WO2020090255A1 - Air conditioning device for vehicle - Google Patents

Air conditioning device for vehicle Download PDF

Info

Publication number
WO2020090255A1
WO2020090255A1 PCT/JP2019/036223 JP2019036223W WO2020090255A1 WO 2020090255 A1 WO2020090255 A1 WO 2020090255A1 JP 2019036223 W JP2019036223 W JP 2019036223W WO 2020090255 A1 WO2020090255 A1 WO 2020090255A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
temperature
refrigerant
heat
valve device
Prior art date
Application number
PCT/JP2019/036223
Other languages
French (fr)
Japanese (ja)
Inventor
竜 宮腰
孝史 青木
雄満 山崎
洪銘 張
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Priority to CN201980068195.4A priority Critical patent/CN112805166B/en
Publication of WO2020090255A1 publication Critical patent/WO2020090255A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel

Definitions

  • the present invention relates to a heat pump type air conditioner for air conditioning the interior of a vehicle.
  • an air conditioner that can be applied to such a vehicle, a compressor, a radiator, a heat absorber, and an outdoor heat exchanger are provided with a refrigerant circuit, and the refrigerant discharged from the compressor is provided.
  • the radiator dissipates heat, and the refrigerant dissipated in this radiator absorbs heat in the outdoor heat exchanger to heat it.
  • the refrigerant discharged from the compressor is dissipated in the outdoor heat exchanger and evaporated in the heat absorber (evaporator).
  • An air conditioner has been developed to cool the interior of the vehicle by absorbing heat and cooling the air (for example, see Patent Document 1).
  • cooling of the vehicle interior is controlled by controlling the rotation speed of the compressor based on the temperature of the heat absorbers, for example.
  • the battery evaporator is provided with a valve device, and the valve device is opened / closed based on, for example, the temperature of the heat medium (the temperature of the object cooled by the battery evaporator) to cool the battery. Will be done.
  • cooling the battery by controlling the rotation speed of the compressor based on the temperature of the heat medium, providing a valve device on the heat absorber, and opening and closing this valve device based on the temperature of the heat absorber. It is also conceivable to cool the passenger compartment with.
  • opening or closing the valve device opens or closes a part of the refrigerant passage of the refrigerant circuit. Therefore, when controlling the rotation speed of the compressor by the temperature of the heat absorber as described above, immediately after opening the valve device from the closed state, the refrigerant flowing into the heat absorber sharply decreases and the temperature of the heat absorber rises. To do. On the other hand, immediately after the valve device is closed from the open state, the refrigerant flowing into the heat absorber rapidly increases and the temperature of the heat absorber decreases.
  • the valve device when controlling the rotation speed of the compressor by the temperature of the heat medium, immediately after the valve device is opened from the closed state, the refrigerant flowing into the battery evaporator is sharply reduced and the temperature of the evaporator is reduced. To rise. On the other hand, immediately after the valve device is closed from the open state, the refrigerant flowing into the battery evaporator rapidly increases, and the temperature of the battery evaporator drops.
  • the present invention has been made to solve the above-mentioned conventional technical problems, and quickly responds to the change in the refrigerant flow path due to the opening and closing of the valve device, the rotational speed of the compressor, and stabilizes the evaporator.
  • An object of the present invention is to provide a vehicle air conditioner that can realize temperature control.
  • the vehicle air conditioner of the present invention controls the compressor that compresses the refrigerant, the first evaporator and the second evaporator that evaporate the refrigerant, and the circulation of the refrigerant to the second evaporator.
  • a device for air-conditioning a vehicle compartment including at least a valve device and a control device, wherein the control device controls the rotation speed of the compressor based on the temperature of the first evaporator or an object cooled by the first evaporator, The opening / closing control of the valve device is performed based on the temperature of the second evaporator or the object cooled by the second evaporator, and when the valve device is opened from the closed state, the operation of increasing the rotation speed of the compressor and the opening of the valve device. At the time of closing from the closed state, at least one or both of the operations of lowering the rotation speed of the compressor are executed.
  • the control device changes the rotational speed of the compressor to the rotational speed when the valve device was opened last time when the valve device is opened from the closed state. And / or when the valve device is closed from the open state, the rotational speed of the compressor is changed to the rotational speed when the valve device was closed last time.
  • a vehicle air conditioner according to a third aspect of the present invention is the vehicle air conditioner according to the first aspect of the invention, wherein when the control device opens the valve device from a closed state, the control device has a predetermined correction coefficient for the rotational speed when the valve device was opened previously.
  • the control device opens the valve device from a closed state
  • the control device has a predetermined correction coefficient for the rotational speed when the valve device was opened previously.
  • the number of revolutions when the valve device was previously opened means the rotation of the compressor during the period when the valve device was previously opened. Any of the values, or their average value, or the last value, and / or the number of revolutions when the valve device was closed last is the period during which the valve device was closed last time. It is characterized in that it is one of the values of the number of revolutions of the compressor, the average value thereof, or the last value.
  • the control device feedback-controls the rotation speed of the compressor based on the temperature of the first evaporator or an object cooled by the first evaporator.
  • the valve device is closed from the open state, the integral term of the feedback control for controlling the rotation speed of the compressor is cleared.
  • the control device controls the rotation speed of the compressor based on the temperature of the first evaporator or an object cooled by the first evaporator.
  • the integral term of the feedback control for controlling the rotation speed of the compressor is increased by a predetermined value.
  • the vehicle air conditioner according to the invention of claim 7 is a heat absorber for evaporating the refrigerant to cool the air supplied to the vehicle compartment in each of the above inventions, and a temperature control device mounted on the vehicle for evaporating the refrigerant.
  • the target heat exchanger for cooling the target is provided, and the first evaporator is one of the heat absorber and the target heat exchanger for temperature control, and the second evaporator is , The other of the heat absorber and the heat exchanger for temperature control.
  • a vehicle air conditioner is a heat absorber valve device that controls the flow of the refrigerant to the heat absorber in the above invention, and a heated device that controls the flow of the refrigerant to the heat exchanger for temperature adjustment.
  • the control device includes a valve device for temperature control, the control device opens the valve device for heat absorber, controls the rotation speed of the compressor based on the temperature of the heat absorber or the target cooled by the heat absorber, and the heat exchanger for temperature control target.
  • the second operation mode in which the rotation speed of the compressor is controlled based on the temperature of the object to be cooled by and the opening / closing control of the heat absorber valve device is performed based on the temperature of the heat absorber or the object to be cooled thereby is executed. It is characterized by doing.
  • the control device increases the rotation speed of the compressor when the temperature-controlled object valve device is opened from the closed state in the first operation mode. And / or, when the valve device for temperature control is closed from the open state, the rotation speed of the compressor is reduced, and in the second operation mode, when the heat absorber valve device is opened from the closed state, compression is performed. It is characterized in that the number of revolutions of the compressor is increased and / or the number of revolutions of the compressor is reduced when the valve device for the heat absorber is closed from the open state.
  • the vehicle air conditioner according to the invention of claim 10 is characterized in that, in each of the above inventions, the valve device is a valve capable of switching between two different types of openings.
  • the vehicle air conditioner according to the invention of claim 11 is characterized in that, in each of the above inventions, the valve device is a valve capable of switching between fully open and fully closed.
  • a compressor for compressing a refrigerant, a first evaporator and a second evaporator for evaporating the refrigerant, and a valve device for controlling the flow of the refrigerant to the second evaporator
  • the control device controls the rotation speed of the compressor based on the temperature of the first evaporator or an object cooled by the second evaporator, and The opening and closing of the valve device is controlled based on the temperature of the evaporator or the object cooled by the evaporator, and when the valve device is opened from the closed state, the operation to increase the rotation speed of the compressor and the open state of the valve device are performed.
  • the number of revolutions of the compressor is immediately changed in response to the change of the refrigerant flow path, and the disadvantage that the temperature of the first evaporator and the object cooled by it is largely changed can be avoided. Will be able to. Further, since the refrigerant can be supplied to the second evaporator without any trouble when the valve device is opened, stable temperature control by the first evaporator and the second evaporator can be realized as a whole. It is possible.
  • the control device when the control device opens the valve device from the closed state, the control device changes the rotation speed of the compressor to the rotation speed when the valve device was opened last time, and / or ,
  • the valve device When the valve device is closed from the open state, by changing the rotation speed of the compressor to the rotation speed when the valve device was closed last time, the rotation speed of the compressor can be immediately responded to the opening and closing of the valve device. Will be able to be changed to an appropriate value.
  • the rotational speed of the compressor is multiplied by a value obtained by multiplying the rotational speed when the valve device was opened last time by a predetermined correction coefficient.
  • the rotational speed of the compressor is changed to a value obtained by multiplying the rotational speed when the valve device was closed last time by a predetermined correction coefficient. Then, for example, by setting the correction coefficient in accordance with the characteristics and environment of the device, the rotation speed of the compressor can be changed to a more appropriate value.
  • the number of revolutions when the valve device according to the invention of claims 2 and 3 was opened last time is the number of revolutions of the compressor during the period when the valve device was opened last time as in the invention of claim 4. Any value, their average value, or the last value. And / or the number of revolutions when the valve device is closed last time means any one of the values of the number of revolutions of the compressor during the period when the valve device was closed last time as in the invention of claim 4, or those values. May be the average value or the last value.
  • the control device feedback-controls the rotation speed of the compressor based on the temperature of the first evaporator or the object cooled by the first evaporator as in the invention of claim 5, the valve device is opened.
  • closing by clearing the integral term of the feedback control that controls the rotation speed of the compressor, it is possible to immediately change the rotation speed of the compressor to an appropriate value in response to the closing of the valve device.
  • valve device when the control device opens the valve device from the closed state as in the invention of claim 6, the valve device is opened by increasing the integral term of the feedback control for controlling the rotation speed of the compressor by a predetermined value. It will be possible to immediately change the rotation speed of the compressor to an appropriate value.
  • first evaporator and the second evaporator of each of the above inventions are provided with a heat absorber for evaporating the refrigerant and cooling the air supplied to the vehicle interior as in the invention of claim 7, and evaporating the refrigerant.
  • a heat exchanger for a temperature-controlled object mounted on a vehicle to cool the temperature-controlled object enables stable cooling of the vehicle interior and cooling of the temperature-controlled object.
  • a valve device for a heat absorber that controls the flow of the refrigerant to the heat absorber as in the invention of claim 8 and a valve for the temperature controlled object that controls the flow of the refrigerant to the heat exchanger for the temperature controlled object.
  • the control device opens the valve device for the heat absorber, controls the rotation speed of the compressor based on the temperature of the heat absorber or the object cooled by it, and cools it by the heat exchanger for the temperature-controlled object or by it.
  • a first operation mode in which the temperature controlled object valve device is controlled to open and close based on the temperature of the target to be controlled, and the temperature controlled object valve device is opened, and the temperature controlled object heat exchanger or it is cooled.
  • the second operation mode By controlling the number of revolutions of the compressor based on the temperature of the target, by switching and executing the second operation mode for controlling the opening and closing of the heat absorber valve device based on the temperature of the heat absorber or the target cooled by it, In the first operation mode, temperature control is performed while giving priority to cooling in the passenger compartment. The elephant was cooled, in the second operating mode it is possible to perform cooling of the vehicle interior while giving priority to cooling of the temperature control object.
  • the control device according to the invention of claim 9 opens the valve device for temperature control subject from the closed state in the first operation mode, the number of revolutions of the compressor is increased and / or the temperature control device is heated.
  • the valve device for adjustment is closed from the open state, the rotation speed of the compressor is lowered, and in the second operation mode, when the valve device for heat absorber is opened from the closed state, the rotation speed of the compressor is increased.
  • the heat absorber valve device is closed from the open state, the rotation speed of the compressor is reduced to cool the vehicle interior in the first operation mode and the second operation mode and to control the temperature of the temperature controlled object. It becomes possible to achieve stable cooling.
  • valve device according to the invention of claim 10 is a valve capable of switching between two different types of opening
  • valve device according to the invention of claim 11 is capable of switching between fully open and fully closed.
  • the present invention is effective when
  • FIG. 4 is another control block diagram related to compressor control of the heat pump controller of the control device in FIG. 2.
  • FIG. 7 is yet another control block diagram related to compressor control of the heat pump controller of the control device in FIG. 2.
  • FIG. 7 is yet another control block diagram related to compressor control of the heat pump controller of the control device in FIG. 2.
  • It is a block diagram explaining control of the solenoid valve 35 in battery cooling (priority) + air conditioning mode (2nd operation mode) of the heat pump controller of the control apparatus of FIG. 3 is a timing chart illustrating battery cooling (priority) + air conditioning mode (second operation mode) by the heat pump controller of the control device in FIG. 2.
  • 6 is a timing chart for explaining an air conditioning (priority) + battery cooling mode when the compressor target rotation speed change control is not performed when opening / closing the solenoid valve 69.
  • 6 is a timing chart for explaining a battery cooling (priority) + air conditioning mode when the compressor target rotation speed change control is not performed when opening / closing the solenoid valve 35.
  • FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 of an embodiment of the present invention.
  • a vehicle of an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and electric power charged in a battery 55 mounted in the vehicle is used as a traveling motor (electric motor). (Not shown) to drive and run, and the compressor 2 of the vehicle air conditioner 1 of the present invention, which will be described later, is also driven by the electric power supplied from the battery 55. ..
  • EV electric vehicle
  • an engine internal combustion engine
  • electric motor traveling motor
  • the vehicle air conditioner 1 of the embodiment is a heating mode, a dehumidification heating mode, a dehumidification cooling mode, a cooling mode, and a defrosting mode in a heat pump operation using the refrigerant circuit R in an electric vehicle that cannot be heated by engine waste heat.
  • the air-conditioning (priority) + battery cooling mode as the first operation mode, the battery cooling (priority) + air-conditioning mode as the second operation mode, and the battery cooling (single) mode are switched and executed. As a result, air conditioning in the vehicle compartment and temperature control of the battery 55 are performed.
  • the present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and a running motor.
  • the vehicle to which the vehicle air conditioner 1 of the embodiment is applied is one in which the battery 55 can be charged from an external charger (a quick charger or a normal charger).
  • the battery 55, the traveling motor, the inverter controlling the same, and the like described above are the objects of temperature adjustment mounted on the vehicle in the present invention, but in the following embodiments, the battery 55 will be taken as an example for description.
  • the vehicle air conditioner 1 of the embodiment is for performing air conditioning (heating, cooling, dehumidification, and ventilation) of a vehicle interior of an electric vehicle, and an electric compressor 2 for compressing a refrigerant and an interior of the vehicle interior.
  • an outdoor expansion valve 6 consisting of a motor-operated valve (electronic expansion valve) for decompressing and expanding the refrigerant during heating, and as a radiator for radiating the refrigerant during cooling
  • An outdoor heat exchanger 7 that functions and performs heat exchange between the refrigerant and the outside air so as to function as an evaporator that absorbs the refrigerant (absorbs heat into the refrigerant) during heating, and a mechanical expansion valve that decompresses and expands the refrigerant.
  • Indoor expansion valve 8 consisting of A heat absorber 9 (a first evaporator or a second evaporator) that is provided in the air flow passage 3 to evaporate the refrigerant during cooling and dehumidification so as to absorb heat from the inside and outside of the vehicle compartment (to absorb the heat in the refrigerant) , And the accumulator 12 and the like are sequentially connected by the refrigerant pipe 13 to form the refrigerant circuit R.
  • a heat absorber 9 a first evaporator or a second evaporator
  • the outdoor expansion valve 6 decompresses and expands the refrigerant flowing out of the radiator 4 and flowing into the outdoor heat exchanger 7, and can be fully closed. Further, in the embodiment, the indoor expansion valve 8 using the mechanical expansion valve decompresses and expands the refrigerant flowing into the heat absorber 9, and adjusts the degree of superheat of the refrigerant in the heat absorber 9.
  • the outdoor heat exchanger 7 is provided with an outdoor blower 15.
  • the outdoor blower 15 exchanges heat between the outdoor air and the refrigerant by forcibly ventilating the outdoor air through the outdoor heat exchanger 7, whereby the outdoor air is discharged while the vehicle is stopped (that is, the vehicle speed is 0 km / h).
  • the heat exchanger 7 is configured to ventilate outside air.
  • the outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 sequentially on the downstream side of the refrigerant, and the refrigerant pipe 13A on the refrigerant outlet side of the outdoor heat exchanger 7 is used when flowing the refrigerant to the heat absorber 9.
  • the refrigerant pipe 13B on the outlet side of the supercooling section 16 is connected to the receiver dryer section 14 via an electromagnetic valve 17 (for cooling) as an open / close valve, and the check valve 18, the indoor expansion valve 8 and the heat absorption It is connected to the refrigerant inlet side of the heat absorber 9 via a solenoid valve 35 (for cabin) as a device valve device (open / close valve) in sequence.
  • the electromagnetic valve 35 is a valve that can be switched between fully open and fully closed.
  • the receiver dryer section 14 and the supercooling section 16 structurally constitute a part of the outdoor heat exchanger 7.
  • the check valve 18 has the forward direction of the indoor expansion valve 8.
  • the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched into a refrigerant pipe 13D, and the branched refrigerant pipe 13D is passed through an electromagnetic valve 21 (for heating) as an on-off valve opened during heating. It is connected to the refrigerant pipe 13C on the refrigerant outlet side of the heat absorber 9 for communication.
  • the refrigerant pipe 13C is connected to the inlet side of the accumulator 12, and the outlet side of the accumulator 12 is connected to the refrigerant suction side refrigerant pipe 13K of the compressor 2.
  • a strainer 19 is connected to the refrigerant pipe 13E on the refrigerant outlet side of the radiator 4, and the refrigerant pipe 13E is connected to the refrigerant pipes 13J and 13F before the outdoor expansion valve 6 (refrigerant upstream side).
  • One of the branched and branched refrigerant pipes 13J is connected to the refrigerant inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.
  • the other branched refrigerant pipe 13F is connected to the refrigerant downstream side of the check valve 18 and the refrigerant upstream side of the indoor expansion valve 8 via an electromagnetic valve 22 (for dehumidification) as an opening / closing valve that is opened during dehumidification. It is communicatively connected to the located refrigerant pipe 13B.
  • the refrigerant pipe 13F is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve 18, and the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve are connected. It becomes a bypass circuit that bypasses 18. Further, a solenoid valve 20 as an opening / closing valve for bypass is connected in parallel to the outdoor expansion valve 6.
  • an intake switching damper 26 is provided at 25 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation) which is the air inside the vehicle interior and the outside air (outside air introduction) which is the air outside the vehicle interior.
  • an indoor blower (blower fan) 27 for feeding the introduced inside air or outside air to the air flow passage 3 is provided.
  • the intake switching damper 26 of the embodiment opens and closes the outside air intake port and the inside air intake port of the intake port 25 at an arbitrary ratio to remove the air (outside air and inside air) flowing into the heat absorber 9 of the air flow passage 3. It is configured so that the ratio of inside air can be adjusted between 0% and 100% (the ratio of outside air can also be adjusted between 100% and 0%).
  • an auxiliary heater 23 as an auxiliary heating device including a PTC heater (electric heater) is provided in the embodiment, and passes through the radiator 4. It is possible to heat the air supplied to the passenger compartment. Further, in the air flow passage 3 on the air upstream side of the radiator 4, the air (inside air or outside air) flowing into the air flow passage 3 and passing through the heat absorber 9 is radiated. An air mix damper 28 that adjusts the ratio of ventilation to the device 4 and the auxiliary heater 23 is provided.
  • the vehicle air conditioner 1 includes an equipment temperature adjusting device 61 for adjusting the temperature of the battery 55 by circulating a heat medium in the battery 55 (object to be temperature adjusted).
  • the device temperature adjusting device 61 of the embodiment includes a circulation pump 62 as a circulating device for circulating a heat medium in the battery 55, a refrigerant-heat medium heat exchanger 64 (a second evaporator or a first evaporator). And a battery 55 are connected to each other by a heat medium pipe 66 in an annular shape.
  • the inlet of the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64 is connected to the discharge side of the circulation pump 62, and the outlet of this heat medium passage 64A is connected to the inlet of the heat medium heater 63.
  • the outlet of the heat medium heater 63 is connected to the inlet of the battery 55, and the outlet of the battery 55 is connected to the suction side of the circulation pump 62.
  • the heat medium used in the device temperature adjusting device 61 for example, water, a refrigerant such as HFO-1234yf, a liquid such as coolant, or a gas such as air can be adopted.
  • water is used as the heat medium.
  • the heat medium heater 63 is composed of an electric heater such as a PTC heater. Further, it is assumed that, for example, a jacket structure is provided around the battery 55 so that a heat medium can flow in a heat exchange relationship with the battery 55.
  • the heat medium discharged from the circulation pump 62 flows into the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64.
  • the heat medium exiting the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heating heater 63, and if the heat medium heating heater 63 is generating heat, the heat medium heating heater 63 heats the heat medium heating heater 63 and then the battery. 55, where the heat medium exchanges heat with the battery 55.
  • the heat medium that has exchanged heat with the battery 55 is sucked into the circulation pump 62 and circulated in the heat medium pipe 66.
  • a branch pipe 67 as a branch circuit is provided in the refrigerant pipe 13B located on the refrigerant downstream side of the connecting portion between the refrigerant pipe 13F and the refrigerant pipe 13B of the refrigerant circuit R and on the refrigerant upstream side of the indoor expansion valve 8.
  • auxiliary expansion valve 68 which is a mechanical expansion valve in the embodiment
  • solenoid valve (for chiller) 69 as a valve device (open / close valve) for temperature control are sequentially provided in the branch pipe 67.
  • the solenoid valve 69 is a valve that can be switched between fully open and fully closed.
  • the auxiliary expansion valve 68 decompresses and expands the refrigerant flowing into a later-described refrigerant passage 64B of the refrigerant-heat medium heat exchanger 64, and adjusts the degree of superheat of the refrigerant in the refrigerant passage 64B of the refrigerant-heat medium heat exchanger 64. To do.
  • the other end of the branch pipe 67 is connected to the refrigerant flow passage 64B of the refrigerant-heat medium heat exchanger 64, and one end of the refrigerant pipe 71 is connected to the outlet of the refrigerant flow passage 64B.
  • the other end is connected to a refrigerant pipe 13C on the refrigerant upstream side (refrigerant upstream side of the accumulator 12) from the confluence with the refrigerant pipe 13D.
  • the auxiliary expansion valve 68, the electromagnetic valve 69, the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, and the like also form a part of the refrigerant circuit R and, at the same time, a part of the device temperature adjusting device 61. It will be.
  • the solenoid valve 69 When the solenoid valve 69 is open, the refrigerant (a part or all of the refrigerant) discharged from the outdoor heat exchanger 7 flows into the branch pipe 67, the pressure is reduced by the auxiliary expansion valve 68, and then the refrigerant is passed through the solenoid valve 69. -The refrigerant flows into the refrigerant channel 64B of the heat medium heat exchanger 64 and evaporates there. The refrigerant absorbs heat from the heat medium flowing through the heat medium passage 64A while flowing through the refrigerant passage 64B, and then is sucked into the compressor 2 through the refrigerant pipe 13K through the branch pipe 71, the refrigerant pipe 13C, and the accumulator 12.
  • FIG. 2 shows a block diagram of the control device 11 of the vehicle air conditioner 1 of the embodiment.
  • the control device 11 includes an air conditioning controller 45 and a heat pump controller 32 each of which includes a microcomputer that is an example of a computer including a processor, and these include a CAN (Controller Area Network) and a LIN (Local Interconnect Network). Is connected to the vehicle communication bus 65 that constitutes the. Further, the compressor 2 and the auxiliary heater 23, the circulation pump 62 and the heat medium heating heater 63 are also connected to the vehicle communication bus 65, and the air conditioning controller 45, the heat pump controller 32, the compressor 2, the auxiliary heater 23, the circulation pump 62 and the heat generator.
  • the medium heater 64 is configured to send and receive data via the vehicle communication bus 65.
  • the vehicle communication bus 65 includes a vehicle controller 72 (ECU) that controls the entire vehicle including traveling, a battery controller (BMS: Battery Management System) 73 that controls the charging and discharging of the battery 55, and a GPS navigation device 74.
  • the vehicle controller 72, the battery controller 73, and the GPS navigation device 74 are also configured by a microcomputer that is an example of a computer including a processor.
  • the air conditioning controller 45 and the heat pump controller 32 that configure the control device 11 connect the vehicle communication bus 65 to each other. Information (data) is transmitted and received to and from the vehicle controller 72, the battery controller 73, and the GPS navigation device 74 via the above.
  • the air conditioning controller 45 is a higher-level controller that controls the vehicle interior air conditioning.
  • the inputs of the air conditioning controller 45 are an outside air temperature sensor 33 that detects the outside air temperature Tam of the vehicle and an outside air humidity that detects outside air humidity.
  • the sensor 34, the HVAC suction temperature sensor 36 that detects the temperature of the air that is sucked into the air flow passage 3 from the suction port 25 and flows into the heat absorber 9, and the inside air temperature sensor 37 that detects the air (inside air) temperature in the vehicle interior.
  • An inside air humidity sensor 38 for detecting the humidity of the air in the vehicle compartment
  • an indoor CO 2 concentration sensor 39 for detecting the carbon dioxide concentration in the vehicle compartment
  • an outlet temperature sensor 41 for detecting the temperature of the air blown into the vehicle compartment.
  • 53A is a display as a display output device provided in the air conditioning operation unit 53.
  • the output of the air conditioning controller 45 is connected to the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, and the outlet switching damper 31, which are connected to the air conditioning controller 45. Controlled by.
  • the heat pump controller 32 is a controller that mainly controls the refrigerant circuit R, and the heat pump controller 32 has an input that releases heat to detect the refrigerant inlet temperature Tcxin of the radiator 4 (which is also the refrigerant temperature discharged from the compressor 2).
  • Radiator pressure sensor 47 for detecting the refrigerant pressure (pressure of radiator 4; radiator pressure Pci), and temperature of heat absorber 9 (temperature of heat absorber 9 itself, or air immediately after being cooled by heat absorber 9) Temperature of (cooling target): Heat absorber temperature sensor 48 for detecting heat absorber temperature Te, and refrigerant temperature at the outlet of the outdoor heat exchanger 7 (refrigerant evaporation temperature of the outdoor heat exchanger 7: The outdoor heat exchanger temperature sensor 49 for detecting the external heat exchanger temperature TXO and the outputs of the auxiliary heater temperature sensors 50A (driver's seat side) and 50B (passenger seat side) for detecting the temperature of the auxiliary heater 23 are connected. ing.
  • the output of the heat pump controller 32 includes the outdoor expansion valve 6, the solenoid valve 22 (for dehumidification), the solenoid valve 17 (for cooling), the solenoid valve 21 (for heating), the solenoid valve 20 (for bypass), and the solenoid valve 35.
  • the electromagnetic valves (for the cabin) and the electromagnetic valve 69 (for the chiller) are connected, and they are controlled by the heat pump controller 32.
  • the compressor 2, the auxiliary heater 23, the circulation pump 62, and the heat medium heating heater 63 each have a built-in controller, and in the embodiment, the controller of the compressor 2, the auxiliary heater 23, the circulation pump 62, and the heat medium heating heater 63. Transmits and receives data to and from the heat pump controller 32 via the vehicle communication bus 65, and is controlled by the heat pump controller 32.
  • 32 M in the figure is a memory included in the heat pump controller 32.
  • the circulation pump 62 and the heat medium heater 63 that form the device temperature adjusting device 61 may be controlled by the battery controller 73.
  • the temperature of the heat medium on the outlet side of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 of the device temperature adjusting device 61 (heat medium temperature Tw: heat exchanger for temperature controlled).
  • the output of the heat medium temperature sensor 76 that detects the temperature of the object to be cooled by the battery is connected to the output of the battery temperature sensor 77 that detects the temperature of the battery 55 (the temperature of the battery 55 itself: the battery temperature Tcell).
  • the remaining amount of the battery 55 (the amount of stored electricity), the information regarding the charging of the battery 55 (information indicating that the battery is being charged, the charging completion time, the remaining charging time, etc.), the heat medium temperature Tw and the battery temperature Tcell It is transmitted from the battery controller 73 to the air conditioning controller 45 and the vehicle controller 72 via the vehicle communication bus 65.
  • the information regarding the charge completion time and the remaining charge time when the battery 55 is charged is information supplied from an external charger such as a quick charger described later.
  • the heat pump controller 32 and the air conditioning controller 45 send and receive data to and from each other via the vehicle communication bus 65, and control each device based on the output of each sensor and the setting input by the air conditioning operation unit 53.
  • the heat pump controller 32 also transmits data (information) regarding the control of the refrigerant circuit R to the air conditioning controller 45 via the vehicle communication bus 65.
  • the control device 11 air conditioning controller 45, heat pump controller 32
  • the control device 11 has a heating mode, a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode, and an air conditioning (priority) + battery cooling mode (first operation mode).
  • air conditioning controller 45 heat pump controller 32
  • first operation mode air conditioning
  • battery cooling (priority) + air-conditioning mode second operation mode
  • battery cooling (single) mode battery cooling operation defrosting mode
  • each of the air conditioning operations of the heating mode, the dehumidification heating mode, the dehumidification cooling mode, the cooling mode, and the air conditioning (priority) + battery cooling mode the battery 55 is not charged in the embodiment, and the ignition of the vehicle is performed. This is executed when (IGN) is turned on and the air conditioning switch of the air conditioning operation unit 53 is turned on.
  • each battery cooling operation in the battery cooling (priority) + air conditioning mode and the battery cooling (single) mode is executed, for example, when the plug of the quick charger (external power source) is connected and the battery 55 is being charged. It is something.
  • the heat pump controller 32 operates the circulation pump 62 of the device temperature adjusting device 61 when the ignition is turned on, or when the battery 55 is being charged even when the ignition is turned off. It is assumed that the heat medium is circulated in the heat medium pipe 66 as indicated by broken lines in FIGS. Further, although not shown in FIG. 3, the heat pump controller 32 of the embodiment also executes a battery heating mode for heating the battery 55 by causing the heat medium heating heater 63 of the device temperature adjusting device 61 to generate heat.
  • FIG. 4 shows how the refrigerant flows in the refrigerant circuit R in the heating mode (solid arrow).
  • the heat pump controller 32 opens the solenoid valve 21 and the solenoid valve 17 , The solenoid valve 20, the solenoid valve 22, the solenoid valve 35, and the solenoid valve 69 are closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air and condensed and liquefied.
  • the liquefied refrigerant in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and pumps up heat from the outside air ventilated by traveling or by the outdoor blower 15 (heat absorption). That is, the refrigerant circuit R serves as a heat pump.
  • the low-temperature refrigerant that has exited the outdoor heat exchanger 7 reaches the refrigerant pipe 13C via the refrigerant pipes 13A and 13D, the solenoid valve 21, and further enters the accumulator 12 via this refrigerant pipe 13C, where it is gas-liquid separated.
  • the circulation in which the gas refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K is repeated.
  • the air heated by the radiator 4 is blown out from the air outlet 29, so that the interior of the vehicle is heated.
  • the heat pump controller 32 calculates a target heater temperature TCO (of the radiator 4) calculated from a target outlet temperature TAO, which will be described later, which is a target temperature of the air blown into the vehicle interior (a target value of the temperature of the air blown into the vehicle interior).
  • the target radiator pressure PCO is calculated from the target temperature), and the rotational speed of the compressor 2 is based on the target radiator pressure PCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47.
  • the heat pump controller 32 supplements this shortage with the heat generated by the auxiliary heater 23. As a result, the vehicle interior is heated without any trouble even when the outside temperature is low.
  • FIG. 5 shows how the refrigerant flows in the refrigerant circuit R in the dehumidifying and heating mode (solid arrow).
  • the heat pump controller 32 opens the solenoid valve 21, the solenoid valve 22, and the solenoid valve 35, and closes the solenoid valve 17, the solenoid valve 20, and the solenoid valve 69.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air and condensed and liquefied.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4, a part of it enters the refrigerant pipe 13J through the refrigerant pipe 13E and reaches the outdoor expansion valve 6.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and pumps up heat from the outside air ventilated by traveling or by the outdoor blower 15 (heat absorption).
  • the low-temperature refrigerant leaving the outdoor heat exchanger 7 reaches the refrigerant pipe 13C via the refrigerant pipes 13A and 13D and the solenoid valve 21, enters the accumulator 12 via the refrigerant pipe 13C, and is separated into gas and liquid there. After that, the circulation in which the gas refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K is repeated.
  • the rest of the condensed refrigerant flowing through the radiator pipe 13E via the radiator 4 is diverted, and the diverted refrigerant flows into the refrigerant pipe 13F via the solenoid valve 22 and reaches the refrigerant pipe 13B.
  • the refrigerant reaches the indoor expansion valve 8, is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 via the electromagnetic valve 35, and is evaporated.
  • the water in the air blown out from the indoor blower 27 is condensed and adheres to the heat absorber 9 due to the heat absorbing action of the refrigerant generated in the heat absorber 9, so that the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 flows out into the refrigerant pipe 13C, joins the refrigerant from the refrigerant pipe 13D (refrigerant from the outdoor heat exchanger 7), and then is sucked into the compressor 2 from the refrigerant pipe 13K via the accumulator 12. Repeat the cycle.
  • the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4 and the auxiliary heater 23 (when heat is generated), so that dehumidification and heating of the vehicle interior is performed.
  • the heat pump controller 32 rotates the compressor 2 based on the target radiator pressure PCO calculated from the target heater temperature TCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. Or the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is its target value. ..
  • the heat pump controller 32 controls the compressor 2 by selecting whichever of the radiator target pressure Pci and the heat absorber temperature Te, whichever is lower than the target compressor speed obtained from the calculation. Further, the valve opening degree of the outdoor expansion valve 6 is controlled based on the heat absorber temperature Te.
  • the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. .. As a result, the vehicle interior is dehumidified and heated even when the outside temperature is low.
  • FIG. 6 shows how the refrigerant flows in the refrigerant circuit R in the dehumidifying and cooling mode (solid arrow).
  • the heat pump controller 32 opens the solenoid valve 17 and the solenoid valve 35, and closes the solenoid valve 20, the solenoid valve 21, the solenoid valve 22, and the solenoid valve 69.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air, and is condensed and liquefied.
  • the refrigerant exiting the radiator 4 reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J, and then passes through the outdoor expansion valve 6 controlled to open more (a larger valve opening area) than the heating mode or the dehumidifying and heating mode. It flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 is condensed by being cooled there by traveling or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant discharged from the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16, and reaches the indoor expansion valve 8 via the check valve 18.
  • the refrigerant is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates. Due to the heat absorbing action at this time, moisture in the air blown out from the indoor blower 27 is condensed and attached to the heat absorber 9, and the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is repeatedly sucked into the compressor 2 from the refrigerant pipe 13K via the refrigerant pipe 13K.
  • the air cooled and dehumidified by the heat absorber 9 is reheated (has a lower heating capacity than that during dehumidification heating) in the process of passing through the radiator 4 and the auxiliary heater 23 (when heat is generated). As a result, dehumidification and cooling of the vehicle interior are performed.
  • the heat pump controller 32 absorbs heat based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is the target temperature of the heat absorber 9 (target value of the heat absorber temperature Te).
  • the rotation speed of the compressor 2 is controlled so that the device temperature Te becomes the target heat absorber temperature TEO, and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47 and the target radiator pressure PCO.
  • the valve opening of the outdoor expansion valve 6 is controlled so that the radiator pressure Pci becomes the target radiator pressure PCO. Amount).
  • the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. To do. As a result, dehumidifying and cooling are performed without lowering the temperature inside the vehicle compartment too much.
  • FIG. 7 shows how the refrigerant flows in the refrigerant circuit R in the cooling mode (solid arrow).
  • the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, and the solenoid valve 35, and closes the solenoid valve 21, the solenoid valve 22, and the solenoid valve 69.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the auxiliary heater 23 is not energized.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the air flow passage 3 is ventilated through the radiator 4, since the proportion thereof is small (because of only reheating (reheating) during cooling), it almost passes through the radiator 4,
  • the discharged refrigerant reaches the refrigerant pipe 13J via the refrigerant pipe 13E.
  • the electromagnetic valve 20 since the electromagnetic valve 20 is open, the refrigerant passes through the electromagnetic valve 20 and flows into the outdoor heat exchanger 7 as it is, and is cooled there by traveling or by the outside air ventilated by the outdoor blower 15 to be condensed and liquefied. To do.
  • the refrigerant discharged from the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16, and reaches the indoor expansion valve 8 via the check valve 18.
  • the refrigerant is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates. Due to the heat absorbing action at this time, the air blown out from the indoor blower 27 and exchanging heat with the heat absorber 9 is cooled.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and then is sucked into the compressor 2 via the refrigerant pipe 13K.
  • the air cooled by the heat absorber 9 is blown into the vehicle interior from the air outlet 29, so that the vehicle interior is cooled.
  • the heat pump controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • FIG. 8 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in the air conditioning (priority) + battery cooling mode.
  • the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, the solenoid valve 35, and the solenoid valve 69, and closes the solenoid valves 21 and 22.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the auxiliary heater 23 is not energized.
  • the heat medium heater 63 is not energized.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the air flow passage 3 is ventilated through the radiator 4, since the proportion thereof is small (because of only reheating (reheating) during cooling), it almost passes through the radiator 4,
  • the discharged refrigerant reaches the refrigerant pipe 13J via the refrigerant pipe 13E.
  • the electromagnetic valve 20 since the electromagnetic valve 20 is open, the refrigerant passes through the electromagnetic valve 20 and flows into the outdoor heat exchanger 7 as it is, and is cooled there by traveling or by the outside air ventilated by the outdoor blower 15 to be condensed and liquefied. To do.
  • the refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16.
  • the refrigerant flowing into the refrigerant pipe 13B is branched after passing through the check valve 18, and one of the refrigerant flows through the refrigerant pipe 13B as it is to reach the indoor expansion valve 8.
  • the refrigerant flowing into the indoor expansion valve 8 is decompressed there, then flows into the heat absorber 9 through the electromagnetic valve 35, and is evaporated. Due to the heat absorbing action at this time, the air blown out from the indoor blower 27 and exchanging heat with the heat absorber 9 is cooled.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and then is sucked into the compressor 2 via the refrigerant pipe 13K.
  • the air cooled by the heat absorber 9 is blown into the vehicle interior from the air outlet 29, so that the vehicle interior is cooled.
  • the rest of the refrigerant that has passed through the check valve 18 is split, flows into the branch pipe 67, and reaches the auxiliary expansion valve 68.
  • the refrigerant is decompressed, then flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 via the electromagnetic valve 69, and evaporates there. At this time, it exerts an endothermic effect.
  • the refrigerant evaporated in the refrigerant flow path 64B repeats the circulation in which the refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K through the refrigerant pipe 71, the refrigerant pipe 13C and the accumulator 12 in sequence (shown by a solid arrow in FIG. 8).
  • the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 66, and the refrigerant flow passage there.
  • the heat medium is cooled by exchanging heat with the refrigerant that evaporates in 64B and absorbing heat.
  • the heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heater 63.
  • the heat medium heating heater 63 does not generate heat in this operation mode, the heat medium passes through as it is to the battery 55 and exchanges heat with the battery 55. As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 is repeatedly sucked into the circulation pump 62 and repeatedly circulated (indicated by a dashed arrow in FIG. 8).
  • the heat pump controller 32 maintains the electromagnetic valve 35 in the open state, and will be described later based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • the rotation speed of the compressor 2 is controlled as shown in FIG.
  • the solenoid valve 69 is controlled to open and close as follows based on the temperature of the heat medium detected by the heat medium temperature sensor 76 (heat medium temperature Tw: transmitted from the battery controller 73).
  • the heat absorber temperature Te is the temperature of the heat absorber 9 in the embodiment or the temperature of the object (air) cooled by it.
  • the heat medium temperature Tw is adopted as the temperature of the object (heat medium) cooled by the refrigerant-heat medium heat exchanger 64 (heat exchanger for temperature adjustment) in the embodiment, but the temperature adjustment is performed. It is also an index showing the temperature of the target battery 55 (hereinafter the same).
  • FIG. 13 shows a block diagram of opening / closing control of the solenoid valve 69 in this air conditioning (priority) + battery cooling mode.
  • the heat medium temperature Tw detected by the heat medium temperature sensor 76 and a predetermined target heat medium temperature TWO as a target value of the heat medium temperature Tw are input to the temperature controlled target electromagnetic valve control unit 90 of the heat pump controller 32. It Then, the temperature controlled target electromagnetic valve control unit 90 sets the upper limit value TwUL and the lower limit value TwLL with a predetermined temperature difference above and below the target heat medium temperature TWO, and from the state where the electromagnetic valve 69 is closed.
  • the solenoid valve 69 is opened (instruction to open the solenoid valve 69).
  • the refrigerant flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64, evaporates, and cools the heat medium flowing through the heat medium channel 64A. Therefore, the battery 55 is cooled by the cooled heat medium. To be done.
  • the solenoid valve 69 is closed (instruction to close the solenoid valve 69). After that, the solenoid valve 69 is repeatedly opened and closed as described above to control the heat medium temperature Tw to the target heat medium temperature TWO while giving priority to the cooling in the vehicle compartment, to cool the battery 55.
  • the heat pump controller 32 calculates the above-mentioned target outlet temperature TAO from the following formula (I).
  • the target outlet temperature TAO is a target value of the temperature of the air blown into the vehicle compartment from the outlet 29.
  • TAO (Tset-Tin) ⁇ K + Tbal (f (Tset, SUN, Tam)) .. (I)
  • Tset is the set temperature of the vehicle interior set by the air conditioning operation unit 53
  • Tin is the temperature of the vehicle interior air detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is the set temperature Tset
  • the solar radiation sensor 51 detects the temperature. It is a balance value calculated from the amount of solar radiation SUN and the outside air temperature Tam detected by the outside air temperature sensor 33.
  • the target outlet temperature TAO is higher as the outside air temperature Tam is lower, and is decreased as the outside air temperature Tam is increased.
  • the heat pump controller 32 selects any one of the above air conditioning operations based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target outlet temperature TAO at the time of startup. Further, after the start-up, each of the air conditioning operations is selected and switched according to changes in operating conditions such as the outside air temperature Tam, the target outlet temperature TAO, and the heat medium temperature Tw, environmental conditions, and setting conditions. For example, the transition from the cooling mode to the air conditioning (priority) + battery cooling mode is executed based on the input of the battery cooling request from the battery controller 73. In this case, the battery controller 73 outputs a battery cooling request and transmits it to the heat pump controller 32 and the air conditioning controller 45, for example, when the heat medium temperature Tw or the battery temperature Tcell rises above a predetermined value.
  • the heat pump controller 32 maintains the electromagnetic valve 69 in an open state, and the heat detected by the heat medium temperature sensor 76 (transmitted from the battery controller 73) is detected. Based on the medium temperature Tw, the rotation speed of the compressor 2 is controlled as shown in FIG. 15 described later.
  • the solenoid valve 35 is controlled to open and close as follows based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • FIG. 16 shows a block diagram of opening / closing control of the solenoid valve 35 in the battery cooling (priority) + air conditioning mode.
  • the heat absorber electromagnetic valve control unit 95 of the heat pump controller 32 is input with the heat absorber temperature Te detected by the heat absorber temperature sensor 48 and a predetermined target heat absorber temperature TEO as a target value of the heat absorber temperature Te. Then, the heat absorber electromagnetic valve control unit 95 sets the upper limit value TeUL and the lower limit value TeLL with a predetermined temperature difference above and below the target heat absorber temperature TEO, and sets the heat absorber temperature from the state in which the solenoid valve 35 is closed.
  • the solenoid valve 35 is closed (instruction to close the solenoid valve 35). Thereafter, such opening / closing of the solenoid valve 35 is repeated to control the heat absorber temperature Te to the target heat absorber temperature TEO while prioritizing the cooling of the battery 55 to cool the vehicle interior.
  • FIG. 9 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in the battery cooling (single) mode.
  • the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, and the solenoid valve 69, and closes the solenoid valve 21, the solenoid valve 22, and the solenoid valve 35.
  • the compressor 2 and the outdoor blower 15 are operated.
  • the indoor blower 27 is not operated and the auxiliary heater 23 is not energized. Further, the heat medium heater 63 is not energized in this operation mode.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is not ventilated to the radiator 4, it passes only here, and the refrigerant exiting the radiator 4 reaches the refrigerant pipe 13J via the refrigerant pipe 13E. At this time, since the electromagnetic valve 20 is open, the refrigerant passes through the electromagnetic valve 20, flows into the outdoor heat exchanger 7 as it is, and is cooled by the outside air ventilated by the outdoor blower 15 to be condensed and liquefied.
  • the refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16. After passing through the check valve 18, all of the refrigerant flowing into the refrigerant pipe 13B flows into the branch pipe 67 and reaches the auxiliary expansion valve 68. Here, the refrigerant is decompressed, then flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 via the electromagnetic valve 69, and evaporates there. At this time, it exerts an endothermic effect.
  • the refrigerant evaporated in the refrigerant passage 64B repeats the circulation in which the refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K through the refrigerant pipe 71, the refrigerant pipe 13C and the accumulator 12 in sequence (shown by a solid arrow in FIG. 9).
  • the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 66, and the refrigerant flow passage there.
  • the heat medium is cooled by being absorbed by the refrigerant evaporated in 64B.
  • the heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heater 63.
  • the heat medium heating heater 63 does not generate heat in this operation mode, the heat medium passes through as it is to the battery 55 and exchanges heat with the battery 55. As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 is repeatedly sucked into the circulation pump 62 and repeatedly circulated (indicated by a dashed arrow in FIG. 9).
  • the heat pump controller 32 cools the battery 55 by controlling the number of revolutions of the compressor 2 based on the heat medium temperature Tw detected by the heat medium temperature sensor 76 as described later.
  • FIG. 10 shows how the refrigerant flows in the refrigerant circuit R in the defrosting mode (solid arrow).
  • the refrigerant evaporates in the outdoor heat exchanger 7 and absorbs heat from the outside air to reach a low temperature, so that the moisture in the outside air adheres to the outdoor heat exchanger 7 as frost.
  • the defrosting mode of the outdoor heat exchanger 7 is executed as follows.
  • the heat pump controller 32 sets the refrigerant circuit R to the heating mode described above, and then fully opens the valve opening degree of the outdoor expansion valve 6. Then, the compressor 2 is operated, the high-temperature refrigerant discharged from the compressor 2 is caused to flow into the outdoor heat exchanger 7 via the radiator 4 and the outdoor expansion valve 6, and the frost formation on the outdoor heat exchanger 7 is prevented.
  • Thaw Figure 10
  • the heat pump controller 32 defrosts the outdoor heat exchanger 7 when the outdoor heat exchanger temperature TXO detected by the outdoor heat exchanger temperature sensor 49 becomes higher than a predetermined defrosting end temperature (for example, + 3 ° C.). Is completed and the defrosting mode is terminated.
  • the heat pump controller 32 executes the battery heating mode when the air conditioning operation is executed or when the battery 55 is charged. In this battery heating mode, the heat pump controller 32 operates the circulation pump 62 to energize the heat medium heating heater 63. The solenoid valve 69 is closed.
  • the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 through the heat medium pipe 66, and passes therethrough to reach the heat medium heater 63.
  • the heat medium heating heater 63 is generating heat, the heat medium is heated by the heat medium heating heater 63 to increase its temperature, and then reaches the battery 55 to exchange heat with the battery 55.
  • the battery 55 is heated, and the heat medium after heating the battery 55 is repeatedly circulated by being sucked into the circulation pump 62.
  • the heat pump controller 32 controls the energization of the heat medium heating heater 63 based on the heat medium temperature Tw detected by the heat medium temperature sensor 76 to set the heat medium temperature Tw to the predetermined target heat medium temperature. Adjust to TWO and heat battery 55.
  • TGNCh is calculated, and in the dehumidifying cooling mode, the cooling mode, and the air conditioning (priority) + battery cooling mode, based on the heat absorber temperature Te, the target rotation speed of the compressor 2 (compressor target rotation speed) according to the control block diagram of FIG. Calculate TGNCc.
  • the dehumidifying and heating mode the lower direction of the compressor target rotation speed TGNCh and the compressor target rotation speed TGNc is selected.
  • the target rotation speed of the compressor 2 (compressor target rotation speed) TGNCw is calculated based on the heat medium temperature Tw by the control block diagram of FIG. To do.
  • FIG. 11 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCh of the compressor 2 based on the radiator pressure Pci.
  • the air flow rate SW obtained by the air mix damper 28, the target supercooling degree TGSC that is the target value of the supercooling degree SC of the refrigerant at the outlet of the radiator 4, and the target heater described above that is the target value of the heater temperature Thp.
  • the F / F operation amount TGNChff of the compressor target rotation speed is calculated.
  • the heater temperature Thp is an air temperature (estimated value) on the leeward side of the radiator 4, and the radiator pressure Pci detected by the radiator pressure sensor 47 and the refrigerant outlet of the radiator 4 detected by the radiator outlet temperature sensor 44. It is calculated (estimated) from the temperature Tci.
  • the degree of supercooling SC is calculated from the refrigerant inlet temperature Tcxin and the refrigerant outlet temperature Tci of the radiator 4 detected by the radiator inlet temperature sensor 43 and the radiator outlet temperature sensor 44.
  • the target radiator pressure PCO is calculated by the target value calculator 79 based on the target supercooling degree TGSC and the target heater temperature TCO. Further, the F / B (feedback) manipulated variable calculation unit 81 calculates the F / B manipulated variable TGNChfb of the compressor target rotational speed by PID calculation or PI calculation based on the target radiator pressure PCO and the radiator pressure Pci. Then, the F / F operation amount TGNChff calculated by the F / F operation amount calculation unit 78 and the F / B operation amount TGNChfb calculated by the F / B operation amount calculation unit 81 are added by the adder 82 to obtain a limit setting unit as TGNCh00. It is input to 83.
  • the lower limit rotational speed ECNpdLimLo and the upper limit rotational speed ECNpdLimHi in control are set to TGNCh0, and then the compressor OFF control unit 84 is used to determine the target compressor rotational speed TGNCh.
  • the heat pump controller 32 controls the operation of the compressor 2 so that the radiator pressure Pci becomes the target radiator pressure PCO by the compressor target rotation speed TGNCh calculated based on the radiator pressure Pci.
  • the compressor OFF control unit 84 sets the compressor target rotation speed TGNCh to the above-described lower limit rotation speed ECNpdLimLo, and the radiator pressure Pci is a predetermined upper limit value PUL and lower limit value PLL set above and below the target radiator pressure PCO. If the state of rising to the upper limit value PUL of the above continues for the predetermined time th1, the compressor 2 is stopped and the ON-OFF mode for ON-OFF controlling the compressor 2 is entered.
  • the compressor 2 In the ON-OFF mode of the compressor 2, when the radiator pressure Pci decreases to the lower limit value PLL, the compressor 2 is started to operate the compressor target rotation speed TGNCh as the lower limit rotation speed ECNpdLimLo, and heat is released in that state.
  • the container pressure Pci rises to the upper limit value PUL, the compressor 2 is stopped again. That is, the operation (ON) and the stop (OFF) of the compressor 2 at the lower limit rotation speed ECNpdLimLo are repeated.
  • the radiator pressure Pci decreases to the lower limit value PUL and the compressor 2 is started, and the radiator pressure Pci does not become higher than the lower limit value PUL for a predetermined time th2, the compressor 2 is turned on and off. Is completed and the normal mode is restored.
  • FIG. 12 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCc of the compressor 2 based on the heat absorber temperature Te.
  • the F / F operation amount calculation unit 86 of the heat pump controller 32 has an outside air temperature Tam, an air volume Ga of air flowing through the air flow passage 3 (may be the blower voltage BLV of the indoor blower 27), a target radiator pressure PCO, The F / F operation amount TGNCcff of the compressor target rotation speed is calculated based on the target heat absorber temperature TEO which is the target value of the heat absorber temperature Te.
  • the F / B manipulated variable calculation unit 87 also calculates the F / B manipulated variable TGNCcfb of the compressor target rotation speed by PID calculation or PI calculation based on the target heat absorber temperature TEO and the heat absorber temperature Te. Then, the F / F operation amount TGNCcff calculated by the F / F operation amount calculation unit 86 and the F / B operation amount TGNCcfb calculated by the F / B operation amount calculation unit 87 are added by the adder 88 to obtain a limit setting unit as TGNCc00. It is input to 89.
  • the lower limit rotational speed TGNCcLimLo and the upper limit rotational speed TGNCcLimHi in control are set to TGNCc0, and then the compressor OFF control unit 91 is used to determine the target compressor rotational speed TGNCc. Therefore, if the value TGNCc00 added by the adder 88 is within the upper limit rotation speed TGNCcLimHi and the lower limit rotation speed TGNCcLimLo and the ON-OFF mode described later does not occur, this value TGNCc00 is the target compressor rotation speed TGNCc (compressor 2 Will be the number of rotations). In the normal mode, the heat pump controller 32 controls the operation of the compressor 2 so that the heat absorber temperature Te becomes the target heat absorber temperature TEO by the compressor target rotation speed TGNCc calculated based on the heat absorber temperature Te.
  • the compressor OFF control unit 91 determines that the compressor target rotation speed TGNCc becomes the above-described lower limit rotation speed TGNCcLimLo, and the heat absorber temperature Te is set between the upper limit value TeUL and the lower limit value TeLL set above and below the target heat absorber temperature TEO.
  • the compressor 2 is stopped and the ON-OFF mode in which the compressor 2 is ON-OFF controlled is entered.
  • FIG. 15 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCw of the compressor 2 based on the heat medium temperature Tw.
  • the F / F operation amount calculation unit 92 of the heat pump controller 32 uses the outside air temperature Tam, the flow rate Gw of the heat medium in the device temperature adjustment device 61 (calculated from the output of the circulation pump 62), and the heat generation amount of the battery 55 (battery).
  • the F / B operation amount calculation unit 93 performs the PID calculation or the PI calculation based on the target heat medium temperature TWO and the heat medium temperature Tw (transmitted from the battery controller 73) to perform the F / B operation amount TGNCwfb of the compressor target rotation speed. To calculate. Then, the F / F operation amount TGNCwff calculated by the F / F operation amount calculation unit 92 and the F / B operation amount TGNCwfb calculated by the F / B operation amount calculation unit 93 are added by the adder 94 to obtain a limit setting unit as TGNCw00. 96 is input.
  • the lower limit speed TGNCwLimLo for control and the upper limit speed TGNCwLimHi are set to TGNCw0, and then the compressor OFF control unit 97 is used to determine the target compressor speed TGNCw. Therefore, if the value TGNCw00 added by the adder 94 is within the upper limit rotational speed TGNCwLimHi and the lower limit rotational speed TGNCwLimLo and the ON-OFF mode described later does not occur, this value TGNCw00 is the target compressor rotational speed TGNCw (compressor 2 Will be the number of rotations). In the normal mode, the heat pump controller 32 controls the operation of the compressor 2 so that the heat medium temperature Tw becomes the target heat medium temperature TWO by the compressor target rotation speed TGNCw calculated based on the heat medium temperature Tw.
  • the compressor OFF control unit 97 determines that the compressor target rotation speed TGNCw becomes the above-described lower limit rotation speed TGNCwLimLo, and the heat medium temperature Tw is the upper limit value TwUL and the lower limit value TwLL set above and below the target heat medium temperature TWO.
  • the compressor 2 is stopped and the ON-OFF mode for ON-OFF controlling the compressor 2 is entered.
  • the compressor 2 In the ON-OFF mode of the compressor 2 in this case, when the heat medium temperature Tw rises to the upper limit value TwUL, the compressor 2 is started and the compressor target rotation speed TGNCw is operated as the lower limit rotation speed TGNCwLimLo, and the state is maintained. If the heat medium temperature Tw has dropped to the lower limit value TwLL, the compressor 2 is stopped again. That is, the operation (ON) and the stop (OFF) of the compressor 2 at the lower limit rotation speed TGNCwLimLo are repeated.
  • the refrigerant flowing into the heat absorber 9 sharply decreases immediately after the electromagnetic valve 69 is opened from the closed state. Then, the heat absorber temperature Te rapidly rises as indicated by P1 in FIG. On the other hand, immediately after the electromagnetic valve 69 is closed from the open state, the refrigerant flowing into the heat absorber 9 rapidly increases, and the heat absorber temperature Te sharply decreases as indicated by P2 in FIG.
  • the timing chart of FIG. 19 shows changes in the open / close states of the solenoid valves 69 and 35, the heat absorber temperature Te, the rotation speed NC of the compressor 2, and the heat medium temperature Tw in the battery cooling (priority) + air conditioning mode described above.
  • the solenoid valve 35 is controlled to open and close as shown in FIG. Therefore, in the battery cooling (priority) + air-conditioning mode in which the rotation speed of the compressor 2 is controlled by the heat medium temperature Tw, the refrigerant flow of the refrigerant-heat medium heat exchanger 64 immediately after the electromagnetic valve 35 is opened from the closed state.
  • the refrigerant flowing into the passage 64B sharply decreases, and the heat medium temperature Tw sharply rises as indicated by P3 in FIG.
  • the refrigerant flowing into the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64 rapidly increases, and the heat medium temperature Tw as shown by P4 in FIG. Drops sharply.
  • the heat pump controller 32 executes control for changing the compressor target rotational speeds TGNCc and TGNCw when the electromagnetic valve 69 and the electromagnetic valve 35 are opened and closed as described below.
  • the value TGNcc00 when the solenoid valve 69 is closed from the open state at the control cycle of timing TM5 in FIG. 14, the value TGNcc00 (when the solenoid valve 69 was closed last time) during the period of timing TM3 to TM4 when the solenoid valve 69 was closed last time. 14), the last value of the position indicated by P6 in FIG. 14 is set as the previous value TGNCc00z, and the target compressor rotation speed TGNCc in the control cycle of the timing TM5 is set as the previous value TGNCc00z. Change to the value TGNCc00z. As a result, the rotation speed NC of the compressor 2 immediately decreases. It should be noted that from the subsequent control cycle, the normal TGNCc calculation is resumed.
  • the electromagnetic valve 69 when the electromagnetic valve 69 is opened from the closed state in the control cycle of the timing TM6 in FIG. 14, among the values TGNCc00 in the period of the timings TM4 to TM5 in which the electromagnetic valve 69 was opened last time, it is indicated by P7 in FIG.
  • the last value of the position is set to the previous value TGNCc00z, and the target compressor rotational speed TGNCc in the control cycle of the timing TM6 is changed to the previous value TGNCc00z, as indicated by the dashed arrow in FIG.
  • the rotational speed NC of the compressor 2 immediately increases. It should be noted that from the subsequent control cycle, the normal TGNCc calculation is resumed.
  • the rotational speed NC of the compressor 2 is immediately changed in response to the change in the refrigerant flow path, and the heat absorber temperature Te is stably controlled to the target heat absorber temperature TEO as shown in the bottom of FIG. Therefore, it is possible to eliminate the inconvenience that the temperature of the air blown into the passenger compartment fluctuates greatly and the passenger feels uncomfortable. Further, when the solenoid valve 69 is opened, the refrigerant can be supplied to the refrigerant-heat medium heat exchanger 64 without any trouble, so that cooling of the vehicle interior by the heat absorber 9 and the refrigerant-heat medium heat exchanger 64 as a whole. It is possible to stably realize the cooling control of the battery 55 by.
  • the last value TGNCc00z is set as the last value TGNCc00z with the last value TGNCc00 of the period when the solenoid valve 69 was opened last time, and the target compressor rotation speed is changed to the previous value TGNCc00z.
  • the target compressor speed TGNCc is changed to the last value TGNCc00z by setting the last value TGNCc00 of the last closing period of the solenoid valve 69 to the previous value TGNCc00z. Therefore, the rotation speed of the compressor 2 can be changed to an appropriate value immediately in response to the opening / closing of the solenoid valve 69.
  • the solenoid valve 69 when the solenoid valve 69 is opened from the closed state, the last value TGNCc00 of the period when the solenoid valve 69 is opened last time is set to the previous value TGNCc00z, and when the solenoid valve 69 is closed from the opened state, the solenoid valve 69 is opened.
  • the last value TGNCc00 of the last closed period of 69 is set to the previous value TGNCc00z
  • the present invention is not limited to this.
  • the TGNCc00 of the previous opened period of the solenoid valve 69 is not limited to this.
  • any of the above values or their average value may be used as the previous value TGNCc00z, and when closing the solenoid valve 69 from the open state, any one of TGNCc00 during the period when the solenoid valve 69 was closed last time. Value or their average value may be used as the previous value TGNCc00z (hereinafter the same).
  • correction coefficients K1 and K2 should be preliminarily obtained by experiments. In this way, by multiplying the previous value TGNCc00z by the correction factors K1 and K2, the correction factors K1 and K2 are set according to the characteristics and the environment of the vehicle air conditioner 1, so that the rotation speed of the compressor 2 can be further improved. You will be able to change it to an appropriate value.
  • the integral term of the F / B operation amount calculation unit 87 in the control block diagram of FIG. 12 is increased by the predetermined value TGNCcfb1.
  • the F / B operation amount TGNCcfb of the compressor target rotation speed increases, so the target compressor rotation speed TGNCc also increases.
  • the heat pump controller 32 adds the F / F operation amount TGNCwff and the F / B operation amount TGNCwfb by the adder 94 during the calculation of the compressor target rotation speed TGNCw according to the control block diagram of FIG. 15 TGNCw00 (the compressor in the present invention.
  • the rotation speed of 2) is always stored in the memory 32M for each control cycle.
  • the value TGNCw00 (when the solenoid valve 35 was closed last time) during the period from timing TM9 to TM10 in which the solenoid valve 35 was closed last time. 17)
  • the last value of the position indicated by P9 in FIG. 17 is set as the previous value TGNCw00z
  • the target compressor rotation speed TGNCw in the control cycle of the timing TM11 is set as the previous value TGNCw00z. Change to the value TGNCw00z.
  • the rotation speed NC of the compressor 2 immediately decreases. It should be noted that from the subsequent control cycle, the normal TGNCw calculation is resumed.
  • the value TGNCw00 in the period of the timing TM10 to TM11 in which the electromagnetic valve 35 was opened last time is shown by P10 in FIG.
  • the last value of the position is set to the previous value TGNCw00z, and the target compressor rotational speed TGNCw in the control cycle of the timing TM12 is changed to the previous value TGNCw00z as indicated by the broken line arrow in FIG.
  • the rotational speed NC of the compressor 2 immediately increases. It should be noted that from the subsequent control cycle, the normal TGNCw calculation is resumed.
  • the rotation speed NC of the compressor 2 is increased, and when the electromagnetic valve 35 is closed from the opened state, the rotation speed NC of the compressor 2 is decreased.
  • the rotational speed NC of the compressor 2 is increased and the solenoid valve 35 is opened in a situation where the refrigerant flowing into the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64 is rapidly reduced.
  • the rotation speed NC of the compressor 2 can be reduced in a situation where the refrigerant flowing into the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64 rapidly increases.
  • the rotational speed NC of the compressor 2 is immediately changed in response to a change in the refrigerant flow path, and the heat medium temperature Tw is stably controlled to the target heat medium temperature TWO as shown in the bottom of FIG.
  • the refrigerant can be supplied to the heat absorber 9 without any trouble when the electromagnetic valve 35 is opened, the cooling control of the battery 55 by the refrigerant-heat medium heat exchanger 64 and the interior of the vehicle interior by the heat absorber 9 are generally performed. It is possible to realize stable cooling.
  • the last value TGNCw00z is set as the last value TGNCw00z with the last value TGNCw00 of the period in which the electromagnetic valve 35 was opened last time and the target compressor rotation
  • the target compressor rotation speed TGNCw is changed to the previous value TGNCw00z by setting the last value TGNCw00 of the period in which the solenoid valve 35 was closed last time to the previous value TGNCw00z. Therefore, the rotation speed of the compressor 2 can be changed to an appropriate value immediately in response to the opening / closing of the solenoid valve 35.
  • the last value TGNCw00 of the period when the solenoid valve 35 was opened last time is set to the previous value TGNCw00z, and when the solenoid valve 35 is closed from the opened state, the solenoid valve 35 is opened.
  • the last value TGNCw00 of the period in which 35 is closed last time is set to the previous value TGNCw00z, the present invention is not limited to this.
  • TGNCw00z May be set to the previous value TGNCw00z, and when closing the solenoid valve 35 from the open state, any one of TGNCw00 in the period when the solenoid valve 35 was closed last time. Value or the average value thereof may be used as the previous value TGNCw00z (hereinafter the same).
  • correction coefficients K3 and K4 should be determined in advance by experiments. In this way, by multiplying the previous value TGNCw00z by the correction factors K3 and K4, the correction factors K3 and K4 are set according to the characteristics and the environment of the vehicle air conditioner 1, so that the number of revolutions of the compressor 2 is further increased. You will be able to change it to an appropriate value.
  • the integral term of the F / B operation amount calculation unit 93 in the control block diagram of FIG. 15 is increased by the predetermined value TGNCwfb1.
  • the F / B operation amount TGNCwfb of the compressor target rotation speed increases, so the target compressor rotation speed TGNCw also increases.
  • the present invention is effective even when only one of the above-mentioned integral term is cleared and raised.
  • the predetermined value TGNCwfb1 described above is also determined as an appropriate value by an experiment in advance. By doing so, for example, even when the memory 32M does not have the previous value TGNCw00z, it is possible to immediately change the rotational speed of the compressor 2 to an appropriate value in response to opening / closing of the solenoid valve 35. In this case as well, from the subsequent control cycle, the normal calculation of TGNCw is resumed.
  • the present invention is effective when only one of them is executed.
  • the heat medium temperature Tw is adopted as the temperature of the target (heat medium) cooled by the refrigerant-heat medium heat exchanger 64 (heat exchanger for temperature controlled), but the battery temperature Tcell is used.
  • the temperature of the object cooled by the refrigerant-heat medium heat exchanger 64 (heat exchanger for temperature control), and the temperature of the refrigerant-heat medium heat exchanger 64 (refrigerant-heat medium heat exchanger)
  • the temperature of 64 itself, the temperature of the refrigerant exiting the refrigerant channel 64B, etc. may be adopted as the temperature of the refrigerant-heat medium heat exchanger 64 (heat exchanger for temperature adjustment).
  • the heat medium is circulated to control the temperature of the battery 55.
  • the heat exchanger for the temperature-controlled object for directly exchanging heat between the refrigerant and the battery 55 object to be temperature-controlled. May be provided.
  • the battery temperature Tcell becomes the temperature of the target to be cooled by the target heat exchanger for temperature adjustment.
  • the vehicle 55 is capable of cooling the battery 55 while cooling the inside of the vehicle in the air conditioning (priority) + battery cooling mode and the battery cooling (priority) + air conditioning mode for simultaneously cooling the vehicle interior and cooling the battery 55.
  • the air conditioning apparatus 1 has been described, the cooling of the battery 55 is not limited to during cooling, but other air conditioning operation, for example, the above-described dehumidifying and heating operation and cooling of the battery 55 may be performed simultaneously.
  • the electromagnetic valve 69 is opened, and a part of the refrigerant flowing toward the heat absorber 9 via the refrigerant pipe 13F is caused to flow into the branch pipe 67 and flow into the refrigerant-heat medium heat exchanger 64.
  • the electromagnetic valve 35 is the heat absorber valve device (valve device) and the electromagnetic valve 69 is the temperature controlled valve device (valve device), but the indoor expansion valve 8 and the auxiliary expansion valve 68 can be fully closed.
  • the solenoid valves 35 and 69 are unnecessary, the indoor expansion valve 8 serves as the heat absorber valve device (valve device) of the present invention, and the auxiliary expansion valve 68 serves as the temperature-controlled valve. It becomes a device (valve device).
  • the heat absorber valve device (valve device) is configured by the solenoid valve 35 that is a valve that can be fully closed and fully opened, and the temperature controlled object valve device (valve device) can also be fully closed and fully opened.
  • the present invention is particularly effective when the electromagnetic valve 69 is a simple valve. It should be noted that the heat absorber valve device (valve device) and the temperature-controlled object valve device (valve device) are not limited to fully closed and fully opened, and even if the valve can switch between two different types of opening, the present invention It is valid.
  • the heat absorber 9 and the refrigerant-heat medium heat exchanger 64 are the first evaporator and the second evaporator in the present invention, but the inventions of claims 1 to 5 are not limited thereto.
  • the main evaporator heat absorber 9 of the embodiment
  • another evaporator e.g., an evaporator for a rear seat
  • a vehicle air conditioner equipped with an evaporator for cooling other parts of the vehicle outside the vehicle compartment.
  • one of the heat absorber 9 and the other evaporator serves as the first evaporator of the present invention, and the other serves as the second evaporator.
  • an air conditioner for a vehicle equipped with another evaporator evaporator for rear seat, etc.
  • the present invention is effective.
  • one of the set of the heat absorber 9 (main evaporator) and another evaporator (evaporator for rear seat, etc.) and the refrigerant-heat medium heat exchanger 64 is the first in the present invention.
  • the configuration and numerical values of the refrigerant circuit R described in the embodiments are not limited thereto and can be changed without departing from the spirit of the present invention.
  • the present invention has been described with the vehicle air conditioner 1 having each operation mode such as the heating mode, the dehumidification heating mode, the dehumidification cooling mode, the cooling mode, the air conditioning (priority) + battery cooling mode, but the present invention is not limited thereto.
  • the present invention is also effective for a vehicle air conditioner capable of executing, for example, a cooling mode, an air conditioning (priority) + battery cooling mode, and a battery cooling (priority) + air conditioning mode.
  • Heat Absorber First Evaporator or Second Evaporator
  • control device 32 heat pump controller (constituting a part of control device) 35 Solenoid valve (valve device, valve device for heat absorber) 45 Air-conditioning controller (a part of control device) 48 Heat Sink Temperature Sensor 55 Battery (Target for Temperature Control) 61 Equipment Temperature Control Device 64 Refrigerant-Heat Medium Heat Exchanger (Second Evaporator or First Evaporator) 68 Auxiliary expansion valve 69 Electromagnetic valve (valve device, valve device for temperature controlled objects) 76 Heat medium temperature sensor R Refrigerant circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

