JP7372732B2 - Vehicle air conditioner - Google Patents

Vehicle air conditioner Download PDF

Info

Publication number
JP7372732B2
JP7372732B2 JP2018237267A JP2018237267A JP7372732B2 JP 7372732 B2 JP7372732 B2 JP 7372732B2 JP 2018237267 A JP2018237267 A JP 2018237267A JP 2018237267 A JP2018237267 A JP 2018237267A JP 7372732 B2 JP7372732 B2 JP 7372732B2
Authority
JP
Japan
Prior art keywords
temperature
compressor
refrigerant
heat
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018237267A
Other languages
Japanese (ja)
Other versions
JP2020097362A (en
Inventor
耕平 山下
竜 宮腰
孝史 青木
雄満 山崎
洪銘 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2018237267A priority Critical patent/JP7372732B2/en
Priority to DE112019006361.8T priority patent/DE112019006361T5/en
Priority to CN201980083918.8A priority patent/CN113165477A/en
Priority to PCT/JP2019/044842 priority patent/WO2020129494A1/en
Publication of JP2020097362A publication Critical patent/JP2020097362A/en
Application granted granted Critical
Publication of JP7372732B2 publication Critical patent/JP7372732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32281Cooling devices using compression characterised by refrigerant circuit configurations comprising a single secondary circuit, e.g. at evaporator or condenser side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/323Cooling devices using compression characterised by comprising auxiliary or multiple systems, e.g. plurality of evaporators, or by involving auxiliary cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3266Cooling devices information from a variable is obtained related to the operation of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/327Cooling devices output of a control signal related to a compressing unit
    • B60H2001/3272Cooling devices output of a control signal related to a compressing unit to control the revolving speed of a compressor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Description

本発明は、車室内を空調するヒートポンプ方式の車両用空気調和装置に関するものである。 The present invention relates to a heat pump type vehicle air conditioner that air-conditions a vehicle interior.

近年の環境問題の顕在化から、車両に搭載されたバッテリから供給される電力で走行用モータを駆動する電気自動車やハイブリッド自動車等の車両が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、電動式の圧縮機と、放熱器と、吸熱器(室内熱交換器)と、室外熱交換器が接続された冷媒回路を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させることで暖房し、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器において蒸発させ、吸熱させることで冷房する等して車室内を空調するものが開発されている(例えば、特許文献1参照)。 BACKGROUND ART Due to the emergence of environmental problems in recent years, vehicles such as electric vehicles and hybrid vehicles that drive a driving motor using electric power supplied from a battery mounted on the vehicle have become popular. An air conditioner that can be applied to such vehicles is equipped with a refrigerant circuit connected to an electric compressor, a radiator, a heat absorber (indoor heat exchanger), and an outdoor heat exchanger. The refrigerant discharged from the compressor radiates heat in a radiator, the refrigerant radiated in the radiator absorbs heat in an outdoor heat exchanger to provide heating, and the refrigerant discharged from the compressor radiates heat in an outdoor heat exchanger. A system has been developed that air-conditions the interior of a vehicle by evaporating heat in a heat absorber and absorbing heat to cool the vehicle interior (for example, see Patent Document 1).

一方、例えばバッテリは充放電による自己発熱等で高温となった環境下で充放電を行うと劣化が進行し、やがては作動不良を起こして破損する危険性がある。そこで、冷媒回路にバッテリ用の蒸発器を別途設け、冷媒回路を循環する冷媒とバッテリ用冷媒(熱媒体)とをこのバッテリ用の蒸発器で熱交換させ、この熱交換した熱媒体をバッテリに循環させることでバッテリを冷却することができるようにしたものも開発されている(例えば、特許文献2、特許文献3参照)。 On the other hand, for example, when a battery is charged and discharged in a high-temperature environment due to self-heating caused by charging and discharging, its deterioration progresses, and there is a risk that it may eventually malfunction and be damaged. Therefore, a separate evaporator for the battery is installed in the refrigerant circuit, and the refrigerant circulating in the refrigerant circuit and the refrigerant (heat medium) for the battery are exchanged in this evaporator for the battery, and this heat exchanged heat medium is transferred to the battery. Batteries that can be cooled by circulation have also been developed (see, for example, Patent Document 2 and Patent Document 3).

特開2014-213765号公報Japanese Patent Application Publication No. 2014-213765 特許第5860360号公報Patent No. 5860360 特許第5860361号公報Patent No. 5860361

上記のようにバッテリ(車両に搭載された被温調対象)を冷却する場合、熱媒体の温度とその目標温度に基づいて圧縮機の回転数を制御することになるが、制御範囲を超えて熱媒体の温度が低下し、或いは、バッテリの温度が下がり過ぎてしまうと、当該バッテリに結露してしまう問題があった。 When cooling the battery (temperature controlled object installed in a vehicle) as described above, the rotation speed of the compressor is controlled based on the temperature of the heat medium and its target temperature. When the temperature of the heat medium decreases or the temperature of the battery decreases too much, there is a problem in that dew condensation occurs on the battery.

本発明は、係る従来の技術的課題を解決するために成されたものであり、車両に搭載された被温調対象を冷却する際に、被温調対象の結露の発生を未然に回避することができる車両用空気調和装置を提供することを目的とする。 The present invention has been made to solve the conventional technical problem, and is an object of the present invention to prevent the occurrence of dew condensation on the temperature-controlled object when cooling the temperature-controlled object mounted on a vehicle. The purpose of the present invention is to provide a vehicle air conditioner that can perform the following tasks.

本発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、冷媒と車室内に供給する空気を熱交換させるための室内熱交換器と、制御装置を少なくとも備えて車室内を空調するものであって、冷媒を吸熱させて車両に搭載された被温調対象を冷却するための被温調対象用熱交換器を備え、制御装置は、被温調対象用熱交換器又はそれにより冷却される対象の温度と、その目標温度に基づいて圧縮機の回転数を制御する被温調対象冷却モードを有すると共に、目標温度の上側に設定された所定の上限値と、目標温度よりも低い所定の強制停止値と、この強制停止値より上側であって目標温度の下側に設定された所定の下限値を有し、被温調対象冷却モードにおいては、被温調対象用熱交換器又はそれにより冷却される対象の温度が、強制停止値を下回った場合、若しくは、当該強制停止値以下となった場合、その時点で圧縮機を停止し、当該圧縮機を停止した後は、上限値と下限値の間で圧縮機の運転/停止を繰り返すON-OFF制御を実行することを特徴とする。 The vehicle air conditioner of the present invention air-conditions the interior of a vehicle, including at least a compressor for compressing a refrigerant, an indoor heat exchanger for exchanging heat between the refrigerant and air supplied to the interior of the vehicle, and a control device. The controller is equipped with a heat exchanger for a temperature controlled object mounted on a vehicle for absorbing heat from a refrigerant to cool a temperature controlled object mounted on a vehicle, and the control device is configured to control the temperature controlled object heat exchanger or the heat exchanger cooled by the temperature controlled object. It has a temperature controlled target cooling mode that controls the rotation speed of the compressor based on the target temperature and the target temperature, and also has a predetermined upper limit set above the target temperature and a temperature lower than the target temperature. It has a predetermined forced stop value and a predetermined lower limit value that is set above the forced stop value and below the target temperature, and in the temperature controlled object cooling mode, the heat exchanger for the temperature controlled object Or, if the temperature of the object to be cooled thereby falls below the forced stop value , or if it becomes below the forced stop value, stop the compressor at that point, and after stopping the compressor, the upper limit It is characterized by executing ON-OFF control in which the compressor is repeatedly operated/stopped between the lower limit value and the lower limit value.

請求項3の発明の車両用空気調和装置は、上記発明において制御装置は、ON-OFF制御において圧縮機を運転する場合、制御上の所定の最低回転数で運転することを特徴とする。 The vehicle air conditioner according to claim 3 is characterized in that, in the above invention, when the control device operates the compressor under ON-OFF control, it operates at a predetermined minimum rotational speed for control.

請求項3の発明の車両用空気調和装置は、上記各発明において制御装置は、被温調対象用熱交換器又はそれにより冷却される対象の温度が上限値を上回り、若しくは、当該上限値以上となり、その状態が所定時間継続した場合、ON-OFF制御を終了して被温調対象用熱交換器又はそれにより冷却される対象の温度と、その目標温度に基づいて圧縮機の回転数を制御する状態に復帰することを特徴とする。 In the vehicle air conditioner of the invention of claim 3, in each of the above inventions, the control device is configured such that the temperature of the heat exchanger for temperature controlled object or the object cooled by it exceeds the upper limit value or is equal to or higher than the upper limit value. If this state continues for a predetermined period of time, the ON-OFF control is terminated and the rotation speed of the compressor is adjusted based on the temperature of the heat exchanger for temperature controlled object or the object cooled by it and its target temperature. It is characterized by returning to a controlled state.

請求項4の発明の車両用空気調和装置は、上記各発明において室内熱交換器への冷媒の流通を制御する弁装置を備え、制御装置は、被温調対象冷却モードとして、弁装置を開き、被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、室内熱交換器の温度に基づいて弁装置を開閉制御する被温調対象冷却(優先)+空調モードを有することを特徴とする。 The vehicle air conditioner according to the invention of claim 4 is provided with a valve device for controlling the flow of refrigerant to the indoor heat exchanger in each of the above inventions, and the control device opens the valve device as a temperature-controlled cooling mode. , Temperature-controlled object cooling that controls the rotation speed of the compressor based on the temperature of the temperature-controlled object heat exchanger or the object cooled by it, and controls the opening and closing of the valve device based on the temperature of the indoor heat exchanger. (priority) + air conditioning mode.

請求項5の発明の車両用空気調和装置は、上記発明において制御装置は、もう一つの被温調対象冷却モードとして、弁装置を閉じ、被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御する被温調対象冷却(単独)モードを有することを特徴とする。 In the vehicle air conditioner of the invention of claim 5, in the above invention, the control device closes the valve device as another cooling mode for the temperature controlled object, and the temperature controlled object is cooled by the heat exchanger or the like. It is characterized by having a temperature-controlled object cooling (single) mode in which the rotation speed of the compressor is controlled based on the temperature of the object.

請求項6の発明の車両用空気調和装置は、上記各発明において被温調対象と被温調対象用熱交換器の間で熱媒体を循環させる機器温度調整装置を備え、制御装置は、熱媒体の温度Tw又は被温調対象の温度Tcellを被温調対象用熱交換器により冷却される対象の温度として圧縮機を制御することを特徴とする。 The vehicle air conditioner according to the invention of claim 6 is provided with an equipment temperature adjustment device that circulates a heat medium between the object to be temperature controlled and the heat exchanger for the object to be temperature controlled in each of the above inventions, and the control device is configured to control the heat exchanger. It is characterized in that the compressor is controlled by using the temperature Tw of the medium or the temperature Tcell of the object to be temperature controlled as the temperature of the object to be cooled by the heat exchanger for the object to be temperature controlled.

本発明によれば、冷媒を圧縮する圧縮機と、冷媒と車室内に供給する空気を熱交換させるための室内熱交換器と、制御装置を少なくとも備えて車室内を空調する車両用空気調和装置において、冷媒を吸熱させて車両に搭載された被温調対象を冷却するための被温調対象用熱交換器を設け、制御装置が、被温調対象用熱交換器又はそれにより冷却される対象の温度と、その目標温度に基づいて圧縮機の回転数を制御する被温調対象冷却モードを有すると共に、この被温調対象冷却モードにおいては、被温調対象用熱交換器又はそれにより冷却される対象の温度が、目標温度よりも低い所定の強制停止値を下回った場合、若しくは、当該強制停止値以下となった場合、その時点で圧縮機を停止するようにしたので、被温調対象用熱交換器又はそれにより冷却される対象の温度を、圧縮機の回転数制御により目標温度に維持しているときに被温調対象の冷却負荷が減少し、制御範囲を超えて被温調対象用熱交換器又はそれにより冷却される対象の温度が低下して、強制停止値を下回った場合、若しくは、それ以下となった場合、即座に圧縮機を停止することができるようになり、被温調対象の温度が下がり過ぎて結露が発生してしまう不都合を未然に回避することができるようになる。 According to the present invention, a vehicle air conditioner that air-conditions a vehicle interior includes at least a compressor that compresses a refrigerant, an indoor heat exchanger that exchanges heat between the refrigerant and air supplied to the vehicle interior, and a control device. A heat exchanger for the temperature controlled object mounted on the vehicle is provided for absorbing heat from the refrigerant to cool the temperature controlled object mounted on the vehicle, and the control device is cooled by the temperature controlled object heat exchanger or the temperature controlled object. It has a temperature regulated object cooling mode that controls the temperature of the object and the rotation speed of the compressor based on the target temperature, and in this temperature regulated object cooling mode, the heat exchanger for the temperature regulated object or its If the temperature of the object to be cooled falls below a predetermined forced stop value that is lower than the target temperature, or if it becomes below the forced stop value, the compressor is stopped at that point, so the When the temperature of the target heat exchanger or the target cooled by it is maintained at the target temperature by controlling the rotation speed of the compressor, the cooling load of the target temperature decreases and the temperature exceeds the control range. If the temperature of the heat exchanger for temperature control or the object cooled by it drops and falls below the forced stop value, or below it, the compressor can be stopped immediately. This makes it possible to avoid the inconvenience of dew condensation occurring due to the temperature of the temperature-controlled object falling too low.

そして、制御装置は、目標温度の上側に設定された所定の上限値と、強制停止値より上側であって目標温度の下側に設定された所定の下限値を有し、被温調対象用熱交換器又はそれにより冷却される対象の温度が強制停止値を下回り、若しくは、強制停止値以下となって圧縮機を停止した後は、上限値と下限値の間で圧縮機の運転/停止を繰り返すON-OFF制御を実行するようにしたので、被温調対象の結露を回避しながら当該被温調対象を適切に冷却することができるようになる。 The control device has a predetermined upper limit value set above the target temperature and a predetermined lower limit value set above the forced stop value and below the target temperature. After the compressor is stopped because the temperature of the heat exchanger or the object cooled by it falls below the forced stop value or below the forced stop value, the compressor will be operated/stopped between the upper and lower limits. Since the ON-OFF control is executed repeatedly, it becomes possible to appropriately cool the temperature-controlled object while avoiding dew condensation on the temperature-controlled object.

特に、請求項2の発明の如く制御装置が、ON-OFF制御において圧縮機を運転する場合、制御上の所定の最低回転数で運転するようにすれば、圧縮機の頻繁な起動/停止を回避しながら、被温調対象を円滑に冷却することができるようになる。 In particular, when the control device operates the compressor under ON-OFF control as in the invention of claim 2, if the control device operates at a predetermined minimum rotation speed for control, frequent starting/stopping of the compressor can be avoided. It becomes possible to smoothly cool the object to be temperature controlled while avoiding the above.

また、請求項3の発明の如く制御装置が、被温調対象用熱交換器又はそれにより冷却される対象の温度が上限値を上回り、若しくは、当該上限値以上となり、その状態が所定時間継続した場合、ON-OFF制御を終了して被温調対象用熱交換器又はそれにより冷却される対象の温度と、その目標温度に基づいて圧縮機の回転数を制御する状態に復帰するようにすれば、被温調対象の冷却負荷が増大したことに応じて、圧縮機のON-OFF制御から通常の回転数制御に支障無く復帰することができるようになる。 Further, as in the invention of claim 3, the control device may cause the temperature of the heat exchanger for temperature controlled object or the object cooled by it to exceed the upper limit value, or become equal to or higher than the upper limit value, and this state continues for a predetermined period of time. In this case, the ON-OFF control is terminated and the compressor rotation speed is controlled based on the temperature of the heat exchanger for temperature controlled object or the object cooled by it and its target temperature. Then, in response to an increase in the cooling load of the object to be temperature controlled, it becomes possible to return from ON-OFF control of the compressor to normal rotation speed control without any problem.

更に、請求項6の発明の如く室内熱交換器への冷媒の流通を制御する弁装置を設け、制御装置が、被温調対象冷却モードとして、弁装置を開き、被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、室内熱交換器の温度に基づいて弁装置を開閉制御する被温調対象冷却(優先)+空調モードを有するようにすれば、被温調対象用熱交換器により被温調対象の冷却を優先的に行いながら、車室内の空調も行うことができるようになる。 Furthermore, as in the invention of claim 6, a valve device for controlling the flow of refrigerant to the indoor heat exchanger is provided, and the control device opens the valve device to set the cooling mode for the temperature controlled object to perform heat exchange for the temperature controlled object. It has a temperature-controlled object cooling (priority) + air conditioning mode that controls the rotation speed of the compressor based on the temperature of the heat exchanger or the object cooled by it, and controls the opening and closing of the valve device based on the temperature of the indoor heat exchanger. This makes it possible to air-condition the vehicle interior while preferentially cooling the temperature-controlled object using the heat exchanger for the temperature-controlled object.

また、請求項5の発明の如く制御装置が、もう一つの被温調対象冷却モードとして、弁装置を閉じ、被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御する被温調対象冷却(単独)モードを有するようにすれば、車室内を空調する必要が無い場合には、被温調対象の冷却のみを効果的に行うことができるようになる。 Further, as in the invention of claim 5, the control device closes the valve device as another cooling mode for the object to be temperature controlled, and performs compression based on the temperature of the heat exchanger for the object to be temperature controlled or the object cooled by it. By providing a temperature-controlled object cooling (single) mode that controls the rotational speed of the machine, if there is no need to air-condition the vehicle interior, only the temperature-controlled object can be effectively cooled. It becomes like this.

ここで、請求項6の発明の如く被温調対象と被温調対象用熱交換器の間で熱媒体を循環させる機器温度調整装置を設けた場合には、制御装置が、熱媒体の温度Tw又は被温調対象の温度Tcellを被温調対象用熱交換器により冷却される対象の温度として圧縮機を制御することになる。 Here, when an equipment temperature adjustment device is provided that circulates a heat medium between the temperature-controlled object and the heat exchanger for the temperature-controlled object as in the invention of claim 6, the control device controls the temperature of the heat medium. The compressor is controlled by setting Tw or the temperature Tcell of the temperature controlled object as the temperature of the object cooled by the temperature controlled object heat exchanger.

