JP7300264B2 - Vehicle air conditioner - Google Patents

Vehicle air conditioner Download PDF

Info

Publication number
JP7300264B2
JP7300264B2 JP2018221266A JP2018221266A JP7300264B2 JP 7300264 B2 JP7300264 B2 JP 7300264B2 JP 2018221266 A JP2018221266 A JP 2018221266A JP 2018221266 A JP2018221266 A JP 2018221266A JP 7300264 B2 JP7300264 B2 JP 7300264B2
Authority
JP
Japan
Prior art keywords
temperature
mode
compressor
air
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018221266A
Other languages
Japanese (ja)
Other versions
JP2020083099A (en
Inventor
孝史 青木
竜 宮腰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Holdings Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2018221266A priority Critical patent/JP7300264B2/en
Priority to DE112019005898.3T priority patent/DE112019005898B4/en
Priority to PCT/JP2019/041093 priority patent/WO2020110509A1/en
Priority to CN201980074264.2A priority patent/CN113015639A/en
Publication of JP2020083099A publication Critical patent/JP2020083099A/en
Application granted granted Critical
Publication of JP7300264B2 publication Critical patent/JP7300264B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00949Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • B60H2001/3261Cooling devices information from a variable is obtained related to temperature of the air at an evaporating unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3266Cooling devices information from a variable is obtained related to the operation of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/327Cooling devices output of a control signal related to a compressing unit
    • B60H2001/3272Cooling devices output of a control signal related to a compressing unit to control the revolving speed of a compressor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/328Cooling devices output of a control signal related to an evaporating unit
    • B60H2001/3283Cooling devices output of a control signal related to an evaporating unit to control the refrigerant flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/005Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric storage means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、車両の車室内を空調するヒートポンプ方式の空気調和装置に関するものである。 TECHNICAL FIELD The present invention relates to a heat pump type air conditioner for air conditioning the interior of a vehicle.

近年の環境問題の顕在化から、車両に搭載されたバッテリから供給される電力で走行用モータを駆動する電気自動車やハイブリッド自動車等の車両が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、圧縮機と、放熱器と、吸熱器(蒸発器)と、室外熱交換器が接続された冷媒回路を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において蒸発(吸熱)させることで暖房し、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器において蒸発(吸熱)させることで冷房する等して車室内を空調するものが開発されている(例えば、特許文献1参照)。 2. Description of the Related Art Due to the emergence of environmental problems in recent years, vehicles such as electric vehicles and hybrid vehicles in which a driving motor is driven by electric power supplied from a battery mounted on the vehicle have become widespread. An air conditioner that can be applied to such a vehicle includes a refrigerant circuit in which a compressor, a radiator, a heat absorber (evaporator), and an outdoor heat exchanger are connected. Heat is generated by radiating heat from the discharged refrigerant in a radiator, and evaporating (absorbing heat) the refrigerant that has radiated heat in this radiator in an outdoor heat exchanger. A device for air-conditioning a vehicle interior by cooling by evaporating (absorbing heat) in a vessel has been developed (see, for example, Patent Document 1).

一方、例えばバッテリは充放電による自己発熱等で高温となった環境下で使用されると性能が低下すると共に、劣化が進行し、やがては作動不良を起こして破損する危険性がある。そこで、バッテリを冷却するための熱交換器(蒸発器)を設け、冷媒回路を循環する冷媒をこの熱交換器に循環させることでバッテリを冷却することができるようにしたものも開発されている(例えば、特許文献2、特許文献3参照)。 On the other hand, for example, when a battery is used in a high-temperature environment due to self-heating due to charging and discharging, its performance deteriorates and deterioration progresses, and eventually there is a risk of malfunction and damage. Therefore, a battery has been developed in which a heat exchanger (evaporator) is provided to cool the battery, and the refrigerant circulating in the refrigerant circuit is circulated through this heat exchanger to cool the battery. (For example, see Patent Document 2 and Patent Document 3).

特開2014-213765号公報JP 2014-213765 A 特許第5860360号公報Japanese Patent No. 5860360 特許第5860361号公報Japanese Patent No. 5860361

上記のように、複数の蒸発器を有する車両用空気調和装置では、例えば、吸熱器(蒸発器)で冷媒を蒸発させて車室内を空調している運転モードから被温調対象の冷却が必要となって被温調対象用熱交換器(蒸発器)にも冷媒を流す運転モードに移行した直後は、それらを含む熱交換の経路が増えるため、圧縮機の能力(回転数)が不足する状態となり、車室内に吹き出される空気の温度が一時的に高くなってしまうと共に、被温調対象の冷却も遅延するようになる。 As described above, in a vehicle air conditioner having a plurality of evaporators, for example, it is necessary to cool the object to be temperature controlled from the operation mode in which the vehicle interior is air-conditioned by evaporating the refrigerant with the heat absorber (evaporator). Immediately after switching to the operation mode in which the refrigerant is also passed through the heat exchanger (evaporator) for the temperature control object, the compressor capacity (rotational speed) is insufficient due to the increase in heat exchange paths including them. As a result, the temperature of the air blown into the passenger compartment temporarily rises, and the cooling of the object to be temperature controlled is also delayed.

また、被温調対象用熱交換器(蒸発器)に冷媒を流す運転モードから車室内の冷房を必要となって吸熱器(蒸発器)にも冷媒を流す運転モードに移行した直後も、圧縮機の能力が不足する状態となるため、車室内の空調が遅延すると共に、被温調対象の冷却能力も一時的に低下し、何れの場合にも使用者に不快感を与え、被温調対象の冷却にも支障を来すという問題があった。 In addition, immediately after switching from the operation mode in which the refrigerant flows to the heat exchanger (evaporator) for the temperature control target to the operation mode in which the cooling of the passenger compartment is required and the refrigerant also flows to the heat absorber (evaporator), the compression Since the capacity of the machine becomes insufficient, the air conditioning in the passenger compartment is delayed, and the cooling capacity of the object to be temperature controlled is temporarily reduced. There was also the problem of hindering the cooling of the target.

