WO2020153032A1 - Vehicle battery temperature adjusting device, and vehicle air conditioning device provided with same - Google Patents

Vehicle battery temperature adjusting device, and vehicle air conditioning device provided with same Download PDF

Info

Publication number
WO2020153032A1
WO2020153032A1 PCT/JP2019/048671 JP2019048671W WO2020153032A1 WO 2020153032 A1 WO2020153032 A1 WO 2020153032A1 JP 2019048671 W JP2019048671 W JP 2019048671W WO 2020153032 A1 WO2020153032 A1 WO 2020153032A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
temperature
refrigerant
vehicle
heat
Prior art date
Application number
PCT/JP2019/048671
Other languages
French (fr)
Japanese (ja)
Inventor
孝史 青木
竜 宮腰
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Priority to CN201980089005.7A priority Critical patent/CN113302780A/en
Priority to DE112019006706.0T priority patent/DE112019006706T5/en
Publication of WO2020153032A1 publication Critical patent/WO2020153032A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a battery temperature adjusting device that adjusts the temperature of a battery mounted in a vehicle, and a heat pump type air conditioner for a vehicle that is equipped with the battery temperature adjusting device.
  • an air conditioner applicable to such a vehicle an electric compressor driven by power supply from a battery, a radiator, a heat absorber, and a refrigerant circuit to which an outdoor heat exchanger is connected are provided.
  • the heat of the refrigerant discharged from the compressor is radiated by the radiator, and the heat radiated by the radiator is absorbed by the outdoor heat exchanger to heat the refrigerant, and the refrigerant discharged from the compressor is radiated by the outdoor heat exchanger.
  • An air conditioner has been developed for cooling the interior of the vehicle by evaporating it in a heat absorber (evaporator) and absorbing heat to cool the vehicle (for example, see Patent Document 1).
  • the temperature of the battery rises due to the surrounding temperature environment and self-heating, for example. Since deterioration progresses when charging and discharging are performed in such a high temperature state, a heat exchanger for battery is separately provided in the refrigerant circuit, and the refrigerant circulating in the refrigerant circuit and the refrigerant (heat medium) for battery are A vehicle air conditioner has also been developed in which heat can be exchanged with a heat exchanger for a battery, and the heat medium that has undergone the heat exchange can be circulated through the battery to cool (temperature control) the battery (for example, , Patent Documents 2 and 3).
  • the electric power consumed by the compressor etc. affects the cruising range of the vehicle. That is, when the state of charge SOC (State Of Charge) of the battery is lowered, the cruising range of the vehicle is reduced by adjusting the temperature of the battery.
  • SOC State Of Charge
  • the present invention has been made to solve the above-mentioned conventional technical problems, and a battery temperature control device for a vehicle, which can control the temperature of the battery while suppressing a decrease in the cruising distance of the vehicle, It is also an object of the present invention to provide a vehicle air conditioner including the same.
  • a battery temperature adjusting device for a vehicle is operated by being supplied with power from a battery mounted on the vehicle and adjusting the temperature of the battery, and is provided with a control device. It is characterized in that the temperature control of the battery is limited based on the index indicating.
  • the vehicle battery temperature control device is characterized in that, in the above-mentioned invention, the index indicating the deterioration of the battery is the battery charging rate SOC and/or the battery temperature Tcell.
  • the normal range in which the deterioration of the battery is not taken into consideration is set with respect to the battery charging rate SOC and the battery temperature Tcell which are indicators indicating the deterioration of the battery.
  • the control device does not execute the temperature control of the battery when the battery charge rate SOC is in the normal range of the battery charge rate SOC and the battery temperature Tcell is in the normal range of the battery temperature Tcell.
  • the warning region is set as a predetermined margin region outside the normal region with respect to the battery charging rate SOC and the battery temperature Tcell, and the control device is provided. Does not execute the temperature control of the battery when the battery charge rate SOC is in the normal range or the warning range of the battery charge rate SOC and the battery temperature Tcell is in the normal range or the warning range of the battery temperature Tcell. Characterize.
  • a predetermined dangerous area is set as a battery deterioration area with respect to the battery temperature Tcell, and the control device:
  • the battery charge rate SOC is in the normal range or the warning range of the battery charge rate SOC and the battery temperature Tcell is in the dangerous range, the temperature control of the battery is performed.
  • the control device determines that the battery charging rate SOC is the battery charging rate SOC based on information about a predetermined charging execution site. It is characterized in that the temperature control of the battery is not executed when it is in the normal range or the warning range and the distance to the planned charging site is not less than the predetermined threshold value D.
  • a predetermined dangerous area is set as a deterioration area of the battery with respect to the battery charging rate SOC and the battery temperature Tcell.
  • the battery temperature control device for a vehicle according to the invention of claim 8 has a predetermined battery deterioration rate SOC, which is an index indicating deterioration of the battery in each of the above inventions, as a deterioration area of the battery when the battery charging rate SOC decreases. Is set, and the control device suppresses the temperature control of the battery when the battery charging rate SOC falls and enters the dangerous area.
  • SOC battery deterioration rate
  • the control device executes the temperature control of the battery when the battery deterioration state SOH is equal to or lower than a predetermined threshold value SOH1 or lower than the predetermined threshold value SOH1. It is characterized by doing.
  • the vehicle battery temperature control device according to the invention of claim 10 is characterized in that in each of the above inventions, a cooling device is provided, and the battery can be cooled using this cooling device.
  • the vehicle battery temperature control device according to the invention of claim 11 is characterized in that in each of the above inventions, a heating device is provided, and the battery can be heated using this heating device.
  • a vehicle air conditioner is a vehicle temperature control device for a vehicle according to each of the above aspects, a compressor that compresses a refrigerant, and indoor heat exchange for exchanging heat between the air supplied to the vehicle interior and the refrigerant. And a heat exchanger provided outside the vehicle for air conditioning the vehicle interior, and the battery temperature adjusting device is characterized in that the battery can be cooled by using a refrigerant.
  • a battery temperature adjusting device for a vehicle which is operated by being supplied with electric power from a battery mounted on the vehicle and which adjusts the temperature of the battery, is provided with a control device, and the control device is provided for deterioration of the battery. Since the temperature control of the battery is limited based on the index indicating, the state of the battery is determined based on the index indicating the deterioration of the battery, for example, the battery charge rate SOC according to the invention of claim 2 or the battery temperature Tcell. By limiting the temperature control of the battery by prioritizing the cruising distance of the vehicle, it is possible to suppress a decrease in the cruising distance of the vehicle.
  • the battery charging rate SOC and the battery temperature Tcell which are indicators of the deterioration of the battery, are set to normal ranges in which the deterioration of the battery is not considered, and the control device sets the battery charging rate.
  • the SOC is in the normal range of the battery charge rate SOC and the battery temperature Tcell is in the normal range of the battery temperature Tcell
  • the temperature control of the battery is not executed, so that the temperature control of the battery is not necessary.
  • the temperature control of the battery is not permitted, and the power consumption due to the temperature control of the battery is reduced, so that the reduction of the cruising range of the vehicle can be suppressed.
  • the battery charging rate SOC and the battery temperature Tcell are each set as a warning area as a predetermined margin area outside the normal area, and the control device determines that the battery charging rate SOC is the battery concerned.
  • the vehicle temperature can be controlled by not executing the battery temperature control. It becomes possible to realize the temperature control of the battery with priority on the distance.
  • a predetermined dangerous area is set as the battery deterioration area with respect to the battery temperature Tcell, and the controller sets the battery charge rate SOC to the normal area or the warning area of the battery charge rate SOC. If yes, and if the battery temperature Tcell is in the dangerous range, temperature control of the battery is executed. As a result, even if the battery charge rate SOC is acceptable, when the battery temperature Tcell is in a dangerous state, the temperature control of the battery is allowed to prevent the deterioration of the battery due to an abnormal temperature. become able to.
  • the control device determines that the battery charging rate SOC is in the normal range or the warning range of the battery charging rate SOC based on the information on the predetermined charging execution site, and the charging execution schedule is set.
  • the distance to the ground is equal to or greater than the predetermined threshold value D
  • the temperature control of the battery is not executed. Therefore, when the distance to the planned charging site is long and the temperature control of the battery is not necessary, It becomes possible to avoid the inconvenience of not reaching the scheduled charging site by reducing the power consumption due to the temperature control of the battery without permitting the temperature control.
  • a predetermined dangerous area is set as the deterioration area of the battery with respect to the battery charging rate SOC and the battery temperature Tcell as in the invention of claim 7, and the control device sets the battery charging rate SOC to the battery concerned.
  • the temperature control of the battery is executed.
  • the temperature control of the battery is allowed even if the distance to the charging execution site is long, and the battery is deteriorated due to the abnormal charging rate and temperature. Will be able to avoid.
  • the battery charge rate SOC which is an index indicating the deterioration of the battery
  • the battery charge rate SOC is set as a predetermined range of deterioration of the battery when the battery charge rate SOC decreases.
  • the dangerous area is set, and the control device suppresses the temperature control of the battery when the battery charging rate SOC decreases and enters the dangerous area. Therefore, when the charging rate of the battery is significantly reduced, It is possible to suppress the temperature control of No. 1 and to further reduce the charging rate due to the temperature control of the battery.
  • the control device executes the temperature control of the battery when the battery deterioration state SOH is equal to or lower than a predetermined threshold value SOH1 or lower than the predetermined threshold value SOH1. Therefore, when the battery deterioration state SOH indicating the deterioration state of the battery is lowered, the temperature of the battery can be adjusted to suppress the further progress of the deterioration.
  • a cooling device is provided, and the battery can be cooled by using this cooling device. Therefore, deterioration due to abnormal high temperature of the battery is effectively eliminated or suppressed. You will be able to.
  • a heating device is provided and the battery can be heated by using this heating device, so that deterioration due to abnormal low temperature of the battery is effectively eliminated or suppressed. You will be able to.
  • the battery temperature adjusting device of the vehicle of each of the above aspects of the invention, the compressor for compressing the refrigerant, and the heat exchange between the air and the refrigerant supplied to the vehicle interior are performed. It has an indoor heat exchanger and an outdoor heat exchanger provided outside the vehicle compartment.
  • the battery temperature adjusting device is capable of cooling the battery by using the refrigerant, so that the interior of the vehicle can be smoothly air-conditioned. Then, the battery can be cooled to eliminate or suppress the deterioration of the battery.
  • FIG. 1 is a configuration diagram of a vehicle air conditioner (including a battery temperature adjusting device) of an embodiment to which the present invention is applied. It is a block diagram of an electric circuit of a control device of an air harmony device for vehicles of Drawing 1. It is a figure explaining the driving mode which the control apparatus of FIG. 2 performs. It is a block diagram of the air conditioning apparatus for vehicles explaining the heating mode by the heat pump controller of the control apparatus of FIG. It is a block diagram of the air conditioning apparatus for vehicles explaining the dehumidification heating mode by the heat pump controller of the control apparatus of FIG. It is a block diagram of the vehicle air conditioner explaining the dehumidification cooling mode by the heat pump controller of the control apparatus of FIG.
  • FIG. 3 is a control block diagram related to compressor control of a heat pump controller of the control device of FIG. 2.
  • FIG. 6 is another control block diagram related to compressor control of the heat pump controller of the control device in FIG. 2. It is a block diagram explaining control of the solenoid valve 69 in air conditioning (priority) + battery cooling mode of the heat pump controller of the control apparatus of FIG.
  • FIG. 7 is yet another control block diagram related to compressor control of the heat pump controller of the control device in FIG. 2. It is a block diagram explaining control of the solenoid valve 35 in battery cooling (priority) + air conditioning mode of the heat pump controller of the control apparatus of FIG.
  • FIG. 3 is a control block diagram relating to heat medium heater control of a heat pump controller of the control device of FIG. 2. It is a figure which shows the relationship between a battery charge rate SOC and each threshold value. It is a figure which shows the relationship between battery temperature Tcell and each threshold value. It is a figure which shows the relationship between the battery deterioration state SOH and threshold value SOH1.
  • FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 of an embodiment to which a vehicle battery temperature control apparatus of the present invention is applied.
  • a vehicle of an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and electric power charged in a battery 55 mounted in the vehicle is used as a traveling motor (electric motor).
  • the electric compressor 2 of the refrigerant circuit R, which will be described later, of the vehicle air conditioner 1 of the present invention and the battery temperature adjusting device 61 are also driven by being supplied to a vehicle (not shown). It shall be driven by the electric power supplied from the battery 55.
  • the vehicle air conditioner 1 of the embodiment is a heating mode, a dehumidification heating mode, a dehumidification cooling mode, a cooling mode, and a defrosting mode in a heat pump operation using the refrigerant circuit R in an electric vehicle that cannot be heated by engine waste heat.
  • the air conditioning (priority)+battery cooling mode, the battery cooling (priority)+air conditioning mode, and the battery cooling (single) mode are switched to execute the air conditioning of the vehicle compartment and the temperature control of the battery 55. It is a thing.
  • the present invention is effective not only for electric vehicles but also for so-called plug-in hybrid vehicles that use an engine and a running motor.
  • the vehicle to which the vehicle air conditioner 1 of the embodiment is applied is one in which the battery 55 can be charged from an external charger (quick charger or normal charger). Furthermore, the battery 55 of the embodiment employs a lithium ion battery.
  • the vehicle air conditioner 1 of the embodiment is for performing air conditioning (heating, cooling, dehumidification, and ventilation) of a vehicle compartment of an electric vehicle, and an electric compressor 2 for compressing a refrigerant and a vehicle interior.
  • an outdoor expansion valve 6 consisting of an electric valve (electronic expansion valve) for decompressing and expanding the refrigerant during heating, and as a radiator for releasing the refrigerant during cooling
  • An outdoor heat exchanger 7 that functions and performs heat exchange between the refrigerant and the outside air so as to function as an evaporator that absorbs heat (absorbs heat into the refrigerant) during heating, and a mechanical expansion valve that decompresses and expands the refrigerant.
  • an indoor expansion valve 8 that is provided in the air flow passage 3, and a heat absorber as an indoor heat exchanger that is provided in the air flow passage 3 to evaporate the refrigerant during cooling and dehumidification so as to absorb heat from the inside and outside of the vehicle compartment 9, the accumulator 12 and the like are sequentially connected by a refrigerant pipe 13 to form a refrigerant circuit R.
  • the outdoor expansion valve 6 decompresses and expands the refrigerant flowing out of the radiator 4 and flowing into the outdoor heat exchanger 7, and can be fully closed. Further, in the embodiment, the indoor expansion valve 8 using the mechanical expansion valve decompresses and expands the refrigerant flowing into the heat absorber 9, and adjusts the degree of superheat of the refrigerant in the heat absorber 9.
  • the outdoor heat exchanger 7 is provided with an outdoor blower 15.
  • the outdoor blower 15 exchanges heat between the outdoor air and the refrigerant by forcibly ventilating the outdoor air through the outdoor heat exchanger 7, whereby the outdoor air is discharged while the vehicle is stopped (that is, the vehicle speed is 0 km/h).
  • the heat exchanger 7 is configured to ventilate the outside air.
  • the outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 sequentially on the refrigerant downstream side, and the refrigerant pipe 13A on the refrigerant outlet side of the outdoor heat exchanger 7 is used when flowing the refrigerant to the heat absorber 9.
  • the refrigerant pipe 13B on the outlet side of the supercooling unit 16 is connected to the receiver dryer unit 14 via an electromagnetic valve 17 (for cooling) as an open/close valve, and the check valve 18, the indoor expansion valve 8, and the electromagnetic valve It is connected to the refrigerant inlet side of the heat absorber 9 via the valve 35 (for cabin) in order.
  • the receiver dryer unit 14 and the supercooling unit 16 structurally form a part of the outdoor heat exchanger 7.
  • the check valve 18 has the direction of the indoor expansion valve 8 as the forward direction.
  • the refrigerant pipe 13A that has exited from the outdoor heat exchanger 7 is branched into a refrigerant pipe 13D, and this branched refrigerant pipe 13D is passed through an electromagnetic valve 21 (for heating) that is opened and closed during heating. It is communicated and connected to the refrigerant pipe 13C on the refrigerant outlet side of the heat absorber 9.
  • the refrigerant pipe 13C is connected to the inlet side of the accumulator 12, and the outlet side of the accumulator 12 is connected to the refrigerant pipe 13K on the refrigerant suction side of the compressor 2.
  • a strainer 19 is connected to the refrigerant pipe 13E on the refrigerant outlet side of the radiator 4, and the refrigerant pipe 13E is connected to the refrigerant pipes 13J and 13F before the outdoor expansion valve 6 (refrigerant upstream side).
  • One of the branched refrigerant pipes 13J is connected to the refrigerant inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.
  • the other branched refrigerant pipe 13F is connected to the refrigerant downstream side of the check valve 18 and the refrigerant upstream side of the indoor expansion valve 8 via an electromagnetic valve 22 (for dehumidification) as an on-off valve which is opened during dehumidification. It is connected to the located refrigerant pipe 13B.
  • the refrigerant pipe 13F is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve 18, and the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve are connected. It becomes a bypass circuit that bypasses 18. Further, a solenoid valve 20 as an opening/closing valve for bypass is connected in parallel to the outdoor expansion valve 6.
  • the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with respective intake ports of an outside air intake port and an inside air intake port (represented by the intake port 25 in FIG. 1).
  • a suction switching damper 26 is provided at 25 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation) which is the air inside the vehicle compartment and the outside air (outside air introduction) which is the air outside the vehicle compartment.
  • an indoor blower (blower fan) 27 for feeding the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26, an indoor blower (blower fan) 27 for feeding the introduced inside air or outside air to the air flow passage 3 is provided.
  • the intake switching damper 26 of the embodiment opens and closes the outside air intake port and the inside air intake port of the intake port 25 at an arbitrary ratio to remove the air (outside air and inside air) flowing into the heat absorber 9 of the air flow passage 3. It is configured so that the ratio of inside air can be adjusted between 0% and 100% (the ratio of outside air can also be adjusted between 100% and 0%).
  • an auxiliary heater 23 as an auxiliary heating device including a PTC heater (electric heater) is provided in the embodiment, and passes through the radiator 4. It is possible to heat the air supplied to the passenger compartment. Further, in the air flow passage 3 on the air upstream side of the radiator 4, the air (inside air or outside air) flowing into the air flow passage 3 and passing through the heat absorber 9 is radiated. An air mix damper 28 that adjusts the rate of ventilation to the device 4 and the auxiliary heater 23 is provided.
  • blower outlet 29 is provided with blower outlet switching dampers 31 for controlling the blowout of air from the blower outlets.
  • the vehicle air conditioner 1 includes the battery temperature adjusting device 61 of the present invention that circulates a heat medium in the battery 55 to adjust the temperature of the battery 55.
  • the battery temperature adjusting device 61 of the embodiment includes a circulation pump 62 as a circulating device for circulating a heat medium in the battery 55, a refrigerant-heat medium heat exchanger 64, and a heat medium heating heater 63 as a heating device.
  • the battery 55 are annularly connected by a heat medium pipe 66.
  • the inlet of the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64 is connected to the discharge side of the circulation pump 62, and the outlet of this heat medium passage 64A is connected to the inlet of the heat medium heater 63.
  • the outlet of the heat medium heater 63 is connected to the inlet of the battery 55, and the outlet of the battery 55 is connected to the suction side of the circulation pump 62.
  • the heat medium used in the battery temperature adjusting device 61 for example, water, a refrigerant such as HFO-1234yf, a liquid such as coolant, or a gas such as air can be adopted.
  • water is used as the heat medium.
  • the heat medium heater 63 is composed of an electric heater such as a PTC heater. Further, it is assumed that, for example, a jacket structure is provided around the battery 55 so that a heat medium can flow in a heat exchange relationship with the battery 55.
  • the heat medium discharged from the circulation pump 62 flows into the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64.
  • the heat medium exiting the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heating heater 63, and if the heat medium heating heater 63 is generating heat, the heat medium heating heater 63 is heated there, and then the battery 55, where the heat medium exchanges heat with the battery 55.
  • the heat medium that has exchanged heat with the battery 55 is sucked into the circulation pump 62 and circulated in the heat medium pipe 66.
  • a branch pipe 67 as a branch circuit is provided in the refrigerant pipe 13B located on the refrigerant downstream side of the connecting portion between the refrigerant pipe 13F and the refrigerant pipe 13B of the refrigerant circuit R and on the refrigerant upstream side of the indoor expansion valve 8.
  • an auxiliary expansion valve 68 which is a mechanical expansion valve, and an electromagnetic valve (for chiller) 69 are sequentially provided in the branch pipe 67.
  • the auxiliary expansion valve 68 decompresses and expands the refrigerant flowing into the later-described refrigerant passage 64B of the refrigerant-heat medium heat exchanger 64, and adjusts the degree of superheat of the refrigerant in the refrigerant passage 64B of the refrigerant-heat medium heat exchanger 64. To do.
  • the other end of the branch pipe 67 is connected to the refrigerant flow passage 64B of the refrigerant-heat medium heat exchanger 64, and one end of the refrigerant pipe 71 is connected to the outlet of the refrigerant flow passage 64B.
  • the other end is connected to the refrigerant pipe 13C on the refrigerant upstream side (refrigerant upstream side of the accumulator 12) from the confluence with the refrigerant pipe 13D.
  • the refrigerant (a part or all of the refrigerant) discharged from the outdoor heat exchanger 7 flows into the branch pipe 67, the pressure is reduced by the auxiliary expansion valve 68, and then the refrigerant is passed through the electromagnetic valve 69.
  • the refrigerant flows into the refrigerant channel 64B of the heat medium heat exchanger 64 and evaporates there.
  • the refrigerant absorbs heat from the heat medium flowing through the heat medium passage 64A in the process of flowing through the refrigerant passage 64B, and then is sucked into the compressor 2 through the refrigerant pipe 71, the refrigerant pipe 13C, and the accumulator 12 through the refrigerant pipe 13K.
  • FIG. 2 shows a block diagram of the control device 11 of the vehicle air conditioner 1 of the embodiment.
  • the control device 11 also constitutes the battery temperature adjusting device 61 of the present invention.
  • the control device 11 includes an air conditioning controller 45 and a heat pump controller 32, each of which includes a microcomputer, which is an example of a computer including a processor, and these include a CAN (Controller Area Network) and a LIN (Local Interconnect Network). Is connected to the vehicle communication bus 65 that constitutes the.
  • the compressor 2 and the auxiliary heater 23, the circulation pump 62 and the heat medium heating heater 63 are also connected to the vehicle communication bus 65, and the air conditioning controller 45, the heat pump controller 32, the compressor 2, the auxiliary heater 23, the circulation pump 62 and the heat generator.
  • the medium heater 63 is configured to send and receive data via the vehicle communication bus 65.
  • the vehicle communication bus 65 includes a vehicle controller 72 (ECU) that controls the entire vehicle including traveling, a battery controller (BMS: Battery Management System) 73 that controls the charging and discharging of the battery 55, and a GPS navigation device 74.
  • the vehicle controller 72, the battery controller 73, and the GPS navigation device 74 are also configured by a microcomputer that is an example of a computer including a processor.
  • the air conditioning controller 45 and the heat pump controller 32 that configure the control device 11 connect the vehicle communication bus 65 to each other. Information (data) is transmitted/received to/from the vehicle controller 72, the battery controller 73, and the GPS navigation device 74 via these.
  • the air conditioning controller 45 is a higher-level controller that controls the vehicle interior air conditioning.
  • the inputs of the air conditioning controller 45 are an outside air temperature sensor 33 that detects the outside air temperature Tam of the vehicle and an outside air humidity that detects outside air humidity.
  • the sensor 34, the HVAC suction temperature sensor 36 that detects the temperature of the air that is sucked into the air flow passage 3 from the suction port 25 and flows into the heat absorber 9, and the inside air temperature sensor 37 that detects the temperature of the air (inside air) in the vehicle compartment.
  • An inside air humidity sensor 38 for detecting the humidity of the air in the vehicle compartment
  • an indoor CO 2 concentration sensor 39 for detecting the carbon dioxide concentration in the vehicle compartment
  • an outlet temperature sensor 41 for detecting the temperature of the air blown into the vehicle compartment.
  • An air conditioning operation unit 53 for performing an air conditioning setting operation in the vehicle interior such as mode switching and displaying information is connected.
  • 53A in the figure is a display as an output device provided in the air conditioning operation section 53.
  • the output of the air conditioning controller 45 is connected to the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, and the air outlet switching damper 31, which are connected to the air conditioning controller 45. Controlled by.
  • the heat pump controller 32 is a controller that mainly controls the refrigerant circuit R, and the heat pump controller 32 has an input that releases heat to detect the refrigerant inlet temperature Tcxin of the radiator 4 (which is also the refrigerant temperature discharged from the compressor 2 ).
  • Radiator pressure sensor 47 for detecting the refrigerant pressure (pressure of radiator 4; radiator pressure Pci), and temperature of heat absorber 9 (temperature of heat absorber 9 itself, or air immediately after being cooled by heat absorber 9) Temperature of (cooling target): Heat absorber temperature sensor 48 for detecting heat absorber temperature Te, and refrigerant temperature at the outlet of the outdoor heat exchanger 7 (refrigerant evaporation temperature of the outdoor heat exchanger 7: outdoor heat exchanger temperature) Outputs of an outdoor heat exchanger temperature sensor 49 for detecting TXO) and auxiliary heater temperature sensors 50A (driver's seat side) and 50B (passenger seat side) for detecting the temperature of the auxiliary heater 23 are connected.
  • the output of the heat pump controller 32 includes the outdoor expansion valve 6, the solenoid valve 22 (for dehumidification), the solenoid valve 17 (for cooling), the solenoid valve 21 (for heating), the solenoid valve 20 (for bypass), and the solenoid valve 35.
  • the electromagnetic valves (for the cabin) and the electromagnetic valve 69 (for the chiller) are connected, and they are controlled by the heat pump controller 32.
  • the compressor 2, the auxiliary heater 23, the circulation pump 62, and the heat medium heating heater 63 each have a built-in controller, and in the embodiment, the controller of the compressor 2, the auxiliary heater 23, the circulation pump 62, and the heat medium heating heater 63. Transmits and receives data to and from the heat pump controller 32 via the vehicle communication bus 65, and is controlled by the heat pump controller 32.
  • the circulation pump 62 and the heat medium heater 63 that constitute the battery temperature adjusting device 61 may be controlled by the battery controller 73. Further, in the battery controller 73, the temperature of the heat medium on the outlet side of the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64 of the battery temperature adjusting device 61 (heat medium temperature Tw: an index indicating the temperature of the battery 55).
  • the output of the heat medium temperature sensor 76 for detecting the temperature of the battery 55 and the output of the battery temperature sensor 77 for detecting the temperature of the battery 55 (hereinafter, referred to as battery temperature Tcell: this is also an index indicating the temperature of the battery 55) are connected.
  • the charging rate of the battery 55 (hereinafter, battery charging rate SOC), the heat medium temperature Tw, the battery temperature Tcell, the deterioration state of the battery 55 (hereinafter, battery deterioration state SOH), and information about the battery 55 ( Information on the depth of discharge DoD, cycle deterioration, storage deterioration, being charged, charge completion time, remaining charge time, etc.) is transmitted from the battery controller 73 to the air conditioning controller 45 and the vehicle controller 72 via the vehicle communication bus 65. It
  • the battery controller (BMS) 73 has a measurement function of measuring the voltage, current, temperature, etc. of each battery cell of the battery 55 composed of a plurality of lithium ion battery cells in the embodiment (the battery temperature sensor 77 measures the temperature. Measurement), a display function for displaying the measured data, a balance function for adjusting the current flowing through each battery cell during charging/discharging to keep the voltage of each battery cell constant, and a preset voltage/current during charging/discharging, It has an error function to issue an error signal or stop charging/discharging when the temperature exceeds the upper limit value/lower limit value.
  • SOC stable charge capacity
  • the internal resistance of the battery cell also changes in accordance with the change in the battery charging rate SOC.
  • the battery deterioration state SOH (States of Health) described above indicates the deterioration state of the battery 55.
  • the above-mentioned depth of discharge DoD (Depth of Discharge) is the ratio of the amount of discharge to the discharge capacity of the battery 55, and when the battery 55 is completely used up, the depth of discharge is 100%.
  • the cycle deterioration described above means that the deterioration progresses due to a chemical reaction or the like while the battery 55 is repeatedly discharged/charged. Generally, when discharging/charging is repeated about 300 to 500 times, the capacity becomes about half.
  • the above-mentioned storage deterioration means that when the battery 55 is left without being used, the capacity is reduced due to an internal chemical reaction, and the deterioration is easily promoted in a charged state or a high temperature state.
  • the battery charge rate SOC, the battery temperature Tcell, the battery deterioration state SOH, the discharge seismic intensity DoD, the cycle deterioration, and the storage deterioration can be said to be indicators of deterioration of the battery 55.
  • the heat pump controller 32 and the air conditioning controller 45 transmit and receive data to and from each other via the vehicle communication bus 65, and control each device based on the output of each sensor and the setting input by the air conditioning operation unit 53.
  • the sensor 52 the air volume Ga of the air flowing into the air flow passage 3 and flowing in the air flow passage 3 (calculated by the air conditioning controller 45), the air flow rate SW by the air mix damper 28 (calculated by the air conditioning controller 45), the indoor blower
  • the information is transmitted from the air conditioning controller 45 to the heat pump controller 32 via the vehicle communication bus 65, and is provided for control by the heat pump controller 32.
  • the heat pump controller 32 also transmits data (information) regarding the control of the refrigerant circuit R and the battery temperature adjusting device 61 and information to be output to the air conditioning operation unit 53 to the air conditioning controller 45 via the vehicle communication bus 65.
  • the control device 11 controls the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, and the air conditioning (priority)+battery cooling mode, and the battery cooling.
  • air conditioning controller 45 heat pump controller 32
  • the control device 11 controls the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, and the air conditioning (priority)+battery cooling mode, and the battery cooling.
  • Each battery cooling operation of (priority)+air conditioning mode and battery cooling (single) mode and defrosting mode are switched and executed. These are shown in FIG.
  • the battery 55 is not charged in the embodiment, and the ignition of the vehicle is performed. This is executed when (IGN) is turned on and the air conditioning switch of the air conditioning operation unit 53 is turned on. However, it is executed even when the ignition is off during remote operation (pre-air conditioning, etc.). Even when the battery 55 is being charged, there is no battery cooling request, and the process is executed when the air conditioning switch is ON.
  • each battery cooling operation in the battery cooling (priority)+air conditioning mode and the battery cooling (single) mode is executed while the plug of the quick charger (external power source) is connected and the battery 55 is being charged. It is something.
  • the battery cooling (single) mode is executed when the air conditioning switch is OFF and there is a battery cooling request (such as when traveling at a high outside air temperature) other than during charging of the battery 55.
  • the heat pump controller 32 operates the circulation pump 62 of the battery temperature adjusting device 61 when the ignition is turned on, or when the battery 55 is being charged even when the ignition is turned off. It is assumed that the heat medium is circulated in the heat medium pipe 66 as indicated by broken lines in FIGS. 4 to 10. Further, although not shown in FIG. 3, the heat pump controller 32 of the embodiment also executes a battery heating mode for heating the battery 55 by causing the heat medium heating heater 63 of the battery temperature adjusting device 61 to generate heat.
  • FIG. 4 shows how the refrigerant flows in the refrigerant circuit R in the heating mode (solid arrow).
  • the heat pump controller 32 opens the solenoid valve 21 and the solenoid valve 17 , The solenoid valve 20, the solenoid valve 22, the solenoid valve 35, and the solenoid valve 69 are closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air and condensed and liquefied.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and pumps up heat from the outside air ventilated by traveling or by the outdoor blower 15 (heat absorption). That is, the refrigerant circuit R serves as a heat pump.
  • the low-temperature refrigerant that has exited the outdoor heat exchanger 7 reaches the refrigerant pipe 13C via the refrigerant pipes 13A and 13D, the solenoid valve 21, and further enters the accumulator 12 via this refrigerant pipe 13C, where it is gas-liquid separated.
  • the circulation of sucking the gas refrigerant into the compressor 2 from the refrigerant pipe 13K is repeated.
  • the air heated by the radiator 4 is blown out from the air outlet 29, so that the interior of the vehicle is heated.
  • the heat pump controller 32 calculates a target heater temperature TCO (of the radiator 4) calculated from a target outlet temperature TAO, which will be described later, which is a target temperature of air blown into the vehicle interior (a target value of the temperature of air blown into the vehicle interior).
  • the target radiator pressure PCO is calculated from the target temperature), and the number of rotations of the compressor 2 is based on the target radiator pressure PCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47.
  • the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23.
  • the vehicle interior can be heated without trouble even when the outside temperature is low.
  • FIG. 5 shows how the refrigerant flows in the refrigerant circuit R in the dehumidifying and heating mode (solid arrow).
  • the heat pump controller 32 opens the solenoid valve 21, the solenoid valve 22, and the solenoid valve 35, and closes the solenoid valve 17, the solenoid valve 20, and the solenoid valve 69.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air, and is condensed and liquefied.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4, a part of it enters the refrigerant pipe 13J through the refrigerant pipe 13E and reaches the outdoor expansion valve 6.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and pumps up heat from the outside air ventilated by traveling or by the outdoor blower 15 (heat absorption).
  • the low-temperature refrigerant that has exited the outdoor heat exchanger 7 reaches the refrigerant pipe 13C via the refrigerant pipes 13A and 13D and the solenoid valve 21, enters the accumulator 12 via this refrigerant pipe 13C, and is separated into gas and liquid there. After that, the circulation in which the gas refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K is repeated.
  • the rest of the condensed refrigerant flowing in the refrigerant pipe 13E via the radiator 4 is diverted, and the diverted refrigerant flows into the refrigerant pipe 13F via the solenoid valve 22 and reaches the refrigerant pipe 13B.
  • the refrigerant reaches the indoor expansion valve 8 is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 via the electromagnetic valve 35, and evaporates.
  • the water in the air blown from the indoor blower 27 is condensed and attached to the heat absorber 9 due to the heat absorbing action of the refrigerant generated in the heat absorber 9, so that the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 flows out into the refrigerant pipe 13C, joins the refrigerant from the refrigerant pipe 13D (refrigerant from the outdoor heat exchanger 7), and then is sucked into the compressor 2 from the refrigerant pipe 13K via the accumulator 12. Repeat the cycle.
  • the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4 and the auxiliary heater 23 (when heat is generated), so that dehumidification and heating of the vehicle interior is performed.
  • the heat pump controller 32 rotates the compressor 2 based on the target radiator pressure PCO calculated from the target heater temperature TCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47 in the embodiment. Or the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48 (heat absorber temperature Te) and the target heat absorber temperature TEO which is its target value. .. At this time, the heat pump controller 32 controls the compressor 2 by selecting whichever of the radiator pressure Pci and the heat absorber temperature Te, whichever is lower in the compressor target rotation speed obtained from the calculation. Further, the valve opening degree of the outdoor expansion valve 6 is controlled based on the heat absorber temperature Te.
  • the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. .. As a result, the vehicle interior is dehumidified and heated even when the outside temperature is low.
  • FIG. 6 shows how the refrigerant flows in the refrigerant circuit R in the dehumidifying and cooling mode (solid arrow).
  • the heat pump controller 32 opens the solenoid valve 17 and the solenoid valve 35, and closes the solenoid valve 20, the solenoid valve 21, the solenoid valve 22, and the solenoid valve 69.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air, and is condensed and liquefied.
  • the refrigerant exiting the radiator 4 reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J, and then passes through the outdoor expansion valve 6 which is controlled to open more than the heating mode or the dehumidifying and heating mode (region of large valve opening). It flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 is condensed by being cooled there by traveling or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant discharged from the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16, and reaches the indoor expansion valve 8 via the check valve 18.
  • the refrigerant is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates. Due to the heat absorbing action at this time, moisture in the air blown out from the indoor blower 27 is condensed and attached to the heat absorber 9, and the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is repeatedly circulated by being sucked into the compressor 2 from the refrigerant pipe 13K via the refrigerant pipe 13C.