[Problem] To provide an air conditioning device which is for a vehicle and with which the rotation speed of a compressor can be made to quickly respond to a change in a refrigerant flow path accompanying the opening or closing of a valve device, wherein a stable temperature control can be achieved by means of an evaporator. [Solution] This air conditioning device for a vehicle has a heat absorber 9 that vaporizes the refrigerant and a refrigerant-heat medium heat exchanger 64. A heat pump controller controls the rotation speed of a compressor 2 on the basis of the temperature Te of the heat absorber 9, controls the opening and closing of a solenoid valve 69 on the basis of the temperature Tw of the heat medium cooled by the refrigerant-heat medium heat exchanger 64, and increases the rotation speed of the compressor 2 when the solenoid valve 69 opens from a closed state, and/or reduces the rotation speed of the compressor 2 when the solenoid valve closes from an open state.

Description

車両用空気調和装置Air conditioner for vehicle
 本発明は、車両の車室内を空調するヒートポンプ方式の空気調和装置に関するものである。 The present invention relates to a heat pump type air conditioner for air conditioning the interior of a vehicle.
 近年の環境問題の顕在化から、車両に搭載されたバッテリから供給される電力で走行用モータを駆動する電気自動車やハイブリッド自動車等の車両が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、圧縮機と、放熱器と、吸熱器と、室外熱交換器が接続された冷媒回路を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させることで暖房し、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器(蒸発器)において蒸発させ、吸熱させることで冷房する等して車室内を空調するものが開発されている(例えば、特許文献1参照)。 Due to the emergence of environmental problems in recent years, vehicles such as electric vehicles and hybrid vehicles that drive a traveling motor with electric power supplied from a battery mounted on the vehicle have come into widespread use. Then, as an air conditioner that can be applied to such a vehicle, a compressor, a radiator, a heat absorber, and an outdoor heat exchanger are provided with a refrigerant circuit, and the refrigerant discharged from the compressor is provided. The radiator dissipates heat, and the refrigerant dissipated in this radiator absorbs heat in the outdoor heat exchanger to heat it. The refrigerant discharged from the compressor is dissipated in the outdoor heat exchanger and evaporated in the heat absorber (evaporator). An air conditioner has been developed to cool the interior of the vehicle by absorbing heat and cooling the air (for example, see Patent Document 1).
 一方、例えばバッテリは充放電による自己発熱等で高温となった環境下で充放電を行うと劣化が進行し、やがては作動不良を起こして破損する危険性がある。また、低温環境下でも充放電性能が低下する。そこで、冷媒回路にバッテリ用の蒸発器を別途設け、冷媒回路を循環する冷媒とバッテリ用冷媒(熱媒体)とをこのバッテリ用の蒸発器で熱交換させ、この熱交換した熱媒体をバッテリに循環させることでバッテリを冷却することができるようにしたものも開発されている(例えば、特許文献2、特許文献3参照)。 On the other hand, for example, if the battery is charged and discharged in a high temperature environment due to self-heating due to charging and discharging, deterioration will progress, and eventually there is a risk of malfunction and damage. Also, the charge / discharge performance is reduced even in a low temperature environment. Therefore, an evaporator for the battery is separately provided in the refrigerant circuit, and the refrigerant circulating in the refrigerant circuit and the refrigerant for the battery (heat medium) are heat-exchanged by the evaporator for the battery, and the heat medium thus heat-exchanged is transferred to the battery. A battery that can cool the battery by circulating the battery has also been developed (see, for example, Patent Documents 2 and 3).
特開2014-213765号公報JP, 2014-213765, A 特許第5860360号公報Patent No. 5860360 特許第5860361号公報Japanese Patent No. 5860361
 上記のように複数の蒸発器(吸熱器とバッテリ用の蒸発器)を有する車両用空気調和装置では、例えば吸熱器の温度に基づいて圧縮機の回転数を制御することで車室内の冷房を行い、バッテリ用の蒸発器には弁装置を設け、この弁装置を例えば前述した熱媒体の温度(バッテリ用の蒸発器により冷却される対象の温度)に基づいて開閉することでバッテリの冷却を行うことになる。また、逆に熱媒体の温度に基づいて圧縮機の回転数を制御することでバッテリの冷却を行い、吸熱器には弁装置を設け、この弁装置を吸熱器の温度に基づいて開閉することで車室内の冷房を行うことも考えられる。 In a vehicle air conditioner having a plurality of evaporators (heat absorbers and battery evaporators) as described above, cooling of the vehicle interior is controlled by controlling the rotation speed of the compressor based on the temperature of the heat absorbers, for example. The battery evaporator is provided with a valve device, and the valve device is opened / closed based on, for example, the temperature of the heat medium (the temperature of the object cooled by the battery evaporator) to cool the battery. Will be done. On the contrary, cooling the battery by controlling the rotation speed of the compressor based on the temperature of the heat medium, providing a valve device on the heat absorber, and opening and closing this valve device based on the temperature of the heat absorber. It is also conceivable to cool the passenger compartment with.
 しかしながら、何れの場合にも弁装置の開閉により、冷媒回路の冷媒流路の一部が開通し、或いは、閉塞されることになる。そのため、前述した如く吸熱器の温度で圧縮機の回転数を制御する場合、弁装置を閉じた状態から開いた直後は、吸熱器に流入する冷媒が急激に減少して吸熱器の温度が上昇する。一方、弁装置を開いた状態から閉じた直後は、吸熱器に流入する冷媒が急激に増加して吸熱器の温度が低下する。 However, in any case, opening or closing the valve device opens or closes a part of the refrigerant passage of the refrigerant circuit. Therefore, when controlling the rotation speed of the compressor by the temperature of the heat absorber as described above, immediately after opening the valve device from the closed state, the refrigerant flowing into the heat absorber sharply decreases and the temperature of the heat absorber rises. To do. On the other hand, immediately after the valve device is closed from the open state, the refrigerant flowing into the heat absorber rapidly increases and the temperature of the heat absorber decreases.
 また、熱媒体の温度で圧縮機の回転数を制御する場合、弁装置を閉じた状態から開いた直後は、バッテリ用の蒸発器に流入する冷媒が急激に減少して当該蒸発器の温度が上昇する。一方、弁装置を開いた状態から閉じた直後は、バッテリ用の蒸発器に流入する冷媒が急激に増加してバッテリ用の蒸発器の温度が低下する。 Further, when controlling the rotation speed of the compressor by the temperature of the heat medium, immediately after the valve device is opened from the closed state, the refrigerant flowing into the battery evaporator is sharply reduced and the temperature of the evaporator is reduced. To rise. On the other hand, immediately after the valve device is closed from the open state, the refrigerant flowing into the battery evaporator rapidly increases, and the temperature of the battery evaporator drops.
 即ち、圧縮機の回転数制御が冷媒流路の変化に追従できず、弁装置の開閉動作の直後に車室内に吹き出される空気の温度やバッテリ(熱媒体)の温度が大きく変動してしまう問題が発生する。 That is, the rotation speed control of the compressor cannot follow the change of the refrigerant flow path, and the temperature of the air blown into the vehicle compartment and the temperature of the battery (heat medium) change greatly immediately after the opening / closing operation of the valve device. The problem occurs.
 本発明は、係る従来の技術的課題を解決するために成されたものであり、弁装置の開閉に伴う冷媒流路の変化に圧縮機の回転数を迅速に対応させ、蒸発器による安定した温度制御を実現することができる車両用空気調和装置を提供することを目的とする。 The present invention has been made to solve the above-mentioned conventional technical problems, and quickly responds to the change in the refrigerant flow path due to the opening and closing of the valve device, the rotational speed of the compressor, and stabilizes the evaporator. An object of the present invention is to provide a vehicle air conditioner that can realize temperature control.
 本発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、冷媒を蒸発させるための第1の蒸発器及び第2の蒸発器と、第2の蒸発器への冷媒の流通を制御する弁装置と、制御装置を少なくとも備えて車室内を空調するものであって、制御装置は、第1の蒸発器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、第2の蒸発器又はそれにより冷却される対象の温度に基づいて弁装置を開閉制御すると共に、弁装置を閉じた状態から開くとき、圧縮機の回転数を上昇させる動作と、弁装置を開いた状態から閉じるとき、圧縮機の回転数を低下させる動作、のうちの少なくとも一方、若しくは、双方を実行することを特徴とする。 The vehicle air conditioner of the present invention controls the compressor that compresses the refrigerant, the first evaporator and the second evaporator that evaporate the refrigerant, and the circulation of the refrigerant to the second evaporator. A device for air-conditioning a vehicle compartment including at least a valve device and a control device, wherein the control device controls the rotation speed of the compressor based on the temperature of the first evaporator or an object cooled by the first evaporator, The opening / closing control of the valve device is performed based on the temperature of the second evaporator or the object cooled by the second evaporator, and when the valve device is opened from the closed state, the operation of increasing the rotation speed of the compressor and the opening of the valve device. At the time of closing from the closed state, at least one or both of the operations of lowering the rotation speed of the compressor are executed.
 請求項2の発明の車両用空気調和装置は、上記発明において制御装置は、弁装置を閉じた状態から開くとき、当該弁装置を前回開いていたときの回転数に圧縮機の回転数を変更し、及び/又は、弁装置を開いた状態から閉じるとき、当該弁装置を前回閉じていたときの回転数に圧縮機の回転数を変更することを特徴とする。 In the vehicle air conditioner according to a second aspect of the present invention, in the above invention, the control device changes the rotational speed of the compressor to the rotational speed when the valve device was opened last time when the valve device is opened from the closed state. And / or when the valve device is closed from the open state, the rotational speed of the compressor is changed to the rotational speed when the valve device was closed last time.
 請求項3の発明の車両用空気調和装置は、請求項1の発明において制御装置は、弁装置を閉じた状態から開くとき、当該弁装置を前回開いていたときの回転数に所定の補正係数を乗算した値に圧縮機の回転数を変更し、及び/又は、弁装置を開いた状態から閉じるとき、当該弁装置を前回閉じていたときの回転数に所定の補正係数を乗算した値に圧縮機の回転数を変更することを特徴とする。 A vehicle air conditioner according to a third aspect of the present invention is the vehicle air conditioner according to the first aspect of the invention, wherein when the control device opens the valve device from a closed state, the control device has a predetermined correction coefficient for the rotational speed when the valve device was opened previously. When the number of revolutions of the compressor is changed to a value multiplied by and / or when the valve device is closed from the open state, the value obtained by multiplying the number of revolutions when the valve device was closed last time by a predetermined correction coefficient It is characterized by changing the rotation speed of the compressor.
 請求項4の発明の車両用空気調和装置は、請求項2又は請求項3の発明において弁装置を前回開いていたときの回転数とは、前回弁装置を開いていた期間の圧縮機の回転数のうちの何れかの値、或いは、それらの平均値、若しくは、最後の値であり、及び/又は、弁装置を前回閉じていたときの回転数とは、前回弁装置を閉じていた期間の圧縮機の回転数のうちの何れかの値、或いは、それらの平均値、若しくは、最後の値であることを特徴とする。 In the vehicle air conditioner of the invention of claim 4, in the invention of claim 2 or claim 3, the number of revolutions when the valve device was previously opened means the rotation of the compressor during the period when the valve device was previously opened. Any of the values, or their average value, or the last value, and / or the number of revolutions when the valve device was closed last is the period during which the valve device was closed last time. It is characterized in that it is one of the values of the number of revolutions of the compressor, the average value thereof, or the last value.
 請求項5の発明の車両用空気調和装置は、請求項1の発明において制御装置は、第1の蒸発器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数をフィードバック制御すると共に、弁装置を開いた状態から閉じるとき、圧縮機の回転数を制御するフィードバック制御の積分項をクリアすることを特徴とする。 According to a fifth aspect of the present invention, in the vehicle air conditioner of the first aspect, the control device feedback-controls the rotation speed of the compressor based on the temperature of the first evaporator or an object cooled by the first evaporator. When the valve device is closed from the open state, the integral term of the feedback control for controlling the rotation speed of the compressor is cleared.
 請求項6の発明の車両用空気調和装置は、請求項1又は請求項5の発明において制御装置は、第1の蒸発器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数をフィードバック制御すると共に、弁装置を閉じた状態から開くとき、圧縮機の回転数を制御するフィードバック制御の積分項を所定値上昇させることを特徴とする。 In the vehicle air conditioner of the invention of claim 6, in the invention of claim 1 or 5, the control device controls the rotation speed of the compressor based on the temperature of the first evaporator or an object cooled by the first evaporator. In addition to performing the feedback control, when the valve device is opened from the closed state, the integral term of the feedback control for controlling the rotation speed of the compressor is increased by a predetermined value.
 請求項7の発明の車両用空気調和装置は、上記各発明において冷媒を蒸発させて車室内に供給する空気を冷却するための吸熱器と、冷媒を蒸発させて車両に搭載された被温調対象を冷却するための被温調対象用熱交換器を備え、第1の蒸発器は、吸熱器と被温調対象 用熱交換器のうちの何れか一方であり、第2の蒸発器は、吸熱器と被温調対象用熱交換器のうちの他方であることを特徴とする。 The vehicle air conditioner according to the invention of claim 7 is a heat absorber for evaporating the refrigerant to cool the air supplied to the vehicle compartment in each of the above inventions, and a temperature control device mounted on the vehicle for evaporating the refrigerant. The target heat exchanger for cooling the target is provided, and the first evaporator is one of the heat absorber and the target heat exchanger for temperature control, and the second evaporator is , The other of the heat absorber and the heat exchanger for temperature control.
 請求項8の発明の車両用空気調和装置は、上記発明において吸熱器への冷媒の流通を制御する吸熱器用弁装置と、被温調対象用熱交換器への冷媒の流通を制御する被温調対象用弁装置を備え、制御装置は、吸熱器用弁装置を開き、吸熱器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて被温調対象用弁装置を開閉制御する第1の運転モードと、被温調対象用弁装置を開き、被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、吸熱器又はそれにより冷却される対象の温度に基づいて吸熱器用弁装置を開閉制御する第2の運転モードを切り換えて実行することを特徴とする。 A vehicle air conditioner according to an eighth aspect of the present invention is a heat absorber valve device that controls the flow of the refrigerant to the heat absorber in the above invention, and a heated device that controls the flow of the refrigerant to the heat exchanger for temperature adjustment. The control device includes a valve device for temperature control, the control device opens the valve device for heat absorber, controls the rotation speed of the compressor based on the temperature of the heat absorber or the target cooled by the heat absorber, and the heat exchanger for temperature control target. Alternatively, a first operation mode in which the temperature controlled object valve device is opened / closed based on the temperature of the object to be cooled, and the temperature controlled object valve device is opened, and the heat controlled object heat exchanger or it The second operation mode in which the rotation speed of the compressor is controlled based on the temperature of the object to be cooled by and the opening / closing control of the heat absorber valve device is performed based on the temperature of the heat absorber or the object to be cooled thereby is executed. It is characterized by doing.
 請求項9の発明の車両用空気調和装置は、上記発明において制御装置は、第1の運転モードにおいて、被温調対象用弁装置を閉じた状態から開くとき、圧縮機の回転数を上昇させ、及び/又は、被温調対象用弁装置を開いた状態から閉じるとき、圧縮機の回転数を低下させると共に、第2の運転モードにおいて、吸熱器用弁装置を閉じた状態から開くとき、圧縮機の回転数を上昇させ、及び/又は、吸熱器用弁装置を開いた状態から閉じるとき、圧縮機の回転数を低下させることを特徴とする。 In the vehicle air conditioner of the invention of claim 9, in the above invention, the control device increases the rotation speed of the compressor when the temperature-controlled object valve device is opened from the closed state in the first operation mode. And / or, when the valve device for temperature control is closed from the open state, the rotation speed of the compressor is reduced, and in the second operation mode, when the heat absorber valve device is opened from the closed state, compression is performed. It is characterized in that the number of revolutions of the compressor is increased and / or the number of revolutions of the compressor is reduced when the valve device for the heat absorber is closed from the open state.
 請求項10の発明の車両用空気調和装置は、上記各発明において弁装置は、異なる二種類の開度を切り替え可能な弁であることを特徴とする。 The vehicle air conditioner according to the invention of claim 10 is characterized in that, in each of the above inventions, the valve device is a valve capable of switching between two different types of openings.
 請求項11の発明の車両用空気調和装置は、上記各発明において弁装置は、全開及び全閉を切り替え可能な弁であることを特徴とする。 The vehicle air conditioner according to the invention of claim 11 is characterized in that, in each of the above inventions, the valve device is a valve capable of switching between fully open and fully closed.
 本発明によれば、冷媒を圧縮する圧縮機と、冷媒を蒸発させるための第1の蒸発器及び第2の蒸発器と、第2の蒸発器への冷媒の流通を制御する弁装置と、制御装置を少なくとも備えて車室内を空調する車両用空気調和装置において、制御装置が、第1の蒸発器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、第2の蒸発器又はそれにより冷却される対象の温度に基づいて弁装置を開閉制御すると共に、弁装置を閉じた状態から開くとき、圧縮機の回転数を上昇させる動作と、弁装置を開いた状態から閉じるとき、圧縮機の回転数を低下させる動作、のうちの少なくとも一方、若しくは、双方を実行するようにしたので、弁装置を閉じた状態から開くとき、第1の蒸発器に流入する冷媒が急激に減少する状況において圧縮機の回転数を上昇させ、及び/又は、弁装置を開いた状態から閉じるとき、第1の蒸発器に流入する冷媒が急激に増加する状況においては圧縮機の回転数を低下させることができるようになる。 According to the present invention, a compressor for compressing a refrigerant, a first evaporator and a second evaporator for evaporating the refrigerant, and a valve device for controlling the flow of the refrigerant to the second evaporator, In a vehicle air conditioner that includes at least a control device to air-condition the vehicle interior, the control device controls the rotation speed of the compressor based on the temperature of the first evaporator or an object cooled by the second evaporator, and The opening and closing of the valve device is controlled based on the temperature of the evaporator or the object cooled by the evaporator, and when the valve device is opened from the closed state, the operation to increase the rotation speed of the compressor and the open state of the valve device are performed. Since at least one or both of the operations of lowering the rotation speed of the compressor are executed when the valve device is closed, the refrigerant flowing into the first evaporator when the valve device is opened from the closed state. In a situation where To increase the rotation speed of the compressor and / or to reduce the rotation speed of the compressor in a situation where the refrigerant flowing into the first evaporator rapidly increases when the valve device is closed from the open state. Will be able to.
 これにより、冷媒流路の変化に即座に対応して圧縮機の回転数を変更し、第1の蒸発器やそれにより冷却される対象の温度が大きく変動してしまう不都合を未然に回避することができるようになる。また、弁装置を開くときには第2の蒸発器にも冷媒を支障無く供給することができるようになるので、総じて第1の蒸発器や第2の蒸発器による安定した温度制御を実現することが可能となるものである。 Thus, the number of revolutions of the compressor is immediately changed in response to the change of the refrigerant flow path, and the disadvantage that the temperature of the first evaporator and the object cooled by it is largely changed can be avoided. Will be able to. Further, since the refrigerant can be supplied to the second evaporator without any trouble when the valve device is opened, stable temperature control by the first evaporator and the second evaporator can be realized as a whole. It is possible.
 この場合、例えば請求項2の発明の如く制御装置が、弁装置を閉じた状態から開くとき、当該弁装置を前回開いていたときの回転数に圧縮機の回転数を変更し、及び/又は、弁装置を開いた状態から閉じるとき、当該弁装置を前回閉じていたときの回転数に圧縮機の回転数を変更することで、弁装置の開閉に即座に対応して圧縮機の回転数を適切な値に変更することができるようになる。 In this case, for example, when the control device opens the valve device from the closed state, the control device changes the rotation speed of the compressor to the rotation speed when the valve device was opened last time, and / or , When the valve device is closed from the open state, by changing the rotation speed of the compressor to the rotation speed when the valve device was closed last time, the rotation speed of the compressor can be immediately responded to the opening and closing of the valve device. Will be able to be changed to an appropriate value.
 また、請求項3の発明の如く制御装置が、弁装置を閉じた状態から開くとき、当該弁装置を前回開いていたときの回転数に所定の補正係数を乗算した値に圧縮機の回転数を変更し、及び/又は、弁装置を開いた状態から閉じるとき、当該弁装置を前回閉じていたときの回転数に所定の補正係数を乗算した値に圧縮機の回転数を変更するようにすれば、例えば装置の特性や環境に応じて補正係数を設定することで、圧縮機の回転数をより適切な値に変更することができるようになる。 Further, when the control device opens the valve device from the closed state as in the invention of claim 3, the rotational speed of the compressor is multiplied by a value obtained by multiplying the rotational speed when the valve device was opened last time by a predetermined correction coefficient. And / or when the valve device is closed from the open state, the rotational speed of the compressor is changed to a value obtained by multiplying the rotational speed when the valve device was closed last time by a predetermined correction coefficient. Then, for example, by setting the correction coefficient in accordance with the characteristics and environment of the device, the rotation speed of the compressor can be changed to a more appropriate value.
 尚、請求項2や請求項3の発明における弁装置を前回開いていたときの回転数とは、請求項4の発明の如く前回弁装置を開いていた期間の圧縮機の回転数のうちの何れかの値、或いは、それらの平均値、若しくは、最後の値とする。及び/又は、弁装置を前回閉じていたときの回転数とは、請求項4の発明の如く前回弁装置を閉じていた期間の圧縮機の回転数のうちの何れかの値、或いは、それらの平均値、若しくは、最後の値とすればよい。 It should be noted that the number of revolutions when the valve device according to the invention of claims 2 and 3 was opened last time is the number of revolutions of the compressor during the period when the valve device was opened last time as in the invention of claim 4. Any value, their average value, or the last value. And / or the number of revolutions when the valve device is closed last time means any one of the values of the number of revolutions of the compressor during the period when the valve device was closed last time as in the invention of claim 4, or those values. May be the average value or the last value.
 他方、請求項5の発明の如く制御装置が、第1の蒸発器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数をフィードバック制御する場合には、弁装置を開いた状態から閉じるとき、圧縮機の回転数を制御するフィードバック制御の積分項をクリアすることで、弁装置が閉じられたことに即座に対応して圧縮機の回転数を適切な値に変更することができるようになる。 On the other hand, when the control device feedback-controls the rotation speed of the compressor based on the temperature of the first evaporator or the object cooled by the first evaporator as in the invention of claim 5, the valve device is opened. When closing, by clearing the integral term of the feedback control that controls the rotation speed of the compressor, it is possible to immediately change the rotation speed of the compressor to an appropriate value in response to the closing of the valve device. Like
 更に、請求項6の発明の如く制御装置が、弁装置を閉じた状態から開くとき、圧縮機の回転数を制御するフィードバック制御の積分項を所定値上昇させことで、弁装置が開かれたことに即座に対応して圧縮機の回転数を適切な値に変更することができるようになる。 Further, when the control device opens the valve device from the closed state as in the invention of claim 6, the valve device is opened by increasing the integral term of the feedback control for controlling the rotation speed of the compressor by a predetermined value. It will be possible to immediately change the rotation speed of the compressor to an appropriate value.
 また、上記各発明の第1の蒸発器や第2の蒸発器を、請求項7の発明の如く冷媒を蒸発させて車室内に供給する空気を冷却するための吸熱器や、冷媒を蒸発させて車両に搭載された被温調対象を冷却するための被温調対象用熱交換器とすることで、車室内の冷房と被温調対象の冷却を安定的に実現することができるようになる。 Further, the first evaporator and the second evaporator of each of the above inventions are provided with a heat absorber for evaporating the refrigerant and cooling the air supplied to the vehicle interior as in the invention of claim 7, and evaporating the refrigerant. A heat exchanger for a temperature-controlled object mounted on a vehicle to cool the temperature-controlled object enables stable cooling of the vehicle interior and cooling of the temperature-controlled object. Become.
 その場合には、請求項8の発明の如く吸熱器への冷媒の流通を制御する吸熱器用弁装置と、被温調対象用熱交換器への冷媒の流通を制御する被温調対象用弁装置を設け、制御装置が、吸熱器用弁装置を開き、吸熱器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて被温調対象用弁装置を開閉制御する第1の運転モードと、被温調対象用弁装置を開き、被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、吸熱器又はそれにより冷却される対象の温度に基づいて吸熱器用弁装置を開閉制御する第2の運転モードを切り換えて実行することで、第1の運転モードでは車室内の冷房を優先しながら被温調対象を冷却し、第2の運転モードでは被温調対象の冷却を優先しながら車室内の冷房を行うことができるようになる。 In that case, a valve device for a heat absorber that controls the flow of the refrigerant to the heat absorber as in the invention of claim 8 and a valve for the temperature controlled object that controls the flow of the refrigerant to the heat exchanger for the temperature controlled object. The control device opens the valve device for the heat absorber, controls the rotation speed of the compressor based on the temperature of the heat absorber or the object cooled by it, and cools it by the heat exchanger for the temperature-controlled object or by it. A first operation mode in which the temperature controlled object valve device is controlled to open and close based on the temperature of the target to be controlled, and the temperature controlled object valve device is opened, and the temperature controlled object heat exchanger or it is cooled. By controlling the number of revolutions of the compressor based on the temperature of the target, by switching and executing the second operation mode for controlling the opening and closing of the heat absorber valve device based on the temperature of the heat absorber or the target cooled by it, In the first operation mode, temperature control is performed while giving priority to cooling in the passenger compartment. The elephant was cooled, in the second operating mode it is possible to perform cooling of the vehicle interior while giving priority to cooling of the temperature control object.
 そして、請求項9の発明の如く制御装置が、第1の運転モードにおいて、被温調対象用弁装置を閉じた状態から開くとき、圧縮機の回転数を上昇させ、及び/又は、被温調対象用弁装置を開いた状態から閉じるとき、圧縮機の回転数を低下させると共に、第2の運転モードにおいて、吸熱器用弁装置を閉じた状態から開くとき、圧縮機の回転数を上昇させ、及び/又は、吸熱器用弁装置を開いた状態から閉じるとき、圧縮機の回転数を低下させることで、第1の運転モードと第2の運転モードにおける車室内の冷房と被温調対象の冷却を安定的に実現することができるようになる。 Then, when the control device according to the invention of claim 9 opens the valve device for temperature control subject from the closed state in the first operation mode, the number of revolutions of the compressor is increased and / or the temperature control device is heated. When the valve device for adjustment is closed from the open state, the rotation speed of the compressor is lowered, and in the second operation mode, when the valve device for heat absorber is opened from the closed state, the rotation speed of the compressor is increased. And / or, when the heat absorber valve device is closed from the open state, the rotation speed of the compressor is reduced to cool the vehicle interior in the first operation mode and the second operation mode and to control the temperature of the temperature controlled object. It becomes possible to achieve stable cooling.
 また、請求項10の発明の如く弁装置が、異なる二種類の開度を切り替え可能な弁である場合、特に、請求項11の発明の如く弁装置が、全開及び全閉を切り替え可能な弁であるときに本発明は有効である。 When the valve device according to the invention of claim 10 is a valve capable of switching between two different types of opening, in particular, the valve device according to the invention of claim 11 is capable of switching between fully open and fully closed. The present invention is effective when
本発明を適用した一実施形態の車両用空気調和装置の構成図である。It is a block diagram of the vehicle air conditioner of one embodiment to which the present invention is applied. 図1の車両用空気調和装置の制御装置の電気回路のブロック図である。It is a block diagram of an electric circuit of a control device of an air harmony device for vehicles of Drawing 1. 図2の制御装置が実行する運転モードを説明する図である。It is a figure explaining the driving mode which the control apparatus of FIG. 2 performs. 図2の制御装置のヒートポンプコントローラによる暖房モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles explaining the heating mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる除湿暖房モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the vehicle air conditioner explaining the dehumidification heating mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる除湿冷房モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles explaining the dehumidification cooling mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる冷房モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the vehicle air conditioner explaining the cooling mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる空調(優先)+バッテリ冷却モード(第1の運転モード)とバッテリ冷却(優先)+空調モード(第2の運転モード)を説明する車両用空気調和装置の構成図である。Configuration of vehicle air conditioner for explaining air conditioning (priority) + battery cooling mode (first operation mode) and battery cooling (priority) + air conditioning mode (second operation mode) by heat pump controller of control device in FIG. It is a figure. 図2の制御装置のヒートポンプコントローラによるバッテリ冷却(単独)モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the vehicle air conditioning apparatus explaining the battery cooling (single) mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる除霜モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles explaining the defrost mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラの圧縮機制御に関する制御ブロック図である。It is a control block diagram regarding compressor control of the heat pump controller of the control device of FIG. 図2の制御装置のヒートポンプコントローラの圧縮機制御に関するもう一つの制御ブロック図である。FIG. 4 is another control block diagram related to compressor control of the heat pump controller of the control device in FIG. 2. 図2の制御装置のヒートポンプコントローラの空調(優先)+バッテリ冷却モード(第1の運転モード)での電磁弁69の制御を説明するブロック図である。It is a block diagram explaining control of the solenoid valve 69 in air conditioning (priority) + battery cooling mode (1st operation mode) of the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる空調(優先)+バッテリ冷却モード(第1の運転モード)を説明するタイミングチャートである。3 is a timing chart illustrating an air conditioning (priority) + battery cooling mode (first operation mode) by the heat pump controller of the control device of FIG. 2. 図2の制御装置のヒートポンプコントローラの圧縮機制御に関する更にもう一つの制御ブロック図である。FIG. 7 is yet another control block diagram related to compressor control of the heat pump controller of the control device in FIG. 2. 図2の制御装置のヒートポンプコントローラのバッテリ冷却(優先)+空調モード(第2の運転モード)での電磁弁35の制御を説明するブロック図である。It is a block diagram explaining control of the solenoid valve 35 in battery cooling (priority) + air conditioning mode (2nd operation mode) of the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによるバッテリ冷却(優先)+空調モード(第2の運転モード)を説明するタイミングチャートである。3 is a timing chart illustrating battery cooling (priority) + air conditioning mode (second operation mode) by the heat pump controller of the control device in FIG. 2. 電磁弁69の開閉時の圧縮機目標回転数の変更制御を行わないときの空調(優先)+バッテリ冷却モードを説明するタイミングチャートである。6 is a timing chart for explaining an air conditioning (priority) + battery cooling mode when the compressor target rotation speed change control is not performed when opening / closing the solenoid valve 69. 電磁弁35の開閉時の圧縮機目標回転数の変更制御を行わないときのバッテリ冷却(優先)+空調モードを説明するタイミングチャートである。6 is a timing chart for explaining a battery cooling (priority) + air conditioning mode when the compressor target rotation speed change control is not performed when opening / closing the solenoid valve 35.
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。図1は本発明の一実施形態の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、車両に搭載されているバッテリ55に充電された電力を走行用モータ(電動モータ。図示せず)に供給することで駆動し、走行するものであり、本発明の車両用空気調和装置1の後述する圧縮機2も、バッテリ55から供給される電力で駆動されるものとする。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 of an embodiment of the present invention. A vehicle of an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and electric power charged in a battery 55 mounted in the vehicle is used as a traveling motor (electric motor). (Not shown) to drive and run, and the compressor 2 of the vehicle air conditioner 1 of the present invention, which will be described later, is also driven by the electric power supplied from the battery 55. ..
 即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路Rを用いたヒートポンプ運転により暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、除霜モード、第1の運転モードとしての空調(優先)+バッテリ冷却モード、第2の運転モードとしてのバッテリ冷却(優先)+空調モード、及び、バッテリ冷却(単独)モードの各運転モードを切り換えて実行することで車室内の空調やバッテリ55の温調を行うものである。 That is, the vehicle air conditioner 1 of the embodiment is a heating mode, a dehumidification heating mode, a dehumidification cooling mode, a cooling mode, and a defrosting mode in a heat pump operation using the refrigerant circuit R in an electric vehicle that cannot be heated by engine waste heat. , The air-conditioning (priority) + battery cooling mode as the first operation mode, the battery cooling (priority) + air-conditioning mode as the second operation mode, and the battery cooling (single) mode are switched and executed. As a result, air conditioning in the vehicle compartment and temperature control of the battery 55 are performed.
 尚、車両としては電気自動車に限らず、エンジンと走行用モータを供用する所謂ハイブリッド自動車にも本発明は有効である。また、実施例の車両用空気調和装置1を適用する車両は外部の充電器(急速充電器や通常の充電器)からバッテリ55に充電可能とされているものである。更に、前述したバッテリ55や走行用モータ、それを制御するインバータ等が本発明における車両に搭載された被温調対象となるが、以下の実施例ではバッテリ55を例に採り上げて説明する。 The present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and a running motor. The vehicle to which the vehicle air conditioner 1 of the embodiment is applied is one in which the battery 55 can be charged from an external charger (a quick charger or a normal charger). Further, the battery 55, the traveling motor, the inverter controlling the same, and the like described above are the objects of temperature adjustment mounted on the vehicle in the present invention, but in the following embodiments, the battery 55 will be taken as an example for description.
