single) mode in the present invention
  • the air conditioning (priority)+battery cooling mode is the air conditioning + temperature controlled target cooling mode in the present invention.
  • the present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and a driving motor.
  • the vehicle to which the vehicle air conditioner 1 of the embodiment is applied is one in which the battery 55 can be charged from an external charger (quick charger or normal charger). Further, the battery 55, the traveling motor, the inverter controlling the same, and the like described above are the objects of temperature adjustment mounted on the vehicle according to the present invention. In the following embodiments, the battery 55 will be described as an example.
  • the vehicle air conditioner 1 of the embodiment is for performing air conditioning (heating, cooling, dehumidification, and ventilation) of a vehicle interior of an electric vehicle, and an electric compressor 2 for compressing a refrigerant, and a vehicle interior.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 2 is provided in the air flow passage 3 of the HVAC unit 10 through which air is ventilated and circulated, flows through the muffler 5 and the refrigerant pipe 13G, and radiates this refrigerant into the vehicle interior.
  • the valve 8 and the heat absorber 9 that is provided in the air flow passage 3 to evaporate the refrigerant during cooling and dehumidification to allow the refrigerant to absorb heat from the inside and outside of the vehicle (the heat is absorbed by the refrigerant), the accumulator 12 and the like are the refrigerant.
  • a refrigerant circuit R is formed by sequentially connecting the pipes 13.
  • the outdoor expansion valve 6 decompresses and expands the refrigerant flowing out of the radiator 4 and flowing into the outdoor heat exchanger 7, and can be fully closed. Further, in the embodiment, the indoor expansion valve 8 using a mechanical expansion valve decompresses and expands the refrigerant flowing into the heat absorber 9, and adjusts the degree of superheat of the refrigerant in the heat absorber 9.
  • the outdoor heat exchanger 7 is provided with an outdoor blower 15.
  • the outdoor blower 15 exchanges heat between the outdoor air and the refrigerant by forcibly ventilating the outdoor air through the outdoor heat exchanger 7, whereby the outdoor air is discharged even while the vehicle is stopped (that is, the vehicle speed is 0 km/h).
  • the heat exchanger 7 is configured to ventilate outside air.
  • the outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 sequentially on the refrigerant downstream side, and the refrigerant pipe 13A on the refrigerant outlet side of the outdoor heat exchanger 7 is used when the refrigerant flows to the heat absorber 9.
  • the refrigerant pipe 13B on the outlet side of the supercooling unit 16 is connected to the receiver dryer unit 14 via an electromagnetic valve 17 (for cooling) as an open/close valve, and the check valve 18, the indoor expansion valve 8 and the heat absorption It is connected to the refrigerant inlet side of the heat absorber 9 through an electromagnetic valve 35 (for cabin) as a device valve device in order.
  • the receiver dryer unit 14 and the supercooling unit 16 structurally form a part of the outdoor heat exchanger 7. Further, the check valve 18 is configured such that the direction of the indoor expansion valve 8 is the forward direction.
  • the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched into a refrigerant pipe 13D, and the branched refrigerant pipe 13D is passed through an electromagnetic valve 21 (for heating) as an opening/closing valve opened during heating. It is connected to the refrigerant pipe 13C on the refrigerant outlet side of the heat absorber 9 so as to communicate therewith.
  • the refrigerant pipe 13C is connected to the inlet side of the accumulator 12, and the outlet side of the accumulator 12 is connected to the refrigerant pipe 13K on the refrigerant suction side of the compressor 2.
  • a strainer 19 is connected to the refrigerant pipe 13E on the refrigerant outlet side of the radiator 4, and this refrigerant pipe 13E is connected to the refrigerant pipes 13J and 13F before the outdoor expansion valve 6 (refrigerant upstream side).
  • One of the branched and branched refrigerant pipes 13J is connected to the refrigerant inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.
  • the other branched refrigerant pipe 13F is connected to the refrigerant downstream side of the check valve 18 and the refrigerant upstream side of the indoor expansion valve 8 via an electromagnetic valve 22 (for dehumidification) as an opening/closing valve that is opened during dehumidification. It is connected to the located refrigerant pipe 13B.
  • the refrigerant pipe 13F is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve 18, and the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve are connected. It becomes a bypass circuit that bypasses 18. Further, a solenoid valve 20 as an opening/closing valve for bypass is connected in parallel to the outdoor expansion valve 6.
  • the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with respective intake ports of an outside air intake port and an inside air intake port (represented by the intake port 25 in FIG. 1).
  • a suction switching damper 26 is provided at 25 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation) which is the air inside the vehicle compartment and the outside air (outside air introduction) which is the air outside the vehicle compartment.
  • an indoor blower (blower fan) 27 for feeding the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26, an indoor blower (blower fan) 27 for feeding the introduced inside air or outside air to the air flow passage 3 is provided.
  • the intake switching damper 26 of the embodiment opens and closes the outside air intake port and the inside air intake port of the intake port 25 at an arbitrary ratio to remove the air (outside air and inside air) flowing into the heat absorber 9 of the air flow passage 3. It is configured so that the ratio of inside air can be adjusted between 0 and 100% (the ratio of outside air can also be adjusted between 100% and 0%).
  • an auxiliary heater 23 as an auxiliary heating device including a PTC heater (electric heater) is provided in the embodiment, and passes through the radiator 4. It is possible to heat the air supplied to the passenger compartment. Further, in the air flow passage 3 on the air upstream side of the radiator 4, the air (inside air or outside air) flowing into the air flow passage 3 and passing through the heat absorber 9 is radiated. An air mix damper 28 that adjusts the ratio of ventilation to the device 4 and the auxiliary heater 23 is provided.
  • blower outlet 29 is provided with blower outlet switching dampers 31 for controlling the blowout of air from the blower outlets.
  • the vehicle air conditioner 1 includes an equipment temperature adjusting device 61 for adjusting the temperature of the battery 55 by circulating a heat medium in the battery 55 (object to be temperature adjusted).
  • the device temperature adjusting device 61 of the embodiment includes a circulation pump 62 as a circulating device for circulating a heat medium in the battery 55, a refrigerant-heat medium heat exchanger 64 as a heat exchanger for temperature adjustment target, and a heating device.
  • a heat medium heater 63 as a device is provided, and these and the battery 55 are annularly connected by a heat medium pipe 66.
  • the inlet of the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64 is connected to the discharge side of the circulation pump 62, and the outlet of this heat medium passage 64A is connected to the inlet of the heat medium heater 63.
  • the outlet of the heat medium heating heater 63 is connected to the inlet of the battery 55, and the outlet of the battery 55 is connected to the suction side of the circulation pump 62.
  • the heat medium used in the device temperature adjusting device 61 for example, water, a refrigerant such as HFO-1234yf, a liquid such as coolant, or a gas such as air can be adopted.
  • water is used as the heat medium.
  • the heat medium heating heater 63 is composed of an electric heater such as a PTC heater. Further, it is assumed that a jacket structure is provided around the battery 55 so that a heat medium can flow in a heat exchange relationship with the battery 55, for example.
  • the heat medium discharged from the circulation pump 62 flows into the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64.
  • the heat medium exiting the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heating heater 63, and if the heat medium heating heater 63 is generating heat, the heat medium heating heater 63 is heated there, and then the battery. 55, where the heat medium exchanges heat with the battery 55.
  • the heat medium that has exchanged heat with the battery 55 is sucked into the circulation pump 62 and circulated in the heat medium pipe 66.
  • a branch pipe 67 as a branch circuit is provided in the refrigerant pipe 13B located on the refrigerant downstream side of the connecting portion between the refrigerant pipe 13F and the refrigerant pipe 13B of the refrigerant circuit R and on the refrigerant upstream side of the indoor expansion valve 8.
  • auxiliary expansion valve 68 which is a mechanical expansion valve in the embodiment, and an electromagnetic valve (for chiller) 69 as a valve device for the temperature-controlled object are sequentially provided.
  • the auxiliary expansion valve 68 decompresses and expands the refrigerant flowing into the later-described refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64, and adjusts the degree of superheat of the refrigerant in the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64. To do.
  • the other end of the branch pipe 67 is connected to the refrigerant flow passage 64B of the refrigerant-heat medium heat exchanger 64, and one end of the refrigerant pipe 71 is connected to the outlet of the refrigerant flow passage 64B.
  • the other end is connected to the refrigerant pipe 13C on the refrigerant upstream side (refrigerant upstream side of the accumulator 12) from the confluence with the refrigerant pipe 13D.
  • the auxiliary expansion valve 68, the electromagnetic valve 69, the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, and the like also form a part of the refrigerant circuit R and, at the same time, a part of the device temperature adjusting device 61. It will be.
  • the solenoid valve 69 When the solenoid valve 69 is open, the refrigerant (a part or all of the refrigerant) discharged from the outdoor heat exchanger 7 flows into the branch pipe 67, the pressure is reduced by the auxiliary expansion valve 68, and then the refrigerant is passed through the solenoid valve 69. -The refrigerant flows into the refrigerant channel 64B of the heat medium heat exchanger 64 and evaporates there. The refrigerant absorbs heat from the heat medium flowing through the heat medium passage 64A in the process of flowing through the refrigerant passage 64B, and then is sucked into the compressor 2 through the refrigerant pipe 13K through the refrigerant pipe 71, the refrigerant pipe 13C, and the accumulator 12.
  • FIG. 2 shows a block diagram of the control device 11 of the vehicle air conditioner 1 of the embodiment.
  • the control device 11 includes an air-conditioning controller 45 and a heat pump controller 32 each of which includes a microcomputer, which is an example of a computer including a processor, and these include a CAN (Controller Area Network) and a LIN (Local Interconnect Network). Is connected to the vehicle communication bus 65 that constitutes the. Further, the compressor 2 and the auxiliary heater 23, the circulation pump 62 and the heat medium heating heater 63 are also connected to the vehicle communication bus 65, and the air conditioning controller 45, the heat pump controller 32, the compressor 2, the auxiliary heater 23, the circulation pump 62 and the heat generator. The medium heater 63 is configured to send and receive data via the vehicle communication bus 65.
  • the vehicle communication bus 65 includes a vehicle controller 72 (ECU) that controls the entire vehicle including traveling, a battery controller (BMS: Battery Management System) 73 that controls the charging and discharging of the battery 55, and a GPS navigation device 74.
  • the vehicle controller 72, the battery controller 73, and the GPS navigation device 74 are also configured by a microcomputer that is an example of a computer including a processor.
  • the air conditioning controller 45 and the heat pump controller 32 that configure the control device 11 connect the vehicle communication bus 65 to each other. Information (data) is transmitted/received to/from the vehicle controller 72, the battery controller 73, and the GPS navigation device 74 via these.
  • the air conditioning controller 45 is a higher-level controller that controls the vehicle interior air conditioning.
  • the inputs of the air conditioning controller 45 are an outside air temperature sensor 33 that detects the outside air temperature Tam of the vehicle and an outside air humidity that detects outside air humidity.
  • a sensor 34 an HVAC suction temperature sensor 36 that detects the temperature of the air that is sucked into the air flow passage 3 from the suction port 25 and flows into the heat absorber 9, and an inside air temperature sensor 37 that detects the temperature of the air (inside air) in the vehicle compartment.
  • An inside air humidity sensor 38 that detects the humidity of the air in the vehicle compartment, an indoor CO 2 concentration sensor 39 that detects the carbon dioxide concentration in the vehicle interior, and an outlet temperature sensor 41 that detects the temperature of the air blown into the vehicle interior.
  • An air conditioning operation unit 53 for performing air conditioning setting operations in the vehicle interior such as mode switching and information display is connected.
  • 53A in the figure is a display as an informing device provided in the air conditioning operation unit 53.
  • the output of the air conditioning controller 45 is connected to the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, and the outlet switching damper 31, which are connected to the air conditioning controller 45. Controlled by.
  • the heat pump controller 32 is a controller that mainly controls the refrigerant circuit R, and the heat pump controller 32 has an input that radiates heat to detect the refrigerant inlet temperature Tcxin of the radiator 4 (which is also the refrigerant temperature discharged from the compressor 2 ).
  • Radiator pressure sensor 47 that detects the refrigerant pressure (pressure of radiator 4: radiator pressure Pci), and temperature of heat absorber 9 (temperature of heat absorber 9 itself, or air immediately after being cooled by heat absorber 9) Temperature of (cooling target): Heat absorber temperature sensor 48 for detecting heat absorber temperature Te, and refrigerant temperature at the outlet of the outdoor heat exchanger 7 (refrigerant evaporation temperature of the outdoor heat exchanger 7: outdoor heat exchanger temperature) Outputs of an outdoor heat exchanger temperature sensor 49 for detecting TXO) and auxiliary heater temperature sensors 50A (driver side) and 50B (passenger side) for detecting the temperature of the auxiliary heater 23 are connected.
  • the output of the heat pump controller 32 includes the outdoor expansion valve 6, the solenoid valve 22 (for dehumidification), the solenoid valve 17 (for cooling), the solenoid valve 21 (for heating), the solenoid valve 20 (for bypass), and the solenoid valve 35.
  • the electromagnetic valves (for the cabin) and the electromagnetic valve 69 (for the chiller) are connected, and they are controlled by the heat pump controller 32.
  • the compressor 2, the auxiliary heater 23, the circulation pump 62, and the heat medium heating heater 63 each have a built-in controller, and in the embodiment, the controller of the compressor 2, the auxiliary heater 23, the circulation pump 62, and the heat medium heating heater 63. Transmits and receives data to and from the heat pump controller 32 via the vehicle communication bus 65, and is controlled by the heat pump controller 32.
  • the circulation pump 62 and the heat medium heating heater 63 that form the device temperature adjusting device 61 may be controlled by the battery controller 73. Further, in the battery controller 73, the temperature of the heat medium on the outlet side of the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 of the device temperature adjusting device 61 (heat medium temperature Tw: heat exchanger to be temperature controlled).
  • the output of the heat medium temperature sensor 76 that detects the temperature of the object to be cooled by the battery is connected to the output of the battery temperature sensor 77 that detects the temperature of the battery 55 (the temperature of the battery 55 itself: the battery temperature Tcell).
  • the remaining amount of the battery 55 (charge storage amount), information regarding charging of the battery 55 (information indicating that charging is being performed, charging completion time, remaining charging time, etc.), the heat medium temperature Tw, and the battery temperature Tcell are It is transmitted from the battery controller 73 to the air conditioning controller 45 and the vehicle controller 72 via the vehicle communication bus 65.
  • the information regarding the charging completion time and the remaining charging time when the battery 55 is charged is information supplied from an external charger such as a quick charger described later.
  • the heat pump controller 32 and the air conditioning controller 45 send and receive data to and from each other via the vehicle communication bus 65, and control each device based on the output of each sensor and the setting input by the air conditioning operation unit 53.
  • the voltage (BLV) of 27, the information from the battery controller 73, the information from the GPS navigation device 74, and the output of the air conditioning operation unit 53 are transmitted from the air conditioning controller 45 to the heat pump controller 32 via the vehicle communication bus 65, and the heat pump It is configured to be used for control by the controller 32.
  • the heat pump controller 32 also transmits data (information) regarding the control of the refrigerant circuit R to the air conditioning controller 45 via the vehicle communication bus 65.
  • the control device 11 controls the heating mode, the dehumidification heating mode, the dehumidification cooling mode, the cooling mode, and the air conditioning (priority)+battery cooling mode, and the battery cooling.
  • Each battery cooling operation of (priority)+air conditioning mode and battery cooling (single) mode and defrosting mode are switched and executed. These are shown in FIG.
  • the battery 55 is not charged in the embodiment, and the ignition of the vehicle is performed. This is executed when (IGN) is turned on and the air conditioning switch of the air conditioning operating unit 53 is turned on. However, it is executed even when the ignition is OFF during remote operation (pre-air conditioning, etc.). Further, even if the battery 55 is being charged, there is no battery cooling request, and the process is executed when the air conditioning switch is ON.
  • each battery cooling operation in the battery cooling (priority)+air conditioning mode and the battery cooling (single) mode is executed, for example, when the plug of the quick charger (external power source) is connected and the battery 55 is being charged. It is something.
  • the battery cooling (single) mode is executed when the air conditioning switch is OFF and there is a battery cooling request (such as when traveling at a high outside temperature) other than during charging of the battery 55.
  • the heat pump controller 32 operates the circulation pump 62 of the device temperature adjusting device 61 when the ignition is turned on, or when the battery 55 is being charged even when the ignition is turned off. It is assumed that the heat medium is circulated in the heat medium pipe 66 as indicated by broken lines in FIGS. 4 to 10. Further, although not shown in FIG. 3, the heat pump controller 32 of the embodiment also executes a battery heating mode for heating the battery 55 by causing the heat medium heating heater 63 of the device temperature adjusting device 61 to generate heat.
  • FIG. 4 shows how the refrigerant flows in the refrigerant circuit R in the heating mode (solid arrow).
  • the heat pump controller 32 opens the solenoid valve 21 and the solenoid valve 17 , The solenoid valve 20, the solenoid valve 22, the solenoid valve 35, and the solenoid valve 69 are closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air and condensed and liquefied.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4, and then reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15 (heat absorption). That is, the refrigerant circuit R serves as a heat pump.
  • the low-temperature refrigerant that has exited the outdoor heat exchanger 7 reaches the refrigerant pipe 13C via the refrigerant pipes 13A and 13D, the solenoid valve 21, and further enters the accumulator 12 via this refrigerant pipe 13C, where it is gas-liquid separated.
  • the circulation of sucking the gas refrigerant into the compressor 2 from the refrigerant pipe 13K is repeated.
  • the air heated by the radiator 4 is blown out from the air outlet 29, so that the interior of the vehicle is heated.
  • the heat pump controller 32 calculates a target heater temperature TCO (of the radiator 4) calculated from a target outlet temperature TAO, which will be described later, which is a target temperature of air blown into the vehicle interior (a target value of the temperature of air blown into the vehicle interior).
  • the target radiator pressure PCO is calculated from the target temperature), and the rotational speed of the compressor 2 is based on the target radiator pressure PCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47.
  • the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. As a result, the vehicle interior is heated without any trouble even when the outside temperature is low.
  • FIG. 5 shows how the refrigerant flows in the refrigerant circuit R in the dehumidifying and heating mode (solid arrow).
  • the heat pump controller 32 opens the solenoid valve 21, the solenoid valve 22, and the solenoid valve 35, and closes the solenoid valve 17, the solenoid valve 20, and the solenoid valve 69.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air and condensed and liquefied.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4, a part of it enters the refrigerant pipe 13J through the refrigerant pipe 13E and reaches the outdoor expansion valve 6.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15 (heat absorption).
  • the low-temperature refrigerant that has exited the outdoor heat exchanger 7 reaches the refrigerant pipe 13C via the refrigerant pipes 13A and 13D and the solenoid valve 21, enters the accumulator 12 via this refrigerant pipe 13C, and is separated into gas and liquid there. After that, the circulation in which the gas refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K is repeated.
  • the rest of the condensed refrigerant flowing through the radiator pipe 13E via the radiator 4 is diverted, and the diverted refrigerant flows into the refrigerant pipe 13F via the solenoid valve 22 and reaches the refrigerant pipe 13B.
  • the refrigerant reaches the indoor expansion valve 8, is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates.
  • the water in the air blown from the indoor blower 27 is condensed and attached to the heat absorber 9 due to the heat absorbing action of the refrigerant generated in the heat absorber 9, so that the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 flows out to the refrigerant pipe 13C, joins the refrigerant from the refrigerant pipe 13D (refrigerant from the outdoor heat exchanger 7), and then is sucked into the compressor 2 from the refrigerant pipe 13K via the accumulator 12. Repeat the cycle.
  • the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4 and the auxiliary heater 23 (when heat is generated), so that dehumidification and heating of the vehicle interior is performed.
  • the heat pump controller 32 rotates the compressor 2 based on the target radiator pressure PCO calculated from the target heater temperature TCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. Number, or controls the number of revolutions of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is its target value. .. At this time, the heat pump controller 32 controls the compressor 2 by selecting whichever of the radiator pressure Pci and the heat absorber temperature Te, whichever has the lower target compressor rotation speed obtained from the calculation. Further, the valve opening degree of the outdoor expansion valve 6 is controlled based on the heat absorber temperature Te.
  • the heat pump controller 32 complements the shortage with the heat generated by the auxiliary heater 23. .. As a result, the vehicle interior is dehumidified and heated even when the outside temperature is low.
  • FIG. 6 shows how the refrigerant flows in the refrigerant circuit R in the dehumidifying and cooling mode (solid arrow).
  • the heat pump controller 32 opens the solenoid valve 17 and the solenoid valve 35, and closes the solenoid valve 20, the solenoid valve 21, the solenoid valve 22, and the solenoid valve 69.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by air, and is condensed and liquefied.
  • the refrigerant exiting the radiator 4 reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J, and then passes through the outdoor expansion valve 6 controlled to open more (a region of a larger valve opening) than the heating mode or the dehumidifying and heating mode. It flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 is condensed by being cooled there by traveling or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant discharged from the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the electromagnetic valve 17, the receiver dryer unit 14, and the supercooling unit 16, and reaches the indoor expansion valve 8 via the check valve 18.
  • the refrigerant is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates. Due to the heat absorbing action at this time, moisture in the air blown out from the indoor blower 27 is condensed and attached to the heat absorber 9, and the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is repeatedly circulated by being sucked into the compressor 2 from the refrigerant pipe 13K via the refrigerant pipe 13C.
  • the air cooled and dehumidified by the heat absorber 9 is reheated (has a lower heating capacity than that during dehumidification heating) in the process of passing through the radiator 4 and the auxiliary heater 23 (when heat is generated). As a result, the dehumidifying and cooling of the vehicle interior is performed.
  • the heat pump controller 32 absorbs heat based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is the target temperature of the heat absorber 9 (target value of the heat absorber temperature Te).
  • the rotation speed of the compressor 2 is controlled so that the device temperature Te becomes the target heat absorber temperature TEO, and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47 and the target radiator pressure PCO.
  • the reheat amount required by the radiator 4 (reheating) Amount Based on (the target value of the radiator pressure Pci), by controlling the valve opening of the outdoor expansion valve 6 so that the radiator pressure Pci becomes the target radiator pressure PCO, the reheat amount required by the radiator 4 (reheating) Amount).
  • the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. To do. As a result, dehumidifying and cooling are performed without excessively reducing the temperature inside the vehicle compartment.
  • FIG. 7 shows how the refrigerant flows in the refrigerant circuit R in the cooling mode (solid arrow).
  • the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, and the solenoid valve 35, and closes the solenoid valve 21, the solenoid valve 22, and the solenoid valve 69.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the auxiliary heater 23 is not energized.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the airflow passage 3 is ventilated through the radiator 4, since the proportion thereof is small (only for reheating (reheating) during cooling), it almost only passes through here, and the radiator 4
  • the discharged refrigerant reaches the refrigerant pipe 13J through the refrigerant pipe 13E.
  • the electromagnetic valve 20 is opened, the refrigerant passes through the electromagnetic valve 20 and flows into the outdoor heat exchanger 7 as it is, and is cooled by the traveling air or the outside air ventilated by the outdoor blower 15 to be condensed and liquefied. To do.
  • the refrigerant discharged from the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16, and reaches the indoor expansion valve 8 via the check valve 18.
  • the refrigerant is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates. Due to the heat absorbing action at this time, the air blown out from the indoor blower 27 and exchanging heat with the heat absorber 9 is cooled.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is sucked into the compressor 2 via the refrigerant pipe 13K.
  • the air cooled by the heat absorber 9 is blown into the vehicle interior from the air outlet 29, so that the vehicle interior is cooled.
  • the heat pump controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • FIG. 8 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in the air conditioning (priority)+battery cooling mode.
  • the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, the solenoid valve 35, and the solenoid valve 69, and closes the solenoid valves 21 and 22.
  • the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the auxiliary heater 23 is not energized in this operation mode.
  • the heat medium heater 63 is not energized.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the airflow passage 3 is ventilated through the radiator 4, since the proportion thereof is small (only for reheating (reheating) during cooling), it almost only passes through here, and the radiator 4
  • the discharged refrigerant reaches the refrigerant pipe 13J through the refrigerant pipe 13E.
  • the electromagnetic valve 20 is opened, the refrigerant passes through the electromagnetic valve 20 and flows into the outdoor heat exchanger 7 as it is, and is cooled by the traveling air or the outside air ventilated by the outdoor blower 15 to be condensed and liquefied. To do.
  • the refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16.
  • the refrigerant flowing into the refrigerant pipe 13B is split after passing through the check valve 18, and one of the refrigerant flows through the refrigerant pipe 13B as it is to reach the indoor expansion valve 8.
  • the refrigerant flowing into the indoor expansion valve 8 is decompressed there, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates. Due to the heat absorbing action at this time, the air blown out from the indoor blower 27 and exchanging heat with the heat absorber 9 is cooled.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is sucked into the compressor 2 via the refrigerant pipe 13K.
  • the air cooled by the heat absorber 9 is blown into the vehicle interior from the air outlet 29, so that the vehicle interior is cooled.
  • the rest of the refrigerant that has passed through the check valve 18 is split, flows into the branch pipe 67, and reaches the auxiliary expansion valve 68.
  • the refrigerant is decompressed, then flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 via the electromagnetic valve 69, and evaporates there. At this time, it exerts an endothermic effect.
  • the refrigerant evaporated in the refrigerant flow path 64B repeats the circulation in which the refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K through the refrigerant pipe 71, the refrigerant pipe 13C and the accumulator 12 in sequence (indicated by a solid arrow in FIG. 8).
  • the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 66, and the refrigerant flow passage is there.
  • the heat medium exchanges heat with the refrigerant that evaporates in 64B and absorbs heat to cool the heat medium.
  • the heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heater 63.
  • the heat medium heater 63 does not generate heat in this operation mode, the heat medium passes through as it is to the battery 55 and exchanges heat with the battery 55. As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 is repeatedly sucked into the circulation pump 62 and repeatedly circulated (indicated by a dashed arrow in FIG. 8 ).
  • the heat pump controller 32 maintains the electromagnetic valve 35 in an open state, and will be described later based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • the rotation speed of the compressor 2 is controlled as shown in FIG.
  • the solenoid valve 69 is controlled to open/close as follows based on the temperature of the heat medium detected by the heat medium temperature sensor 76 (heat medium temperature Tw: transmitted from the battery controller 73).
  • the heat absorber temperature Te is the temperature of the heat absorber 9 in the embodiment or the temperature of the object (air) cooled by it.
  • the heat medium temperature Tw is adopted as the temperature of the object (heat medium) cooled by the refrigerant-heat medium heat exchanger 64 (heat exchanger for temperature adjustment) in the embodiment, but the temperature adjustment is performed. It is also an index showing the temperature of the target battery 55 (hereinafter the same).
  • FIG. 13 shows a block diagram of opening/closing control of the solenoid valve 69 in this air conditioning (priority)+battery cooling mode.
  • the heat medium temperature Tw detected by the heat medium temperature sensor 76 and a predetermined target heat medium temperature TWO as a target value of the heat medium temperature Tw are input to the temperature controlled target electromagnetic valve control unit 90 of the heat pump controller 32. It Then, the temperature controlled object solenoid valve control unit 90 sets the upper limit value TwUL and the lower limit value TwLL with a predetermined temperature difference above and below the target heat medium temperature TWO, and closes the solenoid valve 69.
  • the solenoid valve 69 When the heat medium temperature Tw becomes high due to heat generation of the battery 55 and rises to the upper limit value TwUL (when it exceeds the upper limit value TwUL or becomes equal to or higher than the upper limit value TwUL. The same applies hereinafter), the solenoid valve 69 is turned on. Open (instruction to open solenoid valve 69). As a result, the refrigerant flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 and evaporates to cool the heat medium flowing through the heat medium channel 64A, so that the battery 55 is cooled by the cooled heat medium. To be done.
  • the solenoid valve 69 is closed (the solenoid valve 69 closing instruction). ). After that, the solenoid valve 69 is repeatedly opened and closed as described above to control the heat medium temperature Tw to the target heat medium temperature TWO while prioritizing the cooling of the vehicle compartment, and the battery 55 is cooled.
  • the heat pump controller 32 calculates the above-mentioned target outlet temperature TAO from the following formula (I).
  • This target outlet temperature TAO is a target value of the temperature of the air blown into the vehicle compartment from the outlet 29.
  • TAO (Tset-Tin) ⁇ K+Tbal(f(Tset, SUN, Tam)) ..(I)
  • Tset is the set temperature in the vehicle compartment set by the air conditioning operation unit 53
  • Tin is the temperature of the vehicle interior air detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is the set temperature Tset
  • the solar radiation sensor 51 detects the temperature.
  • the target outlet temperature TAO is higher as the outside air temperature Tam is lower, and is decreased as the outside air temperature Tam is increased.
  • the heat pump controller 32 selects one of the above air conditioning operations based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target outlet temperature TAO at the time of startup. Further, after the startup, each of the air conditioning operations is selected and switched according to changes in operating conditions such as the outside air temperature Tam, the target outlet temperature TAO, and the heat medium temperature Tw, environmental conditions, and setting conditions. For example, the transition from the cooling mode to the air conditioning (priority)+battery cooling mode is executed based on the input of a battery cooling request from the battery controller 73. In this case, the battery controller 73 outputs a battery cooling request and sends it to the heat pump controller 32 and the air conditioning controller 45, for example, when the heat medium temperature Tw or the battery temperature Tcell rises above a predetermined value.
  • the heat pump controller 32 keeps the electromagnetic valve 69 open, and the heat detected by the heat medium temperature sensor 76 (transmitted from the battery controller 73) is detected. Based on the medium temperature Tw, the rotational speed of the compressor 2 is controlled as shown in FIG. 14 described later.
  • the solenoid valve 35 is controlled to open and close as follows based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • FIG. 15 shows a block diagram of opening/closing control of the solenoid valve 35 in this battery cooling (priority)+air conditioning mode.
  • the heat absorber electromagnetic valve control unit 95 of the heat pump controller 32 is input with the heat absorber temperature Te detected by the heat absorber temperature sensor 48 and a predetermined target heat absorber temperature TEO as a target value of the heat absorber temperature Te. Then, the heat absorber electromagnetic valve control unit 95 sets the upper limit value TeUL and the lower limit value TeLL with a predetermined temperature difference above and below the target heat absorber temperature TEO, and sets the heat absorber temperature from the state in which the solenoid valve 35 is closed.
  • the solenoid valve 35 is closed (the solenoid valve 35 closing instruction). ). Thereafter, such opening/closing of the electromagnetic valve 35 is repeated to give priority to the cooling of the battery 55, and the heat absorber temperature Te is controlled to the target heat absorber temperature TEO to cool the vehicle interior.
  • Battery cooling (independent) mode controlled cooling target (independent) mode
  • the heat pump controller 32 executes the battery cooling (single) mode. However, it is executed when the air conditioning switch is OFF and there is a battery cooling request (eg, when traveling at a high outside air temperature) other than during charging of the battery 55.
  • the heat pump controller 32 may shift from the air conditioning (priority)+battery cooling mode to this battery cooling (single) mode, which will be described in detail later.
  • FIG. 9 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in the battery cooling (single) mode.
  • the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, and the solenoid valve 69, and closes the solenoid valve 21, the solenoid valve 22, and the solenoid valve 35. Then, the compressor 2 and the outdoor blower 15 are operated. The indoor blower 27 is not operated and the auxiliary heater 23 is not energized. Further, the heat medium heater 63 is not energized in this operation mode.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is not ventilated to the radiator 4, it passes only here, and the refrigerant exiting the radiator 4 reaches the refrigerant pipe 13J via the refrigerant pipe 13E. At this time, since the electromagnetic valve 20 is open, the refrigerant passes through the electromagnetic valve 20, flows into the outdoor heat exchanger 7 as it is, and is cooled by air by the outside air ventilated by the outdoor blower 15 to be condensed and liquefied.
  • the refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16. After passing through the check valve 18, all of the refrigerant flowing into the refrigerant pipe 13B flows into the branch pipe 67 and reaches the auxiliary expansion valve 68. Here, the refrigerant is decompressed, then flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 via the electromagnetic valve 69, and evaporates there. At this time, it exerts an endothermic effect.
  • the refrigerant evaporated in the refrigerant flow path 64B repeats the circulation in which the refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K through the refrigerant pipe 71, the refrigerant pipe 13C and the accumulator 12 in sequence (shown by a solid arrow in FIG. 9).
  • the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 66, and the refrigerant flow passage is there.
  • the heat medium is cooled by being absorbed by the refrigerant evaporated in 64B.
  • the heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heater 63.
  • the heat medium heater 63 does not generate heat in this operation mode, the heat medium passes through as it is to the battery 55 and exchanges heat with the battery 55. As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 is repeatedly circulated by being sucked into the circulation pump 62 (indicated by a dashed arrow in FIG. 9 ).
  • the heat pump controller 32 cools the battery 55 by controlling the rotation speed of the compressor 2 as described later based on the heat medium temperature Tw detected by the heat medium temperature sensor 76.
  • FIG. 10 shows how the refrigerant flows in the refrigerant circuit R in the defrosting mode (solid arrow).
  • the refrigerant evaporates in the outdoor heat exchanger 7 and absorbs heat from the outside air to reach a low temperature, so that the moisture in the outside air adheres to the outside heat exchanger 7 as frost.
  • the heat pump controller 32 puts the refrigerant circuit R into the heating mode described above and fully opens the outdoor expansion valve 6. Then, the compressor 2 is operated, the high-temperature refrigerant discharged from the compressor 2 is caused to flow into the outdoor heat exchanger 7 via the radiator 4 and the outdoor expansion valve 6, and the frost formation on the outdoor heat exchanger 7 is prevented. Thaw ( Figure 10). Then, the heat pump controller 32 defrosts the outdoor heat exchanger 7 when the outdoor heat exchanger temperature TXO detected by the outdoor heat exchanger temperature sensor 49 becomes higher than a predetermined defrosting end temperature (for example, +3° C.). Is completed and the defrosting mode is terminated.
  • a predetermined defrosting end temperature for example, +3° C.
  • the heat pump controller 32 executes the battery heating mode when the air conditioning operation is executed or when the battery 55 is charged. In this battery heating mode, the heat pump controller 32 operates the circulation pump 62 and energizes the heat medium heating heater 63. The solenoid valve 69 is closed.
  • the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 through the heat medium pipe 66, and passes therethrough to reach the heat medium heater 63.
  • the heat medium heating heater 63 is generating heat, the heat medium is heated by the heat medium heating heater 63 and its temperature rises, and then reaches the battery 55 and exchanges heat with the battery 55. Thereby, the battery 55 is heated, and the heat medium after heating the battery 55 is sucked into the circulation pump 62 and repeats circulation.
  • the heat pump controller 32 controls the energization of the heat medium heating heater 63 based on the heat medium temperature Tw detected by the heat medium temperature sensor 76 to set the heat medium temperature Tw to the predetermined target heat medium temperature. Adjust to TWO and heat battery 55.
  • the target rotation speed (compressor target rotation speed) TGNCw of the compressor 2 is calculated based on the heat medium temperature Tw by the control block diagram of FIG. To do.
  • FIG. 11 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCh of the compressor 2 based on the radiator pressure Pci.
  • the F/F operation amount TGNChff of the compressor target rotation speed is calculated. To calculate.
  • the heater temperature Thp is the air temperature (estimated value) on the leeward side of the radiator 4, and the radiator pressure Pci detected by the radiator pressure sensor 47 and the refrigerant outlet of the radiator 4 detected by the radiator outlet temperature sensor 44. It is calculated (estimated) from the temperature Tci.
  • the degree of supercooling SC is calculated from the refrigerant inlet temperature Tcxin and the refrigerant outlet temperature Tci of the radiator 4 detected by the radiator inlet temperature sensor 43 and the radiator outlet temperature sensor 44.
  • the target radiator pressure PCO is calculated by the target value calculator 79 based on the target supercooling degree TGSC and the target heater temperature TCO. Further, the F/B (feedback) manipulated variable calculation unit 81 calculates the F/B manipulated variable TGNChfb of the compressor target rotational speed by PID calculation or PI calculation based on the target radiator pressure PCO and the radiator pressure Pci. Then, the F/F operation amount TGNChff calculated by the F/F operation amount calculation unit 78 and the F/B operation amount TGNChfb calculated by the F/B operation amount calculation unit 81 are added by the adder 82 to obtain a limit setting unit as TGNCh00. 83 is input.
  • the control lower limit speed ECNpdLimLo and the upper limit speed ECNpdLimHi are set to TGNCh0, and then the compressor OFF control unit 84 is used to determine the target compressor speed TGNCh. That is, the rotation speed of the compressor 2 is limited to the upper limit rotation speed ECNpdLimHi or lower.
  • the heat pump controller 32 controls the operation of the compressor 2 so that the radiator pressure Pci becomes the target radiator pressure PCO by the compressor target rotation speed TGNCh calculated based on the radiator pressure Pci.
  • the compressor OFF control unit 84 determines that the compressor target rotation speed TGNCh becomes the above-described lower limit rotation speed ECNpdLimLo, and the radiator pressure Pci is a predetermined upper limit value PUL and lower limit value PLL set above and below the target radiator pressure PCO. If the state of rising up to the upper limit value PUL (a state of exceeding the upper limit value PUL or a state of becoming equal to or more than the upper limit value PUL. The same applies hereinafter) continues for a predetermined time th1, the compressor 2 is stopped and compression is performed. The machine enters the ON-OFF mode, which controls the ON-OFF of the machine 2.
  • the compressor 2 In the ON-OFF mode of the compressor 2, when the radiator pressure Pci drops to the lower limit value PLL (when it falls below the lower limit value PLL or becomes less than or equal to the lower limit value PLL.
  • the compressor 2 is started to operate the compressor target rotation speed TGNCh as the lower limit rotation speed ECNpdLimLo, and when the radiator pressure Pci rises to the upper limit value PUL in that state, the compressor 2 is stopped again. That is, the operation (ON) and the stop (OFF) of the compressor 2 at the lower limit rotation speed ECNpdLimLo are repeated.
  • the compressor 2 When the radiator pressure Pci decreases to the lower limit value PUL and the compressor 2 is started, and the radiator pressure Pci does not become higher than the lower limit value PUL for a predetermined time th2, the compressor 2 is turned on and off. Is completed and the normal mode is restored.
  • FIG. 12 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCc of the compressor 2 based on the heat absorber temperature Te.
  • the F/F operation amount calculation unit 86 of the heat pump controller 32 has an outside air temperature Tam, an air flow amount Ga of air flowing through the air flow passage 3 (may be the blower voltage BLV of the indoor blower 27), a target radiator pressure PCO, The F/F manipulated variable TGNCcff of the compressor target rotation speed is calculated based on the target heat absorber temperature TEO which is the target value of the heat absorber temperature Te.
  • the F/B manipulated variable calculation unit 87 also calculates the F/B manipulated variable TGNCcfb of the compressor target rotation speed by PID calculation or PI calculation based on the target heat absorber temperature TEO and the heat absorber temperature Te. Then, the F/F operation amount TGNCcff calculated by the F/F operation amount calculation unit 86 and the F/B operation amount TGNCcfb calculated by the F/B operation amount calculation unit 87 are added by the adder 88 to obtain a limit setting unit as TGNCc00. Input to 89.
  • the lower limit speed TGNCcLimLo for control and the upper limit speed TGNCcLimHi are set to TGNCc0, and then the compressor OFF control unit 91 is used to determine the target compressor speed TGNCc. Therefore, the rotation speed of the compressor 2 is limited to the upper limit rotation speed TGNCcLimHi or less. However, the upper limit rotation speed TGNCcLimHi is changed by the heat pump controller 32 as described later.
  • this value TGNCc00 is the target compressor rotation speed TGNCc (compressor 2 Will be the number of rotations).
  • the heat pump controller 32 controls the operation of the compressor 2 so that the heat absorber temperature Te becomes the target heat absorber temperature TEO by the compressor target rotation speed TGNCc calculated based on the heat absorber temperature Te.
  • the compressor OFF control unit 91 determines that the compressor target rotation speed TGNCc becomes the above-described lower limit rotation speed TGNCcLimLo, and the heat absorber temperature Te is set between the upper limit value TeUL and the lower limit value TeLL set above and below the target heat absorber temperature TEO.
  • the compressor 2 is stopped and the ON-OFF mode in which the compressor 2 is ON-OFF controlled is entered.
  • the compressor 2 In the ON-OFF mode of the compressor 2 in this case, when the heat absorber temperature Te rises to the upper limit value TeUL, the compressor 2 is started and the compressor target rotation speed TGNCc is operated as the lower limit rotation speed TGNCcLimLo, and the state is maintained. When the heat absorber temperature Te has dropped to the lower limit TeLL, the compressor 2 is stopped again. That is, the operation (ON) and the stop (OFF) of the compressor 2 at the lower limit rotation speed TGNCcLimLo are repeated. Then, after the heat absorber temperature Te rises to the upper limit TeUL and the compressor 2 is started, if the heat absorber temperature Te does not become lower than the upper limit TeUL for a predetermined time tc2, the compressor 2 in this case is turned on. -Ends the OFF mode and returns to the normal mode.
  • FIG. 14 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCw of the compressor 2 based on the heat medium temperature Tw.
  • the F/F operation amount calculation unit 92 of the heat pump controller 32 uses the outside air temperature Tam, the flow rate Gw of the heat medium in the device temperature adjustment device 61 (calculated from the output of the circulation pump 62), and the heat generation amount of the battery 55 (battery).
  • the F/B manipulated variable calculation unit 93 performs a PID calculation or a PI calculation based on the target heat medium temperature TWO and the heat medium temperature Tw (transmitted from the battery controller 73) to determine the F/B manipulated variable TGNCwfb of the compressor target rotation speed. To calculate. Then, the F/F operation amount TGNCwff calculated by the F/F operation amount calculation unit 92 and the F/B operation amount TGNCwfb calculated by the F/B operation amount calculation unit 93 are added by the adder 94 to obtain a limit setting unit as TGNCw00. 96 is input.
  • the lower limit rotational speed TGNCwLimLo and the upper limit rotational speed TGNCwLimHi in control are set to TGNCw0, and then the compressor OFF control unit 97 is used to determine the target compressor rotational speed TGNCw. Therefore, the rotation speed of the compressor 2 is limited to the upper limit rotation speed TGNCwLimHi or lower. However, the upper limit rotation speed TGNCwLimHi is changed by the heat pump controller 32 as described later.
  • the value TGNCw00 added by the adder 94 is within the upper limit rotation speed TGNCwLimHi and the lower limit rotation speed TGNCwLimLo, and if the ON-OFF mode described later does not occur, this value TGNCw00 is the compressor target rotation speed TGNCw (compressor 2 Will be the number of rotations).
  • the heat pump controller 32 controls the operation of the compressor 2 so that the heat medium temperature Tw becomes the target heat medium temperature TWO by the compressor target rotation speed TGNCw calculated based on the heat medium temperature Tw.
  • the compressor OFF control unit 97 determines that the compressor target rotation speed TGNCw is the above-described lower limit rotation speed TGNCwLimLo and the heat medium temperature Tw is the upper limit value TwUL and the lower limit value TwLL set above and below the target heat medium temperature TWO.
  • the compressor 2 is stopped and the ON-OFF mode in which the compressor 2 is ON-OFF controlled is entered.
  • the compressor 2 In the ON-OFF mode of the compressor 2 in this case, when the heat medium temperature Tw rises to the upper limit value TwUL, the compressor 2 is started and the compressor target rotation speed TGNCw is operated as the lower limit rotation speed TGNCwLimLo, and the state is maintained. If the heat medium temperature Tw has dropped to the lower limit value TwLL, the compressor 2 is stopped again. That is, the operation (ON) and the stop (OFF) of the compressor 2 at the lower limit rotation speed TGNCwLimLo are repeated.
  • the solenoid valve 69 is controlled to open/close at the heat medium temperature Tw as described above so that the refrigerant flows to the refrigerant/heat medium heat exchanger 64.
  • the solenoid valve 69 is not opened, and a state occurs in which the refrigerant does not flow to the refrigerant-heat medium heat exchanger 64.
  • the rotation speed of the compressor 2 is controlled by the heat absorber temperature Te and the target heat absorber temperature TEO as shown in FIG. Will be subject to temperature control. Therefore, even if the battery temperature Tcell is rising, there is a risk that the temperature of the battery 55 will rise excessively if the rotation speed of the compressor 2 continues to be low.
  • the heat pump controller 32 sets a predetermined lower limit value TcellLL of the battery temperature Tcell and a predetermined upper limit value TcellUL1 (TcellLL ⁇ TcellUL1), and the battery temperature Tcell transmitted from the battery controller 73 becomes equal to or higher than the upper limit value TcellUL1.
  • the battery temperature Tcell becomes higher than the upper limit value TcellUL1
  • the battery 55 is brought into the ALARM state as shown in FIG. 16, and when the battery temperature Tcell drops below the lower limit value TcellLL, or the battery temperature Tcell becomes the lower limit.
  • the operation of canceling the ALARM state is executed.
  • the temperature range equal to or lower than the lower limit value TcellLL or lower than the lower limit value TcellLL is a safe temperature range of the battery 55.
  • the solenoid valve 69 when the solenoid valve 69 is closed in the air conditioning (priority)+battery cooling mode, the battery temperature Tcell rises and becomes equal to or higher than the upper limit value TcellUL1 at time t1 in the figure, or When the battery temperature Tcell becomes higher than the upper limit value TcellUL1, the solenoid valve 69 is opened in the ALARM state, and thereafter, the solenoid valve 69 is fixed in the open state regardless of the heat medium temperature Tw.
  • the solenoid valve 69 when the solenoid valve 69 is opened in the air conditioning (priority)+battery cooling mode, the battery temperature Tcell rises and becomes equal to or higher than the upper limit value TcellUL1 at time t1, or the battery temperature Tcell. Is higher than the upper limit value TcellUL1, the state is set to the ALARM state, the electromagnetic valve 69 is maintained in the open state, and thereafter, the electromagnetic valve 69 is fixed in the open state regardless of the heat medium temperature Tw.
  • the heat pump controller 32 brings the battery temperature Tcell to the upper limit value TcellUL1 or more or becomes higher than the upper limit value TcellUL1
  • the battery 55 is in the ALARM state and the solenoid valve 69 is fixed to the open state.
  • the effect is notified to the air conditioning controller 45.
  • the air conditioning controller 45 receives the notification indicating that the ALARM state is set from the heat pump controller 32, the heat absorber temperature Te becomes higher than the target heat absorber temperature TEO (Te>TEO) or the target heat absorber temperature in the embodiment.
  • the battery temperature Tcell on the display 53A of the air conditioning operation unit 53 increases, so that the air conditioning capacity (cooling capacity) in the vehicle interior is increased. ) Is reduced by a predetermined display (air-conditioning capacity deterioration notification operation).
  • the open fixation release value is not limited to the lower limit value TcellLL, and the upper limit value TcellUL1 may be used as the open fixation release value.
  • the solenoid valve 69 is fixed to be open when the battery temperature Tcell is lower than the upper limit value TcellUL1.
  • the electromagnetic valve 69 is maintained in the open state as the ALARM state when the battery temperature Tcell becomes higher than the upper limit value TcellUL1, when the battery temperature Tcell falls below the upper limit value TcellUL1 or falls below it.
  • the open fixation of the solenoid valve 69 is released.
  • the heat pump controller 32 releases the ALARM state of the battery 55 due to the battery temperature Tcell dropping below the lower limit value TcellLL or the battery temperature Tcell dropping below the lower limit value TcellLL, to that effect the air conditioning controller 45 is notified. Notice.
  • the air conditioning controller 45 receives the notification that the ALARM state has been released from the heat pump controller 32, when the display 53A of the air conditioning operation unit 53 is displaying that the air conditioning capacity (cooling capacity) in the vehicle interior is decreasing, The display is stopped.
  • the battery temperature Tcell becomes the upper limit value TcellUL1 or more as described above, or the battery temperature Tcell becomes higher than the upper limit value TcellUL1, and the solenoid valve 69 is opened in the ALARM state. Even if the battery temperature is fixed, if the battery temperature Tcell continues to rise, the control shown in FIG. 19 is executed.
  • the heat pump controller 32 has another upper limit value TcellUL2 (TcellUL1 ⁇ TcellUL2) higher than the above-mentioned upper limit value TcellUL1.
  • the battery temperature Tcell continues to rise even after the solenoid valve 69 is fixed in the open state in the air conditioning (priority)+battery cooling mode from the normal state to the ALARM state described above at time t3.
  • the heat pump controller 32 shifts to the battery cooling (single) mode.
  • the solenoid valve 69 is fixed in the open state and the solenoid valve 35 is fixed in the closed state. As a result, the air conditioning in the vehicle compartment is stopped, and the battery 55 is strongly cooled using all the refrigerant.
  • the heat pump controller 32 notifies the air conditioning controller 45 to that effect when the battery cooling (single) mode is entered. ..
  • the air conditioning controller 45 receives the notification from the heat pump controller 32, the battery temperature Tcell is further increased on the display 53A of the air conditioning operation unit 53, instead of the display indicating that the air conditioning capacity is lowered in the embodiment.
  • a predetermined display indicating that the air conditioning in the vehicle compartment is stopped is performed (air conditioning capacity stop notification operation).
  • the heat pump controller 32 keeps the solenoid valve 69 fixed in the open state.
  • the electromagnetic valve 35 is opened to shift to the air conditioning (priority)+battery cooling mode. That is, the compressor 2 is returned to the rotation speed control based on the heat absorber temperature Te and the target heat absorber temperature TEO, and the solenoid valve 35 is fixed in the open state, but the ALARM state is not released and the solenoid valve 69 is opened.
  • the upper limit value TcellUL1 is the independent cooling release value in the present invention.
  • the heat pump controller 32 shifts to the air conditioning (priority)+battery cooling mode due to the battery temperature Tcell becoming equal to or lower than the upper limit value TcellUL1, or the lowering of the upper limit value TcellUL1, the heat pump controller 32 notifies the air conditioning controller 45 to that effect. To do.
  • the air conditioning controller 45 receives the notification from the heat pump controller 32, the air conditioning controller 45 stops displaying the air conditioning in the vehicle interior, which is displayed on the display 53A of the air conditioning operation unit 53, and indicates that the air conditioning capacity is reduced. Return to display.
  • the heat pump controller 32 releases the ALARM state, and thereafter, at the heat medium temperature Tw, The state in which the valve 69 is opened and closed is restored.
  • the display indicating that the air conditioning capacity of the display 53A is reduced is also stopped.
  • the independent cooling release value described above is not limited to the upper limit value TcellUL1, and the upper limit value TcellUL2 may be used as the independent cooling release value.
  • the battery temperature Tcell becomes the upper limit value TcellUL2 or more and shifts to the battery cooling (single) mode
  • the battery temperature Tcell becomes lower than the upper limit value TcellUL2 it shifts to the air conditioning (priority)+battery cooling mode.
  • the battery temperature Tcell becomes higher than the upper limit value TcellUL2
  • the battery temperature Tcell drops below the upper limit value TcellUL2
  • the battery temperature Tcell drops below that, air conditioning (priority)+battery
  • the lower limit value TcellLL described above may be used as the independent cooling release value. In this case, the battery cooling (single) mode is directly returned to the air conditioning (priority)+battery cooling mode in which the solenoid valve 69 is controlled to open/close at the heat medium temperature Tw.
  • the rotation speed of the compressor 2 is controlled based on the heat absorber temperature Te, and the solenoid valve 69 is controlled to open/close based on the heat medium temperature Tw.
  • the compressor 2 is controlled to air-condition the vehicle interior, the refrigerant 55 can be cooled by controlling the refrigerant flow to the refrigerant-heat medium heat exchanger 64 by the heat medium temperature Tw.
  • the heat pump controller 32 keeps the solenoid valve 69 open.
  • the battery temperature Tcell Since the battery temperature Tcell has become equal to or higher than the upper limit value TcellUL1, or has become higher than the upper limit value TcellUL1, the battery temperature Tcell is always fixed to the refrigerant-heat medium heat exchanger 64 so that the refrigerant is constantly circulated. By changing the control of the valve 69, the temperature of the battery 55 can be quickly lowered. This makes it possible to avoid the disadvantage that the temperature of the battery 55 excessively rises, prevent the battery 55 from deteriorating, and extend its life.
  • the heat pump controller 32 controls the opening/closing of the solenoid valve 69 when the battery temperature Tcell becomes equal to or lower than a predetermined open fixation release value or when the battery temperature Tcell falls below the open release release value. Since the battery temperature Tcell has become equal to or lower than the predetermined open fixation release value or has fallen below the open release release value, the control of the solenoid valve 69 does not interfere with the normal state. Will be able to return to.
  • the air conditioning controller 45 of the control device 11 is provided with the display 53A.
  • the display 53A In the air conditioning (priority)+battery cooling mode, when the solenoid valve 69 is fixed in the open state by the battery temperature Tcell, the display 53A is displayed. Since the predetermined air conditioning capacity decrease notification operation is executed, the battery temperature Tcell becomes equal to or higher than the upper limit value TcellUL1 or becomes higher than the upper limit value TcellUL1 and the solenoid valve 69 is fixed to the open state, It becomes possible to inform the occupant that the ability is reduced. As a result, the occupant can recognize that the air conditioning capacity has not deteriorated due to a failure.
  • the air conditioning controller 45 executes the air conditioning capacity decrease notification operation when the heat absorber temperature Te is higher than the target heat absorber temperature TEO or when the heat absorber temperature Te is higher than the target heat absorber temperature TEO+ ⁇ , Only when the air-conditioning capacity has decreased, the air-conditioning capacity decrease notification operation is executed, and it is possible to avoid the inconvenience of giving the passenger an uncomfortable feeling of anxiety.
  • the heat pump controller 32 Shifts to the battery cooling (single) mode, even if the solenoid valve 69 is fixed in the open state, if the battery temperature Tcell further rises to the upper limit value TcellUL2 or higher, or higher than the upper limit value TcellUL2. In that case, the air conditioning in the vehicle compartment is stopped, and the battery 55 can be cooled using all the refrigerant. This makes it possible to strongly cool the battery 55 and quickly reduce it to a safe temperature range.
  • the heat pump controller 32 shifts to the battery cooling (single) mode, and then, when the battery temperature Tcell falls below a predetermined single cooling release value or falls below the single cooling release value, the solenoid valve. Since the air conditioner (priority)+battery cooling mode is entered while fixing 69 to the open state, the battery temperature Tcell has dropped below a predetermined individual cooling release value, or has dropped below the single cooling release value. Thus, the air conditioning in the vehicle compartment can be restarted without any trouble, and the cooling of the battery 55 can be continued without any trouble.
  • the battery temperature (Tcell) shifts to the battery cooling (single) mode
  • a predetermined air conditioning stop notification operation is executed on the display 53A.
  • the battery temperature Tcell becomes equal to or higher than the upper limit value TcellUL2, or becomes higher than the upper limit value TcellUL2 and shifts to the battery cooling (single) mode, thereby informing the occupant that the air conditioning in the vehicle compartment has been stopped. become able to. This allows the occupant to recognize that the air conditioning in the vehicle compartment has not stopped due to a failure.
  • the present invention is not limited to this, and the device for directly exchanging heat between the refrigerant and the battery 55 (target of temperature adjustment) is used.
  • a temperature sensor is provided at the refrigerant outlet of the heat exchanger for temperature regulation, and in the air conditioning (priority) + battery cooling mode described above, the heat exchanger for temperature regulation detected by this temperature sensor is output.
  • the temperature of the refrigerant is set as the temperature of the heat exchanger for temperature control, and the heat pump controller 32 controls the opening/closing of the solenoid valve 69 at this temperature, and the battery cooling (priority)+air conditioning mode and the battery cooling (single In the) mode, the heat pump controller 32 controls the rotation speed of the compressor 2 by the temperature of the refrigerant that has also exited the heat exchanger for temperature adjustment.
  • a vehicle capable of cooling the battery 55 while cooling the vehicle interior in the air conditioning (priority)+battery cooling mode and the battery cooling (priority)+air conditioning mode for simultaneously cooling the vehicle interior and cooling the battery 55
  • the cooling of the battery 55 is not limited to during cooling, but other air conditioning operation, for example, the above-described dehumidifying and heating mode and cooling of the battery 55 may be performed simultaneously.
  • the solenoid valve 69 is opened in the dehumidifying and heating mode, and a part of the refrigerant flowing toward the heat absorber 9 via the refrigerant pipe 13F is caused to flow into the branch pipe 67 and flow into the refrigerant-heat medium heat exchanger 64.
  • the related state is also the air conditioning+temperature controlled target cooling mode in the present invention.
  • the electromagnetic valve 35 is the heat absorber valve device (valve device) and the electromagnetic valve 69 is the temperature controlled valve device (valve device), but the indoor expansion valve 8 and the auxiliary expansion valve 68 can be fully closed.
  • the solenoid valves 35 and 69 are unnecessary, the indoor expansion valve 8 serves as the heat absorber valve device (valve device) of the present invention, and the auxiliary expansion valve 68 serves as the temperature-controlled valve. It becomes a device (valve device).
  • each operation mode such as a heating mode, a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode, an air conditioning (priority)+battery cooling mode, a battery cooling (priority)+air conditioning mode, a battery cooling (single) mode is provided.
  • the present invention has been described with respect to the vehicle air conditioner 1, the present invention is not limited to this, and for example, a vehicle air conditioner capable of executing a cooling mode, an air conditioning (priority)+battery cooling mode, and a battery cooling (single) mode. Also, the present invention is effective.