本発明は、係る従来の技術的課題を解決するために成されたものであり、冷媒を蒸発させる蒸発器の数が増える運転モードに移行する際の圧縮機の能力不足を未然に回避することができる車両用空気調和装置を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made to solve such conventional technical problems, and is to prevent compressor capacity shortage when shifting to an operation mode in which the number of evaporators that evaporate refrigerant increases. An object of the present invention is to provide a vehicle air conditioner capable of

本発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、冷媒を蒸発させて車室内に供給する空気を冷却するための吸熱器と、冷媒を蒸発させて車両に搭載された被温調対象を冷却するための被温調対象用熱交換器と、吸熱器への冷媒の流通を制御する吸熱器用弁装置と、被温調対象用熱交換器への冷媒の流通を制御する被温調対象用弁装置と、制御装置を少なくとも備えて車室内を空調するものであって、制御装置は少なくとも、吸熱器用弁装置を開いて吸熱器で冷媒を蒸発させ、当該吸熱器の温度に基づいて圧縮機の回転数を制御し、被温調対象用弁装置を閉じる空調単独モードと、被温調対象用弁装置を開いて被温調対象用熱交換器で冷媒を蒸発させ、当該被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、吸熱器用弁装置を閉じる被温調対象冷却単独モードと、吸熱器用弁装置を開き、吸熱器の温度に基づいて圧縮機の回転数を制御し、被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて被温調対象用弁装置を開閉制御して、吸熱器及び被温調対象用熱交換器で冷媒を蒸発させる空調優先+被温調対象冷却モードと、被温調対象用弁装置を開き、被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、吸熱器の温度に基づいて吸熱器用弁装置を開閉制御して、被温調対象用熱交換器及び吸熱器で冷媒を蒸発させる被温調対象冷却優先+空調モードを有し、それらを切り換えて実行すると共に、空調単独モードから空調優先+被温調対象冷却モードに移行する際、及び、被温調対象冷却単独モードから被温調対象冷却優先+空調モードに移行する際、移行する前に、圧縮機の回転数を上昇させる圧縮機回転数上昇制御を実行することを特徴とする A vehicle air conditioner of the present invention comprises a compressor for compressing a refrigerant, a heat absorber for evaporating the refrigerant and cooling the air supplied to the vehicle interior, and a heated air conditioner mounted on the vehicle for evaporating the refrigerant. A temperature control target heat exchanger for cooling the temperature control target, a heat absorber valve device for controlling the flow of refrigerant to the heat absorber, and a temperature control target heat exchanger for controlling the flow of refrigerant to the heat absorber. A vehicle interior is air-conditioned by at least a valve device for temperature control and a control device, wherein the control device at least opens the heat absorber valve device to cause the refrigerant to evaporate in the heat absorber to reach the temperature of the heat absorber. Based on this, the number of revolutions of the compressor is controlled, and the temperature control object valve device is closed. Controlling the number of revolutions of the compressor based on the temperature of the heat exchanger for the temperature controlled object or the temperature of the object cooled by it, and closing the heat absorber valve device in a temperature controlled target cooling single mode, and opening the heat absorber valve device controlling the rotation speed of the compressor based on the temperature of the heat absorber, controlling the opening and closing of the valve device for the temperature control target based on the temperature of the temperature control target heat exchanger or the temperature of the target cooled by it, Air conditioning priority + temperature controlled object cooling mode in which refrigerant is evaporated in a heat absorber and a temperature controlled object heat exchanger, and a temperature controlled object valve device is opened, and the temperature controlled object heat exchanger or the The number of revolutions of the compressor is controlled based on the temperature of the object to be controlled, the valve device for the heat absorber is controlled to open and close based on the temperature of the heat absorber, and the heat exchanger for the temperature control object and the heat absorber evaporate the refrigerant. It has a temperature control target cooling priority + air conditioning mode, and when switching from the air conditioning single mode to the air conditioning priority + temperature control target cooling mode, and from the temperature control target cooling single mode to the temperature control mode The present invention is characterized in that when shifting to the adjustment target cooling priority + air conditioning mode, before shifting, compressor rotation speed increase control for increasing the rotation speed of the compressor is executed .

請求項2の発明の車両用空気調和装置は、上記発明において制御装置は、空調単独モードでは吸熱器の目標温度に基づくフィードフォワード演算により圧縮機の目標回転数を算出し、被温調対象冷却単独モードでは被温調対象用熱交換器又はそれにより冷却される対象の目標温度に基づくフィードフォワード演算により圧縮機の目標回転数を算出すると共に、圧縮機回転数上昇制御では、各目標温度を低下させることにより、圧縮機の目標回転数を上昇させることを特徴とする。 In the vehicle air conditioner of the invention of claim 2 , in the above invention, the control device calculates the target rotation speed of the compressor by feedforward calculation based on the target temperature of the heat absorber in the air conditioning single mode, In the single mode, the target rotation speed of the compressor is calculated by feedforward calculation based on the target temperature of the heat exchanger for temperature control or the object cooled by it, and in the compressor rotation speed increase control, each target temperature is calculated. It is characterized by increasing the target rotational speed of the compressor by decreasing it.

請求項3の発明の車両用空気調和装置は、請求項1又は請求項2の発明において制御装置は、空調単独モード、又は、被温調対象冷却単独モードにおいて、所定のモード移行要求が入力された場合、圧縮機回転数上昇制御により圧縮機の回転数を上昇させた後、空調優先+被温調対象冷却モード、又は、被温調対象冷却優先+空調モードに移行することを特徴とする。 In the vehicle air conditioner of the invention of claim 3 , in the invention of claim 1 or claim 2, the control device receives a predetermined mode transition request in the air conditioning single mode or the temperature controlled cooling single mode. In this case, after the rotation speed of the compressor is increased by compressor rotation speed increase control, the mode is shifted to the air conditioning priority + temperature controlled target cooling mode or the temperature controlled target cooling priority + air conditioning mode. .

請求項4の発明の車両用空気調和装置は、請求項1又は請求項2の発明において被温調対象は車両に搭載されたバッテリであり、車両の走行用モータはバッテリからの給電により駆動され、制御装置は、空調単独モードにおいて、所定のモード移行要求が入力された場合、空調優先+被温調対象冷却モードに移行すると共に、空調単独モードにおいて、走行用モータの出力が所定の閾値以上となった場合、又は、走行用モータの出力が上昇する傾きが所定の閾値以上となった場合、圧縮機回転数上昇制御を実行することを特徴とする。 According to the vehicle air conditioner of the invention of claim 4 , in the invention of claim 1 or claim 2, the object to be temperature controlled is a battery mounted on the vehicle, and the motor for running the vehicle is driven by power supply from the battery. When a predetermined mode shift request is input in the air conditioning independent mode, the control device shifts to the air conditioning priority + temperature controlled cooling mode, and in the air conditioning independent mode, the output of the driving motor is equal to or greater than a predetermined threshold. or when the slope of the increase in the output of the traveling motor is greater than or equal to a predetermined threshold value, the compressor rotational speed increase control is executed.

請求項5の発明の車両用空気調和装置は、請求項1、請求項2又は請求項4の発明において制御装置は、空調単独モードにおいて、所定のモード移行要求が入力された場合、空調優先+被温調対象冷却モードに移行すると共に、空調単独モードにおいて、被温調対象の温度が上昇する傾きが所定の閾値以上となった場合、圧縮機回転数上昇制御を実行することを特徴とする。 In the vehicle air conditioner of the invention of claim 5 , in the invention of claim 1, claim 2, or claim 4, the control device, in the air conditioning independent mode, when a predetermined mode shift request is input, air conditioning priority + Compressor rotation speed increase control is executed when the slope of temperature increase of the temperature controlled target becomes equal to or greater than a predetermined threshold value in the air conditioning single mode while shifting to the temperature controlled target cooling mode. .