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内の空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒がマフラー5と冷媒配管13Gを介して流入し、この冷媒を車室内に放熱(冷媒の熱を放出)させる室内熱交換器としての放熱器4と、暖房時に冷媒を減圧膨張させる電動弁(電子膨張弁)から成る室外膨張弁6と、冷房時には冷媒を放熱させる放熱器として機能し、暖房時には冷媒を吸熱(冷媒に熱を吸収)させる蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる機械式膨張弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に冷媒を蒸発させて車室内外から冷媒に吸熱(冷媒に熱を吸収)させる吸熱器9(第1の蒸発器又は第2の蒸発器となる)と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。 The vehicle air conditioner 1 of the embodiment is for performing air conditioning (heating, cooling, dehumidification, and ventilation) of a vehicle interior of an electric vehicle, and an electric compressor 2 for compressing a refrigerant and an interior of the vehicle interior. The high-temperature and high-pressure refrigerant discharged from the compressor 2, which is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated by ventilation, flows in through the muffler 5 and the refrigerant pipe 13G, and radiates this refrigerant into the vehicle interior. As a radiator 4 as an indoor heat exchanger (to release the heat of the refrigerant), an outdoor expansion valve 6 consisting of a motor-operated valve (electronic expansion valve) for decompressing and expanding the refrigerant during heating, and as a radiator for radiating the refrigerant during cooling An outdoor heat exchanger 7 that functions and performs heat exchange between the refrigerant and the outside air so as to function as an evaporator that absorbs the refrigerant (absorbs heat into the refrigerant) during heating, and a mechanical expansion valve that decompresses and expands the refrigerant. Indoor expansion valve 8 consisting of A heat absorber 9 (a first evaporator or a second evaporator) that is provided in the air flow passage 3 to evaporate the refrigerant during cooling and dehumidification so as to absorb heat from the inside and outside of the vehicle compartment (to absorb the heat in the refrigerant) , And the accumulator 12 and the like are sequentially connected by the refrigerant pipe 13 to form the refrigerant circuit R.
 そして、室外膨張弁6は放熱器4から出て室外熱交換器7に流入する冷媒を減圧膨張させると共に、全閉も可能とされている。また、実施例では機械式膨張弁が使用された室内膨張弁8は、吸熱器9に流入する冷媒を減圧膨張させると共に、吸熱器9における冷媒の過熱度を調整する。 The outdoor expansion valve 6 decompresses and expands the refrigerant flowing out of the radiator 4 and flowing into the outdoor heat exchanger 7, and can be fully closed. Further, in the embodiment, the indoor expansion valve 8 using the mechanical expansion valve decompresses and expands the refrigerant flowing into the heat absorber 9, and adjusts the degree of superheat of the refrigerant in the heat absorber 9.
 尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。 The outdoor heat exchanger 7 is provided with an outdoor blower 15. The outdoor blower 15 exchanges heat between the outdoor air and the refrigerant by forcibly ventilating the outdoor air through the outdoor heat exchanger 7, whereby the outdoor air is discharged while the vehicle is stopped (that is, the vehicle speed is 0 km / h). The heat exchanger 7 is configured to ventilate outside air.
 また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7の冷媒出口側の冷媒配管13Aは、吸熱器9に冷媒を流す際に開放される開閉弁としての電磁弁17(冷房用)を介してレシーバドライヤ部14に接続され、過冷却部16の出口側の冷媒配管13Bは逆止弁18、室内膨張弁8、及び、吸熱器用弁装置(開閉弁)としての電磁弁35(キャビン用)を順次介して吸熱器9の冷媒入口側に接続されている。尚、電磁弁35は全開及び全閉を切り替え可能な弁である。また、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成している。また、逆止弁18は室内膨張弁8の方向が順方向とされている。 Further, the outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 sequentially on the downstream side of the refrigerant, and the refrigerant pipe 13A on the refrigerant outlet side of the outdoor heat exchanger 7 is used when flowing the refrigerant to the heat absorber 9. The refrigerant pipe 13B on the outlet side of the supercooling section 16 is connected to the receiver dryer section 14 via an electromagnetic valve 17 (for cooling) as an open / close valve, and the check valve 18, the indoor expansion valve 8 and the heat absorption It is connected to the refrigerant inlet side of the heat absorber 9 via a solenoid valve 35 (for cabin) as a device valve device (open / close valve) in sequence. The electromagnetic valve 35 is a valve that can be switched between fully open and fully closed. Further, the receiver dryer section 14 and the supercooling section 16 structurally constitute a part of the outdoor heat exchanger 7. The check valve 18 has the forward direction of the indoor expansion valve 8.
 また、室外熱交換器7から出た冷媒配管13Aは冷媒配管13Dに分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される開閉弁としての電磁弁21(暖房用)を介して吸熱器9の冷媒出口側の冷媒配管13Cに連通接続されている。そして、この冷媒配管13Cがアキュムレータ12の入口側に接続され、アキュムレータ12の出口側は圧縮機2の冷媒吸込側の冷媒配管13Kに接続されている。 In addition, the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched into a refrigerant pipe 13D, and the branched refrigerant pipe 13D is passed through an electromagnetic valve 21 (for heating) as an on-off valve opened during heating. It is connected to the refrigerant pipe 13C on the refrigerant outlet side of the heat absorber 9 for communication. The refrigerant pipe 13C is connected to the inlet side of the accumulator 12, and the outlet side of the accumulator 12 is connected to the refrigerant suction side refrigerant pipe 13K of the compressor 2.
 更に、放熱器4の冷媒出口側の冷媒配管13Eにはストレーナ19が接続されており、更に、この冷媒配管13Eは室外膨張弁6の手前(冷媒上流側)で冷媒配管13Jと冷媒配管13Fに分岐し、分岐した一方の冷媒配管13Jが室外膨張弁6を介して室外熱交換器7の冷媒入口側に接続されている。また、分岐した他方の冷媒配管13Fは除湿時に開放される開閉弁としての電磁弁22(除湿用)を介し、逆止弁18の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Bに連通接続されている。 Furthermore, a strainer 19 is connected to the refrigerant pipe 13E on the refrigerant outlet side of the radiator 4, and the refrigerant pipe 13E is connected to the refrigerant pipes 13J and 13F before the outdoor expansion valve 6 (refrigerant upstream side). One of the branched and branched refrigerant pipes 13J is connected to the refrigerant inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6. Further, the other branched refrigerant pipe 13F is connected to the refrigerant downstream side of the check valve 18 and the refrigerant upstream side of the indoor expansion valve 8 via an electromagnetic valve 22 (for dehumidification) as an opening / closing valve that is opened during dehumidification. It is communicatively connected to the located refrigerant pipe 13B.
 これにより、冷媒配管13Fは室外膨張弁6、室外熱交換器7及び逆止弁18の直列回路に対して並列に接続されたかたちとなり、室外膨張弁6、室外熱交換器7及び逆止弁18をバイパスするバイパス回路となる。また、室外膨張弁6にはバイパス用の開閉弁としての電磁弁20が並列に接続されている。 As a result, the refrigerant pipe 13F is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve 18, and the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve are connected. It becomes a bypass circuit that bypasses 18. Further, a solenoid valve 20 as an opening / closing valve for bypass is connected in parallel to the outdoor expansion valve 6.
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環)と、車室外の空気である外気(外気導入)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。 Further, in the air flow passage 3 on the air upstream side of the heat absorber 9, respective intake ports of an outside air intake port and an inside air intake port are formed (represented by the intake port 25 in FIG. 1). An intake switching damper 26 is provided at 25 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation) which is the air inside the vehicle interior and the outside air (outside air introduction) which is the air outside the vehicle interior. Further, on the air downstream side of the suction switching damper 26, an indoor blower (blower fan) 27 for feeding the introduced inside air or outside air to the air flow passage 3 is provided.
 尚、実施例の吸込切換ダンパ26は、吸込口25の外気吸込口と内気吸込口を任意の比率で開閉することにより、空気流通路3の吸熱器9に流入する空気(外気と内気)のうちの内気の比率を0~100%の間で調整することができるように構成されている(外気の比率も100%~0%の間で調整可能)。 The intake switching damper 26 of the embodiment opens and closes the outside air intake port and the inside air intake port of the intake port 25 at an arbitrary ratio to remove the air (outside air and inside air) flowing into the heat absorber 9 of the air flow passage 3. It is configured so that the ratio of inside air can be adjusted between 0% and 100% (the ratio of outside air can also be adjusted between 100% and 0%).
 また、放熱器4の風下側(空気下流側)における空気流通路3内には、実施例ではPTCヒータ(電気ヒータ)から成る補助加熱装置としての補助ヒータ23が設けられ、放熱器4を経て車室内に供給される空気を加熱することが可能とされている。更に、放熱器4の空気上流側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を放熱器4及び補助ヒータ23に通風する割合を調整するエアミックスダンパ28が設けられている。 Further, in the air flow passage 3 on the leeward side (air downstream side) of the radiator 4, an auxiliary heater 23 as an auxiliary heating device including a PTC heater (electric heater) is provided in the embodiment, and passes through the radiator 4. It is possible to heat the air supplied to the passenger compartment. Further, in the air flow passage 3 on the air upstream side of the radiator 4, the air (inside air or outside air) flowing into the air flow passage 3 and passing through the heat absorber 9 is radiated. An air mix damper 28 that adjusts the ratio of ventilation to the device 4 and the auxiliary heater 23 is provided.
 更にまた、放熱器4の空気下流側における空気流通路3には、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口からの空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。 Furthermore, in the air flow passage 3 on the air downstream side of the radiator 4, FOOT (foot), VENT (vent), and DEF (def) outlets (represented by the outlet 29 in FIG. 1 as a representative) are provided. The blower outlet 29 is provided with a blower outlet switching damper 31 for controlling the blowout of air from each of the blower outlets.
 更に、車両用空気調和装置1は、バッテリ55(被温調対象)に熱媒体を循環させて当該バッテリ55の温度を調整するための機器温度調整装置61を備えている。実施例の機器温度調整装置61は、バッテリ55に熱媒体を循環させるための循環装置としての循環ポンプ62と、冷媒-熱媒体熱交換器64(第2の蒸発器又は第1の蒸発器となる被温調対象用熱交換器)と、加熱装置としての熱媒体加熱ヒータ63を備え、それらとバッテリ55が熱媒体配管66にて環状に接続されている。 Further, the vehicle air conditioner 1 includes an equipment temperature adjusting device 61 for adjusting the temperature of the battery 55 by circulating a heat medium in the battery 55 (object to be temperature adjusted). The device temperature adjusting device 61 of the embodiment includes a circulation pump 62 as a circulating device for circulating a heat medium in the battery 55, a refrigerant-heat medium heat exchanger 64 (a second evaporator or a first evaporator). And a battery 55 are connected to each other by a heat medium pipe 66 in an annular shape.
 実施例の場合、循環ポンプ62の吐出側に冷媒-熱媒体熱交換器64の熱媒体流路64Aの入口が接続され、この熱媒体流路64Aの出口は熱媒体加熱ヒータ63の入口に接続されている。この熱媒体加熱ヒータ63の出口がバッテリ55の入口に接続され、バッテリ55の出口が循環ポンプ62の吸込側に接続されている。 In the case of the embodiment, the inlet of the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64 is connected to the discharge side of the circulation pump 62, and the outlet of this heat medium passage 64A is connected to the inlet of the heat medium heater 63. Has been done. The outlet of the heat medium heater 63 is connected to the inlet of the battery 55, and the outlet of the battery 55 is connected to the suction side of the circulation pump 62.
 この機器温度調整装置61で使用される熱媒体としては、例えば水、HFO-1234yfのような冷媒、クーラント等の液体、空気等の気体が採用可能である。尚、実施例では水を熱媒体として採用している。また、熱媒体加熱ヒータ63はPTCヒータ等の電気ヒータから構成されている。更に、バッテリ55の周囲には例えば熱媒体が当該バッテリ55と熱交換関係で流通可能なジャケット構造が施されているものとする。 As the heat medium used in the device temperature adjusting device 61, for example, water, a refrigerant such as HFO-1234yf, a liquid such as coolant, or a gas such as air can be adopted. In the examples, water is used as the heat medium. The heat medium heater 63 is composed of an electric heater such as a PTC heater. Further, it is assumed that, for example, a jacket structure is provided around the battery 55 so that a heat medium can flow in a heat exchange relationship with the battery 55.
 そして、循環ポンプ62が運転されると、循環ポンプ62から吐出された熱媒体は冷媒-熱媒体熱交換器64の熱媒体流路64Aに流入する。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は熱媒体加熱ヒータ63に至り、当該熱媒体加熱ヒータ63が発熱されている場合にはそこで加熱された後、バッテリ55に至り、熱媒体はそこでバッテリ55と熱交換する。そして、このバッテリ55と熱交換した熱媒体が循環ポンプ62に吸い込まれることで熱媒体配管66内を循環される。 When the circulation pump 62 is operated, the heat medium discharged from the circulation pump 62 flows into the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64. The heat medium exiting the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heating heater 63, and if the heat medium heating heater 63 is generating heat, the heat medium heating heater 63 heats the heat medium heating heater 63 and then the battery. 55, where the heat medium exchanges heat with the battery 55. The heat medium that has exchanged heat with the battery 55 is sucked into the circulation pump 62 and circulated in the heat medium pipe 66.
 一方、冷媒回路Rの冷媒配管13Fと冷媒配管13Bとの接続部の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Bには、分岐回路としての分岐配管67の一端が接続されている。この分岐配管67には実施例では機械式の膨張弁から構成された補助膨張弁68と、被温調対象用弁装置(開閉弁)としての電磁弁(チラー用)69が順次設けられている。この電磁弁69は全開及び全閉を切り替え可能な弁である。補助膨張弁68は冷媒-熱媒体熱交換器64の後述する冷媒流路64Bに流入する冷媒を減圧膨張させると共に、冷媒-熱媒体熱交換器64の冷媒流路64Bにおける冷媒の過熱度を調整する。 On the other hand, in the refrigerant pipe 13B located on the refrigerant downstream side of the connecting portion between the refrigerant pipe 13F and the refrigerant pipe 13B of the refrigerant circuit R and on the refrigerant upstream side of the indoor expansion valve 8, a branch pipe 67 as a branch circuit is provided. One end is connected. In the branch pipe 67, an auxiliary expansion valve 68, which is a mechanical expansion valve in the embodiment, and a solenoid valve (for chiller) 69 as a valve device (open / close valve) for temperature control are sequentially provided. .. The solenoid valve 69 is a valve that can be switched between fully open and fully closed. The auxiliary expansion valve 68 decompresses and expands the refrigerant flowing into a later-described refrigerant passage 64B of the refrigerant-heat medium heat exchanger 64, and adjusts the degree of superheat of the refrigerant in the refrigerant passage 64B of the refrigerant-heat medium heat exchanger 64. To do.
 そして、分岐配管67の他端は冷媒-熱媒体熱交換器64の冷媒流路64Bに接続されており、この冷媒流路64Bの出口には冷媒配管71の一端が接続され、冷媒配管71の他端は冷媒配管13Dとの合流点より冷媒上流側(アキュムレータ12の冷媒上流側)の冷媒配管13Cに接続されている。そして、これら補助膨張弁68や電磁弁69、冷媒-熱媒体熱交換器64の冷媒流路64B等も冷媒回路Rの一部を構成すると同時に、機器温度調整装置61の一部をも構成することになる。 The other end of the branch pipe 67 is connected to the refrigerant flow passage 64B of the refrigerant-heat medium heat exchanger 64, and one end of the refrigerant pipe 71 is connected to the outlet of the refrigerant flow passage 64B. The other end is connected to a refrigerant pipe 13C on the refrigerant upstream side (refrigerant upstream side of the accumulator 12) from the confluence with the refrigerant pipe 13D. The auxiliary expansion valve 68, the electromagnetic valve 69, the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, and the like also form a part of the refrigerant circuit R and, at the same time, a part of the device temperature adjusting device 61. It will be.
 電磁弁69が開いている場合、室外熱交換器7から出た冷媒(一部又は全ての冷媒)は分岐配管67に流入し、補助膨張弁68で減圧された後、電磁弁69を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して、そこで蒸発する。冷媒は冷媒流路64Bを流れる過程で熱媒体流路64Aを流れる熱媒体から吸熱した後、分岐配管71、冷媒配管13C、アキュムレータ12を経て冷媒配管13Kから圧縮機2に吸い込まれることになる。 When the solenoid valve 69 is open, the refrigerant (a part or all of the refrigerant) discharged from the outdoor heat exchanger 7 flows into the branch pipe 67, the pressure is reduced by the auxiliary expansion valve 68, and then the refrigerant is passed through the solenoid valve 69. -The refrigerant flows into the refrigerant channel 64B of the heat medium heat exchanger 64 and evaporates there. The refrigerant absorbs heat from the heat medium flowing through the heat medium passage 64A while flowing through the refrigerant passage 64B, and then is sucked into the compressor 2 through the refrigerant pipe 13K through the branch pipe 71, the refrigerant pipe 13C, and the accumulator 12.
 次に、図2は実施例の車両用空気調和装置1の制御装置11のブロック図を示している。制御装置11は、何れもプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成された空調コントローラ45及びヒートポンプコントローラ32から構成されており、これらがCAN(Controller Area Network)やLIN(Local Interconnect Network)を構成する車両通信バス65に接続されている。また、圧縮機2と補助ヒータ23、循環ポンプ62と熱媒体加熱ヒータ63も車両通信バス65に接続され、これら空調コントローラ45、ヒートポンプコントローラ32、圧縮機2、補助ヒータ23、循環ポンプ62及び熱媒体加熱ヒータ64が車両通信バス65を介してデータの送受信を行うように構成されている。 Next, FIG. 2 shows a block diagram of the control device 11 of the vehicle air conditioner 1 of the embodiment. The control device 11 includes an air conditioning controller 45 and a heat pump controller 32 each of which includes a microcomputer that is an example of a computer including a processor, and these include a CAN (Controller Area Network) and a LIN (Local Interconnect Network). Is connected to the vehicle communication bus 65 that constitutes the. Further, the compressor 2 and the auxiliary heater 23, the circulation pump 62 and the heat medium heating heater 63 are also connected to the vehicle communication bus 65, and the air conditioning controller 45, the heat pump controller 32, the compressor 2, the auxiliary heater 23, the circulation pump 62 and the heat generator. The medium heater 64 is configured to send and receive data via the vehicle communication bus 65.
 更に、車両通信バス65には走行を含む車両全般の制御を司る車両コントローラ72(ECU)と、バッテリ55の充放電の制御を司るバッテリコントローラ(BMS:Battery Management system)73と、GPSナビゲーション装置74が接続されている。車両コントローラ72やバッテリコントローラ73、GPSナビゲーション装置74もプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成されており、制御装置11を構成する空調コントローラ45とヒートポンプコントローラ32は、車両通信バス65を介してこれら車両コントローラ72やバッテリコントローラ73、GPSナビゲーション装置74と情報(データ)の送受信を行う構成とされている。 Further, the vehicle communication bus 65 includes a vehicle controller 72 (ECU) that controls the entire vehicle including traveling, a battery controller (BMS: Battery Management System) 73 that controls the charging and discharging of the battery 55, and a GPS navigation device 74. Are connected. The vehicle controller 72, the battery controller 73, and the GPS navigation device 74 are also configured by a microcomputer that is an example of a computer including a processor. The air conditioning controller 45 and the heat pump controller 32 that configure the control device 11 connect the vehicle communication bus 65 to each other. Information (data) is transmitted and received to and from the vehicle controller 72, the battery controller 73, and the GPS navigation device 74 via the above.
 空調コントローラ45は、車両の車室内空調の制御を司る上位のコントローラであり、この空調コントローラ45の入力には、車両の外気温度Tamを検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれて吸熱器9に流入する空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、車室内に吹き出される空気の温度を検出する吹出温度センサ41と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52の各出力と、車室内の設定温度や運転モードの切り換え等の車室内の空調設定操作や情報の表示を行うための空調操作部53が接続されている。尚、図中53Aはこの空調操作部53に設けられた表示出力装置としてのディスプレイである。 The air conditioning controller 45 is a higher-level controller that controls the vehicle interior air conditioning. The inputs of the air conditioning controller 45 are an outside air temperature sensor 33 that detects the outside air temperature Tam of the vehicle and an outside air humidity that detects outside air humidity. The sensor 34, the HVAC suction temperature sensor 36 that detects the temperature of the air that is sucked into the air flow passage 3 from the suction port 25 and flows into the heat absorber 9, and the inside air temperature sensor 37 that detects the air (inside air) temperature in the vehicle interior. An inside air humidity sensor 38 for detecting the humidity of the air in the vehicle compartment, an indoor CO 2 concentration sensor 39 for detecting the carbon dioxide concentration in the vehicle compartment, and an outlet temperature sensor 41 for detecting the temperature of the air blown into the vehicle compartment. A photosensor type solar radiation sensor 51 for detecting the amount of solar radiation into the vehicle interior, and a vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle. And each output, air-conditioning operation unit 53 for displaying the air-conditioning of the vehicle interior setting operation and information such as switching the passenger compartment temperature setting and operation mode are connected. In the figure, 53A is a display as a display output device provided in the air conditioning operation unit 53.
 また、空調コントローラ45の出力には、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31が接続され、それらは空調コントローラ45により制御される。 Further, the output of the air conditioning controller 45 is connected to the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, and the outlet switching damper 31, which are connected to the air conditioning controller 45. Controlled by.
 ヒートポンプコントローラ32は、主に冷媒回路Rの制御を司るコントローラであり、このヒートポンプコントローラ32の入力には、放熱器4の冷媒入口温度Tcxin(圧縮機2の吐出冷媒温度でもある)を検出する放熱器入口温度センサ43と、放熱器4の冷媒出口温度Tciを検出する放熱器出口温度センサ44と、圧縮機2の吸込冷媒温度Tsを検出する吸込温度センサ46と、放熱器4の冷媒出口側の冷媒圧力(放熱器4の圧力:放熱器圧力Pci)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9自体の温度、又は、吸熱器9により冷却された直後の空気(冷却対象)の温度:以下、吸熱器温度Te)を検出する吸熱器温度センサ48と、室外熱交換器7の出口の冷媒温度(室外熱交換器7の冷媒蒸発温度:室外熱交換器温度TXO)を検出する室外熱交換器温度センサ49と、補助ヒータ23の温度を検出する補助ヒータ温度センサ50A(運転席側)及び50B(助手席側)の各出力が接続されている。 The heat pump controller 32 is a controller that mainly controls the refrigerant circuit R, and the heat pump controller 32 has an input that releases heat to detect the refrigerant inlet temperature Tcxin of the radiator 4 (which is also the refrigerant temperature discharged from the compressor 2). The inlet temperature sensor 43, the radiator outlet temperature sensor 44 that detects the refrigerant outlet temperature Tci of the radiator 4, the suction temperature sensor 46 that detects the suction refrigerant temperature Ts of the compressor 2, and the refrigerant outlet side of the radiator 4. Radiator pressure sensor 47 for detecting the refrigerant pressure (pressure of radiator 4; radiator pressure Pci), and temperature of heat absorber 9 (temperature of heat absorber 9 itself, or air immediately after being cooled by heat absorber 9) Temperature of (cooling target): Heat absorber temperature sensor 48 for detecting heat absorber temperature Te, and refrigerant temperature at the outlet of the outdoor heat exchanger 7 (refrigerant evaporation temperature of the outdoor heat exchanger 7: The outdoor heat exchanger temperature sensor 49 for detecting the external heat exchanger temperature TXO and the outputs of the auxiliary heater temperature sensors 50A (driver's seat side) and 50B (passenger seat side) for detecting the temperature of the auxiliary heater 23 are connected. ing.
 また、ヒートポンプコントローラ32の出力には、室外膨張弁6、電磁弁22(除湿用)、電磁弁17(冷房用)、電磁弁21(暖房用)、電磁弁20(バイパス用)、電磁弁35(キャビン用)及び電磁弁69(チラー用)の各電磁弁が接続され、それらはヒートポンプコントローラ32により制御される。尚、圧縮機2、補助ヒータ23、循環ポンプ62及び熱媒体加熱ヒータ63はそれぞれコントローラを内蔵しており、実施例では圧縮機2や補助ヒータ23、循環ポンプ62や熱媒体加熱ヒータ63のコントローラは車両通信バス65を介してヒートポンプコントローラ32とデータの送受信を行い、このヒートポンプコントローラ32によって制御される。 The output of the heat pump controller 32 includes the outdoor expansion valve 6, the solenoid valve 22 (for dehumidification), the solenoid valve 17 (for cooling), the solenoid valve 21 (for heating), the solenoid valve 20 (for bypass), and the solenoid valve 35. The electromagnetic valves (for the cabin) and the electromagnetic valve 69 (for the chiller) are connected, and they are controlled by the heat pump controller 32. The compressor 2, the auxiliary heater 23, the circulation pump 62, and the heat medium heating heater 63 each have a built-in controller, and in the embodiment, the controller of the compressor 2, the auxiliary heater 23, the circulation pump 62, and the heat medium heating heater 63. Transmits and receives data to and from the heat pump controller 32 via the vehicle communication bus 65, and is controlled by the heat pump controller 32.
 尚、図中32Mはヒートポンプコントローラ32が有するメモリである。また、機器温度調整装置61を構成する循環ポンプ62や熱媒体加熱ヒータ63はバッテリコントローラ73により制御されるようにしてもよい。更に、このバッテリコントローラ73には機器温度調整装置61の冷媒-熱媒体熱交換器64の熱媒体流路64Aの出口側の熱媒体の温度(熱媒体温度Tw:被温調対象用熱交換器により冷却される対象の温度)を検出する熱媒体温度センサ76と、バッテリ55の温度(バッテリ55自体の温度:バッテリ温度Tcell)を検出するバッテリ温度センサ77の出力が接続されている。そして、実施例ではバッテリ55の残量(蓄電量)やバッテリ55の充電に関する情報(充電中であることの情報や充電完了時間、残充電時間等)、熱媒体温度Twやバッテリ温度Tcellは、バッテリコントローラ73から車両通信バス65を介して空調コントローラ45や車両コントローラ72に送信される。尚、バッテリ55の充電時における充電完了時間や残充電時間に関する情報は、後述する急速充電器等の外部の充電器から供給される情報である。 Incidentally, 32 M in the figure is a memory included in the heat pump controller 32. Further, the circulation pump 62 and the heat medium heater 63 that form the device temperature adjusting device 61 may be controlled by the battery controller 73. Further, in the battery controller 73, the temperature of the heat medium on the outlet side of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 of the device temperature adjusting device 61 (heat medium temperature Tw: heat exchanger for temperature controlled). The output of the heat medium temperature sensor 76 that detects the temperature of the object to be cooled by the battery is connected to the output of the battery temperature sensor 77 that detects the temperature of the battery 55 (the temperature of the battery 55 itself: the battery temperature Tcell). Then, in the embodiment, the remaining amount of the battery 55 (the amount of stored electricity), the information regarding the charging of the battery 55 (information indicating that the battery is being charged, the charging completion time, the remaining charging time, etc.), the heat medium temperature Tw and the battery temperature Tcell It is transmitted from the battery controller 73 to the air conditioning controller 45 and the vehicle controller 72 via the vehicle communication bus 65. The information regarding the charge completion time and the remaining charge time when the battery 55 is charged is information supplied from an external charger such as a quick charger described later.
 ヒートポンプコントローラ32と空調コントローラ45は車両通信バス65を介して相互にデータの送受信を行い、各センサの出力や空調操作部53にて入力された設定に基づき、各機器を制御するものであるが、この場合の実施例では外気温度センサ33、外気湿度センサ34、HVAC吸込温度センサ36、内気温度センサ37、内気湿度センサ38、室内CO2濃度センサ39、吹出温度センサ41、日射センサ51、車速センサ52、空気流通路3に流入して当該空気流通路3内を流通する空気の風量Ga(空調コントローラ45が算出)、エアミックスダンパ28による風量割合SW(空調コントローラ45が算出)、室内送風機27の電圧(BLV)、前述したバッテリコントローラ73からの情報、GPSナビゲーション装置74からの情報、空調操作部53の出力は空調コントローラ45から車両通信バス65を介してヒートポンプコントローラ32に送信され、ヒートポンプコントローラ32による制御に供される構成とされている。 The heat pump controller 32 and the air conditioning controller 45 send and receive data to and from each other via the vehicle communication bus 65, and control each device based on the output of each sensor and the setting input by the air conditioning operation unit 53. In this embodiment, the outside air temperature sensor 33, the outside air humidity sensor 34, the HVAC suction temperature sensor 36, the inside air temperature sensor 37, the inside air humidity sensor 38, the indoor CO 2 concentration sensor 39, the outlet temperature sensor 41, the solar radiation sensor 51, the vehicle speed. The sensor 52, the air volume Ga of the air flowing into the air flow passage 3 and flowing in the air flow passage 3 (calculated by the air conditioning controller 45), the air flow rate SW by the air mix damper 28 (calculated by the air conditioning controller 45), the indoor blower 27 voltage (BLV), information from the battery controller 73 described above, GPS navigation device Information from the 4, the output of the air-conditioning operation unit 53 is transmitted via the vehicle communication bus 65 from the air conditioning controller 45 to the heat pump controller 32, and is configured to be subjected to control by the heat pump controller 32.
 また、ヒートポンプコントローラ32からも冷媒回路Rの制御に関するデータ(情報)が車両通信バス65を介して空調コントローラ45に送信される。尚、前述したエアミックスダンパ28による風量割合SWは、0≦SW≦1の範囲で空調コントローラ45が算出する。そして、SW=1のときはエアミックスダンパ28により、吸熱器9を経た空気の全てが放熱器4及び補助ヒータ23に通風されることになる。 The heat pump controller 32 also transmits data (information) regarding the control of the refrigerant circuit R to the air conditioning controller 45 via the vehicle communication bus 65. The air volume ratio SW by the air mix damper 28 described above is calculated by the air conditioning controller 45 in the range of 0 ≦ SW ≦ 1. Then, when SW = 1, all of the air that has passed through the heat absorber 9 is ventilated by the radiator 4 and the auxiliary heater 23 by the air mix damper 28.
 以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。この実施例では制御装置11(空調コントローラ45、ヒートポンプコントローラ32)は、暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、及び、空調(優先)+バッテリ冷却モード(第1の運転モード)の各空調運転と、バッテリ冷却(優先)+空調モード(第2の運転モード)、バッテリ冷却(単独)モードの各バッテリ冷却運転と、除霜モードを切り換えて実行する。これらが図3に示されている。 Next, the operation of the vehicle air conditioner 1 of the embodiment having the above configuration will be described. In this embodiment, the control device 11 (air conditioning controller 45, heat pump controller 32) has a heating mode, a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode, and an air conditioning (priority) + battery cooling mode (first operation mode). Each air-conditioning operation, battery cooling (priority) + air-conditioning mode (second operation mode), battery cooling (single) mode battery cooling operation, and defrosting mode are switched and executed. These are shown in FIG.
 このうち、暖房モードと、除湿暖房モードと、除湿冷房モードと、冷房モードと、空調(優先)+バッテリ冷却モードの各空調運転は、実施例ではバッテリ55を充電しておらず、車両のイグニッション(IGN)がONされ、空調操作部53の空調スイッチがONされている場合に実行されるものである。一方、バッテリ冷却(優先)+空調モードと、バッテリ冷却(単独)モードの各バッテリ冷却運転は、例えば急速充電器(外部電源)のプラグを接続し、バッテリ55に充電しているときに実行されるものである。 Among these, in each of the air conditioning operations of the heating mode, the dehumidification heating mode, the dehumidification cooling mode, the cooling mode, and the air conditioning (priority) + battery cooling mode, the battery 55 is not charged in the embodiment, and the ignition of the vehicle is performed. This is executed when (IGN) is turned on and the air conditioning switch of the air conditioning operation unit 53 is turned on. On the other hand, each battery cooling operation in the battery cooling (priority) + air conditioning mode and the battery cooling (single) mode is executed, for example, when the plug of the quick charger (external power source) is connected and the battery 55 is being charged. It is something.
 また、実施例ではヒートポンプコントローラ32は、イグニッションがONされているときや、イグニッションがOFFされていてもバッテリ55が充電中であるときは、機器温度調整装置61の循環ポンプ62を運転し、図4~図10に破線で示す如く熱媒体配管66内に熱媒体を循環させるものとする。更に、図3には示していないが、実施例のヒートポンプコントローラ32は、機器温度調整装置61の熱媒体加熱ヒータ63を発熱させることでバッテリ55を加熱するバッテリ加熱モードも実行する。 In the embodiment, the heat pump controller 32 operates the circulation pump 62 of the device temperature adjusting device 61 when the ignition is turned on, or when the battery 55 is being charged even when the ignition is turned off. It is assumed that the heat medium is circulated in the heat medium pipe 66 as indicated by broken lines in FIGS. Further, although not shown in FIG. 3, the heat pump controller 32 of the embodiment also executes a battery heating mode for heating the battery 55 by causing the heat medium heating heater 63 of the device temperature adjusting device 61 to generate heat.
 (1)暖房モード
 先ず、図4を参照しながら暖房モードについて説明する。尚、各機器の制御はヒートポンプコントローラ32と空調コントローラ45の協働により実行されるものであるが、以下の説明ではヒートポンプコントローラ32を制御主体とし、簡略化して説明する。図4には暖房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。ヒートポンプコントローラ32により(オートモード)或いは空調コントローラ45の空調操作部53へのマニュアルの空調設定操作(マニュアルモード)により暖房モードが選択されると、ヒートポンプコントローラ32は電磁弁21を開き、電磁弁17、電磁弁20、電磁弁22、電磁弁35、電磁弁69を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
(1) Heating Mode First, the heating mode will be described with reference to FIG. The control of each device is executed by the cooperation of the heat pump controller 32 and the air conditioning controller 45, but in the following description, the heat pump controller 32 will be the control main body and will be briefly described. FIG. 4 shows how the refrigerant flows in the refrigerant circuit R in the heating mode (solid arrow). When the heating mode is selected by the heat pump controller 32 (auto mode) or the manual air conditioning setting operation (manual mode) to the air conditioning operation unit 53 of the air conditioning controller 45, the heat pump controller 32 opens the solenoid valve 21 and the solenoid valve 17 , The solenoid valve 20, the solenoid valve 22, the solenoid valve 35, and the solenoid valve 69 are closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air and condensed and liquefied.
 放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13E、13Jを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15により通風される外気中から熱を汲み上げる(吸熱)。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13D、電磁弁21を経て冷媒配管13Cに至り、更にこの冷媒配管13Cを経てアキュムレータ12に入り、そこで気液分離された後、冷媒配管13Kからガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。 The liquefied refrigerant in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7. The refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and pumps up heat from the outside air ventilated by traveling or by the outdoor blower 15 (heat absorption). That is, the refrigerant circuit R serves as a heat pump. Then, the low-temperature refrigerant that has exited the outdoor heat exchanger 7 reaches the refrigerant pipe 13C via the refrigerant pipes 13A and 13D, the solenoid valve 21, and further enters the accumulator 12 via this refrigerant pipe 13C, where it is gas-liquid separated. After that, the circulation in which the gas refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K is repeated. The air heated by the radiator 4 is blown out from the air outlet 29, so that the interior of the vehicle is heated.