  • the air cooled and dehumidified by the heat absorber 9 is reheated (has a lower heating capacity than that during dehumidification heating) in the process of passing through the radiator 4 and the auxiliary heater 23 (when heat is generated). As a result, dehumidification and cooling of the vehicle interior are performed.
  • the heat pump controller 32 absorbs heat based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is the target temperature of the heat absorber 9 (target value of the heat absorber temperature Te).
  • the rotation speed of the compressor 2 is controlled so that the device temperature Te becomes the target heat absorber temperature TEO, and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47 and the target radiator pressure PCO.
  • the required reheat amount (reheating by the radiator 4) Amount).
  • the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. To do. As a result, dehumidifying and cooling are performed without excessively reducing the temperature inside the vehicle compartment.
  • FIG. 7 shows how the refrigerant flows in the refrigerant circuit R in the cooling mode (solid arrow).
  • the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, and the solenoid valve 35, and closes the solenoid valve 21, the solenoid valve 22, and the solenoid valve 69.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the auxiliary heater 23 is not energized.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the air flow passage 3 is ventilated to the radiator 4, since the proportion thereof is small (only for reheating (reheating) during cooling), it almost passes through here and the radiator 4
  • the discharged refrigerant reaches the refrigerant pipe 13J through the refrigerant pipe 13E.
  • the electromagnetic valve 20 since the electromagnetic valve 20 is open, the refrigerant passes through the electromagnetic valve 20 and flows into the outdoor heat exchanger 7 as it is, and is cooled there by running or by the outside air ventilated by the outdoor blower 15 to be condensed and liquefied. To do.
  • the refrigerant discharged from the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16, and reaches the indoor expansion valve 8 via the check valve 18.
  • the refrigerant is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates. Due to the heat absorbing action at this time, the air blown out from the indoor blower 27 and exchanging heat with the heat absorber 9 is cooled.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is sucked into the compressor 2 via the refrigerant pipe 13K.
  • the air cooled by the heat absorber 9 is blown into the vehicle interior from the air outlet 29, so that the vehicle interior is cooled.
  • the heat pump controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • FIG. 8 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in the air conditioning (priority)+battery cooling mode.
  • the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, the solenoid valve 35, and the solenoid valve 69, and closes the solenoid valves 21 and 22.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the auxiliary heater 23 is not energized.
  • the heat medium heater 63 is not energized.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the air flow passage 3 is ventilated to the radiator 4, since the proportion thereof is small (only for reheating (reheating) during cooling), it almost passes through here and the radiator 4
  • the discharged refrigerant reaches the refrigerant pipe 13J through the refrigerant pipe 13E.
  • the solenoid valve 20 since the solenoid valve 20 is open, the refrigerant passes through the solenoid valve 20, flows into the outdoor heat exchanger 7 as it is, and is cooled by the traveling air or the outside air ventilated by the outdoor blower 15 to be condensed and liquefied. To do.
  • the refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16.
  • the refrigerant flowing into the refrigerant pipe 13B is split after passing through the check valve 18, and one of the refrigerant flows through the refrigerant pipe 13B as it is to reach the indoor expansion valve 8.
  • the refrigerant flowing into the indoor expansion valve 8 is decompressed there, then flows into the heat absorber 9 through the electromagnetic valve 35, and is evaporated. Due to the heat absorbing action at this time, the air blown out from the indoor blower 27 and exchanging heat with the heat absorber 9 is cooled.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is sucked into the compressor 2 via the refrigerant pipe 13K.
  • the air cooled by the heat absorber 9 is blown into the vehicle interior from the air outlet 29, so that the vehicle interior is cooled.
  • the rest of the refrigerant that has passed through the check valve 18 is split, flows into the branch pipe 67, and reaches the auxiliary expansion valve 68.
  • the refrigerant is decompressed, then flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 through the electromagnetic valve 69, and evaporates there. At this time, it exerts an endothermic effect.
  • the refrigerant evaporated in the refrigerant flow path 64B repeats the circulation in which the refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K through the refrigerant pipe 71, the refrigerant pipe 13C and the accumulator 12 in sequence (shown by a solid arrow in FIG. 8).
  • the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 66, and the refrigerant flow passage there.
  • the heat medium is cooled by exchanging heat with the refrigerant that evaporates in 64B and absorbing heat.
  • the heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heater 63.
  • the heat medium heater 63 does not generate heat in this operation mode, the heat medium passes through as it is to the battery 55 and exchanges heat with the battery 55. As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 is repeatedly sucked into the circulation pump 62 and repeatedly circulated (indicated by a dashed arrow in FIG. 8 ).
  • the heat pump controller 32 maintains the electromagnetic valve 35 in the open state, and will be described later based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • the rotation speed of the compressor 2 is controlled as shown in FIG.
  • the solenoid valve 69 is controlled to open and close as follows based on the temperature of the heat medium detected by the heat medium temperature sensor 76 (heat medium temperature Tw: transmitted from the battery controller 73).
  • FIG. 13 shows a block diagram of opening/closing control of the solenoid valve 69 in the air conditioning (priority)+battery cooling mode.
  • the heat medium temperature Tw detected by the heat medium temperature sensor 76 and the target heat medium temperature TWO as a target value of the heat medium temperature Tw are input to the battery solenoid valve control unit 90 of the heat pump controller 32. Then, the battery solenoid valve control unit 90 sets the control upper limit value TwUL and the control lower limit value TwLL with a predetermined temperature difference above and below the target heat medium temperature TWO, and from the state where the solenoid valve 69 is closed to the battery.
  • the solenoid valve 69 is opened (instruction to open solenoid valve 69).
  • the refrigerant flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 and evaporates, and cools the heat medium flowing through the heat medium channel 64A. Therefore, the battery 55 is cooled by the cooled heat medium. To be done.
  • the solenoid valve 69 is closed (solenoid valve). 69 Close instruction). After that, the solenoid valve 69 is repeatedly opened and closed as described above to control the heat medium temperature Tw to the target heat medium temperature TWO while giving priority to the cooling of the vehicle compartment, thereby cooling the battery 55.
  • the heat pump controller 32 calculates the above-mentioned target outlet temperature TAO from the following formula (I).
  • This target outlet temperature TAO is a target value of the temperature of the air blown into the vehicle compartment from the outlet 29.
  • TAO (Tset-Tin) ⁇ K+Tbal(f(Tset, SUN, Tam)) ..(I)
  • Tset is the set temperature in the vehicle compartment set by the air conditioning operation unit 53
  • Tin is the temperature of the vehicle interior air detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is the set temperature Tset
  • the solar radiation sensor 51 detects the temperature. It is a balance value calculated from the amount of solar radiation SUN and the outside air temperature Tam detected by the outside air temperature sensor 33.
  • the target outlet temperature TAO is higher as the outside air temperature Tam is lower, and is decreased as the outside air temperature Tam is increased.
  • the heat pump controller 32 selects one of the above air conditioning operations based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target outlet temperature TAO at the time of startup. Further, after the start-up, each air conditioning operation is selected and switched according to changes in operating conditions such as the outside air temperature Tam, the target outlet temperature TAO, and the heat medium temperature Tw, environmental conditions, and setting conditions. For example, the transition from the cooling mode to the air conditioning (priority)+battery cooling mode is executed based on the input of the battery cooling request from the battery controller 73. In this case, the battery controller 73 outputs a battery cooling request and transmits it to the heat pump controller 32 and the air conditioning controller 45, for example, when the heat medium temperature Tw or the battery temperature Tcell rises above a predetermined value.
  • the heat pump controller 32 maintains the electromagnetic valve 69 in an open state, and the heat detected by the heat medium temperature sensor 76 (transmitted from the battery controller 73) is detected. Based on the medium temperature Tw, the rotation speed of the compressor 2 is controlled as shown in FIG. 14 described later.
  • the solenoid valve 35 is controlled to open and close as follows based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • FIG. 15 shows a block diagram of opening/closing control of the solenoid valve 35 in this battery cooling (priority)+air conditioning mode.
  • a heat absorber temperature Te detected by the heat absorber temperature sensor 48 and a predetermined target heat absorber temperature TEO as a target value of the heat absorber temperature Te are input to the heat absorber solenoid valve control unit 95 of the heat pump controller 32.
  • the heat absorber electromagnetic valve control unit 95 sets the control upper limit value TeUL and the control lower limit value TeLL with a predetermined temperature difference above and below the target heat absorber temperature TEO, and absorbs heat from the state where the solenoid valve 35 is closed.
  • the solenoid valve 35 is opened (electromagnetic valve. Instruction to open valve 35). As a result, the refrigerant flows into the heat absorber 9 and evaporates, and cools the air flowing through the air flow passage 3.
  • the solenoid valve 35 is closed (solenoid valve 35 Close instruction). Thereafter, such opening/closing of the electromagnetic valve 35 is repeated to give priority to the cooling of the battery 55, and the heat absorber temperature Te is controlled to the target heat absorber temperature TEO to cool the vehicle interior.
  • FIG. 9 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in the battery cooling (single) mode.
  • the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, and the solenoid valve 69, and closes the solenoid valve 21, the solenoid valve 22, and the solenoid valve 35.
  • the compressor 2 and the outdoor blower 15 are operated.
  • the indoor blower 27 is not operated and the auxiliary heater 23 is not energized. Further, the heat medium heater 63 is not energized in this operation mode.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is not ventilated to the radiator 4, it only passes through here, and the refrigerant exiting the radiator 4 reaches the refrigerant pipe 13J via the refrigerant pipe 13E. At this time, since the electromagnetic valve 20 is open, the refrigerant passes through the electromagnetic valve 20, flows into the outdoor heat exchanger 7 as it is, and is cooled by air by the outside air ventilated by the outdoor blower 15 to be condensed and liquefied.
  • the refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16.
  • the check valve 18 After passing through the check valve 18, all of the refrigerant flowing into the refrigerant pipe 13B flows into the branch pipe 67 and reaches the auxiliary expansion valve 68.
  • the refrigerant is decompressed, then flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 through the electromagnetic valve 69, and evaporates there. At this time, it exerts an endothermic effect.
  • the refrigerant evaporated in the refrigerant flow path 64B repeats the circulation in which the refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K through the refrigerant pipe 71, the refrigerant pipe 13C and the accumulator 12 in sequence (shown by a solid arrow in FIG. 9).
  • the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 66, and the refrigerant flow passage there.
  • the heat medium is cooled by being absorbed by the refrigerant evaporated in 64B.
  • the heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heater 63.
  • the heat medium heater 63 does not generate heat in this operation mode, the heat medium passes through as it is to the battery 55 and exchanges heat with the battery 55. As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 is repeatedly sucked into the circulation pump 62 to repeat circulation (indicated by a dashed arrow in FIG. 9 ).
  • the heat pump controller 32 cools the battery 55 by controlling the rotation speed of the compressor 2 as described later based on the heat medium temperature Tw detected by the heat medium temperature sensor 76.
  • FIG. 10 shows how the refrigerant flows in the refrigerant circuit R in the defrosting mode (solid arrow).
  • the refrigerant evaporates in the outdoor heat exchanger 7 and absorbs heat from the outside air to reach a low temperature, so that the moisture in the outside air adheres to the outdoor heat exchanger 7 as frost.
  • the heat pump controller 32 sets the refrigerant circuit R to the heating mode described above, and fully opens the outdoor expansion valve 6. Then, the compressor 2 is operated, the high-temperature refrigerant discharged from the compressor 2 is caused to flow into the outdoor heat exchanger 7 via the radiator 4 and the outdoor expansion valve 6, and the frost formation on the outdoor heat exchanger 7 is prevented. Thaw ( Figure 10). Then, the heat pump controller 32 defrosts the outdoor heat exchanger 7 when the outdoor heat exchanger temperature TXO detected by the outdoor heat exchanger temperature sensor 49 becomes higher than a predetermined defrosting end temperature (for example, +3° C. or the like). Is completed and the defrosting mode is terminated.
  • a predetermined defrosting end temperature for example, +3° C. or the like
  • the heat pump controller 32 executes the battery heating mode when the air conditioning operation is executed while the vehicle is traveling or when the battery 55 is charged. In the battery heating mode, the heat pump controller 32 operates the circulation pump 62 and energizes the heat medium heating heater 63. The solenoid valve 69 is closed.
  • the heat medium discharged from the circulation pump 62 reaches the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 66, and passes through the heat medium passage 64A to reach the heat medium heater 63.
  • the heat medium heating heater 63 is generating heat, the heat medium is heated by the heat medium heating heater 63 and its temperature rises, and then reaches the battery 55 and exchanges heat with the battery 55. Thereby, the battery 55 is heated, and the heat medium after heating the battery 55 is repeatedly circulated by being sucked into the circulation pump 62.
  • the heat pump controller 32 controls the heat generation of the heat medium heating heater 63 based on the heat medium temperature Tw detected by the heat medium temperature sensor 76, as will be described later, to set the heat medium temperature Tw to a predetermined target.
  • the heat medium temperature TWO is adjusted and the battery 55 is heated.
  • Control of the compressor 2 by the heat pump controller 32 is based on radiator pressure Pci in heating mode, and the target rotation speed (compressor target rotation speed) of the compressor 2 is shown in the control block diagram of FIG.
  • the TGNCh is calculated, and in the dehumidifying cooling mode, the cooling mode, and the air conditioning (priority)+battery cooling mode, the target rotation speed of the compressor 2 (compressor target rotation speed) based on the heat absorber temperature Te according to the control block diagram of FIG. Calculate TGNCc.
  • the dehumidification heating mode the lower direction of the compressor target speed TGNCh and the compressor target speed TGNc is selected.
  • the target rotation speed of the compressor 2 (compressor target rotation speed) TGNCw is calculated based on the heat medium temperature Tw by the control block diagram of FIG. To do.
  • FIG. 11 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCh of the compressor 2 based on the radiator pressure Pci.
  • the F/F manipulated variable TGNChff of the compressor target rotation speed is calculated.
  • the heater temperature Thp is an air temperature (estimated value) on the leeward side of the radiator 4, and the radiator pressure Pci detected by the radiator pressure sensor 47 and the refrigerant outlet of the radiator 4 detected by the radiator outlet temperature sensor 44. It is calculated (estimated) from the temperature Tci.
  • the degree of supercooling SC is calculated from the refrigerant inlet temperature Tcxin and the refrigerant outlet temperature Tci of the radiator 4 detected by the radiator inlet temperature sensor 43 and the radiator outlet temperature sensor 44.
  • the target radiator pressure PCO is calculated by the target value calculator 79 based on the target supercooling degree TGSC and the target heater temperature TCO. Further, the F/B (feedback) manipulated variable calculation unit 81 calculates the F/B manipulated variable TGNChfb of the compressor target rotational speed by PID calculation or PI calculation based on the target radiator pressure PCO and the radiator pressure Pci. Then, the F/F operation amount TGNChff calculated by the F/F operation amount calculation unit 78 and the F/B operation amount TGNChfb calculated by the F/B operation amount calculation unit 81 are added by the adder 82 to obtain a limit setting unit as TGNCh00. 83 is input.
  • the lower limit rotational speed ECNpdLimLo and the upper limit rotational speed ECNpdLimHi for control are set to TGNCh0, and then the compressor OFF control unit 84 is used to determine the target compressor rotational speed TGNCh. That is, the rotation speed of the compressor 2 is limited to the upper limit rotation speed ECNpdLimHi or less.
  • the heat pump controller 32 controls the operation of the compressor 2 so that the radiator pressure Pci becomes the target radiator pressure PCO by the compressor target rotation speed TGNCh calculated based on the radiator pressure Pci.
  • the compressor OFF control unit 84 sets the compressor target rotation speed TGNCh to the above-described lower limit rotation speed ECNpdLimLo, and the radiator pressure Pci is set to a predetermined upper limit value PUL and lower limit value PLL set above and below the target radiator pressure PCO. If the state of rising to the upper limit value PUL (a state of exceeding the upper limit value PUL or a state of being equal to or more than the upper limit value PUL. The same applies hereinafter) continues for a predetermined time th1, the compressor 2 is stopped and compression is performed. The machine enters the ON-OFF mode that controls the ON-OFF of the machine 2.
  • the compressor 2 In the ON-OFF mode of the compressor 2, when the radiator pressure Pci drops to the lower limit value PLL (when it falls below the lower limit value PLL or becomes lower than the lower limit value PLL.
  • the compressor 2 is started to operate the compressor target rotation speed TGNCh as the lower limit rotation speed ECNpdLimLo, and when the radiator pressure Pci rises to the upper limit value PUL in that state, the compressor 2 is stopped again. That is, the operation (ON) and the stop (OFF) of the compressor 2 at the lower limit rotation speed ECNpdLimLo are repeated.
  • the compressor 2 When the radiator pressure Pci decreases to the lower limit value PUL and the compressor 2 is started, and the radiator pressure Pci does not become higher than the lower limit value PUL for a predetermined time th2, the compressor 2 is turned on and off. Is completed and the normal mode is restored.
  • FIG. 12 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCc of the compressor 2 based on the heat absorber temperature Te.
  • the F/F operation amount calculation unit 86 of the heat pump controller 32 has an outside air temperature Tam, an air volume Ga of air flowing through the air flow passage 3 (may be the blower voltage BLV of the indoor blower 27), a target radiator pressure PCO, The F/F manipulated variable TGNCcff of the compressor target rotation speed is calculated based on the target heat absorber temperature TEO which is the target value of the heat absorber temperature Te.
  • the F/B manipulated variable calculation unit 87 calculates the F/B manipulated variable TGNCcfb of the compressor target rotation speed by PID calculation or PI calculation based on the target heat absorber temperature TEO and the heat absorber temperature Te. Then, the F/F operation amount TGNCcff calculated by the F/F operation amount calculation unit 86 and the F/B operation amount TGNCcfb calculated by the F/B operation amount calculation unit 87 are added by the adder 88 to obtain a limit setting unit as TGNCc00. It is input to 89.
  • the lower limit speed TGNCcLimLo for control and the upper limit speed TGNCcLimHi are set to TGNCc0, and then the compressor OFF control unit 91 is used to determine the target compressor speed TGNCc. Therefore, if the value TGNCc00 added by the adder 88 is within the upper limit rotation speed TGNCcLimHi and the lower limit rotation speed TGNCcLimLo and the ON-OFF mode described later does not occur, this value TGNCc00 is the target compressor rotation speed TGNCc (compressor 2 Will be the number of rotations).
  • the heat pump controller 32 controls the operation of the compressor 2 so that the heat absorber temperature Te becomes the target heat absorber temperature TEO by the compressor target rotation speed TGNCc calculated based on the heat absorber temperature Te.
  • the compressor OFF control unit 91 controls the compressor target rotation speed TGNCc to be the above-described lower limit rotation speed TGNCcLimLo, and the heat absorber temperature Te is set above and below the target heat absorber temperature TEO to set the control upper limit value TeUL and the control lower limit value TeLL. If the control lower limit value TeLL among them continues for a predetermined time tc1, the compressor 2 is stopped and an ON-OFF mode for ON-OFF controlling the compressor 2 is entered.
  • FIG. 14 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCw of the compressor 2 based on the heat medium temperature Tw.
  • the F/F operation amount calculation unit 92 of the heat pump controller 32 uses the outside air temperature Tam, the flow rate Gw of the heat medium in the battery temperature adjusting device 61 (calculated from the output of the circulation pump 62), and the heat generation amount of the battery 55 (battery).
  • the F/B manipulated variable calculation unit 93 performs a PID calculation or a PI calculation based on the target heat medium temperature TWO and the heat medium temperature Tw (transmitted from the battery controller 73) to determine the F/B manipulated variable TGNCwfb of the compressor target rotation speed. To calculate. Then, the F/F operation amount TGNCwff calculated by the F/F operation amount calculation unit 92 and the F/B operation amount TGNCwfb calculated by the F/B operation amount calculation unit 93 are added by the adder 94 to obtain a limit setting unit as TGNCw00. 96 is input.
  • the lower limit rotational speed TGNCwLimLo and the upper limit rotational speed TGNCwLimHi for control are set to TGNCw0, and then the compressor OFF control unit 97 is used to determine the target compressor rotational speed TGNCw. Therefore, if the value TGNCw00 added by the adder 94 is within the upper limit rotation speed TGNCwLimHi and the lower limit rotation speed TGNCwLimLo and the ON-OFF mode described later does not occur, this value TGNCw00 is the target compressor rotation speed TGNCw (compressor 2 Will be the number of rotations). In the normal mode, the heat pump controller 32 uses the compressor target rotation speed TGNCw calculated based on the heat medium temperature Tw so that the heat medium temperature Tw becomes the target heat medium temperature TWO within the appropriate temperature range described above. Control the operation of 2.
  • the compressor OFF control unit 97 determines that the compressor target rotation speed TGNCw becomes the above-described lower limit rotation speed TGNCwLimLo, and the heat medium temperature Tw is set above and below the target heat medium temperature TWO and the control upper limit value TwUL and the control lower limit value TwLL are set.
  • the compressor 2 is stopped and the ON-OFF mode in which the compressor 2 is ON-OFF controlled is entered.
  • FIG. 16 is a control block diagram of the heat pump controller 32 that calculates the target heat generation amount ECHtw of the heat medium heater 63 based on the heat medium temperature Tw.
  • the F/F operation amount calculation unit 98 of the heat pump controller 32 uses the outside air temperature Tam, the flow rate Gw of the heat medium in the battery temperature adjusting device 61 (calculated from the output of the circulation pump 62), and the heat generation amount of the battery 55 (battery).
  • the F/B operation amount calculation unit 99 calculates the F/B operation amount ECHtwfb of the target heat generation amount by PID calculation or PI calculation based on the target heat medium temperature TWO and the heat medium temperature Tw (transmitted from the battery controller 73). To do. Then, the F/F operation amount ECHtwff calculated by the F/F operation amount calculation unit 98 and the F/B operation amount ECHtwfb calculated by the F/B operation amount calculation unit 99 are added by the adder 101 to obtain ECHtw00 as a limit setting unit. It is input to 102.
  • a lower limit calorific value ECHtwLimLo for control for example, energization OFF
  • ECHtwLimHi an upper limit calorific value
  • ECHtwLimHi the target heating value
  • ECHtw00 the target heat generation amount
  • ECHtw the target heat generation amount
  • the heat pump controller 32 controls the heat generation of the heat medium heating heater 63 so that the heat medium temperature Tw becomes the target heat medium temperature TWO by the target heat generation amount ECHtw calculated based on the heat medium temperature Tw.
  • the heat medium heating heater OFF control unit 103 controls the target heat generation amount ECHtw to be the above-described lower limit heat generation amount ECHtwLimLo, and the heat medium temperature Tw is set above and below the target heat medium temperature TWO to set the control upper limit value TwUL and the control lower limit value TwLL. If the control upper limit value TwUL has continued for a predetermined time tw1, the heat medium heating heater 63 is de-energized to enter the ON-OFF mode in which the heat medium heating heater 63 is ON-OFF controlled.
  • the heat medium heating heater 63 In the ON-OFF mode of the heat medium heating heater 63 in this case, when the heat medium temperature Tw falls to the control lower limit value TwLL, the heat medium heating heater 63 is energized to be energized as a predetermined low heat generation amount, and in that state. When the heat medium temperature Tw rises to the control upper limit value TwUL, the energization of the heat medium heater 63 is stopped again. That is, heat generation (ON) and heat generation stop (OFF) of the heat medium heater 63 with a predetermined low heat generation amount are repeated.
  • the heat medium temperature Tw drops to the control lower limit value TwLL and the heat medium heater 63 is energized, the heat medium temperature Tw does not become higher than the control lower limit value TwLL for a predetermined time tw2.
  • the ON-OFF mode of the medium heater 63 is terminated and the normal mode is restored.
  • the refrigerant circuit Since the electric power of the battery 55 is consumed by the R compressor 2, the heat medium heating heater 63, and the like, the cruising range of the vehicle is reduced and the deterioration of the battery 55 is also promoted.
  • the battery charge rate SOC and the battery temperature Tcell described above are adopted as the indexes indicating the deterioration of the battery 55, and the heat pump controller 32 is based on these, in the air conditioning (priority)+battery cooling mode, and during running.
  • the battery temperature adjustment limit control for limiting the temperature adjustment of the battery 55 in the battery heating mode or the like is executed.
  • the heat pump controller 32 of the embodiment has a plurality of threshold values for the battery charging rate SOC and the battery temperature Tcell. , Normal area, warning area, and dangerous area are set respectively.
  • the battery charging rate SOC is set to a predetermined lower threshold value 1 and upper predetermined threshold value 1 between 0% and 100%.
  • the area between the lower threshold value 1 and the upper threshold value 1 is set as a normal area in which deterioration of the battery 55 is not taken into consideration.
  • a predetermined lower threshold value 2 is set between the lower threshold value 1 and 0% lower than the lower threshold value 1, and between the upper threshold value 1 and 100% higher than the upper threshold value 1,
  • a predetermined upper threshold value 2 is set.
  • the area between the lower threshold 1 and the lower threshold 2 and the area between the upper threshold 1 and the upper threshold 2 are set as a warning area as a predetermined margin area outside the normal area.
  • a region between the lower threshold value 2 and 0% and a region between the upper threshold value 2 and 100% are respectively set as a dangerous region as a deterioration region of the battery 55.
  • the lower threshold 1, the lower threshold 2, the upper threshold 1, and the upper threshold 2 of the battery charging rate SOC are determined in advance according to the actual performance of the battery 55. Then, the warning area and the danger area set by the respective thresholds are areas in which the power consumption of the vehicle air conditioner 1 including the battery temperature adjusting device 61 is suppressed while the vehicle is in use.
  • a predetermined low temperature side threshold value 1 and high temperature side threshold value 1 are set between the lower limit temperature and the upper limit temperature in the battery temperature Tcell.
  • An area between the low temperature side threshold value 1 and the high temperature side threshold value 1 is set as a normal range in which deterioration of the battery 55 is not taken into consideration, and this normal range is an appropriate temperature range of the battery 55.
  • a predetermined low temperature side threshold 2 is set between the low temperature side threshold 1 lower than the low temperature side threshold 1 and the lower limit temperature, and between the high temperature side threshold 1 higher than the high temperature side threshold 1 and the upper limit temperature. Is set to a predetermined high temperature side threshold value 2.
  • the area between the low temperature side threshold value 1 and the low temperature side threshold value 2 and the area between the high temperature side threshold value 1 and the high temperature side threshold value 2 are set as a warning area as a predetermined margin area outside the normal area. Further, a region between the low temperature side threshold value 2 and the lower limit temperature and a region between the high temperature side threshold value 2 and the upper limit temperature are respectively set as a dangerous region as a deterioration region of the battery 55.
  • the low temperature side threshold value 1, low temperature side threshold value 2, high temperature side threshold value 1, high temperature side threshold value 2 of the battery temperature Tcell are also determined in advance according to the actual performance of the battery 55. Also in this case, the warning area and the dangerous area set by the respective thresholds are the areas in which the power consumption of the vehicle air conditioner 1 including the battery temperature adjusting device 61 is suppressed while the vehicle is in use.
  • the battery temperature adjustment limit control executed by the heat pump controller 32 the battery charge rate SOC obtained from the battery controller 73 is in the normal range or warning range of the battery charge rate SOC described above, and the battery temperature Tcell is in the normal range or warning range of the battery temperature Tcell described above. If it is, the temperature control of the battery 55 is not executed (the temperature control of the battery 55 is not permitted). That is, for example, when the air conditioning (priority)+battery cooling mode is being executed, the operation mode is switched to the cooling mode. Further, when the battery heating mode is being executed, the battery heating mode is stopped.
  • the heat pump controller 32 determines the temperature of the battery 55.
  • the temperature is adjusted (the temperature of the battery 55 is adjusted). That is, when the battery temperature Tcell enters the high temperature side dangerous area (between the high temperature side threshold value 2 and the upper limit temperature) after switching to the cooling mode as described above, the operation mode is set to air conditioning (priority)+battery cooling. Switch to mode.
  • the battery heating mode is stopped as described above, when the battery temperature Tcell enters the lower dangerous area (between the low temperature side threshold value 2 and the lower limit temperature), the battery heating mode is restarted.
  • the heat pump controller 32 limits the temperature control of the battery 55 based on the index indicating the deterioration of the battery 55, that is, the battery charging rate SOC and the battery temperature Tcell, the battery charging rate SOC and the battery
  • the battery charging rate SOC limits the temperature control of the battery 55 based on the index indicating the deterioration of the battery 55, that is, the battery charging rate SOC and the battery temperature Tcell
  • the battery charging rate SOC and the battery By determining the state of the battery 55 based on the temperature Tcell and not permitting the temperature control of the battery 55 as in this embodiment, it is possible to suppress a decrease in the cruising range of the vehicle.
  • the controller 32 executes the temperature adjustment of the battery 55. By not doing so, it becomes possible to realize the temperature control of the battery in which the cruising range of the vehicle is prioritized.
  • a predetermined dangerous area is set as the deterioration area of the battery 55, and the heat pump controller 32 determines that the battery charging rate SOC is in the normal area or the warning area of the battery charging rate SOC.
  • the temperature of the battery 55 is adjusted so that the battery temperature Tcell becomes dangerous even if the battery charge rate SOC is acceptable. In some cases, the temperature control of the battery 55 is permitted so that deterioration of the battery 55 due to an abnormal temperature can be avoided.
  • the battery charge rate SOC and the battery temperature Tcell are set to the normal range and the warning range, respectively, but the range including the normal range and the warning range of the above embodiment is set as the normal range. You may handle it. In that case, when the battery charging rate SOC is in the normal range of the battery charging rate SOC and the battery temperature Tcell is in the normal range of the battery temperature Tcell, the temperature control of the battery is not executed. Become.
  • the battery temperature Tcell is in the warning range.
  • the temperature control of the battery 55 is executed (permitted) with the temperature control of the battery 55, or the temperature control of the battery 55 is executed (permitted) when the battery charge rate SOC enters the warning range even if the battery temperature Tcell is in the normal range or the warning range. ) Can be performed, and finer temperature control restriction control can be realized according to the battery 55.
  • the battery temperature adjustment limit control of the above embodiment may be performed in the battery cooling (priority) + air conditioning mode or the battery cooling (single) mode. That is, when the battery temperature control is limited in the battery cooling (priority)+air conditioning mode, the operation mode is switched to the cooling mode, and the battery cooling (single) mode is stopped in the battery cooling (single) mode.
  • the battery temperature control restriction in these modes executed during charging of the battery 55 it can be expected to reduce the charging time of the battery 55 and the cost for charging.
  • the heat pump controller 32 determines that the battery charging rate SOC is in the above-described normal range or warning range of the battery charging rate SOC, and the distance to the planned charging site is equal to or greater than the predetermined threshold D, The temperature control of the battery 55 is not executed (the temperature control of the battery 55 is not permitted).
  • This threshold D is assumed to be a preset long distance. That is, for example, when the air conditioning (priority)+battery cooling mode is being executed, the operation mode is switched to the cooling mode. Further, when the battery heating mode is being executed, the battery heating mode is stopped.
  • the heat pump controller 32 adjusts the temperature of the battery 55 when the battery charging rate SOC enters the dangerous area of the battery charging rate SOC described above and the battery temperature Tcell enters the dangerous area of the battery temperature Tcell described above. Is executed (the temperature control of the battery 55 is permitted). That is, for example, after switching to the cooling mode as described above, when the battery charge rate SOC enters the dangerous area and the battery temperature Tcell enters the high temperature dangerous area (between the high temperature threshold 2 and the upper limit temperature). In this case, the operation mode is switched to air conditioning (priority)+battery cooling mode. In addition, after the battery heating mode is stopped as described above, when the battery charge rate SOC enters the dangerous range and the battery temperature Tcell enters the lower dangerous range (between the low temperature side threshold 2 and the lower limit temperature) To resume the battery heating mode.
  • the heat pump controller 32 determines that the battery charge rate SOC is in the normal range or the warning range of the battery charge rate SOC based on the information on the predetermined charge execution site, and the distance to the charge execution site is predetermined. If the temperature is not equal to or higher than the threshold value D, the temperature of the battery 55 is not controlled. Therefore, if the temperature of the battery 55 is long and the temperature of the battery 55 is not required, the temperature of the battery 55 is not controlled. It is possible to reduce the power consumption due to the temperature control of the battery 55 without permitting it and avoid the inconvenience of not reaching the scheduled charging site.
  • the heat pump controller 32 executes the temperature adjustment of the battery 55. Therefore, when the battery charge rate SOC and the battery temperature Tcell are in a dangerous state, the temperature control of the battery 55 is permitted even if the distance to the planned charging site is long, and an abnormal charge rate is detected. It becomes possible to avoid deterioration of the battery 55 due to temperature.
  • the temperature control of the battery 55 is suppressed to significantly reduce the charging rate of the battery 55. Then, the temperature control of the battery 55 can be suppressed, and the further reduction of the charging rate due to the temperature control of the battery 55 can be suppressed.
  • the heat pump controller 32 of the embodiment is set with a predetermined threshold value SOH1 of the battery deterioration state SOH, as shown in FIG.
  • SOH a predetermined threshold value SOH1 of the battery deterioration state SOH
  • a value at which SOH is reduced to X1% (for example, 80%) is set as a threshold value SOH1, which is equal to or lower than the threshold value SOH1 or lower than the threshold value SOH1.
  • the area is the area after deterioration. Then, a region equal to or higher than the region after deterioration or a region higher than that is a region in which the deterioration of the battery 55 is not considered.
  • the battery deterioration state SOH is equal to or lower than the threshold value SOH1 in FIG. 19, or is lower than SOH1.
  • the temperature of the battery 55 is adjusted. That is, when the cooling mode is being executed and the battery temperature Tcell is in the high temperature warning zone, for example, the mode is switched to the air conditioning (priority)+battery cooling mode, and the battery cooling (single) during charging is performed. Mode, or battery cooling (priority)+air conditioning mode is executed. Further, when the battery temperature Tcell is in the warning region on the low temperature side, for example, the battery heating mode is executed.
  • the temperature adjustment of the battery 55 is executed, thereby indicating the deterioration state of the battery 55.
  • the SOH is lowered, the temperature of the battery 55 is adjusted to prevent the deterioration from further progressing.
  • the refrigerant circuit R as a cooling device as in each of the above-described embodiments and allowing the battery 55 to be cooled, it is possible to effectively eliminate or suppress the deterioration of the battery 55 due to an abnormally high temperature. become able to. Furthermore, by providing the heat medium heater 63 as a heating device and heating the battery 55 as in the embodiment, it is possible to effectively eliminate or suppress the deterioration of the battery 55 due to an abnormal low temperature.
  • the battery temperature adjusting device 61 the compressor 2 for compressing the refrigerant, the radiator 4 for exchanging heat between the refrigerant supplied to the vehicle interior and the refrigerant, and the heat absorption. Since the battery temperature adjusting device 61 can cool the battery 55 by using the refrigerant, the battery temperature adjusting device 61 can cool the battery 55 smoothly while air conditioning the inside of the vehicle. Then, the battery 55 can be cooled and the deterioration of the battery 55 can be eliminated or suppressed.
  • the vehicle air conditioner 1 that air-conditions the vehicle interior is provided with the battery temperature adjusting device 61 of the present invention.
  • the invention other than claim 12 is not limited to this, and the vehicle air conditioning is not performed, and the battery It is also effective for a battery temperature adjusting device that only adjusts the temperature of 55.
  • the cooling device for cooling the battery 55 is not limited to the refrigerant circuit R of the embodiment, and the present invention is effective when an electronic cooling device such as a Peltier element is used.
  • the battery charge rate SOC and the battery temperature Tcell are adopted as the indicators showing the deterioration of the battery 55, but the present invention is not limited to this, and the battery deterioration state SOH, the discharge depth DoD, the cycle deterioration, and the storage deterioration described above are used. You may adopt it. In that case, if the battery deterioration state SOH, the depth of discharge DoD, the cycle deterioration, and the storage deterioration are in regions where the deterioration of the battery 55 is not considered, the temperature control is not performed or is limited.
  • Vehicle Air Conditioner 2 Compressor 3 Air Flow Path 4 Radiator (Indoor Heat Exchanger) 6 Outdoor expansion valve 7 Outdoor heat exchanger 8 Indoor expansion valve 9 Heat absorber (indoor heat exchanger) 11 control device 32 heat pump controller (constituting a part of control device) 35 solenoid valve 45 air conditioning controller (constituting a part of control device) 48 Heat Sink Temperature Sensor 55 Battery 61 Battery Temperature Adjusting Device 64 Refrigerant-Heat Medium Heat Exchanger 68 Auxiliary Expansion Valve 69 Electromagnetic Valve 73 Battery Controller 74 GPS Navigation Device 76 Heat Medium Temperature Sensor 77 Battery Temperature Sensor R Refrigerant Circuit