請求項6の発明の車両用空気調和装置は、請求項1、請求項2、請求項4又は請求項5の発明において制御装置は、空調単独モードにおいて、所定のモード移行要求が入力された場合、空調優先+被温調対象冷却モードに移行すると共に、空調単独モードにおいて、被温調対象の発熱量が上昇する傾きが所定の閾値以上となった場合、圧縮機回転数上昇制御を実行することを特徴とする。 In the vehicle air conditioner of the invention of claim 6 , in the invention of claim 1, claim 2, claim 4, or claim 5, the control device, in the air conditioning independent mode, when a predetermined mode shift request is input, , the air conditioning priority + temperature controlled target cooling mode, and in the air conditioning single mode, when the slope of the increase in the amount of heat generated by the temperature controlled target is equal to or greater than a predetermined threshold value, the compressor rotation speed increase control is executed. It is characterized by

請求項7の発明の車両用空気調和装置は、請求項1、請求項2、請求項4乃至請求項6の発明において制御装置は、空調単独モードにおいて、所定のモード移行要求が入力された場合、空調優先+被温調対象冷却モードに移行すると共に、空調単独モードにおいて、ナビゲーション情報から被温調対象の温度が上昇すると予測される場合、圧縮機回転数上昇制御を実行することを特徴とする。 According to the vehicle air conditioner of the invention of claim 7 , in the inventions of claims 1, 2, and 4 to 6, the control device, in the air conditioning independent mode, when a predetermined mode shift request is input, , When the air conditioning priority + temperature controlled object cooling mode is shifted to, and in the air conditioning only mode, when the temperature of the temperature controlled object is predicted to rise from the navigation information, the compressor rotation speed increase control is performed. do.

請求項8の発明の車両用空気調和装置は、請求項1乃至請求項7の発明において吸熱器と熱交換した空気を車室内に送給するための室内送風機を備え、制御装置は、空調単独モードから空調優先+被温調対象冷却モードに移行する際の圧縮機回転数上昇制御を実行する場合、室内送風機の運転を抑制することを特徴とする。 The vehicle air conditioner of the invention of claim 8 comprises an indoor fan for supplying the air heat-exchanged with the heat absorber in the invention of claims 1 to 7 into the vehicle interior, and the control device is an air conditioner independent The operation of the indoor fan is suppressed when the compressor rotational speed increase control is executed when the mode is shifted to the air conditioning priority + temperature controlled cooling mode.

請求項9の発明の車両用空気調和装置は、請求項1乃至請求項8の発明において冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、吸熱器を経た空気が放熱器に通風される割合を調整するためのエアミックスダンパを備え、制御装置は、空調単独モードから空調優先+被温調対象冷却モードに移行する際の圧縮機回転数上昇制御を実行する場合、エアミックスダンパにより車室内に供給される空気の温度低下を抑制することを特徴とする。 According to the ninth aspect of the invention, there is provided a vehicle air conditioner according to the first to eighth aspects of the invention, comprising: a radiator for radiating heat from the refrigerant to heat the air supplied to the vehicle interior; Equipped with an air mix damper for adjusting the ratio of ventilation to the unit, the control device executes compressor rotation speed increase control when shifting from air conditioning only mode to air conditioning priority + temperature controlled cooling mode, The air mix damper is characterized by suppressing the temperature drop of the air supplied to the vehicle interior.

本発明によれば、冷媒を圧縮する圧縮機と、冷媒を蒸発させて車室内に供給する空気を冷却するための吸熱器と、冷媒を蒸発させて車両に搭載された被温調対象を冷却するための被温調対象用熱交換器と、吸熱器への冷媒の流通を制御する吸熱器用弁装置と、被温調対象用熱交換器への冷媒の流通を制御する被温調対象用弁装置と、制御装置を少なくとも備えて車室内を空調する車両用空気調和装置において、制御装置が少なくとも、吸熱器用弁装置を開いて吸熱器で冷媒を蒸発させ、当該吸熱器の温度に基づいて圧縮機の回転数を制御し、被温調対象用弁装置を閉じる空調単独モードと、被温調対象用弁装置を開いて被温調対象用熱交換器で冷媒を蒸発させ、当該被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、吸熱器用弁装置を閉じる被温調対象冷却単独モードと、吸熱器用弁装置を開き、吸熱器の温度に基づいて圧縮機の回転数を制御し、被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて被温調対象用弁装置を開閉制御して、吸熱器及び被温調対象用熱交換器で冷媒を蒸発させる空調優先+被温調対象冷却モードと、被温調対象用弁装置を開き、被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、吸熱器の温度に基づいて吸熱器用弁装置を開閉制御して、被温調対象用熱交換器及び吸熱器で冷媒を蒸発させる被温調対象冷却優先+空調モードを有し、それらを切り換えて実行すると共に、空調単独モードから空調優先+被温調対象冷却モードに移行する際、及び、被温調対象冷却単独モードから被温調対象冷却優先+空調モードに移行する際、移行する前に、圧縮機の回転数を上昇させる圧縮機回転数上昇制御を実行するようにしたので、空調単独モードと、被温調対象冷却単独モードを実行することで、車室内の空調と、被温調対象の冷却を円滑に行うことができるようになる。 According to the present invention, there are provided a compressor for compressing a refrigerant, a heat absorber for evaporating the refrigerant to cool the air supplied to the vehicle interior, and a heat sink for evaporating the refrigerant to cool an object to be temperature controlled mounted on the vehicle. a heat exchanger for a temperature control object for controlling the flow of refrigerant to the heat absorber; a heat absorber valve device for controlling the flow of refrigerant to the heat absorber; In a vehicle air conditioner that includes at least a valve device and a control device and air-conditions a vehicle interior, the control device at least opens the heat absorber valve device to cause the refrigerant to evaporate in the heat absorber, based on the temperature of the heat absorber. The air conditioning single mode controls the rotation speed of the compressor and closes the valve device for temperature control, and the valve device for temperature control is opened to evaporate the refrigerant in the heat exchanger for temperature control, and A single temperature controlled cooling mode in which the compressor rotation speed is controlled based on the temperature of the control target heat exchanger or the temperature of the target cooled by it and the heat absorber valve device is closed, and the heat absorber valve device is opened to absorb heat. Controls the rotation speed of the compressor based on the temperature of the heat sink, controls the opening and closing of the valve device for the temperature control target based on the temperature of the heat exchanger for the temperature control target or the temperature of the target cooled by it, and controls the opening and closing of the heat absorber and an air conditioning priority + temperature controlled object cooling mode in which the refrigerant is evaporated in the temperature controlled object heat exchanger, and the temperature controlled object heat exchanger or the object to be cooled by opening the temperature controlled object valve device The number of revolutions of the compressor is controlled based on the temperature of the heat absorber, and the valve device for the heat absorber is controlled to open and close based on the temperature of the heat absorber. It has a target cooling priority + air conditioning mode, and when switching from the air conditioning single mode to the air conditioning priority + temperature controlled cooling mode, and from the temperature controlled single cooling mode to the temperature controlled target When shifting to the cooling priority + air conditioning mode, the compressor rotation speed increase control that increases the rotation speed of the compressor is executed before the transition, so the air conditioning single mode and the temperature controlled cooling single mode are performed. By executing this, it is possible to smoothly air-condition the passenger compartment and cool the object to be temperature-controlled.