本発明を適用した一実施形態の車両用空気調和装置の構成図である。1 is a configuration diagram of a vehicle air conditioner according to an embodiment to which the present invention is applied. 図1の車両用空気調和装置の制御装置の電気回路のブロック図である。FIG. 2 is a block diagram of an electric circuit of a control device of the vehicle air conditioner shown in FIG. 1. FIG. 図2の制御装置が実行する運転モードを説明する図である。3 is a diagram illustrating an operation mode executed by the control device in FIG. 2. FIG. 図2の制御装置のヒートポンプコントローラによる暖房モードを説明する車両用空気調和装置の構成図である。FIG. 3 is a configuration diagram of a vehicle air conditioner illustrating a heating mode by a heat pump controller of the control device in FIG. 2. FIG. 図2の制御装置のヒートポンプコントローラによる除湿暖房モードを説明する車両用空気調和装置の構成図である。FIG. 3 is a configuration diagram of a vehicle air conditioner illustrating a dehumidifying heating mode by a heat pump controller of the control device in FIG. 2. FIG. 図2の制御装置のヒートポンプコントローラによる除湿冷房モードを説明する車両用空気調和装置の構成図である。FIG. 3 is a configuration diagram of a vehicle air conditioner illustrating a dehumidifying cooling mode by a heat pump controller of the control device in FIG. 2. FIG. 図2の制御装置のヒートポンプコントローラによる冷房モード(単独運転モード)を説明する車両用空気調和装置の構成図である。FIG. 3 is a configuration diagram of a vehicle air conditioner illustrating a cooling mode (independent operation mode) by a heat pump controller of the control device in FIG. 2. FIG. 図2の制御装置のヒートポンプコントローラによる空調(優先)+バッテリ冷却モードとバッテリ冷却(優先)+空調モード(何れも協調運転モード)を説明する車両用空気調和装置の構成図である。FIG. 3 is a configuration diagram of a vehicle air conditioner illustrating an air conditioning (priority)+battery cooling mode and a battery cooling (priority)+air conditioning mode (both cooperative operation modes) by the heat pump controller of the control device in FIG. 2. FIG. 図2の制御装置のヒートポンプコントローラによるバッテリ冷却(単独)モード(単独運転モード)を説明する車両用空気調和装置の構成図である。FIG. 3 is a configuration diagram of a vehicle air conditioner illustrating a battery cooling (solo) mode (single operation mode) by the heat pump controller of the control device in FIG. 2. FIG. 図2の制御装置のヒートポンプコントローラによる除霜モードを説明する車両用空気調和装置の構成図である。FIG. 3 is a configuration diagram of a vehicle air conditioner illustrating a defrosting mode by a heat pump controller of the control device in FIG. 2. FIG. 図2の制御装置のヒートポンプコントローラの圧縮機制御に関する制御ブロック図である。3 is a control block diagram regarding compressor control of the heat pump controller of the control device in FIG. 2. FIG. 図2の制御装置のヒートポンプコントローラの圧縮機制御に関するもう一つの制御ブロック図である。3 is another control block diagram regarding compressor control of the heat pump controller of the control device in FIG. 2. FIG. 図2の制御装置のヒートポンプコントローラの空調(優先)+バッテリ冷却モードでの電磁弁69の制御を説明するブロック図である。3 is a block diagram illustrating control of a solenoid valve 69 in an air conditioning (priority)+battery cooling mode of the heat pump controller of the control device in FIG. 2. FIG. 図2の制御装置のヒートポンプコントローラの圧縮機制御に関する更にもう一つの制御ブロック図である。3 is yet another control block diagram regarding compressor control of the heat pump controller of the control device in FIG. 2. FIG. 図2の制御装置のヒートポンプコントローラのバッテリ冷却(優先)+空調モードでの電磁弁35の制御を説明するブロック図である。3 is a block diagram illustrating control of a solenoid valve 35 in battery cooling (priority)+air conditioning mode of the heat pump controller of the control device in FIG. 2. FIG. 図2の制御装置のヒートポンプコントローラによるバッテリ冷却(優先)+空調モード及びバッテリ冷却(単独)モードでの圧縮機のON-OFF制御を説明するタイミングチャートである。3 is a timing chart illustrating ON-OFF control of the compressor in battery cooling (priority)+air conditioning mode and battery cooling (single) mode by the heat pump controller of the control device in FIG. 2. FIG. バッテリ冷却(優先)+空調モード及びバッテリ冷却(単独)モードでの圧縮機のON-OFF制御(結露に関する課題を有する制御)を説明するタイミングチャートである。12 is a timing chart illustrating compressor ON-OFF control (control that has a problem with dew condensation) in battery cooling (priority) + air conditioning mode and battery cooling (single) mode.

以下、本発明の実施の形態について、図面に基づき詳細に説明する。図1は本発明の一実施形態の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、車両に搭載されているバッテリ55に充電された電力を走行用モータ(電動モータ。図示せず)に供給することで駆動し、走行するものであり、本発明の車両用空気調和装置1の後述する圧縮機2も、バッテリ55から供給される電力で駆動されるものとする。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings. FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention. The vehicle of the embodiment to which the present invention is applied is an electric vehicle (EV) that is not equipped with an engine (internal combustion engine), and the electric power charged in the battery 55 mounted on the vehicle is used to drive a driving motor (electric motor). It is assumed that the compressor 2 (described later) of the vehicle air conditioner 1 of the present invention is also driven by the power supplied from the battery 55. .

即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路Rを用いたヒートポンプ運転により暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、除霜モード、空調(優先)+バッテリ冷却モード、バッテリ冷却(優先)+空調モード、及び、バッテリ冷却(単独)モードの各運転モードを切り換えて実行することで車室内の空調やバッテリ55の温調を行うものである。 That is, the vehicle air conditioner 1 of the embodiment operates in a heating mode, a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode, and a defrosting mode by operating a heat pump using a refrigerant circuit R in an electric vehicle that cannot be heated by engine waste heat. , air conditioning (priority) + battery cooling mode, battery cooling (priority) + air conditioning mode, and battery cooling (single) mode are switched and executed to control the air conditioning inside the vehicle and the temperature of the battery 55. It is something.

このうち、バッテリ冷却(優先)+空調モードとバッテリ冷却(単独)モードが本発明における被温調対象冷却モードの実施例である。また、バッテリ冷却(優先)+空調モードが本発明における被温調対象冷却(優先)+空調モードの実施例であり、バッテリ冷却(単独)モードが本発明における被温調対象冷却(単独)モードの実施例である。 Of these, the battery cooling (priority) + air conditioning mode and the battery cooling (single) mode are examples of the temperature-controlled object cooling mode in the present invention. Furthermore, the battery cooling (priority) + air conditioning mode is an example of the temperature-controlled target cooling (priority) + air-conditioning mode in the present invention, and the battery cooling (single) mode is the temperature-controlled target cooling (single) mode in the present invention. This is an example.

尚、車両としては電気自動車に限らず、エンジンと走行用モータを供用する所謂ハイブリッド自動車にも本発明は有効である。また、実施例の車両用空気調和装置1を適用する車両は外部の充電器(急速充電器や普通充電器)からバッテリ55に充電可能とされているものである。更に、前述したバッテリ55や走行用モータ、それを制御するインバータ等が本発明における車両に搭載された被温調対象となるが、以下の実施例ではバッテリ55を例に採り上げて説明する。 Note that the present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that share an engine and a driving motor. Further, the vehicle to which the vehicle air conditioner 1 of the embodiment is applied is capable of charging the battery 55 from an external charger (a quick charger or a normal charger). Further, the above-mentioned battery 55, driving motor, inverter controlling the same, etc. are objects to be temperature-controlled mounted on a vehicle in the present invention, and the following embodiments will be explained by taking the battery 55 as an example.

実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内の空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒がマフラー5と冷媒配管13Gを介して流入し、この冷媒を車室内に放熱(冷媒の熱を放出)させる室内熱交換器としての放熱器4と、暖房時に冷媒を減圧膨張させる電動弁(電子膨張弁)から成る室外膨張弁6と、冷房時には冷媒を放熱させる放熱器として機能し、暖房時には冷媒を吸熱(冷媒に熱を吸収)させる蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる機械式膨張弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に冷媒を蒸発させて車室内外から冷媒に吸熱(冷媒に熱を吸収)させる吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。 The vehicle air conditioner 1 of the embodiment performs air conditioning (heating, cooling, dehumidification, and ventilation) in the vehicle interior of an electric vehicle, and includes an electric compressor 2 that compresses refrigerant and air conditioning in the vehicle interior. The high-temperature, high-pressure refrigerant discharged from the compressor 2 flows through the muffler 5 and the refrigerant pipe 13G, and the refrigerant radiates heat into the vehicle interior. a radiator 4 as an indoor heat exchanger that releases heat from the refrigerant; an outdoor expansion valve 6 that is an electric valve (electronic expansion valve) that depressurizes and expands the refrigerant during heating; and a radiator that radiates heat from the refrigerant during cooling. an outdoor heat exchanger 7 that functions as an evaporator that absorbs heat from the refrigerant (absorbs heat into the refrigerant) during heating, and exchanges heat between the refrigerant and the outside air; and a mechanical expansion valve that depressurizes and expands the refrigerant. an indoor expansion valve 8, a heat absorber 9 provided in the airflow passage 3, which evaporates the refrigerant during cooling and dehumidification, and allows the refrigerant to absorb heat (absorb heat into the refrigerant) from inside and outside the vehicle interior; an accumulator 12, etc. are sequentially connected by refrigerant piping 13 to form a refrigerant circuit R.

そして、室外膨張弁6は放熱器4から出て室外熱交換器7に流入する冷媒を減圧膨張させると共に、全閉も可能とされている。また、実施例では機械式膨張弁が使用された室内膨張弁8は、吸熱器9に流入する冷媒を減圧膨張させると共に、吸熱器9における冷媒の過熱度を調整する。 The outdoor expansion valve 6 decompresses and expands the refrigerant coming out of the radiator 4 and flowing into the outdoor heat exchanger 7, and can also be completely closed. Further, the indoor expansion valve 8, which is a mechanical expansion valve in the embodiment, reduces the pressure and expands the refrigerant flowing into the heat absorber 9, and adjusts the degree of superheat of the refrigerant in the heat absorber 9.

尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。 Note that the outdoor heat exchanger 7 is provided with an outdoor blower 15. The outdoor blower 15 is configured to forcibly blow outside air through the outdoor heat exchanger 7 to exchange heat between the outside air and the refrigerant. The heat exchanger 7 is configured to be ventilated with outside air.

また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7の冷媒出口側の冷媒配管13Aは、吸熱器9に冷媒を流す際に開放される開閉弁としての電磁弁17(冷房用)を介してレシーバドライヤ部14に接続され、過冷却部16の出口側の冷媒配管13Bは逆止弁18、室内膨張弁8、及び、本発明における弁装置としての電磁弁35(キャビン用:吸熱器用弁装置)を順次介して吸熱器9の冷媒入口側に接続されている。また、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成している。また、逆止弁18は室内膨張弁8の方向が順方向とされている。 In addition, the outdoor heat exchanger 7 has a receiver dryer section 14 and a subcooling section 16 sequentially on the downstream side of the refrigerant, and the refrigerant pipe 13A on the refrigerant outlet side of the outdoor heat exchanger 7 is used when flowing the refrigerant to the heat absorber 9. It is connected to the receiver dryer section 14 via a solenoid valve 17 (for cooling) as an on-off valve that is opened, and the refrigerant pipe 13B on the outlet side of the subcooling section 16 is connected to a check valve 18, an indoor expansion valve 8, and a main It is connected to the refrigerant inlet side of the heat absorber 9 via a solenoid valve 35 (cabin: heat absorber valve device) as a valve device in the invention. Further, the receiver dryer section 14 and the subcooling section 16 structurally constitute a part of the outdoor heat exchanger 7. Further, the direction of the indoor expansion valve 8 of the check valve 18 is set to be the forward direction.

また、室外熱交換器7から出た冷媒配管13Aは冷媒配管13Dに分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される開閉弁としての電磁弁21(暖房用)を介して吸熱器9の冷媒出口側の冷媒配管13Cに連通接続されている。そして、この冷媒配管13Cがアキュムレータ12の入口側に接続され、アキュムレータ12の出口側は圧縮機2の冷媒吸込側の冷媒配管13Kに接続されている。 Further, the refrigerant pipe 13A coming out of the outdoor heat exchanger 7 branches into a refrigerant pipe 13D, and this branched refrigerant pipe 13D is connected to a solenoid valve 21 (for heating) as an on-off valve that is opened during heating. It is connected to the refrigerant pipe 13C on the refrigerant outlet side of the heat absorber 9. The refrigerant pipe 13C is connected to the inlet side of the accumulator 12, and the outlet side of the accumulator 12 is connected to the refrigerant pipe 13K on the refrigerant suction side of the compressor 2.

更に、放熱器4の冷媒出口側の冷媒配管13Eにはストレーナ19が接続されており、更に、この冷媒配管13Eは室外膨張弁6の手前(冷媒上流側)で冷媒配管13Jと冷媒配管13Fに分岐し、分岐した一方の冷媒配管13Jが室外膨張弁6を介して室外熱交換器7の冷媒入口側に接続されている。また、分岐した他方の冷媒配管13Fは除湿時に開放される開閉弁としての電磁弁22(除湿用)を介し、逆止弁18の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Bに連通接続されている。 Furthermore, a strainer 19 is connected to the refrigerant pipe 13E on the refrigerant outlet side of the radiator 4, and the refrigerant pipe 13E is connected to the refrigerant pipe 13J and the refrigerant pipe 13F before the outdoor expansion valve 6 (on the refrigerant upstream side). One branched refrigerant pipe 13J is connected to the refrigerant inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6. The other branched refrigerant pipe 13F is connected to the refrigerant downstream side of the check valve 18 and the refrigerant upstream side of the indoor expansion valve 8 via a solenoid valve 22 (for dehumidification) as an on-off valve that is opened during dehumidification. It is connected to the refrigerant pipe 13B located therein.

これにより、冷媒配管13Fは室外膨張弁6、室外熱交換器7及び逆止弁18の直列回路に対して並列に接続されたかたちとなり、室外膨張弁6、室外熱交換器7及び逆止弁18をバイパスするバイパス回路となる。また、室外膨張弁6にはバイパス用の開閉弁としての電磁弁20が並列に接続されている。 As a result, the refrigerant pipe 13F is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7, and the check valve 18. This becomes a bypass circuit that bypasses 18. Further, a solenoid valve 20 as a bypass on-off valve is connected in parallel to the outdoor expansion valve 6 .

また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環)と、車室外の空気である外気(外気導入)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。 In addition, the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with an outside air suction port and an inside air suction port (representatively shown as the suction port 25 in FIG. 1). 25 is provided with a suction switching damper 26 that switches the air introduced into the airflow passage 3 between inside air (inside air circulation), which is the air inside the vehicle interior, and outside air (outside air introduction), which is the air outside the vehicle interior. Further, on the air downstream side of the suction switching damper 26, an indoor blower fan 27 is provided for feeding the introduced inside air and outside air to the air flow path 3.

尚、実施例の吸込切換ダンパ26は、吸込口25の外気吸込口と内気吸込口を任意の比率で開閉することにより、空気流通路3の吸熱器9に流入する空気(外気と内気)のうちの内気の比率を0~100%の間で調整することができるように構成されている(外気の比率も100%~0%の間で調整可能)。 The suction switching damper 26 of the embodiment controls the amount of air (outside air and inside air) flowing into the heat absorber 9 of the air flow path 3 by opening and closing the outside air suction port and the inside air suction port of the suction port 25 at an arbitrary ratio. It is configured so that the ratio of inside air can be adjusted between 0 and 100% (the ratio of outside air can also be adjusted between 100% and 0%).

また、放熱器4の風下側(空気下流側)における空気流通路3内には、実施例ではPTCヒータ(電気ヒータ)から成る補助加熱装置としての補助ヒータ23が設けられ、放熱器4を経て車室内に供給される空気を加熱することが可能とされている。更に、放熱器4の空気上流側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を放熱器4及び補助ヒータ23に通風する割合を調整するエアミックスダンパ28が設けられている。 In addition, an auxiliary heater 23 as an auxiliary heating device consisting of a PTC heater (electric heater) in the embodiment is provided in the airflow passage 3 on the leeward side (air downstream side) of the radiator 4. It is possible to heat the air supplied into the vehicle interior. Further, in the air flow passage 3 on the air upstream side of the radiator 4, the air (inside air or outside air) in the air flow passage 3 after flowing into the air flow passage 3 and passing through the heat absorber 9 is radiated. An air mix damper 28 is provided to adjust the rate of ventilation to the container 4 and the auxiliary heater 23.

更にまた、放熱器4の空気下流側における空気流通路3には、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口からの空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。 Furthermore, in the air flow passage 3 on the air downstream side of the radiator 4, there are FOOT, VENT, and DEF outlets (representatively shown as the outlet 29 in FIG. 1). The air outlet 29 is provided with an air outlet switching damper 31 that switches and controls the blowing of air from each of the air outlets.

更に、車両用空気調和装置1は、バッテリ55(被温調対象)に熱媒体を循環させて当該バッテリ55の温度を調整するための機器温度調整装置61を備えている。実施例の機器温度調整装置61は、バッテリ55に熱媒体を循環させるための循環装置としての循環ポンプ62と、被温調対象用熱交換器としての冷媒-熱媒体熱交換器64と、加熱装置としての熱媒体加熱ヒータ63を備え、それらとバッテリ55が熱媒体配管66にて環状に接続されている。 Furthermore, the vehicle air conditioner 1 includes an equipment temperature adjustment device 61 for circulating a heat medium through the battery 55 (target to be temperature controlled) to adjust the temperature of the battery 55. The equipment temperature adjustment device 61 of the embodiment includes a circulation pump 62 as a circulation device for circulating a heat medium to the battery 55, a refrigerant-thermal medium heat exchanger 64 as a heat exchanger for the object to be temperature controlled, and a heating A heat medium heater 63 is provided as a device, and the battery 55 is connected to the heat medium pipe 66 in an annular manner.

実施例の場合、循環ポンプ62の吐出側に冷媒-熱媒体熱交換器64の熱媒体流路64Aの入口が接続され、この熱媒体流路64Aの出口は熱媒体加熱ヒータ63の入口に接続されている。この熱媒体加熱ヒータ63の出口がバッテリ55の入口に接続され、バッテリ55の出口が循環ポンプ62の吸込側に接続されている。 In the case of the embodiment, the inlet of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 is connected to the discharge side of the circulation pump 62, and the outlet of this heat medium flow path 64A is connected to the inlet of the heat medium heater 63. has been done. The outlet of the heat medium heater 63 is connected to the inlet of the battery 55, and the outlet of the battery 55 is connected to the suction side of the circulation pump 62.

この機器温度調整装置61で使用される熱媒体としては、例えば水、HFO-1234yfのような冷媒、クーラント等の液体、空気等の気体が採用可能である。尚、実施例では水を熱媒体として採用している。また、熱媒体加熱ヒータ63はPTCヒータ等の電気ヒータから構成されている。更に、バッテリ55の周囲には例えば熱媒体が当該バッテリ55と熱交換関係で流通可能なジャケット構造が施されているものとする。 As the heat medium used in this equipment temperature adjustment device 61, for example, water, a refrigerant such as HFO-1234yf, a liquid such as a coolant, or a gas such as air can be employed. Note that in the embodiment, water is used as the heat medium. Further, the heat medium heater 63 is composed of an electric heater such as a PTC heater. Further, it is assumed that a jacket structure is provided around the battery 55 so that, for example, a heat medium can flow through the battery 55 in a heat exchange relationship.

そして、循環ポンプ62が運転されると、循環ポンプ62から吐出された熱媒体は冷媒-熱媒体熱交換器64の熱媒体流路64Aに流入する。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は熱媒体加熱ヒータ63に至り、当該熱媒体加熱ヒータ63が発熱されている場合にはそこで加熱された後、バッテリ55に至り、熱媒体はそこでバッテリ55と熱交換する。そして、このバッテリ55と熱交換した熱媒体が循環ポンプ62に吸い込まれる。これにより、熱媒体がバッテリ55と冷媒-熱媒体熱交換器64、熱媒体加熱ヒータ63の間で、熱媒体配管66内を循環されることになる。 Then, when the circulation pump 62 is operated, the heat medium discharged from the circulation pump 62 flows into the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64. The heat medium that has exited the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heater 63, and if the heat medium heater 63 is generating heat, it is heated there, and then the heat medium is heated there. 55, where the heat medium exchanges heat with the battery 55. The heat medium that has exchanged heat with the battery 55 is sucked into the circulation pump 62. As a result, the heat medium is circulated within the heat medium piping 66 between the battery 55, the refrigerant-heat medium heat exchanger 64, and the heat medium heater 63.