Abstract

[Problem] To provide a vehicle air-conditioning apparatus capable of preventing the temperature of a temperature-controlled object from rising excessively. [Solution] This vehicle air-conditioning apparatus is provided with a compressor 2, a heat absorber 9, a solenoid valve 35, a refrigerant-heat medium heat exchanger 64, and a solenoid valve 69. A control device has an air conditioning (priority) plus battery cooling mode in which an operation of the compressor 2 is controlled on the basis of the temperature of the heat absorber, and the solenoid valve 69 is controlled to be opened or closed on the basis of a heat medium temperature Tw. In the air conditioning (priority) plus battery cooling mode, when the temperature of a battery 55 is equal to or higher than a predetermined upper limit value TcellUL1, or becomes higher than the predetermined upper limit value TcellUL1, the solenoid valve 69 is fixed in an open state.

Description

車両用空気調和装置Vehicle air conditioner
 本発明は、車両の車室内を空調するヒートポンプ方式の空気調和装置であって、特に車両に搭載されたバッテリ等の被温調対象を冷却可能とされたものに関する。 The present invention relates to a heat pump type air conditioner that air-conditions the interior of a vehicle, and in particular, relates to an apparatus capable of cooling a temperature-controlled object such as a battery mounted in the vehicle.
 近年の環境問題の顕在化から、車両に搭載されたバッテリから供給される電力で走行用モータを駆動する電気自動車やハイブリッド自動車等の車両が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、圧縮機と、放熱器と、吸熱器と、室外熱交換器が接続された冷媒回路を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させることで暖房し、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器(蒸発器)において蒸発させ、吸熱させることで冷房する等して車室内を空調するものが開発されている(例えば、特許文献1参照)。 Due to the emergence of environmental problems in recent years, vehicles such as electric vehicles and hybrid vehicles that drive a traveling motor with electric power supplied from a battery mounted on the vehicle have become popular. Then, as an air conditioner that can be applied to such a vehicle, a compressor, a radiator, a heat absorber, and an outdoor heat exchanger are provided with a refrigerant circuit, and refrigerant discharged from the compressor is provided. The radiator dissipates heat, and the refrigerant dissipated in this radiator absorbs heat in the outdoor heat exchanger to heat it. The refrigerant discharged from the compressor is dissipated in the outdoor heat exchanger and evaporated in the heat absorber (evaporator). An air conditioner has been developed to cool the interior of the vehicle by absorbing heat and cooling the air (for example, see Patent Document 1).
 一方、例えばバッテリは充放電による自己発熱等で高温となった環境下で充放電を行うと劣化が進行し、やがては作動不良を起こして破損する危険性がある。そこで、冷媒回路にバッテリ用の熱交換器(被温調対象用熱交換器)を別途設け、冷媒回路を循環する冷媒とバッテリ用冷媒(熱媒体)とをこの被温調対象用熱交換器で熱交換させ、この熱交換した熱媒体をバッテリに循環させることでバッテリを冷却することができるようにしたものも開発されている(例えば、特許文献2、特許文献3参照)。 On the other hand, for example, if the battery is charged and discharged in an environment where the temperature is high due to self-heating due to charging and discharging, deterioration will progress, and eventually there is a risk of malfunction and damage. Therefore, a heat exchanger for the battery (heat exchanger for temperature adjustment) is separately provided in the refrigerant circuit, and the refrigerant circulating in the refrigerant circuit and the refrigerant for the battery (heat medium) are used as the heat exchanger for temperature adjustment. There has also been developed a device in which the battery can be cooled by exchanging heat in the battery and circulating the heat medium that has undergone the heat exchange in the battery (see, for example, Patent Documents 2 and 3).
特開2014-213765号公報JP, 2014-213765, A 特許第5860360号公報Japanese Patent No. 5860360 特許第5860361号公報Japanese Patent No. 5860361
 上記の如くバッテリを冷却するときに、例えば熱媒体の温度で被温調対象用熱交換器への冷媒の流通を制御した場合、バッテリの温度が熱媒体に反映されるまでにはタイムラグが存在するため、バッテリの温度が上昇しているにも拘わらず、被温調対象用熱交換器に冷媒が流れない状態が発生する。また、例えば圧縮機を吸熱器の温度で制御し、車室内の空調を行いながらバッテリを冷却する場合には、バッテリの冷却は吸熱器の温度制御に従属することになるため、バッテリの温度が上昇しているにも拘わらず、圧縮機が低い能力(回転数)で運転される状態が発生する。そして、何れの場合にもバッテリの温度が過剰に上昇してしまうため、改善が望まれていた。 When cooling the battery as described above, for example, when the flow of the refrigerant to the heat exchanger for temperature adjustment is controlled by the temperature of the heat medium, there is a time lag before the temperature of the battery is reflected in the heat medium. Therefore, although the temperature of the battery is rising, a state occurs in which the refrigerant does not flow into the heat exchanger for temperature adjustment. Further, for example, when the compressor is controlled by the temperature of the heat absorber and the battery is cooled while the air conditioning of the vehicle compartment is performed, the cooling of the battery depends on the temperature control of the heat absorber. A state occurs in which the compressor is operated at a low capacity (rotation speed) even though it is rising. In any case, the battery temperature rises excessively, so improvement has been desired.
 本発明は、係る従来の技術的課題を解決するために成されたものであり、被温調対象の温度が過剰に上昇してしまう不都合を未然に回避することができる車両用空気調和装置を提供することを目的とする。 The present invention has been made to solve the conventional technical problems, and provides a vehicle air conditioner capable of avoiding the disadvantage that the temperature of a temperature-controlled object rises excessively. The purpose is to provide.
 本発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器と、制御装置を少なくとも備えて車室内を空調するものであって、吸熱器への冷媒の流通を制御するための吸熱器用弁装置と、冷媒を吸熱させて被温調対象を直接、又は、熱媒体を介して冷却するための被温調対象用熱交換器と、この被温調対象用熱交換器への冷媒の流通を制御するための被温調対象用弁装置を備え、制御装置は、吸熱器の温度に基づいて圧縮機の運転を制御し、被温調対象用熱交換器、又は、熱媒体の温度に基づいて被温調対象用弁装置を開閉制御する空調+被温調対象冷却モードを有し、この空調+被温調対象冷却モードにおいて、被温調対象の温度が所定の上限値TcellUL1以上になった場合、又は、当該上限値TcellUL1より高くなった場合、被温調対象用弁装置を開いた状態に固定することを特徴とする。 The vehicle air conditioner of the present invention is provided with at least a compressor that compresses a refrigerant, a heat absorber that absorbs the refrigerant and cools the air that is supplied to the vehicle interior, and a controller to air-condition the vehicle interior. That is, the heat absorber valve device for controlling the flow of the refrigerant to the heat absorber, the object to be temperature-controlled directly by absorbing the refrigerant, or for the temperature-controlled object for cooling via the heat medium. A heat exchanger and a temperature-controlled valve device for controlling the flow of the refrigerant to the temperature-controlled heat exchanger are provided, and the control device operates the compressor based on the temperature of the heat absorber. It has an air conditioning + temperature controlled target cooling mode that controls and opens/closes the temperature controlled target heat exchanger or the temperature controlled target valve device based on the temperature of the heat medium. In the target cooling mode, when the temperature of the temperature control target is equal to or higher than the predetermined upper limit value TcellUL1, or is higher than the upper limit value TcellUL1, fix the valve device for temperature control target in the open state. Is characterized by.
 請求項2の発明の車両用空気調和装置は、上記発明において制御装置は、空調+被温調対象冷却モードにおいて、被温調対象の温度が所定の開固定解除値以下になった場合、又は、当該開固定解除値より低下した場合、被温調対象用弁装置を開閉制御する状態に復帰することを特徴とする。 A vehicle air conditioner according to a second aspect of the present invention is the vehicle air conditioner according to the above aspect, wherein the control device is in an air conditioning+target temperature controlled cooling mode, when the temperature of the target temperature controlled is equal to or lower than a predetermined open fixation release value, or When the value is lower than the open/fixed release value, the valve device for the temperature-controlled object is returned to the state of opening/closing control.
 請求項3の発明の車両用空気調和装置は、上記各発明において制御装置は、所定の報知装置を備え、空調+被温調対象冷却モードにおいて、被温調対象の温度により被温調対象用弁装置を開いた状態に固定した場合、報知装置にて所定の空調能力低下報知動作を実行することを特徴とする。 The vehicle air conditioner according to a third aspect of the present invention is the vehicle air conditioner according to each of the above aspects, in which the control device includes a predetermined notification device, and in the air conditioning+target temperature control target cooling mode, the target temperature control target temperature is controlled by the temperature control target temperature. When the valve device is fixed in the open state, the notification device performs a predetermined air conditioning capacity decrease notification operation.
 請求項4の発明の車両用空気調和装置は、上記発明において制御装置は、吸熱器の温度がその目標温度より高い場合、又は、吸熱器の温度がその目標温度に所定の余裕度を加えた値より高い場合、空調能力低下報知動作を実行することを特徴とする。 In the vehicle air conditioner according to a fourth aspect of the present invention, in the above invention, the control device adds a predetermined margin to the target temperature when the temperature of the heat absorber is higher than the target temperature. When the value is higher than the value, the air-conditioning capacity drop notification operation is executed.
 請求項5の発明の車両用空気調和装置は、上記各発明において制御装置は、被温調対象用弁装置を開いた状態に固定し、吸熱器用弁装置を閉じて被温調対象用熱交換器、又は、熱媒体の温度に基づいて圧縮機の運転を制御する被温調対象冷却(単独)モードを有し、空調+被温調対象冷却モードにおいて、被温調対象の温度が上限値TcellUL1より高いもう一つの上限値TcellUL2以上になった場合、又は、当該上限値TcellUL2より高くなった場合、被温調対象冷却(単独)モードに移行することを特徴とする。 In the vehicle air conditioner according to a fifth aspect of the present invention, in each of the above inventions, the control device fixes the temperature-controlled object valve device in an open state and closes the heat absorber valve device to perform heat-controlled object heat exchange. It has a temperature controlled cooling (single) mode that controls the operation of the compressor based on the temperature of the air conditioner or heat medium, and in the air conditioning + temperature controlled cooling mode, the temperature of the temperature controlled target is the upper limit value. When it becomes more than another upper limit value TcellUL2 which is higher than TcellUL1, or when it becomes higher than the upper limit value TcellUL2, it is characterized by shifting to the temperature controlled cooling (single) mode.
 請求項6の発明の車両用空気調和装置は、上記発明において制御装置は、被温調対象冷却(単独)モードに移行した後、被温調対象の温度が所定の単独冷却解除値以下に低下した場合、又は、当該単独冷却解除値より低下した場合、空調+被温調対象冷却モードに移行することを特徴とする。 In the vehicle air conditioner according to a sixth aspect of the present invention, in the above invention, the control device causes the temperature of the temperature-controlled object to fall below a predetermined independent cooling release value after shifting to the temperature-controlled target cooling (single) mode. When it does, or when it falls below the independent cooling release value, it is characterized in that it shifts to the air conditioning + temperature controlled cooling mode.
 請求項7の発明の車両用空気調和装置は、請求項5又は請求項6の発明において制御装置は、所定の報知装置を備え、空調+被温調対象冷却モードにおいて、被温調対象の温度により被温調対象冷却(単独)モードに移行した場合、報知装置にて所定の空調停止報知動作を実行することを特徴とする。 A vehicle air conditioner according to a seventh aspect of the present invention is the vehicle air conditioning device according to the fifth or sixth aspect, wherein the control device includes a predetermined notification device, and in the air conditioning+controlled temperature control target cooling mode, the temperature of the controlled temperature control target. When the temperature controlled target cooling (single) mode is shifted by, the alarm device executes a predetermined air conditioning stop notification operation.
 本発明によれば、冷媒を圧縮する圧縮機と、冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器と、制御装置を少なくとも備えて車室内を空調する車両用空気調和装置において、吸熱器への冷媒の流通を制御するための吸熱器用弁装置と、冷媒を吸熱させて被温調対象を直接、又は、熱媒体を介して冷却するための被温調対象用熱交換器と、この被温調対象用熱交換器への冷媒の流通を制御するための被温調対象用弁装置を備え、制御装置が、吸熱器の温度に基づいて圧縮機の運転を制御し、被温調対象用熱交換器、又は、熱媒体の温度に基づいて被温調対象用弁装置を開閉制御する空調+被温調対象冷却モードを有するので、吸熱器の温度により圧縮機を制御して車室内の空調を行いながら、被温調対象用熱交換器、又は、熱媒体の温度により被温調対象用熱交換器への冷媒の流通を制御して、被温調対象の冷却も行うことができるようになる。 ADVANTAGE OF THE INVENTION According to this invention, the compressor which compresses a refrigerant|coolant, the heat absorber for absorbing the refrigerant|coolant and cooling the air supplied to a vehicle interior, and the air conditioning apparatus for vehicles which air-conditions a vehicle interior at least provided with a control apparatus. In the heat absorber valve device for controlling the flow of the refrigerant to the heat absorber, the heat-controlled object heat exchange for cooling the heat-controlled object directly by absorbing heat of the refrigerant, or via the heat medium. And a valve device for the temperature controlled object for controlling the flow of the refrigerant to the heat exchanger for the temperature controlled object, the control device controls the operation of the compressor based on the temperature of the heat absorber. Since there is an air conditioning + temperature controlled target cooling mode in which the temperature controlled target heat exchanger or the temperature control target valve device is opened/closed based on the temperature of the heat medium, the compressor is controlled by the temperature of the heat absorber. While controlling the air conditioning of the vehicle interior, the heat exchanger for the temperature controlled object or the refrigerant flow to the heat exchanger for the temperature controlled object is controlled by the temperature of the heat medium to control the temperature of the temperature controlled object. Cooling can also be performed.
 このとき、制御装置は空調+被温調対象冷却モードにおいて、被温調対象の温度が所定の上限値TcellUL1以上になった場合、又は、当該上限値TcellUL1より高くなった場合、被温調対象用弁装置を開いた状態に固定するので、被温調対象の温度が上限値TcellUL1以上になったこと、又は、上限値TcellUL1より高くなったことで被温調対象用熱交換器に冷媒を常時流通するように被温調対象用弁装置の制御を変更し、被温調対象の温度を迅速に低下させることが可能となる。これにより、被温調対象の温度が過剰に上昇する不都合を未然に回避し、被温調対象の劣化を防止してその寿命を延ばすことが可能となる。 At this time, if the temperature of the temperature-controlled object becomes equal to or higher than a predetermined upper limit value TcellUL1 in the air conditioning + temperature-controlled target cooling mode, or if the temperature is higher than the upper limit value TcellUL1, the control target object is controlled. Since the valve device is fixed in the open state, the temperature of the temperature-controlled object becomes equal to or higher than the upper limit value TcellUL1 or becomes higher than the upper limit value TcellUL1 to supply the refrigerant to the temperature-controlled object heat exchanger. It is possible to change the control of the valve device for temperature control so that it always flows, and to quickly reduce the temperature of the temperature control target. As a result, it is possible to avoid the disadvantage that the temperature of the temperature-controlled object rises excessively, prevent deterioration of the temperature-controlled object, and extend its life.
 そして、請求項2の発明の如く制御装置が、空調+被温調対象冷却モードにおいて、被温調対象の温度が所定の開固定解除値以下になった場合、又は、当該開固定解除値より低下した場合、被温調対象用弁装置を開閉制御する状態に復帰するようにすれば、被温調対象の温度が所定の開固定解除値以下に低下したこと、又は、開固定解除値より低下したことで、被温調対象用弁装置の制御を支障無く通常の状態に戻すことができるようになる。 Then, when the temperature of the temperature controlled object becomes equal to or lower than a predetermined open fixation release value in the air conditioning+object temperature control target cooling mode, or the control device according to the invention of claim 2 If the temperature of the temperature-controlled object falls back to a state in which the temperature-controlled valve device is controlled to open and close, the temperature of the temperature-controlled object has dropped below a predetermined open fixation release value, or By the decrease, it becomes possible to return the control of the valve device for temperature control to the normal state without any trouble.
 また、請求項3の発明によれば、上記各発明に加えて制御装置が、所定の報知装置を備え、空調+被温調対象冷却モードにおいて、被温調対象の温度により被温調対象用弁装置を開いた状態に固定した場合、報知装置にて所定の空調能力低下報知動作を実行するようにしたので、被温調対象の温度が上限値TcellUL1以上になり、又は、当該上限値TcellUL1より高くなって被温調対象用弁装置を開いた状態に固定したことで、空調能力が低下することを乗員に報知することができるようになる。これにより、乗員は故障が生じて空調能力が低下したのではないことを認識することが可能となる。 According to the invention of claim 3, in addition to each of the above inventions, the control device is provided with a predetermined notification device, and in the air conditioning+target temperature controlled cooling mode, the temperature controlled target temperature control target When the valve device is fixed in the open state, the notification device executes the predetermined air conditioning capacity decrease notification operation, so that the temperature of the temperature-controlled object becomes the upper limit value TcellUL1 or higher, or the upper limit value TcellUL1. By increasing the temperature and fixing the valve device for temperature control in the open state, it becomes possible to notify the occupant that the air conditioning capacity is reduced. As a result, the occupant can recognize that the air conditioning capacity has not deteriorated due to a failure.
 この場合、請求項4の発明の如く制御装置が、吸熱器の温度がその目標温度より高い場合、又は、吸熱器の温度がその目標温度に所定の余裕度を加えた値より高い場合に、空調能力低下報知動作を実行するようにすれば、実際に空調能力が低下したときのみ、空調能力低下報知動作を実行し、無用な不安感を乗員に与える不都合も回避することができるようになる。 In this case, when the temperature of the heat absorber is higher than the target temperature, or when the temperature of the heat absorber is higher than a value obtained by adding a predetermined margin to the target temperature, If the air-conditioning capacity drop notification operation is executed, the air-conditioning capacity drop notification operation is executed only when the air-conditioning capacity actually drops, and it is possible to avoid the inconvenience of giving the passenger an uncomfortable feeling. ..
 更に、請求項5の発明の如く制御装置に、被温調対象用弁装置を開いた状態に固定し、吸熱器用弁装置を閉じて被温調対象用熱交換器、又は、熱媒体の温度に基づいて圧縮機の運転を制御する被温調対象冷却(単独)モードを設け、空調+被温調対象冷却モードにおいて、被温調対象の温度が上限値TcellUL1より高いもう一つの上限値TcellUL2以上になった場合、又は、上限値TcellUL2より高くなった場合には、制御装置が被温調対象冷却(単独)モードに移行するようにすれば、被温調対象用弁装置を開いた状態に固定しても、被温調対象の温度が更に上昇して上限値TcellUL2以上になった場合、又は、上限値TcellUL2より高くなった場合、車室内の空調を停止し、全ての冷媒を用いて被温調対象を冷却することができるようになる。これにより、強力に被温調対象を冷却して、迅速に安全な温度域まで低下させることができるようになる。 Further, in the control device according to the invention of claim 5, the valve device for temperature control is fixed in an open state, and the valve device for heat absorber is closed to control the temperature of the heat exchanger for temperature control or the temperature of the heat medium. A controlled temperature controlled cooling (single) mode for controlling the operation of the compressor based on is set, and in the air conditioning+controlled cooling mode, another upper limit value TcellUL2 in which the temperature of the controlled temperature target is higher than the upper limit value TcellUL1 When it becomes the above or when it becomes higher than the upper limit value TcellUL2, if the control device shifts to the temperature controlled cooling (independent) mode, the temperature controlled valve device is in the open state. Even if it is fixed to, if the temperature of the temperature controlled object further rises to the upper limit value TcellUL2 or more, or if it becomes higher than the upper limit value TcellUL2, the air conditioning in the vehicle compartment is stopped and all the refrigerants are used. Thus, it becomes possible to cool the temperature controlled object. As a result, it becomes possible to strongly cool the temperature-controlled object and quickly reduce it to a safe temperature range.
 そして、請求項6の発明の如く制御装置が、被温調対象冷却(単独)モードに移行した後、被温調対象の温度が所定の単独冷却解除値以下に低下した場合、又は、単独冷却解除値より低下した場合には、空調+被温調対象冷却モードに移行するようにすれば、被温調対象の温度が所定の単独冷却解除値以下に低下したこと、又は、単独冷却解除値より低下したことで、車室内の空調を支障無く再開し、被温調対象の冷却も支障無く継続することができるようになるものである。 When the control device shifts to the temperature-controlled target cooling (single) mode and then the temperature of the temperature-controlled target falls below a predetermined single cooling release value, or the single cooling is performed. If the temperature falls below the release value, the temperature of the temperature controlled object has dropped below a predetermined independent cooling release value or the independent cooling release value can be set by shifting to the air conditioning + controlled temperature cooling mode. By further reducing the temperature, air conditioning in the vehicle interior can be restarted without any trouble, and cooling of the temperature-controlled object can be continued without any trouble.
 更に、請求項7の発明によれば、請求項5又は請求項6の発明に加えて制御装置が、所定の報知装置を備え、空調+被温調対象冷却モードにおいて、被温調対象の温度により被温調対象冷却(単独)モードに移行した場合、報知装置にて所定の空調停止報知動作を実行するようにしたので、被温調対象の温度が上限値TcellUL2以上になり、又は、当該上限値TcellUL2より高くなって被温調対象冷却(単独)モードに移行したことで、車室内の空調が停止されたことを乗員に報知することができるようになる。これにより、乗員は故障が生じて車室内の空調が停止したのではないことを認識することが可能となる。 Further, according to the invention of claim 7, in addition to the invention of claim 5 or claim 6, the control device is provided with a predetermined notification device, and in the air conditioning + temperature controlled target cooling mode, the temperature controlled target temperature. When the temperature control target cooling (single) mode is changed by the above, the notification device executes a predetermined air conditioning stop notification operation, so the temperature of the temperature control target becomes equal to or higher than the upper limit value TcellUL2, or When the temperature becomes higher than the upper limit value TcellUL2 and shifts to the temperature-controlled cooling (single) mode, it becomes possible to notify the occupant that the air conditioning in the vehicle compartment has been stopped. This allows the occupant to recognize that the air conditioning in the vehicle compartment has not stopped due to a failure.
本発明を適用した一実施形態の車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles of one Embodiment to which this invention is applied. 図1の車両用空気調和装置の制御装置の電気回路のブロック図である。It is a block diagram of an electric circuit of a control device of an air harmony device for vehicles of Drawing 1. 図2の制御装置が実行する運転モードを説明する図である。It is a figure explaining the driving mode which the control apparatus of FIG. 2 performs. 図2の制御装置のヒートポンプコントローラによる暖房モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles explaining the heating mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる除湿暖房モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles explaining the dehumidification heating mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる除湿冷房モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the vehicle air conditioner explaining the dehumidification cooling mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる冷房モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the vehicle air conditioner explaining the cooling mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる空調(優先)+バッテリ冷却モードとバッテリ冷却(優先)+空調モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles explaining the air conditioning (priority) + battery cooling mode and battery cooling (priority) + air conditioning mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによるバッテリ冷却(単独)モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the vehicle air conditioning apparatus explaining the battery cooling (single) mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる除霜モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the vehicle air conditioner explaining the defrost mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラの圧縮機制御に関する制御ブロック図である。It is a control block diagram regarding compressor control of the heat pump controller of the control device of FIG. 図2の制御装置のヒートポンプコントローラの圧縮機制御に関するもう一つの制御ブロック図である。FIG. 4 is another control block diagram related to compressor control of the heat pump controller of the control device in FIG. 2. 図2の制御装置のヒートポンプコントローラの空調(優先)+バッテリ冷却モードでの電磁弁69の制御を説明するブロック図である。It is a block diagram explaining control of the solenoid valve 69 in air conditioning (priority) + battery cooling mode of the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラの圧縮機制御に関する更にもう一つの制御ブロック図である。FIG. 7 is yet another control block diagram related to compressor control of the heat pump controller of the control device in FIG. 2. 図2の制御装置のヒートポンプコントローラのバッテリ冷却(優先)+空調モードでの電磁弁35の制御を説明するブロック図である。It is a block diagram explaining control of the solenoid valve 35 in battery cooling (priority) + air conditioning mode of the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによるALARM状態と、ALARM解除状態を説明する図である。It is a figure explaining the ALARM state and the ALARM cancellation|release state by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる空調(優先)+バッテリ冷却モードでのALARM状態とALARM解除状態の制御を説明する図である。It is a figure explaining the control of the ALARM state and the ALARM cancellation|release state in air conditioning (priority) + battery cooling mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる空調(優先)+バッテリ冷却モードでのALARM状態とALARM解除状態のもう一つの制御を説明する図である。It is a figure explaining another control of the ALARM state and the ALARM cancellation|release state in air conditioning (priority) + battery cooling mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラにより、バッテリ温度に基づいて空調(優先)+バッテリ冷却モードからバッテリ冷却(単独)モードに移行する制御を説明する図である。It is a figure explaining the control which transfers to the battery cooling (single) mode from an air conditioning (priority) + battery cooling mode based on battery temperature by the heat pump controller of the control apparatus of FIG.
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。図1は本発明の一実施形態の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、車両に搭載されているバッテリ55に充電された電力を走行用モータ(電動モータ。図示せず)に供給することで駆動し、走行するものであり、本発明の車両用空気調和装置1の後述する圧縮機2も、バッテリ55から供給される電力で駆動されるものとする。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 of an embodiment of the present invention. A vehicle of an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and electric power charged in a battery 55 mounted in the vehicle is used as a traveling motor (electric motor). (Not shown) to drive and run, and the compressor 2 described later of the vehicle air conditioner 1 of the present invention is also driven by the electric power supplied from the battery 55. ..
 即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路Rを用いたヒートポンプ運転により暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、除霜モード、空調(優先)+バッテリ冷却モード、バッテリ冷却(優先)+空調モード、及び、バッテリ冷却(単独)モードの各運転モードを切り換えて実行することで車室内の空調やバッテリ55の温調を行うものである。 That is, the vehicle air conditioner 1 of the embodiment is a heating mode, a dehumidification heating mode, a dehumidification cooling mode, a cooling mode, and a defrosting mode in a heat pump operation using the refrigerant circuit R in an electric vehicle that cannot be heated by engine waste heat. , The air conditioning (priority)+battery cooling mode, the battery cooling (priority)+air conditioning mode, and the battery cooling (single) mode are switched and executed to perform air conditioning in the vehicle compartment and temperature control of the battery 55. It is a thing.
 このうち、バッテリ冷却(単独)モードが本発明における被温調対象冷却(単独)モードの実施例であり、空調(優先)+バッテリ冷却モードが本発明における空調+被温調対象冷却モードの実施例となる。 Among these, the battery cooling (single) mode is an embodiment of the temperature controlled target cooling (single) mode in the present invention, and the air conditioning (priority)+battery cooling mode is the air conditioning + temperature controlled target cooling mode in the present invention. For example.
 尚、車両としては電気自動車に限らず、エンジンと走行用モータを供用する所謂ハイブリッド自動車にも本発明は有効である。また、実施例の車両用空気調和装置1を適用する車両は外部の充電器(急速充電器や通常の充電器)からバッテリ55に充電可能とされているものである。更に、前述したバッテリ55や走行用モータ、それを制御するインバータ等が本発明における車両に搭載された被温調対象となるが、以下の実施例ではバッテリ55を例に採り上げて説明する。 The present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and a driving motor. The vehicle to which the vehicle air conditioner 1 of the embodiment is applied is one in which the battery 55 can be charged from an external charger (quick charger or normal charger). Further, the battery 55, the traveling motor, the inverter controlling the same, and the like described above are the objects of temperature adjustment mounted on the vehicle according to the present invention. In the following embodiments, the battery 55 will be described as an example.
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内の空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒がマフラー5と冷媒配管13Gを介して流入し、この冷媒を車室内に放熱(冷媒の熱を放出)させるための放熱器4と、暖房時に冷媒を減圧膨張させる電動弁(電子膨張弁)から成る室外膨張弁6と、冷房時には冷媒を放熱させる放熱器として機能し、暖房時には冷媒を吸熱(冷媒に熱を吸収)させる蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる機械式膨張弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に冷媒を蒸発させて車室内外から冷媒に吸熱(冷媒に熱を吸収)させるための吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。 The vehicle air conditioner 1 of the embodiment is for performing air conditioning (heating, cooling, dehumidification, and ventilation) of a vehicle interior of an electric vehicle, and an electric compressor 2 for compressing a refrigerant, and a vehicle interior. The high-temperature and high-pressure refrigerant discharged from the compressor 2 is provided in the air flow passage 3 of the HVAC unit 10 through which air is ventilated and circulated, flows through the muffler 5 and the refrigerant pipe 13G, and radiates this refrigerant into the vehicle interior. A radiator 4 for releasing (heat of the refrigerant), an outdoor expansion valve 6 including an electric valve (electronic expansion valve) for decompressing and expanding the refrigerant during heating, and a radiator for radiating the refrigerant during cooling, Occasionally, an indoor heat exchanger 7 that exchanges heat between the refrigerant and the outside air to function as an evaporator that absorbs the heat of the refrigerant (absorbs heat in the refrigerant), and an indoor expansion that includes a mechanical expansion valve that expands the refrigerant under reduced pressure. The valve 8 and the heat absorber 9 that is provided in the air flow passage 3 to evaporate the refrigerant during cooling and dehumidification to allow the refrigerant to absorb heat from the inside and outside of the vehicle (the heat is absorbed by the refrigerant), the accumulator 12 and the like are the refrigerant. A refrigerant circuit R is formed by sequentially connecting the pipes 13.