Abstract

[Problem] To provide a vehicle battery temperature adjusting device capable of adjusting the temperature of a battery while suppressing a deterioration in a cruising distance of the vehicle. [Solution] A battery temperature adjusting device 61 of a vehicle is provided with a control device which operates by being supplied with power from a battery 55 installed in the vehicle, and which adjusts the temperature of the battery 55, wherein the control device restricts the temperature of the battery 55 on the basis of an indicator (battery state of charge SOC, battery temperature Tcell) indicating deterioration of the battery 55.

Description

車両のバッテリ温度調整装置及びそれを備えた車両用空気調和装置Vehicle battery temperature controller and vehicle air conditioner including the same
 本発明は、車両に搭載されたバッテリの温度を調整するバッテリ温度調整装置、及び、それを備えて車室内を空調するヒートポンプ方式の車両用空気調和装置に関するものである。 The present invention relates to a battery temperature adjusting device that adjusts the temperature of a battery mounted in a vehicle, and a heat pump type air conditioner for a vehicle that is equipped with the battery temperature adjusting device.
 近年の環境問題の顕在化から、車両に搭載されたバッテリから供給される電力で走行用モータを駆動する電気自動車やプラグインハイブリッド自動車等の車両が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、バッテリからの給電により駆動する電動式の圧縮機と、放熱器と、吸熱器と、室外熱交換器が接続された冷媒回路を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させることで暖房し、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器(蒸発器)において蒸発させ、吸熱させることで冷房する等して車室内を空調するものが開発されている(例えば、特許文献1参照)。 Due to the emergence of environmental problems in recent years, vehicles such as electric vehicles and plug-in hybrid vehicles that drive a traveling motor with electric power supplied from a battery mounted on the vehicle have come into widespread use. Then, as an air conditioner applicable to such a vehicle, an electric compressor driven by power supply from a battery, a radiator, a heat absorber, and a refrigerant circuit to which an outdoor heat exchanger is connected are provided. The heat of the refrigerant discharged from the compressor is radiated by the radiator, and the heat radiated by the radiator is absorbed by the outdoor heat exchanger to heat the refrigerant, and the refrigerant discharged from the compressor is radiated by the outdoor heat exchanger. An air conditioner has been developed for cooling the interior of the vehicle by evaporating it in a heat absorber (evaporator) and absorbing heat to cool the vehicle (for example, see Patent Document 1).
 また、バッテリは例えば周囲の温度環境や自己発熱により温度が上昇する。このような高温となった状態で充放電を行うと劣化が進行するため、冷媒回路にバッテリ用の熱交換器を別途設け、冷媒回路を循環する冷媒とバッテリ用冷媒(熱媒体)とをこのバッテリ用の熱交換器で熱交換させ、この熱交換した熱媒体をバッテリに循環させることでバッテリを冷却(温調)することができるようにした車両用空気調和装置も開発されている(例えば、特許文献2、特許文献3参照)。 Also, the temperature of the battery rises due to the surrounding temperature environment and self-heating, for example. Since deterioration progresses when charging and discharging are performed in such a high temperature state, a heat exchanger for battery is separately provided in the refrigerant circuit, and the refrigerant circulating in the refrigerant circuit and the refrigerant (heat medium) for battery are A vehicle air conditioner has also been developed in which heat can be exchanged with a heat exchanger for a battery, and the heat medium that has undergone the heat exchange can be circulated through the battery to cool (temperature control) the battery (for example, , Patent Documents 2 and 3).
特開2014-213765号公報JP, 2014-213765, A 特許第5860360号公報Patent No. 5860360 特許第5860361号公報Japanese Patent No. 5860361
 上記のような車両用空気調和装置でバッテリの温調を行う場合、圧縮機等で消費される電力が車両の航続可能距離に影響を与える。即ち、バッテリの充電率SOC(State Of Charge)が低下している場合、バッテリの温調を行うことによって、車両の航続可能距離が低下してしまうことになる。 When the temperature of the battery is controlled by the vehicle air conditioner as described above, the electric power consumed by the compressor etc. affects the cruising range of the vehicle. That is, when the state of charge SOC (State Of Charge) of the battery is lowered, the cruising range of the vehicle is reduced by adjusting the temperature of the battery.
 本発明は、係る従来の技術的課題を解決するために成されたものであり、車両の航続可能距離の低下を抑制しながら、バッテリの温調を行うことができる車両のバッテリ温度調整装置、及び、それを備えた車両用空気調和装置を提供することを目的とする。 The present invention has been made to solve the above-mentioned conventional technical problems, and a battery temperature control device for a vehicle, which can control the temperature of the battery while suppressing a decrease in the cruising distance of the vehicle, It is also an object of the present invention to provide a vehicle air conditioner including the same.
 本発明の車両のバッテリ温度調整装置は、車両に搭載されたバッテリより給電されて動作すると共に、当該バッテリの温度を調整するものであって、制御装置を備え、この制御装置は、バッテリの劣化を示す指標に基づき、当該バッテリの温調を制限することを特徴とする。 A battery temperature adjusting device for a vehicle according to the present invention is operated by being supplied with power from a battery mounted on the vehicle and adjusting the temperature of the battery, and is provided with a control device. It is characterized in that the temperature control of the battery is limited based on the index indicating.
 請求項2の発明の車両のバッテリ温度調整装置は、上記発明においてバッテリの劣化を示す指標は、バッテリ充電率SOC、及び/又は、バッテリ温度Tcellであることを特徴とする。 The vehicle battery temperature control device according to the second aspect of the invention is characterized in that, in the above-mentioned invention, the index indicating the deterioration of the battery is the battery charging rate SOC and/or the battery temperature Tcell.
 請求項3の発明の車両のバッテリ温度調整装置は、上記各発明においてバッテリの劣化を示す指標であるバッテリ充電率SOCとバッテリ温度Tcellに対して、バッテリの劣化を考慮しない通常域がそれぞれ設定されており、制御装置は、バッテリ充電率SOCが当該バッテリ充電率SOCの通常域にあり、且つ、バッテリ温度Tcellが当該バッテリ温度Tcellの通常域にある場合、バッテリの温調を実行しないことを特徴とする。 In the vehicle battery temperature adjusting device according to the invention of claim 3, in the above-mentioned inventions, the normal range in which the deterioration of the battery is not taken into consideration is set with respect to the battery charging rate SOC and the battery temperature Tcell which are indicators indicating the deterioration of the battery. The control device does not execute the temperature control of the battery when the battery charge rate SOC is in the normal range of the battery charge rate SOC and the battery temperature Tcell is in the normal range of the battery temperature Tcell. And
 請求項4の発明の車両のバッテリ温度調整装置は、上記発明においてバッテリ充電率SOCとバッテリ温度Tcellに対して、通常域を外れた所定の余裕域として警告域がそれぞれ設定されており、制御装置は、バッテリ充電率SOCが当該バッテリ充電率SOCの通常域又は警告域にあり、且つ、バッテリ温度Tcellが当該バッテリ温度Tcellの通常域又は警告域にある場合、バッテリの温調を実行しないことを特徴とする。 In the vehicle battery temperature adjusting device according to the invention of claim 4, in the above invention, the warning region is set as a predetermined margin region outside the normal region with respect to the battery charging rate SOC and the battery temperature Tcell, and the control device is provided. Does not execute the temperature control of the battery when the battery charge rate SOC is in the normal range or the warning range of the battery charge rate SOC and the battery temperature Tcell is in the normal range or the warning range of the battery temperature Tcell. Characterize.
 請求項5の発明の車両のバッテリ温度調整装置は、請求項3又は請求項4の発明においてバッテリ温度Tcellに対して、バッテリの劣化域として所定の危険域が設定されており、制御装置は、バッテリ充電率SOCが当該バッテリ充電率SOCの通常域又は警告域にあり、且つ、バッテリ温度Tcellが危険域に入った場合、バッテリの温調を実行することを特徴とする。 In the vehicle battery temperature adjusting device of the invention of claim 5, in the invention of claim 3 or 4, a predetermined dangerous area is set as a battery deterioration area with respect to the battery temperature Tcell, and the control device: When the battery charge rate SOC is in the normal range or the warning range of the battery charge rate SOC and the battery temperature Tcell is in the dangerous range, the temperature control of the battery is performed.
 請求項6の発明の車両のバッテリ温度調整装置は、請求項3乃至請求項5の発明において制御装置は、所定の充電実施予定地に関する情報に基づき、バッテリ充電率SOCが当該バッテリ充電率SOCの通常域又は警告域にあり、且つ、充電実施予定地までの距離が所定の閾値D以上ある場合、バッテリの温調を実行しないことを特徴とする。 According to a sixth aspect of the present invention, in the vehicle battery temperature control device according to the third to fifth aspects of the invention, the control device determines that the battery charging rate SOC is the battery charging rate SOC based on information about a predetermined charging execution site. It is characterized in that the temperature control of the battery is not executed when it is in the normal range or the warning range and the distance to the planned charging site is not less than the predetermined threshold value D.
 請求項7の発明の車両のバッテリ温度調整装置は、上記発明においてバッテリ充電率SOCとバッテリ温度Tcellに対して、バッテリの劣化域として所定の危険域がそれぞれ設定されており、制御装置は、バッテリ充電率SOCが当該バッテリ充電率の危険域に入り、且つ、バッテリ温度Tcellが当該バッテリ温度Tcellの危険域に入った場合、バッテリの温調を実行することを特徴とする。 According to a seventh aspect of the present invention, in the vehicle battery temperature adjusting device of the present invention, a predetermined dangerous area is set as a deterioration area of the battery with respect to the battery charging rate SOC and the battery temperature Tcell. When the charging rate SOC enters the dangerous area of the battery charging rate and the battery temperature Tcell enters the dangerous area of the battery temperature Tcell, the temperature control of the battery is performed.
 請求項8の発明の車両のバッテリ温度調整装置は、上記各発明においてバッテリの劣化を示す指標であるバッテリ充電率SOCに対して、当該バッテリ充電率SOCが減少したときのバッテリの劣化域として所定の危険域が設定されており、制御装置は、バッテリ充電率SOCが低下して危険域に入った場合、バッテリの温調を抑制することを特徴とする。 The battery temperature control device for a vehicle according to the invention of claim 8 has a predetermined battery deterioration rate SOC, which is an index indicating deterioration of the battery in each of the above inventions, as a deterioration area of the battery when the battery charging rate SOC decreases. Is set, and the control device suppresses the temperature control of the battery when the battery charging rate SOC falls and enters the dangerous area.
 請求項9の発明の車両のバッテリ温度調整装置は、上記各発明において制御装置は、バッテリ劣化状態SOHが所定の閾値SOH1以下、又は、所定の閾値SOH1より低下した場合、バッテリの温調を実行することを特徴とする。 In the vehicle battery temperature adjusting device according to the invention of claim 9, in each of the above inventions, the control device executes the temperature control of the battery when the battery deterioration state SOH is equal to or lower than a predetermined threshold value SOH1 or lower than the predetermined threshold value SOH1. It is characterized by doing.
 請求項10の発明の車両のバッテリ温度調整装置は、上記各発明において冷却装置を備え、この冷却装置を用いてバッテリを冷却可能とされていることを特徴とする。 The vehicle battery temperature control device according to the invention of claim 10 is characterized in that in each of the above inventions, a cooling device is provided, and the battery can be cooled using this cooling device.
 請求項11の発明の車両のバッテリ温度調整装置は、上記各発明において加熱装置を備え、この加熱装置を用いてバッテリを加熱可能とされていることを特徴とする。 The vehicle battery temperature control device according to the invention of claim 11 is characterized in that in each of the above inventions, a heating device is provided, and the battery can be heated using this heating device.
 請求項12の発明の車両用空気調和装置は、上記各発明の車両のバッテリ温度調整装置と、冷媒を圧縮する圧縮機と、車室内に供給する空気と冷媒を熱交換させるための室内熱交換器と、車室外に設けられた室外熱交換器を備えて車室内を空調すると共に、バッテリ温度調整装置は、冷媒を用いてバッテリを冷却可能とされていることを特徴とする。 A vehicle air conditioner according to a twelfth aspect of the present invention is a vehicle temperature control device for a vehicle according to each of the above aspects, a compressor that compresses a refrigerant, and indoor heat exchange for exchanging heat between the air supplied to the vehicle interior and the refrigerant. And a heat exchanger provided outside the vehicle for air conditioning the vehicle interior, and the battery temperature adjusting device is characterized in that the battery can be cooled by using a refrigerant.
 本発明によれば、車両に搭載されたバッテリより給電されて動作すると共に、当該バッテリの温度を調整する車両のバッテリ温度調整装置において、制御装置を備えており、この制御装置が、バッテリの劣化を示す指標に基づき、当該バッテリの温調を制限するようにしたので、バッテリの劣化を示す指標、例えば請求項2の発明の如きバッテリ充電率SOCや、バッテリ温度Tcellによりバッテリの状態を判断し、車両としての航続可能距離を優先してバッテリの温調を制限することで、車両の航続可能距離の低下を抑制することが可能となる。 According to the present invention, a battery temperature adjusting device for a vehicle, which is operated by being supplied with electric power from a battery mounted on the vehicle and which adjusts the temperature of the battery, is provided with a control device, and the control device is provided for deterioration of the battery. Since the temperature control of the battery is limited based on the index indicating, the state of the battery is determined based on the index indicating the deterioration of the battery, for example, the battery charge rate SOC according to the invention of claim 2 or the battery temperature Tcell. By limiting the temperature control of the battery by prioritizing the cruising distance of the vehicle, it is possible to suppress a decrease in the cruising distance of the vehicle.
 例えば、請求項3の発明の如く、バッテリの劣化を示す指標であるバッテリ充電率SOCとバッテリ温度Tcellに対して、バッテリの劣化を考慮しない通常域をそれぞれ設定し、制御装置が、バッテリ充電率SOCが当該バッテリ充電率SOCの通常域にあり、且つ、バッテリ温度Tcellが当該バッテリ温度Tcellの通常域にある場合、バッテリの温調を実行しないようにすることで、バッテリの温調が必要無い状態ではバッテリの温調を許可せず、バッテリの温調を行うことによる消費電力を削減して、車両の航続可能距離の低下を抑制することができるようになる。 For example, as in the invention of claim 3, the battery charging rate SOC and the battery temperature Tcell, which are indicators of the deterioration of the battery, are set to normal ranges in which the deterioration of the battery is not considered, and the control device sets the battery charging rate. When the SOC is in the normal range of the battery charge rate SOC and the battery temperature Tcell is in the normal range of the battery temperature Tcell, the temperature control of the battery is not executed, so that the temperature control of the battery is not necessary. In the state, the temperature control of the battery is not permitted, and the power consumption due to the temperature control of the battery is reduced, so that the reduction of the cruising range of the vehicle can be suppressed.
 この場合、請求項4の発明の如くバッテリ充電率SOCとバッテリ温度Tcellに対して、通常域を外れた所定の余裕域として警告域をそれぞれ設定し、制御装置が、バッテリ充電率SOCが当該バッテリ充電率SOCの通常域又は警告域にあり、且つ、バッテリ温度Tcellが当該バッテリ温度Tcellの通常域又は警告域にある場合、バッテリの温調を実行しないようにすることで、より車両の航続可能距離を優先したバッテリの温調制御を実現することが可能となる。 In this case, as in the invention of claim 4, the battery charging rate SOC and the battery temperature Tcell are each set as a warning area as a predetermined margin area outside the normal area, and the control device determines that the battery charging rate SOC is the battery concerned. When the charging rate SOC is in the normal range or the warning range, and the battery temperature Tcell is in the normal range or the warning range of the battery temperature Tcell, the vehicle temperature can be controlled by not executing the battery temperature control. It becomes possible to realize the temperature control of the battery with priority on the distance.
 但し、請求項5の発明の如くバッテリ温度Tcellに対して、バッテリの劣化域として所定の危険域を設定し、制御装置が、バッテリ充電率SOCが当該バッテリ充電率SOCの通常域又は警告域にあり、且つ、バッテリ温度Tcellが危険域に入った場合、バッテリの温調を実行する。これにより、バッテリ充電率SOCが許容できる状態であっても、バッテリ温度Tcellが危険な状態になったときにはバッテリの温調を許可して、異常な温度によるバッテリの劣化を未然に回避することができるようになる。 However, as in the invention of claim 5, a predetermined dangerous area is set as the battery deterioration area with respect to the battery temperature Tcell, and the controller sets the battery charge rate SOC to the normal area or the warning area of the battery charge rate SOC. If yes, and if the battery temperature Tcell is in the dangerous range, temperature control of the battery is executed. As a result, even if the battery charge rate SOC is acceptable, when the battery temperature Tcell is in a dangerous state, the temperature control of the battery is allowed to prevent the deterioration of the battery due to an abnormal temperature. become able to.
 また、請求項6の発明によれば、制御装置が、所定の充電実施予定地に関する情報に基づき、バッテリ充電率SOCが当該バッテリ充電率SOCの通常域又は警告域にあり、且つ、充電実施予定地までの距離が所定の閾値D以上ある場合、バッテリの温調を実行しないようにしたので、充電実施予定地までの距離が遠い場合であって、バッテリの温調が必要無い状態ではバッテリの温調を許可せず、バッテリの温調を行うことによる消費電力を削減して、充電実施予定地までたどり着けなくなる不都合を未然に回避することができるようになる。 According to the invention of claim 6, the control device determines that the battery charging rate SOC is in the normal range or the warning range of the battery charging rate SOC based on the information on the predetermined charging execution site, and the charging execution schedule is set. When the distance to the ground is equal to or greater than the predetermined threshold value D, the temperature control of the battery is not executed. Therefore, when the distance to the planned charging site is long and the temperature control of the battery is not necessary, It becomes possible to avoid the inconvenience of not reaching the scheduled charging site by reducing the power consumption due to the temperature control of the battery without permitting the temperature control.
 但し、この場合にも請求項7の発明の如くバッテリ充電率SOCとバッテリ温度Tcellに対して、バッテリの劣化域として所定の危険域がそれぞれ設定し、制御装置が、バッテリ充電率SOCが当該バッテリ充電率の危険域に入り、且つ、バッテリ温度Tcellが当該バッテリ温度Tcellの危険域に入った場合、バッテリの温調を実行する。これにより、バッテリ充電率SOCとバッテリ温度Tcellが危険な状態になったときには、充電実施予定地までの距離が遠くてもバッテリの温調を許可して、異常な充電率と温度によるバッテリの劣化を回避することができるようになる。 However, in this case as well, a predetermined dangerous area is set as the deterioration area of the battery with respect to the battery charging rate SOC and the battery temperature Tcell as in the invention of claim 7, and the control device sets the battery charging rate SOC to the battery concerned. When the battery temperature Tcell enters the dangerous area of the charging rate and the battery temperature Tcell enters the dangerous area of the battery temperature Tcell, the temperature control of the battery is executed. As a result, when the battery charging rate SOC and the battery temperature Tcell are in a dangerous state, the temperature control of the battery is allowed even if the distance to the charging execution site is long, and the battery is deteriorated due to the abnormal charging rate and temperature. Will be able to avoid.
 また、請求項8の発明によれば、上記各発明に加えてバッテリの劣化を示す指標であるバッテリ充電率SOCに対して、当該バッテリ充電率SOCが減少したときのバッテリの劣化域として所定の危険域を設定し、制御装置が、バッテリ充電率SOCが低下して危険域に入った場合、バッテリの温調を抑制するようにしたので、バッテリの充電率が著しく低下している状態ではバッテリの温調を抑制し、バッテリの温調を行うことによる充電率の更なる低下を抑制することができるようになる。 According to the invention of claim 8, in addition to the above-mentioned inventions, the battery charge rate SOC, which is an index indicating the deterioration of the battery, is set as a predetermined range of deterioration of the battery when the battery charge rate SOC decreases. The dangerous area is set, and the control device suppresses the temperature control of the battery when the battery charging rate SOC decreases and enters the dangerous area. Therefore, when the charging rate of the battery is significantly reduced, It is possible to suppress the temperature control of No. 1 and to further reduce the charging rate due to the temperature control of the battery.
 また、請求項9の発明によれば、上記各発明に加えて制御装置が、バッテリ劣化状態SOHが所定の閾値SOH1以下、又は、所定の閾値SOH1より低下した場合、バッテリの温調を実行するようにしたので、バッテリの劣化状態を示すバッテリ劣化状態SOHが低下した場合には、バッテリの温調を行ってそれ以上の劣化の進行を抑制することができるようになる。 According to the invention of claim 9, in addition to the above inventions, the control device executes the temperature control of the battery when the battery deterioration state SOH is equal to or lower than a predetermined threshold value SOH1 or lower than the predetermined threshold value SOH1. Therefore, when the battery deterioration state SOH indicating the deterioration state of the battery is lowered, the temperature of the battery can be adjusted to suppress the further progress of the deterioration.
 また、請求項10の発明によれば、上記各発明に加えて冷却装置を設け、この冷却装置を用いてバッテリを冷却可能としたので、バッテリの異常な高温による劣化を効果的に解消若しくは抑制することができるようになる。 According to the invention of claim 10, in addition to the above inventions, a cooling device is provided, and the battery can be cooled by using this cooling device. Therefore, deterioration due to abnormal high temperature of the battery is effectively eliminated or suppressed. You will be able to.
 また、請求項11の発明によれば、上記各発明に加えて加熱装置を設け、この加熱装置を用いてバッテリを加熱可能としたので、バッテリの異常な低温による劣化を効果的に解消若しくは抑制することができるようになる。 According to the invention of claim 11, in addition to the above inventions, a heating device is provided and the battery can be heated by using this heating device, so that deterioration due to abnormal low temperature of the battery is effectively eliminated or suppressed. You will be able to.
 そして、請求項12の発明の車両用空気調和装置によれば、上記各発明の車両のバッテリ温度調整装置と、冷媒を圧縮する圧縮機と、車室内に供給する空気と冷媒を熱交換させるための室内熱交換器と、車室外に設けられた室外熱交換器を備えており、バッテリ温度調整装置は、冷媒を用いてバッテリを冷却可能とされているので、車室内を空調しながら、円滑にバッテリの冷却を実行し、バッテリの劣化を解消若しくは抑制することができるようになる。 According to the vehicle air conditioner of the twelfth aspect of the present invention, the battery temperature adjusting device of the vehicle of each of the above aspects of the invention, the compressor for compressing the refrigerant, and the heat exchange between the air and the refrigerant supplied to the vehicle interior are performed. It has an indoor heat exchanger and an outdoor heat exchanger provided outside the vehicle compartment.The battery temperature adjusting device is capable of cooling the battery by using the refrigerant, so that the interior of the vehicle can be smoothly air-conditioned. Then, the battery can be cooled to eliminate or suppress the deterioration of the battery.
本発明を適用した一実施形態の車両用空気調和装置(バッテリ温度調整装置を含む)の構成図である。FIG. 1 is a configuration diagram of a vehicle air conditioner (including a battery temperature adjusting device) of an embodiment to which the present invention is applied. 図1の車両用空気調和装置の制御装置の電気回路のブロック図である。It is a block diagram of an electric circuit of a control device of an air harmony device for vehicles of Drawing 1. 図2の制御装置が実行する運転モードを説明する図である。It is a figure explaining the driving mode which the control apparatus of FIG. 2 performs. 図2の制御装置のヒートポンプコントローラによる暖房モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles explaining the heating mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる除湿暖房モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles explaining the dehumidification heating mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる除湿冷房モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the vehicle air conditioner explaining the dehumidification cooling mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる冷房モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the vehicle air conditioner explaining the cooling mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる空調(優先)+バッテリ冷却モードとバッテリ冷却(優先)+空調モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles explaining the air conditioning (priority) + battery cooling mode and battery cooling (priority) + air conditioning mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによるバッテリ冷却(単独)モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the vehicle air conditioning apparatus explaining the battery cooling (single) mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラによる除霜モードを説明する車両用空気調和装置の構成図である。It is a block diagram of the vehicle air conditioning apparatus explaining the defrost mode by the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラの圧縮機制御に関する制御ブロック図である。FIG. 3 is a control block diagram related to compressor control of a heat pump controller of the control device of FIG. 2. 図2の制御装置のヒートポンプコントローラの圧縮機制御に関するもう一つの制御ブロック図である。FIG. 6 is another control block diagram related to compressor control of the heat pump controller of the control device in FIG. 2. 図2の制御装置のヒートポンプコントローラの空調(優先)+バッテリ冷却モードでの電磁弁69の制御を説明するブロック図である。It is a block diagram explaining control of the solenoid valve 69 in air conditioning (priority) + battery cooling mode of the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラの圧縮機制御に関する更にもう一つの制御ブロック図である。FIG. 7 is yet another control block diagram related to compressor control of the heat pump controller of the control device in FIG. 2. 図2の制御装置のヒートポンプコントローラのバッテリ冷却(優先)+空調モードでの電磁弁35の制御を説明するブロック図である。It is a block diagram explaining control of the solenoid valve 35 in battery cooling (priority) + air conditioning mode of the heat pump controller of the control apparatus of FIG. 図2の制御装置のヒートポンプコントローラの熱媒体加熱ヒータ制御に関する制御ブロック図である。FIG. 3 is a control block diagram relating to heat medium heater control of a heat pump controller of the control device of FIG. 2. バッテリ充電率SOCと各閾値の関係を示す図である。It is a figure which shows the relationship between a battery charge rate SOC and each threshold value. バッテリ温度Tcellと各閾値の関係を示す図である。It is a figure which shows the relationship between battery temperature Tcell and each threshold value. バッテリ劣化状態SOHと閾値SOH1の関係を示す図である。It is a figure which shows the relationship between the battery deterioration state SOH and threshold value SOH1.
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。図1は本発明の車両のバッテリ温度調整装置を適用した一実施形態の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、車両に搭載されているバッテリ55に充電された電力を走行用モータ(電動モータ。図示せず)に供給することで駆動し、走行するものであり、本発明の車両用空気調和装置1の後述する冷媒回路Rの電動式の圧縮機2や、バッテリ温度調整装置61も、バッテリ55から供給される電力で駆動されるものとする。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 of an embodiment to which a vehicle battery temperature control apparatus of the present invention is applied. A vehicle of an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and electric power charged in a battery 55 mounted in the vehicle is used as a traveling motor (electric motor). The electric compressor 2 of the refrigerant circuit R, which will be described later, of the vehicle air conditioner 1 of the present invention and the battery temperature adjusting device 61 are also driven by being supplied to a vehicle (not shown). It shall be driven by the electric power supplied from the battery 55.
 即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路Rを用いたヒートポンプ運転により暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、除霜モード、空調(優先)+バッテリ冷却モード、バッテリ冷却(優先)+空調モード、及び、バッテリ冷却(単独)モードの各運転モードを切り換えて実行することで車室内の空調やバッテリ55の温調を行うものである。 That is, the vehicle air conditioner 1 of the embodiment is a heating mode, a dehumidification heating mode, a dehumidification cooling mode, a cooling mode, and a defrosting mode in a heat pump operation using the refrigerant circuit R in an electric vehicle that cannot be heated by engine waste heat. , The air conditioning (priority)+battery cooling mode, the battery cooling (priority)+air conditioning mode, and the battery cooling (single) mode are switched to execute the air conditioning of the vehicle compartment and the temperature control of the battery 55. It is a thing.
 尚、車両としては電気自動車に限らず、エンジンと走行用モータを供用する所謂プラグインハイブリッド自動車にも本発明は有効である。また、実施例の車両用空気調和装置1を適用する車両は外部の充電器(急速充電器や通常の充電器)からバッテリ55に充電可能とされているものである。更に、実施例のバッテリ55はリチウムイオン電池を採用している。 The present invention is effective not only for electric vehicles but also for so-called plug-in hybrid vehicles that use an engine and a running motor. The vehicle to which the vehicle air conditioner 1 of the embodiment is applied is one in which the battery 55 can be charged from an external charger (quick charger or normal charger). Furthermore, the battery 55 of the embodiment employs a lithium ion battery.
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内の空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒がマフラー5と冷媒配管13Gを介して流入し、この冷媒を車室内に放熱(冷媒の熱を放出)させる室内熱交換器としての放熱器4と、暖房時に冷媒を減圧膨張させる電動弁(電子膨張弁)から成る室外膨張弁6と、冷房時には冷媒を放熱させる放熱器として機能し、暖房時には冷媒を吸熱(冷媒に熱を吸収)させる蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる機械式膨張弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に冷媒を蒸発させて車室内外から冷媒に吸熱(冷媒に熱を吸収)させる室内熱交換器としての吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。 The vehicle air conditioner 1 of the embodiment is for performing air conditioning (heating, cooling, dehumidification, and ventilation) of a vehicle compartment of an electric vehicle, and an electric compressor 2 for compressing a refrigerant and a vehicle interior. The high-temperature and high-pressure refrigerant discharged from the compressor 2, which is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated by ventilation, flows in through the muffler 5 and the refrigerant pipe 13G, and radiates this refrigerant into the vehicle interior. As a radiator 4 as an indoor heat exchanger (to release the heat of the refrigerant), an outdoor expansion valve 6 consisting of an electric valve (electronic expansion valve) for decompressing and expanding the refrigerant during heating, and as a radiator for releasing the refrigerant during cooling An outdoor heat exchanger 7 that functions and performs heat exchange between the refrigerant and the outside air so as to function as an evaporator that absorbs heat (absorbs heat into the refrigerant) during heating, and a mechanical expansion valve that decompresses and expands the refrigerant. And an indoor expansion valve 8 that is provided in the air flow passage 3, and a heat absorber as an indoor heat exchanger that is provided in the air flow passage 3 to evaporate the refrigerant during cooling and dehumidification so as to absorb heat from the inside and outside of the vehicle compartment 9, the accumulator 12 and the like are sequentially connected by a refrigerant pipe 13 to form a refrigerant circuit R.
 そして、室外膨張弁6は放熱器4から出て室外熱交換器7に流入する冷媒を減圧膨張させると共に、全閉も可能とされている。また、実施例では機械式膨張弁が使用された室内膨張弁8は、吸熱器9に流入する冷媒を減圧膨張させると共に、吸熱器9における冷媒の過熱度を調整する。 The outdoor expansion valve 6 decompresses and expands the refrigerant flowing out of the radiator 4 and flowing into the outdoor heat exchanger 7, and can be fully closed. Further, in the embodiment, the indoor expansion valve 8 using the mechanical expansion valve decompresses and expands the refrigerant flowing into the heat absorber 9, and adjusts the degree of superheat of the refrigerant in the heat absorber 9.
 尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。 The outdoor heat exchanger 7 is provided with an outdoor blower 15. The outdoor blower 15 exchanges heat between the outdoor air and the refrigerant by forcibly ventilating the outdoor air through the outdoor heat exchanger 7, whereby the outdoor air is discharged while the vehicle is stopped (that is, the vehicle speed is 0 km/h). The heat exchanger 7 is configured to ventilate the outside air.
 また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7の冷媒出口側の冷媒配管13Aは、吸熱器9に冷媒を流す際に開放される開閉弁としての電磁弁17(冷房用)を介してレシーバドライヤ部14に接続され、過冷却部16の出口側の冷媒配管13Bは逆止弁18、室内膨張弁8、及び、電磁弁35(キャビン用)を順次介して吸熱器9の冷媒入口側に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成している。また、逆止弁18は室内膨張弁8の方向が順方向とされている。 Further, the outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 sequentially on the refrigerant downstream side, and the refrigerant pipe 13A on the refrigerant outlet side of the outdoor heat exchanger 7 is used when flowing the refrigerant to the heat absorber 9. The refrigerant pipe 13B on the outlet side of the supercooling unit 16 is connected to the receiver dryer unit 14 via an electromagnetic valve 17 (for cooling) as an open/close valve, and the check valve 18, the indoor expansion valve 8, and the electromagnetic valve It is connected to the refrigerant inlet side of the heat absorber 9 via the valve 35 (for cabin) in order. The receiver dryer unit 14 and the supercooling unit 16 structurally form a part of the outdoor heat exchanger 7. Further, the check valve 18 has the direction of the indoor expansion valve 8 as the forward direction.
 また、室外熱交換器7から出た冷媒配管13Aは冷媒配管13Dに分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される開閉弁としての電磁弁21(暖房用)を介して吸熱器9の冷媒出口側の冷媒配管13Cに連通接続されている。そして、この冷媒配管13Cがアキュムレータ12の入口側に接続され、アキュムレータ12の出口側は圧縮機2の冷媒吸込側の冷媒配管13Kに接続されている。 Further, the refrigerant pipe 13A that has exited from the outdoor heat exchanger 7 is branched into a refrigerant pipe 13D, and this branched refrigerant pipe 13D is passed through an electromagnetic valve 21 (for heating) that is opened and closed during heating. It is communicated and connected to the refrigerant pipe 13C on the refrigerant outlet side of the heat absorber 9. The refrigerant pipe 13C is connected to the inlet side of the accumulator 12, and the outlet side of the accumulator 12 is connected to the refrigerant pipe 13K on the refrigerant suction side of the compressor 2.
 更に、放熱器4の冷媒出口側の冷媒配管13Eにはストレーナ19が接続されており、更に、この冷媒配管13Eは室外膨張弁6の手前(冷媒上流側)で冷媒配管13Jと冷媒配管13Fに分岐し、分岐した一方の冷媒配管13Jが室外膨張弁6を介して室外熱交換器7の冷媒入口側に接続されている。また、分岐した他方の冷媒配管13Fは除湿時に開放される開閉弁としての電磁弁22(除湿用)を介し、逆止弁18の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Bに連通接続されている。 Further, a strainer 19 is connected to the refrigerant pipe 13E on the refrigerant outlet side of the radiator 4, and the refrigerant pipe 13E is connected to the refrigerant pipes 13J and 13F before the outdoor expansion valve 6 (refrigerant upstream side). One of the branched refrigerant pipes 13J is connected to the refrigerant inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6. Further, the other branched refrigerant pipe 13F is connected to the refrigerant downstream side of the check valve 18 and the refrigerant upstream side of the indoor expansion valve 8 via an electromagnetic valve 22 (for dehumidification) as an on-off valve which is opened during dehumidification. It is connected to the located refrigerant pipe 13B.
 これにより、冷媒配管13Fは室外膨張弁6、室外熱交換器7及び逆止弁18の直列回路に対して並列に接続されたかたちとなり、室外膨張弁6、室外熱交換器7及び逆止弁18をバイパスするバイパス回路となる。また、室外膨張弁6にはバイパス用の開閉弁としての電磁弁20が並列に接続されている。 As a result, the refrigerant pipe 13F is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve 18, and the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve are connected. It becomes a bypass circuit that bypasses 18. Further, a solenoid valve 20 as an opening/closing valve for bypass is connected in parallel to the outdoor expansion valve 6.
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環)と、車室外の空気である外気(外気導入)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。 Further, the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with respective intake ports of an outside air intake port and an inside air intake port (represented by the intake port 25 in FIG. 1). A suction switching damper 26 is provided at 25 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation) which is the air inside the vehicle compartment and the outside air (outside air introduction) which is the air outside the vehicle compartment. Further, on the air downstream side of the suction switching damper 26, an indoor blower (blower fan) 27 for feeding the introduced inside air or outside air to the air flow passage 3 is provided.
 尚、実施例の吸込切換ダンパ26は、吸込口25の外気吸込口と内気吸込口を任意の比率で開閉することにより、空気流通路3の吸熱器9に流入する空気(外気と内気)のうちの内気の比率を0~100%の間で調整することができるように構成されている(外気の比率も100%~0%の間で調整可能)。 The intake switching damper 26 of the embodiment opens and closes the outside air intake port and the inside air intake port of the intake port 25 at an arbitrary ratio to remove the air (outside air and inside air) flowing into the heat absorber 9 of the air flow passage 3. It is configured so that the ratio of inside air can be adjusted between 0% and 100% (the ratio of outside air can also be adjusted between 100% and 0%).
 また、放熱器4の風下側(空気下流側)における空気流通路3内には、実施例ではPTCヒータ(電気ヒータ)から成る補助加熱装置としての補助ヒータ23が設けられ、放熱器4を経て車室内に供給される空気を加熱することが可能とされている。更に、放熱器4の空気上流側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を放熱器4及び補助ヒータ23に通風する割合を調整するエアミックスダンパ28が設けられている。 Further, in the air flow passage 3 on the leeward side (air downstream side) of the radiator 4, an auxiliary heater 23 as an auxiliary heating device including a PTC heater (electric heater) is provided in the embodiment, and passes through the radiator 4. It is possible to heat the air supplied to the passenger compartment. Further, in the air flow passage 3 on the air upstream side of the radiator 4, the air (inside air or outside air) flowing into the air flow passage 3 and passing through the heat absorber 9 is radiated. An air mix damper 28 that adjusts the rate of ventilation to the device 4 and the auxiliary heater 23 is provided.
 更にまた、放熱器4の空気下流側における空気流通路3には、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口からの空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。 Furthermore, in the air flow passage 3 on the air downstream side of the radiator 4, FOOT (foot), VENT (vent), and DEF (def) outlets (represented by the outlet 29 in FIG. 1 as a representative) are provided. The blower outlet 29 is provided with blower outlet switching dampers 31 for controlling the blowout of air from the blower outlets.
 更に、車両用空気調和装置1は、バッテリ55に熱媒体を循環させて当該バッテリ55の温度を調整する本発明のバッテリ温度調整装置61を備えている。実施例のバッテリ温度調整装置61は、バッテリ55に熱媒体を循環させるための循環装置としての循環ポンプ62と、冷媒-熱媒体熱交換器64と、加熱装置としての熱媒体加熱ヒータ63を備え、それらとバッテリ55が熱媒体配管66にて環状に接続されている。 Further, the vehicle air conditioner 1 includes the battery temperature adjusting device 61 of the present invention that circulates a heat medium in the battery 55 to adjust the temperature of the battery 55. The battery temperature adjusting device 61 of the embodiment includes a circulation pump 62 as a circulating device for circulating a heat medium in the battery 55, a refrigerant-heat medium heat exchanger 64, and a heat medium heating heater 63 as a heating device. , And the battery 55 are annularly connected by a heat medium pipe 66.
 実施例の場合、循環ポンプ62の吐出側に冷媒-熱媒体熱交換器64の熱媒体流路64Aの入口が接続され、この熱媒体流路64Aの出口は熱媒体加熱ヒータ63の入口に接続されている。この熱媒体加熱ヒータ63の出口がバッテリ55の入口に接続され、バッテリ55の出口が循環ポンプ62の吸込側に接続されている。 In the case of the embodiment, the inlet of the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64 is connected to the discharge side of the circulation pump 62, and the outlet of this heat medium passage 64A is connected to the inlet of the heat medium heater 63. Has been done. The outlet of the heat medium heater 63 is connected to the inlet of the battery 55, and the outlet of the battery 55 is connected to the suction side of the circulation pump 62.
 このバッテリ温度調整装置61で使用される熱媒体としては、例えば水、HFO-1234yfのような冷媒、クーラント等の液体、空気等の気体が採用可能である。尚、実施例では水を熱媒体として採用している。また、熱媒体加熱ヒータ63はPTCヒータ等の電気ヒータから構成されている。更に、バッテリ55の周囲には例えば熱媒体が当該バッテリ55と熱交換関係で流通可能なジャケット構造が施されているものとする。 As the heat medium used in the battery temperature adjusting device 61, for example, water, a refrigerant such as HFO-1234yf, a liquid such as coolant, or a gas such as air can be adopted. In the examples, water is used as the heat medium. The heat medium heater 63 is composed of an electric heater such as a PTC heater. Further, it is assumed that, for example, a jacket structure is provided around the battery 55 so that a heat medium can flow in a heat exchange relationship with the battery 55.
 そして、循環ポンプ62が運転されると、循環ポンプ62から吐出された熱媒体は冷媒-熱媒体熱交換器64の熱媒体流路64Aに流入する。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は熱媒体加熱ヒータ63に至り、当該熱媒体加熱ヒータ63が発熱されている場合にはそこで加熱された後、バッテリ55に至り、熱媒体はそこでバッテリ55と熱交換する。そして、このバッテリ55と熱交換した熱媒体が循環ポンプ62に吸い込まれることで熱媒体配管66内を循環される。 When the circulation pump 62 is operated, the heat medium discharged from the circulation pump 62 flows into the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64. The heat medium exiting the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heating heater 63, and if the heat medium heating heater 63 is generating heat, the heat medium heating heater 63 is heated there, and then the battery 55, where the heat medium exchanges heat with the battery 55. The heat medium that has exchanged heat with the battery 55 is sucked into the circulation pump 62 and circulated in the heat medium pipe 66.