 ヒートポンプコントローラ32は、車室内に吹き出される空気の目標温度(車室内に吹き出される空気の温度の目標値)である後述する目標吹出温度TAOから算出される目標ヒータ温度TCO(放熱器4の目標温度)から目標放熱器圧力PCOを算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、放熱器出口温度センサ44が検出する放熱器4の冷媒出口温度Tci及び放熱器圧力センサ47が検出する放熱器圧力Pciに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度を制御する。 The heat pump controller 32 calculates a target heater temperature TCO (of the radiator 4) calculated from a target outlet temperature TAO, which will be described later, which is a target temperature of the air blown into the vehicle interior (a target value of the temperature of the air blown into the vehicle interior). The target radiator pressure PCO is calculated from the target temperature), and the rotational speed of the compressor 2 is based on the target radiator pressure PCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. And controlling the valve opening degree of the outdoor expansion valve 6 based on the refrigerant outlet temperature Tci of the radiator 4 detected by the radiator outlet temperature sensor 44 and the radiator pressure Pci detected by the radiator pressure sensor 47, The degree of supercooling of the refrigerant at the outlet of the radiator 4 is controlled.
 また、ヒートポンプコントローラ32は、必要とされる暖房能力に対して放熱器4による暖房能力(加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、低外気温時等にも車室内を支障無く暖房する。 Further, when the heating capacity (heating capacity) of the radiator 4 is insufficient with respect to the required heating capacity, the heat pump controller 32 supplements this shortage with the heat generated by the auxiliary heater 23. As a result, the vehicle interior is heated without any trouble even when the outside temperature is low.
 (2)除湿暖房モード
 次に、図5を参照しながら除湿暖房モードについて説明する。図5は除湿暖房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。除湿暖房モードでは、ヒートポンプコントローラ32は電磁弁21、電磁弁22、電磁弁35を開き、電磁弁17、電磁弁20、電磁弁69は閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
(2) Dehumidification Heating Mode Next, the dehumidification heating mode will be described with reference to FIG. FIG. 5 shows how the refrigerant flows in the refrigerant circuit R in the dehumidifying and heating mode (solid arrow). In the dehumidifying and heating mode, the heat pump controller 32 opens the solenoid valve 21, the solenoid valve 22, and the solenoid valve 35, and closes the solenoid valve 17, the solenoid valve 20, and the solenoid valve 69. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air and condensed and liquefied.
 放熱器4内で液化した冷媒は放熱器4を出た後、冷媒配管13Eを経て一部は冷媒配管13Jに入り、室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15により通風される外気中から熱を汲み上げる(吸熱)。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13D、電磁弁21を経て冷媒配管13Cに至り、この冷媒配管13Cを経てアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。 After the refrigerant liquefied in the radiator 4 exits the radiator 4, a part of it enters the refrigerant pipe 13J through the refrigerant pipe 13E and reaches the outdoor expansion valve 6. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7. The refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and pumps up heat from the outside air ventilated by traveling or by the outdoor blower 15 (heat absorption). Then, the low-temperature refrigerant leaving the outdoor heat exchanger 7 reaches the refrigerant pipe 13C via the refrigerant pipes 13A and 13D and the solenoid valve 21, enters the accumulator 12 via the refrigerant pipe 13C, and is separated into gas and liquid there. After that, the circulation in which the gas refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K is repeated.
 一方、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の残りは分流され、この分流された冷媒が電磁弁22を経て冷媒配管13Fに流入し、冷媒配管13Bに至る。次に、冷媒は室内膨張弁8に至り、この室内膨張弁8にて減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときに吸熱器9で生じる冷媒の吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。 On the other hand, the rest of the condensed refrigerant flowing through the radiator pipe 13E via the radiator 4 is diverted, and the diverted refrigerant flows into the refrigerant pipe 13F via the solenoid valve 22 and reaches the refrigerant pipe 13B. Next, the refrigerant reaches the indoor expansion valve 8, is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 via the electromagnetic valve 35, and is evaporated. At this time, the water in the air blown out from the indoor blower 27 is condensed and adheres to the heat absorber 9 due to the heat absorbing action of the refrigerant generated in the heat absorber 9, so that the air is cooled and dehumidified.
 吸熱器9で蒸発した冷媒は、冷媒配管13Cに出て冷媒配管13Dからの冷媒(室外熱交換器7からの冷媒)と合流した後、アキュムレータ12を経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4や補助ヒータ23(発熱している場合)を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。 The refrigerant evaporated in the heat absorber 9 flows out into the refrigerant pipe 13C, joins the refrigerant from the refrigerant pipe 13D (refrigerant from the outdoor heat exchanger 7), and then is sucked into the compressor 2 from the refrigerant pipe 13K via the accumulator 12. Repeat the cycle. The air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4 and the auxiliary heater 23 (when heat is generated), so that dehumidification and heating of the vehicle interior is performed.
 ヒートポンプコントローラ32は、実施例では目標ヒータ温度TCOから算出される目標放熱器圧力PCOと放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御するか、又は、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数を制御する。このとき、ヒートポンプコントローラ32は放熱器圧力Pciによるか吸熱器温度Teによるか、何れかの演算から得られる圧縮機目標回転数の低い方を選択して圧縮機2を制御する。また、吸熱器温度Teに基づいて室外膨張弁6の弁開度を制御する。 In the embodiment, the heat pump controller 32 rotates the compressor 2 based on the target radiator pressure PCO calculated from the target heater temperature TCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. Or the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is its target value. .. At this time, the heat pump controller 32 controls the compressor 2 by selecting whichever of the radiator target pressure Pci and the heat absorber temperature Te, whichever is lower than the target compressor speed obtained from the calculation. Further, the valve opening degree of the outdoor expansion valve 6 is controlled based on the heat absorber temperature Te.
 また、ヒートポンプコントローラ32は、この除湿暖房モードにおいても必要とされる暖房能力に対して放熱器4による暖房能力(加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、低外気温時等にも車室内を支障無く除湿暖房する。 Further, when the heating capacity (heating capacity) of the radiator 4 is insufficient with respect to the heating capacity required also in the dehumidifying and heating mode, the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. .. As a result, the vehicle interior is dehumidified and heated even when the outside temperature is low.
 (3)除湿冷房モード
 次に、図6を参照しながら除湿冷房モードについて説明する。図6は除湿冷房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。除湿冷房モードでは、ヒートポンプコントローラ32は電磁弁17、及び、電磁弁35を開き、電磁弁20、電磁弁21、電磁弁22、及び、電磁弁69を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
(3) Dehumidifying and Cooling Mode Next, the dehumidifying and cooling mode will be described with reference to FIG. FIG. 6 shows how the refrigerant flows in the refrigerant circuit R in the dehumidifying and cooling mode (solid arrow). In the dehumidifying and cooling mode, the heat pump controller 32 opens the solenoid valve 17 and the solenoid valve 35, and closes the solenoid valve 20, the solenoid valve 21, the solenoid valve 22, and the solenoid valve 69. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air, and is condensed and liquefied.
 放熱器4を出た冷媒は冷媒配管13E、13Jを経て室外膨張弁6に至り、暖房モードや除湿暖房モードよりも開き気味(大きい弁開度の領域)で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入り、逆止弁18を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着し、空気は冷却され、且つ、除湿される。 The refrigerant exiting the radiator 4 reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J, and then passes through the outdoor expansion valve 6 controlled to open more (a larger valve opening area) than the heating mode or the dehumidifying and heating mode. It flows into the outdoor heat exchanger 7. The refrigerant that has flowed into the outdoor heat exchanger 7 is condensed by being cooled there by traveling or by the outside air ventilated by the outdoor blower 15. The refrigerant discharged from the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16, and reaches the indoor expansion valve 8 via the check valve 18. The refrigerant is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates. Due to the heat absorbing action at this time, moisture in the air blown out from the indoor blower 27 is condensed and attached to the heat absorber 9, and the air is cooled and dehumidified.
 吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこを経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4や補助ヒータ23(発熱している場合)を通過する過程で再加熱(除湿暖房時よりも加熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。 The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is repeatedly sucked into the compressor 2 from the refrigerant pipe 13K via the refrigerant pipe 13K. The air cooled and dehumidified by the heat absorber 9 is reheated (has a lower heating capacity than that during dehumidification heating) in the process of passing through the radiator 4 and the auxiliary heater 23 (when heat is generated). As a result, dehumidification and cooling of the vehicle interior are performed.
 ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)と吸熱器9の目標温度(吸熱器温度Teの目標値)である目標吸熱器温度TEOに基づき、吸熱器温度Teを目標吸熱器温度TEOにするように圧縮機2の回転数を制御すると共に、放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)と目標放熱器圧力PCO(放熱器圧力Pciの目標値)に基づき、放熱器圧力Pciを目標放熱器圧力PCOにするように室外膨張弁6の弁開度を制御することで放熱器4による必要なリヒート量(再加熱量)を得る。 The heat pump controller 32 absorbs heat based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is the target temperature of the heat absorber 9 (target value of the heat absorber temperature Te). The rotation speed of the compressor 2 is controlled so that the device temperature Te becomes the target heat absorber temperature TEO, and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47 and the target radiator pressure PCO. Based on (the target value of the radiator pressure Pci), the valve opening of the outdoor expansion valve 6 is controlled so that the radiator pressure Pci becomes the target radiator pressure PCO. Amount).
 また、ヒートポンプコントローラ32は、この除湿冷房モードにおいても必要とされる暖房能力に対して放熱器4による暖房能力(再加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、車室内の温度を下げ過ぎること無く、除湿冷房する。 Further, when the heating capacity (reheating capacity) by the radiator 4 is insufficient with respect to the heating capacity required also in the dehumidifying and cooling mode, the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. To do. As a result, dehumidifying and cooling are performed without lowering the temperature inside the vehicle compartment too much.
 (4)冷房モード
 次に、図7を参照しながら冷房モードについて説明する。図7は冷房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。冷房モードでは、ヒートポンプコントローラ32は電磁弁17、電磁弁20、及び、電磁弁35を開き、電磁弁21、電磁弁22、及び、電磁弁69を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。尚、補助ヒータ23には通電されない。
(4) Cooling Mode Next, the cooling mode will be described with reference to FIG. 7. FIG. 7 shows how the refrigerant flows in the refrigerant circuit R in the cooling mode (solid arrow). In the cooling mode, the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, and the solenoid valve 35, and closes the solenoid valve 21, the solenoid valve 22, and the solenoid valve 69. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23. The auxiliary heater 23 is not energized.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒート(再加熱)のみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。このとき電磁弁20は開放されているので冷媒は電磁弁20を通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮液化する。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Although the air in the air flow passage 3 is ventilated through the radiator 4, since the proportion thereof is small (because of only reheating (reheating) during cooling), it almost passes through the radiator 4, The discharged refrigerant reaches the refrigerant pipe 13J via the refrigerant pipe 13E. At this time, since the electromagnetic valve 20 is open, the refrigerant passes through the electromagnetic valve 20 and flows into the outdoor heat exchanger 7 as it is, and is cooled there by traveling or by the outside air ventilated by the outdoor blower 15 to be condensed and liquefied. To do.
 室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入り、逆止弁18を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときの吸熱作用で室内送風機27から吹き出されて吸熱器9と熱交換する空気は冷却される。 The refrigerant discharged from the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16, and reaches the indoor expansion valve 8 via the check valve 18. The refrigerant is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates. Due to the heat absorbing action at this time, the air blown out from the indoor blower 27 and exchanging heat with the heat absorber 9 is cooled.
 吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこから冷媒配管13Kを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房モードにおいては、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて圧縮機2の回転数を制御する。 The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and then is sucked into the compressor 2 via the refrigerant pipe 13K. The air cooled by the heat absorber 9 is blown into the vehicle interior from the air outlet 29, so that the vehicle interior is cooled. In this cooling mode, the heat pump controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
 (5)空調(優先)+バッテリ冷却モード(第1の運転モード)
 次に、図8を参照しながら本発明における第1の運転モードとしての空調(優先)+バッテリ冷却モードについて説明する。図8は空調(優先)+バッテリ冷却モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。空調(優先)+バッテリ冷却モードでは、ヒートポンプコントローラ32は電磁弁17、電磁弁20、電磁弁35、及び、電磁弁69を開き、電磁弁21、及び、電磁弁22を閉じる。
(5) Air conditioning (priority) + battery cooling mode (first operation mode)
Next, the air conditioning (priority) + battery cooling mode as the first operation mode in the present invention will be described with reference to FIG. FIG. 8 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in the air conditioning (priority) + battery cooling mode. In the air conditioning (priority) + battery cooling mode, the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, the solenoid valve 35, and the solenoid valve 69, and closes the solenoid valves 21 and 22.
 そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。尚、この運転モードでは補助ヒータ23には通電されない。また、熱媒体加熱ヒータ63にも通電されない。 Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23. In this operation mode, the auxiliary heater 23 is not energized. Further, the heat medium heater 63 is not energized.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒート(再加熱)のみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。このとき電磁弁20は開放されているので冷媒は電磁弁20を通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮液化する。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Although the air in the air flow passage 3 is ventilated through the radiator 4, since the proportion thereof is small (because of only reheating (reheating) during cooling), it almost passes through the radiator 4, The discharged refrigerant reaches the refrigerant pipe 13J via the refrigerant pipe 13E. At this time, since the electromagnetic valve 20 is open, the refrigerant passes through the electromagnetic valve 20 and flows into the outdoor heat exchanger 7 as it is, and is cooled there by traveling or by the outside air ventilated by the outdoor blower 15 to be condensed and liquefied. To do.
 室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入る。この冷媒配管13Bに流入した冷媒は、逆止弁18を経た後に分流され、一方はそのまま冷媒配管13Bを流れて室内膨張弁8に至る。この室内膨張弁8に流入した冷媒はそこで減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときの吸熱作用で室内送風機27から吹き出されて吸熱器9と熱交換する空気は冷却される。 The refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16. The refrigerant flowing into the refrigerant pipe 13B is branched after passing through the check valve 18, and one of the refrigerant flows through the refrigerant pipe 13B as it is to reach the indoor expansion valve 8. The refrigerant flowing into the indoor expansion valve 8 is decompressed there, then flows into the heat absorber 9 through the electromagnetic valve 35, and is evaporated. Due to the heat absorbing action at this time, the air blown out from the indoor blower 27 and exchanging heat with the heat absorber 9 is cooled.
 吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこから冷媒配管13Kを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。 The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and then is sucked into the compressor 2 via the refrigerant pipe 13K. The air cooled by the heat absorber 9 is blown into the vehicle interior from the air outlet 29, so that the vehicle interior is cooled.
 他方、逆止弁18を経た冷媒の残りは分流され、分岐配管67に流入して補助膨張弁68に至る。ここで冷媒は減圧された後、電磁弁69を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入し、そこで蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管71、冷媒配管13C及びアキュムレータ12を順次経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す(図8に実線矢印で示す)。 On the other hand, the rest of the refrigerant that has passed through the check valve 18 is split, flows into the branch pipe 67, and reaches the auxiliary expansion valve 68. Here, the refrigerant is decompressed, then flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 via the electromagnetic valve 69, and evaporates there. At this time, it exerts an endothermic effect. The refrigerant evaporated in the refrigerant flow path 64B repeats the circulation in which the refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K through the refrigerant pipe 71, the refrigerant pipe 13C and the accumulator 12 in sequence (shown by a solid arrow in FIG. 8).
 一方、循環ポンプ62が運転されているので、この循環ポンプ62から吐出された熱媒体が熱媒体配管66内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒と熱交換し、吸熱されて熱媒体は冷却される。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は、熱媒体加熱ヒータ63に至る。但し、この運転モードでは熱媒体加熱ヒータ63は発熱されないので、熱媒体はそのまま通過してバッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は冷却されると共に、バッテリ55を冷却した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す(図8に破線矢印で示す)。 On the other hand, since the circulation pump 62 is operating, the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 66, and the refrigerant flow passage there. The heat medium is cooled by exchanging heat with the refrigerant that evaporates in 64B and absorbing heat. The heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heater 63. However, since the heat medium heating heater 63 does not generate heat in this operation mode, the heat medium passes through as it is to the battery 55 and exchanges heat with the battery 55. As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 is repeatedly sucked into the circulation pump 62 and repeatedly circulated (indicated by a dashed arrow in FIG. 8).
 この空調(優先)+バッテリ冷却モードにおいては、ヒートポンプコントローラ32は電磁弁35を開いた状態を維持し、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて後述する図12に示す如く圧縮機2の回転数を制御する。また、実施例では熱媒体温度センサ76が検出する熱媒体の温度(熱媒体温度Tw:バッテリコントローラ73から送信される)に基づき、電磁弁69を以下の如く開閉制御する。 In this air conditioning (priority) + battery cooling mode, the heat pump controller 32 maintains the electromagnetic valve 35 in the open state, and will be described later based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48. The rotation speed of the compressor 2 is controlled as shown in FIG. In the embodiment, the solenoid valve 69 is controlled to open and close as follows based on the temperature of the heat medium detected by the heat medium temperature sensor 76 (heat medium temperature Tw: transmitted from the battery controller 73).
 尚、吸熱器温度Teは、実施例における吸熱器9の温度又はそれにより冷却される対象(空気)の温度である。また、熱媒体温度Twは、実施例における冷媒-熱媒体熱交換器64(被温調対象用熱交換器)により冷却される対象(熱媒体)の温度として採用しているが、被温調対象であるバッテリ55の温度を示す指標でもある(以下、同じ)。 The heat absorber temperature Te is the temperature of the heat absorber 9 in the embodiment or the temperature of the object (air) cooled by it. The heat medium temperature Tw is adopted as the temperature of the object (heat medium) cooled by the refrigerant-heat medium heat exchanger 64 (heat exchanger for temperature adjustment) in the embodiment, but the temperature adjustment is performed. It is also an index showing the temperature of the target battery 55 (hereinafter the same).
 図13はこの空調(優先)+バッテリ冷却モードにおける電磁弁69の開閉制御のブロック図を示している。ヒートポンプコントローラ32の被温調対象用電磁弁制御部90には熱媒体温度センサ76が検出する熱媒体温度Twと、当該熱媒体温度Twの目標値としての所定の目標熱媒体温度TWOが入力される。そして、被温調対象用電磁弁制御部90は、目標熱媒体温度TWOの上下に所定の温度差を有して上限値TwULと下限値TwLLを設定し、電磁弁69を閉じている状態からバッテリ55の発熱等により熱媒体温度Twが高くなり、上限値TwULまで上昇した場合、電磁弁69を開放する(電磁弁69開指示)。これにより、冷媒は冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して蒸発し、熱媒体流路64Aを流れる熱媒体を冷却するので、この冷却された熱媒体によりバッテリ55は冷却される。 FIG. 13 shows a block diagram of opening / closing control of the solenoid valve 69 in this air conditioning (priority) + battery cooling mode. The heat medium temperature Tw detected by the heat medium temperature sensor 76 and a predetermined target heat medium temperature TWO as a target value of the heat medium temperature Tw are input to the temperature controlled target electromagnetic valve control unit 90 of the heat pump controller 32. It Then, the temperature controlled target electromagnetic valve control unit 90 sets the upper limit value TwUL and the lower limit value TwLL with a predetermined temperature difference above and below the target heat medium temperature TWO, and from the state where the electromagnetic valve 69 is closed. When the heat medium temperature Tw rises due to heat generation of the battery 55 and rises to the upper limit value TwUL, the solenoid valve 69 is opened (instruction to open the solenoid valve 69). As a result, the refrigerant flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64, evaporates, and cools the heat medium flowing through the heat medium channel 64A. Therefore, the battery 55 is cooled by the cooled heat medium. To be done.
 その後、熱媒体温度Twが下限値TwLLまで低下した場合、電磁弁69を閉じる(電磁弁69閉指示)。以後、このような電磁弁69の開閉を繰り返して、車室内の冷房を優先しながら、熱媒体温度Twを目標熱媒体温度TWOに制御し、バッテリ55の冷却を行う。 After that, when the heat medium temperature Tw drops to the lower limit value TwLL, the solenoid valve 69 is closed (instruction to close the solenoid valve 69). After that, the solenoid valve 69 is repeatedly opened and closed as described above to control the heat medium temperature Tw to the target heat medium temperature TWO while giving priority to the cooling in the vehicle compartment, to cool the battery 55.
 (6)空調運転の切り換え
 ヒートポンプコントローラ32は下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、吹出口29から車室内に吹き出される空気の温度の目標値である。
 TAO=(Tset-Tin)×K+Tbal(f(Tset、SUN、Tam))
                                   ・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する車室内空気の温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
(6) Switching of air conditioning operation The heat pump controller 32 calculates the above-mentioned target outlet temperature TAO from the following formula (I). The target outlet temperature TAO is a target value of the temperature of the air blown into the vehicle compartment from the outlet 29.
TAO = (Tset-Tin) × K + Tbal (f (Tset, SUN, Tam))
.. (I)
Here, Tset is the set temperature of the vehicle interior set by the air conditioning operation unit 53, Tin is the temperature of the vehicle interior air detected by the inside air temperature sensor 37, K is a coefficient, Tbal is the set temperature Tset, and the solar radiation sensor 51 detects the temperature. It is a balance value calculated from the amount of solar radiation SUN and the outside air temperature Tam detected by the outside air temperature sensor 33. Then, in general, the target outlet temperature TAO is higher as the outside air temperature Tam is lower, and is decreased as the outside air temperature Tam is increased.
 そして、ヒートポンプコントローラ32は起動時には外気温度センサ33が検出する外気温度Tamと目標吹出温度TAOとに基づいて上記各空調運転のうちの何れかの空調運転を選択する。また、起動後は外気温度Tamや目標吹出温度TAO、熱媒体温度Tw等の運転条件や環境条件、設定条件の変化に応じ、前記各空調運転を選択して切り換えていく。例えば、冷房モードから空調(優先)+バッテリ冷却モードへの移行は、バッテリコントローラ73からのバッテリ冷却要求が入力されたことに基づいて実行される。この場合、バッテリコントローラ73は例えば熱媒体温度Twやバッテリ温度Tcellが所定値以上に上昇した場合にバッテリ冷却要求を出力し、ヒートポンプコントローラ32や空調コントローラ45に送信するものである。 Then, the heat pump controller 32 selects any one of the above air conditioning operations based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target outlet temperature TAO at the time of startup. Further, after the start-up, each of the air conditioning operations is selected and switched according to changes in operating conditions such as the outside air temperature Tam, the target outlet temperature TAO, and the heat medium temperature Tw, environmental conditions, and setting conditions. For example, the transition from the cooling mode to the air conditioning (priority) + battery cooling mode is executed based on the input of the battery cooling request from the battery controller 73. In this case, the battery controller 73 outputs a battery cooling request and transmits it to the heat pump controller 32 and the air conditioning controller 45, for example, when the heat medium temperature Tw or the battery temperature Tcell rises above a predetermined value.
 (7)バッテリ冷却(優先)+空調モード
 次に、バッテリ55の充電中の動作について説明する。例えば急速充電器(外部電源)の充電用のプラグが接続され、バッテリ55が充電されているときに(これらの情報はバッテリコントローラ73から送信される)、車両のイグニッション(IGN)がONされ、空調操作部53の空調スイッチがONされた場合、ヒートポンプコントローラ32はバッテリ冷却(優先)+空調モードを実行する。このバッテリ冷却(優先)+空調モードにおける冷媒回路Rの冷媒の流れ方は、図8に示した空調(優先)+バッテリ冷却モードの場合と同様である。
(7) Battery Cooling (Priority) + Air Conditioning Mode Next, the operation during charging of the battery 55 will be described. For example, when the charging plug of the quick charger (external power source) is connected and the battery 55 is being charged (these information is transmitted from the battery controller 73), the ignition (IGN) of the vehicle is turned on, When the air conditioning switch of the air conditioning operating unit 53 is turned on, the heat pump controller 32 executes battery cooling (priority) + air conditioning mode. The way the refrigerant flows in the refrigerant circuit R in the battery cooling (priority) + air conditioning mode is the same as in the air conditioning (priority) + battery cooling mode shown in FIG.
 但し、このバッテリ冷却(優先)+空調モードの場合、実施例ではヒートポンプコントローラ32は電磁弁69を開いた状態に維持し、熱媒体温度センサ76(バッテリコントローラ73から送信される)が検出する熱媒体温度Twに基づいて後述する図15に示す如く圧縮機2の回転数を制御する。また、実施例では吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づき、電磁弁35を以下の如く開閉制御する。 However, in the case of this battery cooling (priority) + air conditioning mode, in the embodiment, the heat pump controller 32 maintains the electromagnetic valve 69 in an open state, and the heat detected by the heat medium temperature sensor 76 (transmitted from the battery controller 73) is detected. Based on the medium temperature Tw, the rotation speed of the compressor 2 is controlled as shown in FIG. 15 described later. In the embodiment, the solenoid valve 35 is controlled to open and close as follows based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
 図16はこのバッテリ冷却(優先)+空調モードにおける電磁弁35の開閉制御のブロック図を示している。ヒートポンプコントローラ32の吸熱器用電磁弁制御部95には吸熱器温度センサ48が検出する吸熱器温度Teと、当該吸熱器温度Teの目標値としての所定の目標吸熱器温度TEOが入力される。そして、吸熱器用電磁弁制御部95は、目標吸熱器温度TEOの上下に所定の温度差を有して上限値TeULと下限値TeLLを設定し、電磁弁35を閉じている状態から吸熱器温度Teが高くなり、上限値TeULまで上昇した場合、電磁弁35を開放する(電磁弁35開指示)。これにより、冷媒は吸熱器9に流入して蒸発し、空気流通路3を流通する空気を冷却する。 FIG. 16 shows a block diagram of opening / closing control of the solenoid valve 35 in the battery cooling (priority) + air conditioning mode. The heat absorber electromagnetic valve control unit 95 of the heat pump controller 32 is input with the heat absorber temperature Te detected by the heat absorber temperature sensor 48 and a predetermined target heat absorber temperature TEO as a target value of the heat absorber temperature Te. Then, the heat absorber electromagnetic valve control unit 95 sets the upper limit value TeUL and the lower limit value TeLL with a predetermined temperature difference above and below the target heat absorber temperature TEO, and sets the heat absorber temperature from the state in which the solenoid valve 35 is closed. When Te becomes high and rises to the upper limit TeUL, the solenoid valve 35 is opened (instruction to open the solenoid valve 35). As a result, the refrigerant flows into the heat absorber 9 and evaporates, and cools the air flowing through the air flow passage 3.
 その後、吸熱器温度Teが下限値TeLLまで低下した場合、電磁弁35を閉じる(電磁弁35閉指示)。以後、このような電磁弁35の開閉を繰り返して、バッテリ55の冷却を優先しながら、吸熱器温度Teを目標吸熱器温度TEOに制御し、車室内の冷房を行う。 After that, when the heat absorber temperature Te drops to the lower limit TeLL, the solenoid valve 35 is closed (instruction to close the solenoid valve 35). Thereafter, such opening / closing of the solenoid valve 35 is repeated to control the heat absorber temperature Te to the target heat absorber temperature TEO while prioritizing the cooling of the battery 55 to cool the vehicle interior.
 (8)バッテリ冷却(単独)モード
 次に、車両のイグニッション(IGN)がOFFされ、空調操作部53の空調スイッチもOFFされた状態で、急速充電器の充電用のプラグが接続され、バッテリ55が充電されているとき、ヒートポンプコントローラ32はバッテリ冷却(単独)モードを実行する。図9はこのバッテリ冷却(単独)モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。バッテリ冷却(単独)モードでは、ヒートポンプコントローラ32は電磁弁17、電磁弁20、及び、電磁弁69を開き、電磁弁21、電磁弁22、及び、電磁弁35を閉じる。
(8) Battery Cooling (Independent) Mode Next, with the ignition (IGN) of the vehicle turned off and the air conditioning switch of the air conditioning operation unit 53 also turned off, the charging plug of the quick charger is connected and the battery 55 When is charged, the heat pump controller 32 executes the battery cooling (single) mode. FIG. 9 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in the battery cooling (single) mode. In the battery cooling (single) mode, the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, and the solenoid valve 69, and closes the solenoid valve 21, the solenoid valve 22, and the solenoid valve 35.
 そして、圧縮機2、及び、室外送風機15を運転する。尚、室内送風機27は運転されず、補助ヒータ23にも通電されない。また、この運転モードでは熱媒体加熱ヒータ63も通電されない。 Then, the compressor 2 and the outdoor blower 15 are operated. The indoor blower 27 is not operated and the auxiliary heater 23 is not energized. Further, the heat medium heater 63 is not energized in this operation mode.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されないので、ここは通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。このとき、電磁弁20は開放されているので冷媒は電磁弁20を通過し、そのまま室外熱交換器7に流入し、そこで室外送風機15により通風される外気によって空冷され、凝縮液化する。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is not ventilated to the radiator 4, it passes only here, and the refrigerant exiting the radiator 4 reaches the refrigerant pipe 13J via the refrigerant pipe 13E. At this time, since the electromagnetic valve 20 is open, the refrigerant passes through the electromagnetic valve 20, flows into the outdoor heat exchanger 7 as it is, and is cooled by the outside air ventilated by the outdoor blower 15 to be condensed and liquefied.
 室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入る。この冷媒配管13Bに流入した冷媒は、逆止弁18を経た後、全てが分岐配管67に流入して補助膨張弁68に至る。ここで冷媒は減圧された後、電磁弁69を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入し、そこで蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管71、冷媒配管13C及びアキュムレータ12を順次経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す(図9に実線矢印で示す)。 The refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16. After passing through the check valve 18, all of the refrigerant flowing into the refrigerant pipe 13B flows into the branch pipe 67 and reaches the auxiliary expansion valve 68. Here, the refrigerant is decompressed, then flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 via the electromagnetic valve 69, and evaporates there. At this time, it exerts an endothermic effect. The refrigerant evaporated in the refrigerant passage 64B repeats the circulation in which the refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K through the refrigerant pipe 71, the refrigerant pipe 13C and the accumulator 12 in sequence (shown by a solid arrow in FIG. 9).
 一方、循環ポンプ62が運転されているので、この循環ポンプ62から吐出された熱媒体が熱媒体配管66内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒により吸熱され、熱媒体は冷却されるようになる。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は、熱媒体加熱ヒータ63に至る。但し、この運転モードでは熱媒体加熱ヒータ63は発熱されないので、熱媒体はそのまま通過してバッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は冷却されると共に、バッテリ55を冷却した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す(図9に破線矢印で示す)。 On the other hand, since the circulation pump 62 is operating, the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 66, and the refrigerant flow passage there. The heat medium is cooled by being absorbed by the refrigerant evaporated in 64B. The heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heater 63. However, since the heat medium heating heater 63 does not generate heat in this operation mode, the heat medium passes through as it is to the battery 55 and exchanges heat with the battery 55. As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 is repeatedly sucked into the circulation pump 62 and repeatedly circulated (indicated by a dashed arrow in FIG. 9).
 このバッテリ冷却(単独)モードにおいても、ヒートポンプコントローラ32は熱媒体温度センサ76が検出する熱媒体温度Twに基づいて後述する如く圧縮機2の回転数を制御することにより、バッテリ55を冷却する。 Also in this battery cooling (single) mode, the heat pump controller 32 cools the battery 55 by controlling the number of revolutions of the compressor 2 based on the heat medium temperature Tw detected by the heat medium temperature sensor 76 as described later.