一方、冷媒回路Rの冷媒配管13Fと冷媒配管13Bとの接続部の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Bには、分岐回路としての分岐配管67の一端が接続されている。この分岐配管67には実施例では機械式の膨張弁から構成された補助膨張弁68と、被温調対象用弁装置としての電磁弁(チラー用)69が順次設けられている。補助膨張弁68は冷媒-熱媒体熱交換器64の後述する冷媒流路64Bに流入する冷媒を減圧膨張させると共に、冷媒-熱媒体熱交換器64の冷媒流路64Bにおける冷媒の過熱度を調整する。 On the other hand, in the refrigerant pipe 13B, which is located on the refrigerant downstream side of the connection between the refrigerant pipe 13F and the refrigerant pipe 13B of the refrigerant circuit R and on the refrigerant upstream side of the indoor expansion valve 8, there is a branch pipe 67 as a branch circuit. One end is connected. In this embodiment, an auxiliary expansion valve 68 constituted by a mechanical expansion valve and an electromagnetic valve (for a chiller) 69 as a valve device for a temperature-controlled object are sequentially provided in this branch pipe 67. The auxiliary expansion valve 68 depressurizes and expands the refrigerant flowing into a refrigerant passage 64B of the refrigerant-thermal medium heat exchanger 64, which will be described later, and adjusts the degree of superheating of the refrigerant in the refrigerant passage 64B of the refrigerant-thermal medium heat exchanger 64. do.

そして、分岐配管67の他端は冷媒-熱媒体熱交換器64の冷媒流路64Bに接続されており、この冷媒流路64Bの出口には冷媒配管71の一端が接続され、冷媒配管71の他端は冷媒配管13Dとの合流点より冷媒上流側(アキュムレータ12の冷媒上流側)の冷媒配管13Cに接続されている。そして、これら補助膨張弁68や電磁弁69、冷媒-熱媒体熱交換器64の冷媒流路64B等も冷媒回路Rの一部を構成すると同時に、機器温度調整装置61の一部をも構成することになる。 The other end of the branch pipe 67 is connected to the refrigerant flow path 64B of the refrigerant-thermal medium heat exchanger 64, and one end of the refrigerant pipe 71 is connected to the outlet of the refrigerant flow path 64B. The other end is connected to the refrigerant pipe 13C on the refrigerant upstream side (the refrigerant upstream side of the accumulator 12) from the confluence with the refrigerant pipe 13D. The auxiliary expansion valve 68, the electromagnetic valve 69, the refrigerant passage 64B of the refrigerant-thermal medium heat exchanger 64, etc. also constitute a part of the refrigerant circuit R, and at the same time constitute a part of the equipment temperature adjustment device 61. It turns out.

電磁弁69が開いている場合、室外熱交換器7から出た冷媒(一部又は全ての冷媒)は分岐配管67に流入し、補助膨張弁68で減圧された後、電磁弁69を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して、そこで蒸発する。冷媒は冷媒流路64Bを流れる過程で熱媒体流路64Aを流れる熱媒体から吸熱した後、冷媒配管71、冷媒配管13C、アキュムレータ12を経て冷媒配管13Kから圧縮機2に吸い込まれることになる。 When the solenoid valve 69 is open, the refrigerant (part or all of the refrigerant) coming out of the outdoor heat exchanger 7 flows into the branch pipe 67, is depressurized by the auxiliary expansion valve 68, and then passes through the solenoid valve 69 to become the refrigerant. - It flows into the refrigerant flow path 64B of the heat medium heat exchanger 64 and evaporates there. After the refrigerant absorbs heat from the heat medium flowing through the heat medium flow path 64A while flowing through the refrigerant flow path 64B, the refrigerant passes through the refrigerant pipe 71, the refrigerant pipe 13C, and the accumulator 12, and is sucked into the compressor 2 from the refrigerant pipe 13K.

次に、図2は実施例の車両用空気調和装置1の制御装置11のブロック図を示している。制御装置11は、何れもプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成された空調コントローラ45及びヒートポンプコントローラ32から構成されており、これらがCAN(Controller Area Network)やLIN(Local Interconnect Network)を構成する車両通信バス65に接続されている。また、圧縮機2と補助ヒータ23、循環ポンプ62と熱媒体加熱ヒータ63も車両通信バス65に接続され、これら空調コントローラ45、ヒートポンプコントローラ32、圧縮機2、補助ヒータ23、循環ポンプ62及び熱媒体加熱ヒータ63が車両通信バス65を介してデータの送受信を行うように構成されている。 Next, FIG. 2 shows a block diagram of the control device 11 of the vehicle air conditioner 1 according to the embodiment. The control device 11 includes an air conditioning controller 45 and a heat pump controller 32, both of which are configured from a microcomputer, which is an example of a computer equipped with a processor, and these are connected to a CAN (Controller Area Network) or a LIN (Local Interconnect Network). It is connected to a vehicle communication bus 65 that constitutes a vehicle communication bus 65. The compressor 2, the auxiliary heater 23, the circulation pump 62, and the heat medium heater 63 are also connected to the vehicle communication bus 65, and these air conditioning controller 45, heat pump controller 32, compressor 2, auxiliary heater 23, circulation pump 62, and heat The medium heater 63 is configured to transmit and receive data via the vehicle communication bus 65.

更に、車両通信バス65には走行を含む車両全般の制御を司る車両コントローラ72(ECU)と、バッテリ55の充放電の制御を司るバッテリコントローラ(BMS:Battery Management system)73と、GPSナビゲーション装置74が接続されている。車両コントローラ72やバッテリコントローラ73、GPSナビゲーション装置74もプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成されており、制御装置11を構成する空調コントローラ45とヒートポンプコントローラ32は、車両通信バス65を介してこれら車両コントローラ72やバッテリコントローラ73、GPSナビゲーション装置74と情報(データ)の送受信を行う構成とされている。 Further, the vehicle communication bus 65 includes a vehicle controller 72 (ECU) that controls the entire vehicle including driving, a battery management system (BMS) 73 that controls charging and discharging of the battery 55, and a GPS navigation device 74. is connected. The vehicle controller 72 , battery controller 73 , and GPS navigation device 74 are also composed of a microcomputer, which is an example of a computer equipped with a processor. It is configured to transmit and receive information (data) to and from the vehicle controller 72, battery controller 73, and GPS navigation device 74 via the vehicle controller 72, battery controller 73, and GPS navigation device 74.

空調コントローラ45は、車両の車室内空調の制御を司る上位のコントローラであり、この空調コントローラ45の入力には、車両の外気温度Tamを検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれて吸熱器9に流入する空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、車室内に吹き出される空気の温度を検出する吹出温度センサ41と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52の各出力と、車室内の設定温度や運転モードの切り換え等の車室内の空調設定操作や情報の表示を行うための空調操作部53が接続されている。尚、図中53Aはこの空調操作部53に設けられた表示出力装置としてのディスプレイである。 The air conditioning controller 45 is a high-level controller that controls the air conditioning inside the vehicle.The inputs of the air conditioning controller 45 include an outside air temperature sensor 33 that detects the outside air temperature Tam of the vehicle, and an outside air humidity sensor that detects the outside air humidity. A sensor 34, an HVAC suction temperature sensor 36 that detects the temperature of the air that is sucked into the air flow passage 3 from the suction port 25 and flows into the heat absorber 9, and an inside air temperature sensor 37 that detects the temperature of the air (inside air) inside the vehicle. , an indoor air humidity sensor 38 that detects the humidity of the air inside the vehicle interior, an indoor CO 2 concentration sensor 39 that detects the carbon dioxide concentration within the vehicle interior, and a blowout temperature sensor 41 that detects the temperature of the air blown into the vehicle interior. , the outputs of, for example, a photosensor-type solar radiation sensor 51 for detecting the amount of solar radiation into the vehicle interior, the vehicle speed sensor 52 for detecting the moving speed of the vehicle (vehicle speed), and the set temperature and operation inside the vehicle interior. An air conditioning operation section 53 is connected for performing air conditioning setting operations for the vehicle interior, such as mode switching, and for displaying information. Note that 53A in the figure is a display provided in this air conditioning operation section 53 as a display output device.

また、空調コントローラ45の出力には、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31が接続され、それらは空調コントローラ45により制御される。 Furthermore, an outdoor blower 15 , an indoor blower fan 27 , a suction switching damper 26 , an air mix damper 28 , and an outlet switching damper 31 are connected to the output of the air conditioning controller 45 . controlled by

ヒートポンプコントローラ32は、主に冷媒回路Rの制御を司るコントローラであり、このヒートポンプコントローラ32の入力には、放熱器4の冷媒入口温度Tcxin(圧縮機2の吐出冷媒温度でもある)を検出する放熱器入口温度センサ43と、放熱器4の冷媒出口温度Tciを検出する放熱器出口温度センサ44と、圧縮機2の吸込冷媒温度Tsを検出する吸込温度センサ46と、放熱器4の冷媒出口側の冷媒圧力(放熱器4の圧力:放熱器圧力Pci)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9自体の温度、又は、吸熱器9により冷却された直後の空気(吸熱器9により冷却される対象)の温度:以下、吸熱器温度Te)を検出する吸熱器温度センサ48と、室外熱交換器7の出口の冷媒温度(室外熱交換器7の冷媒蒸発温度:室外熱交換器温度TXO)を検出する室外熱交換器温度センサ49と、補助ヒータ23の温度を検出する補助ヒータ温度センサ50A(運転席側)及び50B(助手席側)の各出力が接続されている。 The heat pump controller 32 is a controller that mainly controls the refrigerant circuit R, and the input of the heat pump controller 32 is a heat radiator that detects the refrigerant inlet temperature Tcxin of the radiator 4 (which is also the discharge refrigerant temperature of the compressor 2). a radiator outlet temperature sensor 44 that detects the refrigerant outlet temperature Tci of the radiator 4, a suction temperature sensor 46 that detects the suction refrigerant temperature Ts of the compressor 2, and a refrigerant outlet side of the radiator 4. A radiator pressure sensor 47 that detects the refrigerant pressure (pressure of the radiator 4: radiator pressure Pci) and the temperature of the heat absorber 9 (the temperature of the heat absorber 9 itself, or the air immediately after being cooled by the heat absorber 9) A heat absorber temperature sensor 48 detects the temperature of the object to be cooled by the heat absorber 9 (hereinafter referred to as heat absorber temperature Te), and a refrigerant temperature at the outlet of the outdoor heat exchanger 7 (refrigerant evaporation temperature of the outdoor heat exchanger 7). :The outputs of the outdoor heat exchanger temperature sensor 49 that detects the outdoor heat exchanger temperature TXO) and the auxiliary heater temperature sensors 50A (driver's seat side) and 50B (passenger seat side) that detect the temperature of the auxiliary heater 23 are connected. has been done.

また、ヒートポンプコントローラ32の出力には、室外膨張弁6、電磁弁22(除湿用)、電磁弁17(冷房用)、電磁弁21(暖房用)、電磁弁20(バイパス用)、電磁弁35(キャビン用)及び電磁弁69(チラー用)の各電磁弁が接続され、それらはヒートポンプコントローラ32により制御される。尚、圧縮機2、補助ヒータ23、循環ポンプ62及び熱媒体加熱ヒータ63はそれぞれコントローラを内蔵しており、実施例では圧縮機2や補助ヒータ23、循環ポンプ62や熱媒体加熱ヒータ63のコントローラは車両通信バス65を介してヒートポンプコントローラ32とデータの送受信を行い、このヒートポンプコントローラ32によって制御される。 In addition, the output of the heat pump controller 32 includes an outdoor expansion valve 6, a solenoid valve 22 (for dehumidification), a solenoid valve 17 (for cooling), a solenoid valve 21 (for heating), a solenoid valve 20 (for bypass), and a solenoid valve 35. The solenoid valves 69 (for the cabin) and 69 (for the chiller) are connected, and are controlled by the heat pump controller 32. The compressor 2, the auxiliary heater 23, the circulation pump 62, and the heat medium heater 63 each have a built-in controller. transmits and receives data to and from the heat pump controller 32 via the vehicle communication bus 65, and is controlled by the heat pump controller 32.

尚、機器温度調整装置61を構成する循環ポンプ62や熱媒体加熱ヒータ63はバッテリコントローラ73により制御されるようにしてもよい。更に、このバッテリコントローラ73には機器温度調整装置61の冷媒-熱媒体熱交換器64の熱媒体流路64Aの出口側の熱媒体の温度(熱媒体温度Tw:本発明における被温調対象用熱交換器により冷却される対象の温度)を検出する熱媒体温度センサ76と、バッテリ55の温度(バッテリ55自体の温度:バッテリ温度Tcell)を検出するバッテリ温度センサ77の出力が接続されている。そして、実施例ではバッテリ55の残量(蓄電量)やバッテリ55の充電に関する情報(充電中であることの情報や充電完了時間、残充電時間等)、熱媒体温度Twやバッテリ温度Tcellは、バッテリコントローラ73から車両通信バス65を介して空調コントローラ45や車両コントローラ72に送信される。尚、バッテリ55の充電時における充電完了時間や残充電時間に関する情報は、急速充電器等の外部の充電器から供給される情報である。 Note that the circulation pump 62 and the heat medium heater 63 that constitute the device temperature adjustment device 61 may be controlled by the battery controller 73. Furthermore, this battery controller 73 has a temperature of the heat medium on the outlet side of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 of the equipment temperature adjustment device 61 (heat medium temperature Tw: for the object to be temperature controlled in the present invention). The output of a heat medium temperature sensor 76 that detects the temperature of the object cooled by the heat exchanger) and a battery temperature sensor 77 that detects the temperature of the battery 55 (temperature of the battery 55 itself: battery temperature Tcell) are connected. . In the embodiment, the remaining amount (storage amount) of the battery 55, information regarding the charging of the battery 55 (information that it is being charged, charging completion time, remaining charging time, etc.), the heat medium temperature Tw, and the battery temperature Tcell are as follows. It is transmitted from the battery controller 73 to the air conditioning controller 45 and the vehicle controller 72 via the vehicle communication bus 65. Note that the information regarding the charging completion time and remaining charging time when charging the battery 55 is information supplied from an external charger such as a quick charger.

ヒートポンプコントローラ32と空調コントローラ45は車両通信バス65を介して相互にデータの送受信を行い、各センサの出力や空調操作部53にて入力された設定に基づき、各機器を制御するものであるが、この場合の実施例では外気温度センサ33、外気湿度センサ34、HVAC吸込温度センサ36、内気温度センサ37、内気湿度センサ38、室内CO2濃度センサ39、吹出温度センサ41、日射センサ51、車速センサ52、空気流通路3に流入して当該空気流通路3内を流通する空気の風量Ga(空調コントローラ45が算出)、エアミックスダンパ28による風量割合SW(空調コントローラ45が算出)、室内送風機27の電圧(BLV)、前述したバッテリコントローラ73からの情報、GPSナビゲーション装置74からの情報、空調操作部53の出力は空調コントローラ45から車両通信バス65を介してヒートポンプコントローラ32に送信され、ヒートポンプコントローラ32による制御に供される構成とされている。 The heat pump controller 32 and the air conditioning controller 45 exchange data with each other via the vehicle communication bus 65, and control each device based on the output of each sensor and the settings input at the air conditioning operation section 53. In this embodiment, the outside air temperature sensor 33, the outside air humidity sensor 34, the HVAC suction temperature sensor 36, the inside air temperature sensor 37, the inside air humidity sensor 38, the indoor CO 2 concentration sensor 39, the air outlet temperature sensor 41, the solar radiation sensor 51, and the vehicle speed. Sensor 52, air volume Ga of air flowing into the air flow passage 3 and circulating within the air flow passage 3 (calculated by the air conditioning controller 45), air volume ratio SW by the air mix damper 28 (calculated by the air conditioning controller 45), indoor blower 27 voltage (BLV), information from the aforementioned battery controller 73, information from the GPS navigation device 74, and the output of the air conditioning operation unit 53 are transmitted from the air conditioning controller 45 to the heat pump controller 32 via the vehicle communication bus 65, and the heat pump It is configured to be controlled by a controller 32.

また、ヒートポンプコントローラ32からも冷媒回路Rの制御に関するデータ(情報)が車両通信バス65を介して空調コントローラ45に送信される。尚、前述したエアミックスダンパ28による風量割合SWは、0≦SW≦1の範囲で空調コントローラ45が算出する。そして、SW=1のときはエアミックスダンパ28により、吸熱器9を経た空気の全てが放熱器4及び補助ヒータ23に通風されることになる。 Further, data (information) regarding control of the refrigerant circuit R is also transmitted from the heat pump controller 32 to the air conditioning controller 45 via the vehicle communication bus 65. Note that the air volume ratio SW by the air mix damper 28 described above is calculated by the air conditioning controller 45 within the range of 0≦SW≦1. When SW=1, all of the air that has passed through the heat absorber 9 is ventilated to the heat radiator 4 and the auxiliary heater 23 by the air mix damper 28.

以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。この実施例では制御装置11(空調コントローラ45、ヒートポンプコントローラ32)は、暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、及び、空調(優先)+バッテリ冷却モードの各空調運転と、バッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モードの各バッテリ冷却運転と、除霜モードを切り換えて実行する。これらが図3に示されている。 With the above configuration, the operation of the vehicle air conditioner 1 of the embodiment will now be described. In this embodiment, the control device 11 (air conditioning controller 45, heat pump controller 32) controls each air conditioning operation in heating mode, dehumidifying heating mode, dehumidifying cooling mode, cooling mode, and air conditioning (priority) + battery cooling mode, and battery cooling. (priority) + air conditioning mode, battery cooling (single) mode, and defrosting mode are switched and executed. These are shown in FIG.

このうち、暖房モードと、除湿暖房モードと、除湿冷房モードと、冷房モードと、空調(優先)+バッテリ冷却モードの各空調運転は、実施例ではバッテリ55を充電しておらず、車両のイグニッション(IGN)がONされ、空調操作部53の空調スイッチがONされている場合に実行されるものである。但し、リモート運転時(プレ空調等)にはイグニッションがOFFの場合にも実行される。また、バッテリ55を充電中でもバッテリ冷却要求が無く、空調スイッチがONされているときは実行される。一方、バッテリ冷却(優先)+空調モードと、バッテリ冷却(単独)モードの各バッテリ冷却運転は、例えば急速充電器(外部電源)のプラグを接続し、バッテリ55に充電しているときに実行されるものである。但し、バッテリ冷却(単独)モードは、バッテリ55の充電中以外にも、空調スイッチがOFFで、バッテリ冷却要求があった場合(高外気温で走行時等)には実行される。 Among these, in each air conditioning operation of heating mode, dehumidifying heating mode, dehumidifying cooling mode, cooling mode, and air conditioning (priority) + battery cooling mode, the battery 55 is not charged in the embodiment, and the vehicle ignition is (IGN) is turned on and the air conditioning switch of the air conditioning operation section 53 is turned on. However, during remote operation (pre-air conditioning, etc.), it is executed even when the ignition is off. Further, even when the battery 55 is being charged, there is no battery cooling request and the air conditioning switch is turned on, the process is executed. On the other hand, the battery cooling operations in the battery cooling (priority) + air conditioning mode and the battery cooling (single) mode are executed, for example, when the plug of a quick charger (external power source) is connected and the battery 55 is being charged. It is something that However, the battery cooling (single) mode is executed not only when the battery 55 is being charged but also when the air conditioning switch is OFF and there is a battery cooling request (such as when driving at a high outside temperature).