 一方、冷媒回路Rの冷媒配管13Fと冷媒配管13Bとの接続部の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Bには、分岐回路としての分岐配管67の一端が接続されている。この分岐配管67には実施例では機械式の膨張弁から構成された補助膨張弁68と、電磁弁(チラー用)69が順次設けられている。補助膨張弁68は冷媒-熱媒体熱交換器64の後述する冷媒流路64Bに流入する冷媒を減圧膨張させると共に、冷媒-熱媒体熱交換器64の冷媒流路64Bにおける冷媒の過熱度を調整する。 On the other hand, in the refrigerant pipe 13B located on the refrigerant downstream side of the connecting portion between the refrigerant pipe 13F and the refrigerant pipe 13B of the refrigerant circuit R and on the refrigerant upstream side of the indoor expansion valve 8, a branch pipe 67 as a branch circuit is provided. One end is connected. In this embodiment, an auxiliary expansion valve 68, which is a mechanical expansion valve, and an electromagnetic valve (for chiller) 69 are sequentially provided in the branch pipe 67. The auxiliary expansion valve 68 decompresses and expands the refrigerant flowing into the later-described refrigerant passage 64B of the refrigerant-heat medium heat exchanger 64, and adjusts the degree of superheat of the refrigerant in the refrigerant passage 64B of the refrigerant-heat medium heat exchanger 64. To do.
 そして、分岐配管67の他端は冷媒-熱媒体熱交換器64の冷媒流路64Bに接続されており、この冷媒流路64Bの出口には冷媒配管71の一端が接続され、冷媒配管71の他端は冷媒配管13Dとの合流点より冷媒上流側(アキュムレータ12の冷媒上流側)の冷媒配管13Cに接続されている。そして、これら補助膨張弁68や電磁弁69、冷媒-熱媒体熱交換器64の冷媒流路64B、圧縮機2、放熱器5、室外熱交換器7等も冷媒回路Rの一部を構成すると同時に、バッテリ温度調整装置61の一部である本発明における冷却装置をも構成することになる。 The other end of the branch pipe 67 is connected to the refrigerant flow passage 64B of the refrigerant-heat medium heat exchanger 64, and one end of the refrigerant pipe 71 is connected to the outlet of the refrigerant flow passage 64B. The other end is connected to the refrigerant pipe 13C on the refrigerant upstream side (refrigerant upstream side of the accumulator 12) from the confluence with the refrigerant pipe 13D. When the auxiliary expansion valve 68, the electromagnetic valve 69, the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, the compressor 2, the radiator 5, the outdoor heat exchanger 7 and the like also constitute a part of the refrigerant circuit R. At the same time, it also constitutes the cooling device of the present invention which is a part of the battery temperature adjusting device 61.
 電磁弁69が開いている場合、室外熱交換器7から出た冷媒(一部又は全ての冷媒)は分岐配管67に流入し、補助膨張弁68で減圧された後、電磁弁69を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して、そこで蒸発する。冷媒は冷媒流路64Bを流れる過程で熱媒体流路64Aを流れる熱媒体から吸熱した後、冷媒配管71、冷媒配管13C、アキュムレータ12を経て冷媒配管13Kから圧縮機2に吸い込まれることになる。 When the electromagnetic valve 69 is open, the refrigerant (a part or all of the refrigerant) discharged from the outdoor heat exchanger 7 flows into the branch pipe 67, the pressure is reduced by the auxiliary expansion valve 68, and then the refrigerant is passed through the electromagnetic valve 69. -The refrigerant flows into the refrigerant channel 64B of the heat medium heat exchanger 64 and evaporates there. The refrigerant absorbs heat from the heat medium flowing through the heat medium passage 64A in the process of flowing through the refrigerant passage 64B, and then is sucked into the compressor 2 through the refrigerant pipe 71, the refrigerant pipe 13C, and the accumulator 12 through the refrigerant pipe 13K.
 次に、図2は実施例の車両用空気調和装置1の制御装置11のブロック図を示している。尚、この制御装置11も本発明のバッテリ温度調整装置61を構成するものである。制御装置11は、何れもプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成された空調コントローラ45及びヒートポンプコントローラ32から構成されており、これらがCAN(Controller Area Network)やLIN(Local Interconnect Network)を構成する車両通信バス65に接続されている。また、圧縮機2と補助ヒータ23、循環ポンプ62と熱媒体加熱ヒータ63も車両通信バス65に接続され、これら空調コントローラ45、ヒートポンプコントローラ32、圧縮機2、補助ヒータ23、循環ポンプ62及び熱媒体加熱ヒータ63が車両通信バス65を介してデータの送受信を行うように構成されている。 Next, FIG. 2 shows a block diagram of the control device 11 of the vehicle air conditioner 1 of the embodiment. The control device 11 also constitutes the battery temperature adjusting device 61 of the present invention. The control device 11 includes an air conditioning controller 45 and a heat pump controller 32, each of which includes a microcomputer, which is an example of a computer including a processor, and these include a CAN (Controller Area Network) and a LIN (Local Interconnect Network). Is connected to the vehicle communication bus 65 that constitutes the. Further, the compressor 2 and the auxiliary heater 23, the circulation pump 62 and the heat medium heating heater 63 are also connected to the vehicle communication bus 65, and the air conditioning controller 45, the heat pump controller 32, the compressor 2, the auxiliary heater 23, the circulation pump 62 and the heat generator. The medium heater 63 is configured to send and receive data via the vehicle communication bus 65.
 更に、車両通信バス65には走行を含む車両全般の制御を司る車両コントローラ72(ECU)と、バッテリ55の充放電の制御を司るバッテリコントローラ(BMS:Battery Management system)73と、GPSナビゲーション装置74が接続されている。車両コントローラ72やバッテリコントローラ73、GPSナビゲーション装置74もプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成されており、制御装置11を構成する空調コントローラ45とヒートポンプコントローラ32は、車両通信バス65を介してこれら車両コントローラ72やバッテリコントローラ73、GPSナビゲーション装置74と情報(データ)の送受信を行う構成とされている。 Further, the vehicle communication bus 65 includes a vehicle controller 72 (ECU) that controls the entire vehicle including traveling, a battery controller (BMS: Battery Management System) 73 that controls the charging and discharging of the battery 55, and a GPS navigation device 74. Are connected. The vehicle controller 72, the battery controller 73, and the GPS navigation device 74 are also configured by a microcomputer that is an example of a computer including a processor. The air conditioning controller 45 and the heat pump controller 32 that configure the control device 11 connect the vehicle communication bus 65 to each other. Information (data) is transmitted/received to/from the vehicle controller 72, the battery controller 73, and the GPS navigation device 74 via these.
 空調コントローラ45は、車両の車室内空調の制御を司る上位のコントローラであり、この空調コントローラ45の入力には、車両の外気温度Tamを検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれて吸熱器9に流入する空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、車室内に吹き出される空気の温度を検出する吹出温度センサ41と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52の各出力と、車室内の設定温度や運転モードの切り換え等の車室内の空調設定操作や情報の表示を行うための空調操作部53が接続されている。尚、図中53Aはこの空調操作部53に設けられた出力装置としてのディスプレイである。 The air conditioning controller 45 is a higher-level controller that controls the vehicle interior air conditioning. The inputs of the air conditioning controller 45 are an outside air temperature sensor 33 that detects the outside air temperature Tam of the vehicle and an outside air humidity that detects outside air humidity. The sensor 34, the HVAC suction temperature sensor 36 that detects the temperature of the air that is sucked into the air flow passage 3 from the suction port 25 and flows into the heat absorber 9, and the inside air temperature sensor 37 that detects the temperature of the air (inside air) in the vehicle compartment. An inside air humidity sensor 38 for detecting the humidity of the air in the vehicle compartment, an indoor CO 2 concentration sensor 39 for detecting the carbon dioxide concentration in the vehicle compartment, and an outlet temperature sensor 41 for detecting the temperature of the air blown into the vehicle compartment. A photo sensor type solar radiation sensor 51 for detecting the amount of solar radiation into the vehicle interior, outputs of the vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, set temperature in the vehicle interior and driving. An air conditioning operation unit 53 for performing an air conditioning setting operation in the vehicle interior such as mode switching and displaying information is connected. Incidentally, 53A in the figure is a display as an output device provided in the air conditioning operation section 53.
 また、空調コントローラ45の出力には、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31が接続され、それらは空調コントローラ45により制御される。 Further, the output of the air conditioning controller 45 is connected to the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, and the air outlet switching damper 31, which are connected to the air conditioning controller 45. Controlled by.
 ヒートポンプコントローラ32は、主に冷媒回路Rの制御を司るコントローラであり、このヒートポンプコントローラ32の入力には、放熱器4の冷媒入口温度Tcxin(圧縮機2の吐出冷媒温度でもある)を検出する放熱器入口温度センサ43と、放熱器4の冷媒出口温度Tciを検出する放熱器出口温度センサ44と、圧縮機2の吸込冷媒温度Tsを検出する吸込温度センサ46と、放熱器4の冷媒出口側の冷媒圧力(放熱器4の圧力:放熱器圧力Pci)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9自体の温度、又は、吸熱器9により冷却された直後の空気(冷却対象)の温度:以下、吸熱器温度Te)を検出する吸熱器温度センサ48と、室外熱交換器7の出口の冷媒温度(室外熱交換器7の冷媒蒸発温度:室外熱交換器温度TXO)を検出する室外熱交換器温度センサ49と、補助ヒータ23の温度を検出する補助ヒータ温度センサ50A(運転席側)及び50B(助手席側)の各出力が接続されている。 The heat pump controller 32 is a controller that mainly controls the refrigerant circuit R, and the heat pump controller 32 has an input that releases heat to detect the refrigerant inlet temperature Tcxin of the radiator 4 (which is also the refrigerant temperature discharged from the compressor 2 ). The inlet temperature sensor 43, the radiator outlet temperature sensor 44 that detects the refrigerant outlet temperature Tci of the radiator 4, the suction temperature sensor 46 that detects the suction refrigerant temperature Ts of the compressor 2, and the refrigerant outlet side of the radiator 4. Radiator pressure sensor 47 for detecting the refrigerant pressure (pressure of radiator 4; radiator pressure Pci), and temperature of heat absorber 9 (temperature of heat absorber 9 itself, or air immediately after being cooled by heat absorber 9) Temperature of (cooling target): Heat absorber temperature sensor 48 for detecting heat absorber temperature Te, and refrigerant temperature at the outlet of the outdoor heat exchanger 7 (refrigerant evaporation temperature of the outdoor heat exchanger 7: outdoor heat exchanger temperature) Outputs of an outdoor heat exchanger temperature sensor 49 for detecting TXO) and auxiliary heater temperature sensors 50A (driver's seat side) and 50B (passenger seat side) for detecting the temperature of the auxiliary heater 23 are connected.
 また、ヒートポンプコントローラ32の出力には、室外膨張弁6、電磁弁22(除湿用)、電磁弁17(冷房用)、電磁弁21(暖房用)、電磁弁20(バイパス用)、電磁弁35(キャビン用)及び電磁弁69(チラー用)の各電磁弁が接続され、それらはヒートポンプコントローラ32により制御される。尚、圧縮機2、補助ヒータ23、循環ポンプ62及び熱媒体加熱ヒータ63はそれぞれコントローラを内蔵しており、実施例では圧縮機2や補助ヒータ23、循環ポンプ62や熱媒体加熱ヒータ63のコントローラは車両通信バス65を介してヒートポンプコントローラ32とデータの送受信を行い、このヒートポンプコントローラ32によって制御される。 The output of the heat pump controller 32 includes the outdoor expansion valve 6, the solenoid valve 22 (for dehumidification), the solenoid valve 17 (for cooling), the solenoid valve 21 (for heating), the solenoid valve 20 (for bypass), and the solenoid valve 35. The electromagnetic valves (for the cabin) and the electromagnetic valve 69 (for the chiller) are connected, and they are controlled by the heat pump controller 32. The compressor 2, the auxiliary heater 23, the circulation pump 62, and the heat medium heating heater 63 each have a built-in controller, and in the embodiment, the controller of the compressor 2, the auxiliary heater 23, the circulation pump 62, and the heat medium heating heater 63. Transmits and receives data to and from the heat pump controller 32 via the vehicle communication bus 65, and is controlled by the heat pump controller 32.
 尚、バッテリ温度調整装置61を構成する循環ポンプ62や熱媒体加熱ヒータ63はバッテリコントローラ73により制御されるようにしてもよい。更に、このバッテリコントローラ73にはバッテリ温度調整装置61の冷媒-熱媒体熱交換器64の熱媒体流路64Aの出口側の熱媒体の温度(熱媒体温度Tw:バッテリ55の温度を示す指標)を検出する熱媒体温度センサ76と、バッテリ55の温度(以下、バッテリ温度Tcell:これもバッテリ55の温度を示す指標)を検出するバッテリ温度センサ77の出力が接続されている。 The circulation pump 62 and the heat medium heater 63 that constitute the battery temperature adjusting device 61 may be controlled by the battery controller 73. Further, in the battery controller 73, the temperature of the heat medium on the outlet side of the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64 of the battery temperature adjusting device 61 (heat medium temperature Tw: an index indicating the temperature of the battery 55). The output of the heat medium temperature sensor 76 for detecting the temperature of the battery 55 and the output of the battery temperature sensor 77 for detecting the temperature of the battery 55 (hereinafter, referred to as battery temperature Tcell: this is also an index indicating the temperature of the battery 55) are connected.
 そして、実施例ではバッテリ55の充電率(以下、バッテリ充電率SOC)や、熱媒体温度Tw、バッテリ温度Tcell、バッテリ55の劣化状態(以下、バッテリ劣化状態SOH)の他、バッテリ55に関する情報(放電深度DoD、サイクル劣化、保存劣化、充電中であること、充電完了時間、残充電時間等に関する情報)は、バッテリコントローラ73から車両通信バス65を介して空調コントローラ45や車両コントローラ72に送信される。 In the embodiment, the charging rate of the battery 55 (hereinafter, battery charging rate SOC), the heat medium temperature Tw, the battery temperature Tcell, the deterioration state of the battery 55 (hereinafter, battery deterioration state SOH), and information about the battery 55 ( Information on the depth of discharge DoD, cycle deterioration, storage deterioration, being charged, charge completion time, remaining charge time, etc.) is transmitted from the battery controller 73 to the air conditioning controller 45 and the vehicle controller 72 via the vehicle communication bus 65. It
 ここで、バッテリコントローラ(BMS)73は、実施例では複数のリチウムイオン電池セルから構成されたバッテリ55の各電池セルの電圧、電流、温度等を測定する測定機能と(バッテリ温度センサ77が温度を測定)、測定したデータを表示する表示機能と、充放電時に各電池セルに流れる電流を調節し、各電池セルの電圧を一定に保つバランス機能と、充放電時に予め設定した電圧、電流、温度等の上限値・下限値を超えた場合、エラー信号を発し、又は、充放電を停止するエラー機能を備えている。 Here, the battery controller (BMS) 73 has a measurement function of measuring the voltage, current, temperature, etc. of each battery cell of the battery 55 composed of a plurality of lithium ion battery cells in the embodiment (the battery temperature sensor 77 measures the temperature. Measurement), a display function for displaying the measured data, a balance function for adjusting the current flowing through each battery cell during charging/discharging to keep the voltage of each battery cell constant, and a preset voltage/current during charging/discharging, It has an error function to issue an error signal or stop charging/discharging when the temperature exceeds the upper limit value/lower limit value.
 また、前述したバッテリ充電率SOC(State of Charge)は、バッテリ55の充電状態、即ち、充電率であり、SOC=(残容量/満充電容量)×100で定義される。このバッテリ充電率SOCの変化に伴い、電池セルの内部抵抗も変化する。 The above-mentioned battery charge rate SOC (State of Charge) is the state of charge of the battery 55, that is, the charge rate, and is defined by SOC=(remaining capacity/full charge capacity)×100. The internal resistance of the battery cell also changes in accordance with the change in the battery charging rate SOC.
 前述したバッテリ劣化状態SOH(States of Health)は、バッテリ55の劣化状態を示す。バッテリ55の劣化状態には、一般的には容量の減少、抵抗の上昇が挙げられるが、定義としては、初期と比べた容量の劣化状態(容量維持率)=(使用して或る時点での容量/初期の容量)×100、及び/又は、抵抗の劣化状態(抵抗上昇率)=(使用して或る時点での抵抗値/初期の抵抗値)×100を指すことになる。 The battery deterioration state SOH (States of Health) described above indicates the deterioration state of the battery 55. Generally, the deterioration state of the battery 55 includes a decrease in capacity and an increase in resistance, but as a definition, the deterioration state of the capacity (capacity maintenance rate) compared to the initial state = (at a certain point in use Capacity/initial capacity)×100 and/or resistance deterioration state (resistance increase rate)=(resistance value at a certain point in use/initial resistance value)×100.
 前述した放電深度DoD(Depth of Discharge)とは、バッテリ55の放電容量に対する放電量の比率であり、バッテリ55を完全に使い切った状態が放電深度100%となる。前述したサイクル劣化とは、バッテリ55の放電/充電を繰り返すうちに化学反応などで劣化が進むことである。一般的に300~500回程度の放電/充電を繰り返すと容量が約半分になる。前述した保存劣化とは、バッテリ55を使用せずに放置する場合、内部の化学反応により容量が減少することであり、充電状態や高温状態では劣化が促進され易い。 The above-mentioned depth of discharge DoD (Depth of Discharge) is the ratio of the amount of discharge to the discharge capacity of the battery 55, and when the battery 55 is completely used up, the depth of discharge is 100%. The cycle deterioration described above means that the deterioration progresses due to a chemical reaction or the like while the battery 55 is repeatedly discharged/charged. Generally, when discharging/charging is repeated about 300 to 500 times, the capacity becomes about half. The above-mentioned storage deterioration means that when the battery 55 is left without being used, the capacity is reduced due to an internal chemical reaction, and the deterioration is easily promoted in a charged state or a high temperature state.
 従って、上記バッテリ充電率SOC、バッテリ温度Tcell、バッテリ劣化状態SOH、放電震度DoD、サイクル劣化、保存劣化はバッテリ55の劣化を示す指標といえる。 Therefore, the battery charge rate SOC, the battery temperature Tcell, the battery deterioration state SOH, the discharge seismic intensity DoD, the cycle deterioration, and the storage deterioration can be said to be indicators of deterioration of the battery 55.
 ヒートポンプコントローラ32と空調コントローラ45は車両通信バス65を介して相互にデータの送受信を行い、各センサの出力や空調操作部53にて入力された設定に基づき、各機器を制御するものであるが、この場合の実施例では外気温度センサ33、外気湿度センサ34、HVAC吸込温度センサ36、内気温度センサ37、内気湿度センサ38、室内CO2濃度センサ39、吹出温度センサ41、日射センサ51、車速センサ52、空気流通路3に流入して当該空気流通路3内を流通する空気の風量Ga(空調コントローラ45が算出)、エアミックスダンパ28による風量割合SW(空調コントローラ45が算出)、室内送風機27の電圧(BLV)、前述したバッテリコントローラ73からの各情報(バッテリ充電率SOC、バッテリ温度Tcell、バッテリ劣化状態SOH他の情報)、GPSナビゲーション装置74からの情報、空調操作部53に入力された情報は空調コントローラ45から車両通信バス65を介してヒートポンプコントローラ32に送信され、ヒートポンプコントローラ32による制御に供される構成とされている。 The heat pump controller 32 and the air conditioning controller 45 transmit and receive data to and from each other via the vehicle communication bus 65, and control each device based on the output of each sensor and the setting input by the air conditioning operation unit 53. In this embodiment, the outside air temperature sensor 33, the outside air humidity sensor 34, the HVAC intake temperature sensor 36, the inside air temperature sensor 37, the inside air humidity sensor 38, the indoor CO 2 concentration sensor 39, the blowout temperature sensor 41, the solar radiation sensor 51, the vehicle speed. The sensor 52, the air volume Ga of the air flowing into the air flow passage 3 and flowing in the air flow passage 3 (calculated by the air conditioning controller 45), the air flow rate SW by the air mix damper 28 (calculated by the air conditioning controller 45), the indoor blower The voltage (BLV) of 27, each information from the battery controller 73 described above (battery charge rate SOC, battery temperature Tcell, battery deterioration state SOH and other information), information from the GPS navigation device 74, and input to the air conditioning operation unit 53. The information is transmitted from the air conditioning controller 45 to the heat pump controller 32 via the vehicle communication bus 65, and is provided for control by the heat pump controller 32.
 また、ヒートポンプコントローラ32からも冷媒回路Rやバッテリ温度調整装置61の制御に関するデータ(情報)、空調操作部53に出力する情報が車両通信バス65を介して空調コントローラ45に送信される。尚、前述したエアミックスダンパ28による風量割合SWは、0≦SW≦1の範囲で空調コントローラ45が算出する。そして、SW=1のときはエアミックスダンパ28により、吸熱器9を経た空気の全てが放熱器4及び補助ヒータ23に通風されることになる。 Further, the heat pump controller 32 also transmits data (information) regarding the control of the refrigerant circuit R and the battery temperature adjusting device 61 and information to be output to the air conditioning operation unit 53 to the air conditioning controller 45 via the vehicle communication bus 65. The air volume ratio SW by the air mix damper 28 described above is calculated by the air conditioning controller 45 in the range of 0≦SW≦1. Then, when SW=1, all of the air that has passed through the heat absorber 9 is ventilated by the radiator 4 and the auxiliary heater 23 by the air mix damper 28.
 以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。この実施例では制御装置11(空調コントローラ45、ヒートポンプコントローラ32)は、暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、及び、空調(優先)+バッテリ冷却モードの各空調運転と、バッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モードの各バッテリ冷却運転と、除霜モードを切り換えて実行する。これらが図3に示されている。 Next, the operation of the vehicle air conditioner 1 of the embodiment having the above configuration will be described. In this embodiment, the control device 11 (air conditioning controller 45, heat pump controller 32) controls the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, and the air conditioning (priority)+battery cooling mode, and the battery cooling. Each battery cooling operation of (priority)+air conditioning mode and battery cooling (single) mode and defrosting mode are switched and executed. These are shown in FIG.
 このうち、暖房モードと、除湿暖房モードと、除湿冷房モードと、冷房モードと、空調(優先)+バッテリ冷却モードの各空調運転は、実施例ではバッテリ55を充電しておらず、車両のイグニッション(IGN)がONされ、空調操作部53の空調スイッチがONされている場合に実行されるものである。但し、リモート運転時(プレ空調等)にはイグニッションがOFFの場合にも実行される。また、バッテリ55を充電中でもバッテリ冷却要求が無く、空調スイッチがONされているときは実行される。一方、バッテリ冷却(優先)+空調モードと、バッテリ冷却(単独)モードの各バッテリ冷却運転は、例えば急速充電器(外部電源)のプラグを接続し、バッテリ55に充電しているときに実行されるものである。但し、バッテリ冷却(単独)モードは、バッテリ55の充電中以外にも、空調スイッチがOFFで、バッテリ冷却要求があった場合(高外気温で走行時等)には実行される。 Among these, in each of the air conditioning operations of the heating mode, the dehumidification heating mode, the dehumidification cooling mode, the cooling mode, and the air conditioning (priority)+battery cooling mode, the battery 55 is not charged in the embodiment, and the ignition of the vehicle is performed. This is executed when (IGN) is turned on and the air conditioning switch of the air conditioning operation unit 53 is turned on. However, it is executed even when the ignition is off during remote operation (pre-air conditioning, etc.). Even when the battery 55 is being charged, there is no battery cooling request, and the process is executed when the air conditioning switch is ON. On the other hand, each battery cooling operation in the battery cooling (priority)+air conditioning mode and the battery cooling (single) mode is executed while the plug of the quick charger (external power source) is connected and the battery 55 is being charged. It is something. However, the battery cooling (single) mode is executed when the air conditioning switch is OFF and there is a battery cooling request (such as when traveling at a high outside air temperature) other than during charging of the battery 55.
 また、実施例ではヒートポンプコントローラ32は、イグニッションがONされているときや、イグニッションがOFFされていてもバッテリ55が充電中であるときは、バッテリ温度調整装置61の循環ポンプ62を運転し、図4~図10に破線で示す如く熱媒体配管66内に熱媒体を循環させるものとする。更に、図3には示していないが、実施例のヒートポンプコントローラ32は、バッテリ温度調整装置61の熱媒体加熱ヒータ63を発熱させることでバッテリ55を加熱するバッテリ加熱モードも実行する。 In addition, in the embodiment, the heat pump controller 32 operates the circulation pump 62 of the battery temperature adjusting device 61 when the ignition is turned on, or when the battery 55 is being charged even when the ignition is turned off. It is assumed that the heat medium is circulated in the heat medium pipe 66 as indicated by broken lines in FIGS. 4 to 10. Further, although not shown in FIG. 3, the heat pump controller 32 of the embodiment also executes a battery heating mode for heating the battery 55 by causing the heat medium heating heater 63 of the battery temperature adjusting device 61 to generate heat.
 (1)暖房モード
 先ず、図4を参照しながら暖房モードについて説明する。尚、各機器の制御はヒートポンプコントローラ32と空調コントローラ45の協働により実行されるものであるが、以下の説明ではヒートポンプコントローラ32を制御主体とし、簡略化して説明する。図4には暖房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。ヒートポンプコントローラ32により(オートモード)或いは空調コントローラ45の空調操作部53へのマニュアルの空調設定操作(マニュアルモード)により暖房モードが選択されると、ヒートポンプコントローラ32は電磁弁21を開き、電磁弁17、電磁弁20、電磁弁22、電磁弁35、電磁弁69を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
(1) Heating Mode First, the heating mode will be described with reference to FIG. The control of each device is executed by the cooperation of the heat pump controller 32 and the air conditioning controller 45, but in the following description, the heat pump controller 32 will be the control main body and will be briefly described. FIG. 4 shows how the refrigerant flows in the refrigerant circuit R in the heating mode (solid arrow). When the heating mode is selected by the heat pump controller 32 (auto mode) or the manual air conditioning setting operation (manual mode) to the air conditioning operation unit 53 of the air conditioning controller 45, the heat pump controller 32 opens the solenoid valve 21 and the solenoid valve 17 , The solenoid valve 20, the solenoid valve 22, the solenoid valve 35, and the solenoid valve 69 are closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air and condensed and liquefied.
 放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13E、13Jを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15により通風される外気中から熱を汲み上げる(吸熱)。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13D、電磁弁21を経て冷媒配管13Cに至り、更にこの冷媒配管13Cを経てアキュムレータ12に入り、そこで気液分離された後、冷媒配管13Kからガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。 The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7. The refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and pumps up heat from the outside air ventilated by traveling or by the outdoor blower 15 (heat absorption). That is, the refrigerant circuit R serves as a heat pump. Then, the low-temperature refrigerant that has exited the outdoor heat exchanger 7 reaches the refrigerant pipe 13C via the refrigerant pipes 13A and 13D, the solenoid valve 21, and further enters the accumulator 12 via this refrigerant pipe 13C, where it is gas-liquid separated. After that, the circulation of sucking the gas refrigerant into the compressor 2 from the refrigerant pipe 13K is repeated. The air heated by the radiator 4 is blown out from the air outlet 29, so that the interior of the vehicle is heated.
 ヒートポンプコントローラ32は、車室内に吹き出される空気の目標温度(車室内に吹き出される空気の温度の目標値)である後述する目標吹出温度TAOから算出される目標ヒータ温度TCO(放熱器4の目標温度)から目標放熱器圧力PCOを算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、放熱器出口温度センサ44が検出する放熱器4の冷媒出口温度Tci及び放熱器圧力センサ47が検出する放熱器圧力Pciに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度を制御する。 The heat pump controller 32 calculates a target heater temperature TCO (of the radiator 4) calculated from a target outlet temperature TAO, which will be described later, which is a target temperature of air blown into the vehicle interior (a target value of the temperature of air blown into the vehicle interior). The target radiator pressure PCO is calculated from the target temperature), and the number of rotations of the compressor 2 is based on the target radiator pressure PCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. And controlling the valve opening of the outdoor expansion valve 6 based on the refrigerant outlet temperature Tci of the radiator 4 detected by the radiator outlet temperature sensor 44 and the radiator pressure Pci detected by the radiator pressure sensor 47, The degree of supercooling of the refrigerant at the outlet of the radiator 4 is controlled.
 また、ヒートポンプコントローラ32は、必要とされる暖房能力に対して放熱器4による暖房能力(加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、低外気温時等にも車室内を支障無く暖房する。 Further, when the heating capacity (heating capacity) of the radiator 4 is insufficient with respect to the required heating capacity, the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. As a result, the vehicle interior can be heated without trouble even when the outside temperature is low.
 (2)除湿暖房モード
 次に、図5を参照しながら除湿暖房モードについて説明する。図5は除湿暖房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。除湿暖房モードでは、ヒートポンプコントローラ32は電磁弁21、電磁弁22、電磁弁35を開き、電磁弁17、電磁弁20、電磁弁69は閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
(2) Dehumidification Heating Mode Next, the dehumidification heating mode will be described with reference to FIG. FIG. 5 shows how the refrigerant flows in the refrigerant circuit R in the dehumidifying and heating mode (solid arrow). In the dehumidifying and heating mode, the heat pump controller 32 opens the solenoid valve 21, the solenoid valve 22, and the solenoid valve 35, and closes the solenoid valve 17, the solenoid valve 20, and the solenoid valve 69. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air, and is condensed and liquefied.
 放熱器4内で液化した冷媒は放熱器4を出た後、冷媒配管13Eを経て一部は冷媒配管13Jに入り、室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15により通風される外気中から熱を汲み上げる(吸熱)。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13D、電磁弁21を経て冷媒配管13Cに至り、この冷媒配管13Cを経てアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。 After the refrigerant liquefied in the radiator 4 exits the radiator 4, a part of it enters the refrigerant pipe 13J through the refrigerant pipe 13E and reaches the outdoor expansion valve 6. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7. The refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and pumps up heat from the outside air ventilated by traveling or by the outdoor blower 15 (heat absorption). Then, the low-temperature refrigerant that has exited the outdoor heat exchanger 7 reaches the refrigerant pipe 13C via the refrigerant pipes 13A and 13D and the solenoid valve 21, enters the accumulator 12 via this refrigerant pipe 13C, and is separated into gas and liquid there. After that, the circulation in which the gas refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K is repeated.
 一方、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の残りは分流され、この分流された冷媒が電磁弁22を経て冷媒配管13Fに流入し、冷媒配管13Bに至る。次に、冷媒は室内膨張弁8に至り、この室内膨張弁8にて減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときに吸熱器9で生じる冷媒の吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。 On the other hand, the rest of the condensed refrigerant flowing in the refrigerant pipe 13E via the radiator 4 is diverted, and the diverted refrigerant flows into the refrigerant pipe 13F via the solenoid valve 22 and reaches the refrigerant pipe 13B. Next, the refrigerant reaches the indoor expansion valve 8, is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 via the electromagnetic valve 35, and evaporates. At this time, the water in the air blown from the indoor blower 27 is condensed and attached to the heat absorber 9 due to the heat absorbing action of the refrigerant generated in the heat absorber 9, so that the air is cooled and dehumidified.
 吸熱器9で蒸発した冷媒は、冷媒配管13Cに出て冷媒配管13Dからの冷媒(室外熱交換器7からの冷媒)と合流した後、アキュムレータ12を経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4や補助ヒータ23(発熱している場合)を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。 The refrigerant evaporated in the heat absorber 9 flows out into the refrigerant pipe 13C, joins the refrigerant from the refrigerant pipe 13D (refrigerant from the outdoor heat exchanger 7), and then is sucked into the compressor 2 from the refrigerant pipe 13K via the accumulator 12. Repeat the cycle. The air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4 and the auxiliary heater 23 (when heat is generated), so that dehumidification and heating of the vehicle interior is performed.
 ヒートポンプコントローラ32は、実施例では目標ヒータ温度TCOから算出される目標放熱器圧力PCOと放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御するか、又は、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数を制御する。このとき、ヒートポンプコントローラ32は放熱器圧力Pciによるか吸熱器温度Teによるか、何れかの演算から得られる圧縮機目標回転数の低い方を選択して圧縮機2を制御する。また、吸熱器温度Teに基づいて室外膨張弁6の弁開度を制御する。 The heat pump controller 32 rotates the compressor 2 based on the target radiator pressure PCO calculated from the target heater temperature TCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47 in the embodiment. Or the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48 (heat absorber temperature Te) and the target heat absorber temperature TEO which is its target value. .. At this time, the heat pump controller 32 controls the compressor 2 by selecting whichever of the radiator pressure Pci and the heat absorber temperature Te, whichever is lower in the compressor target rotation speed obtained from the calculation. Further, the valve opening degree of the outdoor expansion valve 6 is controlled based on the heat absorber temperature Te.
 また、ヒートポンプコントローラ32は、この除湿暖房モードにおいても必要とされる暖房能力に対して放熱器4による暖房能力(加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、低外気温時等にも車室内を支障無く除湿暖房する。 Further, when the heating capacity (heating capacity) of the radiator 4 is insufficient with respect to the heating capacity required also in the dehumidifying and heating mode, the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. .. As a result, the vehicle interior is dehumidified and heated even when the outside temperature is low.
 (3)除湿冷房モード
 次に、図6を参照しながら除湿冷房モードについて説明する。図6は除湿冷房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。除湿冷房モードでは、ヒートポンプコントローラ32は電磁弁17、及び、電磁弁35を開き、電磁弁20、電磁弁21、電磁弁22、及び、電磁弁69を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
(3) Dehumidifying and Cooling Mode Next, the dehumidifying and cooling mode will be described with reference to FIG. FIG. 6 shows how the refrigerant flows in the refrigerant circuit R in the dehumidifying and cooling mode (solid arrow). In the dehumidifying and cooling mode, the heat pump controller 32 opens the solenoid valve 17 and the solenoid valve 35, and closes the solenoid valve 20, the solenoid valve 21, the solenoid valve 22, and the solenoid valve 69. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air, and is condensed and liquefied.
 放熱器4を出た冷媒は冷媒配管13E、13Jを経て室外膨張弁6に至り、暖房モードや除湿暖房モードよりも開き気味(大きい弁開度の領域)で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入り、逆止弁18を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着し、空気は冷却され、且つ、除湿される。 The refrigerant exiting the radiator 4 reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J, and then passes through the outdoor expansion valve 6 which is controlled to open more than the heating mode or the dehumidifying and heating mode (region of large valve opening). It flows into the outdoor heat exchanger 7. The refrigerant that has flowed into the outdoor heat exchanger 7 is condensed by being cooled there by traveling or by the outside air ventilated by the outdoor blower 15. The refrigerant discharged from the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16, and reaches the indoor expansion valve 8 via the check valve 18. The refrigerant is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates. Due to the heat absorbing action at this time, moisture in the air blown out from the indoor blower 27 is condensed and attached to the heat absorber 9, and the air is cooled and dehumidified.
 吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこを経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4や補助ヒータ23(発熱している場合)を通過する過程で再加熱(除湿暖房時よりも加熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。 The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is repeatedly circulated by being sucked into the compressor 2 from the refrigerant pipe 13K via the refrigerant pipe 13C. The air cooled and dehumidified by the heat absorber 9 is reheated (has a lower heating capacity than that during dehumidification heating) in the process of passing through the radiator 4 and the auxiliary heater 23 (when heat is generated). As a result, dehumidification and cooling of the vehicle interior are performed.
 ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)と吸熱器9の目標温度(吸熱器温度Teの目標値)である目標吸熱器温度TEOに基づき、吸熱器温度Teを目標吸熱器温度TEOにするように圧縮機2の回転数を制御すると共に、放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)と目標放熱器圧力PCO(放熱器圧力Pciの目標値)に基づき、放熱器圧力Pciを目標放熱器圧力PCOにするように室外膨張弁6の弁開度を制御することで放熱器4による必要なリヒート量(再加熱量)を得る。 The heat pump controller 32 absorbs heat based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is the target temperature of the heat absorber 9 (target value of the heat absorber temperature Te). The rotation speed of the compressor 2 is controlled so that the device temperature Te becomes the target heat absorber temperature TEO, and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47 and the target radiator pressure PCO. Based on (the target value of the radiator pressure Pci), by controlling the valve opening of the outdoor expansion valve 6 so that the radiator pressure Pci becomes the target radiator pressure PCO, the required reheat amount (reheating by the radiator 4) Amount).
 また、ヒートポンプコントローラ32は、この除湿冷房モードにおいても必要とされる暖房能力に対して放熱器4による暖房能力(再加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、車室内の温度を下げ過ぎること無く、除湿冷房する。 Further, when the heating capacity (reheating capacity) by the radiator 4 is insufficient with respect to the heating capacity required even in the dehumidifying and cooling mode, the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. To do. As a result, dehumidifying and cooling are performed without excessively reducing the temperature inside the vehicle compartment.
 (4)冷房モード
 次に、図7を参照しながら冷房モードについて説明する。図7は冷房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。冷房モードでは、ヒートポンプコントローラ32は電磁弁17、電磁弁20、及び、電磁弁35を開き、電磁弁21、電磁弁22、及び、電磁弁69を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。尚、補助ヒータ23には通電されない。
(4) Cooling Mode Next, the cooling mode will be described with reference to FIG. 7. FIG. 7 shows how the refrigerant flows in the refrigerant circuit R in the cooling mode (solid arrow). In the cooling mode, the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, and the solenoid valve 35, and closes the solenoid valve 21, the solenoid valve 22, and the solenoid valve 69. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23. The auxiliary heater 23 is not energized.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒート(再加熱)のみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。このとき電磁弁20は開放されているので冷媒は電磁弁20を通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮液化する。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Although the air in the air flow passage 3 is ventilated to the radiator 4, since the proportion thereof is small (only for reheating (reheating) during cooling), it almost passes through here and the radiator 4 The discharged refrigerant reaches the refrigerant pipe 13J through the refrigerant pipe 13E. At this time, since the electromagnetic valve 20 is open, the refrigerant passes through the electromagnetic valve 20 and flows into the outdoor heat exchanger 7 as it is, and is cooled there by running or by the outside air ventilated by the outdoor blower 15 to be condensed and liquefied. To do.
 室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入り、逆止弁18を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときの吸熱作用で室内送風機27から吹き出されて吸熱器9と熱交換する空気は冷却される。 The refrigerant discharged from the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16, and reaches the indoor expansion valve 8 via the check valve 18. The refrigerant is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates. Due to the heat absorbing action at this time, the air blown out from the indoor blower 27 and exchanging heat with the heat absorber 9 is cooled.
 吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこから冷媒配管13Kを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房モードにおいては、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて圧縮機2の回転数を制御する。 The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is sucked into the compressor 2 via the refrigerant pipe 13K. The air cooled by the heat absorber 9 is blown into the vehicle interior from the air outlet 29, so that the vehicle interior is cooled. In this cooling mode, the heat pump controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
 (5)空調(優先)+バッテリ冷却モード
 次に、図8を参照しながら空調(優先)+バッテリ冷却モードについて説明する。図8は空調(優先)+バッテリ冷却モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。空調(優先)+バッテリ冷却モードでは、ヒートポンプコントローラ32は電磁弁17、電磁弁20、電磁弁35、及び、電磁弁69を開き、電磁弁21、及び、電磁弁22を閉じる。