 (9)除霜モード
 次に、図10を参照しながら室外熱交換器7の除霜モードについて説明する。図10は除霜モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。前述した如く暖房モードでは、室外熱交換器7では冷媒が蒸発し、外気から吸熱して低温となるため、室外熱交換器7には外気中の水分が霜となって付着する。
(9) Defrost Mode Next, the defrost mode of the outdoor heat exchanger 7 will be described with reference to FIG. 10. FIG. 10 shows how the refrigerant flows in the refrigerant circuit R in the defrosting mode (solid arrow). As described above, in the heating mode, the refrigerant evaporates in the outdoor heat exchanger 7 and absorbs heat from the outside air to reach a low temperature, so that the moisture in the outside air adheres to the outdoor heat exchanger 7 as frost.
 そこで、ヒートポンプコントローラ32は室外熱交換器温度センサ49が検出する室外熱交換器温度TXO(室外熱交換器7における冷媒蒸発温度)と、室外熱交換器7の無着霜時における冷媒蒸発温度TXObaseとの差ΔTXO(=TXObase-TXO)を算出しており、室外熱交換器温度TXOが無着霜時における冷媒蒸発温度TXObaseより低下して、その差ΔTXOが所定値以上に拡大した状態が所定時間継続した場合、室外熱交換器7に着霜しているものと判定して所定の着霜フラグをセットする。 Therefore, the heat pump controller 32 detects the outdoor heat exchanger temperature TXO detected by the outdoor heat exchanger temperature sensor 49 (refrigerant evaporation temperature in the outdoor heat exchanger 7) and the refrigerant evaporation temperature TXObase when the outdoor heat exchanger 7 is not frosted. And a difference ΔTXO (= TXObase−TXO) is calculated, and the condition in which the outdoor heat exchanger temperature TXO is lower than the refrigerant evaporation temperature TXObase during non-frosting and the difference ΔTXO is increased to a predetermined value or more is predetermined. When the time has continued, it is determined that the outdoor heat exchanger 7 is frosted, and a predetermined frosting flag is set.
 そして、この着霜フラグがセットされており、空調操作部53の空調スイッチがOFFされた状態で、急速充電器の充電用のプラグが接続され、バッテリ55が充電されるとき、ヒートポンプコントローラ32は以下の如く室外熱交換器7の除霜モードを実行する。 When the frost flag is set and the air conditioning switch of the air conditioning operation unit 53 is turned off, the charging plug of the quick charger is connected and the battery 55 is charged. The defrosting mode of the outdoor heat exchanger 7 is executed as follows.
 ヒートポンプコントローラ32はこの除霜モードでは、冷媒回路Rを前述した暖房モードの状態とした上で、室外膨張弁6の弁開度を全開とする。そして、圧縮機2を運転し、当該圧縮機2から吐出された高温の冷媒を放熱器4、室外膨張弁6を経て室外熱交換器7に流入させ、当該室外熱交換器7の着霜を融解させる(図10)。そして、ヒートポンプコントローラ32は室外熱交換器温度センサ49が検出する室外熱交換器温度TXOが所定の除霜終了温度(例えば、+3℃等)より高くなった場合、室外熱交換器7の除霜が完了したものとして除霜モードを終了する。 In this defrosting mode, the heat pump controller 32 sets the refrigerant circuit R to the heating mode described above, and then fully opens the valve opening degree of the outdoor expansion valve 6. Then, the compressor 2 is operated, the high-temperature refrigerant discharged from the compressor 2 is caused to flow into the outdoor heat exchanger 7 via the radiator 4 and the outdoor expansion valve 6, and the frost formation on the outdoor heat exchanger 7 is prevented. Thaw (Figure 10). The heat pump controller 32 defrosts the outdoor heat exchanger 7 when the outdoor heat exchanger temperature TXO detected by the outdoor heat exchanger temperature sensor 49 becomes higher than a predetermined defrosting end temperature (for example, + 3 ° C.). Is completed and the defrosting mode is terminated.
 (10)バッテリ加熱モード
 また、空調運転を実行しているとき、或いは、バッテリ55を充電しているとき、ヒートポンプコントローラ32はバッテリ加熱モードを実行する。このバッテリ加熱モードでは、ヒートポンプコントローラ32は循環ポンプ62を運転し、熱媒体加熱ヒータ63に通電する。尚、電磁弁69は閉じる。
(10) Battery Heating Mode Further, the heat pump controller 32 executes the battery heating mode when the air conditioning operation is executed or when the battery 55 is charged. In this battery heating mode, the heat pump controller 32 operates the circulation pump 62 to energize the heat medium heating heater 63. The solenoid valve 69 is closed.
 これにより、循環ポンプ62から吐出された熱媒体は熱媒体配管66内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこを通過して熱媒体加熱ヒータ63に至る。このとき熱媒体加熱ヒータ63は発熱されているので、熱媒体は熱媒体加熱ヒータ63により加熱されて温度上昇した後、バッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は加熱されると共に、バッテリ55を加熱した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す。 As a result, the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 through the heat medium pipe 66, and passes therethrough to reach the heat medium heater 63. At this time, since the heat medium heating heater 63 is generating heat, the heat medium is heated by the heat medium heating heater 63 to increase its temperature, and then reaches the battery 55 to exchange heat with the battery 55. As a result, the battery 55 is heated, and the heat medium after heating the battery 55 is repeatedly circulated by being sucked into the circulation pump 62.
 このバッテリ加熱モードにおいては、ヒートポンプコントローラ32は熱媒体温度センサ76が検出する熱媒体温度Twに基づいて熱媒体加熱ヒータ63の通電を制御することにより、熱媒体温度Twを所定の目標熱媒体温度TWOに調整し、バッテリ55を加熱する。 In the battery heating mode, the heat pump controller 32 controls the energization of the heat medium heating heater 63 based on the heat medium temperature Tw detected by the heat medium temperature sensor 76 to set the heat medium temperature Tw to the predetermined target heat medium temperature. Adjust to TWO and heat battery 55.
 (11)ヒートポンプコントローラ32による圧縮機2の制御
 また、ヒートポンプコントローラ32は、暖房モードでは放熱器圧力Pciに基づき、図11の制御ブロック図により圧縮機2の目標回転数(圧縮機目標回転数)TGNChを算出し、除湿冷房モード、冷房モード、空調(優先)+バッテリ冷却モードでは、吸熱器温度Teに基づき、図12の制御ブロック図により圧縮機2の目標回転数(圧縮機目標回転数)TGNCcを算出する。尚、除湿暖房モードでは圧縮機目標回転数TGNChと圧縮機目標回転数TGNCcのうちの低い方向を選択する。また、バッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モードでは、熱媒体温度Twに基づき、図13の制御ブロック図により圧縮機2の目標回転数(圧縮機目標回転数)TGNCwを算出する。
(11) Control of the compressor 2 by the heat pump controller 32 Further, the heat pump controller 32 in the heating mode is based on the radiator pressure Pci and the target rotation speed of the compressor 2 (compressor target rotation speed) according to the control block diagram of FIG. 11. TGNCh is calculated, and in the dehumidifying cooling mode, the cooling mode, and the air conditioning (priority) + battery cooling mode, based on the heat absorber temperature Te, the target rotation speed of the compressor 2 (compressor target rotation speed) according to the control block diagram of FIG. Calculate TGNCc. In the dehumidifying and heating mode, the lower direction of the compressor target rotation speed TGNCh and the compressor target rotation speed TGNc is selected. In the battery cooling (priority) + air conditioning mode and the battery cooling (single) mode, the target rotation speed of the compressor 2 (compressor target rotation speed) TGNCw is calculated based on the heat medium temperature Tw by the control block diagram of FIG. To do.
 (11-1)放熱器圧力Pciに基づく圧縮機目標回転数TGNChの算出
 先ず、図11を用いて放熱器圧力Pciに基づく圧縮機2の制御について詳述する。図11は放熱器圧力Pciに基づいて圧縮機2の目標回転数(圧縮機目標回転数)TGNChを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F(フィードフォワード)操作量演算部78は外気温度センサ33から得られる外気温度Tamと、室内送風機27のブロワ電圧BLVと、SW=(TAO-Te)/(Thp-Te)で得られるエアミックスダンパ28による風量割合SWと、放熱器4の出口における冷媒の過冷却度SCの目標値である目標過冷却度TGSCと、ヒータ温度Thpの目標値である前述した目標ヒータ温度TCOと、放熱器4の圧力の目標値である目標放熱器圧力PCOに基づいて圧縮機目標回転数のF/F操作量TGNChffを算出する。
(11-1) Calculation of Compressor Target Rotational Speed TGNCh Based on Radiator Pressure Pci First, the control of the compressor 2 based on the radiator pressure Pci will be described in detail with reference to FIG. FIG. 11 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCh of the compressor 2 based on the radiator pressure Pci. The F / F (feed forward) manipulated variable calculation unit 78 of the heat pump controller 32 uses the outside air temperature Tam obtained from the outside air temperature sensor 33, the blower voltage BLV of the indoor blower 27, and SW = (TAO-Te) / (Thp-Te ) The air flow rate SW obtained by the air mix damper 28, the target supercooling degree TGSC that is the target value of the supercooling degree SC of the refrigerant at the outlet of the radiator 4, and the target heater described above that is the target value of the heater temperature Thp. Based on the temperature TCO and the target radiator pressure PCO, which is the target value of the pressure of the radiator 4, the F / F operation amount TGNChff of the compressor target rotation speed is calculated.
 尚、ヒータ温度Thpは放熱器4の風下側の空気温度(推定値)であり、放熱器圧力センサ47が検出する放熱器圧力Pciと放熱器出口温度センサ44が検出する放熱器4の冷媒出口温度Tciから算出(推定)する。また、過冷却度SCは放熱器入口温度センサ43と放熱器出口温度センサ44が検出する放熱器4の冷媒入口温度Tcxinと冷媒出口温度Tciから算出される。 The heater temperature Thp is an air temperature (estimated value) on the leeward side of the radiator 4, and the radiator pressure Pci detected by the radiator pressure sensor 47 and the refrigerant outlet of the radiator 4 detected by the radiator outlet temperature sensor 44. It is calculated (estimated) from the temperature Tci. The degree of supercooling SC is calculated from the refrigerant inlet temperature Tcxin and the refrigerant outlet temperature Tci of the radiator 4 detected by the radiator inlet temperature sensor 43 and the radiator outlet temperature sensor 44.
 前記目標放熱器圧力PCOは上記目標過冷却度TGSCと目標ヒータ温度TCOに基づいて目標値演算部79が算出する。更に、F/B(フィードバック)操作量演算部81はこの目標放熱器圧力PCOと放熱器圧力Pciに基づくPID演算若しくはPI演算により圧縮機目標回転数のF/B操作量TGNChfbを算出する。そして、F/F操作量演算部78が算出したF/F操作量TGNChffとF/B操作量演算部81が算出したF/B操作量TGNChfbは加算器82で加算され、TGNCh00としてリミット設定部83に入力される。 The target radiator pressure PCO is calculated by the target value calculator 79 based on the target supercooling degree TGSC and the target heater temperature TCO. Further, the F / B (feedback) manipulated variable calculation unit 81 calculates the F / B manipulated variable TGNChfb of the compressor target rotational speed by PID calculation or PI calculation based on the target radiator pressure PCO and the radiator pressure Pci. Then, the F / F operation amount TGNChff calculated by the F / F operation amount calculation unit 78 and the F / B operation amount TGNChfb calculated by the F / B operation amount calculation unit 81 are added by the adder 82 to obtain a limit setting unit as TGNCh00. It is input to 83.
 リミット設定部83では制御上の下限回転数ECNpdLimLoと上限回転数ECNpdLimHiのリミットが付けられてTGNCh0とされた後、圧縮機OFF制御部84を経て圧縮機目標回転数TGNChとして決定される。通常モードではヒートポンプコントローラ32は、この放熱器圧力Pciに基づいて算出された圧縮機目標回転数TGNChにより、放熱器圧力Pciが目標放熱器圧力PCOになるように圧縮機2の運転を制御する。 In the limit setting unit 83, the lower limit rotational speed ECNpdLimLo and the upper limit rotational speed ECNpdLimHi in control are set to TGNCh0, and then the compressor OFF control unit 84 is used to determine the target compressor rotational speed TGNCh. In the normal mode, the heat pump controller 32 controls the operation of the compressor 2 so that the radiator pressure Pci becomes the target radiator pressure PCO by the compressor target rotation speed TGNCh calculated based on the radiator pressure Pci.
 尚、圧縮機OFF制御部84は、圧縮機目標回転数TGNChが上述した下限回転数ECNpdLimLoとなり、放熱器圧力Pciが目標放熱器圧力PCOの上下に設定された所定の上限値PULと下限値PLLのうちの上限値PULまで上昇した状態が所定時間th1継続した場合、圧縮機2を停止させて圧縮機2をON-OFF制御するON-OFFモードに入る。 In addition, the compressor OFF control unit 84 sets the compressor target rotation speed TGNCh to the above-described lower limit rotation speed ECNpdLimLo, and the radiator pressure Pci is a predetermined upper limit value PUL and lower limit value PLL set above and below the target radiator pressure PCO. If the state of rising to the upper limit value PUL of the above continues for the predetermined time th1, the compressor 2 is stopped and the ON-OFF mode for ON-OFF controlling the compressor 2 is entered.
 この圧縮機2のON-OFFモードでは、放熱器圧力Pciが下限値PLLまで低下した場合、圧縮機2を起動して圧縮機目標回転数TGNChを下限回転数ECNpdLimLoとして運転し、その状態で放熱器圧力Pciが上限値PULまで上昇した場合は圧縮機2を再度停止させる。即ち、下限回転数ECNpdLimLoでの圧縮機2の運転(ON)と、停止(OFF)を繰り返す。そして、放熱器圧力Pciが下限値PULまで低下し、圧縮機2を起動した後、放熱器圧力Pciが下限値PULより高くならない状態が所定時間th2継続した場合、圧縮機2のON-OFFモードを終了し、通常モードに復帰するものである。 In the ON-OFF mode of the compressor 2, when the radiator pressure Pci decreases to the lower limit value PLL, the compressor 2 is started to operate the compressor target rotation speed TGNCh as the lower limit rotation speed ECNpdLimLo, and heat is released in that state. When the container pressure Pci rises to the upper limit value PUL, the compressor 2 is stopped again. That is, the operation (ON) and the stop (OFF) of the compressor 2 at the lower limit rotation speed ECNpdLimLo are repeated. When the radiator pressure Pci decreases to the lower limit value PUL and the compressor 2 is started, and the radiator pressure Pci does not become higher than the lower limit value PUL for a predetermined time th2, the compressor 2 is turned on and off. Is completed and the normal mode is restored.
 (11-2)吸熱器温度Teに基づく圧縮機目標回転数TGNCcの算出
 次に、図12を用いて吸熱器温度Teに基づく圧縮機2の制御について詳述する。図12は吸熱器温度Teに基づいて圧縮機2の目標回転数(圧縮機目標回転数)TGNCcを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F操作量演算部86は外気温度Tamと、空気流通路3内を流通する空気の風量Ga(室内送風機27のブロワ電圧BLVでもよい)と、目標放熱器圧力PCOと、吸熱器温度Teの目標値である目標吸熱器温度TEOに基づいて圧縮機目標回転数のF/F操作量TGNCcffを算出する。
(11-2) Calculation of Compressor Target Rotational Speed TGNCc Based on Heat Absorber Temperature Te Next, control of the compressor 2 based on the heat absorber temperature Te will be described in detail with reference to FIG. FIG. 12 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCc of the compressor 2 based on the heat absorber temperature Te. The F / F operation amount calculation unit 86 of the heat pump controller 32 has an outside air temperature Tam, an air volume Ga of air flowing through the air flow passage 3 (may be the blower voltage BLV of the indoor blower 27), a target radiator pressure PCO, The F / F operation amount TGNCcff of the compressor target rotation speed is calculated based on the target heat absorber temperature TEO which is the target value of the heat absorber temperature Te.
 また、F/B操作量演算部87は目標吸熱器温度TEOと吸熱器温度Teに基づくPID演算若しくはPI演算により圧縮機目標回転数のF/B操作量TGNCcfbを算出する。そして、F/F操作量演算部86が算出したF/F操作量TGNCcffとF/B操作量演算部87が算出したF/B操作量TGNCcfbは加算器88で加算され、TGNCc00としてリミット設定部89に入力される。 The F / B manipulated variable calculation unit 87 also calculates the F / B manipulated variable TGNCcfb of the compressor target rotation speed by PID calculation or PI calculation based on the target heat absorber temperature TEO and the heat absorber temperature Te. Then, the F / F operation amount TGNCcff calculated by the F / F operation amount calculation unit 86 and the F / B operation amount TGNCcfb calculated by the F / B operation amount calculation unit 87 are added by the adder 88 to obtain a limit setting unit as TGNCc00. It is input to 89.
 リミット設定部89では制御上の下限回転数TGNCcLimLoと上限回転数TGNCcLimHiのリミットが付けられてTGNCc0とされた後、圧縮機OFF制御部91を経て圧縮機目標回転数TGNCcとして決定される。従って、加算器88で加算された値TGNCc00が上限回転数TGNCcLimHiと下限回転数TGNCcLimLo以内であり、後述するON-OFFモードにならなければ、この値TGNCc00が圧縮機目標回転数TGNCc(圧縮機2の回転数となる)。通常モードではヒートポンプコントローラ32は、この吸熱器温度Teに基づいて算出された圧縮機目標回転数TGNCcにより、吸熱器温度Teが目標吸熱器温度TEOになるように圧縮機2の運転を制御する。 In the limit setting unit 89, the lower limit rotational speed TGNCcLimLo and the upper limit rotational speed TGNCcLimHi in control are set to TGNCc0, and then the compressor OFF control unit 91 is used to determine the target compressor rotational speed TGNCc. Therefore, if the value TGNCc00 added by the adder 88 is within the upper limit rotation speed TGNCcLimHi and the lower limit rotation speed TGNCcLimLo and the ON-OFF mode described later does not occur, this value TGNCc00 is the target compressor rotation speed TGNCc (compressor 2 Will be the number of rotations). In the normal mode, the heat pump controller 32 controls the operation of the compressor 2 so that the heat absorber temperature Te becomes the target heat absorber temperature TEO by the compressor target rotation speed TGNCc calculated based on the heat absorber temperature Te.
 尚、圧縮機OFF制御部91は、圧縮機目標回転数TGNCcが上述した下限回転数TGNCcLimLoとなり、吸熱器温度Teが目標吸熱器温度TEOの上下に設定された上限値TeULと下限値TeLLのうちの下限値TeLLまで低下した状態が所定時間tc1継続した場合、圧縮機2を停止させて圧縮機2をON-OFF制御するON-OFFモードに入る。 Note that the compressor OFF control unit 91 determines that the compressor target rotation speed TGNCc becomes the above-described lower limit rotation speed TGNCcLimLo, and the heat absorber temperature Te is set between the upper limit value TeUL and the lower limit value TeLL set above and below the target heat absorber temperature TEO. When the state in which the lower limit value TeLL of the above is decreased for a predetermined time tc1 is stopped, the compressor 2 is stopped and the ON-OFF mode in which the compressor 2 is ON-OFF controlled is entered.
 この場合の圧縮機2のON-OFFモードでは、吸熱器温度Teが上限値TeULまで上昇した場合、圧縮機2を起動して圧縮機目標回転数TGNCcを下限回転数TGNCcLimLoとして運転し、その状態で吸熱器温度Teが下限値TeLLまで低下した場合は圧縮機2を再度停止させる。即ち、下限回転数TGNCcLimLoでの圧縮機2の運転(ON)と、停止(OFF)を繰り返す。そして、吸熱器温度Teが上限値TeULまで上昇し、圧縮機2を起動した後、吸熱器温度Teが上限値TeULより低くならない状態が所定時間tc2継続した場合、この場合の圧縮機2のON-OFFモードを終了し、通常モードに復帰するものである。 In the ON-OFF mode of the compressor 2 in this case, when the heat absorber temperature Te rises to the upper limit TeUL, the compressor 2 is started and the compressor target rotation speed TGNCc is operated as the lower limit rotation speed TGNCcLimLo, and the state is maintained. When the heat absorber temperature Te has dropped to the lower limit TeLL, the compressor 2 is stopped again. That is, the operation (ON) and the stop (OFF) of the compressor 2 at the lower limit rotation speed TGNCcLimLo are repeated. Then, when the heat absorber temperature Te rises to the upper limit value TeUL and the compressor 2 is started, the state where the heat absorber temperature Te does not become lower than the upper limit value TeUL continues for a predetermined time tc2, and the compressor 2 in this case is turned on. -Ends the OFF mode and returns to the normal mode.
 (11-3)熱媒体温度Twに基づく圧縮機目標回転数TGNCwの算出
 次に、図15を用いて熱媒体温度Twに基づく圧縮機2の制御について詳述する。図15は熱媒体温度Twに基づいて圧縮機2の目標回転数(圧縮機目標回転数)TGNCwを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F操作量演算部92は外気温度Tamと、機器温度調整装置61内の熱媒体の流量Gw(循環ポンプ62の出力から算出される)と、バッテリ55の発熱量(バッテリコントローラ73から送信される)と、バッテリ温度Tcell(バッテリコントローラ73から送信される)と、熱媒体温度Twの目標値である目標熱媒体温度TWOに基づいて圧縮機目標回転数のF/F操作量TGNCcwffを算出する。
(11-3) Calculation of Compressor Target Rotational Speed TGNCw Based on Heat Medium Temperature Tw Next, the control of the compressor 2 based on the heat medium temperature Tw will be described in detail with reference to FIG. FIG. 15 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCw of the compressor 2 based on the heat medium temperature Tw. The F / F operation amount calculation unit 92 of the heat pump controller 32 uses the outside air temperature Tam, the flow rate Gw of the heat medium in the device temperature adjustment device 61 (calculated from the output of the circulation pump 62), and the heat generation amount of the battery 55 (battery). (Transmitted from the controller 73), battery temperature Tcell (transmitted from the battery controller 73), and target heat medium temperature TWO that is the target value of the heat medium temperature Tw, based on the F / F operation of the compressor target rotation speed. Calculate the quantity TGNCcwff.
 また、F/B操作量演算部93は目標熱媒体温度TWOと熱媒体温度Tw(バッテリコントローラ73から送信される)に基づくPID演算若しくはPI演算により圧縮機目標回転数のF/B操作量TGNCwfbを算出する。そして、F/F操作量演算部92が算出したF/F操作量TGNCwffとF/B操作量演算部93が算出したF/B操作量TGNCwfbは加算器94で加算され、TGNCw00としてリミット設定部96に入力される。 Further, the F / B operation amount calculation unit 93 performs the PID calculation or the PI calculation based on the target heat medium temperature TWO and the heat medium temperature Tw (transmitted from the battery controller 73) to perform the F / B operation amount TGNCwfb of the compressor target rotation speed. To calculate. Then, the F / F operation amount TGNCwff calculated by the F / F operation amount calculation unit 92 and the F / B operation amount TGNCwfb calculated by the F / B operation amount calculation unit 93 are added by the adder 94 to obtain a limit setting unit as TGNCw00. 96 is input.
 リミット設定部96では制御上の下限回転数TGNCwLimLoと上限回転数TGNCwLimHiのリミットが付けられてTGNCw0とされた後、圧縮機OFF制御部97を経て圧縮機目標回転数TGNCwとして決定される。従って、加算器94で加算された値TGNCw00が上限回転数TGNCwLimHiと下限回転数TGNCwLimLo以内であり、後述するON-OFFモードにならなければ、この値TGNCw00が圧縮機目標回転数TGNCw(圧縮機2の回転数となる)。通常モードではヒートポンプコントローラ32は、この熱媒体温度Twに基づいて算出された圧縮機目標回転数TGNCwにより、熱媒体温度Twが目標熱媒体温度TWOになるように圧縮機2の運転を制御する。 In the limit setting unit 96, the lower limit speed TGNCwLimLo for control and the upper limit speed TGNCwLimHi are set to TGNCw0, and then the compressor OFF control unit 97 is used to determine the target compressor speed TGNCw. Therefore, if the value TGNCw00 added by the adder 94 is within the upper limit rotational speed TGNCwLimHi and the lower limit rotational speed TGNCwLimLo and the ON-OFF mode described later does not occur, this value TGNCw00 is the target compressor rotational speed TGNCw (compressor 2 Will be the number of rotations). In the normal mode, the heat pump controller 32 controls the operation of the compressor 2 so that the heat medium temperature Tw becomes the target heat medium temperature TWO by the compressor target rotation speed TGNCw calculated based on the heat medium temperature Tw.
 尚、圧縮機OFF制御部97は、圧縮機目標回転数TGNCwが上述した下限回転数TGNCwLimLoとなり、熱媒体温度Twが目標熱媒体温度TWOの上下に設定された上限値TwULと下限値TwLLのうちの下限値TwLLまで低下した状態が所定時間tw1継続した場合、圧縮機2を停止させて圧縮機2をON-OFF制御するON-OFFモードに入る。 In addition, the compressor OFF control unit 97 determines that the compressor target rotation speed TGNCw becomes the above-described lower limit rotation speed TGNCwLimLo, and the heat medium temperature Tw is the upper limit value TwUL and the lower limit value TwLL set above and below the target heat medium temperature TWO. When the state in which the lower limit value TwLL has fallen to the lower limit value TwLL continues for a predetermined time tw1, the compressor 2 is stopped and the ON-OFF mode for ON-OFF controlling the compressor 2 is entered.
 この場合の圧縮機2のON-OFFモードでは、熱媒体温度Twが上限値TwULまで上昇した場合、圧縮機2を起動して圧縮機目標回転数TGNCwを下限回転数TGNCwLimLoとして運転し、その状態で熱媒体温度Twが下限値TwLLまで低下した場合は圧縮機2を再度停止させる。即ち、下限回転数TGNCwLimLoでの圧縮機2の運転(ON)と、停止(OFF)を繰り返す。そして、熱媒体温度Twが上限値TwULまで上昇し、圧縮機2を起動した後、熱媒体温度Twが上限値TwULより低くならない状態が所定時間tw2継続した場合、この場合の圧縮機2のON-OFFモードを終了し、通常モードに復帰するものである。 In the ON-OFF mode of the compressor 2 in this case, when the heat medium temperature Tw rises to the upper limit value TwUL, the compressor 2 is started and the compressor target rotation speed TGNCw is operated as the lower limit rotation speed TGNCwLimLo, and the state is maintained. If the heat medium temperature Tw has dropped to the lower limit value TwLL, the compressor 2 is stopped again. That is, the operation (ON) and the stop (OFF) of the compressor 2 at the lower limit rotation speed TGNCwLimLo are repeated. Then, after the heat medium temperature Tw rises to the upper limit value TwUL and the compressor 2 is started, the state in which the heat medium temperature Tw does not become lower than the upper limit value TwUL continues for a predetermined time tw2, and the compressor 2 in this case is turned on. -Ends the OFF mode and returns to the normal mode.
 (12)電磁弁69、電磁弁35の開閉時の圧縮機目標回転数TGNCc、TGNCwの変更制御
 ここで、図18のタイミングチャートは前述した空調(優先)+バッテリ冷却モードにおける電磁弁69、35の開閉状態、熱媒体温度Tw、圧縮機2の回転数NC、吸熱器温度Teの変化を示している。この空調(優先)+バッテリ冷却モードでは、電磁弁69が図13に示すように開閉制御される。そのため、吸熱器温度Teで圧縮機2の回転数を制御する空調(優先)+バッテリ冷却モードでは、電磁弁69を閉じた状態から開いた直後は、吸熱器9に流入する冷媒が急激に減少して、図18中P1で示す如く吸熱器温度Teが急激に上昇する。一方、電磁弁69を開いた状態から閉じた直後は、吸熱器9に流入する冷媒が急激に増加して、図18中P2で示す如く吸熱器温度Teが急激に低下する。
(12) Change control of compressor target rotational speeds TGNCc, TGNCw when the solenoid valve 69 and the solenoid valve 35 are opened and closed Here, the timing chart of FIG. 18 shows the solenoid valves 69, 35 in the above-described air conditioning (priority) + battery cooling mode. Shows the changes in the open / closed state, the heat medium temperature Tw, the rotational speed NC of the compressor 2, and the heat absorber temperature Te. In this air conditioning (priority) + battery cooling mode, the solenoid valve 69 is controlled to open and close as shown in FIG. Therefore, in the air conditioning (priority) + battery cooling mode in which the rotation speed of the compressor 2 is controlled by the heat absorber temperature Te, the refrigerant flowing into the heat absorber 9 sharply decreases immediately after the electromagnetic valve 69 is opened from the closed state. Then, the heat absorber temperature Te rapidly rises as indicated by P1 in FIG. On the other hand, immediately after the electromagnetic valve 69 is closed from the open state, the refrigerant flowing into the heat absorber 9 rapidly increases, and the heat absorber temperature Te sharply decreases as indicated by P2 in FIG.
 また、図19のタイミングチャートは前述したバッテリ冷却(優先)+空調モードにおける電磁弁69、35の開閉状態、吸熱器温度Te、圧縮機2の回転数NC、熱媒体温度Twの変化を示している。このバッテリ冷却(優先)+空調モードでは、電磁弁35が図16に示すように開閉制御される。そのため、熱媒体温度Twで圧縮機2の回転数を制御するバッテリ冷却(優先)+空調モードでは、電磁弁35を閉じた状態から開いた直後は、冷媒-熱媒体熱交換器64の冷媒流路64Bに流入する冷媒が急激に減少して、図19中P3で示す如く熱媒体温度Twが急激に上昇する。一方、電磁弁35を開いた状態から閉じた直後は、冷媒-熱媒体熱交換器64の冷媒流路64Bに流入する冷媒が急激に増加して、図19中P4で示す如く熱媒体温度Twが急激に低下する。 The timing chart of FIG. 19 shows changes in the open / close states of the solenoid valves 69 and 35, the heat absorber temperature Te, the rotation speed NC of the compressor 2, and the heat medium temperature Tw in the battery cooling (priority) + air conditioning mode described above. There is. In this battery cooling (priority) + air conditioning mode, the solenoid valve 35 is controlled to open and close as shown in FIG. Therefore, in the battery cooling (priority) + air-conditioning mode in which the rotation speed of the compressor 2 is controlled by the heat medium temperature Tw, the refrigerant flow of the refrigerant-heat medium heat exchanger 64 immediately after the electromagnetic valve 35 is opened from the closed state. The refrigerant flowing into the passage 64B sharply decreases, and the heat medium temperature Tw sharply rises as indicated by P3 in FIG. On the other hand, immediately after the electromagnetic valve 35 is closed from the open state, the refrigerant flowing into the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64 rapidly increases, and the heat medium temperature Tw as shown by P4 in FIG. Drops sharply.
 これは図12や図15で示した圧縮機目標回転数TGNCcやTGNCwの算出が冷媒回路Rの流路の変化に追従できないことに起因しており、空調(優先)+バッテリ冷却モードでは、電磁弁69の開閉動作の直後に車室内に吹き出される空気の温度が大きく変動し、バッテリ冷却(優先)+空調モードでは、電磁弁35の開閉動作の直後に熱媒体温度Twが大きく変動してバッテリ55の冷却能力が大きく変動してしまう問題が発生する。 This is because the calculation of the compressor target speeds TGNCc and TGNCw shown in FIGS. 12 and 15 cannot follow the change of the flow path of the refrigerant circuit R, and in the air conditioning (priority) + battery cooling mode, Immediately after the opening / closing operation of the valve 69, the temperature of the air blown into the passenger compartment greatly changes, and in the battery cooling (priority) + air conditioning mode, the heat medium temperature Tw greatly changes immediately after the opening / closing operation of the solenoid valve 35. The problem that the cooling capacity of the battery 55 fluctuates greatly occurs.
 そこで、実施例ではヒートポンプコントローラ32が、以下に説明する如く電磁弁69や電磁弁35の開閉時に、圧縮機目標回転数TGNCcやTGNCwを変更する制御を実行する。 Therefore, in the embodiment, the heat pump controller 32 executes control for changing the compressor target rotational speeds TGNCc and TGNCw when the electromagnetic valve 69 and the electromagnetic valve 35 are opened and closed as described below.
 (12-1)空調(優先)+バッテリ冷却モード(第1の運転モード)での電磁弁69(被温調対象用弁装置)の開閉時の圧縮機目標回転数TGNCcの変更制御(その1)
 以下、図12~図14を参照しながら空調(優先)+バッテリ冷却モードにおいて、ヒートポンプコントローラ32が実行する電磁弁69の開閉時の圧縮機目標回転数TGNCcの変更制御の一例について説明する。ヒートポンプコントローラ32は、図12の制御ブロック図による圧縮機目標回転数TGNCcの演算中、F/F操作量TGNCcffとF/B操作量TGNCcfbを加算器88で加算した値TGNCc00(本発明における圧縮機2の回転数)を、制御周期毎に常にメモリ32Mに記憶している。
(12-1) Change control of compressor target rotation speed TGNCc when opening / closing the solenoid valve 69 (valve device for temperature adjustment target) in the air conditioning (priority) + battery cooling mode (first operation mode) (part 1) )
An example of control for changing the compressor target rotation speed TGNCc at the time of opening / closing the solenoid valve 69 executed by the heat pump controller 32 in the air conditioning (priority) + battery cooling mode will be described below with reference to FIGS. 12 to 14. The heat pump controller 32 adds the F / F manipulated variable TGNCcff and the F / B manipulated variable TGNCcfb by the adder 88 during the calculation of the compressor target rotational speed TGNCc according to the control block diagram of FIG. 12 TGNCc00 (the compressor in the present invention. The rotation speed of 2) is always stored in the memory 32M for each control cycle.
 そして、図14の例えばタイミングTM4の制御周期で電磁弁69を閉じた状態から開くとき、前回電磁弁69を開いていたタイミングTM1~TM3の期間の値TGNCc00(電磁弁69を前回開いていたときの回転数)のうち、図14にP5で示す位置の最後の値を前回値TGNCc00zとし、図14中破線矢印で示す如く、タイミングTM4の制御周期での目標圧縮機回転数TGNCcを、この前回値TGNCc00zに変更する。これにより、圧縮機2の回転数NCは即座に上昇することになる。尚、その後の制御周期からは通常のTGNCcの演算に復帰する。 Then, for example, when the solenoid valve 69 is opened from the closed state in the control cycle of the timing TM4 in FIG. 14, the value TGNCc00 (when the solenoid valve 69 was previously opened) during the period of the timings TM1 to TM3 in which the solenoid valve 69 was previously opened. 14), the last value at the position indicated by P5 in FIG. 14 is set as the previous value TGNCc00z, and the target compressor rotation speed TGNCc in the control cycle of the timing TM4 is set as the previous value TGNCc00z. Change to the value TGNCc00z. As a result, the rotational speed NC of the compressor 2 immediately increases. It should be noted that from the subsequent control cycle, the normal TGNCc calculation is resumed.
 また、図14の例えばタイミングTM5の制御周期で電磁弁69を開いた状態から閉じるとき、前回電磁弁69を閉じていたタイミングTM3~TM4の期間の値TGNCc00(電磁弁69を前回閉じていたときの回転数)のうち、図14にP6で示す位置の最後の値を前回値TGNCc00zとし、図14中破線矢印で示す如く、タイミングTM5の制御周期での目標圧縮機回転数TGNCcを、この前回値TGNCc00zに変更する。これにより、圧縮機2の回転数NCは即座に低下することになる。尚、その後の制御周期からは通常のTGNCcの演算に復帰する。 Further, for example, when the solenoid valve 69 is closed from the open state at the control cycle of timing TM5 in FIG. 14, the value TGNcc00 (when the solenoid valve 69 was closed last time) during the period of timing TM3 to TM4 when the solenoid valve 69 was closed last time. 14), the last value of the position indicated by P6 in FIG. 14 is set as the previous value TGNCc00z, and the target compressor rotation speed TGNCc in the control cycle of the timing TM5 is set as the previous value TGNCc00z. Change to the value TGNCc00z. As a result, the rotation speed NC of the compressor 2 immediately decreases. It should be noted that from the subsequent control cycle, the normal TGNCc calculation is resumed.
 更に、図14の例えばタイミングTM6の制御周期で電磁弁69を閉じた状態から開くときは、前回電磁弁69を開いていたタイミングTM4~TM5の期間の値TGNCc00のうち、図14にP7で示す位置の最後の値を前回値TGNCc00zとし、図14中破線矢印で示す如く、タイミングTM6の制御周期での目標圧縮機回転数TGNCcを、この前回値TGNCc00zに変更する。これにより、圧縮機2の回転数NCは即座に上昇することになる。尚、その後の制御周期からは通常のTGNCcの演算に復帰する。 Further, for example, when the electromagnetic valve 69 is opened from the closed state in the control cycle of the timing TM6 in FIG. 14, among the values TGNCc00 in the period of the timings TM4 to TM5 in which the electromagnetic valve 69 was opened last time, it is indicated by P7 in FIG. The last value of the position is set to the previous value TGNCc00z, and the target compressor rotational speed TGNCc in the control cycle of the timing TM6 is changed to the previous value TGNCc00z, as indicated by the dashed arrow in FIG. As a result, the rotational speed NC of the compressor 2 immediately increases. It should be noted that from the subsequent control cycle, the normal TGNCc calculation is resumed.
 このようにして電磁弁69を閉じた状態から開くとき、圧縮機2の回転数NCを上昇させ、電磁弁69を開いた状態から閉じるとき、圧縮機2の回転数NCを低下させるので、電磁弁69を閉じた状態から開くとき、吸熱器9に流入する冷媒が急激に減少する状況において圧縮機2の回転数NCを上昇させ、電磁弁69を開いた状態から閉じるとき、吸熱器9に流入する冷媒が急激に増加する状況においては圧縮機2の回転数NCを低下させることができるようになる。 In this way, when the electromagnetic valve 69 is opened from the closed state, the rotation speed NC of the compressor 2 is increased, and when the electromagnetic valve 69 is closed from the opened state, the rotation speed NC of the compressor 2 is decreased. When the valve 69 is opened from the closed state, the rotational speed NC of the compressor 2 is increased in a situation where the refrigerant flowing into the heat absorber 9 is rapidly reduced, and when the solenoid valve 69 is closed from the opened state, the heat absorber 9 is closed. In a situation where the refrigerant flowing in rapidly increases, the rotational speed NC of the compressor 2 can be reduced.
 これにより、冷媒流路の変化に即座に対応して圧縮機2の回転数NCを変更し、吸熱器温度Teを図14の最下段に示すように目標吸熱器温度TEOに安定的に制御することができるようになるので、車室内に吹き出される空気の温度が大きく変動し、乗員が不快感を覚える不都合を解消することができるようになる。また、電磁弁69を開くときには冷媒-熱媒体熱交換器64にも冷媒を支障無く供給することができるようになるので、総じて吸熱器9による車室内の冷房と冷媒-熱媒体熱交換器64によるバッテリ55の冷却制御を安定的に実現することが可能となる。 As a result, the rotational speed NC of the compressor 2 is immediately changed in response to the change in the refrigerant flow path, and the heat absorber temperature Te is stably controlled to the target heat absorber temperature TEO as shown in the bottom of FIG. Therefore, it is possible to eliminate the inconvenience that the temperature of the air blown into the passenger compartment fluctuates greatly and the passenger feels uncomfortable. Further, when the solenoid valve 69 is opened, the refrigerant can be supplied to the refrigerant-heat medium heat exchanger 64 without any trouble, so that cooling of the vehicle interior by the heat absorber 9 and the refrigerant-heat medium heat exchanger 64 as a whole. It is possible to stably realize the cooling control of the battery 55 by.