また、空調優先+被温調対象冷却モードと、被温調対象冷却優先+空調モードを実行することにより、車室内の空調を行いながら被温調対象の冷却を行うなかで、状況に応じて車室内の空調を優先するか、被温調対象の冷却を優先するかを切り換え、快適な車室内空調と効果的な被温調対象の冷却を実現することができるようになる。In addition, by executing the air conditioning priority + temperature control target cooling mode and the temperature control target cooling priority + air conditioning mode, while cooling the temperature control target while air conditioning the vehicle interior, depending on the situation It is possible to switch between giving priority to the air conditioning in the passenger compartment and to cooling the object to be temperature controlled, thereby realizing comfortable air conditioning in the passenger compartment and effective cooling of the object to be temperature controlled.

そして、空調単独モードから空調優先+被温調対象冷却モードに移行する際、及び、被温調対象冷却単独モードから被温調対象冷却優先+空調モードに移行する際、移行する前に、圧縮機の回転数を上昇させる圧縮機回転数上昇制御を実行することで、空調単独モードから空調優先+被温調対象冷却モードに移行した直後に車室内に吹き出される空気の温度が上昇し、使用者が不快感を覚える不都合や、被温調対象冷却単独モードから被温調対象冷却優先+空調モードに移行した直後に被温調対象の冷却性能が低下する不都合を未然に回避して、車室内の空調と被温調対象の冷却の両立性を高めることができるようになる。即ち、空調単独モードから空調優先+被温調対象冷却モードに移行した直後、及び、被温調対象冷却単独モードから被温調対象冷却優先+空調モードに移行した直後の圧縮機の能力(回転数)不足を解消し、信頼性と商品性を向上させることができるようになる。 Then, when shifting from the air conditioning single mode to the air conditioning priority + temperature controlled cooling mode, and when shifting from the temperature controlled cooling single mode to the temperature controlled cooling priority + air conditioning mode, the compression By executing compressor rotation speed increase control to increase the rotation speed of the compressor, the temperature of the air blown into the passenger compartment immediately after shifting from the air conditioning only mode to the air conditioning priority + temperature controlled cooling mode rises. To avoid the inconvenience that the user feels discomfort and the inconvenience that the cooling performance of the temperature controlled target is lowered immediately after shifting from the temperature controlled target cooling single mode to the temperature controlled target cooling priority + air conditioning mode, It is possible to improve the compatibility between the air conditioning in the passenger compartment and the cooling of the object to be temperature controlled. That is, the capacity of the compressor (rotational Number) It will be possible to eliminate shortages and improve reliability and marketability.

この場合、例えば、請求項2の発明の如く制御装置が、空調単独モードでは吸熱器の目標温度に基づくフィードフォワード演算により圧縮機の目標回転数を算出し、被温調対象冷却単独モードでは被温調対象用熱交換器又はそれにより冷却される対象の目標温度に基づくフィードフォワード演算により圧縮機の目標回転数を算出すると共に、圧縮機回転数上昇制御では、各目標温度を低下させることにより、圧縮機の目標回転数を上昇させることで、空調単独モードや被温調対象冷却単独モードにおいて、圧縮機回転数上昇制御により的確に圧縮機の回転数を上昇させることができるようになる。 In this case, for example, as in the invention of claim 2 , the control device calculates the target rotation speed of the compressor by feedforward calculation based on the target temperature of the heat sink in the air conditioning single mode, and calculates the target rotation speed of the compressor in the temperature controlled cooling single mode. The target rotation speed of the compressor is calculated by feedforward calculation based on the target temperature of the heat exchanger for temperature adjustment or the object cooled by it, and in the compressor rotation speed increase control, each target temperature is lowered by By increasing the target rotation speed of the compressor, the rotation speed of the compressor can be accurately increased by the compressor rotation speed increase control in the air conditioning single mode or the temperature controlled cooling single mode.

そして、請求項3の発明の如く制御装置が、空調単独モード、又は、被温調対象冷却単独モードにおいて、所定のモード移行要求が入力された場合、圧縮機回転数上昇制御により圧縮機の回転数を上昇させた後、空調優先+被温調対象冷却モード、又は、被温調対象冷却優先+空調モードに移行することで、空調優先+被温調対象冷却モードや被温調対象冷却優先+空調モードに移行する前に、確実に圧縮機の回転数を上昇させておくことができるようになる。 Then, as in the invention of claim 3 , when a predetermined mode shift request is input in the air conditioning single mode or the temperature controlled cooling single mode, the controller rotates the compressor by compressor rotation speed increase control. After increasing the number, by shifting to air conditioning priority + temperature control target cooling mode, or temperature control target cooling priority + air conditioning mode, air conditioning priority + temperature control target cooling mode or temperature control target cooling priority +Before shifting to the air-conditioning mode, it becomes possible to reliably increase the rotation speed of the compressor.

他方、被温調対象が車両に搭載されたバッテリであり、車両の走行用モータがバッテリからの給電により駆動され、制御装置が、空調単独モードにおいて、所定のモード移行要求が入力されたときに、空調優先+被温調対象冷却モードに移行するようにした場合、空調単独モードにおいて走行用モータの出力が高くなった場合には、バッテリの温度が上昇するため、その後、空調優先+被温調対象冷却モードに移行することが予想される。 On the other hand, when the object to be temperature-controlled is a battery mounted in a vehicle, the driving motor of the vehicle is driven by power supply from the battery, and a predetermined mode shift request is input to the controller in the air-conditioning independent mode. , When the air conditioning priority + temperature controlled cooling mode is selected, if the output of the driving motor increases in the air conditioning only mode, the battery temperature rises. It is expected that the cooling mode will be adjusted.