 そして、室外膨張弁6は放熱器4から出て室外熱交換器7に流入する冷媒を減圧膨張させると共に、全閉も可能とされている。また、実施例では機械式膨張弁が使用された室内膨張弁8は、吸熱器9に流入する冷媒を減圧膨張させると共に、吸熱器9における冷媒の過熱度を調整する。 The outdoor expansion valve 6 decompresses and expands the refrigerant flowing out of the radiator 4 and flowing into the outdoor heat exchanger 7, and can be fully closed. Further, in the embodiment, the indoor expansion valve 8 using a mechanical expansion valve decompresses and expands the refrigerant flowing into the heat absorber 9, and adjusts the degree of superheat of the refrigerant in the heat absorber 9.
 尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。 The outdoor heat exchanger 7 is provided with an outdoor blower 15. The outdoor blower 15 exchanges heat between the outdoor air and the refrigerant by forcibly ventilating the outdoor air through the outdoor heat exchanger 7, whereby the outdoor air is discharged even while the vehicle is stopped (that is, the vehicle speed is 0 km/h). The heat exchanger 7 is configured to ventilate outside air.
 また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7の冷媒出口側の冷媒配管13Aは、吸熱器9に冷媒を流す際に開放される開閉弁としての電磁弁17(冷房用)を介してレシーバドライヤ部14に接続され、過冷却部16の出口側の冷媒配管13Bは逆止弁18、室内膨張弁8、及び、吸熱器用弁装置としての電磁弁35(キャビン用)を順次介して吸熱器9の冷媒入口側に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成している。また、逆止弁18は室内膨張弁8の方向が順方向とされている。 Further, the outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 sequentially on the refrigerant downstream side, and the refrigerant pipe 13A on the refrigerant outlet side of the outdoor heat exchanger 7 is used when the refrigerant flows to the heat absorber 9. The refrigerant pipe 13B on the outlet side of the supercooling unit 16 is connected to the receiver dryer unit 14 via an electromagnetic valve 17 (for cooling) as an open/close valve, and the check valve 18, the indoor expansion valve 8 and the heat absorption It is connected to the refrigerant inlet side of the heat absorber 9 through an electromagnetic valve 35 (for cabin) as a device valve device in order. The receiver dryer unit 14 and the supercooling unit 16 structurally form a part of the outdoor heat exchanger 7. Further, the check valve 18 is configured such that the direction of the indoor expansion valve 8 is the forward direction.
 また、室外熱交換器7から出た冷媒配管13Aは冷媒配管13Dに分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される開閉弁としての電磁弁21(暖房用)を介して吸熱器9の冷媒出口側の冷媒配管13Cに連通接続されている。そして、この冷媒配管13Cがアキュムレータ12の入口側に接続され、アキュムレータ12の出口側は圧縮機2の冷媒吸込側の冷媒配管13Kに接続されている。 Further, the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched into a refrigerant pipe 13D, and the branched refrigerant pipe 13D is passed through an electromagnetic valve 21 (for heating) as an opening/closing valve opened during heating. It is connected to the refrigerant pipe 13C on the refrigerant outlet side of the heat absorber 9 so as to communicate therewith. The refrigerant pipe 13C is connected to the inlet side of the accumulator 12, and the outlet side of the accumulator 12 is connected to the refrigerant pipe 13K on the refrigerant suction side of the compressor 2.
 更に、放熱器4の冷媒出口側の冷媒配管13Eにはストレーナ19が接続されており、更に、この冷媒配管13Eは室外膨張弁6の手前(冷媒上流側)で冷媒配管13Jと冷媒配管13Fに分岐し、分岐した一方の冷媒配管13Jが室外膨張弁6を介して室外熱交換器7の冷媒入口側に接続されている。また、分岐した他方の冷媒配管13Fは除湿時に開放される開閉弁としての電磁弁22(除湿用)を介し、逆止弁18の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Bに連通接続されている。 Further, a strainer 19 is connected to the refrigerant pipe 13E on the refrigerant outlet side of the radiator 4, and this refrigerant pipe 13E is connected to the refrigerant pipes 13J and 13F before the outdoor expansion valve 6 (refrigerant upstream side). One of the branched and branched refrigerant pipes 13J is connected to the refrigerant inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6. The other branched refrigerant pipe 13F is connected to the refrigerant downstream side of the check valve 18 and the refrigerant upstream side of the indoor expansion valve 8 via an electromagnetic valve 22 (for dehumidification) as an opening/closing valve that is opened during dehumidification. It is connected to the located refrigerant pipe 13B.
 これにより、冷媒配管13Fは室外膨張弁6、室外熱交換器7及び逆止弁18の直列回路に対して並列に接続されたかたちとなり、室外膨張弁6、室外熱交換器7及び逆止弁18をバイパスするバイパス回路となる。また、室外膨張弁6にはバイパス用の開閉弁としての電磁弁20が並列に接続されている。 As a result, the refrigerant pipe 13F is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve 18, and the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve are connected. It becomes a bypass circuit that bypasses 18. Further, a solenoid valve 20 as an opening/closing valve for bypass is connected in parallel to the outdoor expansion valve 6.
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環)と、車室外の空気である外気(外気導入)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。 Further, the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with respective intake ports of an outside air intake port and an inside air intake port (represented by the intake port 25 in FIG. 1). A suction switching damper 26 is provided at 25 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation) which is the air inside the vehicle compartment and the outside air (outside air introduction) which is the air outside the vehicle compartment. Further, on the air downstream side of the suction switching damper 26, an indoor blower (blower fan) 27 for feeding the introduced inside air or outside air to the air flow passage 3 is provided.
 尚、実施例の吸込切換ダンパ26は、吸込口25の外気吸込口と内気吸込口を任意の比率で開閉することにより、空気流通路3の吸熱器9に流入する空気(外気と内気)のうちの内気の比率を0~100%の間で調整することができるように構成されている(外気の比率も100%~0%の間で調整可能)。 The intake switching damper 26 of the embodiment opens and closes the outside air intake port and the inside air intake port of the intake port 25 at an arbitrary ratio to remove the air (outside air and inside air) flowing into the heat absorber 9 of the air flow passage 3. It is configured so that the ratio of inside air can be adjusted between 0 and 100% (the ratio of outside air can also be adjusted between 100% and 0%).
 また、放熱器4の風下側(空気下流側)における空気流通路3内には、実施例ではPTCヒータ(電気ヒータ)から成る補助加熱装置としての補助ヒータ23が設けられ、放熱器4を経て車室内に供給される空気を加熱することが可能とされている。更に、放熱器4の空気上流側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を放熱器4及び補助ヒータ23に通風する割合を調整するエアミックスダンパ28が設けられている。 Further, in the air flow passage 3 on the leeward side (air downstream side) of the radiator 4, an auxiliary heater 23 as an auxiliary heating device including a PTC heater (electric heater) is provided in the embodiment, and passes through the radiator 4. It is possible to heat the air supplied to the passenger compartment. Further, in the air flow passage 3 on the air upstream side of the radiator 4, the air (inside air or outside air) flowing into the air flow passage 3 and passing through the heat absorber 9 is radiated. An air mix damper 28 that adjusts the ratio of ventilation to the device 4 and the auxiliary heater 23 is provided.
 更にまた、放熱器4の空気下流側における空気流通路3には、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口からの空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。 Furthermore, in the air flow passage 3 on the air downstream side of the radiator 4, FOOT (foot), VENT (vent), and DEF (def) outlets (represented by the outlet 29 in FIG. 1 as a representative) are provided. The blower outlet 29 is provided with blower outlet switching dampers 31 for controlling the blowout of air from the blower outlets.
 更に、車両用空気調和装置1は、バッテリ55(被温調対象)に熱媒体を循環させて当該バッテリ55の温度を調整するための機器温度調整装置61を備えている。実施例の機器温度調整装置61は、バッテリ55に熱媒体を循環させるための循環装置としての循環ポンプ62と、被温調対象用熱交換器としての冷媒-熱媒体熱交換器64と、加熱装置としての熱媒体加熱ヒータ63を備え、それらとバッテリ55が熱媒体配管66にて環状に接続されている。 Further, the vehicle air conditioner 1 includes an equipment temperature adjusting device 61 for adjusting the temperature of the battery 55 by circulating a heat medium in the battery 55 (object to be temperature adjusted). The device temperature adjusting device 61 of the embodiment includes a circulation pump 62 as a circulating device for circulating a heat medium in the battery 55, a refrigerant-heat medium heat exchanger 64 as a heat exchanger for temperature adjustment target, and a heating device. A heat medium heater 63 as a device is provided, and these and the battery 55 are annularly connected by a heat medium pipe 66.
 実施例の場合、循環ポンプ62の吐出側に冷媒-熱媒体熱交換器64の熱媒体流路64Aの入口が接続され、この熱媒体流路64Aの出口は熱媒体加熱ヒータ63の入口に接続されている。この熱媒体加熱ヒータ63の出口がバッテリ55の入口に接続され、バッテリ55の出口が循環ポンプ62の吸込側に接続されている。 In the case of the embodiment, the inlet of the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64 is connected to the discharge side of the circulation pump 62, and the outlet of this heat medium passage 64A is connected to the inlet of the heat medium heater 63. Has been done. The outlet of the heat medium heating heater 63 is connected to the inlet of the battery 55, and the outlet of the battery 55 is connected to the suction side of the circulation pump 62.
 この機器温度調整装置61で使用される熱媒体としては、例えば水、HFO-1234yfのような冷媒、クーラント等の液体、空気等の気体が採用可能である。尚、実施例では水を熱媒体として採用している。また、熱媒体加熱ヒータ63はPTCヒータ等の電気ヒータから構成されている。更に、バッテリ55の周囲には例えば熱媒体が当該バッテリ55と熱交換関係で流通可能なジャケット構造が施されているものとする。 As the heat medium used in the device temperature adjusting device 61, for example, water, a refrigerant such as HFO-1234yf, a liquid such as coolant, or a gas such as air can be adopted. In the embodiment, water is used as the heat medium. The heat medium heating heater 63 is composed of an electric heater such as a PTC heater. Further, it is assumed that a jacket structure is provided around the battery 55 so that a heat medium can flow in a heat exchange relationship with the battery 55, for example.
 そして、循環ポンプ62が運転されると、循環ポンプ62から吐出された熱媒体は冷媒-熱媒体熱交換器64の熱媒体流路64Aに流入する。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は熱媒体加熱ヒータ63に至り、当該熱媒体加熱ヒータ63が発熱されている場合にはそこで加熱された後、バッテリ55に至り、熱媒体はそこでバッテリ55と熱交換する。そして、このバッテリ55と熱交換した熱媒体が循環ポンプ62に吸い込まれることで熱媒体配管66内を循環される。 When the circulation pump 62 is operated, the heat medium discharged from the circulation pump 62 flows into the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64. The heat medium exiting the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heating heater 63, and if the heat medium heating heater 63 is generating heat, the heat medium heating heater 63 is heated there, and then the battery. 55, where the heat medium exchanges heat with the battery 55. The heat medium that has exchanged heat with the battery 55 is sucked into the circulation pump 62 and circulated in the heat medium pipe 66.
 一方、冷媒回路Rの冷媒配管13Fと冷媒配管13Bとの接続部の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Bには、分岐回路としての分岐配管67の一端が接続されている。この分岐配管67には実施例では機械式の膨張弁から構成された補助膨張弁68と、被温調対象用弁装置としての電磁弁(チラー用)69が順次設けられている。補助膨張弁68は冷媒-熱媒体熱交換器64の後述する冷媒流路64Bに流入する冷媒を減圧膨張させると共に、冷媒-熱媒体熱交換器64の冷媒流路64Bにおける冷媒の過熱度を調整する。 On the other hand, in the refrigerant pipe 13B located on the refrigerant downstream side of the connecting portion between the refrigerant pipe 13F and the refrigerant pipe 13B of the refrigerant circuit R and on the refrigerant upstream side of the indoor expansion valve 8, a branch pipe 67 as a branch circuit is provided. One end is connected. In the branch pipe 67, an auxiliary expansion valve 68, which is a mechanical expansion valve in the embodiment, and an electromagnetic valve (for chiller) 69 as a valve device for the temperature-controlled object are sequentially provided. The auxiliary expansion valve 68 decompresses and expands the refrigerant flowing into the later-described refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64, and adjusts the degree of superheat of the refrigerant in the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64. To do.
 そして、分岐配管67の他端は冷媒-熱媒体熱交換器64の冷媒流路64Bに接続されており、この冷媒流路64Bの出口には冷媒配管71の一端が接続され、冷媒配管71の他端は冷媒配管13Dとの合流点より冷媒上流側(アキュムレータ12の冷媒上流側)の冷媒配管13Cに接続されている。そして、これら補助膨張弁68や電磁弁69、冷媒-熱媒体熱交換器64の冷媒流路64B等も冷媒回路Rの一部を構成すると同時に、機器温度調整装置61の一部をも構成することになる。 The other end of the branch pipe 67 is connected to the refrigerant flow passage 64B of the refrigerant-heat medium heat exchanger 64, and one end of the refrigerant pipe 71 is connected to the outlet of the refrigerant flow passage 64B. The other end is connected to the refrigerant pipe 13C on the refrigerant upstream side (refrigerant upstream side of the accumulator 12) from the confluence with the refrigerant pipe 13D. The auxiliary expansion valve 68, the electromagnetic valve 69, the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, and the like also form a part of the refrigerant circuit R and, at the same time, a part of the device temperature adjusting device 61. It will be.
 電磁弁69が開いている場合、室外熱交換器7から出た冷媒(一部又は全ての冷媒)は分岐配管67に流入し、補助膨張弁68で減圧された後、電磁弁69を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して、そこで蒸発する。冷媒は冷媒流路64Bを流れる過程で熱媒体流路64Aを流れる熱媒体から吸熱した後、冷媒配管71、冷媒配管13C、アキュムレータ12を経て冷媒配管13Kから圧縮機2に吸い込まれることになる。 When the solenoid valve 69 is open, the refrigerant (a part or all of the refrigerant) discharged from the outdoor heat exchanger 7 flows into the branch pipe 67, the pressure is reduced by the auxiliary expansion valve 68, and then the refrigerant is passed through the solenoid valve 69. -The refrigerant flows into the refrigerant channel 64B of the heat medium heat exchanger 64 and evaporates there. The refrigerant absorbs heat from the heat medium flowing through the heat medium passage 64A in the process of flowing through the refrigerant passage 64B, and then is sucked into the compressor 2 through the refrigerant pipe 13K through the refrigerant pipe 71, the refrigerant pipe 13C, and the accumulator 12.
 次に、図2は実施例の車両用空気調和装置1の制御装置11のブロック図を示している。制御装置11は、何れもプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成された空調コントローラ45及びヒートポンプコントローラ32から構成されており、これらがCAN(Controller Area Network)やLIN(Local Interconnect Network)を構成する車両通信バス65に接続されている。また、圧縮機2と補助ヒータ23、循環ポンプ62と熱媒体加熱ヒータ63も車両通信バス65に接続され、これら空調コントローラ45、ヒートポンプコントローラ32、圧縮機2、補助ヒータ23、循環ポンプ62及び熱媒体加熱ヒータ63が車両通信バス65を介してデータの送受信を行うように構成されている。 Next, FIG. 2 shows a block diagram of the control device 11 of the vehicle air conditioner 1 of the embodiment. The control device 11 includes an air-conditioning controller 45 and a heat pump controller 32 each of which includes a microcomputer, which is an example of a computer including a processor, and these include a CAN (Controller Area Network) and a LIN (Local Interconnect Network). Is connected to the vehicle communication bus 65 that constitutes the. Further, the compressor 2 and the auxiliary heater 23, the circulation pump 62 and the heat medium heating heater 63 are also connected to the vehicle communication bus 65, and the air conditioning controller 45, the heat pump controller 32, the compressor 2, the auxiliary heater 23, the circulation pump 62 and the heat generator. The medium heater 63 is configured to send and receive data via the vehicle communication bus 65.
 更に、車両通信バス65には走行を含む車両全般の制御を司る車両コントローラ72(ECU)と、バッテリ55の充放電の制御を司るバッテリコントローラ(BMS:Battery Management system)73と、GPSナビゲーション装置74が接続されている。車両コントローラ72やバッテリコントローラ73、GPSナビゲーション装置74もプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成されており、制御装置11を構成する空調コントローラ45とヒートポンプコントローラ32は、車両通信バス65を介してこれら車両コントローラ72やバッテリコントローラ73、GPSナビゲーション装置74と情報(データ)の送受信を行う構成とされている。 Further, the vehicle communication bus 65 includes a vehicle controller 72 (ECU) that controls the entire vehicle including traveling, a battery controller (BMS: Battery Management System) 73 that controls the charging and discharging of the battery 55, and a GPS navigation device 74. Are connected. The vehicle controller 72, the battery controller 73, and the GPS navigation device 74 are also configured by a microcomputer that is an example of a computer including a processor. The air conditioning controller 45 and the heat pump controller 32 that configure the control device 11 connect the vehicle communication bus 65 to each other. Information (data) is transmitted/received to/from the vehicle controller 72, the battery controller 73, and the GPS navigation device 74 via these.
 空調コントローラ45は、車両の車室内空調の制御を司る上位のコントローラであり、この空調コントローラ45の入力には、車両の外気温度Tamを検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれて吸熱器9に流入する空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、車室内に吹き出される空気の温度を検出する吹出温度センサ41と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52の各出力と、車室内の設定温度や運転モードの切り換え等の車室内の空調設定操作や情報の表示を行うための空調操作部53が接続されている。尚、図中53Aはこの空調操作部53に設けられた報知装置としてのディスプレイである。 The air conditioning controller 45 is a higher-level controller that controls the vehicle interior air conditioning. The inputs of the air conditioning controller 45 are an outside air temperature sensor 33 that detects the outside air temperature Tam of the vehicle and an outside air humidity that detects outside air humidity. A sensor 34, an HVAC suction temperature sensor 36 that detects the temperature of the air that is sucked into the air flow passage 3 from the suction port 25 and flows into the heat absorber 9, and an inside air temperature sensor 37 that detects the temperature of the air (inside air) in the vehicle compartment. An inside air humidity sensor 38 that detects the humidity of the air in the vehicle compartment, an indoor CO 2 concentration sensor 39 that detects the carbon dioxide concentration in the vehicle interior, and an outlet temperature sensor 41 that detects the temperature of the air blown into the vehicle interior. A photo sensor type solar radiation sensor 51 for detecting the amount of solar radiation into the vehicle interior, outputs of the vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, set temperature in the vehicle interior and driving. An air conditioning operation unit 53 for performing air conditioning setting operations in the vehicle interior such as mode switching and information display is connected. Incidentally, 53A in the figure is a display as an informing device provided in the air conditioning operation unit 53.
 また、空調コントローラ45の出力には、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31が接続され、それらは空調コントローラ45により制御される。 Further, the output of the air conditioning controller 45 is connected to the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, and the outlet switching damper 31, which are connected to the air conditioning controller 45. Controlled by.
 ヒートポンプコントローラ32は、主に冷媒回路Rの制御を司るコントローラであり、このヒートポンプコントローラ32の入力には、放熱器4の冷媒入口温度Tcxin(圧縮機2の吐出冷媒温度でもある)を検出する放熱器入口温度センサ43と、放熱器4の冷媒出口温度Tciを検出する放熱器出口温度センサ44と、圧縮機2の吸込冷媒温度Tsを検出する吸込温度センサ46と、放熱器4の冷媒出口側の冷媒圧力(放熱器4の圧力:放熱器圧力Pci)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9自体の温度、又は、吸熱器9により冷却された直後の空気(冷却対象)の温度:以下、吸熱器温度Te)を検出する吸熱器温度センサ48と、室外熱交換器7の出口の冷媒温度(室外熱交換器7の冷媒蒸発温度:室外熱交換器温度TXO)を検出する室外熱交換器温度センサ49と、補助ヒータ23の温度を検出する補助ヒータ温度センサ50A(運転席側)及び50B(助手席側)の各出力が接続されている。 The heat pump controller 32 is a controller that mainly controls the refrigerant circuit R, and the heat pump controller 32 has an input that radiates heat to detect the refrigerant inlet temperature Tcxin of the radiator 4 (which is also the refrigerant temperature discharged from the compressor 2 ). The inlet temperature sensor 43, the radiator outlet temperature sensor 44 that detects the refrigerant outlet temperature Tci of the radiator 4, the suction temperature sensor 46 that detects the suction refrigerant temperature Ts of the compressor 2, and the refrigerant outlet side of the radiator 4. Radiator pressure sensor 47 that detects the refrigerant pressure (pressure of radiator 4: radiator pressure Pci), and temperature of heat absorber 9 (temperature of heat absorber 9 itself, or air immediately after being cooled by heat absorber 9) Temperature of (cooling target): Heat absorber temperature sensor 48 for detecting heat absorber temperature Te, and refrigerant temperature at the outlet of the outdoor heat exchanger 7 (refrigerant evaporation temperature of the outdoor heat exchanger 7: outdoor heat exchanger temperature) Outputs of an outdoor heat exchanger temperature sensor 49 for detecting TXO) and auxiliary heater temperature sensors 50A (driver side) and 50B (passenger side) for detecting the temperature of the auxiliary heater 23 are connected.
 また、ヒートポンプコントローラ32の出力には、室外膨張弁6、電磁弁22(除湿用)、電磁弁17(冷房用)、電磁弁21(暖房用)、電磁弁20(バイパス用)、電磁弁35(キャビン用)及び電磁弁69(チラー用)の各電磁弁が接続され、それらはヒートポンプコントローラ32により制御される。尚、圧縮機2、補助ヒータ23、循環ポンプ62及び熱媒体加熱ヒータ63はそれぞれコントローラを内蔵しており、実施例では圧縮機2や補助ヒータ23、循環ポンプ62や熱媒体加熱ヒータ63のコントローラは車両通信バス65を介してヒートポンプコントローラ32とデータの送受信を行い、このヒートポンプコントローラ32によって制御される。 The output of the heat pump controller 32 includes the outdoor expansion valve 6, the solenoid valve 22 (for dehumidification), the solenoid valve 17 (for cooling), the solenoid valve 21 (for heating), the solenoid valve 20 (for bypass), and the solenoid valve 35. The electromagnetic valves (for the cabin) and the electromagnetic valve 69 (for the chiller) are connected, and they are controlled by the heat pump controller 32. The compressor 2, the auxiliary heater 23, the circulation pump 62, and the heat medium heating heater 63 each have a built-in controller, and in the embodiment, the controller of the compressor 2, the auxiliary heater 23, the circulation pump 62, and the heat medium heating heater 63. Transmits and receives data to and from the heat pump controller 32 via the vehicle communication bus 65, and is controlled by the heat pump controller 32.
 尚、機器温度調整装置61を構成する循環ポンプ62や熱媒体加熱ヒータ63はバッテリコントローラ73により制御されるようにしてもよい。更に、このバッテリコントローラ73には機器温度調整装置61の冷媒-熱媒体熱交換器64の熱媒体流路64Aの出口側の熱媒体の温度(熱媒体温度Tw:被温調対象用熱交換器により冷却される対象の温度)を検出する熱媒体温度センサ76と、バッテリ55の温度(バッテリ55自体の温度:バッテリ温度Tcell)を検出するバッテリ温度センサ77の出力が接続されている。そして、実施例ではバッテリ55の残量(蓄電量)やバッテリ55の充電に関する情報(充電中であることの情報や充電完了時間、残充電時間等)、熱媒体温度Twやバッテリ温度Tcellは、バッテリコントローラ73から車両通信バス65を介して空調コントローラ45や車両コントローラ72に送信される。尚、バッテリ55の充電時における充電完了時間や残充電時間に関する情報は、後述する急速充電器等の外部の充電器から供給される情報である。 The circulation pump 62 and the heat medium heating heater 63 that form the device temperature adjusting device 61 may be controlled by the battery controller 73. Further, in the battery controller 73, the temperature of the heat medium on the outlet side of the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 of the device temperature adjusting device 61 (heat medium temperature Tw: heat exchanger to be temperature controlled). The output of the heat medium temperature sensor 76 that detects the temperature of the object to be cooled by the battery is connected to the output of the battery temperature sensor 77 that detects the temperature of the battery 55 (the temperature of the battery 55 itself: the battery temperature Tcell). Then, in the embodiment, the remaining amount of the battery 55 (charge storage amount), information regarding charging of the battery 55 (information indicating that charging is being performed, charging completion time, remaining charging time, etc.), the heat medium temperature Tw, and the battery temperature Tcell are It is transmitted from the battery controller 73 to the air conditioning controller 45 and the vehicle controller 72 via the vehicle communication bus 65. The information regarding the charging completion time and the remaining charging time when the battery 55 is charged is information supplied from an external charger such as a quick charger described later.
 ヒートポンプコントローラ32と空調コントローラ45は車両通信バス65を介して相互にデータの送受信を行い、各センサの出力や空調操作部53にて入力された設定に基づき、各機器を制御するものであるが、この場合の実施例では外気温度センサ33、外気湿度センサ34、HVAC吸込温度センサ36、内気温度センサ37、内気湿度センサ38、室内CO2濃度センサ39、吹出温度センサ41、日射センサ51、車速センサ52、空気流通路3に流入して当該空気流通路3内を流通する空気の風量Ga(空調コントローラ45が算出)、エアミックスダンパ28による風量割合SW(空調コントローラ45が算出)、室内送風機27の電圧(BLV)、前述したバッテリコントローラ73からの情報、GPSナビゲーション装置74からの情報、空調操作部53の出力は空調コントローラ45から車両通信バス65を介してヒートポンプコントローラ32に送信され、ヒートポンプコントローラ32による制御に供される構成とされている。 The heat pump controller 32 and the air conditioning controller 45 send and receive data to and from each other via the vehicle communication bus 65, and control each device based on the output of each sensor and the setting input by the air conditioning operation unit 53. In the embodiment in this case, the outside air temperature sensor 33, the outside air humidity sensor 34, the HVAC intake temperature sensor 36, the inside air temperature sensor 37, the inside air humidity sensor 38, the indoor CO 2 concentration sensor 39, the blowout temperature sensor 41, the solar radiation sensor 51, the vehicle speed. The sensor 52, the air volume Ga of the air flowing into the air flow passage 3 and flowing in the air flow passage 3 (calculated by the air conditioning controller 45), the air flow rate SW by the air mix damper 28 (calculated by the air conditioning controller 45), the indoor blower The voltage (BLV) of 27, the information from the battery controller 73, the information from the GPS navigation device 74, and the output of the air conditioning operation unit 53 are transmitted from the air conditioning controller 45 to the heat pump controller 32 via the vehicle communication bus 65, and the heat pump It is configured to be used for control by the controller 32.
 また、ヒートポンプコントローラ32からも冷媒回路Rの制御に関するデータ(情報)が車両通信バス65を介して空調コントローラ45に送信される。尚、前述したエアミックスダンパ28による風量割合SWは、0≦SW≦1の範囲で空調コントローラ45が算出する。そして、SW=1のときはエアミックスダンパ28により、吸熱器9を経た空気の全てが放熱器4及び補助ヒータ23に通風されることになる。 The heat pump controller 32 also transmits data (information) regarding the control of the refrigerant circuit R to the air conditioning controller 45 via the vehicle communication bus 65. The air volume ratio SW by the air mix damper 28 described above is calculated by the air conditioning controller 45 in the range of 0≦SW≦1. Then, when SW=1, all of the air that has passed through the heat absorber 9 is ventilated by the radiator 4 and the auxiliary heater 23 by the air mix damper 28.
 以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。この実施例では制御装置11(空調コントローラ45、ヒートポンプコントローラ32)は、暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、及び、空調(優先)+バッテリ冷却モードの各空調運転と、バッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モードの各バッテリ冷却運転と、除霜モードを切り換えて実行する。これらが図3に示されている。 Next, the operation of the vehicle air conditioner 1 of the embodiment having the above configuration will be described. In this embodiment, the control device 11 (the air conditioning controller 45, the heat pump controller 32) controls the heating mode, the dehumidification heating mode, the dehumidification cooling mode, the cooling mode, and the air conditioning (priority)+battery cooling mode, and the battery cooling. Each battery cooling operation of (priority)+air conditioning mode and battery cooling (single) mode and defrosting mode are switched and executed. These are shown in FIG.
 このうち、暖房モードと、除湿暖房モードと、除湿冷房モードと、冷房モードと、空調(優先)+バッテリ冷却モードの各空調運転は、実施例ではバッテリ55を充電しておらず、車両のイグニッション(IGN)がONされ、空調操作部53の空調スイッチがONされている場合に実行されるものである。但し、リモート運転時(プレ空調等)にはイグニッションがOFFの場合にも実行される。また、バッテリ55を充電中でもバッテリ冷却要求が無く、空調スイッチがONされているときは実行される。一方、バッテリ冷却(優先)+空調モードと、バッテリ冷却(単独)モードの各バッテリ冷却運転は、例えば急速充電器(外部電源)のプラグを接続し、バッテリ55に充電しているときに実行されるものである。但し、バッテリ冷却(単独)モードは、バッテリ55の充電中以外にも、空調スイッチがOFFで、バッテリ冷却要求があった場合(高外気温で走行時等)には実行される。 Among these, in each of the air conditioning operations of the heating mode, the dehumidification heating mode, the dehumidification cooling mode, the cooling mode, and the air conditioning (priority)+battery cooling mode, the battery 55 is not charged in the embodiment, and the ignition of the vehicle is performed. This is executed when (IGN) is turned on and the air conditioning switch of the air conditioning operating unit 53 is turned on. However, it is executed even when the ignition is OFF during remote operation (pre-air conditioning, etc.). Further, even if the battery 55 is being charged, there is no battery cooling request, and the process is executed when the air conditioning switch is ON. On the other hand, each battery cooling operation in the battery cooling (priority)+air conditioning mode and the battery cooling (single) mode is executed, for example, when the plug of the quick charger (external power source) is connected and the battery 55 is being charged. It is something. However, the battery cooling (single) mode is executed when the air conditioning switch is OFF and there is a battery cooling request (such as when traveling at a high outside temperature) other than during charging of the battery 55.
 また、実施例ではヒートポンプコントローラ32は、イグニッションがONされているときや、イグニッションがOFFされていてもバッテリ55が充電中であるときは、機器温度調整装置61の循環ポンプ62を運転し、図4~図10に破線で示す如く熱媒体配管66内に熱媒体を循環させるものとする。更に、図3には示していないが、実施例のヒートポンプコントローラ32は、機器温度調整装置61の熱媒体加熱ヒータ63を発熱させることでバッテリ55を加熱するバッテリ加熱モードも実行する。 In addition, in the embodiment, the heat pump controller 32 operates the circulation pump 62 of the device temperature adjusting device 61 when the ignition is turned on, or when the battery 55 is being charged even when the ignition is turned off. It is assumed that the heat medium is circulated in the heat medium pipe 66 as indicated by broken lines in FIGS. 4 to 10. Further, although not shown in FIG. 3, the heat pump controller 32 of the embodiment also executes a battery heating mode for heating the battery 55 by causing the heat medium heating heater 63 of the device temperature adjusting device 61 to generate heat.
 (1)暖房モード
 先ず、図4を参照しながら暖房モードについて説明する。尚、各機器の制御はヒートポンプコントローラ32と空調コントローラ45の協働により実行されるものであるが、以下の説明ではヒートポンプコントローラ32を制御主体とし、簡略化して説明する。図4には暖房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。ヒートポンプコントローラ32により(オートモード)或いは空調コントローラ45の空調操作部53へのマニュアルの空調設定操作(マニュアルモード)により暖房モードが選択されると、ヒートポンプコントローラ32は電磁弁21を開き、電磁弁17、電磁弁20、電磁弁22、電磁弁35、電磁弁69を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
(1) Heating Mode First, the heating mode will be described with reference to FIG. The control of each device is executed by the cooperation of the heat pump controller 32 and the air conditioning controller 45, but in the following description, the heat pump controller 32 will be the control main body and will be briefly described. FIG. 4 shows how the refrigerant flows in the refrigerant circuit R in the heating mode (solid arrow). When the heating mode is selected by the heat pump controller 32 (auto mode) or the manual air conditioning setting operation (manual mode) to the air conditioning operation unit 53 of the air conditioning controller 45, the heat pump controller 32 opens the solenoid valve 21 and the solenoid valve 17 , The solenoid valve 20, the solenoid valve 22, the solenoid valve 35, and the solenoid valve 69 are closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air and condensed and liquefied.