(5) Air Conditioning (Priority)+Battery Cooling Mode Next, the air conditioning (priority)+battery cooling mode will be described with reference to FIG. FIG. 8 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in the air conditioning (priority)+battery cooling mode. In the air conditioning (priority)+battery cooling mode, the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, the solenoid valve 35, and the solenoid valve 69, and closes the solenoid valves 21 and 22.
 そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。尚、この運転モードでは補助ヒータ23には通電されない。また、熱媒体加熱ヒータ63にも通電されない。 Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23. Incidentally, in this operation mode, the auxiliary heater 23 is not energized. Also, the heat medium heater 63 is not energized.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒート(再加熱)のみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。このとき電磁弁20は開放されているので冷媒は電磁弁20を通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮液化する。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Although the air in the air flow passage 3 is ventilated to the radiator 4, since the proportion thereof is small (only for reheating (reheating) during cooling), it almost passes through here and the radiator 4 The discharged refrigerant reaches the refrigerant pipe 13J through the refrigerant pipe 13E. At this time, since the solenoid valve 20 is open, the refrigerant passes through the solenoid valve 20, flows into the outdoor heat exchanger 7 as it is, and is cooled by the traveling air or the outside air ventilated by the outdoor blower 15 to be condensed and liquefied. To do.
 室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入る。この冷媒配管13Bに流入した冷媒は、逆止弁18を経た後に分流され、一方はそのまま冷媒配管13Bを流れて室内膨張弁8に至る。この室内膨張弁8に流入した冷媒はそこで減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときの吸熱作用で室内送風機27から吹き出されて吸熱器9と熱交換する空気は冷却される。 The refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16. The refrigerant flowing into the refrigerant pipe 13B is split after passing through the check valve 18, and one of the refrigerant flows through the refrigerant pipe 13B as it is to reach the indoor expansion valve 8. The refrigerant flowing into the indoor expansion valve 8 is decompressed there, then flows into the heat absorber 9 through the electromagnetic valve 35, and is evaporated. Due to the heat absorbing action at this time, the air blown out from the indoor blower 27 and exchanging heat with the heat absorber 9 is cooled.
 吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこから冷媒配管13Kを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。 The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is sucked into the compressor 2 via the refrigerant pipe 13K. The air cooled by the heat absorber 9 is blown into the vehicle interior from the air outlet 29, so that the vehicle interior is cooled.
 他方、逆止弁18を経た冷媒の残りは分流され、分岐配管67に流入して補助膨張弁68に至る。ここで冷媒は減圧された後、電磁弁69を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入し、そこで蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管71、冷媒配管13C及びアキュムレータ12を順次経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す(図8に実線矢印で示す)。 On the other hand, the rest of the refrigerant that has passed through the check valve 18 is split, flows into the branch pipe 67, and reaches the auxiliary expansion valve 68. Here, the refrigerant is decompressed, then flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 through the electromagnetic valve 69, and evaporates there. At this time, it exerts an endothermic effect. The refrigerant evaporated in the refrigerant flow path 64B repeats the circulation in which the refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K through the refrigerant pipe 71, the refrigerant pipe 13C and the accumulator 12 in sequence (shown by a solid arrow in FIG. 8).
 一方、循環ポンプ62が運転されているので、この循環ポンプ62から吐出された熱媒体が熱媒体配管66内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒と熱交換し、吸熱されて熱媒体は冷却される。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は、熱媒体加熱ヒータ63に至る。但し、この運転モードでは熱媒体加熱ヒータ63は発熱されないので、熱媒体はそのまま通過してバッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は冷却されると共に、バッテリ55を冷却した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す(図8に破線矢印で示す)。 On the other hand, since the circulation pump 62 is operating, the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 66, and the refrigerant flow passage there. The heat medium is cooled by exchanging heat with the refrigerant that evaporates in 64B and absorbing heat. The heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heater 63. However, since the heat medium heater 63 does not generate heat in this operation mode, the heat medium passes through as it is to the battery 55 and exchanges heat with the battery 55. As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 is repeatedly sucked into the circulation pump 62 and repeatedly circulated (indicated by a dashed arrow in FIG. 8 ).
 この空調(優先)+バッテリ冷却モードにおいては、ヒートポンプコントローラ32は電磁弁35を開いた状態を維持し、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて後述する図12に示す如く圧縮機2の回転数を制御する。また、実施例では熱媒体温度センサ76が検出する熱媒体の温度(熱媒体温度Tw:バッテリコントローラ73から送信される)に基づき、電磁弁69を以下の如く開閉制御する。 In this air conditioning (priority)+battery cooling mode, the heat pump controller 32 maintains the electromagnetic valve 35 in the open state, and will be described later based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48. The rotation speed of the compressor 2 is controlled as shown in FIG. In the embodiment, the solenoid valve 69 is controlled to open and close as follows based on the temperature of the heat medium detected by the heat medium temperature sensor 76 (heat medium temperature Tw: transmitted from the battery controller 73).
 図13は空調(優先)+バッテリ冷却モードにおける電磁弁69の開閉制御のブロック図を示している。ヒートポンプコントローラ32のバッテリ用電磁弁制御部90には熱媒体温度センサ76が検出する熱媒体温度Twと、当該熱媒体温度Twの目標値としての目標熱媒体温度TWOが入力される。そして、バッテリ用電磁弁制御部90は、目標熱媒体温度TWOの上下に所定の温度差を有して制御上限値TwULと制御下限値TwLLを設定し、電磁弁69を閉じている状態からバッテリ55の発熱等により熱媒体温度Twが高くなり、制御上限値TwULまで上昇した場合(制御上限値TwULを上回った場合、又は、制御上限値TwUL以上となった場合。以下、同じ)、電磁弁69を開放する(電磁弁69開指示)。これにより、冷媒は冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して蒸発し、熱媒体流路64Aを流れる熱媒体を冷却するので、この冷却された熱媒体によりバッテリ55は冷却される。 FIG. 13 shows a block diagram of opening/closing control of the solenoid valve 69 in the air conditioning (priority)+battery cooling mode. The heat medium temperature Tw detected by the heat medium temperature sensor 76 and the target heat medium temperature TWO as a target value of the heat medium temperature Tw are input to the battery solenoid valve control unit 90 of the heat pump controller 32. Then, the battery solenoid valve control unit 90 sets the control upper limit value TwUL and the control lower limit value TwLL with a predetermined temperature difference above and below the target heat medium temperature TWO, and from the state where the solenoid valve 69 is closed to the battery. When the heat medium temperature Tw increases due to heat generation of 55 and rises to the control upper limit value TwUL (when it exceeds the control upper limit value TwUL or becomes equal to or higher than the control upper limit value TwUL. The same applies hereinafter), the solenoid valve 69 is opened (instruction to open solenoid valve 69). As a result, the refrigerant flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 and evaporates, and cools the heat medium flowing through the heat medium channel 64A. Therefore, the battery 55 is cooled by the cooled heat medium. To be done.
 その後、熱媒体温度Twが制御下限値TwLLまで低下した場合(制御下限値TwLLを下回った場合、又は、制御下限値TwLL以下となった場合。以下、同じ)、電磁弁69を閉じる(電磁弁69閉指示)。以後、このような電磁弁69の開閉を繰り返して、車室内の冷房を優先しながら、熱媒体温度Twを目標熱媒体温度TWOに制御し、バッテリ55の冷却を行う。 After that, when the heat medium temperature Tw drops to the control lower limit value TwLL (when it falls below the control lower limit value TwLL or becomes equal to or lower than the control lower limit value TwLL. The same applies hereinafter), the solenoid valve 69 is closed (solenoid valve). 69 Close instruction). After that, the solenoid valve 69 is repeatedly opened and closed as described above to control the heat medium temperature Tw to the target heat medium temperature TWO while giving priority to the cooling of the vehicle compartment, thereby cooling the battery 55.
 (6)空調運転の切り換え
 ヒートポンプコントローラ32は下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、吹出口29から車室内に吹き出される空気の温度の目標値である。
 TAO=(Tset-Tin)×K+Tbal(f(Tset、SUN、Tam))
                                   ・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する車室内空気の温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
(6) Switching of air conditioning operation The heat pump controller 32 calculates the above-mentioned target outlet temperature TAO from the following formula (I). This target outlet temperature TAO is a target value of the temperature of the air blown into the vehicle compartment from the outlet 29.
TAO=(Tset-Tin)×K+Tbal(f(Tset, SUN, Tam))
..(I)
Here, Tset is the set temperature in the vehicle compartment set by the air conditioning operation unit 53, Tin is the temperature of the vehicle interior air detected by the inside air temperature sensor 37, K is a coefficient, Tbal is the set temperature Tset, and the solar radiation sensor 51 detects the temperature. It is a balance value calculated from the amount of solar radiation SUN and the outside air temperature Tam detected by the outside air temperature sensor 33. Then, in general, the target outlet temperature TAO is higher as the outside air temperature Tam is lower, and is decreased as the outside air temperature Tam is increased.
 そして、ヒートポンプコントローラ32は起動時には外気温度センサ33が検出する外気温度Tamと目標吹出温度TAOとに基づいて上記各空調運転のうちの何れかの空調運転を選択する。また、起動後は外気温度Tamや目標吹出温度TAO、熱媒体温度Tw等の運転条件や環境条件、設定条件の変化に応じ、前記各空調運転を選択して切り換えていく。例えば、冷房モードから空調(優先)+バッテリ冷却モードへの移行は、バッテリコントローラ73からのバッテリ冷却要求が入力されたことに基づいて実行される。この場合、バッテリコントローラ73は例えば熱媒体温度Twやバッテリ温度Tcellが所定値以上に上昇した場合にバッテリ冷却要求を出力し、ヒートポンプコントローラ32や空調コントローラ45に送信するものである。 Then, the heat pump controller 32 selects one of the above air conditioning operations based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target outlet temperature TAO at the time of startup. Further, after the start-up, each air conditioning operation is selected and switched according to changes in operating conditions such as the outside air temperature Tam, the target outlet temperature TAO, and the heat medium temperature Tw, environmental conditions, and setting conditions. For example, the transition from the cooling mode to the air conditioning (priority)+battery cooling mode is executed based on the input of the battery cooling request from the battery controller 73. In this case, the battery controller 73 outputs a battery cooling request and transmits it to the heat pump controller 32 and the air conditioning controller 45, for example, when the heat medium temperature Tw or the battery temperature Tcell rises above a predetermined value.
 (7)バッテリ冷却(優先)+空調モード
 次に、バッテリ55の充電中の動作について説明する。例えば急速充電器(外部電源)の充電用のプラグが接続され、バッテリ55が充電されているときに(これらの情報はバッテリコントローラ73から送信される)、車両のイグニッション(IGN)のON/OFFに拘わらず、バッテリ冷却要求があり、空調操作部53の空調スイッチがONされた場合、ヒートポンプコントローラ32はバッテリ冷却(優先)+空調モードを実行する。このバッテリ冷却(優先)+空調モードにおける冷媒回路Rの冷媒の流れ方は、図8に示した空調(優先)+バッテリ冷却モードの場合と同様である。
(7) Battery Cooling (Priority)+Air Conditioning Mode Next, the operation during charging of the battery 55 will be described. For example, when the plug for charging the quick charger (external power source) is connected and the battery 55 is being charged (these information is transmitted from the battery controller 73), the ignition (IGN) of the vehicle is turned on/off. Regardless of the above, if there is a battery cooling request and the air conditioning switch of the air conditioning operating unit 53 is turned on, the heat pump controller 32 executes battery cooling (priority)+air conditioning mode. The flow of the refrigerant in the refrigerant circuit R in the battery cooling (priority)+air conditioning mode is the same as that in the air conditioning (priority)+battery cooling mode shown in FIG.
 但し、このバッテリ冷却(優先)+空調モードの場合、実施例ではヒートポンプコントローラ32は電磁弁69を開いた状態に維持し、熱媒体温度センサ76(バッテリコントローラ73から送信される)が検出する熱媒体温度Twに基づいて後述する図14に示す如く圧縮機2の回転数を制御する。また、実施例では吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づき、電磁弁35を以下の如く開閉制御する。 However, in the case of this battery cooling (priority)+air conditioning mode, in the embodiment, the heat pump controller 32 maintains the electromagnetic valve 69 in an open state, and the heat detected by the heat medium temperature sensor 76 (transmitted from the battery controller 73) is detected. Based on the medium temperature Tw, the rotation speed of the compressor 2 is controlled as shown in FIG. 14 described later. In the embodiment, the solenoid valve 35 is controlled to open and close as follows based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
 図15はこのバッテリ冷却(優先)+空調モードにおける電磁弁35の開閉制御のブロック図を示している。ヒートポンプコントローラ32の吸熱器用電磁弁制御部95には吸熱器温度センサ48が検出する吸熱器温度Teと、当該吸熱器温度Teの目標値としての所定の目標吸熱器温度TEOが入力される。そして、吸熱器用電磁弁制御部95は、目標吸熱器温度TEOの上下に所定の温度差を有して制御上限値TeULと制御下限値TeLLを設定し、電磁弁35を閉じている状態から吸熱器温度Teが高くなり、制御上限値TeULまで上昇した場合(制御上限値TeULを上回った場合、又は、制御上限値TeUL以上となった場合。以下、同じ)、電磁弁35を開放する(電磁弁35開指示)。これにより、冷媒は吸熱器9に流入して蒸発し、空気流通路3を流通する空気を冷却する。 FIG. 15 shows a block diagram of opening/closing control of the solenoid valve 35 in this battery cooling (priority)+air conditioning mode. A heat absorber temperature Te detected by the heat absorber temperature sensor 48 and a predetermined target heat absorber temperature TEO as a target value of the heat absorber temperature Te are input to the heat absorber solenoid valve control unit 95 of the heat pump controller 32. The heat absorber electromagnetic valve control unit 95 sets the control upper limit value TeUL and the control lower limit value TeLL with a predetermined temperature difference above and below the target heat absorber temperature TEO, and absorbs heat from the state where the solenoid valve 35 is closed. When the device temperature Te rises and rises to the control upper limit value TeUL (when it exceeds the control upper limit value TeUL or when it becomes equal to or higher than the control upper limit value TeUL. The same applies hereinafter), the solenoid valve 35 is opened (electromagnetic valve. Instruction to open valve 35). As a result, the refrigerant flows into the heat absorber 9 and evaporates, and cools the air flowing through the air flow passage 3.
 その後、吸熱器温度Teが制御下限値TeLLまで低下した場合(制御下限値TeLLを下回った場合、又は、制御下限値TeLL以下となった場合。以下、同じ)、電磁弁35を閉じる(電磁弁35閉指示)。以後、このような電磁弁35の開閉を繰り返して、バッテリ55の冷却を優先しながら、吸熱器温度Teを目標吸熱器温度TEOに制御し、車室内の冷房を行う。 After that, when the heat absorber temperature Te decreases to the control lower limit value TeLL (when it falls below the control lower limit value TeLL or becomes equal to or lower than the control lower limit value TeLL. The same applies hereinafter), the solenoid valve 35 is closed (solenoid valve 35 Close instruction). Thereafter, such opening/closing of the electromagnetic valve 35 is repeated to give priority to the cooling of the battery 55, and the heat absorber temperature Te is controlled to the target heat absorber temperature TEO to cool the vehicle interior.
 (8)バッテリ冷却(単独)モード
 次に、イグニッションのON/OFFに拘わらず、空調操作部53の空調スイッチがOFFされた状態で、急速充電器の充電用のプラグが接続され、バッテリ55が充電されているとき、バッテリ冷却要求があった場合、ヒートポンプコントローラ32はバッテリ冷却(単独)モードを実行する。但し、バッテリ55の充電中以外にも、空調スイッチがOFFで、バッテリ冷却要求があった場合(高外気温で走行時等)には実行される。図9はこのバッテリ冷却(単独)モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。バッテリ冷却(単独)モードでは、ヒートポンプコントローラ32は電磁弁17、電磁弁20、及び、電磁弁69を開き、電磁弁21、電磁弁22、及び、電磁弁35を閉じる。
(8) Battery Cooling (Independent) Mode Next, regardless of whether the ignition is ON or OFF, the charging plug of the quick charger is connected while the air conditioning switch of the air conditioning operation unit 53 is OFF, and the battery 55 is When being charged, if there is a battery cooling request, the heat pump controller 32 executes the battery cooling (single) mode. However, it is executed when the air conditioning switch is OFF and there is a battery cooling request (during traveling at a high outside air temperature) other than during charging of the battery 55. FIG. 9 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in the battery cooling (single) mode. In the battery cooling (single) mode, the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, and the solenoid valve 69, and closes the solenoid valve 21, the solenoid valve 22, and the solenoid valve 35.
 そして、圧縮機2、及び、室外送風機15を運転する。尚、室内送風機27は運転されず、補助ヒータ23にも通電されない。また、この運転モードでは熱媒体加熱ヒータ63も通電されない。 Then, the compressor 2 and the outdoor blower 15 are operated. The indoor blower 27 is not operated and the auxiliary heater 23 is not energized. Further, the heat medium heater 63 is not energized in this operation mode.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されないので、ここは通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。このとき、電磁弁20は開放されているので冷媒は電磁弁20を通過し、そのまま室外熱交換器7に流入し、そこで室外送風機15により通風される外気によって空冷され、凝縮液化する。 With this, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is not ventilated to the radiator 4, it only passes through here, and the refrigerant exiting the radiator 4 reaches the refrigerant pipe 13J via the refrigerant pipe 13E. At this time, since the electromagnetic valve 20 is open, the refrigerant passes through the electromagnetic valve 20, flows into the outdoor heat exchanger 7 as it is, and is cooled by air by the outside air ventilated by the outdoor blower 15 to be condensed and liquefied.
 室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入る。この冷媒配管13Bに流入した冷媒は、逆止弁18を経た後、全てが分岐配管67に流入して補助膨張弁68に至る。ここで冷媒は減圧された後、電磁弁69を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入し、そこで蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管71、冷媒配管13C及びアキュムレータ12を順次経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す(図9に実線矢印で示す)。 The refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16. After passing through the check valve 18, all of the refrigerant flowing into the refrigerant pipe 13B flows into the branch pipe 67 and reaches the auxiliary expansion valve 68. Here, the refrigerant is decompressed, then flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 through the electromagnetic valve 69, and evaporates there. At this time, it exerts an endothermic effect. The refrigerant evaporated in the refrigerant flow path 64B repeats the circulation in which the refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K through the refrigerant pipe 71, the refrigerant pipe 13C and the accumulator 12 in sequence (shown by a solid arrow in FIG. 9).
 一方、循環ポンプ62が運転されているので、この循環ポンプ62から吐出された熱媒体が熱媒体配管66内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒により吸熱され、熱媒体は冷却されるようになる。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は、熱媒体加熱ヒータ63に至る。但し、この運転モードでは熱媒体加熱ヒータ63は発熱されないので、熱媒体はそのまま通過してバッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は冷却されると共に、バッテリ55を冷却した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す(図9に破線矢印で示す)。 On the other hand, since the circulation pump 62 is operating, the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 66, and the refrigerant flow passage there. The heat medium is cooled by being absorbed by the refrigerant evaporated in 64B. The heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heater 63. However, since the heat medium heater 63 does not generate heat in this operation mode, the heat medium passes through as it is to the battery 55 and exchanges heat with the battery 55. As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 is repeatedly sucked into the circulation pump 62 to repeat circulation (indicated by a dashed arrow in FIG. 9 ).
 このバッテリ冷却(単独)モードにおいても、ヒートポンプコントローラ32は熱媒体温度センサ76が検出する熱媒体温度Twに基づいて後述する如く圧縮機2の回転数を制御することにより、バッテリ55を冷却する。 Even in this battery cooling (single) mode, the heat pump controller 32 cools the battery 55 by controlling the rotation speed of the compressor 2 as described later based on the heat medium temperature Tw detected by the heat medium temperature sensor 76.
 (9)除霜モード
 次に、図10を参照しながら室外熱交換器7の除霜モードについて説明する。図10は除霜モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。前述した如く暖房モードでは、室外熱交換器7では冷媒が蒸発し、外気から吸熱して低温となるため、室外熱交換器7には外気中の水分が霜となって付着する。
(9) Defrost Mode Next, the defrost mode of the outdoor heat exchanger 7 will be described with reference to FIG. 10. FIG. 10 shows how the refrigerant flows in the refrigerant circuit R in the defrosting mode (solid arrow). As described above, in the heating mode, the refrigerant evaporates in the outdoor heat exchanger 7 and absorbs heat from the outside air to reach a low temperature, so that the moisture in the outside air adheres to the outdoor heat exchanger 7 as frost.
 そこで、ヒートポンプコントローラ32は室外熱交換器温度センサ49が検出する室外熱交換器温度TXO(室外熱交換器7における冷媒蒸発温度)と、室外熱交換器7の無着霜時における冷媒蒸発温度TXObaseとの差ΔTXO(=TXObase-TXO)を算出しており、室外熱交換器温度TXOが無着霜時における冷媒蒸発温度TXObaseより低下して、その差ΔTXOが所定値以上に拡大した状態が所定時間継続した場合、室外熱交換器7に着霜しているものと判定して所定の着霜フラグをセットする。 Therefore, the heat pump controller 32 detects the outdoor heat exchanger temperature TXO detected by the outdoor heat exchanger temperature sensor 49 (refrigerant evaporation temperature in the outdoor heat exchanger 7) and the refrigerant evaporation temperature TXObase when the outdoor heat exchanger 7 is not frosted. And the difference ΔTXO (=TXObase−TXO) is calculated, and the condition in which the outdoor heat exchanger temperature TXO is lower than the refrigerant evaporation temperature TXObase during non-frosting and the difference ΔTXO has expanded to a predetermined value or more is predetermined. When the time has continued, it is determined that the outdoor heat exchanger 7 is frosted, and a predetermined frosting flag is set.
 そして、この着霜フラグがセットされており、空調操作部53の前述した空調スイッチがOFFされた状態で、急速充電器の充電用のプラグが接続され、バッテリ55が充電されるとき、ヒートポンプコントローラ32は以下の如く室外熱交換器7の除霜モードを実行する。 When the frost flag is set and the above-described air conditioning switch of the air conditioning operating unit 53 is turned off, the charging plug of the quick charger is connected and the battery 55 is charged. 32 performs the defrosting mode of the outdoor heat exchanger 7 as follows.
 ヒートポンプコントローラ32はこの除霜モードでは、冷媒回路Rを前述した暖房モードの状態とした上で、室外膨張弁6の弁開度を全開とする。そして、圧縮機2を運転し、当該圧縮機2から吐出された高温の冷媒を放熱器4、室外膨張弁6を経て室外熱交換器7に流入させ、当該室外熱交換器7の着霜を融解させる(図10)。そして、ヒートポンプコントローラ32は室外熱交換器温度センサ49が検出する室外熱交換器温度TXOが所定の除霜終了温度(例えば、+3℃等)より高くなった場合、室外熱交換器7の除霜が完了したものとして除霜モードを終了する。 In this defrosting mode, the heat pump controller 32 sets the refrigerant circuit R to the heating mode described above, and fully opens the outdoor expansion valve 6. Then, the compressor 2 is operated, the high-temperature refrigerant discharged from the compressor 2 is caused to flow into the outdoor heat exchanger 7 via the radiator 4 and the outdoor expansion valve 6, and the frost formation on the outdoor heat exchanger 7 is prevented. Thaw (Figure 10). Then, the heat pump controller 32 defrosts the outdoor heat exchanger 7 when the outdoor heat exchanger temperature TXO detected by the outdoor heat exchanger temperature sensor 49 becomes higher than a predetermined defrosting end temperature (for example, +3° C. or the like). Is completed and the defrosting mode is terminated.
 (10)バッテリ加熱モード
 また、車両が走行中に空調運転を実行しているとき、或いは、バッテリ55を充電しているとき、ヒートポンプコントローラ32はバッテリ加熱モードを実行する。このバッテリ加熱モードでは、ヒートポンプコントローラ32は循環ポンプ62を運転し、熱媒体加熱ヒータ63に通電する。尚、電磁弁69は閉じる。
(10) Battery Heating Mode Further, the heat pump controller 32 executes the battery heating mode when the air conditioning operation is executed while the vehicle is traveling or when the battery 55 is charged. In the battery heating mode, the heat pump controller 32 operates the circulation pump 62 and energizes the heat medium heating heater 63. The solenoid valve 69 is closed.
 これにより、循環ポンプ62から吐出された熱媒体は熱媒体配管66内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこを通過して熱媒体加熱ヒータ63に至る。このとき熱媒体加熱ヒータ63は発熱されているので、熱媒体は熱媒体加熱ヒータ63により加熱されて温度上昇した後、バッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は加熱されると共に、バッテリ55を加熱した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す。 As a result, the heat medium discharged from the circulation pump 62 reaches the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 66, and passes through the heat medium passage 64A to reach the heat medium heater 63. At this time, since the heat medium heating heater 63 is generating heat, the heat medium is heated by the heat medium heating heater 63 and its temperature rises, and then reaches the battery 55 and exchanges heat with the battery 55. Thereby, the battery 55 is heated, and the heat medium after heating the battery 55 is repeatedly circulated by being sucked into the circulation pump 62.
 このバッテリ加熱モードにおいては、ヒートポンプコントローラ32は熱媒体温度センサ76が検出する熱媒体温度Twに基づいて後述する如く熱媒体加熱ヒータ63の発熱を制御することにより、熱媒体温度Twを所定の目標熱媒体温度TWOに調整し、バッテリ55を加熱する。 In this battery heating mode, the heat pump controller 32 controls the heat generation of the heat medium heating heater 63 based on the heat medium temperature Tw detected by the heat medium temperature sensor 76, as will be described later, to set the heat medium temperature Tw to a predetermined target. The heat medium temperature TWO is adjusted and the battery 55 is heated.
 (11)ヒートポンプコントローラ32による圧縮機2の制御
 また、ヒートポンプコントローラ32は、暖房モードでは放熱器圧力Pciに基づき、図11の制御ブロック図により圧縮機2の目標回転数(圧縮機目標回転数)TGNChを算出し、除湿冷房モード、冷房モード、空調(優先)+バッテリ冷却モードでは、吸熱器温度Teに基づき、図12の制御ブロック図により圧縮機2の目標回転数(圧縮機目標回転数)TGNCcを算出する。尚、除湿暖房モードでは圧縮機目標回転数TGNChと圧縮機目標回転数TGNCcのうちの低い方向を選択する。また、バッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モードでは、熱媒体温度Twに基づき、図13の制御ブロック図により圧縮機2の目標回転数(圧縮機目標回転数)TGNCwを算出する。
(11) Control of the compressor 2 by the heat pump controller 32 Moreover, the heat pump controller 32 is based on radiator pressure Pci in heating mode, and the target rotation speed (compressor target rotation speed) of the compressor 2 is shown in the control block diagram of FIG. The TGNCh is calculated, and in the dehumidifying cooling mode, the cooling mode, and the air conditioning (priority)+battery cooling mode, the target rotation speed of the compressor 2 (compressor target rotation speed) based on the heat absorber temperature Te according to the control block diagram of FIG. Calculate TGNCc. In the dehumidification heating mode, the lower direction of the compressor target speed TGNCh and the compressor target speed TGNc is selected. In the battery cooling (priority)+air conditioning mode and the battery cooling (single) mode, the target rotation speed of the compressor 2 (compressor target rotation speed) TGNCw is calculated based on the heat medium temperature Tw by the control block diagram of FIG. To do.
 (11-1)放熱器圧力Pciに基づく圧縮機目標回転数TGNChの算出
 先ず、図11を用いて放熱器圧力Pciに基づく圧縮機2の制御について詳述する。図11は放熱器圧力Pciに基づいて圧縮機2の目標回転数(圧縮機目標回転数)TGNChを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F(フィードフォワード)操作量演算部78は外気温度センサ33から得られる外気温度Tamと、室内送風機27のブロワ電圧BLVと、SW=(TAO-Te)/(Thp-Te)で得られるエアミックスダンパ28による風量割合SWと、放熱器4の出口における冷媒の過冷却度SCの目標値である目標過冷却度TGSCと、ヒータ温度Thpの目標値である前述した目標ヒータ温度TCOと、放熱器4の圧力の目標値である目標放熱器圧力PCOに基づいて圧縮機目標回転数のF/F操作量TGNChffを算出する。
(11-1) Calculation of Compressor Target Rotational Speed TGNCh Based on Radiator Pressure Pci First, the control of the compressor 2 based on the radiator pressure Pci will be described in detail with reference to FIG. FIG. 11 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCh of the compressor 2 based on the radiator pressure Pci. The F/F (feed forward) manipulated variable calculation unit 78 of the heat pump controller 32 uses the outside air temperature Tam obtained from the outside air temperature sensor 33, the blower voltage BLV of the indoor blower 27, and SW=(TAO-Te)/(Thp-Te). ) The air volume ratio SW by the air mix damper 28, the target supercooling degree TGSC which is the target value of the supercooling degree SC of the refrigerant at the outlet of the radiator 4, and the above-mentioned target heater which is the target value of the heater temperature Thp. Based on the temperature TCO and the target radiator pressure PCO, which is the target value of the pressure of the radiator 4, the F/F manipulated variable TGNChff of the compressor target rotation speed is calculated.
 尚、ヒータ温度Thpは放熱器4の風下側の空気温度(推定値)であり、放熱器圧力センサ47が検出する放熱器圧力Pciと放熱器出口温度センサ44が検出する放熱器4の冷媒出口温度Tciから算出(推定)する。また、過冷却度SCは放熱器入口温度センサ43と放熱器出口温度センサ44が検出する放熱器4の冷媒入口温度Tcxinと冷媒出口温度Tciから算出される。 The heater temperature Thp is an air temperature (estimated value) on the leeward side of the radiator 4, and the radiator pressure Pci detected by the radiator pressure sensor 47 and the refrigerant outlet of the radiator 4 detected by the radiator outlet temperature sensor 44. It is calculated (estimated) from the temperature Tci. The degree of supercooling SC is calculated from the refrigerant inlet temperature Tcxin and the refrigerant outlet temperature Tci of the radiator 4 detected by the radiator inlet temperature sensor 43 and the radiator outlet temperature sensor 44.
 前記目標放熱器圧力PCOは上記目標過冷却度TGSCと目標ヒータ温度TCOに基づいて目標値演算部79が算出する。更に、F/B(フィードバック)操作量演算部81はこの目標放熱器圧力PCOと放熱器圧力Pciに基づくPID演算若しくはPI演算により圧縮機目標回転数のF/B操作量TGNChfbを算出する。そして、F/F操作量演算部78が算出したF/F操作量TGNChffとF/B操作量演算部81が算出したF/B操作量TGNChfbは加算器82で加算され、TGNCh00としてリミット設定部83に入力される。 The target radiator pressure PCO is calculated by the target value calculator 79 based on the target supercooling degree TGSC and the target heater temperature TCO. Further, the F/B (feedback) manipulated variable calculation unit 81 calculates the F/B manipulated variable TGNChfb of the compressor target rotational speed by PID calculation or PI calculation based on the target radiator pressure PCO and the radiator pressure Pci. Then, the F/F operation amount TGNChff calculated by the F/F operation amount calculation unit 78 and the F/B operation amount TGNChfb calculated by the F/B operation amount calculation unit 81 are added by the adder 82 to obtain a limit setting unit as TGNCh00. 83 is input.
 リミット設定部83では制御上の下限回転数ECNpdLimLoと上限回転数ECNpdLimHiのリミットが付けられてTGNCh0とされた後、圧縮機OFF制御部84を経て圧縮機目標回転数TGNChとして決定される。即ち、圧縮機2の回転数は上限回転数ECNpdLimHi以下に制限される。通常モードではヒートポンプコントローラ32は、この放熱器圧力Pciに基づいて算出された圧縮機目標回転数TGNChにより、放熱器圧力Pciが目標放熱器圧力PCOになるように圧縮機2の運転を制御する。 In the limit setting unit 83, the lower limit rotational speed ECNpdLimLo and the upper limit rotational speed ECNpdLimHi for control are set to TGNCh0, and then the compressor OFF control unit 84 is used to determine the target compressor rotational speed TGNCh. That is, the rotation speed of the compressor 2 is limited to the upper limit rotation speed ECNpdLimHi or less. In the normal mode, the heat pump controller 32 controls the operation of the compressor 2 so that the radiator pressure Pci becomes the target radiator pressure PCO by the compressor target rotation speed TGNCh calculated based on the radiator pressure Pci.
 尚、圧縮機OFF制御部84は、圧縮機目標回転数TGNChが上述した下限回転数ECNpdLimLoとなり、放熱器圧力Pciが目標放熱器圧力PCOの上下に設定された所定の上限値PULと下限値PLLのうちの上限値PULまで上昇した状態(上限値PULを上回った状態、又は、上限値PUL以上となった状態。以下、同じ)が所定時間th1継続した場合、圧縮機2を停止させて圧縮機2をON-OFF制御するON-OFFモードに入る。 In addition, the compressor OFF control unit 84 sets the compressor target rotation speed TGNCh to the above-described lower limit rotation speed ECNpdLimLo, and the radiator pressure Pci is set to a predetermined upper limit value PUL and lower limit value PLL set above and below the target radiator pressure PCO. If the state of rising to the upper limit value PUL (a state of exceeding the upper limit value PUL or a state of being equal to or more than the upper limit value PUL. The same applies hereinafter) continues for a predetermined time th1, the compressor 2 is stopped and compression is performed. The machine enters the ON-OFF mode that controls the ON-OFF of the machine 2.
 この圧縮機2のON-OFFモードでは、放熱器圧力Pciが下限値PLLまで低下した場合(下限値PLLを下回った場合、又は、下限値PLL以下となった場合。以下、同じ)、圧縮機2を起動して圧縮機目標回転数TGNChを下限回転数ECNpdLimLoとして運転し、その状態で放熱器圧力Pciが上限値PULまで上昇した場合は圧縮機2を再度停止させる。即ち、下限回転数ECNpdLimLoでの圧縮機2の運転(ON)と、停止(OFF)を繰り返す。そして、放熱器圧力Pciが下限値PULまで低下し、圧縮機2を起動した後、放熱器圧力Pciが下限値PULより高くならない状態が所定時間th2継続した場合、圧縮機2のON-OFFモードを終了し、通常モードに復帰するものである。 In the ON-OFF mode of the compressor 2, when the radiator pressure Pci drops to the lower limit value PLL (when it falls below the lower limit value PLL or becomes lower than the lower limit value PLL. The same applies hereinafter), the compressor 2 is started to operate the compressor target rotation speed TGNCh as the lower limit rotation speed ECNpdLimLo, and when the radiator pressure Pci rises to the upper limit value PUL in that state, the compressor 2 is stopped again. That is, the operation (ON) and the stop (OFF) of the compressor 2 at the lower limit rotation speed ECNpdLimLo are repeated. When the radiator pressure Pci decreases to the lower limit value PUL and the compressor 2 is started, and the radiator pressure Pci does not become higher than the lower limit value PUL for a predetermined time th2, the compressor 2 is turned on and off. Is completed and the normal mode is restored.
 (11-2)吸熱器温度Teに基づく圧縮機目標回転数TGNCcの算出
 次に、図12を用いて吸熱器温度Teに基づく圧縮機2の制御について詳述する。図12は吸熱器温度Teに基づいて圧縮機2の目標回転数(圧縮機目標回転数)TGNCcを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F操作量演算部86は外気温度Tamと、空気流通路3内を流通する空気の風量Ga(室内送風機27のブロワ電圧BLVでもよい)と、目標放熱器圧力PCOと、吸熱器温度Teの目標値である目標吸熱器温度TEOに基づいて圧縮機目標回転数のF/F操作量TGNCcffを算出する。
(11-2) Calculation of Compressor Target Rotational Speed TGNCc Based on Heat Sink Temperature Te Next, the control of the compressor 2 based on the heat absorber temperature Te will be described in detail with reference to FIG. FIG. 12 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCc of the compressor 2 based on the heat absorber temperature Te. The F/F operation amount calculation unit 86 of the heat pump controller 32 has an outside air temperature Tam, an air volume Ga of air flowing through the air flow passage 3 (may be the blower voltage BLV of the indoor blower 27), a target radiator pressure PCO, The F/F manipulated variable TGNCcff of the compressor target rotation speed is calculated based on the target heat absorber temperature TEO which is the target value of the heat absorber temperature Te.
 また、F/B操作量演算部87は目標吸熱器温度TEOと吸熱器温度Teに基づくPID演算若しくはPI演算により圧縮機目標回転数のF/B操作量TGNCcfbを算出する。そして、F/F操作量演算部86が算出したF/F操作量TGNCcffとF/B操作量演算部87が算出したF/B操作量TGNCcfbは加算器88で加算され、TGNCc00としてリミット設定部89に入力される。 Further, the F/B manipulated variable calculation unit 87 calculates the F/B manipulated variable TGNCcfb of the compressor target rotation speed by PID calculation or PI calculation based on the target heat absorber temperature TEO and the heat absorber temperature Te. Then, the F/F operation amount TGNCcff calculated by the F/F operation amount calculation unit 86 and the F/B operation amount TGNCcfb calculated by the F/B operation amount calculation unit 87 are added by the adder 88 to obtain a limit setting unit as TGNCc00. It is input to 89.
 リミット設定部89では制御上の下限回転数TGNCcLimLoと上限回転数TGNCcLimHiのリミットが付けられてTGNCc0とされた後、圧縮機OFF制御部91を経て圧縮機目標回転数TGNCcとして決定される。従って、加算器88で加算された値TGNCc00が上限回転数TGNCcLimHiと下限回転数TGNCcLimLo以内であり、後述するON-OFFモードにならなければ、この値TGNCc00が圧縮機目標回転数TGNCc(圧縮機2の回転数となる)。通常モードではヒートポンプコントローラ32は、この吸熱器温度Teに基づいて算出された圧縮機目標回転数TGNCcにより、吸熱器温度Teが目標吸熱器温度TEOになるように圧縮機2の運転を制御する。 In the limit setting unit 89, the lower limit speed TGNCcLimLo for control and the upper limit speed TGNCcLimHi are set to TGNCc0, and then the compressor OFF control unit 91 is used to determine the target compressor speed TGNCc. Therefore, if the value TGNCc00 added by the adder 88 is within the upper limit rotation speed TGNCcLimHi and the lower limit rotation speed TGNCcLimLo and the ON-OFF mode described later does not occur, this value TGNCc00 is the target compressor rotation speed TGNCc (compressor 2 Will be the number of rotations). In the normal mode, the heat pump controller 32 controls the operation of the compressor 2 so that the heat absorber temperature Te becomes the target heat absorber temperature TEO by the compressor target rotation speed TGNCc calculated based on the heat absorber temperature Te.
 尚、圧縮機OFF制御部91は、圧縮機目標回転数TGNCcが上述した下限回転数TGNCcLimLoとなり、吸熱器温度Teが目標吸熱器温度TEOの上下に設定された制御上限値TeULと制御下限値TeLLのうちの制御下限値TeLLまで低下した状態が所定時間tc1継続した場合、圧縮機2を停止させて圧縮機2をON-OFF制御するON-OFFモードに入る。 The compressor OFF control unit 91 controls the compressor target rotation speed TGNCc to be the above-described lower limit rotation speed TGNCcLimLo, and the heat absorber temperature Te is set above and below the target heat absorber temperature TEO to set the control upper limit value TeUL and the control lower limit value TeLL. If the control lower limit value TeLL among them continues for a predetermined time tc1, the compressor 2 is stopped and an ON-OFF mode for ON-OFF controlling the compressor 2 is entered.
 この場合の圧縮機2のON-OFFモードでは、吸熱器温度Teが制御上限値TeULまで上昇した場合、圧縮機2を起動して圧縮機目標回転数TGNCcを下限回転数TGNCcLimLoとして運転し、その状態で吸熱器温度Teが制御下限値TeLLまで低下した場合は圧縮機2を再度停止させる。即ち、下限回転数TGNCcLimLoでの圧縮機2の運転(ON)と、停止(OFF)を繰り返す。そして、吸熱器温度Teが制御上限値TeULまで上昇し、圧縮機2を起動した後、吸熱器温度Teが制御上限値TeULより低くならない状態が所定時間tc2継続した場合、この場合の圧縮機2のON-OFFモードを終了し、通常モードに復帰するものである。 In the ON-OFF mode of the compressor 2 in this case, when the heat absorber temperature Te rises to the control upper limit value TeUL, the compressor 2 is started and the compressor target rotation speed TGNCc is operated as the lower limit rotation speed TGNCcLimLo. When the heat absorber temperature Te falls to the control lower limit value TeLL in this state, the compressor 2 is stopped again. That is, the operation (ON) and the stop (OFF) of the compressor 2 at the lower limit rotation speed TGNCcLimLo are repeated. Then, after the heat absorber temperature Te rises to the control upper limit value TeUL and the compressor 2 is started, if the heat absorber temperature Te does not become lower than the control upper limit value TeUL for a predetermined time tc2, the compressor 2 in this case The ON-OFF mode of is ended and the normal mode is restored.
 (11-3)熱媒体温度Twに基づく圧縮機目標回転数TGNCwの算出
 次に、図14を用いて熱媒体温度Twに基づく圧縮機2の制御について詳述する。図14は熱媒体温度Twに基づいて圧縮機2の目標回転数(圧縮機目標回転数)TGNCwを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F操作量演算部92は外気温度Tamと、バッテリ温度調整装置61内の熱媒体の流量Gw(循環ポンプ62の出力から算出される)と、バッテリ55の発熱量(バッテリコントローラ73から送信される)と、バッテリ温度Tcell(バッテリコントローラ73から送信される)と、熱媒体温度Twの目標値である目標熱媒体温度TWOに基づいて圧縮機目標回転数のF/F操作量TGNCcwffを算出する。
(11-3) Calculation of Compressor Target Rotational Speed TGNCw Based on Heat Medium Temperature Tw Next, the control of the compressor 2 based on the heat medium temperature Tw will be described in detail with reference to FIG. FIG. 14 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCw of the compressor 2 based on the heat medium temperature Tw. The F/F operation amount calculation unit 92 of the heat pump controller 32 uses the outside air temperature Tam, the flow rate Gw of the heat medium in the battery temperature adjusting device 61 (calculated from the output of the circulation pump 62), and the heat generation amount of the battery 55 (battery). (Transmitted from controller 73), battery temperature Tcell (transmitted from battery controller 73), and target heat medium temperature TWO that is the target value of heat medium temperature Tw, based on the F/F operation of the compressor target rotation speed. Calculate the amount TGNCcwff.