 特に、この実施例ではヒートポンプコントローラ32が、電磁弁69を閉じた状態から開くとき、電磁弁69を前回開いていた期間の最後の値TGNCc00を前回値TGNCc00zとしてこの前回値TGNCc00zに目標圧縮機回転数TGNCcを変更すると共に、電磁弁69を開いた状態から閉じるとき、電磁弁69を前回閉じていた期間の最後の値TGNCc00を前回値TGNCc00zとしてこの前回値TGNCc00zに目標圧縮機回転数TGNCcを変更するようにしているので、電磁弁69の開閉に即座に対応して圧縮機2の回転数を適切な値に変更することができるようになる。 In particular, in this embodiment, when the heat pump controller 32 opens the solenoid valve 69 from the closed state, the last value TGNCc00z is set as the last value TGNCc00z with the last value TGNCc00 of the period when the solenoid valve 69 was opened last time, and the target compressor rotation speed is changed to the previous value TGNCc00z. When changing the number TGNCc and closing the solenoid valve 69 from the open state, the target compressor speed TGNCc is changed to the last value TGNCc00z by setting the last value TGNCc00 of the last closing period of the solenoid valve 69 to the previous value TGNCc00z. Therefore, the rotation speed of the compressor 2 can be changed to an appropriate value immediately in response to the opening / closing of the solenoid valve 69.
 尚、この実施例では電磁弁69を閉じた状態から開くとき、電磁弁69を前回開いていた期間の最後の値TGNCc00を前回値TGNCc00zとし、電磁弁69を開いた状態から閉じるとき、電磁弁69を前回閉じていた期間の最後の値TGNCc00を前回値TGNCc00zとするようにしたが、それに限らず、電磁弁69を閉じた状態から開くときは、電磁弁69を前回開いていた期間のTGNCc00のうちの何れかの値、若しくは、それらの平均値を前回値TGNCc00zとしてもよく、電磁弁69を開いた状態から閉じるときは、電磁弁69を前回閉じていた期間のTGNCc00のうちの何れかの値、若しくは、それらの平均値を前回値TGNCc00zとしてもよい(以下、同じ)。 In this embodiment, when the solenoid valve 69 is opened from the closed state, the last value TGNCc00 of the period when the solenoid valve 69 is opened last time is set to the previous value TGNCc00z, and when the solenoid valve 69 is closed from the opened state, the solenoid valve 69 is opened. Although the last value TGNCc00 of the last closed period of 69 is set to the previous value TGNCc00z, the present invention is not limited to this. When opening the solenoid valve 69 from the closed state, the TGNCc00 of the previous opened period of the solenoid valve 69 is not limited to this. Any of the above values or their average value may be used as the previous value TGNCc00z, and when closing the solenoid valve 69 from the open state, any one of TGNCc00 during the period when the solenoid valve 69 was closed last time. Value or their average value may be used as the previous value TGNCc00z (hereinafter the same).
 (12-2)空調(優先)+バッテリ冷却モードでの電磁弁69の開閉時の圧縮機目標回転数TGNCcの変更制御(その2)
 ここで、上記実施例ではヒートポンプコントローラ32が、電磁弁69を閉じた状態から開くとき、電磁弁69を前回開いていた期間の値TGNCc00を前回値TGNCc00zとし、電磁弁69を開いた状態から閉じるとき、電磁弁69を前回閉じていた期間の値TGNCc00を前回値TGNCc00zとするようにしたが、それに限らず、電磁弁69を閉じた状態から開くとき、同様に電磁弁69を前回開いていた期間の最後の値TGNCc00を前回値TGNCc00zとし、更にこれに所定の補正係数K1を乗算した値TGNCc00z×K1に目標圧縮機回転数TGNCcを変更すると共に、電磁弁69を開いた状態から閉じるとき、同様に電磁弁69を前回閉じていた期間の最後の値TGNCc00を前回値TGNCc00zとし、更にこれに所定の補正係数K2を乗算した値TGNCc00z×K1に目標圧縮機回転数TGNCcを変更するようにしてもよい。
(12-2) Change control of compressor target speed TGNCc when opening / closing the solenoid valve 69 in the air conditioning (priority) + battery cooling mode (part 2)
Here, in the above embodiment, when the heat pump controller 32 opens the electromagnetic valve 69 from the closed state, the value TGNCc00 of the period in which the electromagnetic valve 69 was opened last time is set to the previous value TGNCc00z, and the electromagnetic valve 69 is closed from the open state. At this time, the value TGNCc00 of the period during which the solenoid valve 69 was closed last time was set to the previous value TGNCc00z, but not limited to this, when opening the solenoid valve 69 from the closed state, the solenoid valve 69 was similarly opened last time. When the last value TGNCc00 of the period is set to the previous value TGNCc00z, and the target compressor rotation speed TGNCc is changed to a value TGNCc00z × K1 obtained by multiplying the last value TGNCc00z by a predetermined correction coefficient K1, and the solenoid valve 69 is closed from the open state, Similarly, the last value TGNCc00 of the period in which the solenoid valve 69 was closed last time is set to the previous value TGNCc00. And then may be further changing the target compressor speed TGNCc the value TGNCc00z × K1 obtained by multiplying a predetermined correction coefficient K2 thereto.
 尚、上記補正係数K1、K2は予め実験により適正な値を求めておく。このように前回値TGNCc00zに補正係数K1、K2を乗算することで、車両用空気調和装置1の特性や環境に応じて補正係数K1、K2を設定することにより、圧縮機2の回転数をより適切な値に変更することができるようになる。 Note that the above correction coefficients K1 and K2 should be preliminarily obtained by experiments. In this way, by multiplying the previous value TGNCc00z by the correction factors K1 and K2, the correction factors K1 and K2 are set according to the characteristics and the environment of the vehicle air conditioner 1, so that the rotation speed of the compressor 2 can be further improved. You will be able to change it to an appropriate value.
 (12-3)空調(優先)+バッテリ冷却モードでの電磁弁69の開閉時の圧縮機目標回転数TGNCcの変更制御(その3)
 また、例えば図14のタイミングTM3で電磁弁69を閉じるときは、車両用空気調和装置1が停止した状態から圧縮機2を起動した後、最初に電磁弁69を閉じるタイミングであるため、前回電磁弁69を閉じていた期間の前回値TGNCc00zがメモリ32Mに存在しない。
(12-3) Change control of compressor target rotation speed TGNCc when opening / closing the solenoid valve 69 in the air conditioning (priority) + battery cooling mode (part 3)
Further, for example, when closing the solenoid valve 69 at the timing TM3 in FIG. 14, it is the first timing to close the solenoid valve 69 after starting the compressor 2 from the state in which the vehicle air conditioner 1 is stopped. The previous value TGNCc00z for the period when the valve 69 was closed is not present in the memory 32M.
 このように前回値TGNCc00zが無い状態で、電磁弁69を開いた状態から閉じるときには、図12の制御ブロック図におけるF/B操作量演算部87の積分項をクリアする。積分項をクリアすることで、圧縮機目標回転数のF/B操作量TGNCcfbは低下するので、目標圧縮機回転数TGNCcも低下することになる。 In this way, when the solenoid valve 69 is closed from the open state without the previous value TGNCc00z, the integral term of the F / B operation amount calculation unit 87 in the control block diagram of FIG. 12 is cleared. By clearing the integral term, the F / B operation amount TGNCcfb of the compressor target rotation speed decreases, so the target compressor rotation speed TGNCc also decreases.
 また、前回値TGNCc00zが無い状態で、逆に電磁弁69を閉じた状態から開くときには、図12の制御ブロック図におけるF/B操作量演算部87の積分項を所定値TGNCcfb1だけ上昇させる。積分項を上昇させることで、圧縮機目標回転数のF/B操作量TGNCcfbは上昇するので、目標圧縮機回転数TGNCcも上昇することになる。 Further, when the solenoid valve 69 is opened from the closed state when the previous value TGNCc00z does not exist, the integral term of the F / B operation amount calculation unit 87 in the control block diagram of FIG. 12 is increased by the predetermined value TGNCcfb1. By increasing the integral term, the F / B operation amount TGNCcfb of the compressor target rotation speed increases, so the target compressor rotation speed TGNCc also increases.
 尚、この所定値TGNCcfb1も予め実験により適切な値を求めておく。このようにすれば、例えばメモリ32Mに前回値TGNCc00zが無いとき等でも、電磁弁69の開閉に即座に対応して圧縮機2の回転数を適切な値に変更することができるようになる。尚、この場合もその後の制御周期からは通常のTGNCcの演算に復帰する。 Note that an appropriate value for this predetermined value TGNCcfb1 should also be obtained in advance by experiments. By doing so, for example, even when the memory 32M does not have the previous value TGNCc00z, it is possible to immediately change the rotation speed of the compressor 2 in response to the opening / closing of the solenoid valve 69. Also in this case, the normal calculation of TGNCc is resumed from the subsequent control cycle.
 (12-4)空調(優先)+バッテリ冷却モードでの電磁弁69の開閉時の圧縮機目標回転数TGNCcの変更制御(その4)
 同様に例えば前回値TGNCc00zが無いとき、上記によらず、電磁弁69を閉じた状態から開くときは、加算器88で加算された値TGNCc00を所定値X1だけ上昇させ、逆に電磁弁69を開いた状態から閉じるときには、TGNCc00を所定値X2だけ低下させるようにしてもよい。
(12-4) Change control of compressor target speed TGNCc when opening / closing solenoid valve 69 in air conditioning (priority) + battery cooling mode (part 4)
Similarly, for example, when the previous value TGNCc00z does not exist, and when the solenoid valve 69 is opened from the closed state regardless of the above, the value TGNCc00 added by the adder 88 is increased by the predetermined value X1 and the solenoid valve 69 is turned on the contrary. When closing the open state, TGNCc00 may be lowered by a predetermined value X2.
 尚、この所定値X1、X2も予め実験により適切な値を求めておく。このようにすれば、メモリ32Mに前回値TGNCc00zが無いとき等でも、所定値X1、X2を予め適切に設定しておくことで、電磁弁69の開閉に即座に対応して圧縮機2の回転数を適切な値に変更することができるようになる。尚、この場合もその後の制御周期からは通常のTGNCcの演算に復帰する。 Note that appropriate values for these predetermined values X1 and X2 should be obtained in advance through experiments. With this configuration, even when the previous value TGNCc00z does not exist in the memory 32M, by appropriately setting the predetermined values X1 and X2 in advance, it is possible to immediately respond to the opening / closing of the solenoid valve 69 and rotate the compressor 2 accordingly. You will be able to change the number to an appropriate value. Also in this case, the normal calculation of TGNCc is resumed from the subsequent control cycle.
 (12-5)バッテリ冷却(優先)+空調モード(第2の運転モード)での電磁弁35(吸熱器用弁装置)の開閉時の圧縮機目標回転数TGNCwの変更制御(その1)
 次に、図15~図17を参照しながらバッテリ冷却(優先)+空調モードにおいて、ヒートポンプコントローラ32が実行する電磁弁35の開閉時の圧縮機目標回転数TGNCwの変更制御の一例について説明する。ヒートポンプコントローラ32は、図15の制御ブロック図による圧縮機目標回転数TGNCwの演算中、F/F操作量TGNCwffとF/B操作量TGNCwfbを加算器94で加算した値TGNCw00(本発明における圧縮機2の回転数)を、制御周期毎に常にメモリ32Mに記憶している。
(12-5) Battery Cooling (Priority) + Change Control of Compressor Target Rotational Speed TGNCw When Opening / Closing the Solenoid Valve 35 (Heat Absorber Valve Device) in Air Conditioning Mode (Second Operation Mode) (Part 1)
Next, with reference to FIGS. 15 to 17, an example of change control of the compressor target rotation speed TGNCw at the time of opening / closing the solenoid valve 35 executed by the heat pump controller 32 in the battery cooling (priority) + air conditioning mode will be described. The heat pump controller 32 adds the F / F operation amount TGNCwff and the F / B operation amount TGNCwfb by the adder 94 during the calculation of the compressor target rotation speed TGNCw according to the control block diagram of FIG. 15 TGNCw00 (the compressor in the present invention. The rotation speed of 2) is always stored in the memory 32M for each control cycle.
 そして、図17の例えばタイミングTM10の制御周期で電磁弁35を閉じた状態から開くとき、前回電磁弁35を開いていたタイミングTM7~TM9の期間の値TGNCw00(電磁弁35を前回開いていたときの回転数)のうち、図17にP8で示す位置の最後の値を前回値TGNCw00zとし、図17中破線矢印で示す如く、タイミングTM10の制御周期での目標圧縮機回転数TGNCwを、この前回値TGNCw00zに変更する。これにより、圧縮機2の回転数NCは即座に上昇することになる。尚、その後の制御周期からは通常のTGNCwの演算に復帰する。 Then, for example, when the solenoid valve 35 is opened from the closed state in the control cycle of timing TM10 in FIG. 17, the value TGNCw00 (when the solenoid valve 35 was opened last time) during the period from timing TM7 to TM9 in which the solenoid valve 35 was opened last time. 17), the last value of the position indicated by P8 in FIG. 17 is set as the previous value TGNCw00z, and the target compressor rotation speed TGNCw in the control cycle of the timing TM10 is set as the previous value TGNCw00z. Change to the value TGNCw00z. As a result, the rotational speed NC of the compressor 2 immediately increases. It should be noted that from the subsequent control cycle, the normal TGNCw calculation is resumed.
 また、図17の例えばタイミングTM11の制御周期で電磁弁35を開いた状態から閉じるとき、前回電磁弁35を閉じていたタイミングTM9~TM10の期間の値TGNCw00(電磁弁35を前回閉じていたときの回転数)のうち、図17にP9で示す位置の最後の値を前回値TGNCw00zとし、図17中破線矢印で示す如く、タイミングTM11の制御周期での目標圧縮機回転数TGNCwを、この前回値TGNCw00zに変更する。これにより、圧縮機2の回転数NCは即座に低下することになる。尚、その後の制御周期からは通常のTGNCwの演算に復帰する。 Further, for example, when the solenoid valve 35 is closed from the open state in the control cycle of timing TM11 in FIG. 17, the value TGNCw00 (when the solenoid valve 35 was closed last time) during the period from timing TM9 to TM10 in which the solenoid valve 35 was closed last time. 17), the last value of the position indicated by P9 in FIG. 17 is set as the previous value TGNCw00z, and the target compressor rotation speed TGNCw in the control cycle of the timing TM11 is set as the previous value TGNCw00z. Change to the value TGNCw00z. As a result, the rotation speed NC of the compressor 2 immediately decreases. It should be noted that from the subsequent control cycle, the normal TGNCw calculation is resumed.
 更に、図17の例えばタイミングTM12の制御周期で電磁弁35を閉じた状態から開くときは、前回電磁弁35を開いていたタイミングTM10~TM11の期間の値TGNCw00のうち、図17にP10で示す位置の最後の値を前回値TGNCw00zとし、図17中破線矢印で示す如く、タイミングTM12の制御周期での目標圧縮機回転数TGNCwを、この前回値TGNCw00zに変更する。これにより、圧縮機2の回転数NCは即座に上昇することになる。尚、その後の制御周期からは通常のTGNCwの演算に復帰する。 Further, for example, when the electromagnetic valve 35 is opened from the closed state in the control cycle of the timing TM12 in FIG. 17, the value TGNCw00 in the period of the timing TM10 to TM11 in which the electromagnetic valve 35 was opened last time is shown by P10 in FIG. The last value of the position is set to the previous value TGNCw00z, and the target compressor rotational speed TGNCw in the control cycle of the timing TM12 is changed to the previous value TGNCw00z as indicated by the broken line arrow in FIG. As a result, the rotational speed NC of the compressor 2 immediately increases. It should be noted that from the subsequent control cycle, the normal TGNCw calculation is resumed.
 このようにして電磁弁35を閉じた状態から開くとき、圧縮機2の回転数NCを上昇させ、電磁弁35を開いた状態から閉じるとき、圧縮機2の回転数NCを低下させるので、電磁弁35を閉じた状態から開くとき、冷媒-熱媒体熱交換器64の冷媒流路64Bに流入する冷媒が急激に減少する状況において圧縮機2の回転数NCを上昇させ、電磁弁35を開いた状態から閉じるとき、冷媒-熱媒体熱交換器64の冷媒流路64Bに流入する冷媒が急激に増加する状況においては圧縮機2の回転数NCを低下させることができるようになる。 In this way, when the electromagnetic valve 35 is opened from the closed state, the rotation speed NC of the compressor 2 is increased, and when the electromagnetic valve 35 is closed from the opened state, the rotation speed NC of the compressor 2 is decreased. When the valve 35 is opened from the closed state, the rotational speed NC of the compressor 2 is increased and the solenoid valve 35 is opened in a situation where the refrigerant flowing into the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64 is rapidly reduced. When the closed state is closed, the rotation speed NC of the compressor 2 can be reduced in a situation where the refrigerant flowing into the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64 rapidly increases.
 これにより、冷媒流路の変化に即座に対応して圧縮機2の回転数NCを変更し、熱媒体温度Twを図17の最下段に示すように目標熱媒体温度TWOに安定的に制御することができるようになるので、バッテリ55に循環される熱媒体の温度が大きく変動し、バッテリ55の冷却が不足する不都合を解消することができるようになる。また、電磁弁35を開くときには吸熱器9にも冷媒を支障無く供給することができるようになるので、総じて冷媒-熱媒体熱交換器64によるバッテリ55の冷却制御と吸熱器9による車室内の冷房を安定的に実現することが可能となる。 As a result, the rotational speed NC of the compressor 2 is immediately changed in response to a change in the refrigerant flow path, and the heat medium temperature Tw is stably controlled to the target heat medium temperature TWO as shown in the bottom of FIG. As a result, it is possible to solve the problem that the temperature of the heat medium circulated in the battery 55 fluctuates greatly and the cooling of the battery 55 is insufficient. Further, since the refrigerant can be supplied to the heat absorber 9 without any trouble when the electromagnetic valve 35 is opened, the cooling control of the battery 55 by the refrigerant-heat medium heat exchanger 64 and the interior of the vehicle interior by the heat absorber 9 are generally performed. It is possible to realize stable cooling.
 特に、この実施例ではヒートポンプコントローラ32が、電磁弁35を閉じた状態から開くとき、電磁弁35を前回開いていた期間の最後の値TGNCw00を前回値TGNCw00zとしてこの前回値TGNCw00zに目標圧縮機回転数TGNCwを変更すると共に、電磁弁35を開いた状態から閉じるとき、電磁弁35を前回閉じていた期間の最後の値TGNCw00を前回値TGNCw00zとしてこの前回値TGNCw00zに目標圧縮機回転数TGNCwを変更するようにしているので、電磁弁35の開閉に即座に対応して圧縮機2の回転数を適切な値に変更することができるようになる。 In particular, in this embodiment, when the heat pump controller 32 opens the electromagnetic valve 35 from the closed state, the last value TGNCw00z is set as the last value TGNCw00z with the last value TGNCw00 of the period in which the electromagnetic valve 35 was opened last time and the target compressor rotation When changing the number TGNCw and closing the solenoid valve 35 from the open state, the target compressor rotation speed TGNCw is changed to the previous value TGNCw00z by setting the last value TGNCw00 of the period in which the solenoid valve 35 was closed last time to the previous value TGNCw00z. Therefore, the rotation speed of the compressor 2 can be changed to an appropriate value immediately in response to the opening / closing of the solenoid valve 35.
 尚、この実施例では電磁弁35を閉じた状態から開くとき、電磁弁35を前回開いていた期間の最後の値TGNCw00を前回値TGNCw00zとし、電磁弁35を開いた状態から閉じるとき、電磁弁35を前回閉じていた期間の最後の値TGNCw00を前回値TGNCw00zとするようにしたが、それに限らず、電磁弁35を閉じた状態から開くときは、電磁弁35を前回開いていた期間のTGNCw00のうちの何れかの値、若しくは、それらの平均値を前回値TGNCw00zとしてもよく、電磁弁35を開いた状態から閉じるときは、電磁弁35を前回閉じていた期間のTGNCw00のうちの何れかの値、若しくは、それらの平均値を前回値TGNCw00zとしてもよい(以下、同じ)。 In this embodiment, when the solenoid valve 35 is opened from the closed state, the last value TGNCw00 of the period when the solenoid valve 35 was opened last time is set to the previous value TGNCw00z, and when the solenoid valve 35 is closed from the opened state, the solenoid valve 35 is opened. Although the last value TGNCw00 of the period in which 35 is closed last time is set to the previous value TGNCw00z, the present invention is not limited to this. When opening the solenoid valve 35 from the closed state, TGNCw00 in the period in which the solenoid valve 35 was opened last time. May be set to the previous value TGNCw00z, and when closing the solenoid valve 35 from the open state, any one of TGNCw00 in the period when the solenoid valve 35 was closed last time. Value or the average value thereof may be used as the previous value TGNCw00z (hereinafter the same).
 (12-6)バッテリ冷却(優先)+空調モードでの電磁弁35の開閉時の圧縮機目標回転数TGNCwの変更制御(その2)
 ここで、上記実施例ではヒートポンプコントローラ32が、電磁弁35を閉じた状態から開くとき、電磁弁35を前回開いていた期間の値TGNCw00を前回値TGNCw00zとし、電磁弁35を開いた状態から閉じるとき、電磁弁35を前回閉じていた期間の値TGNCw00を前回値TGNCw00zとするようにしたが、それに限らず、電磁弁35を閉じた状態から開くとき、同様に電磁弁35を前回開いていた期間の最後の値TGNCw00を前回値TGNCw00zとし、更にこれに所定の補正係数K3を乗算した値TGNCw00z×K3に目標圧縮機回転数TGNCwを変更すると共に、電磁弁35を開いた状態から閉じるとき、同様に電磁弁35を前回閉じていた期間の最後の値TGNCw00を前回値TGNCw00zとし、更にこれに所定の補正係数K4を乗算した値TGNCw00z×K4に目標圧縮機回転数TGNCwを変更するようにしてもよい。
(12-6) Battery cooling (priority) + change control of compressor target rotation speed TGNCw when opening / closing the solenoid valve 35 in the air conditioning mode (part 2)
Here, in the above embodiment, when the heat pump controller 32 opens the solenoid valve 35 from the closed state, the value TGNCw00 of the period in which the solenoid valve 35 was opened last time is set to the previous value TGNCw00z, and the solenoid valve 35 is closed from the open state. At this time, the value TGNCw00 of the period in which the solenoid valve 35 was closed last time was set to the previous value TGNCw00z, but not limited to this, when opening the solenoid valve 35 from the closed state, the solenoid valve 35 was similarly opened last time. When the final value TGNCw00 of the period is set to the previous value TGNCw00z, and the target compressor rotation speed TGNCw is changed to a value TGNCw00z × K3 obtained by multiplying the last value TGNCw00z by a predetermined correction coefficient K3, and the solenoid valve 35 is closed from the open state, Similarly, the last value TGNCw00 of the period when the solenoid valve 35 was closed last time is set to the previous value TGNCw00. And then, it may be changed to target compressor speed TGNCw the value TGNCw00z × K4 was further multiplied by a predetermined correction coefficient K4 thereto.
 尚、上記補正係数K3、K4は予め実験により適切な値を求めておく。このように前回値TGNCw00zに補正係数K3、K4を乗算することで、車両用空気調和装置1の特性や環境に応じて補正係数K3、K4を設定することにより、圧縮機2の回転数をより適切な値に変更することができるようになる。 Note that the above correction coefficients K3 and K4 should be determined in advance by experiments. In this way, by multiplying the previous value TGNCw00z by the correction factors K3 and K4, the correction factors K3 and K4 are set according to the characteristics and the environment of the vehicle air conditioner 1, so that the number of revolutions of the compressor 2 is further increased. You will be able to change it to an appropriate value.
 (12-7)バッテリ冷却(優先)+空調モードでの電磁弁35の開閉時の圧縮機目標回転数TGNCwの変更制御(その3)
 また、例えば図17のタイミングTM9で電磁弁35を閉じるときは、車両用空気調和装置1が停止した状態から圧縮機2を起動した後、最初に電磁弁35を閉じるタイミングであるため、前回電磁弁35を閉じていた期間の前回値TGNCw00zがメモリ32Mに存在しない。
(12-7) Battery cooling (priority) + change control of compressor target rotation speed TGNCw when opening / closing the solenoid valve 35 in the air conditioning mode (3)
Further, for example, when the electromagnetic valve 35 is closed at timing TM9 in FIG. 17, it is the first timing to close the electromagnetic valve 35 after the compressor 2 is started from the state in which the vehicle air conditioner 1 is stopped, so the previous electromagnetic The previous value TGNCw00z for the period when the valve 35 is closed does not exist in the memory 32M.
 このように前回値TGNCw00zが無い状態で、電磁弁35を開いた状態から閉じるときには、図15の制御ブロック図におけるF/B操作量演算部93の積分項をクリアする。積分項をクリアすることで、圧縮機目標回転数のF/B操作量TGNCwfbは低下するので、目標圧縮機回転数TGNCwも低下することになる。 In this way, when the solenoid valve 35 is closed from the open state without the previous value TGNCw00z, the integral term of the F / B operation amount calculation unit 93 in the control block diagram of FIG. 15 is cleared. By clearing the integral term, the F / B operation amount TGNCwfb of the compressor target rotation speed decreases, so the target compressor rotation speed TGNCw also decreases.
 また、前回値TGNCw00zが無い状態で、逆に電磁弁35を閉じた状態から開くときには、図15の制御ブロック図におけるF/B操作量演算部93の積分項を所定値TGNCwfb1だけ上昇させる。積分項を上昇させることで、圧縮機目標回転数のF/B操作量TGNCwfbは上昇するので、目標圧縮機回転数TGNCwも上昇することになる。 When the solenoid valve 35 is opened from the closed state when the previous value TGNCw00z does not exist, the integral term of the F / B operation amount calculation unit 93 in the control block diagram of FIG. 15 is increased by the predetermined value TGNCwfb1. By increasing the integral term, the F / B operation amount TGNCwfb of the compressor target rotation speed increases, so the target compressor rotation speed TGNCw also increases.
 尚、上記積分項のクリアと上昇は、何れか一方のみを実施する場合にも本発明は有効である。また、前述した所定値TGNCwfb1も予め実験により適切な値を求めておく。このようにすれば、例えばメモリ32Mに前回値TGNCw00zが無いとき等でも、電磁弁35の開閉に即座に対応して圧縮機2の回転数を適切な値に変更することができるようになる。尚、この場合もその後の制御周期からは通常のTGNCwの演算に復帰する。 The present invention is effective even when only one of the above-mentioned integral term is cleared and raised. In addition, the predetermined value TGNCwfb1 described above is also determined as an appropriate value by an experiment in advance. By doing so, for example, even when the memory 32M does not have the previous value TGNCw00z, it is possible to immediately change the rotational speed of the compressor 2 to an appropriate value in response to opening / closing of the solenoid valve 35. In this case as well, from the subsequent control cycle, the normal calculation of TGNCw is resumed.
 (12-8)バッテリ冷却(優先)+空調モードでの電磁弁35の開閉時の圧縮機目標回転数TGNCwの変更制御(その4)
 同様に例えば前回値TGNCw00zが無いとき、上記によらず、電磁弁35を閉じた状態から開くときは、加算器94で加算された値TGNCw00を所定値X3だけ上昇させ、逆に電磁弁35を開いた状態から閉じるときには、TGNCw00を所定値X4だけ低下させるようにしてもよい。
(12-8) Battery cooling (priority) + change control of compressor target rotation speed TGNCw when opening / closing the solenoid valve 35 in the air conditioning mode (Part 4)
Similarly, for example, when the previous value TGNCw00z does not exist and when the solenoid valve 35 is opened from the closed state regardless of the above, the value TGNCw00 added by the adder 94 is increased by a predetermined value X3, and conversely the solenoid valve 35 is opened. When closing from the open state, TGNCw00 may be lowered by a predetermined value X4.
 上記所定値X3、X4も予め実験により適切な値を求めておく。このようにすれば、メモリ32Mに前回値TGNCw00zが無いとき等でも、所定値X3、X4を予め適切に設定しておくことで、電磁弁35の開閉に即座に対応して圧縮機2の回転数を適切な値に変更することができるようになる。尚、この場合もその後の制御周期からは通常のTGNCwの演算に復帰する。 Also, determine appropriate values for the above predetermined values X3 and X4 beforehand through experiments. In this way, even when the previous value TGNCw00z does not exist in the memory 32M, the predetermined values X3 and X4 are appropriately set in advance, so that the compressor 2 is rotated immediately in response to opening / closing of the solenoid valve 35. You will be able to change the number to an appropriate value. In this case as well, from the subsequent control cycle, the normal calculation of TGNCw is resumed.
 尚、実施例では電磁弁69を閉じた状態から開くとき、圧縮機2の回転数を上昇させると共に、電磁弁69を開いた状態から閉じるとき、圧縮機2の回転数を低下させるようにしたが、何れか一方のみを実行する場合にも本発明は有効である。また、前述した実施例では熱媒体温度Twを冷媒-熱媒体熱交換器64(被温調対象用熱交換器)により冷却される対象(熱媒体)の温度として採用したが、バッテリ温度Tcellを冷媒-熱媒体熱交換器64(被温調対象用熱交換器)により冷却される対象の温度として採用してもよく、冷媒-熱媒体熱交換器64の温度(冷媒-熱媒体熱交換器64自体の温度、冷媒流路64Bを出た冷媒の温度等)を冷媒-熱媒体熱交換器64(被温調対象用熱交換器)の温度として採用してもよい。 In the embodiment, when the electromagnetic valve 69 is opened from the closed state, the rotation speed of the compressor 2 is increased, and when the electromagnetic valve 69 is closed from the opened state, the rotation speed of the compressor 2 is decreased. However, the present invention is effective when only one of them is executed. Further, in the above-described embodiment, the heat medium temperature Tw is adopted as the temperature of the target (heat medium) cooled by the refrigerant-heat medium heat exchanger 64 (heat exchanger for temperature controlled), but the battery temperature Tcell is used. It may be adopted as the temperature of the object cooled by the refrigerant-heat medium heat exchanger 64 (heat exchanger for temperature control), and the temperature of the refrigerant-heat medium heat exchanger 64 (refrigerant-heat medium heat exchanger) The temperature of 64 itself, the temperature of the refrigerant exiting the refrigerant channel 64B, etc.) may be adopted as the temperature of the refrigerant-heat medium heat exchanger 64 (heat exchanger for temperature adjustment).
 また、実施例では熱媒体を循環させてバッテリ55の温調を行うようにしたが、それに限らず、冷媒とバッテリ55(被温調対象)を直接熱交換させる被温調対象用熱交換器を設けてもよい。その場合には、バッテリ温度Tcellが被温調対象用熱交換器により冷却される対象の温度となる。 Further, in the embodiment, the heat medium is circulated to control the temperature of the battery 55. However, the present invention is not limited to this, and the heat exchanger for the temperature-controlled object for directly exchanging heat between the refrigerant and the battery 55 (object to be temperature-controlled). May be provided. In that case, the battery temperature Tcell becomes the temperature of the target to be cooled by the target heat exchanger for temperature adjustment.
 また、実施例では車室内の冷房とバッテリ55の冷却を同時に行う空調(優先)+バッテリ冷却モードとバッテリ冷却(優先)+空調モードで車室内を冷房しながらバッテリ55を冷却することができる車両用空気調和装置1で説明したが、バッテリ55の冷却は冷房中に限らず、他の空調運転、例えば前述した除湿暖房運転とバッテリ55の冷却を同時に行うようにしてもよい。その場合には、電磁弁69を開き、冷媒配管13Fを経て吸熱器9に向かう冷媒の一部を分岐配管67に流入させ、冷媒-熱媒体熱交換器64に流すことになる。 In the embodiment, the vehicle 55 is capable of cooling the battery 55 while cooling the inside of the vehicle in the air conditioning (priority) + battery cooling mode and the battery cooling (priority) + air conditioning mode for simultaneously cooling the vehicle interior and cooling the battery 55. Although the air conditioning apparatus 1 has been described, the cooling of the battery 55 is not limited to during cooling, but other air conditioning operation, for example, the above-described dehumidifying and heating operation and cooling of the battery 55 may be performed simultaneously. In that case, the electromagnetic valve 69 is opened, and a part of the refrigerant flowing toward the heat absorber 9 via the refrigerant pipe 13F is caused to flow into the branch pipe 67 and flow into the refrigerant-heat medium heat exchanger 64.
 更に、実施例では電磁弁35を吸熱器用弁装置(弁装置)、電磁弁69を被温調対象用弁装置(弁装置)としたが、室内膨張弁8や補助膨張弁68を全閉可能な電動弁にて構成した場合には、各電磁弁35や69は不要となり、室内膨張弁8が本発明における吸熱器用弁装置(弁装置)となり、補助膨張弁68が被温調対象用弁装置(弁装置)となる。 Further, in the embodiment, the electromagnetic valve 35 is the heat absorber valve device (valve device) and the electromagnetic valve 69 is the temperature controlled valve device (valve device), but the indoor expansion valve 8 and the auxiliary expansion valve 68 can be fully closed. In the case of a motor-operated valve, the solenoid valves 35 and 69 are unnecessary, the indoor expansion valve 8 serves as the heat absorber valve device (valve device) of the present invention, and the auxiliary expansion valve 68 serves as the temperature-controlled valve. It becomes a device (valve device).
 但し、実施例の如く吸熱器用弁装置(弁装置)を全閉及び全開が可能な弁である電磁弁35で構成し、被温調対象用弁装置(弁装置)も全閉及び全開が可能な弁である電磁弁69で構成した場合に本発明は特に有効である。尚、吸熱器用弁装置(弁装置)と被温調対象用弁装置(弁装置)は、全閉と全開に限らず、異なる二種類の開度を切り替え可能な弁であっても本発明は有効である。 However, as in the embodiment, the heat absorber valve device (valve device) is configured by the solenoid valve 35 that is a valve that can be fully closed and fully opened, and the temperature controlled object valve device (valve device) can also be fully closed and fully opened. The present invention is particularly effective when the electromagnetic valve 69 is a simple valve. It should be noted that the heat absorber valve device (valve device) and the temperature-controlled object valve device (valve device) are not limited to fully closed and fully opened, and even if the valve can switch between two different types of opening, the present invention It is valid.
 更にまた、実施例では吸熱器9と冷媒-熱媒体熱交換器64を本発明における第1の蒸発器、第2の蒸発器としたが、請求項1乃至請求項5の発明ではそれに限らず、例えば車室内に供給される空気を冷却するメインの蒸発器(実施例の吸熱器9)の他に、もう一つの蒸発器(リアシート用蒸発器等、車室内の他の箇所の冷房、若しくは、車室外の車両の他の箇所を冷却するための蒸発器)を備えた車両用空気調和装置にも有効である。その場合には、吸熱器9ともう一つの蒸発器(リアシート用蒸発器等)のうちの何れか一方が本発明における第1の蒸発器となり、他方が第2の蒸発器となる。 Furthermore, in the embodiment, the heat absorber 9 and the refrigerant-heat medium heat exchanger 64 are the first evaporator and the second evaporator in the present invention, but the inventions of claims 1 to 5 are not limited thereto. For example, in addition to the main evaporator (heat absorber 9 of the embodiment) that cools the air supplied to the vehicle compartment, another evaporator (e.g., an evaporator for a rear seat) to cool other parts of the vehicle compartment, or It is also effective for a vehicle air conditioner equipped with an evaporator for cooling other parts of the vehicle outside the vehicle compartment. In that case, one of the heat absorber 9 and the other evaporator (evaporator for rear seat, etc.) serves as the first evaporator of the present invention, and the other serves as the second evaporator.
 また、請求項1乃至請求項5の発明では吸熱器9と冷媒-熱媒体熱交換器64に加えて、もう一つの蒸発器(リアシート用蒸発器等)を備えた車両用空気調和装置にも本発明は有効である。その場合は、例えば吸熱器9(メインの蒸発器)及びもう一つの蒸発器(リアシート用蒸発器等)のセットと、冷媒-熱媒体熱交換器64のうちの何れか一方が本発明における第1の蒸発器となり、他方が第2の蒸発器となる。 Further, in the inventions of claims 1 to 5, in addition to the heat absorber 9 and the refrigerant-heat medium heat exchanger 64, an air conditioner for a vehicle equipped with another evaporator (evaporator for rear seat, etc.) The present invention is effective. In that case, for example, one of the set of the heat absorber 9 (main evaporator) and another evaporator (evaporator for rear seat, etc.) and the refrigerant-heat medium heat exchanger 64 is the first in the present invention. One is the evaporator and the other is the second evaporator.
 また、実施例で説明した冷媒回路Rの構成や数値はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。更に、実施例では暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、空調(優先)+バッテリ冷却モード等の各運転モードを有する車両用空気調和装置1で本発明を説明したが、それに限らず、例えば冷房モード、空調(優先)+バッテリ冷却モード、及び、バッテリ冷却(優先)+空調モードを実行可能とされた車両用空気調和装置にも本発明は有効である。 Needless to say, the configuration and numerical values of the refrigerant circuit R described in the embodiments are not limited thereto and can be changed without departing from the spirit of the present invention. Further, in the embodiment, the present invention has been described with the vehicle air conditioner 1 having each operation mode such as the heating mode, the dehumidification heating mode, the dehumidification cooling mode, the cooling mode, the air conditioning (priority) + battery cooling mode, but the present invention is not limited thereto. Instead, the present invention is also effective for a vehicle air conditioner capable of executing, for example, a cooling mode, an air conditioning (priority) + battery cooling mode, and a battery cooling (priority) + air conditioning mode.
 1 車両用空気調和装置
 2 圧縮機
 3 空気流通路
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器(第1の蒸発器又は第2の蒸発器)
 11 制御装置
 32 ヒートポンプコントローラ(制御装置の一部を構成)
 35 電磁弁(弁装置、吸熱器用弁装置)
 45 空調コントローラ(制御装置の一部を構成)
 48 吸熱器温度センサ
 55 バッテリ(被温調対象)
 61 機器温度調整装置
 64 冷媒-熱媒体熱交換器(第2の蒸発器又は第1の蒸発器)
 68 補助膨張弁
 69 電磁弁(弁装置、被温調対象用弁装置)
 76 熱媒体温度センサ
 R 冷媒回路
1 Vehicle Air Conditioner 2 Compressor 3 Air Flow Path 4 Radiator 6 Outdoor Expansion Valve 7 Outdoor Heat Exchanger 8 Indoor Expansion Valve 9 Heat Absorber (First Evaporator or Second Evaporator)
11 control device 32 heat pump controller (constituting a part of control device)
35 Solenoid valve (valve device, valve device for heat absorber)
45 Air-conditioning controller (a part of control device)
48 Heat Sink Temperature Sensor 55 Battery (Target for Temperature Control)
61 Equipment Temperature Control Device 64 Refrigerant-Heat Medium Heat Exchanger (Second Evaporator or First Evaporator)
68 Auxiliary expansion valve 69 Electromagnetic valve (valve device, valve device for temperature controlled objects)
76 Heat medium temperature sensor R Refrigerant circuit