 放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13E、13Jを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15により通風される外気中から熱を汲み上げる(吸熱)。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13D、電磁弁21を経て冷媒配管13Cに至り、更にこの冷媒配管13Cを経てアキュムレータ12に入り、そこで気液分離された後、冷媒配管13Kからガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。 The refrigerant liquefied in the radiator 4 exits the radiator 4, and then reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7. The refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15 (heat absorption). That is, the refrigerant circuit R serves as a heat pump. Then, the low-temperature refrigerant that has exited the outdoor heat exchanger 7 reaches the refrigerant pipe 13C via the refrigerant pipes 13A and 13D, the solenoid valve 21, and further enters the accumulator 12 via this refrigerant pipe 13C, where it is gas-liquid separated. After that, the circulation of sucking the gas refrigerant into the compressor 2 from the refrigerant pipe 13K is repeated. The air heated by the radiator 4 is blown out from the air outlet 29, so that the interior of the vehicle is heated.
 ヒートポンプコントローラ32は、車室内に吹き出される空気の目標温度(車室内に吹き出される空気の温度の目標値)である後述する目標吹出温度TAOから算出される目標ヒータ温度TCO(放熱器4の目標温度)から目標放熱器圧力PCOを算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、放熱器出口温度センサ44が検出する放熱器4の冷媒出口温度Tci及び放熱器圧力センサ47が検出する放熱器圧力Pciに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度を制御する。 The heat pump controller 32 calculates a target heater temperature TCO (of the radiator 4) calculated from a target outlet temperature TAO, which will be described later, which is a target temperature of air blown into the vehicle interior (a target value of the temperature of air blown into the vehicle interior). The target radiator pressure PCO is calculated from the target temperature), and the rotational speed of the compressor 2 is based on the target radiator pressure PCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. And controlling the valve opening of the outdoor expansion valve 6 based on the refrigerant outlet temperature Tci of the radiator 4 detected by the radiator outlet temperature sensor 44 and the radiator pressure Pci detected by the radiator pressure sensor 47, The degree of supercooling of the refrigerant at the outlet of the radiator 4 is controlled.
 また、ヒートポンプコントローラ32は、必要とされる暖房能力に対して放熱器4による暖房能力(加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、低外気温時等にも車室内を支障無く暖房する。 Further, when the heating capacity (heating capacity) of the radiator 4 is insufficient with respect to the required heating capacity, the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. As a result, the vehicle interior is heated without any trouble even when the outside temperature is low.
 (2)除湿暖房モード
 次に、図5を参照しながら除湿暖房モードについて説明する。図5は除湿暖房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。除湿暖房モードでは、ヒートポンプコントローラ32は電磁弁21、電磁弁22、電磁弁35を開き、電磁弁17、電磁弁20、電磁弁69は閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
(2) Dehumidification Heating Mode Next, the dehumidification heating mode will be described with reference to FIG. FIG. 5 shows how the refrigerant flows in the refrigerant circuit R in the dehumidifying and heating mode (solid arrow). In the dehumidifying and heating mode, the heat pump controller 32 opens the solenoid valve 21, the solenoid valve 22, and the solenoid valve 35, and closes the solenoid valve 17, the solenoid valve 20, and the solenoid valve 69. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air and condensed and liquefied.
 放熱器4内で液化した冷媒は放熱器4を出た後、冷媒配管13Eを経て一部は冷媒配管13Jに入り、室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15により通風される外気中から熱を汲み上げる(吸熱)。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13D、電磁弁21を経て冷媒配管13Cに至り、この冷媒配管13Cを経てアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。 After the refrigerant liquefied in the radiator 4 exits the radiator 4, a part of it enters the refrigerant pipe 13J through the refrigerant pipe 13E and reaches the outdoor expansion valve 6. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7. The refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15 (heat absorption). Then, the low-temperature refrigerant that has exited the outdoor heat exchanger 7 reaches the refrigerant pipe 13C via the refrigerant pipes 13A and 13D and the solenoid valve 21, enters the accumulator 12 via this refrigerant pipe 13C, and is separated into gas and liquid there. After that, the circulation in which the gas refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K is repeated.
 一方、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の残りは分流され、この分流された冷媒が電磁弁22を経て冷媒配管13Fに流入し、冷媒配管13Bに至る。次に、冷媒は室内膨張弁8に至り、この室内膨張弁8にて減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときに吸熱器9で生じる冷媒の吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。 On the other hand, the rest of the condensed refrigerant flowing through the radiator pipe 13E via the radiator 4 is diverted, and the diverted refrigerant flows into the refrigerant pipe 13F via the solenoid valve 22 and reaches the refrigerant pipe 13B. Next, the refrigerant reaches the indoor expansion valve 8, is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates. At this time, the water in the air blown from the indoor blower 27 is condensed and attached to the heat absorber 9 due to the heat absorbing action of the refrigerant generated in the heat absorber 9, so that the air is cooled and dehumidified.
 吸熱器9で蒸発した冷媒は、冷媒配管13Cに出て冷媒配管13Dからの冷媒(室外熱交換器7からの冷媒)と合流した後、アキュムレータ12を経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4や補助ヒータ23(発熱している場合)を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。 The refrigerant evaporated in the heat absorber 9 flows out to the refrigerant pipe 13C, joins the refrigerant from the refrigerant pipe 13D (refrigerant from the outdoor heat exchanger 7), and then is sucked into the compressor 2 from the refrigerant pipe 13K via the accumulator 12. Repeat the cycle. The air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4 and the auxiliary heater 23 (when heat is generated), so that dehumidification and heating of the vehicle interior is performed.
 ヒートポンプコントローラ32は、実施例では目標ヒータ温度TCOから算出される目標放熱器圧力PCOと放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御するか、又は、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数を制御する。このとき、ヒートポンプコントローラ32は放熱器圧力Pciによるか吸熱器温度Teによるか、何れかの演算から得られる圧縮機目標回転数の低い方を選択して圧縮機2を制御する。また、吸熱器温度Teに基づいて室外膨張弁6の弁開度を制御する。 In the embodiment, the heat pump controller 32 rotates the compressor 2 based on the target radiator pressure PCO calculated from the target heater temperature TCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. Number, or controls the number of revolutions of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is its target value. .. At this time, the heat pump controller 32 controls the compressor 2 by selecting whichever of the radiator pressure Pci and the heat absorber temperature Te, whichever has the lower target compressor rotation speed obtained from the calculation. Further, the valve opening degree of the outdoor expansion valve 6 is controlled based on the heat absorber temperature Te.
 また、ヒートポンプコントローラ32は、この除湿暖房モードにおいても必要とされる暖房能力に対して放熱器4による暖房能力(加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、低外気温時等にも車室内を支障無く除湿暖房する。 Further, when the heating capacity by the radiator 4 (heating capacity) is insufficient with respect to the heating capacity required also in the dehumidifying and heating mode, the heat pump controller 32 complements the shortage with the heat generated by the auxiliary heater 23. .. As a result, the vehicle interior is dehumidified and heated even when the outside temperature is low.
 (3)除湿冷房モード
 次に、図6を参照しながら除湿冷房モードについて説明する。図6は除湿冷房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。除湿冷房モードでは、ヒートポンプコントローラ32は電磁弁17、及び、電磁弁35を開き、電磁弁20、電磁弁21、電磁弁22、及び、電磁弁69を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
(3) Dehumidifying and Cooling Mode Next, the dehumidifying and cooling mode will be described with reference to FIG. FIG. 6 shows how the refrigerant flows in the refrigerant circuit R in the dehumidifying and cooling mode (solid arrow). In the dehumidifying and cooling mode, the heat pump controller 32 opens the solenoid valve 17 and the solenoid valve 35, and closes the solenoid valve 20, the solenoid valve 21, the solenoid valve 22, and the solenoid valve 69. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by air, and is condensed and liquefied.
 放熱器4を出た冷媒は冷媒配管13E、13Jを経て室外膨張弁6に至り、暖房モードや除湿暖房モードよりも開き気味(大きい弁開度の領域)で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入り、逆止弁18を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着し、空気は冷却され、且つ、除湿される。 The refrigerant exiting the radiator 4 reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J, and then passes through the outdoor expansion valve 6 controlled to open more (a region of a larger valve opening) than the heating mode or the dehumidifying and heating mode. It flows into the outdoor heat exchanger 7. The refrigerant that has flowed into the outdoor heat exchanger 7 is condensed by being cooled there by traveling or by the outside air ventilated by the outdoor blower 15. The refrigerant discharged from the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the electromagnetic valve 17, the receiver dryer unit 14, and the supercooling unit 16, and reaches the indoor expansion valve 8 via the check valve 18. The refrigerant is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates. Due to the heat absorbing action at this time, moisture in the air blown out from the indoor blower 27 is condensed and attached to the heat absorber 9, and the air is cooled and dehumidified.
 吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこを経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4や補助ヒータ23(発熱している場合)を通過する過程で再加熱(除湿暖房時よりも加熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。 The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is repeatedly circulated by being sucked into the compressor 2 from the refrigerant pipe 13K via the refrigerant pipe 13C. The air cooled and dehumidified by the heat absorber 9 is reheated (has a lower heating capacity than that during dehumidification heating) in the process of passing through the radiator 4 and the auxiliary heater 23 (when heat is generated). As a result, the dehumidifying and cooling of the vehicle interior is performed.
 ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)と吸熱器9の目標温度(吸熱器温度Teの目標値)である目標吸熱器温度TEOに基づき、吸熱器温度Teを目標吸熱器温度TEOにするように圧縮機2の回転数を制御すると共に、放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)と目標放熱器圧力PCO(放熱器圧力Pciの目標値)に基づき、放熱器圧力Pciを目標放熱器圧力PCOにするように室外膨張弁6の弁開度を制御することで放熱器4による必要なリヒート量(再加熱量)を得る。 The heat pump controller 32 absorbs heat based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is the target temperature of the heat absorber 9 (target value of the heat absorber temperature Te). The rotation speed of the compressor 2 is controlled so that the device temperature Te becomes the target heat absorber temperature TEO, and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47 and the target radiator pressure PCO. Based on (the target value of the radiator pressure Pci), by controlling the valve opening of the outdoor expansion valve 6 so that the radiator pressure Pci becomes the target radiator pressure PCO, the reheat amount required by the radiator 4 (reheating) Amount).
 また、ヒートポンプコントローラ32は、この除湿冷房モードにおいても必要とされる暖房能力に対して放熱器4による暖房能力(再加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、車室内の温度を下げ過ぎること無く、除湿冷房する。 Further, when the heating capacity (reheating capacity) by the radiator 4 is insufficient with respect to the heating capacity required also in the dehumidifying and cooling mode, the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. To do. As a result, dehumidifying and cooling are performed without excessively reducing the temperature inside the vehicle compartment.
 (4)冷房モード
 次に、図7を参照しながら冷房モードについて説明する。図7は冷房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。冷房モードでは、ヒートポンプコントローラ32は電磁弁17、電磁弁20、及び、電磁弁35を開き、電磁弁21、電磁弁22、及び、電磁弁69を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。尚、補助ヒータ23には通電されない。
(4) Cooling Mode Next, the cooling mode will be described with reference to FIG. 7. FIG. 7 shows how the refrigerant flows in the refrigerant circuit R in the cooling mode (solid arrow). In the cooling mode, the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, and the solenoid valve 35, and closes the solenoid valve 21, the solenoid valve 22, and the solenoid valve 69. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23. The auxiliary heater 23 is not energized.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒート(再加熱)のみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。このとき電磁弁20は開放されているので冷媒は電磁弁20を通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮液化する。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Although the air in the airflow passage 3 is ventilated through the radiator 4, since the proportion thereof is small (only for reheating (reheating) during cooling), it almost only passes through here, and the radiator 4 The discharged refrigerant reaches the refrigerant pipe 13J through the refrigerant pipe 13E. At this time, since the electromagnetic valve 20 is opened, the refrigerant passes through the electromagnetic valve 20 and flows into the outdoor heat exchanger 7 as it is, and is cooled by the traveling air or the outside air ventilated by the outdoor blower 15 to be condensed and liquefied. To do.
 室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入り、逆止弁18を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときの吸熱作用で室内送風機27から吹き出されて吸熱器9と熱交換する空気は冷却される。 The refrigerant discharged from the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16, and reaches the indoor expansion valve 8 via the check valve 18. The refrigerant is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates. Due to the heat absorbing action at this time, the air blown out from the indoor blower 27 and exchanging heat with the heat absorber 9 is cooled.
 吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこから冷媒配管13Kを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房モードにおいては、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて圧縮機2の回転数を制御する。 The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is sucked into the compressor 2 via the refrigerant pipe 13K. The air cooled by the heat absorber 9 is blown into the vehicle interior from the air outlet 29, so that the vehicle interior is cooled. In this cooling mode, the heat pump controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
 (5)空調(優先)+バッテリ冷却モード(空調+被温調対象冷却モード)
 次に、図8を参照しながら空調(優先)+バッテリ冷却モードについて説明する。図8は空調(優先)+バッテリ冷却モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。空調(優先)+バッテリ冷却モードでは、ヒートポンプコントローラ32は電磁弁17、電磁弁20、電磁弁35、及び、電磁弁69を開き、電磁弁21、及び、電磁弁22を閉じる。
(5) Air conditioning (priority) + battery cooling mode (air conditioning + temperature controlled cooling mode)
Next, the air conditioning (priority)+battery cooling mode will be described with reference to FIG. FIG. 8 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in the air conditioning (priority)+battery cooling mode. In the air conditioning (priority)+battery cooling mode, the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, the solenoid valve 35, and the solenoid valve 69, and closes the solenoid valves 21 and 22.
 そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。尚、この運転モードでは補助ヒータ23には通電されない。また、熱媒体加熱ヒータ63にも通電されない。 Then, the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23. Incidentally, the auxiliary heater 23 is not energized in this operation mode. Also, the heat medium heater 63 is not energized.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒート(再加熱)のみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。このとき電磁弁20は開放されているので冷媒は電磁弁20を通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮液化する。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Although the air in the airflow passage 3 is ventilated through the radiator 4, since the proportion thereof is small (only for reheating (reheating) during cooling), it almost only passes through here, and the radiator 4 The discharged refrigerant reaches the refrigerant pipe 13J through the refrigerant pipe 13E. At this time, since the electromagnetic valve 20 is opened, the refrigerant passes through the electromagnetic valve 20 and flows into the outdoor heat exchanger 7 as it is, and is cooled by the traveling air or the outside air ventilated by the outdoor blower 15 to be condensed and liquefied. To do.
 室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入る。この冷媒配管13Bに流入した冷媒は、逆止弁18を経た後に分流され、一方はそのまま冷媒配管13Bを流れて室内膨張弁8に至る。この室内膨張弁8に流入した冷媒はそこで減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときの吸熱作用で室内送風機27から吹き出されて吸熱器9と熱交換する空気は冷却される。 The refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16. The refrigerant flowing into the refrigerant pipe 13B is split after passing through the check valve 18, and one of the refrigerant flows through the refrigerant pipe 13B as it is to reach the indoor expansion valve 8. The refrigerant flowing into the indoor expansion valve 8 is decompressed there, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates. Due to the heat absorbing action at this time, the air blown out from the indoor blower 27 and exchanging heat with the heat absorber 9 is cooled.
 吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこから冷媒配管13Kを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。 The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is sucked into the compressor 2 via the refrigerant pipe 13K. The air cooled by the heat absorber 9 is blown into the vehicle interior from the air outlet 29, so that the vehicle interior is cooled.
 他方、逆止弁18を経た冷媒の残りは分流され、分岐配管67に流入して補助膨張弁68に至る。ここで冷媒は減圧された後、電磁弁69を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入し、そこで蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管71、冷媒配管13C及びアキュムレータ12を順次経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す(図8に実線矢印で示す)。 On the other hand, the rest of the refrigerant that has passed through the check valve 18 is split, flows into the branch pipe 67, and reaches the auxiliary expansion valve 68. Here, the refrigerant is decompressed, then flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 via the electromagnetic valve 69, and evaporates there. At this time, it exerts an endothermic effect. The refrigerant evaporated in the refrigerant flow path 64B repeats the circulation in which the refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K through the refrigerant pipe 71, the refrigerant pipe 13C and the accumulator 12 in sequence (indicated by a solid arrow in FIG. 8).
 一方、循環ポンプ62が運転されているので、この循環ポンプ62から吐出された熱媒体が熱媒体配管66内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒と熱交換し、吸熱されて熱媒体は冷却される。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は、熱媒体加熱ヒータ63に至る。但し、この運転モードでは熱媒体加熱ヒータ63は発熱されないので、熱媒体はそのまま通過してバッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は冷却されると共に、バッテリ55を冷却した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す(図8に破線矢印で示す)。 On the other hand, since the circulation pump 62 is operating, the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 66, and the refrigerant flow passage is there. The heat medium exchanges heat with the refrigerant that evaporates in 64B and absorbs heat to cool the heat medium. The heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heater 63. However, since the heat medium heater 63 does not generate heat in this operation mode, the heat medium passes through as it is to the battery 55 and exchanges heat with the battery 55. As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 is repeatedly sucked into the circulation pump 62 and repeatedly circulated (indicated by a dashed arrow in FIG. 8 ).
 この空調(優先)+バッテリ冷却モードにおいては、ヒートポンプコントローラ32は電磁弁35を開いた状態を維持し、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて後述する図12に示す如く圧縮機2の回転数を制御する。また、実施例では熱媒体温度センサ76が検出する熱媒体の温度(熱媒体温度Tw:バッテリコントローラ73から送信される)に基づき、電磁弁69を以下の如く開閉制御する。 In this air conditioning (priority)+battery cooling mode, the heat pump controller 32 maintains the electromagnetic valve 35 in an open state, and will be described later based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48. The rotation speed of the compressor 2 is controlled as shown in FIG. In the embodiment, the solenoid valve 69 is controlled to open/close as follows based on the temperature of the heat medium detected by the heat medium temperature sensor 76 (heat medium temperature Tw: transmitted from the battery controller 73).
 尚、吸熱器温度Teは、実施例における吸熱器9の温度又はそれにより冷却される対象(空気)の温度である。また、熱媒体温度Twは、実施例における冷媒-熱媒体熱交換器64(被温調対象用熱交換器)により冷却される対象(熱媒体)の温度として採用しているが、被温調対象であるバッテリ55の温度を示す指標でもある(以下、同じ)。 The heat absorber temperature Te is the temperature of the heat absorber 9 in the embodiment or the temperature of the object (air) cooled by it. The heat medium temperature Tw is adopted as the temperature of the object (heat medium) cooled by the refrigerant-heat medium heat exchanger 64 (heat exchanger for temperature adjustment) in the embodiment, but the temperature adjustment is performed. It is also an index showing the temperature of the target battery 55 (hereinafter the same).
 図13はこの空調(優先)+バッテリ冷却モードにおける電磁弁69の開閉制御のブロック図を示している。ヒートポンプコントローラ32の被温調対象用電磁弁制御部90には熱媒体温度センサ76が検出する熱媒体温度Twと、当該熱媒体温度Twの目標値としての所定の目標熱媒体温度TWOが入力される。そして、被温調対象用電磁弁制御部90は、目標熱媒体温度TWOの上下に所定の温度差を有して上限値TwULと下限値TwLLを設定し、電磁弁69を閉じている状態からバッテリ55の発熱等により熱媒体温度Twが高くなり、上限値TwULまで上昇した場合(上限値TwULを上回った場合、又は、上限値TwUL以上となった場合。以下、同じ)、電磁弁69を開放する(電磁弁69開指示)。これにより、冷媒は冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して蒸発し、熱媒体流路64Aを流れる熱媒体を冷却するので、この冷却された熱媒体によりバッテリ55は冷却される。 FIG. 13 shows a block diagram of opening/closing control of the solenoid valve 69 in this air conditioning (priority)+battery cooling mode. The heat medium temperature Tw detected by the heat medium temperature sensor 76 and a predetermined target heat medium temperature TWO as a target value of the heat medium temperature Tw are input to the temperature controlled target electromagnetic valve control unit 90 of the heat pump controller 32. It Then, the temperature controlled object solenoid valve control unit 90 sets the upper limit value TwUL and the lower limit value TwLL with a predetermined temperature difference above and below the target heat medium temperature TWO, and closes the solenoid valve 69. When the heat medium temperature Tw becomes high due to heat generation of the battery 55 and rises to the upper limit value TwUL (when it exceeds the upper limit value TwUL or becomes equal to or higher than the upper limit value TwUL. The same applies hereinafter), the solenoid valve 69 is turned on. Open (instruction to open solenoid valve 69). As a result, the refrigerant flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 and evaporates to cool the heat medium flowing through the heat medium channel 64A, so that the battery 55 is cooled by the cooled heat medium. To be done.
 その後、熱媒体温度Twが下限値TwLLまで低下した場合(下限値TwLLを下回った場合、又は、下限値TwLL以下となった場合。以下、同じ)、電磁弁69を閉じる(電磁弁69閉指示)。以後、このような電磁弁69の開閉を繰り返して、車室内の冷房を優先しながら、熱媒体温度Twを目標熱媒体温度TWOに制御し、バッテリ55の冷却を行う。 After that, when the heat medium temperature Tw falls to the lower limit value TwLL (when it falls below the lower limit value TwLL or becomes equal to or lower than the lower limit value TwLL. The same applies hereinafter), the solenoid valve 69 is closed (the solenoid valve 69 closing instruction). ). After that, the solenoid valve 69 is repeatedly opened and closed as described above to control the heat medium temperature Tw to the target heat medium temperature TWO while prioritizing the cooling of the vehicle compartment, and the battery 55 is cooled.
 (6)空調運転の切り換え
 ヒートポンプコントローラ32は下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、吹出口29から車室内に吹き出される空気の温度の目標値である。
 TAO=(Tset-Tin)×K+Tbal(f(Tset、SUN、Tam))
                                   ・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する車室内空気の温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
(6) Switching of air conditioning operation The heat pump controller 32 calculates the above-mentioned target outlet temperature TAO from the following formula (I). This target outlet temperature TAO is a target value of the temperature of the air blown into the vehicle compartment from the outlet 29.
TAO=(Tset-Tin)×K+Tbal(f(Tset, SUN, Tam))
..(I)
Here, Tset is the set temperature in the vehicle compartment set by the air conditioning operation unit 53, Tin is the temperature of the vehicle interior air detected by the inside air temperature sensor 37, K is a coefficient, Tbal is the set temperature Tset, and the solar radiation sensor 51 detects the temperature. It is a balance value calculated from the amount of solar radiation SUN to be performed and the outside air temperature Tam detected by the outside air temperature sensor 33. Then, in general, the target outlet temperature TAO is higher as the outside air temperature Tam is lower, and is decreased as the outside air temperature Tam is increased.
 そして、ヒートポンプコントローラ32は起動時には外気温度センサ33が検出する外気温度Tamと目標吹出温度TAOとに基づいて上記各空調運転のうちの何れかの空調運転を選択する。また、起動後は外気温度Tamや目標吹出温度TAO、熱媒体温度Tw等の運転条件や環境条件、設定条件の変化に応じ、前記各空調運転を選択して切り換えていく。例えば、冷房モードから空調(優先)+バッテリ冷却モードへの移行は、バッテリコントローラ73からのバッテリ冷却要求が入力されたことに基づいて実行される。この場合、バッテリコントローラ73は例えば熱媒体温度Twやバッテリ温度Tcellが所定値以上に上昇した場合にバッテリ冷却要求を出力し、ヒートポンプコントローラ32や空調コントローラ45に送信するものである。 Then, the heat pump controller 32 selects one of the above air conditioning operations based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target outlet temperature TAO at the time of startup. Further, after the startup, each of the air conditioning operations is selected and switched according to changes in operating conditions such as the outside air temperature Tam, the target outlet temperature TAO, and the heat medium temperature Tw, environmental conditions, and setting conditions. For example, the transition from the cooling mode to the air conditioning (priority)+battery cooling mode is executed based on the input of a battery cooling request from the battery controller 73. In this case, the battery controller 73 outputs a battery cooling request and sends it to the heat pump controller 32 and the air conditioning controller 45, for example, when the heat medium temperature Tw or the battery temperature Tcell rises above a predetermined value.
 (7)バッテリ冷却(優先)+空調モード
 次に、バッテリ55の充電中の動作について説明する。例えば急速充電器(外部電源)の充電用のプラグが接続され、バッテリ55が充電されているときに(これらの情報はバッテリコントローラ73から送信される)、車両のイグニッション(IGN)のON/OFFに拘わらず、バッテリ冷却要求があり、空調操作部53の空調スイッチがONされた場合、ヒートポンプコントローラ32はバッテリ冷却(優先)+空調モードを実行する。このバッテリ冷却(優先)+空調モードにおける冷媒回路Rの冷媒の流れ方は、図8に示した空調(優先)+バッテリ冷却モードの場合と同様である。
(7) Battery Cooling (Priority)+Air Conditioning Mode Next, the operation during charging of the battery 55 will be described. For example, when the plug for charging a quick charger (external power source) is connected and the battery 55 is being charged (these information is transmitted from the battery controller 73), the ignition (IGN) of the vehicle is turned on/off. Regardless of the above, if there is a battery cooling request and the air conditioning switch of the air conditioning operation unit 53 is turned on, the heat pump controller 32 executes battery cooling (priority)+air conditioning mode. The way the refrigerant flows in the refrigerant circuit R in the battery cooling (priority)+air conditioning mode is the same as in the air conditioning (priority)+battery cooling mode shown in FIG.
 但し、このバッテリ冷却(優先)+空調モードの場合、実施例ではヒートポンプコントローラ32は電磁弁69を開いた状態に維持し、熱媒体温度センサ76(バッテリコントローラ73から送信される)が検出する熱媒体温度Twに基づいて後述する図14に示す如く圧縮機2の回転数を制御する。また、実施例では吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づき、電磁弁35を以下の如く開閉制御する。 However, in the case of this battery cooling (priority)+air conditioning mode, in the embodiment, the heat pump controller 32 keeps the electromagnetic valve 69 open, and the heat detected by the heat medium temperature sensor 76 (transmitted from the battery controller 73) is detected. Based on the medium temperature Tw, the rotational speed of the compressor 2 is controlled as shown in FIG. 14 described later. In the embodiment, the solenoid valve 35 is controlled to open and close as follows based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
 図15はこのバッテリ冷却(優先)+空調モードにおける電磁弁35の開閉制御のブロック図を示している。ヒートポンプコントローラ32の吸熱器用電磁弁制御部95には吸熱器温度センサ48が検出する吸熱器温度Teと、当該吸熱器温度Teの目標値としての所定の目標吸熱器温度TEOが入力される。そして、吸熱器用電磁弁制御部95は、目標吸熱器温度TEOの上下に所定の温度差を有して上限値TeULと下限値TeLLを設定し、電磁弁35を閉じている状態から吸熱器温度Teが高くなり、上限値TeULまで上昇した場合(上限値TeULを上回った場合、又は、TeUL以上となった場合。以下、同じ)、電磁弁35を開放する(電磁弁35開指示)。これにより、冷媒は吸熱器9に流入して蒸発し、空気流通路3を流通する空気を冷却する。 FIG. 15 shows a block diagram of opening/closing control of the solenoid valve 35 in this battery cooling (priority)+air conditioning mode. The heat absorber electromagnetic valve control unit 95 of the heat pump controller 32 is input with the heat absorber temperature Te detected by the heat absorber temperature sensor 48 and a predetermined target heat absorber temperature TEO as a target value of the heat absorber temperature Te. Then, the heat absorber electromagnetic valve control unit 95 sets the upper limit value TeUL and the lower limit value TeLL with a predetermined temperature difference above and below the target heat absorber temperature TEO, and sets the heat absorber temperature from the state in which the solenoid valve 35 is closed. When Te increases and rises to the upper limit value TeUL (when it exceeds the upper limit value TeUL or when it becomes equal to or higher than TeUL. The same applies hereinafter), the solenoid valve 35 is opened (instruction to open the solenoid valve 35). As a result, the refrigerant flows into the heat absorber 9 and evaporates to cool the air flowing through the air flow passage 3.