 また、F/B操作量演算部93は目標熱媒体温度TWOと熱媒体温度Tw(バッテリコントローラ73から送信される)に基づくPID演算若しくはPI演算により圧縮機目標回転数のF/B操作量TGNCwfbを算出する。そして、F/F操作量演算部92が算出したF/F操作量TGNCwffとF/B操作量演算部93が算出したF/B操作量TGNCwfbは加算器94で加算され、TGNCw00としてリミット設定部96に入力される。 Further, the F/B manipulated variable calculation unit 93 performs a PID calculation or a PI calculation based on the target heat medium temperature TWO and the heat medium temperature Tw (transmitted from the battery controller 73) to determine the F/B manipulated variable TGNCwfb of the compressor target rotation speed. To calculate. Then, the F/F operation amount TGNCwff calculated by the F/F operation amount calculation unit 92 and the F/B operation amount TGNCwfb calculated by the F/B operation amount calculation unit 93 are added by the adder 94 to obtain a limit setting unit as TGNCw00. 96 is input.
 リミット設定部96では制御上の下限回転数TGNCwLimLoと上限回転数TGNCwLimHiのリミットが付けられてTGNCw0とされた後、圧縮機OFF制御部97を経て圧縮機目標回転数TGNCwとして決定される。従って、加算器94で加算された値TGNCw00が上限回転数TGNCwLimHiと下限回転数TGNCwLimLo以内であり、後述するON-OFFモードにならなければ、この値TGNCw00が圧縮機目標回転数TGNCw(圧縮機2の回転数となる)。通常モードではヒートポンプコントローラ32は、この熱媒体温度Twに基づいて算出された圧縮機目標回転数TGNCwにより、熱媒体温度Twが前述した適正温度範囲内の目標熱媒体温度TWOになるように圧縮機2の運転を制御する。 In the limit setting unit 96, the lower limit rotational speed TGNCwLimLo and the upper limit rotational speed TGNCwLimHi for control are set to TGNCw0, and then the compressor OFF control unit 97 is used to determine the target compressor rotational speed TGNCw. Therefore, if the value TGNCw00 added by the adder 94 is within the upper limit rotation speed TGNCwLimHi and the lower limit rotation speed TGNCwLimLo and the ON-OFF mode described later does not occur, this value TGNCw00 is the target compressor rotation speed TGNCw (compressor 2 Will be the number of rotations). In the normal mode, the heat pump controller 32 uses the compressor target rotation speed TGNCw calculated based on the heat medium temperature Tw so that the heat medium temperature Tw becomes the target heat medium temperature TWO within the appropriate temperature range described above. Control the operation of 2.
 尚、圧縮機OFF制御部97は、圧縮機目標回転数TGNCwが上述した下限回転数TGNCwLimLoとなり、熱媒体温度Twが目標熱媒体温度TWOの上下に設定された制御上限値TwULと制御下限値TwLLのうちの制御下限値TwLLまで低下した状態が所定時間tw1継続した場合、圧縮機2を停止させて圧縮機2をON-OFF制御するON-OFFモードに入る。 The compressor OFF control unit 97 determines that the compressor target rotation speed TGNCw becomes the above-described lower limit rotation speed TGNCwLimLo, and the heat medium temperature Tw is set above and below the target heat medium temperature TWO and the control upper limit value TwUL and the control lower limit value TwLL are set. When the state in which the control lower limit value TwLL is decreased for a predetermined time tw1 continues, the compressor 2 is stopped and the ON-OFF mode in which the compressor 2 is ON-OFF controlled is entered.
 この場合の圧縮機2のON-OFFモードでは、熱媒体温度Twが制御上限値TwULまで上昇した場合、圧縮機2を起動して圧縮機目標回転数TGNCwを下限回転数TGNCwLimLoとして運転し、その状態で熱媒体温度Twが制御下限値TwLLまで低下した場合は圧縮機2を再度停止させる。即ち、下限回転数TGNCwLimLoでの圧縮機2の運転(ON)と、停止(OFF)を繰り返す。そして、熱媒体温度Twが制御上限値TwULまで上昇し、圧縮機2を起動した後、熱媒体温度Twが制御上限値TwULより低くならない状態が所定時間tw2継続した場合、この場合の圧縮機2のON-OFFモードを終了し、通常モードに復帰するものである。 In the ON-OFF mode of the compressor 2 in this case, when the heat medium temperature Tw rises to the control upper limit value TwUL, the compressor 2 is started, and the compressor target rotation speed TGNCw is operated as the lower limit rotation speed TGNCwLimLo. When the heat medium temperature Tw falls to the control lower limit value TwLL in this state, the compressor 2 is stopped again. That is, the operation (ON) and the stop (OFF) of the compressor 2 at the lower limit rotation speed TGNCwLimLo are repeated. Then, when the heat medium temperature Tw rises to the control upper limit value TwUL and the compressor 2 is started, the state in which the heat medium temperature Tw does not become lower than the control upper limit value TwUL continues for a predetermined time tw2. The ON-OFF mode of is ended and the normal mode is restored.
 (12)ヒートポンプコントローラ32による熱媒体加熱ヒータ63の制御
 次に、図16を用いて前述したバッテリ加熱モードにおける熱媒体温度Twに基づいた熱媒体加熱ヒータ63の制御について詳述する。図16は熱媒体温度Twに基づいて熱媒体加熱ヒータ63の目標発熱量ECHtwを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F操作量演算部98は外気温度Tamと、バッテリ温度調整装置61内の熱媒体の流量Gw(循環ポンプ62の出力から算出される)と、バッテリ55の発熱量(バッテリコントローラ73から送信される)と、バッテリ温度Tcell(バッテリコントローラ73から送信される)と、熱媒体温度Twの目標値である目標熱媒体温度TWOに基づいて目標発熱量のF/F操作量ECHtffを算出する。
(12) Control of Heat Medium Heater 63 by Heat Pump Controller 32 Next, the control of the heat medium heater 63 based on the heat medium temperature Tw in the battery heating mode described above will be described in detail with reference to FIG. FIG. 16 is a control block diagram of the heat pump controller 32 that calculates the target heat generation amount ECHtw of the heat medium heater 63 based on the heat medium temperature Tw. The F/F operation amount calculation unit 98 of the heat pump controller 32 uses the outside air temperature Tam, the flow rate Gw of the heat medium in the battery temperature adjusting device 61 (calculated from the output of the circulation pump 62), and the heat generation amount of the battery 55 (battery). Controller 73), battery temperature Tcell (transmitted from battery controller 73), and target heat medium temperature TWO that is the target value of heat medium temperature Tw, based on the target heat generation amount F/F operation amount ECHtff. To calculate.
 また、F/B操作量演算部99は目標熱媒体温度TWOと熱媒体温度Tw(バッテリコントローラ73から送信される)に基づくPID演算若しくはPI演算により目標発熱量のF/B操作量ECHtwfbを算出する。そして、F/F操作量演算部98が算出したF/F操作量ECHtwffとF/B操作量演算部99が算出したF/B操作量ECHtwfbは加算器101で加算され、ECHtw00としてリミット設定部102に入力される。 Further, the F/B operation amount calculation unit 99 calculates the F/B operation amount ECHtwfb of the target heat generation amount by PID calculation or PI calculation based on the target heat medium temperature TWO and the heat medium temperature Tw (transmitted from the battery controller 73). To do. Then, the F/F operation amount ECHtwff calculated by the F/F operation amount calculation unit 98 and the F/B operation amount ECHtwfb calculated by the F/B operation amount calculation unit 99 are added by the adder 101 to obtain ECHtw00 as a limit setting unit. It is input to 102.
 リミット設定部102では制御上の下限発熱量ECHtwLimLo(例えば、通電OFF)と上限発熱量ECHtwLimHiのリミットが付けられてECHtw0とされた後、熱媒体加熱ヒータOFF制御部103を経て目標発熱量ECHtwとして決定される。従って、加算器101で加算された値ECHtw00が上限発熱量ECHtwLimHiと下限発熱量ECHtwLimLo以内であり、後述するON-OFFモードにならなければ、この値ECHtw00が目標発熱量ECHtw(熱媒体加熱ヒータ63の発熱量となる)。通常モードではヒートポンプコントローラ32は、この熱媒体温度Twに基づいて算出された目標発熱量ECHtwにより、熱媒体温度Twが目標熱媒体温度TWOになるように熱媒体加熱ヒータ63の発熱を制御する。 In the limit setting unit 102, a lower limit calorific value ECHtwLimLo for control (for example, energization OFF) and an upper limit calorific value ECHtwLimHi are set to ECHtw0, and then the target heating value ECHtw is passed through the heat medium heating heater OFF control unit 103. It is determined. Therefore, the value ECHtw00 added by the adder 101 is within the upper limit heat generation amount ECHtwLimHi and the lower limit heat generation amount ECHtwLimLo, and this value ECHtw00 is the target heat generation amount ECHtw (heat medium heating heater 63 if the ON-OFF mode described later does not occur. And the amount of heat generated). In the normal mode, the heat pump controller 32 controls the heat generation of the heat medium heating heater 63 so that the heat medium temperature Tw becomes the target heat medium temperature TWO by the target heat generation amount ECHtw calculated based on the heat medium temperature Tw.
 尚、熱媒体加熱ヒータOFF制御部103は、目標発熱量ECHtwが上述した下限発熱量ECHtwLimLoとなり、熱媒体温度Twが目標熱媒体温度TWOの上下に設定された制御上限値TwULと制御下限値TwLLのうちの制御上限値TwULまで上昇した状態が所定時間tw1継続した場合、熱媒体加熱ヒータ63の通電を停止させて熱媒体加熱ヒータ63をON-OFF制御するON-OFFモードに入る。 The heat medium heating heater OFF control unit 103 controls the target heat generation amount ECHtw to be the above-described lower limit heat generation amount ECHtwLimLo, and the heat medium temperature Tw is set above and below the target heat medium temperature TWO to set the control upper limit value TwUL and the control lower limit value TwLL. If the control upper limit value TwUL has continued for a predetermined time tw1, the heat medium heating heater 63 is de-energized to enter the ON-OFF mode in which the heat medium heating heater 63 is ON-OFF controlled.
 この場合の熱媒体加熱ヒータ63のON-OFFモードでは、熱媒体温度Twが制御下限値TwLLまで低下した場合、熱媒体加熱ヒータ63に通電して所定の低発熱量として通電し、その状態で熱媒体温度Twが制御上限値TwULまで上昇した場合は熱媒体加熱ヒータ63の通電を再度停止させる。即ち、所定の低発熱量での熱媒体加熱ヒータ63の発熱(ON)と、発熱停止(OFF)を繰り返す。そして、熱媒体温度Twが制御下限値TwLLまで低下し、熱媒体加熱ヒータ63を通電した後、熱媒体温度Twが制御下限値TwLLより高くならない状態が所定時間tw2継続した場合、この場合の熱媒体加熱ヒータ63のON-OFFモードを終了し、通常モードに復帰するものである。 In the ON-OFF mode of the heat medium heating heater 63 in this case, when the heat medium temperature Tw falls to the control lower limit value TwLL, the heat medium heating heater 63 is energized to be energized as a predetermined low heat generation amount, and in that state. When the heat medium temperature Tw rises to the control upper limit value TwUL, the energization of the heat medium heater 63 is stopped again. That is, heat generation (ON) and heat generation stop (OFF) of the heat medium heater 63 with a predetermined low heat generation amount are repeated. Then, when the heat medium temperature Tw drops to the control lower limit value TwLL and the heat medium heater 63 is energized, the heat medium temperature Tw does not become higher than the control lower limit value TwLL for a predetermined time tw2. The ON-OFF mode of the medium heater 63 is terminated and the normal mode is restored.
 (13)ヒートポンプコントローラ32によるバッテリ温調制限制御
 次に、図17、図18を参照しながら、ヒートポンプコントローラ32が実行するバッテリ温調制限制御について説明する。前述した如く空調(優先)+バッテリ冷却モードやバッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モードやバッテリ加熱モードでバッテリ55の温調を行うことで、バッテリ55の高温や低温による劣化を抑制又は解消することができるものであるが、一方で、バッテリ充電率SOCが低下している場合、特に走行中に実行される空調(優先)+バッテリ冷却モードやバッテリ加熱モードでは、冷媒回路Rの圧縮機2や熱媒体加熱ヒータ63等でバッテリ55の電力が消費されるため、車両の航続可能距離が低下すると共に、バッテリ55の劣化も助長してしまうことになる。
(13) Battery Temperature Control Limiting Control by Heat Pump Controller 32 Next, the battery temperature control limiting control executed by the heat pump controller 32 will be described with reference to FIGS. 17 and 18. As described above, by controlling the temperature of the battery 55 in the air conditioning (priority)+battery cooling mode, the battery cooling (priority)+air conditioning mode, the battery cooling (single) mode, and the battery heating mode, deterioration of the battery 55 due to high temperature or low temperature. However, when the battery charge rate SOC is low, on the other hand, particularly in the air conditioning (priority)+battery cooling mode or battery heating mode executed during traveling, the refrigerant circuit Since the electric power of the battery 55 is consumed by the R compressor 2, the heat medium heating heater 63, and the like, the cruising range of the vehicle is reduced and the deterioration of the battery 55 is also promoted.
 そこで、実施例では前述したバッテリ充電率SOCと、バッテリ温度Tcellをバッテリ55の劣化を示す指標として採用し、ヒートポンプコントローラ32は、これらに基づいて空調(優先)+バッテリ冷却モードや、走行中におけるバッテリ加熱モード等でバッテリ55の温調を制限するバッテリ温調制限制御を実行する。 Therefore, in the embodiment, the battery charge rate SOC and the battery temperature Tcell described above are adopted as the indexes indicating the deterioration of the battery 55, and the heat pump controller 32 is based on these, in the air conditioning (priority)+battery cooling mode, and during running. The battery temperature adjustment limit control for limiting the temperature adjustment of the battery 55 in the battery heating mode or the like is executed.
 (13-1)バッテリ充電率SOCとバッテリ温度Tcellについての閾値と領域の設定
 実施例のヒートポンプコントローラ32には、図17と図18に示す如く、バッテリ充電率SOCとバッテリ温度Tcellに複数の閾値と、通常域、警告域、危険域がそれぞれ設定されている。先ず、図17において、バッテリ充電率SOCには、0%~100%の間に所定の下側閾値1と上側閾値1が設定されている。そして、これら下側閾値1と上側閾値1の間の領域を、バッテリ55の劣化を考慮しない通常域としている。また、下側閾値1より低い当該下側閾値1と0%との間には、所定の下側閾値2が設定され、上側閾値1より高い当該上側閾値1と100%との間には、所定の上側閾値2が設定されている。そして、これら下側閾値1と下側閾値2の間の領域、及び、上側閾値1と上側閾値2の間の領域を、通常域を外れた所定の余裕域としての警告域としている。更に、下側閾値2と0%の間の領域、及び、上側閾値2と100%の間の領域を、それぞれバッテリ55の劣化域としての危険域としている。
(13-1) Setting of Threshold Value and Region for Battery Charging Rate SOC and Battery Temperature Tcell As shown in FIGS. 17 and 18, the heat pump controller 32 of the embodiment has a plurality of threshold values for the battery charging rate SOC and the battery temperature Tcell. , Normal area, warning area, and dangerous area are set respectively. First, in FIG. 17, the battery charging rate SOC is set to a predetermined lower threshold value 1 and upper predetermined threshold value 1 between 0% and 100%. The area between the lower threshold value 1 and the upper threshold value 1 is set as a normal area in which deterioration of the battery 55 is not taken into consideration. Further, a predetermined lower threshold value 2 is set between the lower threshold value 1 and 0% lower than the lower threshold value 1, and between the upper threshold value 1 and 100% higher than the upper threshold value 1, A predetermined upper threshold value 2 is set. The area between the lower threshold 1 and the lower threshold 2 and the area between the upper threshold 1 and the upper threshold 2 are set as a warning area as a predetermined margin area outside the normal area. Further, a region between the lower threshold value 2 and 0% and a region between the upper threshold value 2 and 100% are respectively set as a dangerous region as a deterioration region of the battery 55.
 上記バッテリ充電率SOCの下側閾値1、下側閾値2、上側閾値1、上側閾値2は、バッテリ55の実際の性能に応じて予め決定しておく。そして、上記各閾値で設定される警告域と危険域が、車両の使用中にバッテリ温度調整装置61を含む車両用空気調和装置1の消費電力を抑制する範囲となる。 The lower threshold 1, the lower threshold 2, the upper threshold 1, and the upper threshold 2 of the battery charging rate SOC are determined in advance according to the actual performance of the battery 55. Then, the warning area and the danger area set by the respective thresholds are areas in which the power consumption of the vehicle air conditioner 1 including the battery temperature adjusting device 61 is suppressed while the vehicle is in use.
 また、図18において、バッテリ温度Tcellには、下限温度と上限温度の間に所定の低温側閾値1と高温側閾値1が設定されている。そして、これら低温側閾値1と高温側閾値1の間の領域を、バッテリ55の劣化を考慮しない通常域としており、この通常域がバッテリ55の適温範囲となる。また、低温側閾値1より低い当該低温側閾値1と下限温度との間には、所定の低温側閾値2が設定され、高温側閾値1より高い当該高温側閾値1と上限温度との間には、所定の高温側閾値2が設定されている。そして、これら低温側閾値1と低温側閾値2の間の領域、及び、高温側閾値1と高温側閾値2の間の領域を、通常域を外れた所定の余裕域としての警告域としている。更に、低温側閾値2と下限温度の間の領域、及び、高温側閾値2と上限温度の間の領域を、それぞれバッテリ55の劣化域としての危険域としている。 Further, in FIG. 18, a predetermined low temperature side threshold value 1 and high temperature side threshold value 1 are set between the lower limit temperature and the upper limit temperature in the battery temperature Tcell. An area between the low temperature side threshold value 1 and the high temperature side threshold value 1 is set as a normal range in which deterioration of the battery 55 is not taken into consideration, and this normal range is an appropriate temperature range of the battery 55. Further, a predetermined low temperature side threshold 2 is set between the low temperature side threshold 1 lower than the low temperature side threshold 1 and the lower limit temperature, and between the high temperature side threshold 1 higher than the high temperature side threshold 1 and the upper limit temperature. Is set to a predetermined high temperature side threshold value 2. The area between the low temperature side threshold value 1 and the low temperature side threshold value 2 and the area between the high temperature side threshold value 1 and the high temperature side threshold value 2 are set as a warning area as a predetermined margin area outside the normal area. Further, a region between the low temperature side threshold value 2 and the lower limit temperature and a region between the high temperature side threshold value 2 and the upper limit temperature are respectively set as a dangerous region as a deterioration region of the battery 55.
 上記バッテリ温度Tcellの低温側閾値1、低温側閾値2、高温側閾値1、高温側閾値2も、バッテリ55の実際の性能に応じて予め決定しておく。そして、この場合も上記各閾値で設定される警告域と危険域が、車両の使用中にバッテリ温度調整装置61を含む車両用空気調和装置1の消費電力を抑制する範囲となる。 The low temperature side threshold value 1, low temperature side threshold value 2, high temperature side threshold value 1, high temperature side threshold value 2 of the battery temperature Tcell are also determined in advance according to the actual performance of the battery 55. Also in this case, the warning area and the dangerous area set by the respective thresholds are the areas in which the power consumption of the vehicle air conditioner 1 including the battery temperature adjusting device 61 is suppressed while the vehicle is in use.
 (13-2)バッテリ温調制限制御(その1)
 次にヒートポンプコントローラ32が実行するバッテリ温調制限制御の一実施例について説明する。ヒートポンプコントローラ32は、バッテリコントローラ73から入手したバッテリ充電率SOCが当該バッテリ充電率SOCの前述した通常域又は警告域にあり、且つ、バッテリ温度Tcellが当該バッテリ温度Tcellの前述した通常域又は警告域にある場合、バッテリ55の温調を実行しない(バッテリ55の温調を不許可)。即ち、例えば空調(優先)+バッテリ冷却モードを実行している場合には、運転モードを冷房モードに切り換える。また、バッテリ加熱モードを実行している場合には、当該バッテリ加熱モードを停止する。
(13-2) Battery temperature regulation control (1)
Next, an embodiment of the battery temperature adjustment limit control executed by the heat pump controller 32 will be described. In the heat pump controller 32, the battery charge rate SOC obtained from the battery controller 73 is in the normal range or warning range of the battery charge rate SOC described above, and the battery temperature Tcell is in the normal range or warning range of the battery temperature Tcell described above. If it is, the temperature control of the battery 55 is not executed (the temperature control of the battery 55 is not permitted). That is, for example, when the air conditioning (priority)+battery cooling mode is being executed, the operation mode is switched to the cooling mode. Further, when the battery heating mode is being executed, the battery heating mode is stopped.
 但し、ヒートポンプコントローラ32は、バッテリ充電率SOCが当該バッテリ充電率SOCの通常域又は警告域にあり、且つ、バッテリ温度Tcellが当該バッテリ温度Tcellの前述した危険域に入った場合、バッテリ55の温調を実行する(バッテリ55の温調を許可)。即ち、上述したように冷房モードに切り換えた後、バッテリ温度Tcellが高温側の危険域(高温側閾値2と上限温度の間)に入った場合には、運転モードを空調(優先)+バッテリ冷却モードに切り換える。また、上述したようにバッテリ加熱モードを停止した後、バッテリ温度Tcellが下側の危険域(低温側閾値2と下限温度の間)に入った場合には、バッテリ加熱モードを再開する。 However, when the battery charge rate SOC is in the normal range or the warning range of the battery charge rate SOC and the battery temperature Tcell enters the above-mentioned dangerous range of the battery temperature Tcell, the heat pump controller 32 determines the temperature of the battery 55. The temperature is adjusted (the temperature of the battery 55 is adjusted). That is, when the battery temperature Tcell enters the high temperature side dangerous area (between the high temperature side threshold value 2 and the upper limit temperature) after switching to the cooling mode as described above, the operation mode is set to air conditioning (priority)+battery cooling. Switch to mode. In addition, after the battery heating mode is stopped as described above, when the battery temperature Tcell enters the lower dangerous area (between the low temperature side threshold value 2 and the lower limit temperature), the battery heating mode is restarted.
 このように、ヒートポンプコントローラ32が、バッテリ55の劣化を示す指標、即ち、バッテリ充電率SOCとバッテリ温度Tcellに基づき、当該バッテリ55の温調を制限するようにすれば、バッテリ充電率SOCとバッテリ温度Tcellによりバッテリ55の状態を判断し、この実施例のようにバッテリ55の温調を許可しないことで、車両の航続可能距離の低下を抑制することが可能となる。 In this way, if the heat pump controller 32 limits the temperature control of the battery 55 based on the index indicating the deterioration of the battery 55, that is, the battery charging rate SOC and the battery temperature Tcell, the battery charging rate SOC and the battery By determining the state of the battery 55 based on the temperature Tcell and not permitting the temperature control of the battery 55 as in this embodiment, it is possible to suppress a decrease in the cruising range of the vehicle.
 例えば、この実施例の如く、バッテリ充電率SOCとバッテリ温度Tcellに対して、バッテリ55の劣化を考慮しない通常域と、この通常域を外れた所定の余裕域として警告域をそれぞれ設定し、ヒートポンプコントローラ32が、バッテリ充電率SOCが当該バッテリ充電率SOCの通常域又は警告域にあり、且つ、バッテリ温度Tcellが当該バッテリ温度Tcellの通常域又は警告域にある場合、バッテリ55の温調を実行しないようにすることで、車両の航続可能距離を優先したバッテリの温調制御を実現することが可能となる。 For example, as in this embodiment, for the battery charge rate SOC and the battery temperature Tcell, a normal region in which the deterioration of the battery 55 is not taken into consideration and a warning region as a predetermined margin region outside the normal region are set, and the heat pump is set. When the battery charging rate SOC is in the normal range or warning range of the battery charging rate SOC and the battery temperature Tcell is in the normal range or warning range of the battery temperature Tcell, the controller 32 executes the temperature adjustment of the battery 55. By not doing so, it becomes possible to realize the temperature control of the battery in which the cruising range of the vehicle is prioritized.
 また、実施例の如くバッテリ温度Tcellに対して、バッテリ55の劣化域として所定の危険域を設定し、ヒートポンプコントローラ32が、バッテリ充電率SOCが当該バッテリ充電率SOCの通常域又は警告域にあり、且つ、バッテリ温度Tcellが危険域に入った場合、バッテリ55の温調を実行するようにすれば、バッテリ充電率SOCが許容できる状態であっても、バッテリ温度Tcellが危険な状態になったときにはバッテリ55の温調を許可して、異常な温度によるバッテリ55の劣化を未然に回避することができるようになる。 Further, as in the embodiment, with respect to the battery temperature Tcell, a predetermined dangerous area is set as the deterioration area of the battery 55, and the heat pump controller 32 determines that the battery charging rate SOC is in the normal area or the warning area of the battery charging rate SOC. When the battery temperature Tcell is in the dangerous range, the temperature of the battery 55 is adjusted so that the battery temperature Tcell becomes dangerous even if the battery charge rate SOC is acceptable. In some cases, the temperature control of the battery 55 is permitted so that deterioration of the battery 55 due to an abnormal temperature can be avoided.
 尚、上記実施例ではバッテリ充電率SOCとバッテリ温度Tcellに通常域と警告域をそれぞれ設定するようにしたが、それに限らず、上記実施例の通常域と警告域を含めた範囲を通常域として扱ってもよい。その場合には、バッテリ充電率SOCが当該バッテリ充電率SOCの通常域にあり、且つ、バッテリ温度Tcellが当該バッテリ温度Tcellの通常域にある場合、バッテリの温調を実行しないようにすることになる。 In the above embodiment, the battery charge rate SOC and the battery temperature Tcell are set to the normal range and the warning range, respectively, but the range including the normal range and the warning range of the above embodiment is set as the normal range. You may handle it. In that case, when the battery charging rate SOC is in the normal range of the battery charging rate SOC and the battery temperature Tcell is in the normal range of the battery temperature Tcell, the temperature control of the battery is not executed. Become.
 但し、上記実施例のように通常域と危険域の間に警告域を設定することで、例えばバッテリ充電率SOCが通常域又は警告域にあっても、バッテリ温度Tcellが警告域に入った段階でバッテリ55の温調を実行(許可)し、或いは、バッテリ温度Tcellが通常域又は警告域にあっても、バッテリ充電率SOCが警告域に入った段階でバッテリ55の温調を実行(許可)するようにすることも可能となり、バッテリ55に応じてより細かい温調制限制御を実現可能となる。 However, by setting the warning range between the normal range and the dangerous range as in the above embodiment, for example, even when the battery charge rate SOC is in the normal range or the warning range, the battery temperature Tcell is in the warning range. The temperature control of the battery 55 is executed (permitted) with the temperature control of the battery 55, or the temperature control of the battery 55 is executed (permitted) when the battery charge rate SOC enters the warning range even if the battery temperature Tcell is in the normal range or the warning range. ) Can be performed, and finer temperature control restriction control can be realized according to the battery 55.
 また、上記実施例のバッテリ温調制限制御はバッテリ冷却(優先)+空調モードや、バッテリ冷却(単独)モードで行っても良い。即ち、バッテリ冷却(優先)+空調モードにおいてバッテリ温調を制限する場合には、運転モードを冷房モードに切り換え、バッテリ冷却(単独)モードでは当該バッテリ冷却(単独)モードを停止することになる。バッテリ55の充電中に実行されるこれらのモードでバッテリ温調制限制御を実行することで、バッテリ55の充電時間や充電のための費用を削減することが期待できる。 Further, the battery temperature adjustment limit control of the above embodiment may be performed in the battery cooling (priority) + air conditioning mode or the battery cooling (single) mode. That is, when the battery temperature control is limited in the battery cooling (priority)+air conditioning mode, the operation mode is switched to the cooling mode, and the battery cooling (single) mode is stopped in the battery cooling (single) mode. By executing the battery temperature control restriction in these modes executed during charging of the battery 55, it can be expected to reduce the charging time of the battery 55 and the cost for charging.
 (13-3)バッテリ温調制限制御(その2)
 次に、ヒートポンプコントローラ32によるバッテリ温調制限制御の他の実施例について説明する。尚、バッテリ充電率SOCやバッテリ温度Tcellの前述した通常域、警告域、危険域についてはこの場合も同様に設定されているものとする。この実施例ではヒートポンプコントローラ32は、GPSナビゲーション装置74から入手される情報に基づき、GPSナビゲーション装置74に設定された充電実施予定地(急速充電器等が設置されている施設)までの距離に基づいてバッテリ55の温調を制限する。
(13-3) Battery temperature adjustment limit control (2)
Next, another embodiment of the battery temperature control limitation control by the heat pump controller 32 will be described. It should be noted that the above-described normal range, warning range, and dangerous range of the battery charging rate SOC and the battery temperature Tcell are set similarly in this case. In this embodiment, the heat pump controller 32 is based on the information obtained from the GPS navigation device 74 and is based on the distance to the planned charging site (a facility where a quick charger or the like is installed) set in the GPS navigation device 74. Limit the temperature control of the battery 55.
 即ち、この実施例ではヒートポンプコントローラ32は、バッテリ充電率SOCが当該バッテリ充電率SOCの前述した通常域又は警告域にあり、且つ、充電実施予定地までの距離が所定の閾値D以上ある場合、バッテリ55の温調を実行しない(バッテリ55の温調を不許可)。この閾値Dは予め設定された所定の長い距離であるものとする。即ち、例えば空調(優先)+バッテリ冷却モードを実行している場合には、運転モードを冷房モードに切り換える。また、バッテリ加熱モードを実行している場合には、当該バッテリ加熱モードを停止する。 That is, in this embodiment, the heat pump controller 32 determines that the battery charging rate SOC is in the above-described normal range or warning range of the battery charging rate SOC, and the distance to the planned charging site is equal to or greater than the predetermined threshold D, The temperature control of the battery 55 is not executed (the temperature control of the battery 55 is not permitted). This threshold D is assumed to be a preset long distance. That is, for example, when the air conditioning (priority)+battery cooling mode is being executed, the operation mode is switched to the cooling mode. Further, when the battery heating mode is being executed, the battery heating mode is stopped.
 但し、ヒートポンプコントローラ32は、バッテリ充電率SOCが当該バッテリ充電率SOCの前述した危険域に入り、且つ、バッテリ温度Tcellが当該バッテリ温度Tcellの前述した危険域に入った場合、バッテリ55の温調を実行する(バッテリ55の温調を許可)。即ち、例えば上述したように冷房モードに切り換えた後、バッテリ充電率SOCが危険域に入り、且つ、バッテリ温度Tcellが高温側の危険域(高温側閾値2と上限温度の間)に入った場合には、運転モードを空調(優先)+バッテリ冷却モードに切り換える。また、上述したようにバッテリ加熱モードを停止した後、バッテリ充電率SOCが危険域に入り、且つ、バッテリ温度Tcellが下側の危険域(低温側閾値2と下限温度の間)に入った場合には、バッテリ加熱モードを再開する。 However, the heat pump controller 32 adjusts the temperature of the battery 55 when the battery charging rate SOC enters the dangerous area of the battery charging rate SOC described above and the battery temperature Tcell enters the dangerous area of the battery temperature Tcell described above. Is executed (the temperature control of the battery 55 is permitted). That is, for example, after switching to the cooling mode as described above, when the battery charge rate SOC enters the dangerous area and the battery temperature Tcell enters the high temperature dangerous area (between the high temperature threshold 2 and the upper limit temperature). In this case, the operation mode is switched to air conditioning (priority)+battery cooling mode. In addition, after the battery heating mode is stopped as described above, when the battery charge rate SOC enters the dangerous range and the battery temperature Tcell enters the lower dangerous range (between the low temperature side threshold 2 and the lower limit temperature) To resume the battery heating mode.
 このように、ヒートポンプコントローラ32が、所定の充電実施予定地に関する情報に基づき、バッテリ充電率SOCが当該バッテリ充電率SOCの通常域又は警告域にあり、且つ、充電実施予定地までの距離が所定の閾値D以上ある場合、バッテリ55の温調を実行しないようにしたので、充電実施予定地までの距離が遠い場合であって、バッテリ55の温調が必要無い状態ではバッテリ55の温調を許可せず、バッテリ55の温調を行うことによる消費電力を削減して、充電実施予定地までたどり着けなくなる不都合を未然に回避することができるようになる。 As described above, the heat pump controller 32 determines that the battery charge rate SOC is in the normal range or the warning range of the battery charge rate SOC based on the information on the predetermined charge execution site, and the distance to the charge execution site is predetermined. If the temperature is not equal to or higher than the threshold value D, the temperature of the battery 55 is not controlled. Therefore, if the temperature of the battery 55 is long and the temperature of the battery 55 is not required, the temperature of the battery 55 is not controlled. It is possible to reduce the power consumption due to the temperature control of the battery 55 without permitting it and avoid the inconvenience of not reaching the scheduled charging site.
 但し、この場合にもバッテリ充電率SOCが当該バッテリ充電率の危険域に入り、且つ、バッテリ温度Tcellが当該バッテリ温度Tcellの危険域に入った場合、ヒートポンプコントローラ32がバッテリ55の温調を実行するようにしているので、バッテリ充電率SOCとバッテリ温度Tcellが危険な状態になったときには、充電実施予定地までの距離が遠くてもバッテリ55の温調を許可して、異常な充電率と温度によるバッテリ55の劣化を回避することができるようになる。 However, also in this case, when the battery charge rate SOC enters the dangerous area of the battery charge rate and the battery temperature Tcell enters the dangerous area of the battery temperature Tcell, the heat pump controller 32 executes the temperature adjustment of the battery 55. Therefore, when the battery charge rate SOC and the battery temperature Tcell are in a dangerous state, the temperature control of the battery 55 is permitted even if the distance to the planned charging site is long, and an abnormal charge rate is detected. It becomes possible to avoid deterioration of the battery 55 due to temperature.
 (13-4)バッテリ温調制限制御(その3)
 尚、上記各実施例に限らず、或いは、それらに加えてバッテリ充電率SOCが低下して下側の危険域(下側閾値2と0%の間)に入った場合、バッテリ55の温調を抑制するようにしてもよい。即ち、この場合には空調(優先)+バッテリ冷却モード、バッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モードにおいて、例えば圧縮機2の前述した圧縮機目標回転数TGNCc、TGNCwを、図12、図14で算出された値よりも所定値だけ低下させ、バッテリ加熱モードでは、熱媒体加熱ヒータ63の目標発熱量ECHtwを、図16で算出された値よりも所定値だけ低下させる。
(13-4) Battery temperature adjustment limit control (3)
Note that the temperature control of the battery 55 is not limited to the above-described embodiments, or in addition to them, when the battery charge rate SOC falls and enters the lower dangerous area (between the lower threshold 2 and 0%). May be suppressed. That is, in this case, in the air conditioning (priority)+battery cooling mode, the battery cooling (priority)+air conditioning mode, and the battery cooling (single) mode, for example, the above-described compressor target rotational speeds TGNCc, TGNCw of the compressor 2 are shown in FIG. 12, the target calorific value ECHtw of the heat medium heating heater 63 is lowered by a predetermined value from the value calculated in FIG. 14, and in the battery heating mode.
 このように、ヒートポンプコントローラ32が、バッテリ充電率SOCが低下して下側の危険域に入った場合、バッテリ55の温調を抑制することで、バッテリ55の充電率が著しく低下している状態ではバッテリ55の温調を抑制し、バッテリ55の温調を行うことによる充電率の更なる低下を抑制することができるようになる。 As described above, when the heat pump controller 32 enters the lower dangerous area due to the decrease in the battery charging rate SOC, the temperature control of the battery 55 is suppressed to significantly reduce the charging rate of the battery 55. Then, the temperature control of the battery 55 can be suppressed, and the further reduction of the charging rate due to the temperature control of the battery 55 can be suppressed.
 (14)バッテリ劣化状態SOHに基づくバッテリ55の温調制御
 次に、図19を参照しながらバッテリ劣化状態SOHに基づくバッテリ55の温調制御について説明する。この場合、実施例のヒートポンプコントローラ32には、図19に示す如く、バッテリ劣化状態SOHの所定の閾値SOH1が設定されている。図19では、SOH=100%を劣化前の初期の状態とした場合に、SOHがX1%(例えば80%等)まで低下した値を閾値SOH1とし、この閾値SOH1以下、又は、閾値SOH1より低い領域を劣化後の領域としている。そして、劣化後の領域以上、或いは、それより高い領域が、バッテリ55の劣化を考慮しない領域となる。
(14) Temperature Control Control of Battery 55 Based on Battery Degradation State SOH Next, temperature control control of the battery 55 based on the battery degradation state SOH will be described with reference to FIG. In this case, the heat pump controller 32 of the embodiment is set with a predetermined threshold value SOH1 of the battery deterioration state SOH, as shown in FIG. In FIG. 19, when SOH=100% is set as the initial state before deterioration, a value at which SOH is reduced to X1% (for example, 80%) is set as a threshold value SOH1, which is equal to or lower than the threshold value SOH1 or lower than the threshold value SOH1. The area is the area after deterioration. Then, a region equal to or higher than the region after deterioration or a region higher than that is a region in which the deterioration of the battery 55 is not considered.
 そして、ヒートポンプコントローラ32は、上記各実施例の温調制限制御を実行しているなかで、或いは、それらに代えて、バッテリ劣化状態SOHが図19の閾値SOH1以下、又は、SOH1より低下した場合、バッテリ55の温調を行うようにする。即ち、冷房モードを実行しているときであって、バッテリ温度Tcellが例えば高温側の警告域にある場合には、空調(優先)+バッテリ冷却モードに切り換え、充電中にはバッテリ冷却(単独)モード、又は、バッテリ冷却(優先)+空調モードを実行する。また、バッテリ温度Tcellが例えば低温側の警告域にある場合には、バッテリ加熱モードを実行する。 Then, when the heat pump controller 32 is executing the temperature adjustment restriction control of each of the above-described embodiments, or in place of them, the battery deterioration state SOH is equal to or lower than the threshold value SOH1 in FIG. 19, or is lower than SOH1. , The temperature of the battery 55 is adjusted. That is, when the cooling mode is being executed and the battery temperature Tcell is in the high temperature warning zone, for example, the mode is switched to the air conditioning (priority)+battery cooling mode, and the battery cooling (single) during charging is performed. Mode, or battery cooling (priority)+air conditioning mode is executed. Further, when the battery temperature Tcell is in the warning region on the low temperature side, for example, the battery heating mode is executed.
 このように、バッテリ劣化状態SOHが所定の閾値SOH1以下、又は、所定の閾値SOH1より低下した場合、バッテリ55の温調を実行するようにすることで、バッテリ55の劣化状態を示すバッテリ劣化状態SOHが低下した場合には、バッテリ55の温調を行ってそれ以上の劣化の進行を抑制することができるようになる。 As described above, when the battery deterioration state SOH is equal to or lower than the predetermined threshold value SOH1 or is lower than the predetermined threshold value SOH1, the temperature adjustment of the battery 55 is executed, thereby indicating the deterioration state of the battery 55. When the SOH is lowered, the temperature of the battery 55 is adjusted to prevent the deterioration from further progressing.
 また、上記各実施例の如く冷媒回路R(の一部)を冷却装置として設け、バッテリ55を冷却可能とすることで、バッテリ55の異常な高温による劣化を効果的に解消若しくは抑制することができるようになる。更に、実施例の如く熱媒体加熱ヒータ63を加熱装置として設け、バッテリ55を加熱可能とすることで、バッテリ55の異常な低温による劣化を効果的に解消若しくは抑制することができるようになる。 Further, by providing (a part of) the refrigerant circuit R as a cooling device as in each of the above-described embodiments and allowing the battery 55 to be cooled, it is possible to effectively eliminate or suppress the deterioration of the battery 55 due to an abnormally high temperature. become able to. Furthermore, by providing the heat medium heater 63 as a heating device and heating the battery 55 as in the embodiment, it is possible to effectively eliminate or suppress the deterioration of the battery 55 due to an abnormal low temperature.
 そして、本発明の車両用空気調和装置1によれば、バッテリ温度調整装置61と、冷媒を圧縮する圧縮機2と、車室内に供給する空気と冷媒を熱交換させるための放熱器4や吸熱器9と、車室外に設けられた室外熱交換器7を備えており、バッテリ温度調整装置61は、冷媒を用いてバッテリ55を冷却可能とされているので、車室内を空調しながら、円滑にバッテリ55の冷却を実行し、バッテリ55の劣化を解消若しくは抑制することができるようになる。 Then, according to the vehicle air conditioner 1 of the present invention, the battery temperature adjusting device 61, the compressor 2 for compressing the refrigerant, the radiator 4 for exchanging heat between the refrigerant supplied to the vehicle interior and the refrigerant, and the heat absorption. Since the battery temperature adjusting device 61 can cool the battery 55 by using the refrigerant, the battery temperature adjusting device 61 can cool the battery 55 smoothly while air conditioning the inside of the vehicle. Then, the battery 55 can be cooled and the deterioration of the battery 55 can be eliminated or suppressed.
 尚、実施例では車室内を空調する車両用空気調和装置1に本発明のバッテリ温度調整装置61を設けたが、請求項12以外の発明ではそれに限らず、車室内の空調を行わず、バッテリ55の温度調整のみを行うバッテリ温度調整装置にも有効である。また、バッテリ55を冷却する冷却装置も、実施例の冷媒回路Rに限らず、例えばペルチェ素子等の電子冷却装置を用いる場合にも本発明は有効である。 In the embodiment, the vehicle air conditioner 1 that air-conditions the vehicle interior is provided with the battery temperature adjusting device 61 of the present invention. However, the invention other than claim 12 is not limited to this, and the vehicle air conditioning is not performed, and the battery It is also effective for a battery temperature adjusting device that only adjusts the temperature of 55. Further, the cooling device for cooling the battery 55 is not limited to the refrigerant circuit R of the embodiment, and the present invention is effective when an electronic cooling device such as a Peltier element is used.
 また、前述した実施例ではバッテリ55の劣化を示す指標としてバッテリ充電率SOCとバッテリ温度Tcellを採用したが、それに限らず、前述したバッテリ劣化状態SOHや、放電深度DoD、サイクル劣化、保存劣化を採用しても良い。その場合には、バッテリ劣化状態SOHや、放電深度DoD、サイクル劣化、保存劣化がバッテリ55の劣化を考慮しない領域にある場合には、温調を行わず、或いは、制限することになる。 Further, in the above-described embodiment, the battery charge rate SOC and the battery temperature Tcell are adopted as the indicators showing the deterioration of the battery 55, but the present invention is not limited to this, and the battery deterioration state SOH, the discharge depth DoD, the cycle deterioration, and the storage deterioration described above are used. You may adopt it. In that case, if the battery deterioration state SOH, the depth of discharge DoD, the cycle deterioration, and the storage deterioration are in regions where the deterioration of the battery 55 is not considered, the temperature control is not performed or is limited.
 更に、実施例で説明した冷媒回路Rの構成や数値はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。 Furthermore, it goes without saying that the configuration and numerical values of the refrigerant circuit R described in the embodiments are not limited to those and can be changed without departing from the spirit of the present invention.
 1 車両用空気調和装置
 2 圧縮機
 3 空気流通路
 4 放熱器(室内熱交換器)
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器(室内熱交換器)
 11 制御装置
 32 ヒートポンプコントローラ(制御装置の一部を構成)
 35 電磁弁
 45 空調コントローラ(制御装置の一部を構成)
 48 吸熱器温度センサ
 55 バッテリ
 61 バッテリ温度調整装置
 64 冷媒-熱媒体熱交換器
 68 補助膨張弁
 69 電磁弁
 73 バッテリコントローラ
 74 GPSナビゲーション装置
 76 熱媒体温度センサ
 77 バッテリ温度センサ
 R 冷媒回路
1 Vehicle Air Conditioner 2 Compressor 3 Air Flow Path 4 Radiator (Indoor Heat Exchanger)
6 Outdoor expansion valve 7 Outdoor heat exchanger 8 Indoor expansion valve 9 Heat absorber (indoor heat exchanger)
11 control device 32 heat pump controller (constituting a part of control device)
35 solenoid valve 45 air conditioning controller (constituting a part of control device)
48 Heat Sink Temperature Sensor 55 Battery 61 Battery Temperature Adjusting Device 64 Refrigerant-Heat Medium Heat Exchanger 68 Auxiliary Expansion Valve 69 Electromagnetic Valve 73 Battery Controller 74 GPS Navigation Device 76 Heat Medium Temperature Sensor 77 Battery Temperature Sensor R Refrigerant Circuit