Claims (11)

  1.  冷媒を圧縮する圧縮機と、
     冷媒を蒸発させるための第1の蒸発器及び第2の蒸発器と、
     前記第2の蒸発器への冷媒の流通を制御する弁装置と、
     制御装置を少なくとも備えて車室内を空調する車両用空気調和装置において、
     前記制御装置は、
     前記第1の蒸発器又はそれにより冷却される対象の温度に基づいて前記圧縮機の回転数を制御し、前記第2の蒸発器又はそれにより冷却される対象の温度に基づいて前記弁装置を開閉制御すると共に、
     前記弁装置を閉じた状態から開くとき、前記圧縮機の回転数を上昇させる動作と、前記弁装置を開いた状態から閉じるとき、前記圧縮機の回転数を低下させる動作、のうちの少なくとも一方、若しくは、双方を実行することを特徴とする車両用空気調和装置。
    A compressor for compressing the refrigerant,
    A first evaporator and a second evaporator for evaporating the refrigerant;
    A valve device for controlling the flow of the refrigerant to the second evaporator;
    In a vehicle air conditioner that includes at least a control device and air-conditions a vehicle interior,
    The control device is
    The rotation speed of the compressor is controlled based on the temperature of the first evaporator or the object cooled by the first evaporator, and the valve device is controlled based on the temperature of the second evaporator or the object cooled by the second evaporator. Opening and closing control,
    At least one of an operation of increasing the rotation speed of the compressor when opening the valve device from the closed state and an operation of decreasing the rotation speed of the compressor when closing the valve device from the open state. Alternatively, a vehicle air conditioner characterized by performing both.
  2.  前記制御装置は、
     前記弁装置を閉じた状態から開くとき、当該弁装置を前回開いていたときの回転数に前記圧縮機の回転数を変更し、及び/又は、
     前記弁装置を開いた状態から閉じるとき、当該弁装置を前回閉じていたときの回転数に前記圧縮機の回転数を変更することを特徴とする請求項1に記載の車両用空気調和装置。
    The control device is
    When the valve device is opened from the closed state, the rotational speed of the compressor is changed to the rotational speed when the valve device was opened last time, and / or
    The vehicle air conditioner according to claim 1, wherein, when the valve device is closed from the open state, the rotational speed of the compressor is changed to the rotational speed when the valve device was closed last time.
  3.  前記制御装置は、
     前記弁装置を閉じた状態から開くとき、当該弁装置を前回開いていたときの回転数に所定の補正係数を乗算した値に前記圧縮機の回転数を変更し、及び/又は、
     前記弁装置を開いた状態から閉じるとき、当該弁装置を前回閉じていたときの回転数に所定の補正係数を乗算した値に前記圧縮機の回転数を変更することを特徴とする請求項1に記載の車両用空気調和装置。
    The control device is
    When the valve device is opened from the closed state, the rotational speed of the compressor is changed to a value obtained by multiplying the rotational speed when the valve device was opened last time by a predetermined correction coefficient, and / or,
    When the valve device is closed from the open state, the rotation speed of the compressor is changed to a value obtained by multiplying the rotation speed when the valve device was closed last time by a predetermined correction coefficient. The vehicle air conditioner according to.
  4.  前記弁装置を前回開いていたときの回転数とは、前回前記弁装置を開いていた期間の前記圧縮機の回転数のうちの何れかの値、或いは、それらの平均値、若しくは、最後の値であり、及び/又は、
     前記弁装置を前回閉じていたときの回転数とは、前回前記弁装置を閉じていた期間の前記圧縮機の回転数のうちの何れかの値、或いは、それらの平均値、若しくは、最後の値であることを特徴とする請求項2又は請求項3に記載の車両用空気調和装置。
    The number of revolutions when the valve device was opened last time is any value of the number of revolutions of the compressor in the period when the valve device was opened last time, or their average value, or the last value. Value and / or
    The number of revolutions when the valve device was closed last time, any value of the number of revolutions of the compressor during the period when the valve device was closed last time, or their average value, or the last It is a value, The air conditioning apparatus for vehicles of Claim 2 or Claim 3 characterized by the above-mentioned.
  5.  前記制御装置は、前記第1の蒸発器又はそれにより冷却される対象の温度に基づいて前記圧縮機の回転数をフィードバック制御すると共に、
     前記弁装置を開いた状態から閉じるとき、前記圧縮機の回転数を制御するフィードバック制御の積分項をクリアすることを特徴とする請求項1に記載の車両用空気調和装置。
    The control device feedback-controls the rotation speed of the compressor based on the temperature of the first evaporator or an object cooled by the first evaporator, and
    The vehicle air conditioner according to claim 1, wherein when the valve device is closed from an open state, an integral term of feedback control for controlling a rotation speed of the compressor is cleared.
  6.  前記制御装置は、前記第1の蒸発器又はそれにより冷却される対象の温度に基づいて前記圧縮機の回転数をフィードバック制御すると共に、
     前記弁装置を閉じた状態から開くとき、前記圧縮機の回転数を制御するフィードバック制御の積分項を所定値上昇させることを特徴とする請求項1又は請求項5に記載の車両用空気調和装置。
    The control device feedback-controls the rotation speed of the compressor based on the temperature of the first evaporator or an object cooled by the first evaporator, and
    The air conditioner for a vehicle according to claim 1 or 5, wherein when the valve device is opened from a closed state, an integral term of feedback control for controlling the rotation speed of the compressor is increased by a predetermined value. ..
  7.  冷媒を蒸発させて前記車室内に供給する空気を冷却するための吸熱器と、
     冷媒を蒸発させて車両に搭載された被温調対象を冷却するための被温調対象用熱交換器を備え、
     前記第1の蒸発器は、前記吸熱器と前記被温調対象用熱交換器のうちの何れか一方であり、前記第2の蒸発器は、前記吸熱器と前記被温調対象用熱交換器のうちの他方であることを特徴とする請求項1乃至請求項6のうちの何れかに記載の車両用空気調和装置。
    A heat absorber for cooling the air supplied to the vehicle compartment by evaporating the refrigerant,
    A heat exchanger for a temperature-controlled object for cooling a temperature-controlled object mounted on a vehicle by evaporating a refrigerant is provided,
    The first evaporator is one of the heat absorber and the heat exchanger for temperature control, and the second evaporator is the heat absorber and heat exchange for temperature control. The air conditioner for a vehicle according to any one of claims 1 to 6, which is the other of the devices.
  8.  前記吸熱器への冷媒の流通を制御する吸熱器用弁装置と、
     前記被温調対象用熱交換器への冷媒の流通を制御する被温調対象用弁装置を備え、
     前記制御装置は、
     前記吸熱器用弁装置を開き、前記吸熱器又はそれにより冷却される対象の温度に基づいて前記圧縮機の回転数を制御し、前記被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて前記被温調対象用弁装置を開閉制御する第1の運転モードと、
     前記被温調対象用弁装置を開き、前記被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて前記圧縮機の回転数を制御し、前記吸熱器又はそれにより冷却される対象の温度に基づいて前記吸熱器用弁装置を開閉制御する第2の運転モードを切り換えて実行することを特徴とする請求項7に記載の車両用空気調和装置。
    A heat absorber valve device for controlling the flow of the refrigerant to the heat absorber,
    A temperature controlled object valve device for controlling the flow of the refrigerant to the temperature controlled object heat exchanger,
    The control device is
    The heat absorber valve device is opened, the rotation speed of the compressor is controlled based on the temperature of the heat sink or the object cooled by the heat absorber, and the heat exchanger for the temperature-controlled object or the object cooled by it. A first operation mode for controlling opening / closing of the temperature controlled valve device based on temperature;
    Open the valve device for the temperature controlled object, control the rotation speed of the compressor based on the temperature of the heat exchanger for the temperature controlled object or the object to be cooled by it, is cooled by the heat absorber or it The vehicle air conditioner according to claim 7, wherein a second operation mode for controlling the opening and closing of the heat absorber valve device is switched and executed based on the temperature of the target object.
  9.  前記制御装置は、
     前記第1の運転モードにおいて、前記被温調対象用弁装置を閉じた状態から開くとき、前記圧縮機の回転数を上昇させ、及び/又は、前記被温調対象用弁装置を開いた状態から閉じるとき、前記圧縮機の回転数を低下させると共に、
     前記第2の運転モードにおいて、前記吸熱器用弁装置を閉じた状態から開くとき、前記圧縮機の回転数を上昇させ、及び/又は、前記吸熱器用弁装置を開いた状態から閉じるとき、前記圧縮機の回転数を低下させることを特徴とする請求項8に記載の車両用空気調和装置。
    The control device is
    In the first operation mode, when the valve device for temperature control target is opened from the closed state, the rotation speed of the compressor is increased and / or the valve device for temperature control target is opened. When closing from, while reducing the rotation speed of the compressor,
    In the second operation mode, when the heat absorber valve device is opened from the closed state, the rotation speed of the compressor is increased and / or when the heat absorber valve device is closed from the open state, the compression is performed. 9. The vehicle air conditioner according to claim 8, wherein the rotation speed of the machine is reduced.
  10.  前記弁装置は、異なる二種類の開度を切り替え可能な弁であることを特徴とする請求項1乃至請求項9のうちの何れかに記載の車両用空気調和装置。 The vehicle air conditioner according to any one of claims 1 to 9, wherein the valve device is a valve capable of switching between two different types of openings.
  11.  前記弁装置は、全開及び全閉を切り替え可能な弁であることを特徴とする請求項1乃至請求項10のうちの何れかに記載の車両用空気調和装置。 The vehicle air conditioner according to any one of claims 1 to 10, wherein the valve device is a valve capable of switching between fully open and fully closed.
PCT/JP2019/036223 2018-10-31 2019-09-13 Air conditioning device for vehicle WO2020090255A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980068195.4A CN112805166B (en) 2018-10-31 2019-09-13 Air conditioner for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-205639 2018-10-31
JP2018205639A JP7221650B2 (en) 2018-10-31 2018-10-31 Vehicle air conditioner