 その後、吸熱器温度Teが下限値TeLLまで低下した場合(下限値TeLLを下回った場合、又は、下限値TeLL以下となった場合。以下、同じ)、電磁弁35を閉じる(電磁弁35閉指示)。以後、このような電磁弁35の開閉を繰り返して、バッテリ55の冷却を優先しながら、吸熱器温度Teを目標吸熱器温度TEOに制御し、車室内の冷房を行う。 After that, when the heat absorber temperature Te decreases to the lower limit value TeLL (when it falls below the lower limit value TeLL or becomes equal to or lower than the lower limit value TeLL. The same applies hereinafter), the solenoid valve 35 is closed (the solenoid valve 35 closing instruction). ). Thereafter, such opening/closing of the electromagnetic valve 35 is repeated to give priority to the cooling of the battery 55, and the heat absorber temperature Te is controlled to the target heat absorber temperature TEO to cool the vehicle interior.
 (8)バッテリ冷却(単独)モード(被温調対象冷却(単独)モード)
 次に、イグニッションのON/OFFに拘わらず、空調操作部53の空調スイッチがOFFされた状態で、急速充電器の充電用のプラグが接続され、バッテリ55が充電されているとき、バッテリ冷却要求があった場合、ヒートポンプコントローラ32はバッテリ冷却(単独)モードを実行する。但し、バッテリ55の充電中以外にも、空調スイッチがOFFで、バッテリ冷却要求があった場合(高外気温で走行時等)には実行される。尚、ヒートポンプコントローラ32は、空調(優先)+バッテリ冷却モードからもこのバッテリ冷却(単独)モードに移行する場合があるが、それについては後に詳述する。
(8) Battery cooling (independent) mode (controlled cooling target (independent) mode)
Next, regardless of whether the ignition is ON or OFF, when the air conditioning switch of the air conditioning operation unit 53 is OFF, the charging plug of the quick charger is connected, and the battery 55 is charged, the battery cooling request is issued. If there is, the heat pump controller 32 executes the battery cooling (single) mode. However, it is executed when the air conditioning switch is OFF and there is a battery cooling request (eg, when traveling at a high outside air temperature) other than during charging of the battery 55. The heat pump controller 32 may shift from the air conditioning (priority)+battery cooling mode to this battery cooling (single) mode, which will be described in detail later.
 図9はこのバッテリ冷却(単独)モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。バッテリ冷却(単独)モードでは、ヒートポンプコントローラ32は電磁弁17、電磁弁20、及び、電磁弁69を開き、電磁弁21、電磁弁22、及び、電磁弁35を閉じる。そして、圧縮機2、及び、室外送風機15を運転する。尚、室内送風機27は運転されず、補助ヒータ23にも通電されない。また、この運転モードでは熱媒体加熱ヒータ63も通電されない。 FIG. 9 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in the battery cooling (single) mode. In the battery cooling (single) mode, the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, and the solenoid valve 69, and closes the solenoid valve 21, the solenoid valve 22, and the solenoid valve 35. Then, the compressor 2 and the outdoor blower 15 are operated. The indoor blower 27 is not operated and the auxiliary heater 23 is not energized. Further, the heat medium heater 63 is not energized in this operation mode.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されないので、ここは通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。このとき、電磁弁20は開放されているので冷媒は電磁弁20を通過し、そのまま室外熱交換器7に流入し、そこで室外送風機15により通風される外気によって空冷され、凝縮液化する。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is not ventilated to the radiator 4, it passes only here, and the refrigerant exiting the radiator 4 reaches the refrigerant pipe 13J via the refrigerant pipe 13E. At this time, since the electromagnetic valve 20 is open, the refrigerant passes through the electromagnetic valve 20, flows into the outdoor heat exchanger 7 as it is, and is cooled by air by the outside air ventilated by the outdoor blower 15 to be condensed and liquefied.
 室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入る。この冷媒配管13Bに流入した冷媒は、逆止弁18を経た後、全てが分岐配管67に流入して補助膨張弁68に至る。ここで冷媒は減圧された後、電磁弁69を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入し、そこで蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管71、冷媒配管13C及びアキュムレータ12を順次経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す(図9に実線矢印で示す)。 The refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16. After passing through the check valve 18, all of the refrigerant flowing into the refrigerant pipe 13B flows into the branch pipe 67 and reaches the auxiliary expansion valve 68. Here, the refrigerant is decompressed, then flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 via the electromagnetic valve 69, and evaporates there. At this time, it exerts an endothermic effect. The refrigerant evaporated in the refrigerant flow path 64B repeats the circulation in which the refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K through the refrigerant pipe 71, the refrigerant pipe 13C and the accumulator 12 in sequence (shown by a solid arrow in FIG. 9).
 一方、循環ポンプ62が運転されているので、この循環ポンプ62から吐出された熱媒体が熱媒体配管66内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒により吸熱され、熱媒体は冷却されるようになる。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は、熱媒体加熱ヒータ63に至る。但し、この運転モードでは熱媒体加熱ヒータ63は発熱されないので、熱媒体はそのまま通過してバッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は冷却されると共に、バッテリ55を冷却した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す(図9に破線矢印で示す)。 On the other hand, since the circulation pump 62 is operating, the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 66, and the refrigerant flow passage is there. The heat medium is cooled by being absorbed by the refrigerant evaporated in 64B. The heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heater 63. However, since the heat medium heater 63 does not generate heat in this operation mode, the heat medium passes through as it is to the battery 55 and exchanges heat with the battery 55. As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 is repeatedly circulated by being sucked into the circulation pump 62 (indicated by a dashed arrow in FIG. 9 ).
 このバッテリ冷却(単独)モードにおいても、ヒートポンプコントローラ32は熱媒体温度センサ76が検出する熱媒体温度Twに基づいて後述する如く圧縮機2の回転数を制御することにより、バッテリ55を冷却する。 Even in this battery cooling (single) mode, the heat pump controller 32 cools the battery 55 by controlling the rotation speed of the compressor 2 as described later based on the heat medium temperature Tw detected by the heat medium temperature sensor 76.
 (9)除霜モード
 次に、図10を参照しながら室外熱交換器7の除霜モードについて説明する。図10は除霜モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。前述した如く暖房モードでは、室外熱交換器7では冷媒が蒸発し、外気から吸熱して低温となるため、室外熱交換器7には外気中の水分が霜となって付着する。
(9) Defrost Mode Next, the defrost mode of the outdoor heat exchanger 7 will be described with reference to FIG. 10. FIG. 10 shows how the refrigerant flows in the refrigerant circuit R in the defrosting mode (solid arrow). As described above, in the heating mode, the refrigerant evaporates in the outdoor heat exchanger 7 and absorbs heat from the outside air to reach a low temperature, so that the moisture in the outside air adheres to the outside heat exchanger 7 as frost.
 そこで、ヒートポンプコントローラ32は室外熱交換器温度センサ49が検出する室外熱交換器温度TXO(室外熱交換器7における冷媒蒸発温度)と、室外熱交換器7の無着霜時における冷媒蒸発温度TXObaseとの差ΔTXO(=TXObase-TXO)を算出しており、室外熱交換器温度TXOが無着霜時における冷媒蒸発温度TXObaseより低下して、その差ΔTXOが所定値以上に拡大した状態が所定時間継続した場合、室外熱交換器7に着霜しているものと判定して所定の着霜フラグをセットする。 Therefore, the heat pump controller 32 detects the outdoor heat exchanger temperature TXO detected by the outdoor heat exchanger temperature sensor 49 (refrigerant evaporation temperature in the outdoor heat exchanger 7) and the refrigerant evaporation temperature TXObase when the outdoor heat exchanger 7 is not frosted. And a difference ΔTXO (=TXObase−TXO) is calculated, and the condition in which the outdoor heat exchanger temperature TXO is lower than the refrigerant evaporation temperature TXObase during non-frosting and the difference ΔTXO is increased to a predetermined value or more is predetermined. When the time has continued, it is determined that the outdoor heat exchanger 7 is frosted, and a predetermined frosting flag is set.
 そして、この着霜フラグがセットされており、空調操作部53の空調スイッチがOFFされた状態で、急速充電器の充電用のプラグが接続され、バッテリ55が充電されるとき、ヒートポンプコントローラ32は以下の如く室外熱交換器7の除霜モードを実行する。 When the frost flag is set and the air conditioning switch of the air conditioning operation unit 53 is turned off, the charging plug of the quick charger is connected and the battery 55 is charged, the heat pump controller 32 The defrosting mode of the outdoor heat exchanger 7 is executed as follows.
 ヒートポンプコントローラ32はこの除霜モードでは、冷媒回路Rを前述した暖房モードの状態とした上で、室外膨張弁6の弁開度を全開とする。そして、圧縮機2を運転し、当該圧縮機2から吐出された高温の冷媒を放熱器4、室外膨張弁6を経て室外熱交換器7に流入させ、当該室外熱交換器7の着霜を融解させる(図10)。そして、ヒートポンプコントローラ32は室外熱交換器温度センサ49が検出する室外熱交換器温度TXOが所定の除霜終了温度(例えば、+3℃等)より高くなった場合、室外熱交換器7の除霜が完了したものとして除霜モードを終了する。 In this defrosting mode, the heat pump controller 32 puts the refrigerant circuit R into the heating mode described above and fully opens the outdoor expansion valve 6. Then, the compressor 2 is operated, the high-temperature refrigerant discharged from the compressor 2 is caused to flow into the outdoor heat exchanger 7 via the radiator 4 and the outdoor expansion valve 6, and the frost formation on the outdoor heat exchanger 7 is prevented. Thaw (Figure 10). Then, the heat pump controller 32 defrosts the outdoor heat exchanger 7 when the outdoor heat exchanger temperature TXO detected by the outdoor heat exchanger temperature sensor 49 becomes higher than a predetermined defrosting end temperature (for example, +3° C.). Is completed and the defrosting mode is terminated.
 (10)バッテリ加熱モード
 また、空調運転を実行しているとき、或いは、バッテリ55を充電しているとき、ヒートポンプコントローラ32はバッテリ加熱モードを実行する。このバッテリ加熱モードでは、ヒートポンプコントローラ32は循環ポンプ62を運転し、熱媒体加熱ヒータ63に通電する。尚、電磁弁69は閉じる。
(10) Battery Heating Mode Further, the heat pump controller 32 executes the battery heating mode when the air conditioning operation is executed or when the battery 55 is charged. In this battery heating mode, the heat pump controller 32 operates the circulation pump 62 and energizes the heat medium heating heater 63. The solenoid valve 69 is closed.
 これにより、循環ポンプ62から吐出された熱媒体は熱媒体配管66内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこを通過して熱媒体加熱ヒータ63に至る。このとき熱媒体加熱ヒータ63は発熱されているので、熱媒体は熱媒体加熱ヒータ63により加熱されて温度上昇した後、バッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は加熱されると共に、バッテリ55を加熱した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す。 As a result, the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 through the heat medium pipe 66, and passes therethrough to reach the heat medium heater 63. At this time, since the heat medium heating heater 63 is generating heat, the heat medium is heated by the heat medium heating heater 63 and its temperature rises, and then reaches the battery 55 and exchanges heat with the battery 55. Thereby, the battery 55 is heated, and the heat medium after heating the battery 55 is sucked into the circulation pump 62 and repeats circulation.
 このバッテリ加熱モードにおいては、ヒートポンプコントローラ32は熱媒体温度センサ76が検出する熱媒体温度Twに基づいて熱媒体加熱ヒータ63の通電を制御することにより、熱媒体温度Twを所定の目標熱媒体温度TWOに調整し、バッテリ55を加熱する。 In this battery heating mode, the heat pump controller 32 controls the energization of the heat medium heating heater 63 based on the heat medium temperature Tw detected by the heat medium temperature sensor 76 to set the heat medium temperature Tw to the predetermined target heat medium temperature. Adjust to TWO and heat battery 55.
 (11)ヒートポンプコントローラ32による圧縮機2の制御
 また、ヒートポンプコントローラ32は、暖房モードでは放熱器圧力Pciに基づき、図11の制御ブロック図により圧縮機2の目標回転数(圧縮機目標回転数)TGNChを算出し、除湿冷房モード、冷房モード、空調(優先)+バッテリ冷却モードでは、吸熱器温度Teに基づき、図12の制御ブロック図により圧縮機2の目標回転数(圧縮機目標回転数)TGNCcを算出する。尚、除湿暖房モードでは圧縮機目標回転数TGNChと圧縮機目標回転数TGNCcのうちの低い方向を選択する。また、バッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モードでは、熱媒体温度Twに基づき、図13の制御ブロック図により圧縮機2の目標回転数(圧縮機目標回転数)TGNCwを算出する。
(11) Control of Compressor 2 by Heat Pump Controller 32 Further, the heat pump controller 32 is based on the radiator pressure Pci in the heating mode, and the target rotation speed of the compressor 2 (compressor target rotation speed) is shown in the control block diagram of FIG. The TGNCh is calculated, and in the dehumidifying cooling mode, the cooling mode, and the air conditioning (priority)+battery cooling mode, the target rotation speed of the compressor 2 (compressor target rotation speed) based on the heat absorber temperature Te according to the control block diagram of FIG. Calculate TGNCc. In the dehumidifying and heating mode, the lower direction of the compressor target speed TGNCh and the compressor target speed TGNc is selected. In the battery cooling (priority)+air conditioning mode and the battery cooling (single) mode, the target rotation speed (compressor target rotation speed) TGNCw of the compressor 2 is calculated based on the heat medium temperature Tw by the control block diagram of FIG. To do.
 (11-1)放熱器圧力Pciに基づく圧縮機目標回転数TGNChの算出
 先ず、図11を用いて放熱器圧力Pciに基づく圧縮機2の制御について詳述する。図11は放熱器圧力Pciに基づいて圧縮機2の目標回転数(圧縮機目標回転数)TGNChを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F(フィードフォワード)操作量演算部78は外気温度センサ33から得られる外気温度Tamと、室内送風機27のブロワ電圧BLVと、SW=(TAO-Te)/(Thp-Te)で得られるエアミックスダンパ28による風量割合SWと、放熱器4の出口における冷媒の過冷却度SCの目標値である目標過冷却度TGSCと、ヒータ温度Thpの目標値である前述した目標ヒータ温度TCOと、放熱器4の圧力の目標値である目標放熱器圧力PCOに基づいて圧縮機目標回転数のF/F操作量TGNChff
を算出する。
(11-1) Calculation of Compressor Target Rotational Speed TGNCh Based on Radiator Pressure Pci First, the control of the compressor 2 based on the radiator pressure Pci will be described in detail with reference to FIG. FIG. 11 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCh of the compressor 2 based on the radiator pressure Pci. The F/F (feed forward) manipulated variable calculation unit 78 of the heat pump controller 32 uses the outside air temperature Tam obtained from the outside air temperature sensor 33, the blower voltage BLV of the indoor blower 27, and SW=(TAO-Te)/(Thp-Te). ) The air flow rate SW by the air mix damper 28, the target supercooling degree TGSC which is the target value of the supercooling degree SC of the refrigerant at the outlet of the radiator 4, and the above-mentioned target heater which is the target value of the heater temperature Thp. Based on the temperature TCO and the target radiator pressure PCO which is the target value of the pressure of the radiator 4, the F/F operation amount TGNChff of the compressor target rotation speed is calculated.
To calculate.
 尚、ヒータ温度Thpは放熱器4の風下側の空気温度(推定値)であり、放熱器圧力センサ47が検出する放熱器圧力Pciと放熱器出口温度センサ44が検出する放熱器4の冷媒出口温度Tciから算出(推定)する。また、過冷却度SCは放熱器入口温度センサ43と放熱器出口温度センサ44が検出する放熱器4の冷媒入口温度Tcxinと冷媒出口温度Tciから算出される。 The heater temperature Thp is the air temperature (estimated value) on the leeward side of the radiator 4, and the radiator pressure Pci detected by the radiator pressure sensor 47 and the refrigerant outlet of the radiator 4 detected by the radiator outlet temperature sensor 44. It is calculated (estimated) from the temperature Tci. The degree of supercooling SC is calculated from the refrigerant inlet temperature Tcxin and the refrigerant outlet temperature Tci of the radiator 4 detected by the radiator inlet temperature sensor 43 and the radiator outlet temperature sensor 44.
 前記目標放熱器圧力PCOは上記目標過冷却度TGSCと目標ヒータ温度TCOに基づいて目標値演算部79が算出する。更に、F/B(フィードバック)操作量演算部81はこの目標放熱器圧力PCOと放熱器圧力Pciに基づくPID演算若しくはPI演算により圧縮機目標回転数のF/B操作量TGNChfbを算出する。そして、F/F操作量演算部78が算出したF/F操作量TGNChffとF/B操作量演算部81が算出したF/B操作量TGNChfbは加算器82で加算され、TGNCh00としてリミット設定部83に入力される。 The target radiator pressure PCO is calculated by the target value calculator 79 based on the target supercooling degree TGSC and the target heater temperature TCO. Further, the F/B (feedback) manipulated variable calculation unit 81 calculates the F/B manipulated variable TGNChfb of the compressor target rotational speed by PID calculation or PI calculation based on the target radiator pressure PCO and the radiator pressure Pci. Then, the F/F operation amount TGNChff calculated by the F/F operation amount calculation unit 78 and the F/B operation amount TGNChfb calculated by the F/B operation amount calculation unit 81 are added by the adder 82 to obtain a limit setting unit as TGNCh00. 83 is input.
 リミット設定部83では制御上の下限回転数ECNpdLimLoと上限回転数ECNpdLimHiのリミットが付けられてTGNCh0とされた後、圧縮機OFF制御部84を経て圧縮機目標回転数TGNChとして決定される。即ち、圧縮機2の回転数は上限回転数ECNpdLimHi以下に制限される。通常モードではヒートポンプコントローラ32は、この放熱器圧力Pciに基づいて算出された圧縮機目標回転数TGNChにより、放熱器圧力Pciが目標放熱器圧力PCOになるように圧縮機2の運転を制御する。 In the limit setting unit 83, the control lower limit speed ECNpdLimLo and the upper limit speed ECNpdLimHi are set to TGNCh0, and then the compressor OFF control unit 84 is used to determine the target compressor speed TGNCh. That is, the rotation speed of the compressor 2 is limited to the upper limit rotation speed ECNpdLimHi or lower. In the normal mode, the heat pump controller 32 controls the operation of the compressor 2 so that the radiator pressure Pci becomes the target radiator pressure PCO by the compressor target rotation speed TGNCh calculated based on the radiator pressure Pci.
 尚、圧縮機OFF制御部84は、圧縮機目標回転数TGNChが上述した下限回転数ECNpdLimLoとなり、放熱器圧力Pciが目標放熱器圧力PCOの上下に設定された所定の上限値PULと下限値PLLのうちの上限値PULまで上昇した状態(上限値PULを上回った状態、又は、上限値PUL以上となった状態。以下、同じ)が所定時間th1継続した場合、圧縮機2を停止させて圧縮機2をON-OFF制御するON-OFFモードに入る。 The compressor OFF control unit 84 determines that the compressor target rotation speed TGNCh becomes the above-described lower limit rotation speed ECNpdLimLo, and the radiator pressure Pci is a predetermined upper limit value PUL and lower limit value PLL set above and below the target radiator pressure PCO. If the state of rising up to the upper limit value PUL (a state of exceeding the upper limit value PUL or a state of becoming equal to or more than the upper limit value PUL. The same applies hereinafter) continues for a predetermined time th1, the compressor 2 is stopped and compression is performed. The machine enters the ON-OFF mode, which controls the ON-OFF of the machine 2.
 この圧縮機2のON-OFFモードでは、放熱器圧力Pciが下限値PLLまで低下した場合(下限値PLLを下回った場合、又は、下限値PLL以下となった場合。以下、同じ)、圧縮機2を起動して圧縮機目標回転数TGNChを下限回転数ECNpdLimLoとして運転し、その状態で放熱器圧力Pciが上限値PULまで上昇した場合は圧縮機2を再度停止させる。即ち、下限回転数ECNpdLimLoでの圧縮機2の運転(ON)と、停止(OFF)を繰り返す。そして、放熱器圧力Pciが下限値PULまで低下し、圧縮機2を起動した後、放熱器圧力Pciが下限値PULより高くならない状態が所定時間th2継続した場合、圧縮機2のON-OFFモードを終了し、通常モードに復帰するものである。 In the ON-OFF mode of the compressor 2, when the radiator pressure Pci drops to the lower limit value PLL (when it falls below the lower limit value PLL or becomes less than or equal to the lower limit value PLL. The same applies hereinafter), the compressor 2 is started to operate the compressor target rotation speed TGNCh as the lower limit rotation speed ECNpdLimLo, and when the radiator pressure Pci rises to the upper limit value PUL in that state, the compressor 2 is stopped again. That is, the operation (ON) and the stop (OFF) of the compressor 2 at the lower limit rotation speed ECNpdLimLo are repeated. When the radiator pressure Pci decreases to the lower limit value PUL and the compressor 2 is started, and the radiator pressure Pci does not become higher than the lower limit value PUL for a predetermined time th2, the compressor 2 is turned on and off. Is completed and the normal mode is restored.
 (11-2)吸熱器温度Teに基づく圧縮機目標回転数TGNCcの算出
 次に、図12を用いて吸熱器温度Teに基づく圧縮機2の制御について詳述する。図12は吸熱器温度Teに基づいて圧縮機2の目標回転数(圧縮機目標回転数)TGNCcを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F操作量演算部86は外気温度Tamと、空気流通路3内を流通する空気の風量Ga(室内送風機27のブロワ電圧BLVでもよい)と、目標放熱器圧力PCOと、吸熱器温度Teの目標値である目標吸熱器温度TEOに基づいて圧縮機目標回転数のF/F操作量TGNCcffを算出する。
(11-2) Calculation of Compressor Target Rotational Speed TGNCc Based on Heat Absorber Temperature Te Next, the control of the compressor 2 based on the heat absorber temperature Te will be described in detail with reference to FIG. FIG. 12 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCc of the compressor 2 based on the heat absorber temperature Te. The F/F operation amount calculation unit 86 of the heat pump controller 32 has an outside air temperature Tam, an air flow amount Ga of air flowing through the air flow passage 3 (may be the blower voltage BLV of the indoor blower 27), a target radiator pressure PCO, The F/F manipulated variable TGNCcff of the compressor target rotation speed is calculated based on the target heat absorber temperature TEO which is the target value of the heat absorber temperature Te.
 また、F/B操作量演算部87は目標吸熱器温度TEOと吸熱器温度Teに基づくPID演算若しくはPI演算により圧縮機目標回転数のF/B操作量TGNCcfbを算出する。そして、F/F操作量演算部86が算出したF/F操作量TGNCcffとF/B操作量演算部87が算出したF/B操作量TGNCcfbは加算器88で加算され、TGNCc00としてリミット設定部89に入力される。 The F/B manipulated variable calculation unit 87 also calculates the F/B manipulated variable TGNCcfb of the compressor target rotation speed by PID calculation or PI calculation based on the target heat absorber temperature TEO and the heat absorber temperature Te. Then, the F/F operation amount TGNCcff calculated by the F/F operation amount calculation unit 86 and the F/B operation amount TGNCcfb calculated by the F/B operation amount calculation unit 87 are added by the adder 88 to obtain a limit setting unit as TGNCc00. Input to 89.
 リミット設定部89では制御上の下限回転数TGNCcLimLoと上限回転数TGNCcLimHiのリミットが付けられてTGNCc0とされた後、圧縮機OFF制御部91を経て圧縮機目標回転数TGNCcとして決定される。従って、圧縮機2の回転数は上限回転数TGNCcLimHi以下に制限される。但し、この上限回転数TGNCcLimHiは後述する如くヒートポンプコントローラ32により変更される。また、加算器88で加算された値TGNCc00が上限回転数TGNCcLimHiと下限回転数TGNCcLimLo以内であり、後述するON-OFFモードにならなければ、この値TGNCc00が圧縮機目標回転数TGNCc(圧縮機2の回転数となる)。通常モードではヒートポンプコントローラ32は、この吸熱器温度Teに基づいて算出された圧縮機目標回転数TGNCcにより、吸熱器温度Teが目標吸熱器温度TEOになるように圧縮機2の運転を制御する。 In the limit setting unit 89, the lower limit speed TGNCcLimLo for control and the upper limit speed TGNCcLimHi are set to TGNCc0, and then the compressor OFF control unit 91 is used to determine the target compressor speed TGNCc. Therefore, the rotation speed of the compressor 2 is limited to the upper limit rotation speed TGNCcLimHi or less. However, the upper limit rotation speed TGNCcLimHi is changed by the heat pump controller 32 as described later. Further, if the value TGNCc00 added by the adder 88 is within the upper limit rotation speed TGNCcLimHi and the lower limit rotation speed TGNCcLimLo and the ON-OFF mode described later does not occur, this value TGNCc00 is the target compressor rotation speed TGNCc (compressor 2 Will be the number of rotations). In the normal mode, the heat pump controller 32 controls the operation of the compressor 2 so that the heat absorber temperature Te becomes the target heat absorber temperature TEO by the compressor target rotation speed TGNCc calculated based on the heat absorber temperature Te.
 尚、圧縮機OFF制御部91は、圧縮機目標回転数TGNCcが上述した下限回転数TGNCcLimLoとなり、吸熱器温度Teが目標吸熱器温度TEOの上下に設定された上限値TeULと下限値TeLLのうちの下限値TeLLまで低下した状態が所定時間tc1継続した場合、圧縮機2を停止させて圧縮機2をON-OFF制御するON-OFFモードに入る。 The compressor OFF control unit 91 determines that the compressor target rotation speed TGNCc becomes the above-described lower limit rotation speed TGNCcLimLo, and the heat absorber temperature Te is set between the upper limit value TeUL and the lower limit value TeLL set above and below the target heat absorber temperature TEO. When the state in which the lower limit value TeLL has decreased to the predetermined time tc1 continues for a predetermined time tc1, the compressor 2 is stopped and the ON-OFF mode in which the compressor 2 is ON-OFF controlled is entered.
 この場合の圧縮機2のON-OFFモードでは、吸熱器温度Teが上限値TeULまで上昇した場合、圧縮機2を起動して圧縮機目標回転数TGNCcを下限回転数TGNCcLimLoとして運転し、その状態で吸熱器温度Teが下限値TeLLまで低下した場合は圧縮機2を再度停止させる。即ち、下限回転数TGNCcLimLoでの圧縮機2の運転(ON)と、停止(OFF)を繰り返す。そして、吸熱器温度Teが上限値TeULまで上昇し、圧縮機2を起動した後、吸熱器温度Teが上限値TeULより低くならない状態が所定時間tc2継続した場合、この場合の圧縮機2のON-OFFモードを終了し、通常モードに復帰するものである。 In the ON-OFF mode of the compressor 2 in this case, when the heat absorber temperature Te rises to the upper limit value TeUL, the compressor 2 is started and the compressor target rotation speed TGNCc is operated as the lower limit rotation speed TGNCcLimLo, and the state is maintained. When the heat absorber temperature Te has dropped to the lower limit TeLL, the compressor 2 is stopped again. That is, the operation (ON) and the stop (OFF) of the compressor 2 at the lower limit rotation speed TGNCcLimLo are repeated. Then, after the heat absorber temperature Te rises to the upper limit TeUL and the compressor 2 is started, if the heat absorber temperature Te does not become lower than the upper limit TeUL for a predetermined time tc2, the compressor 2 in this case is turned on. -Ends the OFF mode and returns to the normal mode.
 (11-3)熱媒体温度Twに基づく圧縮機目標回転数TGNCwの算出
 次に、図14を用いて熱媒体温度Twに基づく圧縮機2の制御について詳述する。図14は熱媒体温度Twに基づいて圧縮機2の目標回転数(圧縮機目標回転数)TGNCwを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F操作量演算部92は外気温度Tamと、機器温度調整装置61内の熱媒体の流量Gw(循環ポンプ62の出力から算出される)と、バッテリ55の発熱量(バッテリコントローラ73から送信される)と、バッテリ温度Tcell(バッテリコントローラ73から送信される)と、熱媒体温度Twの目標値である目標熱媒体温度TWOに基づいて圧縮機目標回転数のF/F操作量TGNCcwffを算出する。
(11-3) Calculation of Compressor Target Rotational Speed TGNCw Based on Heat Medium Temperature Tw Next, the control of the compressor 2 based on the heat medium temperature Tw will be described in detail with reference to FIG. FIG. 14 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCw of the compressor 2 based on the heat medium temperature Tw. The F/F operation amount calculation unit 92 of the heat pump controller 32 uses the outside air temperature Tam, the flow rate Gw of the heat medium in the device temperature adjustment device 61 (calculated from the output of the circulation pump 62), and the heat generation amount of the battery 55 (battery). Controller 73), battery temperature Tcell (transmitted from battery controller 73), and target heat medium temperature TWO, which is a target value of heat medium temperature Tw, based on the F/F operation of the compressor target rotation speed. Calculate the amount TGNCcwff.
 また、F/B操作量演算部93は目標熱媒体温度TWOと熱媒体温度Tw(バッテリコントローラ73から送信される)に基づくPID演算若しくはPI演算により圧縮機目標回転数のF/B操作量TGNCwfbを算出する。そして、F/F操作量演算部92が算出したF/F操作量TGNCwffとF/B操作量演算部93が算出したF/B操作量TGNCwfbは加算器94で加算され、TGNCw00としてリミット設定部96に入力される。 Further, the F/B manipulated variable calculation unit 93 performs a PID calculation or a PI calculation based on the target heat medium temperature TWO and the heat medium temperature Tw (transmitted from the battery controller 73) to determine the F/B manipulated variable TGNCwfb of the compressor target rotation speed. To calculate. Then, the F/F operation amount TGNCwff calculated by the F/F operation amount calculation unit 92 and the F/B operation amount TGNCwfb calculated by the F/B operation amount calculation unit 93 are added by the adder 94 to obtain a limit setting unit as TGNCw00. 96 is input.
 リミット設定部96では制御上の下限回転数TGNCwLimLoと上限回転数TGNCwLimHiのリミットが付けられてTGNCw0とされた後、圧縮機OFF制御部97を経て圧縮機目標回転数TGNCwとして決定される。従って、圧縮機2の回転数は上限回転数TGNCwLimHi以下に制限される。但し、この上限回転数TGNCwLimHiは後述する如くヒートポンプコントローラ32により変更される。また、加算器94で加算された値TGNCw00が上限回転数TGNCwLimHiと下限回転数TGNCwLimLo以内であり、後述するON-OFFモードにならなければ、この値TGNCw00が圧縮機目標回転数TGNCw(圧縮機2の回転数となる)。通常モードではヒートポンプコントローラ32は、この熱媒体温度Twに基づいて算出された圧縮機目標回転数TGNCwにより、熱媒体温度Twが目標熱媒体温度TWOになるように圧縮機2の運転を制御する。 In the limit setting unit 96, the lower limit rotational speed TGNCwLimLo and the upper limit rotational speed TGNCwLimHi in control are set to TGNCw0, and then the compressor OFF control unit 97 is used to determine the target compressor rotational speed TGNCw. Therefore, the rotation speed of the compressor 2 is limited to the upper limit rotation speed TGNCwLimHi or lower. However, the upper limit rotation speed TGNCwLimHi is changed by the heat pump controller 32 as described later. Further, the value TGNCw00 added by the adder 94 is within the upper limit rotation speed TGNCwLimHi and the lower limit rotation speed TGNCwLimLo, and if the ON-OFF mode described later does not occur, this value TGNCw00 is the compressor target rotation speed TGNCw (compressor 2 Will be the number of rotations). In the normal mode, the heat pump controller 32 controls the operation of the compressor 2 so that the heat medium temperature Tw becomes the target heat medium temperature TWO by the compressor target rotation speed TGNCw calculated based on the heat medium temperature Tw.
 尚、圧縮機OFF制御部97は、圧縮機目標回転数TGNCwが上述した下限回転数TGNCwLimLoとなり、熱媒体温度Twが目標熱媒体温度TWOの上下に設定された上限値TwULと下限値TwLLのうちの下限値TwLLまで低下した状態が所定時間tw1継続した場合、圧縮機2を停止させて圧縮機2をON-OFF制御するON-OFFモードに入る。 It should be noted that the compressor OFF control unit 97 determines that the compressor target rotation speed TGNCw is the above-described lower limit rotation speed TGNCwLimLo and the heat medium temperature Tw is the upper limit value TwUL and the lower limit value TwLL set above and below the target heat medium temperature TWO. When the state in which the lower limit value TwLL has decreased to the predetermined time tw1 continues for a predetermined time tw1, the compressor 2 is stopped and the ON-OFF mode in which the compressor 2 is ON-OFF controlled is entered.
 この場合の圧縮機2のON-OFFモードでは、熱媒体温度Twが上限値TwULまで上昇した場合、圧縮機2を起動して圧縮機目標回転数TGNCwを下限回転数TGNCwLimLoとして運転し、その状態で熱媒体温度Twが下限値TwLLまで低下した場合は圧縮機2を再度停止させる。即ち、下限回転数TGNCwLimLoでの圧縮機2の運転(ON)と、停止(OFF)を繰り返す。そして、熱媒体温度Twが上限値TwULまで上昇し、圧縮機2を起動した後、熱媒体温度Twが上限値TwULより低くならない状態が所定時間tw2継続した場合、この場合の圧縮機2のON-OFFモードを終了し、通常モードに復帰するものである。 In the ON-OFF mode of the compressor 2 in this case, when the heat medium temperature Tw rises to the upper limit value TwUL, the compressor 2 is started and the compressor target rotation speed TGNCw is operated as the lower limit rotation speed TGNCwLimLo, and the state is maintained. If the heat medium temperature Tw has dropped to the lower limit value TwLL, the compressor 2 is stopped again. That is, the operation (ON) and the stop (OFF) of the compressor 2 at the lower limit rotation speed TGNCwLimLo are repeated. Then, when the heat medium temperature Tw rises to the upper limit value TwUL and the compressor 2 is started, the state in which the heat medium temperature Tw does not become lower than the upper limit value TwUL continues for a predetermined time tw2, and the compressor 2 in this case is turned on. -Ends the OFF mode and returns to the normal mode.
 (12)ヒートポンプコントローラ32によるバッテリ温度Tcellの過剰上昇防止制御
 次に、図16~図19を参照しながら、ヒートポンプコントローラ32が実行するバッテリ温度Tcellの過剰上昇防止制御について説明する。尚、この制御は前述した如く例えば車両が走行中に、空調(優先)+バッテリ冷却モードを実行している際に行われる制御である。