そのような場合には、請求項4の発明の如く制御装置が、空調単独モードにおいて走行用モータの出力が所定の閾値以上となった場合、又は、走行用モータの出力が上昇する傾きが所定の閾値以上となった場合、圧縮機回転数上昇制御を実行するようにすれば、空調優先+被温調対象冷却モードに移行する前に、圧縮機の回転数を上昇させておくことが可能となる。特に、この場合にはモード移行要求が入力される前に圧縮機の回転数を上昇させておくことができるので、早期に空調優先+被温調対象冷却モードに移行することができるようになる。 In such a case, the control device, as in the fourth aspect of the present invention, is designed to control the output of the driving motor when the output of the driving motor exceeds a predetermined threshold value in the air-conditioning only mode, or when the inclination of the output of the driving motor to rise is a predetermined value. If the compressor rotation speed increase control is executed when the threshold is exceeded, the compressor rotation speed can be increased before shifting to air conditioning priority + temperature controlled cooling mode. becomes. In particular, in this case, since the rotation speed of the compressor can be increased before the mode shift request is input, it is possible to quickly shift to the air conditioning priority + temperature controlled cooling mode. .

また、空調単独モードにおいて被温調対象の温度が急激に上昇しているときにも、その後、空調優先+被温調対象冷却モードに移行することが予想されるので、請求項5の発明の如く制御装置が、空調単独モードにおいて被温調対象の温度が上昇する傾きが所定の閾値以上となった場合に、圧縮機回転数上昇制御を実行することで、モード移行要求が入力される前に圧縮機の回転数を上昇させておくことができるようになり、早期に空調優先+被温調対象冷却モードに移行することができるようになる。 Further, even when the temperature of the object to be temperature-controlled rises sharply in the air-conditioning only mode, it is expected that the mode will shift to the air-conditioning priority+temperature-controlled object cooling mode. As described above, the control device executes the compressor rotation speed increase control when the slope of the rise in the temperature of the object to be temperature-controlled in the air-conditioning independent mode becomes equal to or greater than a predetermined threshold value, so that before the mode transition request is input, As a result, it becomes possible to quickly shift to the air conditioning priority + temperature controlled cooling mode.

更に、空調単独モードにおいて被温調対象の発熱量が急激に上昇しているときにも、その後、空調優先+被温調対象冷却モードに移行することが予想されるので、請求項6の発明の如く制御装置が、空調単独モードにおいて被温調対象の発熱量が上昇する傾きが所定の閾値以上となった場合に、圧縮機回転数上昇制御を実行することで、モード移行要求が入力される前に圧縮機の回転数を上昇させておくことができるようになり、早期に空調優先+被温調対象冷却モードに移行することができるようになる。 Furthermore, even when the amount of heat generated by the object to be temperature-controlled rises sharply in the air-conditioning only mode, it is expected that the mode will shift to the air-conditioning priority+temperature-controlled object cooling mode. As described above, when the slope of the increase in the amount of heat generated by the object to be temperature-controlled in the air conditioning single mode exceeds a predetermined threshold value, the control device executes the compressor rotation speed increase control, thereby inputting a mode transition request. It becomes possible to increase the rotation speed of the compressor before the air conditioning is started, and it becomes possible to shift to the air conditioning priority + temperature controlled cooling mode at an early stage.

更にまた、空調単独モードにおいて、例えば高速走行が継続されるような場合にも、その後、被温調対象の温度が上昇して空調優先+被温調対象冷却モードに移行することが予想されるので、請求項7の発明の如く制御装置が、空調単独モードにおいてナビゲーション情報から被温調対象の温度が上昇すると予測される場合、圧縮機回転数上昇制御を実行することで、モード移行要求が入力される前に圧縮機の回転数を上昇させておくことができるようになり、早期に空調優先+被温調対象冷却モードに移行することができるようになる。 Furthermore, in the air-conditioning only mode, even if, for example, high-speed driving continues, it is expected that the temperature of the object to be temperature-controlled rises and the mode shifts to the air-conditioning priority + temperature-controlled cooling mode. Therefore, when the control device predicts that the temperature of the object to be temperature-controlled rises from the navigation information in the air-conditioning independent mode as in the invention of claim 7 , the mode shift request is issued by executing the compressor rotation speed increase control. It becomes possible to increase the rotation speed of the compressor before the input, and it becomes possible to shift to the air conditioning priority + temperature controlled cooling mode at an early stage.

ここで、空調単独モードにおいて圧縮機の回転数を上昇させると、空調優先+被温調対象冷却モードに移行する前の期間は車室内に吹き出される空気の温度が低下する危険性があるが、請求項8の発明の如く制御装置が、空調単独モードから空調優先+被温調対象冷却モードに移行する際の圧縮機回転数上昇制御を実行する場合、室内送風機の運転を抑制することで、車室内が過剰に空調される不都合を解消することができるようになる。 Here, if the number of revolutions of the compressor is increased in the air conditioning only mode, there is a risk that the temperature of the air blown into the passenger compartment will decrease during the period before shifting to the air conditioning priority + temperature controlled cooling mode. , When the control device executes compressor rotation speed increase control when shifting from the air conditioning only mode to the air conditioning priority + temperature controlled cooling mode as in the invention of claim 8 , by suppressing the operation of the indoor fan , it is possible to eliminate the inconvenience of excessive air-conditioning of the vehicle interior.

また、請求項9の発明の如く制御装置が、空調単独モードから空調優先+被温調対象冷却モードに移行する際の圧縮機回転数上昇制御を実行する場合、エアミックスダンパにより車室内に供給される空気の温度低下を抑制することでも車室内が過剰に空調される不都合を解消することができるようになる。 Further, when the control device as in the ninth aspect of the invention executes the compressor rotation speed increase control when shifting from the air conditioning only mode to the air conditioning priority + temperature controlled cooling mode, the air mix damper supplies air to the vehicle interior. It is also possible to eliminate the inconvenience of excessive air-conditioning in the passenger compartment by suppressing a decrease in the temperature of the air to be supplied.