Publications (1)

Publication Number Publication Date
WO2020090255A1 true WO2020090255A1 (en) 2020-05-07

Family

ID=70463923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036223 WO2020090255A1 (en) 2018-10-31 2019-09-13 Air conditioning device for vehicle

Country Status (3)

Country Link
JP (1) JP7221650B2 (en)
CN (1) CN112805166B (en)
WO (1) WO2020090255A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7487562B2 (en) 2020-05-27 2024-05-21 株式会社デンソー Refrigeration Cycle Equipment
JP7494139B2 (en) 2021-03-24 2024-06-03 サンデン株式会社 Vehicle air conditioning system
JP2023107645A (en) * 2022-01-24 2023-08-03 サンデン株式会社 Air conditioner for vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001027455A (en) * 1999-05-13 2001-01-30 Denso Corp Heat pump air conditioner
JP2003279180A (en) * 2002-03-22 2003-10-02 Denso Corp Refrigerating cycle device for vehicle
JP2007145223A (en) * 2005-11-29 2007-06-14 Sanden Corp Air conditioner for vehicle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5402027B2 (en) * 2009-01-30 2014-01-29 ダイキン工業株式会社 Air conditioner
JP5817609B2 (en) * 2012-03-21 2015-11-18 株式会社デンソー Air conditioner for vehicles
JP5966796B2 (en) * 2012-09-17 2016-08-10 株式会社デンソー Air conditioner for vehicles
JP6266942B2 (en) * 2013-10-10 2018-01-24 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JP2016133238A (en) * 2015-01-16 2016-07-25 株式会社富士通ゼネラル Heat pump cycle device
US10328771B2 (en) * 2016-06-30 2019-06-25 Emerson Climated Technologies, Inc. System and method of controlling an oil return cycle for a refrigerated container of a vehicle
JP2018058575A (en) * 2016-09-30 2018-04-12 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001027455A (en) * 1999-05-13 2001-01-30 Denso Corp Heat pump air conditioner
JP2003279180A (en) * 2002-03-22 2003-10-02 Denso Corp Refrigerating cycle device for vehicle
JP2007145223A (en) * 2005-11-29 2007-06-14 Sanden Corp Air conditioner for vehicle

Also Published As

Publication number Publication date
CN112805166B (en) 2024-03-08
CN112805166A (en) 2021-05-14
JP2020069929A (en) 2020-05-07
JP7221650B2 (en) 2023-02-14

Similar Documents

Publication Publication Date Title
JP7300264B2 (en) Vehicle air conditioner
WO2020075446A1 (en) Vehicle air conditioning device
CN113165477B (en) Air conditioning device for vehicle
WO2020153032A1 (en) Vehicle battery temperature adjusting device, and vehicle air conditioning device provided with same
WO2020129495A1 (en) Vehicle air conditioning device
WO2020090255A1 (en) Air conditioning device for vehicle
WO2020100410A1 (en) Vehicle air-conditioning device
WO2020110508A1 (en) Vehicle battery temperature adjustment apparatus and vehicle air-conditioner equipped with same
JP7031105B2 (en) Vehicle control system
WO2020129493A1 (en) Vehicle air-conditioning apparatus
WO2020121737A1 (en) Vehicular air-conditioning device
CN112384392A (en) Air conditioner for vehicle
WO2020166274A1 (en) Vehicle air conditioner
CN113195272B (en) Air conditioning device for vehicle
JP7387520B2 (en) Vehicle air conditioner
WO2020100523A1 (en) Vehicular air-conditioning device
WO2020179492A1 (en) Vehicle air conditioner
WO2020100524A1 (en) Vehicle air-conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19878953

Country of ref document: EP

Kind code of ref document: A1