また、実施例ではヒートポンプコントローラ32は、イグニッションがONされているときや、イグニッションがOFFされていてもバッテリ55が充電中であるときは、機器温度調整装置61の循環ポンプ62を運転し、図4~図10に破線で示す如く熱媒体配管66内に熱媒体を循環させるものとする。更に、図3には示していないが、実施例のヒートポンプコントローラ32は、機器温度調整装置61の熱媒体加熱ヒータ63を発熱させることでバッテリ55を加熱するバッテリ加熱モードも実行する。 Furthermore, in the embodiment, the heat pump controller 32 operates the circulation pump 62 of the equipment temperature adjustment device 61 when the ignition is turned on or when the battery 55 is being charged even when the ignition is turned off. It is assumed that the heat medium is circulated within the heat medium piping 66 as shown by broken lines in FIGS. 4 to 10. Furthermore, although not shown in FIG. 3, the heat pump controller 32 of the embodiment also executes a battery heating mode in which the battery 55 is heated by causing the heat medium heater 63 of the device temperature adjustment device 61 to generate heat.

(1)暖房モード
先ず、図4を参照しながら暖房モードについて説明する。尚、各機器の制御はヒートポンプコントローラ32と空調コントローラ45の協働により実行されるものであるが、以下の説明ではヒートポンプコントローラ32を制御主体とし、簡略化して説明する。図4には暖房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。ヒートポンプコントローラ32により(オートモード)或いは空調コントローラ45の空調操作部53へのマニュアルの空調設定操作(マニュアルモード)により暖房モードが選択されると、ヒートポンプコントローラ32は電磁弁21を開き、電磁弁17、電磁弁20、電磁弁22、電磁弁35、電磁弁69を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
(1) Heating Mode First, the heating mode will be explained with reference to FIG. 4. Note that control of each device is executed through cooperation between the heat pump controller 32 and the air conditioning controller 45, but in the following explanation, the heat pump controller 32 will be the main control body, and the explanation will be simplified. FIG. 4 shows how the refrigerant flows in the refrigerant circuit R in the heating mode (solid line arrow). When the heating mode is selected by the heat pump controller 32 (auto mode) or by manual air conditioning setting operation on the air conditioning operation unit 53 of the air conditioning controller 45 (manual mode), the heat pump controller 32 opens the solenoid valve 21 and closes the solenoid valve 17. , solenoid valve 20, solenoid valve 22, solenoid valve 35, and solenoid valve 69 are closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is set to adjust the ratio of the air blown out from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.

これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。 As a result, the high-temperature, high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 . Since the air in the air flow passage 3 is ventilated to the radiator 4, the air in the air flow passage 3 exchanges heat with the high temperature refrigerant in the radiator 4 and is heated. On the other hand, the refrigerant in the radiator 4 is cooled by taking heat away from the air, and is condensed and liquefied.

放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13E、13Jを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15により通風される外気中から熱を汲み上げる(吸熱)。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13D、電磁弁21を経て冷媒配管13Cに至り、更にこの冷媒配管13Cを経てアキュムレータ12に入り、そこで気液分離された後、冷媒配管13Kからガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。 After leaving the radiator 4, the refrigerant liquefied in the radiator 4 reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J. The refrigerant flowing into the outdoor expansion valve 6 is depressurized there, and then flows into the outdoor heat exchanger 7. The refrigerant that has flowed into the outdoor heat exchanger 7 evaporates, and heat is pumped up from the outside air ventilated by the running or the outdoor blower 15 (endothermic absorption). That is, the refrigerant circuit R becomes a heat pump. The low-temperature refrigerant that exits the outdoor heat exchanger 7 passes through the refrigerant pipes 13A, 13D, and the solenoid valve 21 to reach the refrigerant pipe 13C, and further passes through the refrigerant pipe 13C and enters the accumulator 12, where it is separated into gas and liquid. After that, the gas refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K and the circulation is repeated. Since the air heated by the radiator 4 is blown out from the air outlet 29, the interior of the vehicle is heated.

ヒートポンプコントローラ32は、車室内に吹き出される空気の目標温度(車室内に吹き出される空気の温度の目標値)である後述する目標吹出温度TAOから算出される目標ヒータ温度TCO(放熱器4の目標温度)から目標放熱器圧力PCOを算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、放熱器出口温度センサ44が検出する放熱器4の冷媒出口温度Tci及び放熱器圧力センサ47が検出する放熱器圧力Pciに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度を制御する。 The heat pump controller 32 sets a target heater temperature TCO (of the radiator 4 The rotation speed of the compressor 2 is calculated based on the target radiator pressure PCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. and control the valve opening degree of the outdoor expansion valve 6 based on the refrigerant outlet temperature Tci of the radiator 4 detected by the radiator outlet temperature sensor 44 and the radiator pressure Pci detected by the radiator pressure sensor 47, The degree of subcooling of the refrigerant at the outlet of the radiator 4 is controlled.

また、ヒートポンプコントローラ32は、必要とされる暖房能力に対して放熱器4による暖房能力(加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、低外気温時等にも車室内を支障無く暖房する。 Furthermore, when the heating capacity (heating capacity) of the radiator 4 is insufficient for the required heating capacity, the heat pump controller 32 supplements the insufficient heating capacity with the heat generated by the auxiliary heater 23 . This allows the vehicle interior to be heated without any problem even when the outside temperature is low.

(2)除湿暖房モード
次に、図5を参照しながら除湿暖房モードについて説明する。図5は除湿暖房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。除湿暖房モードでは、ヒートポンプコントローラ32は電磁弁21、電磁弁22、電磁弁35を開き、電磁弁17、電磁弁20、電磁弁69は閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
(2) Dehumidifying heating mode Next, the dehumidifying heating mode will be explained with reference to FIG. FIG. 5 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in the dehumidifying heating mode. In the dehumidifying heating mode, the heat pump controller 32 opens the solenoid valves 21, 22, and 35, and closes the solenoid valves 17, 20, and 69. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is set to adjust the ratio of the air blown out from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.

これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。 As a result, the high-temperature, high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 . Since the air in the air flow passage 3 is ventilated to the radiator 4, the air in the air flow passage 3 exchanges heat with the high temperature refrigerant in the radiator 4 and is heated. On the other hand, the refrigerant in the radiator 4 is cooled by taking heat away from the air, and is condensed and liquefied.

放熱器4内で液化した冷媒は放熱器4を出た後、冷媒配管13Eを経て一部は冷媒配管13Jに入り、室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15により通風される外気中から熱を汲み上げる(吸熱)。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13D、電磁弁21を経て冷媒配管13Cに至り、この冷媒配管13Cを経てアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。 After the refrigerant liquefied in the radiator 4 leaves the radiator 4, a part of the refrigerant enters the refrigerant pipe 13J via the refrigerant pipe 13E, and reaches the outdoor expansion valve 6. The refrigerant flowing into the outdoor expansion valve 6 is depressurized there, and then flows into the outdoor heat exchanger 7. The refrigerant that has flowed into the outdoor heat exchanger 7 evaporates, and heat is pumped up from the outside air ventilated by the running or the outdoor blower 15 (endothermic absorption). The low-temperature refrigerant that has exited the outdoor heat exchanger 7 then passes through the refrigerant pipes 13A, 13D, and the solenoid valve 21, reaches the refrigerant pipe 13C, enters the accumulator 12 through the refrigerant pipe 13C, and is separated into gas and liquid. Thereafter, the gas refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K and the circulation is repeated.

一方、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の残りは分流され、この分流された冷媒が電磁弁22を経て冷媒配管13Fに流入し、冷媒配管13Bに至る。次に、冷媒は室内膨張弁8に至り、この室内膨張弁8にて減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときに吸熱器9で生じる冷媒の吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。 On the other hand, the rest of the condensed refrigerant flowing through the refrigerant pipe 13E via the radiator 4 is diverted, and this divided refrigerant flows into the refrigerant pipe 13F via the electromagnetic valve 22 and reaches the refrigerant pipe 13B. Next, the refrigerant reaches the indoor expansion valve 8, and after being depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 via the electromagnetic valve 35 and evaporates. At this time, moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat absorber 9 due to the heat absorption action of the refrigerant generated in the heat absorber 9, so that the air is cooled and dehumidified.

吸熱器9で蒸発した冷媒は、冷媒配管13Cに出て冷媒配管13Dからの冷媒(室外熱交換器7からの冷媒)と合流した後、アキュムレータ12を経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4や補助ヒータ23(発熱している場合)を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。 The refrigerant evaporated in the heat absorber 9 exits to the refrigerant pipe 13C and joins with the refrigerant from the refrigerant pipe 13D (refrigerant from the outdoor heat exchanger 7), and then is sucked into the compressor 2 from the refrigerant pipe 13K via the accumulator 12. Repeat the cycle. The air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4 and the auxiliary heater 23 (if it is generating heat), so that the interior of the vehicle is dehumidified and heated.

ヒートポンプコントローラ32は、実施例では目標ヒータ温度TCOから算出される目標放熱器圧力PCOと放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御するか、又は、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数を制御する。このとき、ヒートポンプコントローラ32は放熱器圧力Pciによるか吸熱器温度Teによるか、何れかの演算から得られる圧縮機目標回転数の低い方を選択して圧縮機2を制御する。また、吸熱器温度Teに基づいて室外膨張弁6の弁開度を制御する。 In the embodiment, the heat pump controller 32 controls the rotation of the compressor 2 based on the target radiator pressure PCO calculated from the target heater temperature TCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. Alternatively, the rotation speed of the compressor 2 is controlled based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is its target value. . At this time, the heat pump controller 32 controls the compressor 2 by selecting either the radiator pressure Pci or the heat absorber temperature Te, whichever is the lower of the compressor target rotation speeds obtained from the calculation. Further, the valve opening degree of the outdoor expansion valve 6 is controlled based on the heat absorber temperature Te.

また、ヒートポンプコントローラ32は、この除湿暖房モードにおいても必要とされる暖房能力に対して放熱器4による暖房能力(加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、低外気温時等にも車室内を支障無く除湿暖房する。 In addition, even in this dehumidifying heating mode, if the heating capacity (heating capacity) of the radiator 4 is insufficient for the required heating capacity, the heat pump controller 32 compensates for this deficiency with the heat generated by the auxiliary heater 23. . As a result, the interior of the vehicle can be dehumidified and heated without any trouble even when the outside temperature is low.

(3)除湿冷房モード
次に、図6を参照しながら除湿冷房モードについて説明する。図6は除湿冷房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。除湿冷房モードでは、ヒートポンプコントローラ32は電磁弁17、及び、電磁弁35を開き、電磁弁20、電磁弁21、電磁弁22、及び、電磁弁69を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
(3) Dehumidifying cooling mode Next, the dehumidifying cooling mode will be explained with reference to FIG. FIG. 6 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in the dehumidifying cooling mode. In the dehumidification cooling mode, the heat pump controller 32 opens the solenoid valve 17 and the solenoid valve 35, and closes the solenoid valve 20, the solenoid valve 21, the solenoid valve 22, and the solenoid valve 69. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is set to adjust the ratio of the air blown out from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.

これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。 As a result, the high-temperature, high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 . Since the air in the air flow passage 3 is ventilated to the radiator 4, the air in the air flow passage 3 exchanges heat with the high temperature refrigerant in the radiator 4 and is heated. On the other hand, the refrigerant in the radiator 4 loses heat to the air and is cooled, condensing and liquefying.

放熱器4を出た冷媒は冷媒配管13E、13Jを経て室外膨張弁6に至り、暖房モードや除湿暖房モードよりも開き気味(大きい弁開度の領域)で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入り、逆止弁18を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着し、空気は冷却され、且つ、除湿される。 The refrigerant that has exited the radiator 4 passes through the refrigerant pipes 13E and 13J and reaches the outdoor expansion valve 6.The refrigerant passes through the outdoor expansion valve 6, which is controlled to be slightly open (larger valve opening range) than in the heating mode or dehumidification/heating mode. It flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 is air-cooled by running there or by the outside air ventilated by the outdoor blower 15, and is condensed. The refrigerant leaving the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the electromagnetic valve 17, the receiver dryer section 14, the subcooling section 16, and reaches the indoor expansion valve 8 via the check valve 18. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 via the electromagnetic valve 35 and evaporates. Due to the heat absorption action at this time, moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat absorber 9, and the air is cooled and dehumidified.

吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこを経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4や補助ヒータ23(発熱している場合)を通過する過程で再加熱(除湿暖房時よりも加熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。 The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is sucked into the compressor 2 from the refrigerant pipe 13K via there, repeating the circulation. The air that has been cooled and dehumidified in the heat absorber 9 is reheated (the heating capacity is lower than during dehumidification and heating) while passing through the radiator 4 and the auxiliary heater 23 (if it is generating heat). This will dehumidify and cool the vehicle interior.

ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)と吸熱器9の目標温度(吸熱器温度Teの目標値)である目標吸熱器温度TEOに基づき、吸熱器温度Teを目標吸熱器温度TEOにするように圧縮機2の回転数を制御すると共に、放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)と目標放熱器圧力PCO(放熱器圧力Pciの目標値)に基づき、放熱器圧力Pciを目標放熱器圧力PCOにするように室外膨張弁6の弁開度を制御することで放熱器4による必要なリヒート量(再加熱量)を得る。 The heat pump controller 32 performs heat absorption based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48 (heat absorber temperature Te) and the target heat absorber temperature TEO which is the target temperature of the heat absorber 9 (target value of the heat absorber temperature Te). The rotation speed of the compressor 2 is controlled so that the heat absorber temperature Te becomes the target heat absorber temperature TEO, and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47 and the target radiator pressure PCO are controlled. (target value of radiator pressure Pci), by controlling the valve opening degree of the outdoor expansion valve 6 so that the radiator pressure Pci becomes the target radiator pressure PCO, the required reheat amount (reheating amount).

また、ヒートポンプコントローラ32は、この除湿冷房モードにおいても必要とされる暖房能力に対して放熱器4による暖房能力(再加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、車室内の温度を下げ過ぎること無く、除湿冷房する。 In addition, even in this dehumidifying cooling mode, if the heating capacity (reheating capacity) of the radiator 4 is insufficient for the required heating capacity, the heat pump controller 32 compensates for this deficiency with the heat generated by the auxiliary heater 23. do. This dehumidifies and cools the vehicle interior without lowering the temperature too much.

(4)冷房モード
次に、図7を参照しながら冷房モードについて説明する。図7は冷房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。冷房モードでは、ヒートポンプコントローラ32は電磁弁17、電磁弁20、及び、電磁弁35を開き、電磁弁21、電磁弁22、及び、電磁弁69を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。尚、補助ヒータ23には通電されない。
(4) Cooling Mode Next, the cooling mode will be explained with reference to FIG. FIG. 7 shows how the refrigerant flows in the refrigerant circuit R in the cooling mode (solid line arrow). In the cooling mode, the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, and the solenoid valve 35, and closes the solenoid valve 21, the solenoid valve 22, and the solenoid valve 69. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is set to adjust the ratio of the air blown out from the indoor blower 27 to the radiator 4 and the auxiliary heater 23. Note that the auxiliary heater 23 is not energized.

これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒート(再加熱)のみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。このとき電磁弁20は開放されているので冷媒は電磁弁20を通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮液化する。 As a result, the high-temperature, high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 . Although the air in the air flow passage 3 is ventilated to the radiator 4, the proportion of the air is small (because it is only reheated during cooling), so most of it only passes through here, and the radiator 4 is The discharged refrigerant reaches the refrigerant pipe 13J via the refrigerant pipe 13E. At this time, the solenoid valve 20 is open, so the refrigerant passes through the solenoid valve 20 and directly flows into the outdoor heat exchanger 7, where it is air-cooled by running or by the outside air ventilated by the outdoor blower 15, and is condensed and liquefied. do.

室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入り、逆止弁18を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときの吸熱作用で室内送風機27から吹き出されて吸熱器9と熱交換する空気は冷却される。 The refrigerant leaving the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the electromagnetic valve 17, the receiver dryer section 14, the subcooling section 16, and reaches the indoor expansion valve 8 via the check valve 18. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 via the electromagnetic valve 35 and evaporates. Due to the heat absorption effect at this time, the air blown out from the indoor blower 27 and exchanging heat with the heat absorber 9 is cooled.

吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこから冷媒配管13Kを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房モードにおいては、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて圧縮機2の回転数を制御する。 The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is sucked into the compressor 2 via the refrigerant pipe 13K from there, repeating the circulation. The air cooled by the heat absorber 9 is blown out into the vehicle interior from the air outlet 29, thereby cooling the vehicle interior. In this cooling mode, the heat pump controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.

(5)空調(優先)+バッテリ冷却モード
次に、図8を参照しながら空調(優先)+バッテリ冷却モードについて説明する。図8は空調(優先)+バッテリ冷却モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。空調(優先)+バッテリ冷却モードでは、ヒートポンプコントローラ32は電磁弁17、電磁弁20、電磁弁35、及び、電磁弁69を開き、電磁弁21、及び、電磁弁22を閉じる。
(5) Air conditioning (priority) + battery cooling mode Next, the air conditioning (priority) + battery cooling mode will be described with reference to FIG. FIG. 8 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in the air conditioning (priority)+battery cooling mode. In the air conditioning (priority)+battery cooling mode, the heat pump controller 32 opens the solenoid valves 17, 20, 35, and 69, and closes the solenoid valves 21 and 22.

そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。尚、この運転モードでは補助ヒータ23には通電されない。また、熱媒体加熱ヒータ63にも通電されない。 Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is set to adjust the ratio of the air blown out from the indoor blower 27 to the radiator 4 and the auxiliary heater 23. Note that in this operating mode, the auxiliary heater 23 is not energized. Further, the heat medium heater 63 is also not energized.

これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒート(再加熱)のみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。このとき電磁弁20は開放されているので冷媒は電磁弁20を通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮液化する。 As a result, the high-temperature, high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 . Although the air in the air flow passage 3 is ventilated to the radiator 4, the proportion of the air is small (because it is only reheated during cooling), so most of it only passes through here, and the radiator 4 is The discharged refrigerant reaches the refrigerant pipe 13J via the refrigerant pipe 13E. At this time, the solenoid valve 20 is open, so the refrigerant passes through the solenoid valve 20 and directly flows into the outdoor heat exchanger 7, where it is air-cooled by running or by the outside air ventilated by the outdoor blower 15, and is condensed and liquefied. do.