Claims (12)

  1.  車両に搭載されたバッテリより給電されて動作すると共に、当該バッテリの温度を調整するバッテリ温度調整装置であって、
     制御装置を備え、
     該制御装置は、前記バッテリの劣化を示す指標に基づき、当該バッテリの温調を制限することを特徴とする車両のバッテリ温度調整装置。
    A battery temperature adjusting device that operates by being supplied with power from a battery mounted on a vehicle and that adjusts the temperature of the battery,
    Equipped with a control device,
    The battery temperature adjusting device for a vehicle, wherein the control device limits temperature control of the battery based on an index indicating deterioration of the battery.
  2.  前記バッテリの劣化を示す指標は、バッテリ充電率SOC、及び/又は、バッテリ温度Tcellであることを特徴とする請求項1に記載の車両のバッテリ温度調整装置。 The battery temperature adjusting device for a vehicle according to claim 1, wherein the index indicating the deterioration of the battery is a battery charging rate SOC and/or a battery temperature Tcell.
  3.  前記バッテリの劣化を示す指標であるバッテリ充電率SOCとバッテリ温度Tcellに対して、前記バッテリの劣化を考慮しない通常域がそれぞれ設定されており、
     前記制御装置は、前記バッテリ充電率SOCが当該バッテリ充電率SOCの前記通常域にあり、且つ、前記バッテリ温度Tcellが当該バッテリ温度Tcellの前記通常域にある場合、前記バッテリの温調を実行しないことを特徴とする請求項1又は請求項2に記載の車両のバッテリ温度調整装置。
    For the battery charge rate SOC and the battery temperature Tcell, which are indicators of the deterioration of the battery, normal ranges are set that do not consider the deterioration of the battery.
    When the battery charge rate SOC is in the normal range of the battery charge rate SOC and the battery temperature Tcell is in the normal range of the battery temperature Tcell, the control device does not execute temperature control of the battery. The battery temperature adjusting device for a vehicle according to claim 1 or 2, characterized in that.
  4.  前記バッテリ充電率SOCと前記バッテリ温度Tcellに対して、前記通常域を外れた所定の余裕域として警告域がそれぞれ設定されており、
     前記制御装置は、前記バッテリ充電率SOCが当該バッテリ充電率SOCの前記通常域又は警告域にあり、且つ、前記バッテリ温度Tcellが当該バッテリ温度Tcellの前記通常域又は警告域にある場合、前記バッテリの温調を実行しないことを特徴とする請求項3に記載の車両のバッテリ温度調整装置。
    For the battery charge rate SOC and the battery temperature Tcell, warning areas are respectively set as predetermined margin areas outside the normal area,
    When the battery charging rate SOC is in the normal range or warning range of the battery charging rate SOC and the battery temperature Tcell is in the normal range or warning range of the battery temperature Tcell, 4. The vehicle battery temperature control device according to claim 3, wherein the temperature control is not executed.
  5.  前記バッテリ温度Tcellに対して、前記バッテリの劣化域として所定の危険域が設定されており、
     前記制御装置は、前記バッテリ充電率SOCが当該バッテリ充電率SOCの前記通常域又は警告域にあり、且つ、前記バッテリ温度Tcellが前記危険域に入った場合、前記バッテリの温調を実行することを特徴とする請求項3又は請求項4に記載の車両のバッテリ温度調整装置。
    A predetermined dangerous area is set as the deterioration area of the battery with respect to the battery temperature Tcell,
    When the battery charge rate SOC is in the normal range or the warning range of the battery charge rate SOC and the battery temperature Tcell enters the dangerous range, the control device performs the temperature control of the battery. The battery temperature adjusting device for a vehicle according to claim 3 or 4, characterized in that.
  6.  前記制御装置は、所定の充電実施予定地に関する情報に基づき、前記バッテリ充電率SOCが当該バッテリ充電率SOCの前記通常域又は警告域にあり、且つ、前記充電実施予定地までの距離が所定の閾値D以上ある場合、前記バッテリの温調を実行しないことを特徴とする請求項3乃至請求項5のうちの何れかに記載の車両のバッテリ温度調整装置。 The control device is based on information about a predetermined charging execution site, the battery charging rate SOC is in the normal range or the warning range of the battery charging rate SOC, and the distance to the charging execution planned site is predetermined. The battery temperature control device for a vehicle according to claim 3, wherein the temperature control of the battery is not performed when the threshold value is equal to or more than a threshold value D.
  7.  前記バッテリ充電率SOCと前記バッテリ温度Tcellに対して、前記バッテリの劣化域として所定の危険域がそれぞれ設定されており、
     前記制御装置は、前記バッテリ充電率SOCが当該バッテリ充電率の前記危険域に入り、且つ、前記バッテリ温度Tcellが当該バッテリ温度Tcellの前記危険域に入った場合、前記バッテリの温調を実行することを特徴とする請求項6に記載の車両のバッテリ温度調整装置。
    With respect to the battery charging rate SOC and the battery temperature Tcell, a predetermined dangerous area is set as a deterioration area of the battery,
    When the battery charging rate SOC enters the dangerous area of the battery charging rate and the battery temperature Tcell enters the dangerous area of the battery temperature Tcell, the control device executes temperature control of the battery. The battery temperature adjusting device for a vehicle according to claim 6, wherein:
  8.  前記バッテリの劣化を示す指標であるバッテリ充電率SOCに対して、当該バッテリ充電率SOCが減少したときの前記バッテリの劣化域として所定の危険域が設定されており、
     前記制御装置は、前記バッテリ充電率SOCが低下して前記危険域に入った場合、前記バッテリの温調を抑制することを特徴とする請求項1乃至請求項7のうちの何れかに記載の車両のバッテリ温度調整装置。
    A predetermined dangerous area is set as a deterioration area of the battery when the battery charging rate SOC decreases, with respect to the battery charging rate SOC that is an index indicating the deterioration of the battery,
    The said control apparatus suppresses the temperature control of the said battery, when the said battery charge rate SOC falls into the said dangerous area, The control apparatus in any one of Claim 1 thru|or 7 characterized by the above-mentioned. Vehicle battery temperature controller.
  9.  前記制御装置は、バッテリ劣化状態SOHが所定の閾値SOH1以下、又は、所定の閾値SOH1より低下した場合、前記バッテリの温調を実行することを特徴とする請求項1乃至請求項8のうちの何れかに記載の車両のバッテリ温度調整装置。 9. The controller according to claim 1, wherein the control device executes temperature control of the battery when the battery deterioration state SOH is equal to or lower than a predetermined threshold value SOH1 or lower than a predetermined threshold value SOH1. The battery temperature adjustment device for a vehicle according to any one of claims.
  10.  冷却装置を備え、該冷却装置を用いて前記バッテリを冷却可能とされていることを特徴とする請求項1乃至請求項9のうちの何れかに記載の車両のバッテリ温度調整装置。 10. The vehicle battery temperature adjusting device according to any one of claims 1 to 9, further comprising a cooling device, wherein the battery can be cooled by using the cooling device.
  11.  加熱装置を備え、該加熱装置を用いて前記バッテリを加熱可能とされていることを特徴とする請求項1乃至請求項10のうちの何れかに記載の車両のバッテリ温度調整装置。 The vehicle battery temperature adjusting device according to any one of claims 1 to 10, further comprising a heating device, wherein the battery can be heated by using the heating device.
  12.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気と前記冷媒を熱交換させるための室内熱交換器と、
     車室外に設けられた室外熱交換器を備えて前記車室内を空調すると共に、
     前記バッテリ温度調整装置は、前記冷媒を用いて前記バッテリを冷却可能とされていることを特徴とする請求項1乃至請求項11のうちの何れかに記載の車両のバッテリ温度調整装置を備えた車両用空気調和装置。
    A compressor for compressing the refrigerant,
    An indoor heat exchanger for exchanging heat with the refrigerant supplied to the vehicle interior,
    While air-conditioning the interior of the vehicle with an outdoor heat exchanger provided outside the vehicle,
    12. The battery temperature adjusting device for a vehicle according to claim 1, wherein the battery temperature adjusting device is capable of cooling the battery using the refrigerant. Vehicle air conditioner.
PCT/JP2019/048671 2019-01-22 2019-12-12 Vehicle battery temperature adjusting device, and vehicle air conditioning device provided with same WO2020153032A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980089005.7A CN113302780A (en) 2019-01-22 2019-12-12 Battery temperature adjusting device for vehicle and vehicle air conditioner comprising same
DE112019006706.0T DE112019006706T5 (en) 2019-01-22 2019-12-12 BATTERY TEMPERATURE REGULATING DEVICE OF A VEHICLE AND VEHICLE AIR CONDITIONING SYSTEM THAT HAS THIS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-008467 2019-01-22
JP2019008467A JP7213698B2 (en) 2019-01-22 2019-01-22 VEHICLE BATTERY TEMPERATURE ADJUSTMENT DEVICE AND VEHICLE AIR CONDITIONER WITH SAME