(12) Excessive rise prevention control of the battery temperature Tcell by the heat pump controller 32 Next, the excess rise prevention control of the battery temperature Tcell executed by the heat pump controller 32 will be described with reference to FIGS. 16 to 19. As described above, this control is, for example, control performed when the vehicle is traveling and the air conditioning (priority)+battery cooling mode is being executed.
 空調(優先)+バッテリ冷却モード(空調+被温調対象冷却モード)では、前述した如く熱媒体温度Twで電磁弁69を開閉制御し、冷媒-熱媒体熱交換器64への冷媒の流通を制御しているが、バッテリ55の温度(バッテリ温度Tcell)が熱媒体(熱媒体温度Tw)に反映されるまでにはタイムラグが存在する。そのため、例えば走行用モータの出力が高くなり、バッテリ55からの放電量も上昇してバッテリ温度Tcellが上昇していても、熱媒体温度Twが前述した上限値TwUL(図13)まで上昇しないうちは電磁弁69は開放されず、冷媒-熱媒体熱交換器64に冷媒が流れない状態が発生する。 In the air-conditioning (priority)+battery cooling mode (air-conditioning+controlled cooling mode), the solenoid valve 69 is controlled to open/close at the heat medium temperature Tw as described above so that the refrigerant flows to the refrigerant/heat medium heat exchanger 64. Although controlled, there is a time lag until the temperature of the battery 55 (battery temperature Tcell) is reflected in the heat medium (heat medium temperature Tw). Therefore, for example, even if the output of the traveling motor becomes high, the discharge amount from the battery 55 also rises, and the battery temperature Tcell rises, the heat medium temperature Tw does not rise to the above-described upper limit value TwUL (FIG. 13). The solenoid valve 69 is not opened, and a state occurs in which the refrigerant does not flow to the refrigerant-heat medium heat exchanger 64.
 また、空調(優先)+バッテリ冷却モードでは、前述した図12の如く吸熱器温度Teと目標吸熱器温度TEOで圧縮機2の回転数が制御されているため、バッテリ55の冷却は吸熱器9の温度制御に従属することになる。そのため、バッテリ温度Tcellが上昇していても、圧縮機2の回転数が低い状態が続いている場合には、バッテリ55の温度が過剰に上昇してしまう危険性がある。 Further, in the air conditioning (priority)+battery cooling mode, the rotation speed of the compressor 2 is controlled by the heat absorber temperature Te and the target heat absorber temperature TEO as shown in FIG. Will be subject to temperature control. Therefore, even if the battery temperature Tcell is rising, there is a risk that the temperature of the battery 55 will rise excessively if the rotation speed of the compressor 2 continues to be low.
 そこで、ヒートポンプコントローラ32はバッテリ温度Tcellの所定の下限値TcellLLと、所定の上限値TcellUL1を設定し(TcellLL<TcellUL1)、バッテリコントローラ73から送信されるバッテリ温度Tcellが上限値TcellUL1以上となった場合、又は、バッテリ温度Tcellが上限値TcellUL1より高くなった場合、図16に示す如くバッテリ55のALARM状態とすると共に、バッテリ温度Tcellが下限値TcellLL以下に低下した場合、又は、バッテリ温度Tcellが下限値TcellLLより低下した場合、ALARM状態を解除する動作を実行する。尚、この下限値TcellLL以下の温度、又は、下限値TcellLLより低い温度の領域は、バッテリ55の安全な温度域である。 Therefore, when the heat pump controller 32 sets a predetermined lower limit value TcellLL of the battery temperature Tcell and a predetermined upper limit value TcellUL1 (TcellLL<TcellUL1), and the battery temperature Tcell transmitted from the battery controller 73 becomes equal to or higher than the upper limit value TcellUL1. Alternatively, when the battery temperature Tcell becomes higher than the upper limit value TcellUL1, the battery 55 is brought into the ALARM state as shown in FIG. 16, and when the battery temperature Tcell drops below the lower limit value TcellLL, or the battery temperature Tcell becomes the lower limit. When it is lower than the value TcellLL, the operation of canceling the ALARM state is executed. The temperature range equal to or lower than the lower limit value TcellLL or lower than the lower limit value TcellLL is a safe temperature range of the battery 55.
 そして、図17に示す如く空調(優先)+バッテリ冷却モードで電磁弁69が閉じているときに、バッテリ温度Tcellが上昇して図中の時刻t1で上限値TcellUL1以上となった場合、又は、バッテリ温度Tcellが上限値TcellUL1より高くなった場合、ALARM状態として電磁弁69を開くと共に、その後は熱媒体温度Twにかかわらず、当該電磁弁69を開いた状態に固定する。 Then, as shown in FIG. 17, when the solenoid valve 69 is closed in the air conditioning (priority)+battery cooling mode, the battery temperature Tcell rises and becomes equal to or higher than the upper limit value TcellUL1 at time t1 in the figure, or When the battery temperature Tcell becomes higher than the upper limit value TcellUL1, the solenoid valve 69 is opened in the ALARM state, and thereafter, the solenoid valve 69 is fixed in the open state regardless of the heat medium temperature Tw.
 また、図18に示す如く空調(優先)+バッテリ冷却モードで電磁弁69が開いているときに、バッテリ温度Tcellが上昇して時刻t1で上限値TcellUL1以上となった場合、又は、バッテリ温度Tcellが上限値TcellUL1より高くなった場合にもALARM状態とし、電磁弁69が開いた状態を維持すると共に、その後は熱媒体温度Twにかかわらず、当該電磁弁69を開いた状態に固定する。 Further, as shown in FIG. 18, when the solenoid valve 69 is opened in the air conditioning (priority)+battery cooling mode, the battery temperature Tcell rises and becomes equal to or higher than the upper limit value TcellUL1 at time t1, or the battery temperature Tcell. Is higher than the upper limit value TcellUL1, the state is set to the ALARM state, the electromagnetic valve 69 is maintained in the open state, and thereafter, the electromagnetic valve 69 is fixed in the open state regardless of the heat medium temperature Tw.
 また、ヒートポンプコントローラ32はバッテリ温度Tcellが上限値TcellUL1以上となったこと、又は、上限値TcellUL1より高くなったことでバッテリ55のALARM状態とし、電磁弁69を開いた状態に固定した場合、その旨を空調コントローラ45に通知する。空調コントローラ45はヒートポンプコントローラ32からALARM状態としている旨の通知を受信した場合、実施例では吸熱器温度Teが目標吸熱器温度TEOより高くなったこと(Te>TEO)、又は、目標吸熱器温度TEOに所定の余裕度αを加えた値より高くなったことを条件として(Te>TEO+α)、空調操作部53のディスプレイ53Aにおいて、バッテリ温度Tcellが上昇したことで車室内の空調能力(冷房能力)が低下する旨の所定の表示を行う(空調能力低下報知動作)。 Further, when the heat pump controller 32 brings the battery temperature Tcell to the upper limit value TcellUL1 or more or becomes higher than the upper limit value TcellUL1, the battery 55 is in the ALARM state and the solenoid valve 69 is fixed to the open state. The effect is notified to the air conditioning controller 45. When the air conditioning controller 45 receives the notification indicating that the ALARM state is set from the heat pump controller 32, the heat absorber temperature Te becomes higher than the target heat absorber temperature TEO (Te>TEO) or the target heat absorber temperature in the embodiment. On condition that the value has become higher than the value obtained by adding a predetermined margin α to TEO (Te>TEO+α), the battery temperature Tcell on the display 53A of the air conditioning operation unit 53 increases, so that the air conditioning capacity (cooling capacity) in the vehicle interior is increased. ) Is reduced by a predetermined display (air-conditioning capacity deterioration notification operation).
 このように、電磁弁69が開いた状態に固定されれば、冷媒-熱媒体熱交換器64の冷媒流路64Bには圧縮機2が運転されている限り、常時冷媒が流通されることになるので、通常であればバッテリ温度Tcellは迅速に低下していくことになる。そして、各図に示す如くその後、時刻t2でバッテリ温度Tcellが下限値TcellLL以下に低下した場合、又は、バッテリ温度Tcellが下限値TcellLLより低下した場合、ヒートポンプコントローラ32はALARM状態を解除し、以後は熱媒体温度Twで電磁弁69を開閉制御する状態に復帰する。即ち、実施例ではこの下限値TcellLLが本発明における開固定解除値となる。尚、開固定解除値としては下限値TcellLLに限らず、上限値TcellUL1を開固定解除値としてもよい。但し、バッテリ温度Tcellが上限値TcellUL1以上となった場合にALARM状態として電磁弁69が開いた状態を維持するときは、バッテリ温度Tcellが上限値TcellUL1より低下したときに電磁弁69の開固定を解除し、バッテリ温度Tcellが上限値TcellUL1より高くなった場合にALARM状態として電磁弁69が開いた状態を維持するときには、バッテリ温度Tcellが上限値TcellUL1以下に低下、又は、それより低下したときに電磁弁69の開固定を解除するものとする。 In this way, if the solenoid valve 69 is fixed in the open state, the refrigerant always flows through the refrigerant passage 64B of the refrigerant-heat medium heat exchanger 64 as long as the compressor 2 is operated. Therefore, normally, the battery temperature Tcell rapidly decreases. Then, as shown in each drawing, thereafter, when the battery temperature Tcell falls below the lower limit value TcellLL at time t2 or when the battery temperature Tcell falls below the lower limit value TcellLL, the heat pump controller 32 releases the ALARM state, and thereafter. Returns to the state in which the solenoid valve 69 is controlled to open/close at the heat medium temperature Tw. That is, in the embodiment, this lower limit value TcellLL becomes the open fixation releasing value in the present invention. The open fixation release value is not limited to the lower limit value TcellLL, and the upper limit value TcellUL1 may be used as the open fixation release value. However, when the battery temperature Tcell is equal to or higher than the upper limit value TcellUL1 and the electromagnetic valve 69 is kept open as the ALARM state, the solenoid valve 69 is fixed to be open when the battery temperature Tcell is lower than the upper limit value TcellUL1. When the battery temperature Tcell is released and the electromagnetic valve 69 is maintained in the open state as the ALARM state when the battery temperature Tcell becomes higher than the upper limit value TcellUL1, when the battery temperature Tcell falls below the upper limit value TcellUL1 or falls below it. The open fixation of the solenoid valve 69 is released.
 また、ヒートポンプコントローラ32はバッテリ温度Tcellが下限値TcellLL以下に低下したこと、又は、バッテリ温度Tcellが下限値TcellLLより低下したことでバッテリ55のALARM状態を解除した場合、その旨、空調コントローラ45に通知する。空調コントローラ45はヒートポンプコントローラ32からALARM状態を解除した旨の通知を受信した場合、空調操作部53のディスプレイ53Aに車室内の空調能力(冷房能力)が低下する旨の表示を行っているときには、当該表示を停止する。 Further, when the heat pump controller 32 releases the ALARM state of the battery 55 due to the battery temperature Tcell dropping below the lower limit value TcellLL or the battery temperature Tcell dropping below the lower limit value TcellLL, to that effect the air conditioning controller 45 is notified. Notice. When the air conditioning controller 45 receives the notification that the ALARM state has been released from the heat pump controller 32, when the display 53A of the air conditioning operation unit 53 is displaying that the air conditioning capacity (cooling capacity) in the vehicle interior is decreasing, The display is stopped.
 ここで、空調(優先)+バッテリ冷却モードにおいて、上述した如くバッテリ温度Tcellが上限値TcellUL1以上となり、又は、バッテリ温度Tcellが上限値TcellUL1より高くなり、ALARM状態として電磁弁69を開いた状態に固定しても、バッテリ温度Tcellが更に上昇を続けた場合は、図19に示す制御を実行する。 Here, in the air conditioning (priority)+battery cooling mode, the battery temperature Tcell becomes the upper limit value TcellUL1 or more as described above, or the battery temperature Tcell becomes higher than the upper limit value TcellUL1, and the solenoid valve 69 is opened in the ALARM state. Even if the battery temperature is fixed, if the battery temperature Tcell continues to rise, the control shown in FIG. 19 is executed.
 即ち、ヒートポンプコントローラ32は上述した上限値TcellUL1よりも高いもう一つの上限値TcellUL2(TcellUL1<TcellUL2)を有している。そして、空調(優先)+バッテリ冷却モードで通常状態から時刻t3で上述したALARM状態となって電磁弁69を開いた状態に固定した後も、バッテリ温度Tcellが尚も上昇を続け、図19に示すように時刻t4で上限値TcellUL2以上になった場合、又は、上限値TcellUL2より高くなった場合、ヒートポンプコントローラ32はバッテリ冷却(単独)モードに移行する。 That is, the heat pump controller 32 has another upper limit value TcellUL2 (TcellUL1<TcellUL2) higher than the above-mentioned upper limit value TcellUL1. The battery temperature Tcell continues to rise even after the solenoid valve 69 is fixed in the open state in the air conditioning (priority)+battery cooling mode from the normal state to the ALARM state described above at time t3. As shown, when it becomes equal to or higher than the upper limit value TcellUL2 at time t4 or becomes higher than the upper limit value TcellUL2, the heat pump controller 32 shifts to the battery cooling (single) mode.
 即ち、図14に示した熱媒体温度Twと目標TWOによる圧縮機2の回転数の制御に切り換えると共に、電磁弁69は開いた状態に固定したまま、電磁弁35を閉じた状態に固定する。これにより、車室内の空調は停止され、全ての冷媒を用いてバッテリ55は強力に冷却されるようになる。 That is, while switching to the control of the rotation speed of the compressor 2 based on the heat medium temperature Tw and the target TWO shown in FIG. 14, the solenoid valve 69 is fixed in the open state and the solenoid valve 35 is fixed in the closed state. As a result, the air conditioning in the vehicle compartment is stopped, and the battery 55 is strongly cooled using all the refrigerant.
 また、ヒートポンプコントローラ32はバッテリ温度Tcellが上限値TcellUL2以上となったこと、又は、上限値TcellUL2より高くなったことでバッテリ冷却(単独)モードに移行した場合、その旨を空調コントローラ45に通知する。空調コントローラ45はヒートポンプコントローラ32から係る通知を受信した場合、実施例では上述した空調能力が低下する旨の表示に代えて、空調操作部53のディスプレイ53Aにおいて、バッテリ温度Tcellが更に上昇したことで車室内の空調が停止している旨の所定の表示を行う(空調能力停止報知動作)。 Further, when the battery temperature Tcell becomes equal to or higher than the upper limit value TcellUL2 or becomes higher than the upper limit value TcellUL2, the heat pump controller 32 notifies the air conditioning controller 45 to that effect when the battery cooling (single) mode is entered. .. When the air conditioning controller 45 receives the notification from the heat pump controller 32, the battery temperature Tcell is further increased on the display 53A of the air conditioning operation unit 53, instead of the display indicating that the air conditioning capacity is lowered in the embodiment. A predetermined display indicating that the air conditioning in the vehicle compartment is stopped is performed (air conditioning capacity stop notification operation).
 これにより、バッテリ温度Tcellが低下する方向に向かい、時刻t5で上限値TcellUL1以下になった場合、又は、上限値TcellUL1より低下した場合、ヒートポンプコントローラ32は電磁弁69を開いた状態に固定したまま、電磁弁35を開き、空調(優先)+バッテリ冷却モードに移行する。即ち、圧縮機2を吸熱器温度Teと目標吸熱器温度TEOに基づく回転数制御に戻し、電磁弁35は開いた状態に固定するが、ALARM状態は解除せず、電磁弁69は開いた状態に固定する。従って、実施例では上限値TcellUL1が本発明における単独冷却解除値となる。 Thereby, when the battery temperature Tcell decreases and becomes lower than or equal to the upper limit value TcellUL1 at time t5 or lower than the upper limit value TcellUL1, the heat pump controller 32 keeps the solenoid valve 69 fixed in the open state. , The electromagnetic valve 35 is opened to shift to the air conditioning (priority)+battery cooling mode. That is, the compressor 2 is returned to the rotation speed control based on the heat absorber temperature Te and the target heat absorber temperature TEO, and the solenoid valve 35 is fixed in the open state, but the ALARM state is not released and the solenoid valve 69 is opened. Fixed to. Therefore, in the embodiment, the upper limit value TcellUL1 is the independent cooling release value in the present invention.
 また、ヒートポンプコントローラ32はバッテリ温度Tcellが上限値TcellUL1以下になったこと、又は、上限値TcellUL1より低下したことで空調(優先)+バッテリ冷却モードに移行した場合、その旨を空調コントローラ45に通知する。空調コントローラ45はヒートポンプコントローラ32から係る通知を受信した場合、空調操作部53のディスプレイ53Aに表示している車室内の空調が停止している旨の表示を停止し、空調能力が低下する旨の表示に戻る。 In addition, when the heat pump controller 32 shifts to the air conditioning (priority)+battery cooling mode due to the battery temperature Tcell becoming equal to or lower than the upper limit value TcellUL1, or the lowering of the upper limit value TcellUL1, the heat pump controller 32 notifies the air conditioning controller 45 to that effect. To do. When the air conditioning controller 45 receives the notification from the heat pump controller 32, the air conditioning controller 45 stops displaying the air conditioning in the vehicle interior, which is displayed on the display 53A of the air conditioning operation unit 53, and indicates that the air conditioning capacity is reduced. Return to display.
 その後、時刻t6でバッテリ温度Tcellが下限値TcellLL以下になった場合、又は、バッテリ温度Tcellが下限値TcellLLより低下した場合、ヒートポンプコントローラ32はALARM状態を解除し、以後は熱媒体温度Twで電磁弁69を開閉制御する状態に復帰する。ディスプレイ53Aの空調能力が低下する旨の表示も停止する。尚、前述した単独冷却解除値としては上限値TcellUL1に限らず、上限値TcellUL2を単独冷却解除値としてもよい。但し、バッテリ温度Tcellが上限値TcellUL2以上となった場合にバッテリ冷却(単独)モードに移行するときは、バッテリ温度Tcellが上限値TcellUL2より低下したときに空調(優先)+バッテリ冷却モードに移行し、バッテリ温度Tcellが上限値TcellUL2より高くなった場合にバッテリ冷却(単独)モードに移行するときには、バッテリ温度Tcellが上限値TcellUL2以下に低下、又は、それより低下したときに空調(優先)+バッテリ冷却モードに移行するものとする。また、前述した下限値TcellLLを単独冷却解除値としてもよい。その場合には、バッテリ冷却(単独)モードから熱媒体温度Twで電磁弁69を開閉制御する空調(優先)+バッテリ冷却モードに直接復帰することになる。 Thereafter, at time t6, when the battery temperature Tcell becomes lower than or equal to the lower limit value TcellLL, or when the battery temperature Tcell becomes lower than the lower limit value TcellLL, the heat pump controller 32 releases the ALARM state, and thereafter, at the heat medium temperature Tw, The state in which the valve 69 is opened and closed is restored. The display indicating that the air conditioning capacity of the display 53A is reduced is also stopped. The independent cooling release value described above is not limited to the upper limit value TcellUL1, and the upper limit value TcellUL2 may be used as the independent cooling release value. However, when the battery temperature Tcell becomes the upper limit value TcellUL2 or more and shifts to the battery cooling (single) mode, when the battery temperature Tcell becomes lower than the upper limit value TcellUL2, it shifts to the air conditioning (priority)+battery cooling mode. , When the battery temperature Tcell becomes higher than the upper limit value TcellUL2, when shifting to the battery cooling (single) mode, the battery temperature Tcell drops below the upper limit value TcellUL2, or when the battery temperature Tcell drops below that, air conditioning (priority)+battery The cooling mode shall be entered. Further, the lower limit value TcellLL described above may be used as the independent cooling release value. In this case, the battery cooling (single) mode is directly returned to the air conditioning (priority)+battery cooling mode in which the solenoid valve 69 is controlled to open/close at the heat medium temperature Tw.
 以上の如く空調(優先)+バッテリ冷却モードでは吸熱器温度Teに基づいて圧縮機2の回転数を制御し、熱媒体温度Twに基づいて電磁弁69を開閉制御するので、吸熱器温度Teにより圧縮機2を制御して車室内の空調を行いながら、熱媒体温度Twにより冷媒-熱媒体熱交換器64への冷媒の流通を制御して、バッテリ55の冷却も行うことができるが、この空調(優先)+バッテリ冷却モードのときに、バッテリ温度Tcellが所定の上限値TcellUL1以上になった場合、又は、当該上限値TcellUL1より高くなった場合、ヒートポンプコントローラ32は電磁弁69を開いた状態に固定するようにしたので、バッテリ温度Tcellが上限値TcellUL1以上になったこと、又は、当該上限値TcellUL1より高くなったことで冷媒-熱媒体熱交換器64に冷媒を常時流通するように電磁弁69の制御を変更し、バッテリ55の温度を迅速に低下させることが可能となる。これにより、バッテリ55の温度が過剰に上昇する不都合を未然に回避し、バッテリ55の劣化を防止してその寿命を延ばすことが可能となる。 As described above, in the air conditioning (priority)+battery cooling mode, the rotation speed of the compressor 2 is controlled based on the heat absorber temperature Te, and the solenoid valve 69 is controlled to open/close based on the heat medium temperature Tw. While the compressor 2 is controlled to air-condition the vehicle interior, the refrigerant 55 can be cooled by controlling the refrigerant flow to the refrigerant-heat medium heat exchanger 64 by the heat medium temperature Tw. In the air conditioning (priority)+battery cooling mode, when the battery temperature Tcell becomes equal to or higher than the predetermined upper limit value TcellUL1, or becomes higher than the upper limit value TcellUL1, the heat pump controller 32 keeps the solenoid valve 69 open. Since the battery temperature Tcell has become equal to or higher than the upper limit value TcellUL1, or has become higher than the upper limit value TcellUL1, the battery temperature Tcell is always fixed to the refrigerant-heat medium heat exchanger 64 so that the refrigerant is constantly circulated. By changing the control of the valve 69, the temperature of the battery 55 can be quickly lowered. This makes it possible to avoid the disadvantage that the temperature of the battery 55 excessively rises, prevent the battery 55 from deteriorating, and extend its life.
 そして、ヒートポンプコントローラ32は空調(優先)+バッテリ冷却モードにおいて、バッテリ温度Tcellが所定の開固定解除値以下になった場合、又は、当該開固定解除値より低下した場合、電磁弁69を開閉制御する状態に復帰するようにしたので、バッテリ温度Tcellが所定の開固定解除値以下になったこと、又は、当該開固定解除値より低下したことで、電磁弁69の制御を支障無く通常の状態に戻すことができるようになる。 Then, in the air conditioning (priority)+battery cooling mode, the heat pump controller 32 controls the opening/closing of the solenoid valve 69 when the battery temperature Tcell becomes equal to or lower than a predetermined open fixation release value or when the battery temperature Tcell falls below the open release release value. Since the battery temperature Tcell has become equal to or lower than the predetermined open fixation release value or has fallen below the open release release value, the control of the solenoid valve 69 does not interfere with the normal state. Will be able to return to.
 また、実施例では制御装置11の空調コントローラ45はディスプレイ53Aを備えており、空調(優先)+バッテリ冷却モードにおいて、バッテリ温度Tcellにより電磁弁69を開いた状態に固定した場合、ディスプレイ53Aにて所定の空調能力低下報知動作を実行するようにしたので、バッテリ温度Tcellが上限値TcellUL1以上になり、又は、当該上限値TcellUL1より高くなって電磁弁69を開いた状態に固定したことで、空調能力が低下することを乗員に報知することができるようになる。これにより、乗員は故障が生じて空調能力が低下したのではないことを認識することが可能となる。 Further, in the embodiment, the air conditioning controller 45 of the control device 11 is provided with the display 53A. In the air conditioning (priority)+battery cooling mode, when the solenoid valve 69 is fixed in the open state by the battery temperature Tcell, the display 53A is displayed. Since the predetermined air conditioning capacity decrease notification operation is executed, the battery temperature Tcell becomes equal to or higher than the upper limit value TcellUL1 or becomes higher than the upper limit value TcellUL1 and the solenoid valve 69 is fixed to the open state, It becomes possible to inform the occupant that the ability is reduced. As a result, the occupant can recognize that the air conditioning capacity has not deteriorated due to a failure.
 この場合、空調コントローラ45は吸熱器温度Teが目標吸熱器温度TEOより高い場合、又は、吸熱器温度Teが目標吸熱器温度TEO+αより高い場合に、空調能力低下報知動作を実行するので、実際に空調能力が低下したときのみ、空調能力低下報知動作を実行し、無用な不安感を乗員に与える不都合も回避することができるようになる。 In this case, since the air conditioning controller 45 executes the air conditioning capacity decrease notification operation when the heat absorber temperature Te is higher than the target heat absorber temperature TEO or when the heat absorber temperature Te is higher than the target heat absorber temperature TEO+α, Only when the air-conditioning capacity has decreased, the air-conditioning capacity decrease notification operation is executed, and it is possible to avoid the inconvenience of giving the passenger an uncomfortable feeling of anxiety.
 更に、空調(優先)+バッテリ冷却モードにおいて、バッテリ温度Tcellが上限値TcellUL1より高いもう一つの上限値TcellUL2以上になった場合、又は、当該上限値TcellUL2より高くなった場合には、ヒートポンプコントローラ32はバッテリ冷却(単独)モードに移行するので、電磁弁69を開いた状態に固定しても、バッテリ温度Tcellが更に上昇して上限値TcellUL2以上になった場合、又は、当該上限値TcellUL2より高くなった場合、車室内の空調を停止し、全ての冷媒を用いてバッテリ55を冷却することができるようになる。これにより、強力にバッテリ55を冷却して、迅速に安全な温度域まで低下させることができるようになる。 Furthermore, in the air conditioning (priority)+battery cooling mode, when the battery temperature Tcell becomes equal to or higher than another upper limit value TcellUL2 higher than the upper limit value TcellUL1, or when the battery temperature Tcell becomes higher than the upper limit value TcellUL2, the heat pump controller 32 Shifts to the battery cooling (single) mode, even if the solenoid valve 69 is fixed in the open state, if the battery temperature Tcell further rises to the upper limit value TcellUL2 or higher, or higher than the upper limit value TcellUL2. In that case, the air conditioning in the vehicle compartment is stopped, and the battery 55 can be cooled using all the refrigerant. This makes it possible to strongly cool the battery 55 and quickly reduce it to a safe temperature range.
 そして、ヒートポンプコントローラ32は、バッテリ冷却(単独)モードに移行した後、バッテリ温度Tcellが所定の単独冷却解除値以下に低下した場合、又は、当該単独冷却解除値より低下した場合には、電磁弁69を開いた状態に固定したまま、空調(優先)+バッテリ冷却モードに移行するので、バッテリ温度Tcellが所定の単独冷却解除値以下に低下したこと、又は、当該単独冷却解除値より低下したことで、車室内の空調を支障無く再開し、バッテリ55の冷却も支障無く継続することができるようになる。 Then, the heat pump controller 32 shifts to the battery cooling (single) mode, and then, when the battery temperature Tcell falls below a predetermined single cooling release value or falls below the single cooling release value, the solenoid valve. Since the air conditioner (priority)+battery cooling mode is entered while fixing 69 to the open state, the battery temperature Tcell has dropped below a predetermined individual cooling release value, or has dropped below the single cooling release value. Thus, the air conditioning in the vehicle compartment can be restarted without any trouble, and the cooling of the battery 55 can be continued without any trouble.
 更に、実施例では空調(優先)+被温調対象冷却モードにおいて、バッテリ温度Tcellによりバッテリ冷却(単独)モードに移行した場合、ディスプレイ53Aにて所定の空調停止報知動作を実行するようにしたので、バッテリ温度Tcellが上限値TcellUL2以上になり、又は、当該上限値TcellUL2より高くなってバッテリ冷却(単独)モードに移行したことで、車室内の空調が停止されたことを乗員に報知することができるようになる。これにより、乗員は故障が生じて車室内の空調が停止したのではないことを認識することが可能となる。 Further, in the embodiment, in the air conditioning (priority)+temperature controlled target cooling mode, when the battery temperature (Tcell) shifts to the battery cooling (single) mode, a predetermined air conditioning stop notification operation is executed on the display 53A. , The battery temperature Tcell becomes equal to or higher than the upper limit value TcellUL2, or becomes higher than the upper limit value TcellUL2 and shifts to the battery cooling (single) mode, thereby informing the occupant that the air conditioning in the vehicle compartment has been stopped. become able to. This allows the occupant to recognize that the air conditioning in the vehicle compartment has not stopped due to a failure.
 尚、実施例の機器温度調整装置61は、熱媒体を循環させてバッテリ55の温調を行うようにしたが、それに限らず、冷媒とバッテリ55(被温調対象)を直接熱交換させる被温調対象用熱交換器を使用してもよい。その場合には、被温調対象用熱交換器の冷媒出口に温度センサを設け、前述した空調(優先)+バッテリ冷却モードでは、この温度センサが検出する被温調対象用熱交換器を出た冷媒の温度を被温調対象用熱交換器の温度として、この温度でヒートポンプコントローラ32が電磁弁69を開閉制御するようにすると共に、バッテリ冷却(優先)+空調モードと、バッテリ冷却(単独)モードでは、同じく被温調対象用熱交換器を出た冷媒の温度でヒートポンプコントローラ32が圧縮機2の回転数を制御することになる。 Although the device temperature adjusting device 61 of the embodiment circulates the heat medium to adjust the temperature of the battery 55, the present invention is not limited to this, and the device for directly exchanging heat between the refrigerant and the battery 55 (target of temperature adjustment) is used. You may use the heat exchanger for temperature control. In that case, a temperature sensor is provided at the refrigerant outlet of the heat exchanger for temperature regulation, and in the air conditioning (priority) + battery cooling mode described above, the heat exchanger for temperature regulation detected by this temperature sensor is output. The temperature of the refrigerant is set as the temperature of the heat exchanger for temperature control, and the heat pump controller 32 controls the opening/closing of the solenoid valve 69 at this temperature, and the battery cooling (priority)+air conditioning mode and the battery cooling (single In the) mode, the heat pump controller 32 controls the rotation speed of the compressor 2 by the temperature of the refrigerant that has also exited the heat exchanger for temperature adjustment.
 また、実施例では車室内の冷房とバッテリ55の冷却を同時に行う空調(優先)+バッテリ冷却モードとバッテリ冷却(優先)+空調モードで車室内を冷房しながらバッテリ55を冷却することができる車両用空気調和装置1で説明したが、バッテリ55の冷却は冷房中に限らず、他の空調運転、例えば前述した除湿暖房モードとバッテリ55の冷却を同時に行うようにしてもよい。その場合には、除湿暖房モードで電磁弁69を開き、冷媒配管13Fを経て吸熱器9に向かう冷媒の一部を分岐配管67に流入させ、冷媒-熱媒体熱交換器64に流すことになり、係る状態も本発明における空調+被温調対象冷却モードとなる。 Further, in the embodiment, a vehicle capable of cooling the battery 55 while cooling the vehicle interior in the air conditioning (priority)+battery cooling mode and the battery cooling (priority)+air conditioning mode for simultaneously cooling the vehicle interior and cooling the battery 55 Although the air conditioning apparatus 1 has been described, the cooling of the battery 55 is not limited to during cooling, but other air conditioning operation, for example, the above-described dehumidifying and heating mode and cooling of the battery 55 may be performed simultaneously. In that case, the solenoid valve 69 is opened in the dehumidifying and heating mode, and a part of the refrigerant flowing toward the heat absorber 9 via the refrigerant pipe 13F is caused to flow into the branch pipe 67 and flow into the refrigerant-heat medium heat exchanger 64. The related state is also the air conditioning+temperature controlled target cooling mode in the present invention.
 更に、実施例では電磁弁35を吸熱器用弁装置(弁装置)、電磁弁69を被温調対象用弁装置(弁装置)としたが、室内膨張弁8や補助膨張弁68を全閉可能な電動弁にて構成した場合には、各電磁弁35や69は不要となり、室内膨張弁8が本発明における吸熱器用弁装置(弁装置)となり、補助膨張弁68が被温調対象用弁装置(弁装置)となる。 Further, in the embodiment, the electromagnetic valve 35 is the heat absorber valve device (valve device) and the electromagnetic valve 69 is the temperature controlled valve device (valve device), but the indoor expansion valve 8 and the auxiliary expansion valve 68 can be fully closed. In the case of a motor-operated valve, the solenoid valves 35 and 69 are unnecessary, the indoor expansion valve 8 serves as the heat absorber valve device (valve device) of the present invention, and the auxiliary expansion valve 68 serves as the temperature-controlled valve. It becomes a device (valve device).
 また、実施例で説明した冷媒回路Rの構成や数値はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。更に、実施例では暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、空調(優先)+バッテリ冷却モード、バッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モード等の各運転モードを有する車両用空気調和装置1で本発明を説明したが、それに限らず、例えば冷房モード、空調(優先)+バッテリ冷却モード、及び、バッテリ冷却(単独)モードを実行可能とされた車両用空気調和装置にも本発明は有効である。 Needless to say, the configuration and numerical values of the refrigerant circuit R described in the embodiments are not limited to those and can be changed without departing from the spirit of the present invention. Further, in the embodiment, each operation mode such as a heating mode, a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode, an air conditioning (priority)+battery cooling mode, a battery cooling (priority)+air conditioning mode, a battery cooling (single) mode is provided. Although the present invention has been described with respect to the vehicle air conditioner 1, the present invention is not limited to this, and for example, a vehicle air conditioner capable of executing a cooling mode, an air conditioning (priority)+battery cooling mode, and a battery cooling (single) mode. Also, the present invention is effective.
 1 車両用空気調和装置
 2 圧縮機
 3 空気流通路
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器
 11 制御装置
 32 ヒートポンプコントローラ(制御装置の一部を構成)
 35 電磁弁(吸熱器用弁装置)
 45 空調コントローラ(制御装置の一部を構成)
 48 吸熱器温度センサ
 55 バッテリ(被温調対象)
 61 機器温度調整装置
 64 冷媒-熱媒体熱交換器(被温調対象用熱交換器)
 68 補助膨張弁
 69 電磁弁(被温調対象用弁装置)
 76 熱媒体温度センサ
 R 冷媒回路
1 Air Conditioner for Vehicle 2 Compressor 3 Air Flow Path 4 Radiator 6 Outdoor Expansion Valve 7 Outdoor Heat Exchanger 8 Indoor Expansion Valve 9 Heat Absorber 11 Controller 32 Heat Pump Controller (Part of Controller)
35 Solenoid valve (Valve device for heat absorber)
45 Air conditioning controller (constituting a part of control device)
48 Heat absorber temperature sensor 55 Battery (target of temperature control)
61 Equipment temperature adjusting device 64 Refrigerant-heat medium heat exchanger (heat exchanger for temperature controlled)
68 Auxiliary expansion valve 69 Solenoid valve (valve device for temperature controlled objects)
76 Heat medium temperature sensor R Refrigerant circuit