室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入る。この冷媒配管13Bに流入した冷媒は、逆止弁18を経た後に分流され、一方はそのまま冷媒配管13Bを流れて室内膨張弁8に至る。この室内膨張弁8に流入した冷媒はそこで減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときの吸熱作用で室内送風機27から吹き出されて吸熱器9と熱交換する空気は冷却される。 The refrigerant leaving the outdoor heat exchanger 7 passes through the refrigerant pipe 13A, the electromagnetic valve 17, the receiver dryer section 14, and the subcooling section 16, and then enters the refrigerant pipe 13B. The refrigerant that has flowed into the refrigerant pipe 13B is divided after passing through the check valve 18, and one part continues to flow through the refrigerant pipe 13B and reaches the indoor expansion valve 8. The refrigerant flowing into the indoor expansion valve 8 is depressurized there, then flows into the heat absorber 9 via the electromagnetic valve 35, and evaporates. Due to the heat absorption effect at this time, the air blown out from the indoor blower 27 and exchanging heat with the heat absorber 9 is cooled.

吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこから冷媒配管13Kを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。 The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is sucked into the compressor 2 via the refrigerant pipe 13K from there, repeating the circulation. The air cooled by the heat absorber 9 is blown out into the vehicle interior from the air outlet 29, thereby cooling the vehicle interior.

他方、逆止弁18を経た冷媒の残りは分流され、分岐配管67に流入して補助膨張弁68に至る。ここで冷媒は減圧された後、電磁弁69を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入し、そこで蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管71、冷媒配管13C及びアキュムレータ12を順次経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す(図8に実線矢印で示す)。 On the other hand, the rest of the refrigerant that has passed through the check valve 18 is branched off, flows into the branch pipe 67 and reaches the auxiliary expansion valve 68 . Here, after the refrigerant is depressurized, it flows into the refrigerant flow path 64B of the refrigerant-thermal medium heat exchanger 64 via the electromagnetic valve 69, and evaporates there. At this time, it exhibits an endothermic effect. The refrigerant evaporated in the refrigerant flow path 64B sequentially passes through the refrigerant pipe 71, the refrigerant pipe 13C, and the accumulator 12, and is sucked into the compressor 2 from the refrigerant pipe 13K, repeating the circulation (indicated by solid arrows in FIG. 8).

一方、循環ポンプ62が運転されているので、この循環ポンプ62から吐出された熱媒体が熱媒体配管66内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒と熱交換し、吸熱されて熱媒体は冷却される。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は、熱媒体加熱ヒータ63に至る。但し、この運転モードでは熱媒体加熱ヒータ63は発熱されないので、熱媒体はそのまま通過してバッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は冷却されると共に、バッテリ55を冷却した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す(図8に破線矢印で示す)。 On the other hand, since the circulation pump 62 is being operated, the heat medium discharged from the circulation pump 62 reaches the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 through the heat medium piping 66, and there, It exchanges heat with the refrigerant that evaporates in 64B, absorbs heat, and cools the heat medium. The heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heater 63. However, in this operating mode, the heat medium heater 63 does not generate heat, so the heat medium passes through as it is, reaches the battery 55, and exchanges heat with the battery 55. As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 is sucked into the circulation pump 62 and repeats the circulation (indicated by the broken line arrow in FIG. 8).

この空調(優先)+バッテリ冷却モードにおいては、ヒートポンプコントローラ32は電磁弁35を開いた状態を維持し、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて後述する図12に示す如く圧縮機2の回転数を制御する。また、実施例では熱媒体温度センサ76が検出する熱媒体の温度(熱媒体温度Tw:バッテリコントローラ73から送信される)に基づき、電磁弁69を以下の如く開閉制御する。 In this air conditioning (priority) + battery cooling mode, the heat pump controller 32 keeps the solenoid valve 35 open, and based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48, which will be described later. The rotation speed of the compressor 2 is controlled as shown in FIG. Further, in the embodiment, based on the temperature of the heat medium detected by the heat medium temperature sensor 76 (heat medium temperature Tw: transmitted from the battery controller 73), the solenoid valve 69 is controlled to open and close as follows.

尚、熱媒体温度Twは、実施例における冷媒-熱媒体熱交換器64(被温調対象用熱交換器)により冷却される対象(熱媒体)の温度として採用しているが、被温調対象であるバッテリ55の温度を示す指標でもある(以下、同じ)。 Note that the heat medium temperature Tw is adopted as the temperature of the object (heat medium) to be cooled by the refrigerant-heat medium heat exchanger 64 (heat exchanger for temperature controlled object) in the embodiment; It is also an index indicating the temperature of the target battery 55 (the same applies hereinafter).

図13はこの空調(優先)+バッテリ冷却モードにおける電磁弁69の開閉制御のブロック図を示している。ヒートポンプコントローラ32の被温調対象用電磁弁制御部90には熱媒体温度センサ76が検出する熱媒体温度Twと、当該熱媒体温度Twの目標値としての所定の目標熱媒体温度TWOが入力される。そして、被温調対象用電磁弁制御部90は、目標熱媒体温度TWOの上下に所定の温度差を有して上限値TwULと下限値TwLLを設定し、電磁弁69を閉じている状態からバッテリ55の発熱等により熱媒体温度Twが高くなり、上限値TwULまで上昇した場合(上限値TwULを上回った場合、又は、上限値TwUL以上となった場合。以下、同じ)、電磁弁69を開放する(電磁弁69開指示)。これにより、冷媒は冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して蒸発し、熱媒体流路64Aを流れる熱媒体を冷却するので、この冷却された熱媒体によりバッテリ55は冷却される。 FIG. 13 shows a block diagram of the opening/closing control of the solenoid valve 69 in this air conditioning (priority)+battery cooling mode. The heat medium temperature Tw detected by the heat medium temperature sensor 76 and a predetermined target heat medium temperature TWO as a target value of the heat medium temperature Tw are input to the temperature-controlled solenoid valve control unit 90 of the heat pump controller 32. Ru. Then, the temperature-controlled solenoid valve control unit 90 sets an upper limit value TwUL and a lower limit value TwLL with a predetermined temperature difference above and below the target heat medium temperature TWO, and changes the state in which the solenoid valve 69 is closed. When the heat medium temperature Tw increases due to heat generation of the battery 55 and rises to the upper limit value TwUL (when it exceeds the upper limit value TwUL, or when it becomes equal to or higher than the upper limit value TwUL; the same applies hereinafter), the solenoid valve 69 is Open (instruction to open solenoid valve 69). As a result, the refrigerant flows into the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64 and evaporates, cooling the heat medium flowing through the heat medium flow path 64A, so that the battery 55 is cooled by this cooled heat medium. be done.

その後、熱媒体温度Twが下限値TwLLまで低下した場合(下限値TwLLを下回った場合、又は、下限値TwLL以下となった場合。以下、同じ)、電磁弁69を閉じる(電磁弁69閉指示)。以後、このような電磁弁69の開閉を繰り返して、車室内の冷房を優先しながら、熱媒体温度Twを目標熱媒体温度TWOに制御し、バッテリ55の冷却を行う。このようにして、車室内の空調(冷房)を優先的に行いながら、機器温度調整装置61の冷媒-熱媒体熱交換器64により熱媒体を介してバッテリ55の冷却も行うことができるようになる。 After that, when the heat medium temperature Tw decreases to the lower limit value TwLL (below the lower limit value TwLL or below the lower limit value TwLL; the same applies hereinafter), close the solenoid valve 69 (instruction to close the solenoid valve 69 ). Thereafter, such opening and closing of the electromagnetic valve 69 is repeated to control the heat medium temperature Tw to the target heat medium temperature TWO and cool the battery 55 while giving priority to cooling the vehicle interior. In this way, while preferentially performing air conditioning (cooling) in the vehicle interior, the battery 55 can also be cooled via the heat medium by the refrigerant-heat medium heat exchanger 64 of the equipment temperature adjustment device 61. Become.

(6)空調運転の切り換え
ヒートポンプコントローラ32は下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、吹出口29から車室内に吹き出される空気の温度の目標値である。
TAO=(Tset-Tin)×K+Tbal(f(Tset、SUN、Tam))
・・(I)
ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する車室内空気の温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
(6) Switching of air conditioning operation The heat pump controller 32 calculates the target blowout temperature TAO mentioned above from the following formula (I). This target blowout temperature TAO is a target value of the temperature of the air blown out from the blowout port 29 into the vehicle interior.
TAO=(Tset-Tin)×K+Tbal(f(Tset, SUN, Tam))
...(I)
Here, Tset is the set temperature in the vehicle interior set by the air conditioning operation unit 53, Tin is the temperature of the vehicle interior air detected by the interior air temperature sensor 37, K is a coefficient, and Tbal is the set temperature Tset or the temperature detected by the solar radiation sensor 51. This is a balance value calculated from the amount of solar radiation SUN and the outside temperature Tam detected by the outside temperature sensor 33. Generally, the lower the outside air temperature Tam is, the higher the target blowout temperature TAO is, and it decreases as the outside air temperature Tam increases.

そして、ヒートポンプコントローラ32は起動時には外気温度センサ33が検出する外気温度Tamと目標吹出温度TAOとに基づいて上記各空調運転のうちの何れかの空調運転を選択する。また、起動後は外気温度Tamや目標吹出温度TAO、熱媒体温度Tw等の運転条件や環境条件、設定条件の変化に応じ、前記各空調運転を選択して切り換えていく。例えば、冷房モードから空調(優先)+バッテリ冷却モードへの移行は、バッテリコントローラ73からのバッテリ冷却要求が入力されたことに基づいて実行される。この場合、バッテリコントローラ73は例えば熱媒体温度Twやバッテリ温度Tcellが所定値以上に上昇した場合にバッテリ冷却要求を出力し、ヒートポンプコントローラ32や空調コントローラ45に送信するものである。 At startup, the heat pump controller 32 selects one of the air conditioning operations described above based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target outlet temperature TAO. Further, after startup, each air conditioning operation is selected and switched according to changes in operating conditions, environmental conditions, and setting conditions such as outside air temperature Tam, target blowout temperature TAO, and heat medium temperature Tw. For example, the transition from the cooling mode to the air conditioning (priority)+battery cooling mode is executed based on input of a battery cooling request from the battery controller 73. In this case, the battery controller 73 outputs a battery cooling request and sends it to the heat pump controller 32 and the air conditioning controller 45, for example, when the heat medium temperature Tw or the battery temperature Tcell rises above a predetermined value.

(7)バッテリ冷却(優先)+空調モード(被温調対象冷却モード:被温調対象冷却(優先)+空調モード)
次に、バッテリ55の充電中の動作について説明する。例えば急速充電器(外部電源)の充電用のプラグが接続され、バッテリ55が充電されているときに(これらの情報はバッテリコントローラ73から送信される)、車両のイグニッション(IGN)のON/OFFに拘わらず、バッテリ冷却要求があり、空調操作部53の空調スイッチがONされた場合、ヒートポンプコントローラ32はバッテリ冷却(優先)+空調モードを実行する。このバッテリ冷却(優先)+空調モードにおける冷媒回路Rの冷媒の流れ方は、図8に示した空調(優先)+バッテリ冷却モードの場合と同様である。
(7) Battery cooling (priority) + air conditioning mode (temperature-controlled object cooling mode: temperature-controlled object cooling (priority) + air conditioning mode)
Next, the operation while charging the battery 55 will be explained. For example, when the charging plug of a quick charger (external power supply) is connected and the battery 55 is being charged (this information is transmitted from the battery controller 73), the vehicle ignition (IGN) is turned ON/OFF. Regardless, if there is a battery cooling request and the air conditioning switch of the air conditioning operation unit 53 is turned on, the heat pump controller 32 executes the battery cooling (priority) + air conditioning mode. The flow of refrigerant in the refrigerant circuit R in this battery cooling (priority) + air conditioning mode is the same as in the air conditioning (priority) + battery cooling mode shown in FIG.

但し、このバッテリ冷却(優先)+空調モードの場合、実施例ではヒートポンプコントローラ32は電磁弁69を開いた状態に維持し、熱媒体温度センサ76(バッテリコントローラ73から送信される)が検出する熱媒体温度Twに基づいて後述する図14に示す如く圧縮機2の回転数を制御する。また、実施例では吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づき、電磁弁35を以下の如く開閉制御する。 However, in the case of this battery cooling (priority) + air conditioning mode, in the embodiment, the heat pump controller 32 keeps the solenoid valve 69 open, and the heat detected by the heat medium temperature sensor 76 (transmitted from the battery controller 73) Based on the medium temperature Tw, the rotation speed of the compressor 2 is controlled as shown in FIG. 14, which will be described later. Further, in the embodiment, based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48, the solenoid valve 35 is controlled to open and close as follows.

図15はこのバッテリ冷却(優先)+空調モードにおける電磁弁35の開閉制御のブロック図を示している。ヒートポンプコントローラ32の吸熱器用電磁弁制御部95には吸熱器温度センサ48が検出する吸熱器温度Teと、当該吸熱器温度Teの目標値としての所定の目標吸熱器温度TEOが入力される。そして、吸熱器用電磁弁制御部95は、目標吸熱器温度TEOの上下に所定の温度差を有して上限値TeULと下限値TeLLを設定し、電磁弁35を閉じている状態から吸熱器温度Teが高くなり、上限値TeULまで上昇した場合(上限値TeULを上回った場合、又は、上限値TeUL以上となった場合。以下、同じ)、電磁弁35を開放する(電磁弁35開指示)。これにより、冷媒は吸熱器9に流入して蒸発し、空気流通路3を流通する空気を冷却する。 FIG. 15 shows a block diagram of the opening/closing control of the solenoid valve 35 in this battery cooling (priority) + air conditioning mode. The heat absorber temperature Te detected by the heat absorber temperature sensor 48 and a predetermined target heat absorber temperature TEO as a target value of the heat absorber temperature Te are input to the heat absorber solenoid valve control unit 95 of the heat pump controller 32. Then, the heat absorber solenoid valve control unit 95 sets an upper limit value TeUL and a lower limit value TeLL with a predetermined temperature difference above and below the target heat absorber temperature TEO, and changes the heat absorber temperature from the state in which the solenoid valve 35 is closed. When Te becomes high and rises to the upper limit value TeUL (when it exceeds the upper limit value TeUL, or when it becomes more than the upper limit value TeUL; the same applies hereinafter), the solenoid valve 35 is opened (instruction to open the solenoid valve 35). . Thereby, the refrigerant flows into the heat absorber 9 and evaporates, thereby cooling the air flowing through the air flow passage 3.

その後、吸熱器温度Teが下限値TeLLまで低下した場合(下限値TeLLを下回った場合、又は、下限値TeLL以下となった場合。以下、同じ)、電磁弁35を閉じる(電磁弁35閉指示)。以後、このような電磁弁35の開閉を繰り返して、バッテリ55の冷却を優先しながら、吸熱器温度Teを目標吸熱器温度TEOに制御し、車室内の冷房を行う。このようにして、機器温度調整装置61の冷媒-熱媒体熱交換器64により熱媒体を介してバッテリ55の冷却を優先的に行いながら、車室内の空調(冷房)も行うことができるようになる。 After that, when the heat absorber temperature Te decreases to the lower limit value TeLL (below the lower limit value TeLL, or below the lower limit value TeLL; the same applies hereinafter), close the solenoid valve 35 (instruction to close the solenoid valve 35). ). Thereafter, such opening and closing of the electromagnetic valve 35 is repeated, and while giving priority to cooling the battery 55, the heat absorber temperature Te is controlled to the target heat absorber temperature TEO, and the interior of the vehicle is cooled. In this way, the refrigerant-heat medium heat exchanger 64 of the equipment temperature adjustment device 61 can preferentially cool the battery 55 via the heat medium, while also performing air conditioning (cooling) in the passenger compartment. Become.

(8)バッテリ冷却(単独)モード(被温調対象冷却モード:被温調対象冷却(単独)モード)
次に、イグニッションのON/OFFに拘わらず、空調操作部53の空調スイッチがOFFされた状態で、急速充電器の充電用のプラグが接続され、バッテリ55が充電されているとき、バッテリ冷却要求があった場合、ヒートポンプコントローラ32はバッテリ冷却(単独)モードを実行する。但し、バッテリ55の充電中以外にも、空調スイッチがOFFで、バッテリ冷却要求があった場合(高外気温で走行時等)には実行される。図9はこのバッテリ冷却(単独)モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。バッテリ冷却(単独)モードでは、ヒートポンプコントローラ32は電磁弁17、電磁弁20、及び、電磁弁69を開き、電磁弁21、電磁弁22、及び、電磁弁35を閉じる。
(8) Battery cooling (single) mode (Temperature-controlled cooling mode: Temperature-controlled cooling (single) mode)
Next, regardless of whether the ignition is ON or OFF, when the air conditioning switch of the air conditioning operation unit 53 is OFF, the charging plug of the quick charger is connected, and the battery 55 is being charged, a battery cooling request is issued. If so, the heat pump controller 32 executes the battery cooling (single) mode. However, other than when the battery 55 is being charged, it is executed when the air conditioning switch is OFF and there is a battery cooling request (such as when driving at a high outside temperature). FIG. 9 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in this battery cooling (single) mode. In the battery cooling (single) mode, the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, and the solenoid valve 69, and closes the solenoid valve 21, the solenoid valve 22, and the solenoid valve 35.

そして、圧縮機2、及び、室外送風機15を運転する。尚、室内送風機27は運転されず、補助ヒータ23にも通電されない。また、この運転モードでは熱媒体加熱ヒータ63も通電されない。 Then, the compressor 2 and the outdoor blower 15 are operated. Note that the indoor blower 27 is not operated, and the auxiliary heater 23 is not energized. Further, in this operation mode, the heat medium heater 63 is also not energized.

これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されないので、ここは通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。このとき、電磁弁20は開放されているので冷媒は電磁弁20を通過し、そのまま室外熱交換器7に流入し、そこで室外送風機15により通風される外気によって空冷され、凝縮液化する。 As a result, the high-temperature, high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 . Since the air in the air flow passage 3 is not ventilated to the radiator 4, it only passes through the radiator 4, and the refrigerant leaving the radiator 4 reaches the refrigerant pipe 13J via the refrigerant pipe 13E. At this time, since the solenoid valve 20 is open, the refrigerant passes through the solenoid valve 20 and directly flows into the outdoor heat exchanger 7, where it is air-cooled by the outside air ventilated by the outdoor blower 15 and condenses and liquefies.

室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入る。この冷媒配管13Bに流入した冷媒は、逆止弁18を経た後、全てが分岐配管67に流入して補助膨張弁68に至る。ここで冷媒は減圧された後、電磁弁69を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入し、そこで蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管71、冷媒配管13C及びアキュムレータ12を順次経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す(図9に実線矢印で示す)。 The refrigerant leaving the outdoor heat exchanger 7 passes through the refrigerant pipe 13A, the electromagnetic valve 17, the receiver dryer section 14, and the subcooling section 16, and then enters the refrigerant pipe 13B. The refrigerant that has flowed into the refrigerant pipe 13B passes through the check valve 18, and then all flows into the branch pipe 67 and reaches the auxiliary expansion valve 68. Here, after the refrigerant is depressurized, it flows into the refrigerant flow path 64B of the refrigerant-thermal medium heat exchanger 64 via the electromagnetic valve 69, and evaporates there. At this time, it exhibits an endothermic effect. The refrigerant evaporated in the refrigerant flow path 64B sequentially passes through the refrigerant pipe 71, the refrigerant pipe 13C, and the accumulator 12, and is sucked into the compressor 2 from the refrigerant pipe 13K, repeating the circulation (indicated by solid arrows in FIG. 9).