Publications (1)

Publication Number Publication Date
WO2020153032A1 true WO2020153032A1 (en) 2020-07-30

Family

ID=71736723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048671 WO2020153032A1 (en) 2019-01-22 2019-12-12 Vehicle battery temperature adjusting device, and vehicle air conditioning device provided with same

Country Status (4)

Country Link
JP (1) JP7213698B2 (en)
CN (1) CN113302780A (en)
DE (1) DE112019006706T5 (en)
WO (1) WO2020153032A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11912164B2 (en) 2021-09-27 2024-02-27 Ford Global Technologies, Llc Electrified vehicle with battery thermal management system configured to adjust temperature thresholds based on battery state of health

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11673448B2 (en) * 2021-04-13 2023-06-13 Nikola Corporation Heat pump system for electric vehicle
JP2023044323A (en) 2021-09-17 2023-03-30 株式会社豊田自動織機 control system
CN217145571U (en) * 2021-12-16 2022-08-09 北京车和家汽车科技有限公司 Electric vehicle and heat pump system thereof
KR20230106347A (en) * 2022-01-06 2023-07-13 주식회사 엘지에너지솔루션 Charging control method of battery pack and battery system using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007049771A (en) * 2005-08-05 2007-02-22 Nissan Motor Co Ltd Vehicle battery cooling apparatus
JP2010124634A (en) * 2008-11-20 2010-06-03 Sumitomo Heavy Ind Ltd Charge/discharge controller
JP2011075458A (en) * 2009-09-30 2011-04-14 Gs Yuasa Corp Battery information storage device, battery diagnosis device, battery charging device, and battery information display device
JP2016167420A (en) * 2015-03-10 2016-09-15 富士重工業株式会社 Temperature control device for on-vehicle secondary battery
JP2018129887A (en) * 2017-02-06 2018-08-16 株式会社Subaru Information processor of vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012016078A (en) * 2010-06-29 2012-01-19 Hitachi Ltd Charging control system
JP5783080B2 (en) * 2012-02-13 2015-09-24 株式会社デンソー Control device for hybrid vehicle
JP5860360B2 (en) 2012-08-13 2016-02-16 カルソニックカンセイ株式会社 Thermal management system for electric vehicles
JP5860361B2 (en) 2012-08-13 2016-02-16 カルソニックカンセイ株式会社 Thermal management system for electric vehicles
JP6125312B2 (en) 2013-04-26 2017-05-10 サンデンホールディングス株式会社 Air conditioner for vehicles
JP2018107923A (en) * 2016-12-27 2018-07-05 ダイムラー・アクチェンゲゼルシャフトDaimler AG Battery cooling device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007049771A (en) * 2005-08-05 2007-02-22 Nissan Motor Co Ltd Vehicle battery cooling apparatus
JP2010124634A (en) * 2008-11-20 2010-06-03 Sumitomo Heavy Ind Ltd Charge/discharge controller
JP2011075458A (en) * 2009-09-30 2011-04-14 Gs Yuasa Corp Battery information storage device, battery diagnosis device, battery charging device, and battery information display device
JP2016167420A (en) * 2015-03-10 2016-09-15 富士重工業株式会社 Temperature control device for on-vehicle secondary battery
JP2018129887A (en) * 2017-02-06 2018-08-16 株式会社Subaru Information processor of vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11912164B2 (en) 2021-09-27 2024-02-27 Ford Global Technologies, Llc Electrified vehicle with battery thermal management system configured to adjust temperature thresholds based on battery state of health

Also Published As

Publication number Publication date
JP7213698B2 (en) 2023-01-27
DE112019006706T5 (en) 2021-10-07
JP2020119694A (en) 2020-08-06
CN113302780A (en) 2021-08-24

Similar Documents

Publication Publication Date Title
WO2020153032A1 (en) Vehicle battery temperature adjusting device, and vehicle air conditioning device provided with same
JP7300264B2 (en) Vehicle air conditioner
JP7221639B2 (en) Vehicle air conditioner
WO2020235261A1 (en) Vehicle air conditioner
WO2020129494A1 (en) Vehicle air conditioning device
WO2020129495A1 (en) Vehicle air conditioning device
US11745565B2 (en) In-vehicle device temperature adjusting device and vehicle air conditioning device provided with same
JP2020179707A (en) Vehicular control system
WO2020110508A1 (en) Vehicle battery temperature adjustment apparatus and vehicle air-conditioner equipped with same
WO2020129493A1 (en) Vehicle air-conditioning apparatus
WO2020166274A1 (en) Vehicle air conditioner
WO2020090255A1 (en) Air conditioning device for vehicle
WO2020137235A1 (en) Vehicle air-conditioning device
WO2020100410A1 (en) Vehicle air-conditioning device
JP7280689B2 (en) Vehicle air conditioner
WO2020100524A1 (en) Vehicle air-conditioning device
WO2021199776A1 (en) Air conditioner for vehicle
WO2020179492A1 (en) Vehicle air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911726

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19911726

Country of ref document: EP

Kind code of ref document: A1