Claims (7)

  1.  冷媒を圧縮する圧縮機と、
     前記冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器と、
     制御装置を少なくとも備えて前記車室内を空調する車両用空気調和装置において、
     前記吸熱器への前記冷媒の流通を制御するための吸熱器用弁装置と、
     前記冷媒を吸熱させて前記被温調対象を直接、又は、熱媒体を介して冷却するための被温調対象用熱交換器と、
     該被温調対象用熱交換器への前記冷媒の流通を制御するための被温調対象用弁装置を備え、
     前記制御装置は、前記吸熱器の温度に基づいて前記圧縮機の運転を制御し、前記被温調対象用熱交換器、又は、前記熱媒体の温度に基づいて前記被温調対象用弁装置を開閉制御する空調+被温調対象冷却モードを有し、
     該空調+被温調対象冷却モードにおいて、前記被温調対象の温度が所定の上限値TcellUL1以上になった場合、又は、当該上限値TcellUL1より高くなった場合、前記被温調対象用弁装置を開いた状態に固定することを特徴とする車両用空気調和装置。
    A compressor for compressing the refrigerant,
    A heat absorber for cooling the air supplied to the vehicle interior by absorbing the refrigerant,
    In a vehicle air conditioner including at least a control device for air conditioning the vehicle interior,
    A heat absorber valve device for controlling the flow of the refrigerant to the heat absorber,
    The heat control target for heat exchanger for cooling the heat control target directly or by causing the refrigerant to absorb heat, and a heat medium,
    A temperature controlled object valve device for controlling the flow of the refrigerant to the temperature controlled object heat exchanger,
    The control device controls the operation of the compressor based on the temperature of the heat absorber, and the heat exchanger for temperature adjustment target, or the valve device for temperature adjustment target based on the temperature of the heat medium. It has an air-conditioner that controls the opening and closing of the
    In the air-conditioning+controlled cooling mode, when the temperature of the controlled object becomes equal to or higher than a predetermined upper limit value TcellUL1, or when it becomes higher than the upper limit value TcellUL1, the controlled valve device for controlled temperature An air conditioner for a vehicle, wherein the vehicle is fixed in an open state.
  2.  前記制御装置は、前記空調+被温調対象冷却モードにおいて、前記被温調対象の温度が所定の開固定解除値以下に低下した場合、又は、当該開固定解除値より低下した場合、前記被温調対象用弁装置を開閉制御する状態に復帰することを特徴とする請求項1に記載の車両用空気調和装置。 In the air-conditioning + controlled cooling target cooling mode, the control device controls the temperature of the controlled target when the temperature of the controlled target falls below a predetermined open fixation release value or when the temperature falls below the open release release value. The vehicle air conditioner according to claim 1, wherein the temperature control target valve device returns to a state in which the valve device is controlled to open and close.
  3.  前記制御装置は、所定の報知装置を備え、前記空調+被温調対象冷却モードにおいて、前記被温調対象の温度により前記被温調対象用弁装置を開いた状態に固定した場合、前記報知装置にて所定の空調能力低下報知動作を実行することを特徴とする請求項1又は請求項2に記載の車両用空気調和装置。 The control device includes a predetermined notification device, and when the temperature controlled target valve device is fixed in an open state by the temperature of the temperature controlled target in the air conditioning+controlled temperature controlled cooling mode, the notification is given. The vehicle air conditioner according to claim 1 or 2, wherein the device performs a predetermined air conditioning capacity decrease notification operation.
  4.  前記制御装置は、前記吸熱器の温度がその目標温度より高い場合、又は、前記吸熱器の温度がその目標温度に所定の余裕度を加えた値より高い場合、前記空調能力低下報知動作を実行することを特徴とする請求項3に記載の車両用空気調和装置。 If the temperature of the heat absorber is higher than the target temperature, or if the temperature of the heat absorber is higher than a value obtained by adding a predetermined margin to the target temperature, the control device performs the air conditioning capacity decrease notification operation. The vehicle air conditioner according to claim 3, wherein:
  5.  前記制御装置は、前記被温調対象用弁装置を開いた状態に固定し、前記吸熱器用弁装置を閉じて前記被温調対象用熱交換器、又は、前記熱媒体の温度に基づいて前記圧縮機の運転を制御する被温調対象冷却(単独)モードを有し、
     前記空調+被温調対象冷却モードにおいて、前記被温調対象の温度が前記上限値TcellUL1より高いもう一つの上限値TcellUL2以上になった場合、又は、当該上限値TcellUL2より高くなった場合、前記被温調対象冷却(単独)モードに移行することを特徴とする請求項1乃至請求項4のうちの何れかに記載の車両用空気調和装置。
    The control device fixes the temperature controlled target valve device in an open state, closes the heat absorber valve device, and the temperature controlled target heat exchanger, or, based on the temperature of the heat medium, It has a temperature controlled cooling (independent) mode that controls the operation of the compressor,
    In the air-conditioning + temperature-controlled cooling mode, when the temperature of the temperature-controlled target is equal to or higher than another upper limit value TcellUL2 higher than the upper limit value TcellUL1, or when higher than the upper limit value TcellUL2, The vehicle air conditioner according to any one of claims 1 to 4, wherein the temperature adjustment target cooling (single) mode is entered.
  6.  前記制御装置は、前記被温調対象冷却(単独)モードに移行した後、前記被温調対象の温度が所定の単独冷却解除値以下に低下した場合、又は、当該単独冷却解除値より低下した場合、前記空調+被温調対象冷却モードに移行することを特徴とする請求項5に記載の車両用空気調和装置。 The control device, when the temperature of the temperature controlled object is lowered to a predetermined single cooling release value or less after shifting to the temperature controlled cooling (single) mode, or is lower than the single cooling release value. In this case, the vehicle air conditioner according to claim 5, wherein the air-conditioning+temperature controlled cooling mode is entered.
  7.  前記制御装置は、所定の報知装置を備え、前記空調+被温調対象冷却モードにおいて、前記被温調対象の温度により前記被温調対象冷却(単独)モードに移行した場合、前記報知装置にて所定の空調停止報知動作を実行することを特徴とする請求項5又は請求項6のうちの何れかに記載の車両用空気調和装置。 The control device is provided with a predetermined notification device, and in the air conditioning+controlled cooling target mode, when the temperature controlled target temperature shifts to the controlled cooling target (single) mode, The air conditioning apparatus for a vehicle according to claim 5 or 6, wherein a predetermined air conditioning stop notification operation is performed.
PCT/JP2019/044841 2018-12-18 2019-11-15 Vehicle air-conditioning apparatus WO2020129493A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112019006280.8T DE112019006280T5 (en) 2018-12-18 2019-11-15 Vehicle air conditioning
CN201980083730.3A CN113165481A (en) 2018-12-18 2019-11-15 Air conditioner for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018236428A JP2020097320A (en) 2018-12-18 2018-12-18 Vehicular air conditioner
JP2018-236428 2018-12-18