一方、循環ポンプ62が運転されているので、この循環ポンプ62から吐出された熱媒体が熱媒体配管66内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒により吸熱され、熱媒体は冷却されるようになる。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は、熱媒体加熱ヒータ63に至る。但し、この運転モードでは熱媒体加熱ヒータ63は発熱されないので、熱媒体はそのまま通過してバッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は冷却されると共に、バッテリ55を冷却した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す(図9に破線矢印で示す)。 On the other hand, since the circulation pump 62 is being operated, the heat medium discharged from the circulation pump 62 reaches the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 through the heat medium piping 66, and there, Heat is absorbed by the refrigerant evaporating within 64B, and the heat medium is cooled. The heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heater 63. However, in this operating mode, the heat medium heater 63 does not generate heat, so the heat medium passes through as it is, reaches the battery 55, and exchanges heat with the battery 55. As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 is sucked into the circulation pump 62 and repeats the circulation (indicated by the broken line arrow in FIG. 9).

このバッテリ冷却(単独)モードにおいても、ヒートポンプコントローラ32は熱媒体温度センサ76が検出する熱媒体温度Twに基づいて後述する如く圧縮機2の回転数を制御することにより、バッテリ55を冷却する。このようにして、車室内を空調する必要が無い場合には、バッテリ55の冷却のみを効果的に行うことができるようになる。 Also in this battery cooling (single) mode, the heat pump controller 32 cools the battery 55 by controlling the rotation speed of the compressor 2 as described later based on the heat medium temperature Tw detected by the heat medium temperature sensor 76. In this way, when there is no need to air condition the interior of the vehicle, only the battery 55 can be effectively cooled.

(9)除霜モード
次に、図10を参照しながら室外熱交換器7の除霜モードについて説明する。図10は除霜モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。前述した如く暖房モードでは、室外熱交換器7では冷媒が蒸発し、外気から吸熱して低温となるため、室外熱交換器7には外気中の水分が霜となって付着する。
(9) Defrosting Mode Next, the defrosting mode of the outdoor heat exchanger 7 will be explained with reference to FIG. FIG. 10 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in the defrosting mode. As described above, in the heating mode, the refrigerant evaporates in the outdoor heat exchanger 7 and absorbs heat from the outside air, resulting in a low temperature, so moisture in the outside air adheres to the outdoor heat exchanger 7 as frost.

そこで、ヒートポンプコントローラ32は室外熱交換器温度センサ49が検出する室外熱交換器温度TXO(室外熱交換器7における冷媒蒸発温度)と、室外熱交換器7の無着霜時における冷媒蒸発温度TXObaseとの差ΔTXO(=TXObase-TXO)を算出しており、室外熱交換器温度TXOが無着霜時における冷媒蒸発温度TXObaseより低下して、その差ΔTXOが所定値以上に拡大した状態が所定時間継続した場合、室外熱交換器7に着霜しているものと判定して所定の着霜フラグをセットする。 Therefore, the heat pump controller 32 uses the outdoor heat exchanger temperature TXO (refrigerant evaporation temperature in the outdoor heat exchanger 7) detected by the outdoor heat exchanger temperature sensor 49 and the refrigerant evaporation temperature TXObase when the outdoor heat exchanger 7 is not frosted. The difference ΔTXO (= TXObase - TXO) between If the time continues, it is determined that the outdoor heat exchanger 7 is frosted, and a predetermined frosting flag is set.

そして、この着霜フラグがセットされており、空調操作部53の空調スイッチがOFFされた状態で、急速充電器の充電用のプラグが接続され、バッテリ55が充電されるとき、ヒートポンプコントローラ32は以下の如く室外熱交換器7の除霜モードを実行する。 When the charging plug of the quick charger is connected and the battery 55 is charged with this frost formation flag set and the air conditioning switch of the air conditioning operation unit 53 turned off, the heat pump controller 32 The defrosting mode of the outdoor heat exchanger 7 is executed as follows.

ヒートポンプコントローラ32はこの除霜モードでは、冷媒回路Rを前述した暖房モードの状態とした上で、室外膨張弁6の弁開度を全開とする。そして、圧縮機2を運転し、当該圧縮機2から吐出された高温の冷媒を放熱器4、室外膨張弁6を経て室外熱交換器7に流入させ、当該室外熱交換器7の着霜を融解させる(図10)。そして、ヒートポンプコントローラ32は室外熱交換器温度センサ49が検出する室外熱交換器温度TXOが所定の除霜終了温度(例えば、+3℃等)より高くなった場合、室外熱交換器7の除霜が完了したものとして除霜モードを終了する。 In this defrosting mode, the heat pump controller 32 sets the refrigerant circuit R to the above-mentioned heating mode, and then fully opens the outdoor expansion valve 6. Then, the compressor 2 is operated, and the high-temperature refrigerant discharged from the compressor 2 is caused to flow into the outdoor heat exchanger 7 via the radiator 4 and the outdoor expansion valve 6, thereby preventing frost formation on the outdoor heat exchanger 7. Thaw (Figure 10). Then, the heat pump controller 32 defrosts the outdoor heat exchanger 7 when the outdoor heat exchanger temperature TXO detected by the outdoor heat exchanger temperature sensor 49 becomes higher than a predetermined defrosting end temperature (for example, +3° C., etc.). The defrost mode is terminated as if the defrost operation has been completed.

(10)バッテリ加熱モード
また、空調運転を実行しているとき、或いは、バッテリ55を充電しているとき、ヒートポンプコントローラ32はバッテリ加熱モードを実行する。このバッテリ加熱モードでは、ヒートポンプコントローラ32は循環ポンプ62を運転し、熱媒体加熱ヒータ63に通電する。尚、電磁弁69は閉じる。
(10) Battery heating mode Furthermore, when performing air conditioning operation or charging the battery 55, the heat pump controller 32 executes the battery heating mode. In this battery heating mode, the heat pump controller 32 operates the circulation pump 62 and energizes the heat medium heater 63. Note that the solenoid valve 69 is closed.

これにより、循環ポンプ62から吐出された熱媒体は熱媒体配管66内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこを通過して熱媒体加熱ヒータ63に至る。このとき熱媒体加熱ヒータ63は発熱されているので、熱媒体は熱媒体加熱ヒータ63により加熱されて温度上昇した後、バッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は加熱されると共に、バッテリ55を加熱した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す。 As a result, the heat medium discharged from the circulation pump 62 reaches the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64 through the heat medium piping 66, passes through there, and reaches the heat medium heater 63. At this time, since the heat medium heater 63 is generating heat, the heat medium is heated by the heat medium heater 63 and its temperature rises, and then reaches the battery 55 and exchanges heat with the battery 55 . As a result, the battery 55 is heated, and the heat medium after heating the battery 55 is sucked into the circulation pump 62 and circulated repeatedly.

このバッテリ加熱モードにおいては、ヒートポンプコントローラ32は熱媒体温度センサ76が検出する熱媒体温度Twに基づいて熱媒体加熱ヒータ63の通電を制御することにより、熱媒体温度Twを所定の目標熱媒体温度TWOに調整し、バッテリ55を加熱する。 In this battery heating mode, the heat pump controller 32 adjusts the heat medium temperature Tw to a predetermined target heat medium temperature by controlling the energization of the heat medium heater 63 based on the heat medium temperature Tw detected by the heat medium temperature sensor 76. Adjust to TWO and heat the battery 55.

(11)ヒートポンプコントローラ32による圧縮機2の制御
また、ヒートポンプコントローラ32は、暖房モードでは放熱器圧力Pciに基づき、図11の制御ブロック図により圧縮機2の目標回転数(圧縮機目標回転数)TGNChを算出し、除湿冷房モード、冷房モード、空調(優先)+バッテリ冷却モードでは、吸熱器温度Teに基づき、図12の制御ブロック図により圧縮機2の目標回転数(圧縮機目標回転数)TGNCcを算出する。尚、除湿暖房モードでは圧縮機目標回転数TGNChと圧縮機目標回転数TGNCcのうちの低い方向を選択する。また、バッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モードでは、熱媒体温度Twに基づき、図14の制御ブロック図により圧縮機2の目標回転数(圧縮機目標回転数)TGNCwを算出する。
(11) Control of the compressor 2 by the heat pump controller 32 Also, in the heating mode, the heat pump controller 32 controls the target rotation speed of the compressor 2 (compressor target rotation speed) according to the control block diagram of FIG. 11 based on the radiator pressure Pci. TGNCh is calculated, and in the dehumidifying cooling mode, cooling mode, and air conditioning (priority) + battery cooling mode, the target rotation speed of the compressor 2 (compressor target rotation speed) is determined based on the heat absorber temperature Te according to the control block diagram of FIG. 12. Calculate TGNCc. In addition, in the dehumidification heating mode, the lower one of the compressor target rotation speed TGNCh and the compressor target rotation speed TGNCc is selected. In addition, in the battery cooling (priority) + air conditioning mode and the battery cooling (single) mode, the target rotation speed of the compressor 2 (compressor target rotation speed) TGNCw is calculated based on the heat medium temperature Tw using the control block diagram in Fig. 14. do.

(11-1)放熱器圧力Pciに基づく圧縮機目標回転数TGNChの算出
先ず、図11を用いて放熱器圧力Pciに基づく圧縮機2の制御について詳述する。図11は放熱器圧力Pciに基づいて圧縮機2の目標回転数(圧縮機目標回転数)TGNChを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F(フィードフォワード)操作量演算部78は外気温度センサ33から得られる外気温度Tamと、室内送風機27のブロワ電圧BLVと、SW=(TAO-Te)/(Thp-Te)で得られるエアミックスダンパ28による風量割合SWと、放熱器4の出口における冷媒の過冷却度SCの目標値である目標過冷却度TGSCと、ヒータ温度Thpの目標値である前述した目標ヒータ温度TCOと、放熱器4の圧力の目標値である目標放熱器圧力PCOに基づいて圧縮機目標回転数のF/F操作量TGNChffを算出する。
(11-1) Calculation of compressor target rotation speed TGNCh based on radiator pressure Pci First, control of the compressor 2 based on radiator pressure Pci will be described in detail using FIG. 11. FIG. 11 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCh of the compressor 2 based on the radiator pressure Pci. The F/F (feedforward) operation amount calculation unit 78 of the heat pump controller 32 calculates the outside air temperature Tam obtained from the outside air temperature sensor 33, the blower voltage BLV of the indoor fan 27, and SW=(TAO-Te)/(Thp-Te). ), the target subcooling degree TGSC, which is the target value of the subcooling degree SC of the refrigerant at the outlet of the radiator 4, and the target heater temperature Thp, which is the target value of the heater temperature Thp. The F/F operation amount TGNChff of the target rotation speed of the compressor is calculated based on the temperature TCO and the target radiator pressure PCO which is the target value of the pressure of the radiator 4.

尚、ヒータ温度Thpは放熱器4の風下側の空気温度(推定値)であり、放熱器圧力センサ47が検出する放熱器圧力Pciと放熱器出口温度センサ44が検出する放熱器4の冷媒出口温度Tciから算出(推定)する。また、過冷却度SCは放熱器入口温度センサ43と放熱器出口温度センサ44が検出する放熱器4の冷媒入口温度Tcxinと冷媒出口温度Tciから算出される。 Note that the heater temperature Thp is the air temperature (estimated value) on the leeward side of the radiator 4, and the radiator pressure Pci detected by the radiator pressure sensor 47 and the refrigerant outlet of the radiator 4 detected by the radiator outlet temperature sensor 44. Calculate (estimate) from the temperature Tci. Further, the degree of subcooling SC is calculated from the refrigerant inlet temperature Tcxin and refrigerant outlet temperature Tci of the radiator 4 detected by the radiator inlet temperature sensor 43 and the radiator outlet temperature sensor 44.

前記目標放熱器圧力PCOは上記目標過冷却度TGSCと目標ヒータ温度TCOに基づいて目標値演算部79が算出する。更に、F/B(フィードバック)操作量演算部81はこの目標放熱器圧力PCOと放熱器圧力Pciに基づくPID演算若しくはPI演算により圧縮機目標回転数のF/B操作量TGNChfbを算出する。そして、F/F操作量演算部78が算出したF/F操作量TGNChffとF/B操作量演算部81が算出したF/B操作量TGNChfbは加算器82で加算され、TGNCh00としてリミット設定部83に入力される。 The target radiator pressure PCO is calculated by the target value calculation unit 79 based on the target subcooling degree TGSC and the target heater temperature TCO. Furthermore, the F/B (feedback) manipulated variable calculation unit 81 calculates the F/B manipulated variable TGNChfb of the compressor target rotation speed by PID calculation or PI calculation based on the target radiator pressure PCO and radiator pressure Pci. Then, the F/F operation amount TGNChff calculated by the F/F operation amount calculation unit 78 and the F/B operation amount TGNChfb calculated by the F/B operation amount calculation unit 81 are added by an adder 82, and the result is set as TGNCh00 by the limit setting unit. 83.

リミット設定部83では制御上の下限回転数ECNpdLimLoと上限回転数ECNpdLimHiのリミットが付けられてTGNCh0とされた後、圧縮機OFF制御部84を経て圧縮機目標回転数TGNChとして決定される。通常モードではヒートポンプコントローラ32は、この放熱器圧力Pciに基づいて算出された圧縮機目標回転数TGNChにより、放熱器圧力Pciが目標放熱器圧力PCOになるように圧縮機2の運転を制御する。 In the limit setting section 83, limits of a lower limit rotation speed ECNpdLimLo and an upper limit rotation speed ECNpdLimHi for control are added and set to TGNCh0, and then the compressor target rotation speed TGNCh is determined via the compressor OFF control section 84. In the normal mode, the heat pump controller 32 controls the operation of the compressor 2 so that the radiator pressure Pci becomes the target radiator pressure PCO based on the compressor target rotation speed TGNCh calculated based on the radiator pressure Pci.

尚、圧縮機OFF制御部84は、放熱器4が軽負荷状態となり、圧縮機目標回転数TGNChが上述した下限回転数ECNpdLimLoとなって、放熱器圧力Pciが目標放熱器圧力PCOの上下に設定された所定の上限値PULと下限値PLLのうちの上限値PULより高い所定の強制停止値PSLまで上昇した状態(強制停止値PSLを上回った状態、又は、強制停止値PSL以上となった状態。以下、同じ)が所定時間th1継続した場合(放熱器4の所定の軽負荷条件が成立)、圧縮機2を停止させて圧縮機2をON-OFF制御するON-OFF制御モードに入る。 The compressor OFF control unit 84 sets the radiator 4 to a light load state, the compressor target rotation speed TGNCh becomes the above-mentioned lower limit rotation speed ECNpdLimLo, and the radiator pressure Pci is set above and below the target radiator pressure PCO. A state in which the forced stop value PSL has increased to a predetermined forced stop value PSL higher than the upper limit PUL of the predetermined upper limit PUL and lower limit PLL (a state in which the forced stop value PSL has been exceeded, or a state in which the forced stop value PSL has been exceeded) (hereinafter the same) continues for a predetermined time th1 (a predetermined light load condition of the radiator 4 is satisfied), the compressor 2 is stopped and an ON-OFF control mode is entered in which the compressor 2 is controlled ON-OFF.

この圧縮機2のON-OFF制御モードでは、放熱器圧力Pciが下限値PLLまで低下した場合(下限値PLLを下回った場合、又は、下限値PLL以下となった場合。以下、同じ)、圧縮機2を起動して圧縮機目標回転数TGNChを下限回転数ECNpdLimLoとして運転し、その状態で放熱器圧力Pciが上限値PULまで上昇した場合は圧縮機2を再度停止させる。即ち、下限回転数ECNpdLimLoでの圧縮機2の運転(ON)と、停止(OFF)を繰り返す。そして、放熱器圧力Pciが下限値PULまで低下し、圧縮機2を起動した後、放熱器圧力Pciが下限値PULより高くならない状態が所定時間th2継続した場合、圧縮機2のON-OFFモード制御を終了し、通常モードに復帰するものである。 In this ON-OFF control mode of the compressor 2, when the radiator pressure Pci decreases to the lower limit value PLL (below the lower limit value PLL, or below the lower limit value PLL; the same applies hereinafter), the compression The compressor 2 is started and operated with the compressor target rotation speed TGNCh set to the lower limit rotation speed ECNpdLimLo, and when the radiator pressure Pci rises to the upper limit value PUL in this state, the compressor 2 is stopped again. That is, the compressor 2 is repeatedly operated (ON) and stopped (OFF) at the lower limit rotation speed ECNpdLimLo. Then, after the radiator pressure Pci decreases to the lower limit value PUL and the compressor 2 is started, if the state in which the radiator pressure Pci does not become higher than the lower limit value PUL continues for a predetermined time th2, the ON-OFF mode of the compressor 2 is set. This ends the control and returns to normal mode.

(11-2)吸熱器温度Teに基づく圧縮機目標回転数TGNCcの算出
次に、図12を用いて吸熱器温度Teに基づく圧縮機2の制御について詳述する。図12は吸熱器温度Teに基づいて圧縮機2の目標回転数(圧縮機目標回転数)TGNCcを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F操作量演算部86は外気温度Tamと、空気流通路3内を流通する空気の風量Ga(室内送風機27のブロワ電圧BLVでもよい)と、目標放熱器圧力PCOと、吸熱器温度Teの目標値である目標吸熱器温度TEOに基づいて圧縮機目標回転数のF/F操作量TGNCcffを算出する。
(11-2) Calculation of Compressor Target Rotational Speed TGNCc Based on Heat Absorber Temperature Te Next, control of the compressor 2 based on the heat absorber temperature Te will be described in detail using FIG. 12. FIG. 12 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCc of the compressor 2 based on the heat absorber temperature Te. The F/F operation amount calculation unit 86 of the heat pump controller 32 calculates the outside air temperature Tam, the air volume Ga of the air flowing through the air flow passage 3 (the blower voltage BLV of the indoor blower 27 may be used), and the target radiator pressure PCO. The F/F operation amount TGNCcff of the compressor target rotation speed is calculated based on the target heat absorber temperature TEO, which is the target value of the heat absorber temperature Te.

また、F/B操作量演算部87は目標吸熱器温度TEOと吸熱器温度Teに基づくPID演算若しくはPI演算により圧縮機目標回転数のF/B操作量TGNCcfbを算出する。そして、F/F操作量演算部86が算出したF/F操作量TGNCcffとF/B操作量演算部87が算出したF/B操作量TGNCcfbは加算器88で加算され、TGNCc00としてリミット設定部89に入力される。 Further, the F/B manipulated variable calculation unit 87 calculates the F/B manipulated variable TGNCcfb of the compressor target rotation speed by PID calculation or PI calculation based on the target heat absorber temperature TEO and the heat absorber temperature Te. Then, the F/F operation amount TGNCcff calculated by the F/F operation amount calculation unit 86 and the F/B operation amount TGNCcfb calculated by the F/B operation amount calculation unit 87 are added by an adder 88, and the result is set as TGNCc00 by the limit setting unit. 89.