本発明を適用した一実施形態の車両用空気調和装置の構成図である。1 is a configuration diagram of a vehicle air conditioner according to an embodiment to which the present invention is applied; FIG. 図1の車両用空気調和装置の制御装置の電気回路のブロック図である。FIG. 2 is a block diagram of an electric circuit of the control device of the vehicle air conditioner of FIG. 1; 図2の制御装置が実行する運転モードを説明する図である。It is a figure explaining the operation mode which the control apparatus of FIG. 2 performs. 図2の制御装置のヒートポンプコントローラによる暖房モードを説明する車両用空気調和装置の構成図である。FIG. 3 is a configuration diagram of a vehicle air conditioner for explaining a heating mode by a heat pump controller of the control device of FIG. 2; 図2の制御装置のヒートポンプコントローラによる除湿暖房モードを説明する車両用空気調和装置の構成図である。FIG. 3 is a configuration diagram of the vehicle air conditioner for explaining a dehumidifying heating mode by the heat pump controller of the control device in FIG. 2 ; 図2の制御装置のヒートポンプコントローラによる除湿冷房モードを説明する車両用空気調和装置の構成図である。FIG. 3 is a configuration diagram of the vehicle air conditioner for explaining a dehumidifying cooling mode by the heat pump controller of the control device of FIG. 2; 図2の制御装置のヒートポンプコントローラによる冷房モードを説明する車両用空気調和装置の構成図である。FIG. 3 is a configuration diagram of a vehicle air conditioner for explaining a cooling mode by a heat pump controller of the control device of FIG. 2; 図2の制御装置のヒートポンプコントローラによる空調優先+バッテリ冷却モードとバッテリ冷却優先+空調モードを説明する車両用空気調和装置の構成図である。3 is a configuration diagram of a vehicle air conditioner for explaining an air conditioning priority+battery cooling mode and a battery cooling priority+air conditioning mode by a heat pump controller of the control device of FIG. 2. FIG. 図2の制御装置のヒートポンプコントローラによるバッテリ冷却単独モードを説明する車両用空気調和装置の構成図である。FIG. 3 is a configuration diagram of the vehicle air conditioner for explaining a battery cooling independent mode by the heat pump controller of the control device in FIG. 2 ; 図2の制御装置のヒートポンプコントローラによる除霜モードを説明する車両用空気調和装置の構成図である。FIG. 3 is a configuration diagram of a vehicle air conditioner for explaining a defrosting mode by a heat pump controller of the control device of FIG. 2; 図2の制御装置のヒートポンプコントローラの圧縮機制御に関する制御ブロック図である。FIG. 3 is a control block diagram relating to compressor control of a heat pump controller of the control device of FIG. 2 ; 図2の制御装置のヒートポンプコントローラの圧縮機制御に関するもう一つの制御ブロック図である。3 is another control block diagram relating to compressor control of the heat pump controller of the control device of FIG. 2. FIG. 図2の制御装置のヒートポンプコントローラの圧縮機制御に関する更にもう一つの制御ブロック図である。3 is yet another control block diagram relating to compressor control of the heat pump controller of the control device of FIG. 2. FIG. 図2の制御装置のヒートポンプコントローラの圧縮機回転数上昇制御を説明する図である。FIG. 3 is a diagram illustrating compressor rotation speed increase control of a heat pump controller of the control device of FIG. 2 ; 図2の制御装置のヒートポンプコントローラのもう一つの圧縮機回転数上昇制御を説明する図である。FIG. 3 is a diagram illustrating another compressor rotational speed increase control of the heat pump controller of the control device of FIG. 2 ;

以下、本発明の実施の形態について、図面に基づき詳細に説明する。図1は本発明の一実施形態の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、車両に搭載されているバッテリ55に充電された電力を走行用モータ(電動モータ。図示せず)に供給することで駆動し、走行するものであり、本発明の車両用空気調和装置1の後述する圧縮機2も、バッテリ55から供給される電力で駆動されるものとする。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail based on the drawings. FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to one embodiment of the present invention. A vehicle of an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and electric power charged in a battery 55 mounted in the vehicle is supplied to a driving motor (electric motor). , not shown), and the compressor 2 of the vehicle air conditioner 1 of the present invention, which will be described later, is also driven by the electric power supplied from the battery 55. .

即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路Rを用いたヒートポンプ運転により暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、除霜モード、空調優先+バッテリ冷却モード、バッテリ冷却優先+空調モード、及び、バッテリ冷却単独モードの各運転モードを切り換えて実行することで車室内の空調やバッテリ55の温調を行うものである。 That is, the vehicle air conditioning apparatus 1 of the embodiment provides a heating mode, a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode, and a defrosting mode by the heat pump operation using the refrigerant circuit R in an electric vehicle in which heating cannot be performed by engine waste heat. , air-conditioning priority + battery cooling mode, battery cooling priority + air-conditioning mode, and battery cooling only mode are switched and executed to control the air conditioning in the passenger compartment and the temperature of the battery 55 .

このうち、冷房モードとバッテリ冷却単独モードが本発明における第1の運転モードの実施例となり、空調優先+バッテリ冷却モード、バッテリ冷却優先+空調モードが本発明における第2の運転モードの実施例となる。更に、冷房モードが本発明における空調単独モードの実施例、バッテリ冷却単独モードが本発明における被温調対象冷却単独モードの実施例であり、空調優先+バッテリ冷却モードが本発明における空調優先+被温調対象冷却モードの実施例、バッテリ冷却優先+空調モードが本発明における被温調対象冷却優先+空調モードの実施例となる。 Of these, the cooling mode and the battery cooling only mode are examples of the first operation mode in the present invention, and the air conditioning priority + battery cooling mode and the battery cooling priority + air conditioning mode are examples of the second operation mode in the present invention. Become. Furthermore, the cooling mode is an embodiment of the air conditioning single mode of the present invention, the battery cooling single mode is an embodiment of the temperature controlled target cooling single mode of the present invention, and the air conditioning priority + battery cooling mode is the air conditioning priority + subject cooling mode of the present invention. The embodiment of the temperature control object cooling mode and the battery cooling priority+air conditioning mode are the embodiments of the temperature control object cooling priority+air conditioning mode in the present invention.

尚、車両としては電気自動車に限らず、エンジンと走行用モータを供用する所謂ハイブリッド自動車にも本発明は有効である。また、実施例の車両用空気調和装置1を適用する車両は外部の充電器(急速充電器や普通充電器)からバッテリ55に充電可能とされているものである。更に、前述したバッテリ55や走行用モータ、それを制御するインバータ等が本発明における車両に搭載された被温調対象となるが、以下の実施例ではバッテリ55を例に採り上げて説明する。 The vehicle is not limited to an electric vehicle, and the present invention is also effective for a so-called hybrid vehicle that shares an engine and a driving motor. In addition, the vehicle to which the vehicle air conditioner 1 of the embodiment is applied can charge the battery 55 from an external charger (rapid charger or normal charger). Furthermore, although the battery 55, the driving motor, the inverter controlling them, and the like are subject to temperature control mounted on the vehicle in the present invention, the battery 55 will be described as an example in the following embodiments.

実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内の空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒がマフラー5と冷媒配管13Gを介して流入し、この冷媒を車室内に放熱(冷媒の熱を放出)させる放熱器4と、暖房時に冷媒を減圧膨張させる電動弁(電子膨張弁)から成る室外膨張弁6と、冷房時には冷媒を放熱させる放熱器として機能し、暖房時には冷媒を吸熱(冷媒に熱を吸収)させる蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる機械式膨張弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱(蒸発)させる蒸発器としての吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。 A vehicle air conditioner 1 of the embodiment performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and includes an electric compressor 2 that compresses a refrigerant and The high-temperature and high-pressure refrigerant discharged from the compressor 2 is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated. The outdoor expansion valve 6 consists of a radiator 4 that releases the heat of the refrigerant (releases the heat of the refrigerant) and an electric valve (electronic expansion valve) that decompresses and expands the refrigerant during heating. The indoor expansion valve 8 consists of an outdoor heat exchanger 7 that exchanges heat between the refrigerant and the outside air to function as an evaporator that absorbs heat (heat is absorbed by the refrigerant), and a mechanical expansion valve that decompresses and expands the refrigerant. A heat absorber 9 as an evaporator provided in the air flow passage 3 to absorb heat (evaporate) into the refrigerant from inside and outside the vehicle interior during cooling and dehumidification, and an accumulator 12 and the like are sequentially connected by a refrigerant pipe 13 to form a refrigerant circuit. R is constructed.