Publications (1)

Publication Number Publication Date
WO2020129493A1 true WO2020129493A1 (en) 2020-06-25

Family

ID=71101234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044841 WO2020129493A1 (en) 2018-12-18 2019-11-15 Vehicle air-conditioning apparatus

Country Status (4)

Country Link
JP (1) JP2020097320A (en)
CN (1) CN113165481A (en)
DE (1) DE112019006280T5 (en)
WO (1) WO2020129493A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220305876A1 (en) * 2021-03-24 2022-09-29 Ford Global Technologies, Llc Methods and systems for instant cabin heat for a vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021213795A1 (en) 2021-12-03 2023-06-07 Mahle International Gmbh heat pump system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619986B2 (en) * 1978-12-29 1981-05-11
JP2012030663A (en) * 2010-07-29 2012-02-16 Mitsubishi Motors Corp Control device for air conditioning system for vehicle
JP2013180722A (en) * 2012-03-05 2013-09-12 Denso Corp Air conditioner for vehicle
JP2015116955A (en) * 2013-12-19 2015-06-25 カルソニックカンセイ株式会社 Vehicle display device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352866A (en) * 2001-05-28 2002-12-06 Honda Motor Co Ltd Battery cooling system for electric vehicle
KR101155804B1 (en) * 2005-10-07 2012-06-12 한라공조주식회사 The apparatus and the control method of heat pump system for car
JP5619986B2 (en) * 2011-02-22 2014-11-05 株式会社日立製作所 Vehicle thermal system
JP5505350B2 (en) * 2011-03-30 2014-05-28 株式会社デンソー Refrigeration cycle equipment for vehicles
JP2013217631A (en) * 2012-03-14 2013-10-24 Denso Corp Refrigeration cycle device
JP6125312B2 (en) 2013-04-26 2017-05-10 サンデンホールディングス株式会社 Air conditioner for vehicles
JP5668811B2 (en) * 2013-08-08 2015-02-12 三菱自動車工業株式会社 Control device for vehicle air conditioner system
JP2017171209A (en) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 Vehicular air conditioning apparatus and air condition control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619986B2 (en) * 1978-12-29 1981-05-11
JP2012030663A (en) * 2010-07-29 2012-02-16 Mitsubishi Motors Corp Control device for air conditioning system for vehicle
JP2013180722A (en) * 2012-03-05 2013-09-12 Denso Corp Air conditioner for vehicle
JP2015116955A (en) * 2013-12-19 2015-06-25 カルソニックカンセイ株式会社 Vehicle display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220305876A1 (en) * 2021-03-24 2022-09-29 Ford Global Technologies, Llc Methods and systems for instant cabin heat for a vehicle

Also Published As

Publication number Publication date
CN113165481A (en) 2021-07-23
DE112019006280T5 (en) 2021-09-16
JP2020097320A (en) 2020-06-25

Similar Documents

Publication Publication Date Title
JP7300264B2 (en) Vehicle air conditioner
WO2020075446A1 (en) Vehicle air conditioning device
WO2020153032A1 (en) Vehicle battery temperature adjusting device, and vehicle air conditioning device provided with same
JP7372732B2 (en) Vehicle air conditioner
WO2020129495A1 (en) Vehicle air conditioning device
JP2020179707A (en) Vehicular control system
WO2020110508A1 (en) Vehicle battery temperature adjustment apparatus and vehicle air-conditioner equipped with same
WO2020129493A1 (en) Vehicle air-conditioning apparatus
WO2020121737A1 (en) Vehicular air-conditioning device
WO2020166274A1 (en) Vehicle air conditioner
WO2020090255A1 (en) Air conditioning device for vehicle
WO2020100410A1 (en) Vehicle air-conditioning device
WO2020137235A1 (en) Vehicle air-conditioning device
JP7280689B2 (en) Vehicle air conditioner
WO2022064944A1 (en) Air conditioner for vehicle
WO2020100524A1 (en) Vehicle air-conditioning device
JP2021160469A (en) Vehicle air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899753

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19899753

Country of ref document: EP

Kind code of ref document: A1