リミット設定部89では制御上の下限回転数TGNCcLimLoと上限回転数TGNCcLimHiのリミットが付けられてTGNCc0とされた後、圧縮機OFF制御部91を経て圧縮機目標回転数TGNCcとして決定される。従って、加算器88で加算された値TGNCc00が上限回転数TGNCcLimHiと下限回転数TGNCcLimLo以内であり、後述するON-OFF制御モードにならなければ、この値TGNCc00が圧縮機目標回転数TGNCc(圧縮機2の回転数となる)。通常モードではヒートポンプコントローラ32は、この吸熱器温度Teに基づいて算出された圧縮機目標回転数TGNCcにより、吸熱器温度Teが目標吸熱器温度TEOになるように圧縮機2の運転を制御する。 In the limit setting section 89, limits of a lower limit rotation speed TGNCcLimLo and an upper limit rotation speed TGNCcLimHi are added for control and the rotation speed is set to TGNCc0, and then the compressor target rotation speed is determined as TGNCc via the compressor OFF control section 91. Therefore, if the value TGNCc00 added by the adder 88 is within the upper limit rotational speed TGNCcLimHi and the lower limit rotational speed TGNCcLimLo, and the ON-OFF control mode described later does not occur, this value TGNCc00 becomes the compressor target rotational speed TGNCc (compressor 2 rotations). In the normal mode, the heat pump controller 32 controls the operation of the compressor 2 so that the heat absorber temperature Te becomes the target heat absorber temperature TEO based on the compressor target rotation speed TGNCc calculated based on the heat absorber temperature Te.

尚、圧縮機OFF制御部91は、吸熱器9が軽負荷状態となり、圧縮機目標回転数TGNCcが上述した下限回転数TGNCcLimLoとなって、吸熱器温度Teが目標吸熱器温度TEOの上下に設定された上限値TeULと下限値TeLLのうちの下限値TeLLより低い所定の強制停止値TeSLまで低下した状態(強制停止値TeSLを下回った状態、又は、強制停止値TeSL以下となった状態。以下、同じ)が所定時間tc1継続した場合(吸熱器9の所定の軽負荷条件が成立)、圧縮機2を停止(圧縮機OFF)させて圧縮機2をON-OFF制御するON-OFF制御モードに入る。 The compressor OFF control unit 91 sets the heat absorber 9 in a light load state, the compressor target rotation speed TGNCc becomes the above-mentioned lower limit rotation speed TGNCcLimLo, and the heat absorber temperature Te is set above and below the target heat absorber temperature TEO. A state in which the forced stop value TeSL has decreased to a predetermined forced stop value TeSL that is lower than the lower limit TeLL of the upper limit TeUL and lower limit TeLL (a state in which it has fallen below the forced stop value TeSL, or a state in which it has become below the forced stop value TeSL. , the same) continues for a predetermined time tc1 (a predetermined light load condition of the heat absorber 9 is satisfied), the compressor 2 is stopped (compressor OFF) and the compressor 2 is controlled to turn on and off. to go into.

この場合の圧縮機2のON-OFF制御モードでは、吸熱器温度Teが上限値TeULまで上昇した場合(上限値TeULを上回った場合、又は、上限値TeUL以上となった場合。以下、同じ)、圧縮機2を起動(圧縮機ON)して圧縮機目標回転数TGNCcを下限回転数TGNCcLimLoとして運転し、その状態で吸熱器温度Teが下限値TeLLまで低下した場合は圧縮機2を再度停止させる(圧縮機OFF)。即ち、下限回転数TGNCcLimLoでの圧縮機2の運転(圧縮機ON)と、停止(圧縮機OFF)を繰り返す。そして、吸熱器温度Teが上限値TeULまで上昇し、圧縮機2を起動した後(圧縮機ON)、吸熱器温度Teが上限値TeULより低くならない状態が所定時間tc2継続した場合、この場合の圧縮機2のON-OFF制御モードを終了し、通常モードに復帰するものである。 In the ON-OFF control mode of the compressor 2 in this case, when the heat absorber temperature Te rises to the upper limit value TeUL (when it exceeds the upper limit value TeUL, or when it becomes equal to or higher than the upper limit value TeUL; the same applies hereinafter) , Start the compressor 2 (compressor ON) and operate the compressor target rotation speed TGNCc as the lower limit rotation speed TGNCcLimLo, and in that state, if the heat absorber temperature Te decreases to the lower limit value TeLL, the compressor 2 is stopped again. (compressor OFF). That is, operation of the compressor 2 at the lower limit rotation speed TGNCcLimLo (compressor ON) and stopping (compressor OFF) are repeated. Then, after the heat absorber temperature Te rises to the upper limit value TeUL and the compressor 2 is started (compressor ON), if the state in which the heat absorber temperature Te does not become lower than the upper limit value TeUL continues for a predetermined time tc2, in this case. This ends the ON-OFF control mode of the compressor 2 and returns to the normal mode.

(11-3)熱媒体温度Twに基づく圧縮機目標回転数TGNCwの算出
次に、図14を用いて熱媒体温度Twに基づく圧縮機2の制御について詳述する。図14は、前述したバッテリ冷却(優先)+空調モード及びバッテリ冷却(単独)モードにおいて、熱媒体温度Twに基づき圧縮機2の目標回転数(圧縮機目標回転数)TGNCwを算出するヒートポンプコントローラ32の制御ブロック図である。
(11-3) Calculation of compressor target rotation speed TGNCw based on heat medium temperature Tw Next, control of the compressor 2 based on heat medium temperature Tw will be described in detail using FIG. 14. FIG. 14 shows the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCw of the compressor 2 based on the heat medium temperature Tw in the battery cooling (priority) + air conditioning mode and the battery cooling (single) mode described above. It is a control block diagram of.

この図において、ヒートポンプコントローラ32のF/F操作量演算部92は外気温度Tamと、機器温度調整装置61内の熱媒体の流量Gw(循環ポンプ62の出力から算出される)と、バッテリ55の発熱量(バッテリコントローラ73から送信される)と、バッテリ温度Tcell(バッテリコントローラ73から送信される)と、熱媒体温度Twの目標値である目標熱媒体温度TWOに基づいて圧縮機目標回転数のF/F操作量TGNCcwffを算出する。 In this figure, the F/F operation amount calculation unit 92 of the heat pump controller 32 calculates the outside air temperature Tam, the flow rate Gw of the heat medium in the device temperature adjustment device 61 (calculated from the output of the circulation pump 62), and the output of the battery 55. The compressor target rotation speed is determined based on the calorific value (sent from the battery controller 73), the battery temperature Tcell (sent from the battery controller 73), and the target heat medium temperature TWO which is the target value of the heat medium temperature Tw. Calculate the F/F operation amount TGNCcwff.

また、F/B操作量演算部93は目標熱媒体温度TWOと熱媒体温度Tw(バッテリコントローラ73から送信される)に基づくPID演算若しくはPI演算により圧縮機目標回転数のF/B操作量TGNCwfbを算出する。そして、F/F操作量演算部92が算出したF/F操作量TGNCwffとF/B操作量演算部93が算出したF/B操作量TGNCwfbは加算器94で加算され、TGNCw00としてリミット設定部96に入力される。 Further, the F/B manipulated variable calculation unit 93 calculates the F/B manipulated variable TGNCwfb of the compressor target rotation speed by PID calculation or PI calculation based on the target heat medium temperature TWO and the heat medium temperature Tw (sent from the battery controller 73). Calculate. Then, the F/F operation amount TGNCwff calculated by the F/F operation amount calculation unit 92 and the F/B operation amount TGNCwfb calculated by the F/B operation amount calculation unit 93 are added by an adder 94, and the result is set as TGNCw00 by the limit setting unit. 96.

リミット設定部96では制御上の下限回転数TGNCwLimLoと上限回転数TGNCwLimHiのリミットが付けられてTGNCw0とされた後、圧縮機OFF制御部97を経て圧縮機目標回転数TGNCwとして決定される。従って、加算器94で加算された値TGNCw00が上限回転数TGNCwLimHiと下限回転数TGNCwLimLo以内であり、後述するON-OFF制御モードにならなければ、この値TGNCw00が圧縮機目標回転数TGNCw(圧縮機2の回転数となる)。通常モードではヒートポンプコントローラ32は、この熱媒体温度Twに基づいて算出された圧縮機目標回転数TGNCwにより、熱媒体温度Twが目標熱媒体温度TWOになるように圧縮機2の運転を制御する。 In the limit setting section 96, limits of a lower limit rotation speed TGNCwLimLo and an upper limit rotation speed TGNCwLimHi are added for control and the rotation speed is set to TGNCw0, and then it is determined as a compressor target rotation speed TGNCw via a compressor OFF control section 97. Therefore, if the value TGNCw00 added by the adder 94 is within the upper limit rotational speed TGNCwLimHi and the lower limit rotational speed TGNCwLimLo, and the ON-OFF control mode described later does not occur, this value TGNCw00 becomes the compressor target rotational speed TGNCw (compressor 2 rotations). In the normal mode, the heat pump controller 32 controls the operation of the compressor 2 so that the heat medium temperature Tw becomes the target heat medium temperature TWO based on the compressor target rotation speed TGNCw calculated based on the heat medium temperature Tw.

ここで、図16を用いて図14中の圧縮機OFF制御部97の動作について説明する。尚、図中NCは圧縮機2の回転数である。上記の如く圧縮機2の回転数制御で熱媒体温度Twを目標熱媒体温度TWOに制御している通常モードにおいて、冷媒-熱媒体熱交換器64におけるバッテリ55の冷却負荷が軽くなり(軽負荷状態となり)、圧縮機目標回転数TGNCwが上述した下限回転数TGNCwLimLoとなって、熱媒体温度Twが目標熱媒体温度TWOの上下に設定された上限値TwULと下限値TwLLのうちの下限値TwLLよりも更に低くなり、当該下限値TwLLよりも低い所定の強制停止値TwSL(目標熱媒体温度TWOよりも低い値)を下回った場合、圧縮機OFF制御部97は、当該強制停止値TwSLを下回った時点で、冷媒-熱媒体熱交換器64の所定の軽負荷条件が成立したものと判断する。 Here, the operation of the compressor OFF control section 97 in FIG. 14 will be explained using FIG. 16. Note that NC in the figure is the rotation speed of the compressor 2. In the normal mode in which the heat medium temperature Tw is controlled to the target heat medium temperature TWO by controlling the rotation speed of the compressor 2 as described above, the cooling load of the battery 55 in the refrigerant-heat medium heat exchanger 64 is lightened (light load state), the compressor target rotation speed TGNCw becomes the lower limit rotation speed TGNCwLimLo mentioned above, and the heat medium temperature Tw becomes the lower limit value TwLL of the upper limit value TwUL and lower limit value TwLL set above and below the target heat medium temperature TWO. , and below a predetermined forced stop value TwSL (a value lower than the target heat medium temperature TWO), which is lower than the lower limit TwLL, the compressor OFF control unit 97 At this point, it is determined that a predetermined light load condition for the refrigerant-thermal medium heat exchanger 64 is satisfied.

そして、圧縮機OFF制御部97は、即座に圧縮機2を停止(圧縮機OFF)させ、以後、圧縮機2をON-OFF制御するON-OFF制御モードに入る。即ち、圧縮機2の回転数による熱媒体温度Twの制御範囲を超えて、当該熱媒体温度Twが強制停止値TwSLを下回った時点で、ヒートポンプコントローラ32の圧縮機OFF制御部97は圧縮機2を即座に停止する。これにより、図16に示す如く熱媒体温度Twは上昇に転ずることになる。尚、上記軽負荷条件の成立は、熱媒体温度Twが強制停止値TwSLを下回った場合に限らず、熱媒体温度Twが強制停止値TwSL以下となった場合でもよい。 Then, the compressor OFF control unit 97 immediately stops the compressor 2 (compressor OFF), and thereafter enters an ON-OFF control mode in which the compressor 2 is controlled ON-OFF. That is, when the heat medium temperature Tw exceeds the control range of the heat medium temperature Tw depending on the rotation speed of the compressor 2 and falls below the forced stop value TwSL, the compressor OFF control unit 97 of the heat pump controller 32 turns the compressor 2 off. stop immediately. As a result, the heat medium temperature Tw starts to rise as shown in FIG. Note that the above light load condition is satisfied not only when the heat medium temperature Tw becomes less than the forced stop value TwSL, but also when the heat medium temperature Tw becomes less than the forced stop value TwSL.

ここで、前述した図11の圧縮機OFF制御部84や図12の圧縮機OFF制御部91の場合と同様に、ON-OFF制御に入った場合の例を図17に示す。即ち、図17の例では圧縮機目標回転数TGNCwが下限回転数TGNCwLimLoとなって、熱媒体温度Twが強制停止値TwSLを下回った状態が所定時間tw1継続した場合、冷媒-熱媒体熱交換器64の所定の軽負荷条件が成立したものと判断し、圧縮機2を停止させてON-OFF制御モードに入る制御を示している。 Here, FIG. 17 shows an example when ON-OFF control is entered, similar to the case of the compressor OFF control section 84 of FIG. 11 and the compressor OFF control section 91 of FIG. 12 described above. That is, in the example of FIG. 17, if the compressor target rotation speed TGNCw becomes the lower limit rotation speed TGNCwLimLo and the heat medium temperature Tw remains below the forced stop value TwSL for a predetermined time tw1, the refrigerant-heat medium heat exchanger 64 is determined to have been satisfied, the compressor 2 is stopped, and the ON-OFF control mode is entered.

図17のように、圧縮機目標回転数TGNCwが下限回転数TGNCwLimLoとなり、熱媒体温度Twが強制停止値TwSLを下回った状態が所定時間tw1継続してから圧縮機2を停止させる場合、圧縮機2が停止されるまでの時間tw1が経過するうちに、熱媒体温度Twは過渡的に強制停止値TwSLを大きく下回ってしまう(図17にX1で示す)。そのような状態となると、熱媒体温度Twが下がり過ぎて、それにより冷却されるバッテリ55に結露が発生してしまうようになる。 As shown in FIG. 17, when the compressor 2 is stopped after the compressor target rotation speed TGNCw becomes the lower limit rotation speed TGNCwLimLo and the heat medium temperature Tw continues to be lower than the forced stop value TwSL for a predetermined time tw1, the compressor 2 is stopped. During the elapse of time tw1 until 2 is stopped, the heat medium temperature Tw transiently falls significantly below the forced stop value TwSL (indicated by X1 in FIG. 17). In such a state, the heat medium temperature Tw drops too much, and dew condensation occurs on the battery 55 that is being cooled thereby.

一方、図16のように圧縮機目標回転数TGNCwが下限回転数TGNCwLimLoとなって、熱媒体温度Twが強制停止値TwSLを下回った場合、又は、強制停止値TwSL以下となった場合、その時点で冷媒-熱媒体熱交換器64の軽負荷条件が成立したものと判断して、即座に圧縮機2を停止(圧縮機OFF)させ、ON-OFF制御モードに入るようにすれば、熱媒体温度Twは強制停止値TwSLを大きく下回ること無く、上昇に転ずるようになるので、バッテリ55に結露は発生しなくなる。 On the other hand, as shown in FIG. 16, if the compressor target rotation speed TGNCw becomes the lower limit rotation speed TGNCwLimLo and the heat medium temperature Tw falls below the forced stop value TwSL, or if it becomes below the forced stop value TwSL, at that point If it is determined that the light load condition of the refrigerant-thermal medium heat exchanger 64 has been established, the compressor 2 is immediately stopped (compressor OFF), and the ON-OFF control mode is entered. Since the temperature Tw begins to rise without falling significantly below the forced stop value TwSL, no condensation occurs on the battery 55.

その後のON-OFF制御モードでは、熱媒体温度Twが上限値TwULまで上昇した場合(上限値TwULを上回った場合、又は、上限値TwUL以上となった場合。以下、同じ)、圧縮機2を起動(圧縮機ON)して圧縮機目標回転数TGNCwを下限回転数TGNCwLimLoとして運転し、その状態で熱媒体温度Twが下限値TwLLまで低下した場合(熱媒体温度Twが下限値TwLLを下回った場合、又は、下限値TwLL以下となった場合)は圧縮機2を再度停止させる。即ち、上限値TwULと下限値TwLLの間で、下限回転数TGNCwLimLoでの圧縮機2の運転(ON)と、停止(OFF)を繰り返す。 In the subsequent ON-OFF control mode, when the heat medium temperature Tw rises to the upper limit value TwUL (when it exceeds the upper limit value TwUL, or when it becomes more than the upper limit value TwUL; the same applies hereinafter), the compressor 2 is When the compressor is started (compressor is ON) and operated with the compressor target rotational speed TGNCw set to the lower limit rotational speed TGNCwLimLo, and in that state, the heat medium temperature Tw decreases to the lower limit value TwLL (the heat medium temperature Tw falls below the lower limit value TwLL). (or when it becomes below the lower limit value TwLL), the compressor 2 is stopped again. That is, between the upper limit TwUL and the lower limit TwLL, the compressor 2 is repeatedly operated (ON) and stopped (OFF) at the lower limit rotation speed TGNCwLimLo.

そして、実施例では熱媒体温度Twが上限値TwULまで上昇し(熱媒体温度Twが上限値TwULを上回り、又は、熱媒体温度Twが上限値TwUL以上となり)、圧縮機2を起動した後、熱媒体温度Twが上限値TwULを上回り、若しくは、上限値TwUL以上となった状態(熱媒体温度Twが上限値TwULより低くならない状態)が所定時間tw2継続した場合、ヒートポンプコントローラ32は圧縮機2のON-OFF制御モードを終了し、通常モードに復帰する。 Then, in the embodiment, after the heat medium temperature Tw rises to the upper limit value TwUL (the heat medium temperature Tw exceeds the upper limit value TwUL, or the heat medium temperature Tw becomes equal to or higher than the upper limit value TwUL) and the compressor 2 is started, If the heat medium temperature Tw exceeds the upper limit value TwUL or remains at or above the upper limit value TwUL (a state in which the heat medium temperature Tw does not become lower than the upper limit value TwUL) for a predetermined period of time tw2, the heat pump controller 32 controls the compressor 2 The ON-OFF control mode is ended and the normal mode is returned.

以上の如くバッテリ冷却(優先)+空調モード及びバッテリ冷却(単独)モードにおいては、熱媒体温度Twが、目標熱媒体温度TWOよりも低い所定の強制停止値TwSLを下回った場合、若しくは、当該強制停止値TwSL以下となった場合、その時点で圧縮機2を停止するようにしたので、熱媒体温度Twを圧縮機2の回転数制御により目標熱媒体温度TWOに維持しているときにバッテリ55の冷却負荷が減少し、制御範囲を超えて熱媒体温度Twが低下し、強制停止値TwSLを下回った場合、若しくは、それ以下となった場合、即座に圧縮機2を停止することができるようになり、バッテリ55の温度が下がり過ぎて結露が発生してしまう不都合を未然に回避することができるようになる。 As described above, in the battery cooling (priority) + air conditioning mode and the battery cooling (single) mode, if the heat medium temperature Tw falls below the predetermined forced stop value TwSL, which is lower than the target heat medium temperature TWO, or if the forced stop value TwSL is lower than the target heat medium temperature TWO, When the temperature drops below the stop value TwSL, the compressor 2 is stopped at that point. When the cooling load of the compressor 2 decreases and the heat medium temperature Tw decreases beyond the control range and falls below the forced stop value TwSL or below, the compressor 2 can be stopped immediately. This makes it possible to avoid the inconvenience that the temperature of the battery 55 drops too much and condensation occurs.