そして、室外膨張弁6は放熱器4から出て室外熱交換器7に流入する冷媒を減圧膨張させると共に、全閉も可能とされている。また、実施例では機械式膨張弁が使用された室内膨張弁8は、吸熱器9に流入する冷媒を減圧膨張させると共に、吸熱器9における冷媒の過熱度を調整する。 The outdoor expansion valve 6 decompresses and expands the refrigerant coming out of the radiator 4 and flowing into the outdoor heat exchanger 7, and can also be fully closed. Further, the indoor expansion valve 8 , which uses a mechanical expansion valve in the embodiment, decompresses and expands the refrigerant flowing into the heat absorber 9 and adjusts the degree of superheat of the refrigerant in the heat absorber 9 .

尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。 The outdoor heat exchanger 7 is provided with an outdoor blower 15 . The outdoor blower 15 forcibly blows outside air through the outdoor heat exchanger 7 to exchange heat between the outside air and the refrigerant. The heat exchanger 7 is configured to be ventilated with outside air.

また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7の冷媒出口側の冷媒配管13Aは、吸熱器9に冷媒を流す際に開放される開閉弁としての電磁弁17(冷房用)を介してレシーバドライヤ部14に接続され、過冷却部16の出口側の冷媒配管13Bは逆止弁18、室内膨張弁8、及び、吸熱器用弁装置としての電磁弁35(キャビン用)を順次介して吸熱器9の冷媒入口側に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成している。また、逆止弁18は室内膨張弁8の方向が順方向とされている。更に、実施例では室内膨張弁8と電磁弁35は電磁弁付き膨張弁にて構成している。 In addition, the outdoor heat exchanger 7 has a receiver dryer section 14 and a subcooling section 16 in sequence on the downstream side of the refrigerant. It is connected to the receiver-dryer section 14 via an electromagnetic valve 17 (for cooling) as an open/close valve, and the refrigerant pipe 13B on the outlet side of the subcooling section 16 includes a check valve 18, an indoor expansion valve 8, and an endothermic It is connected to the refrigerant inlet side of the heat absorber 9 sequentially through the solenoid valve 35 (for cabin) as a device valve device. Note that the receiver-dryer section 14 and the supercooling section 16 structurally constitute a part of the outdoor heat exchanger 7 . The direction of the indoor expansion valve 8 is the forward direction of the check valve 18 . Furthermore, in the embodiment, the indoor expansion valve 8 and the solenoid valve 35 are constructed by an expansion valve with a solenoid valve.

また、室外熱交換器7から出た冷媒配管13Aは冷媒配管13Dに分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される開閉弁としての電磁弁21(暖房用)を介して吸熱器9の冷媒出口側の冷媒配管13Cに連通接続されている。そして、この冷媒配管13Cがアキュムレータ12の入口側に接続され、アキュムレータ12の出口側は圧縮機2の冷媒吸込側の冷媒配管13Kに接続されている。 In addition, the refrigerant pipe 13A coming out of the outdoor heat exchanger 7 is branched into a refrigerant pipe 13D, and the branched refrigerant pipe 13D is passed through an electromagnetic valve 21 (for heating) as an on-off valve that is opened during heating. It is communicated with the refrigerant pipe 13C on the refrigerant outlet side of the heat absorber 9 . The refrigerant pipe 13C is connected to the inlet side of the accumulator 12, and the outlet side of the accumulator 12 is connected to the refrigerant pipe 13K on the refrigerant suction side of the compressor 2. As shown in FIG.

更に、放熱器4の冷媒出口側の冷媒配管13Eにはストレーナ19が接続されており、更に、この冷媒配管13Eは室外膨張弁6の手前(冷媒上流側)で冷媒配管13Jと冷媒配管13Fに分岐し、分岐した一方の冷媒配管13Jが室外膨張弁6を介して室外熱交換器7の冷媒入口側に接続されている。また、分岐した他方の冷媒配管13Fは除湿時に開放される開閉弁としての電磁弁22(除湿用)を介し、逆止弁18の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Bに連通接続されている。 Furthermore, a strainer 19 is connected to the refrigerant pipe 13E on the refrigerant outlet side of the radiator 4, and the refrigerant pipe 13E is connected to the refrigerant pipe 13J and the refrigerant pipe 13F before the outdoor expansion valve 6 (refrigerant upstream side). One branched refrigerant pipe 13J is connected to the refrigerant inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6 . The other branched refrigerant pipe 13F is downstream of the check valve 18 and upstream of the indoor expansion valve 8 via an electromagnetic valve 22 (for dehumidification) serving as an on-off valve that is opened during dehumidification. It is communicatively connected to the located refrigerant pipe 13B.

これにより、冷媒配管13Fは室外膨張弁6、室外熱交換器7及び逆止弁18の直列回路に対して並列に接続されたかたちとなり、室外膨張弁6、室外熱交換器7及び逆止弁18をバイパスするバイパス回路となる。また、室外膨張弁6にはバイパス用の開閉弁としての電磁弁20が並列に接続されている。 As a result, the refrigerant pipe 13F is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve 18, and the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve 18 is a bypass circuit. An electromagnetic valve 20 is connected in parallel to the outdoor expansion valve 6 as an open/close valve for bypass.

また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環)と、車室外の空気である外気(外気導入)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。 In addition, the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with an outside air suction port and an inside air suction port (indicated by a suction port 25 in FIG. 1). 25 is provided with an intake switching damper 26 for switching the air introduced into the air flow passage 3 between inside air (inside air circulation), which is the air inside the vehicle compartment, and outside air (outside air introduction), which is the air outside the vehicle compartment. Furthermore, an indoor air blower (blower fan) 27 for supplying the introduced inside air and outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26 .

尚、実施例の吸込切換ダンパ26は、吸込口25の外気吸込口と内気吸込口を任意の比率で開閉することにより、空気流通路3の吸熱器9に流入する空気(外気と内気)のうちの内気の比率を0~100%の間で調整することができるように構成されている(外気の比率も100%~0%の間で調整可能)。 The intake switching damper 26 of the embodiment opens and closes the external air intake port and the internal air intake port of the intake port 25 at an arbitrary ratio, so that the air (external air and internal air) flowing into the heat absorber 9 of the air flow passage 3 is switched. It is configured so that the ratio of inside air can be adjusted between 0% and 100% (the ratio of outside air can also be adjusted between 100% and 0%).