また、実施例ではヒートポンプコントローラ32の圧縮機OFF制御部97が、目標熱媒体温度TWOの上側に設定された上限値TwULと、強制停止値TwSLより上側であって目標熱媒体温度TWOの下側に設定された下限値TwLLを有し、熱媒体温度Twが強制停止値TwSLを下回り、若しくは、強制停止値TwSL以下となって圧縮機2を停止した後は、上限値TwULと下限値TwLLの間で圧縮機2の運転/停止を繰り返すON-OFF制御モードを実行するので、バッテリ55の結露を回避しながら当該バッテリ55を適切に冷却することができるようになる。 Further, in the embodiment, the compressor OFF control unit 97 of the heat pump controller 32 sets an upper limit value TwUL that is set above the target heat medium temperature TWO, and a value that is above the forced stop value TwSL and below the target heat medium temperature TWO. The lower limit TwLL is set to Since the ON-OFF control mode is executed in which the compressor 2 is repeatedly operated/stopped in between, the battery 55 can be appropriately cooled while avoiding dew condensation on the battery 55.

特に、実施例では圧縮機OFF制御部97が、ON-OFF制御モードにおいて圧縮機2を運転する場合、制御上の最低回転数TGNCwLimLoで運転するので、圧縮機2の頻繁な起動/停止を回避しながら、バッテリ55を円滑に冷却することができるようになる。 In particular, in the embodiment, when the compressor OFF control unit 97 operates the compressor 2 in the ON-OFF control mode, it operates at the lowest control rotation speed TGNCwLimLo, thereby avoiding frequent starting/stopping of the compressor 2. At the same time, the battery 55 can be cooled smoothly.

また、実施例の如く圧縮機OFF制御部97が、熱媒体温度Twが上限値TwULを上回り、若しくは、上限値TwUL以上となり、その状態が所定時間tw2継続した場合、ON-OFF制御モードを終了して熱媒体温度Twと、目標熱媒体温度TWOに基づいて圧縮機2の回転数を制御する通常モードに復帰するようにしているので、バッテリ55の冷却負荷が増大したことに応じて、圧縮機2のON-OFF制御モードから通常モードでの回転数制御に支障無く復帰することができるようになる。 In addition, as in the embodiment, the compressor OFF control section 97 terminates the ON-OFF control mode when the heat medium temperature Tw exceeds the upper limit value TwUL or exceeds the upper limit value TwUL and this state continues for a predetermined time tw2. Since the rotation speed of the compressor 2 is controlled based on the heat medium temperature Tw and the target heat medium temperature TWO, the compressor 2 is returned to the normal mode. It becomes possible to return the machine 2 from the ON-OFF control mode to the normal mode rotation speed control without any trouble.

尚、上述した実施例では熱媒体温度Twを冷媒-熱媒体熱交換器64(被温調対象用熱交換器)により冷却される対象(熱媒体)の温度として採用したが、バッテリ温度Tcellを冷媒-熱媒体熱交換器64(被温調対象用熱交換器)により冷却される対象の温度として採用してもよく、冷媒-熱媒体熱交換器64の温度(冷媒-熱媒体熱交換器64自体の温度、冷媒流路64Bを出た冷媒の温度等)を冷媒-熱媒体熱交換器64(被温調対象用熱交換器)の温度として採用してもよい。 In the above-described embodiment, the heat medium temperature Tw was adopted as the temperature of the object (heat medium) cooled by the refrigerant-heat medium heat exchanger 64 (heat exchanger for temperature controlled object), but the battery temperature Tcell was It may be adopted as the temperature of the object cooled by the refrigerant-thermal medium heat exchanger 64 (heat exchanger for temperature controlled object), and the temperature of the refrigerant-thermal medium heat exchanger 64 (refrigerant-thermal medium heat exchanger 64 itself, the temperature of the refrigerant exiting the refrigerant flow path 64B, etc.) may be adopted as the temperature of the refrigerant-thermal medium heat exchanger 64 (heat exchanger for temperature controlled object).

また、実施例では熱媒体を循環させてバッテリ55の温調を行うようにしたが、請求項6以外の発明ではそれに限らず、冷媒とバッテリ55(被温調対象)を直接熱交換させる被温調対象用熱交換器を設けてもよい。その場合には、バッテリ温度Tcellが被温調対象用熱交換器により冷却される対象の温度となる。 Further, in the embodiment, the temperature of the battery 55 is controlled by circulating a heat medium, but inventions other than claim 6 are not limited to this. A heat exchanger for temperature control may be provided. In that case, the battery temperature Tcell becomes the temperature of the object cooled by the temperature-controlled object heat exchanger.

また、実施例では車室内の冷房とバッテリ55の冷却を同時に行う空調(優先)+バッテリ冷却モードとバッテリ冷却(優先)+空調モードで車室内を冷房しながらバッテリ55を冷却することができる車両用空気調和装置1で説明したが、バッテリ55の冷却は冷房中に限らず、他の空調運転、例えば前述した除湿暖房運転とバッテリ55の冷却を同時に行うようにしてもよい。その場合には、除湿暖房モードで電磁弁69を開き、冷媒配管13Fを経て吸熱器9に向かう冷媒の一部を分岐配管67に流入させ、冷媒-熱媒体熱交換器64に流すことになる。 In addition, in the embodiment, the vehicle is capable of cooling the battery 55 while cooling the vehicle interior in the air conditioning (priority) + battery cooling mode and battery cooling (priority) + air conditioning mode that cools the vehicle interior and the battery 55 at the same time. Although described in connection with the air conditioner 1, the cooling of the battery 55 is not limited to cooling, and may be performed simultaneously with other air conditioning operations, such as the aforementioned dehumidifying/heating operation and cooling of the battery 55. In that case, the electromagnetic valve 69 is opened in the dehumidification heating mode, and a part of the refrigerant heading for the heat absorber 9 via the refrigerant pipe 13F is allowed to flow into the branch pipe 67, and then flows into the refrigerant-thermal medium heat exchanger 64. .

また、実施例では本発明における弁装置として電磁弁35を設けたが、室内膨張弁8を全閉可能な電動弁にて構成した場合には、電磁弁35は不要となり、室内膨張弁8が本発明における弁装置となる。 Further, in the embodiment, the solenoid valve 35 is provided as the valve device of the present invention, but if the indoor expansion valve 8 is configured with an electric valve that can be fully closed, the solenoid valve 35 becomes unnecessary, and the indoor expansion valve 8 This serves as a valve device in the present invention.

更に、実施例で説明した冷媒回路Rの構成や数値はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。特に、実施例では暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、空調(優先)+バッテリ冷却モード、バッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モード等の各運転モードを有する車両用空気調和装置1で本発明を説明したが、それに限らず、例えばバッテリ冷却(優先)+空調モードとバッテリ冷却(単独)モードのうちの何れか、若しくは、双方のみを実行可能とされた車両用空気調和装置にも本発明は有効である。 Furthermore, it goes without saying that the configuration and numerical values of the refrigerant circuit R explained in the embodiments are not limited thereto, and can be changed without departing from the spirit of the present invention. In particular, the embodiment has various operation modes such as heating mode, dehumidifying heating mode, dehumidifying cooling mode, cooling mode, air conditioning (priority) + battery cooling mode, battery cooling (priority) + air conditioning mode, and battery cooling (single) mode. Although the present invention has been described with reference to the vehicle air conditioner 1, the present invention is not limited thereto. For example, only one or both of the battery cooling (priority) + air conditioning mode and the battery cooling (single) mode can be executed. The present invention is also effective for vehicle air conditioners.

1 車両用空気調和装置
2 圧縮機
3 空気流通路
4 放熱器
6 室外膨張弁
7 室外熱交換器
8 室内膨張弁
9 吸熱器
11 制御装置
32 ヒートポンプコントローラ(制御装置の一部を構成)
35 電磁弁(弁装置)
45 空調コントローラ(制御装置の一部を構成)
48 吸熱器温度センサ
55 バッテリ(被温調対象)
61 機器温度調整装置
64 冷媒-熱媒体熱交換器(被温調対象用熱交換器)
68 補助膨張弁
69 電磁弁
76 熱媒体温度センサ
77 バッテリ温度センサ
R 冷媒回路
1 Vehicle air conditioner 2 Compressor 3 Air flow passage 4 Heat radiator 6 Outdoor expansion valve 7 Outdoor heat exchanger 8 Indoor expansion valve 9 Heat absorber 11 Control device 32 Heat pump controller (forms part of the control device)
35 Solenoid valve (valve device)
45 Air conditioning controller (part of the control device)
48 Heat absorber temperature sensor 55 Battery (temperature controlled target)
61 Equipment temperature adjustment device 64 Refrigerant-thermal medium heat exchanger (heat exchanger for temperature controlled object)
68 Auxiliary expansion valve 69 Solenoid valve 76 Heat medium temperature sensor 77 Battery temperature sensor R Refrigerant circuit

Claims (6)

冷媒を圧縮する圧縮機と、
前記冷媒と車室内に供給する空気を熱交換させるための室内熱交換器と、
制御装置を少なくとも備えて前記車室内を空調する車両用空気調和装置において、
前記冷媒を吸熱させて車両に搭載された被温調対象を冷却するための被温調対象用熱交換器を備え、
前記制御装置は、前記被温調対象用熱交換器又はそれにより冷却される対象の温度と、その目標温度に基づいて前記圧縮機の回転数を制御する被温調対象冷却モードを有すると共に、前記目標温度の上側に設定された所定の上限値と、前記目標温度よりも低い所定の強制停止値と、該強制停止値より上側であって前記目標温度の下側に設定された所定の下限値を有し、
前記被温調対象冷却モードにおいては、前記被温調対象用熱交換器又はそれにより冷却される対象の温度が、前記強制停止値を下回った場合、若しくは、当該強制停止値以下となった場合、その時点で前記圧縮機を停止し、
当該圧縮機を停止した後は、前記上限値と前記下限値の間で前記圧縮機の運転/停止を繰り返すON-OFF制御を実行することを特徴とする車両用空気調和装置。
a compressor that compresses refrigerant;
an indoor heat exchanger for exchanging heat between the refrigerant and air supplied to the vehicle interior;
A vehicle air conditioner that air-conditions the vehicle interior and includes at least a control device,
a heat exchanger for a temperature controlled object mounted on a vehicle for absorbing heat from the refrigerant to cool a temperature controlled object mounted on a vehicle;
The control device has a temperature-controlled object cooling mode that controls the rotation speed of the compressor based on the temperature of the temperature-controlled object heat exchanger or the object cooled thereby, and its target temperature, a predetermined upper limit set above the target temperature; a predetermined forced stop value lower than the target temperature; and a predetermined lower limit set above the forced stop value and below the target temperature. has a value,
In the temperature controlled object cooling mode, when the temperature of the temperature controlled object heat exchanger or the object cooled by it falls below the forced stop value , or when it becomes below the forced stop value. , at which point the compressor is stopped;
After the compressor is stopped, an ON-OFF control is executed to repeatedly operate/stop the compressor between the upper limit value and the lower limit value.
前記制御装置は、前記ON-OFF制御において前記圧縮機を運転する場合、制御上の所定の最低回転数で運転することを特徴とする請求項1に記載の車両用空気調和装置。 The air conditioner for a vehicle according to claim 1, wherein the control device operates at a predetermined minimum rotational speed when operating the compressor in the ON-OFF control. 前記制御装置は、前記被温調対象用熱交換器又はそれにより冷却される対象の温度が前記上限値を上回り、若しくは、当該上限値以上となり、その状態が所定時間継続した場合、前記ON-OFF制御を終了して前記被温調対象用熱交換器又はそれにより冷却される対象の温度と、その目標温度に基づいて前記圧縮機の回転数を制御する状態に復帰することを特徴とする請求項1又は請求項2に記載の車両用空気調和装置。 When the temperature of the heat exchanger for temperature controlled object or the object cooled by it exceeds the upper limit value or exceeds the upper limit value and this state continues for a predetermined period of time, the control device turns the ON- It is characterized in that the OFF control is ended and the state is returned to the state where the rotation speed of the compressor is controlled based on the temperature of the heat exchanger for temperature controlled object or the object cooled by it and its target temperature. The vehicle air conditioner according to claim 1 or 2. 前記室内熱交換器への冷媒の流通を制御する弁装置を備え、
前記制御装置は、前記被温調対象冷却モードとして、
前記弁装置を開き、前記被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて前記圧縮機の回転数を制御し、前記室内熱交換器の温度に基づいて前記弁装置を開閉制御する被温調対象冷却(優先)+空調モードを有することを特徴とする請求項1乃至請求項3のうちの何れかに記載の車両用空気調和装置。
comprising a valve device that controls the flow of refrigerant to the indoor heat exchanger,
The control device, as the temperature-controlled cooling mode,
Open the valve device, control the rotation speed of the compressor based on the temperature of the heat exchanger for temperature controlled object or the object cooled by it, and control the rotation speed of the compressor based on the temperature of the indoor heat exchanger. 4. The vehicle air conditioner according to claim 1, further comprising a temperature-controlled target cooling (priority) + air conditioning mode for opening and closing control.
前記制御装置は、もう一つの前記被温調対象冷却モードとして、
前記弁装置を閉じ、前記被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて前記圧縮機の回転数を制御する被温調対象冷却(単独)モードを有することを特徴とする請求項4に記載の車両用空気調和装置。
The control device operates as another temperature-controlled cooling mode,
It is characterized by having a temperature-controlled object cooling (single) mode in which the valve device is closed and the rotation speed of the compressor is controlled based on the temperature of the temperature-controlled object heat exchanger or the object cooled thereby. The vehicle air conditioner according to claim 4.
前記被温調対象と前記被温調対象用熱交換器の間で熱媒体を循環させる機器温度調整装置を備え、
前記制御装置は、前記熱媒体の温度Tw又は前記被温調対象の温度Tcellを前記被温調対象用熱交換器により冷却される対象の温度として前記圧縮機を制御することを特徴とする請求項1乃至請求項5のうちの何れかに記載の車両用空気調和装置。
comprising an equipment temperature adjustment device that circulates a heat medium between the temperature-controlled object and the temperature-controlled object heat exchanger;
The control device controls the compressor by setting the temperature Tw of the heat medium or the temperature Tcell of the temperature-controlled object as the temperature of the object to be cooled by the temperature-controlled object heat exchanger. The vehicle air conditioner according to any one of claims 1 to 5.
JP2018237267A 2018-12-19 2018-12-19 Vehicle air conditioner Active JP7372732B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018237267A JP7372732B2 (en) 2018-12-19 2018-12-19 Vehicle air conditioner
DE112019006361.8T DE112019006361T5 (en) 2018-12-19 2019-11-15 Vehicle air conditioning
CN201980083918.8A CN113165477A (en) 2018-12-19 2019-11-15 Air conditioner for vehicle
PCT/JP2019/044842 WO2020129494A1 (en) 2018-12-19 2019-11-15 Vehicle air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018237267A JP7372732B2 (en) 2018-12-19 2018-12-19 Vehicle air conditioner

Publications (2)

Publication Number Publication Date
JP2020097362A JP2020097362A (en) 2020-06-25
JP7372732B2 true JP7372732B2 (en) 2023-11-01

Family

ID=71101174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018237267A Active JP7372732B2 (en) 2018-12-19 2018-12-19 Vehicle air conditioner

Country Status (4)

Country Link
JP (1) JP7372732B2 (en)
CN (1) CN113165477A (en)
DE (1) DE112019006361T5 (en)
WO (1) WO2020129494A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7458951B2 (en) * 2020-09-24 2024-04-01 サンデン株式会社 Vehicle air conditioner
IT202100015125A1 (en) * 2021-06-10 2022-12-10 Denso Thermal Systems Spa Refrigerant circuit for the air conditioning of a motor vehicle
CN113879072B (en) * 2021-11-02 2024-03-22 北京汽车集团越野车有限公司 Control method and device of vehicle-mounted air conditioning system
CN116619983B (en) * 2023-07-19 2023-11-10 成都壹为新能源汽车有限公司 Integrated fusion thermal management system and method for vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279180A (en) 2002-03-22 2003-10-02 Denso Corp Refrigerating cycle device for vehicle
JP2018140720A (en) 2017-02-28 2018-09-13 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular air conditioner
JP2018177083A (en) 2017-04-18 2018-11-15 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular air conditioner
JP2018184108A (en) 2017-04-26 2018-11-22 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101209724B1 (en) * 2010-06-30 2012-12-07 기아자동차주식회사 Device and method for controlling compressor of vehicles
JP5949522B2 (en) * 2012-03-07 2016-07-06 株式会社デンソー Temperature control device
JP6073653B2 (en) * 2012-11-09 2017-02-01 サンデンホールディングス株式会社 Air conditioner for vehicles
JP6125312B2 (en) 2013-04-26 2017-05-10 サンデンホールディングス株式会社 Air conditioner for vehicles
JP6052222B2 (en) * 2013-06-18 2016-12-27 株式会社デンソー Thermal management system for vehicles
JP5984784B2 (en) * 2013-11-19 2016-09-06 三菱電機株式会社 Hot / cold water air conditioning system
JP2018203069A (en) * 2017-06-05 2018-12-27 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279180A (en) 2002-03-22 2003-10-02 Denso Corp Refrigerating cycle device for vehicle
JP2018140720A (en) 2017-02-28 2018-09-13 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular air conditioner
JP2018177083A (en) 2017-04-18 2018-11-15 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular air conditioner
JP2018184108A (en) 2017-04-26 2018-11-22 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicle

Also Published As

Publication number Publication date
CN113165477A (en) 2021-07-23
JP2020097362A (en) 2020-06-25
WO2020129494A1 (en) 2020-06-25
DE112019006361T5 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
CN110505968B (en) Air conditioner for vehicle
JP7300264B2 (en) Vehicle air conditioner
JP7372732B2 (en) Vehicle air conditioner
JP7221639B2 (en) Vehicle air conditioner
WO2020153032A1 (en) Vehicle battery temperature adjusting device, and vehicle air conditioning device provided with same
CN113165476A (en) Air conditioner for vehicle
WO2020110508A1 (en) Vehicle battery temperature adjustment apparatus and vehicle air-conditioner equipped with same
CN111051096B (en) Air conditioning device for vehicle
WO2020129493A1 (en) Vehicle air-conditioning apparatus
CN112384392A (en) Air conditioner for vehicle
WO2020166274A1 (en) Vehicle air conditioner
CN112805166B (en) Air conditioner for vehicle
JP7233915B2 (en) Vehicle air conditioner
WO2020100410A1 (en) Vehicle air-conditioning device
JP7387520B2 (en) Vehicle air conditioner
JP7280689B2 (en) Vehicle air conditioner
WO2020100524A1 (en) Vehicle air-conditioning device
WO2020179492A1 (en) Vehicle air conditioner
CN116075439A (en) Air conditioner for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211217

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231020

R150 Certificate of patent or registration of utility model

Ref document number: 7372732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150