また、放熱器4の風下側(空気下流側)における空気流通路3内には、実施例ではPTCヒータ(電気ヒータ)から成る補助加熱装置としての補助ヒータ23が設けられ、放熱器4を経て車室内に供給される空気を加熱することが可能とされている。更に、放熱器4の空気上流側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を放熱器4及び補助ヒータ23に通風する割合を調整するエアミックスダンパ28が設けられている。 Further, in the air flow passage 3 on the leeward side (air downstream side) of the radiator 4, an auxiliary heater 23 is provided as an auxiliary heating device comprising a PTC heater (electric heater) in the embodiment. It is possible to heat the air supplied to the vehicle interior. Furthermore, in the air flow passage 3 on the air upstream side of the radiator 4, the air (inside air or outside air) in the air flow passage 3 after flowing into the air flow passage 3 and passing through the heat absorber 9 is radiated. An air mix damper 28 is provided for adjusting the ratio of ventilation to the vessel 4 and the auxiliary heater 23 .

更にまた、放熱器4の空気下流側における空気流通路3には、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口からの空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。 Furthermore, the air flow passage 3 on the air downstream side of the radiator 4 has outlets for FOOT, VENT, and DEF (representatively indicated by outlet 29 in FIG. 1). The air outlet 29 is provided with an air outlet switching damper 31 for switching and controlling air blowing from each of the air outlets.

更に、車両用空気調和装置1は、バッテリ55(被温調対象)に熱媒体を循環させて当該バッテリ55の温度を調整するための機器温度調整装置61を備えている。実施例の機器温度調整装置61は、バッテリ55に熱媒体を循環させるための循環装置としての循環ポンプ62と、蒸発器である被温調対象用熱交換器としての冷媒-熱媒体熱交換器64と、加熱装置としての熱媒体加熱ヒータ63を備え、それらとバッテリ55が熱媒体配管66にて環状に接続されている。 Further, the vehicle air conditioner 1 includes a device temperature adjustment device 61 for circulating a heat medium in the battery 55 (a temperature controlled object) to adjust the temperature of the battery 55 . The device temperature adjustment device 61 of the embodiment includes a circulation pump 62 as a circulation device for circulating a heat medium to the battery 55, and a refrigerant-heat medium heat exchanger as a heat exchanger for a temperature control target, which is an evaporator. 64 and a heat medium heater 63 as a heating device, which are annularly connected to the battery 55 by a heat medium pipe 66 .

実施例の場合、循環ポンプ62の吐出側に冷媒-熱媒体熱交換器64の熱媒体流路64Aの入口が接続され、この熱媒体流路64Aの出口は熱媒体加熱ヒータ63の入口に接続されている。この熱媒体加熱ヒータ63の出口がバッテリ55の入口に接続され、バッテリ55の出口が循環ポンプ62の吸込側に接続されている。 In the embodiment, the inlet of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 is connected to the discharge side of the circulation pump 62, and the outlet of the heat medium flow path 64A is connected to the inlet of the heat medium heater 63. It is The outlet of the heat medium heater 63 is connected to the inlet of the battery 55 , and the outlet of the battery 55 is connected to the suction side of the circulation pump 62 .

この機器温度調整装置61で使用される熱媒体としては、例えば水、HFO-1234yfのような冷媒、クーラント等の液体、空気等の気体が採用可能である。尚、実施例では水を熱媒体として採用している。また、熱媒体加熱ヒータ63はPTCヒータ等の電気ヒータから構成されている。更に、バッテリ55の周囲には例えば熱媒体が当該バッテリ55と熱交換関係で流通可能なジャケット構造が施されているものとする。 As the heat medium used in the device temperature adjustment device 61, for example, water, refrigerant such as HFO-1234yf, liquid such as coolant, and gas such as air can be employed. In addition, water is used as a heat medium in the embodiment. The heat medium heater 63 is composed of an electric heater such as a PTC heater. Further, the battery 55 is surrounded by a jacket structure that allows a heat medium to flow in a heat exchange relationship with the battery 55 .

そして、循環ポンプ62が運転されると、循環ポンプ62から吐出された熱媒体は冷媒-熱媒体熱交換器64の熱媒体流路64Aに流入する。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は熱媒体加熱ヒータ63に至り、当該熱媒体加熱ヒータ63が発熱されている場合にはそこで加熱された後、バッテリ55に至り、熱媒体はそこでバッテリ55と熱交換する。そして、このバッテリ55と熱交換した熱媒体が循環ポンプ62に吸い込まれることで熱媒体配管66内を循環される。 When the circulation pump 62 is operated, the heat medium discharged from the circulation pump 62 flows into the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64. As shown in FIG. The heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heater 63. If the heat medium heater 63 is generating heat, the heat medium is heated there, and then the battery 55 , where the heat medium exchanges heat with the battery 55 . The heat medium that has exchanged heat with the battery 55 is sucked into the circulation pump 62 and circulated in the heat medium pipe 66 .

一方、冷媒回路Rの冷媒配管13Fと冷媒配管13Bとの接続部の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Bには、分岐回路としての分岐配管67の一端が接続されている。この分岐配管67には実施例では機械式の膨張弁から構成された補助膨張弁68と、被温調対象用弁装置としての電磁弁(チラー用)69が順次設けられている。補助膨張弁68は冷媒-熱媒体熱交換器64の後述する冷媒流路64Bに流入する冷媒を減圧膨張させると共に、冷媒-熱媒体熱交換器64の冷媒流路64Bにおける冷媒の過熱度を調整する。尚、実施例では補助膨張弁68と電磁弁69も電磁弁付き膨張弁にて構成している。 On the other hand, a branch pipe 67 as a branch circuit is installed in the refrigerant pipe 13B located upstream of the indoor expansion valve 8 and downstream of the connecting portion between the refrigerant pipes 13F and 13B of the refrigerant circuit R. one end is connected. In this branch pipe 67, an auxiliary expansion valve 68, which is a mechanical expansion valve in this embodiment, and an electromagnetic valve (for a chiller) 69 as a valve device for temperature control are sequentially provided. The auxiliary expansion valve 68 decompresses and expands the refrigerant flowing into a later-described refrigerant passage 64B of the refrigerant-heat medium heat exchanger 64, and adjusts the degree of superheat of the refrigerant in the refrigerant passage 64B of the refrigerant-heat medium heat exchanger 64. do. Incidentally, in this embodiment, the auxiliary expansion valve 68 and the solenoid valve 69 are also constructed by expansion valves with solenoid valves.

そして、分岐配管67の他端は冷媒-熱媒体熱交換器64の冷媒流路64Bに接続されており、この冷媒流路64Bの出口には冷媒配管71の一端が接続され、冷媒配管71の他端は冷媒配管13Dとの合流点より冷媒上流側(アキュムレータ12の冷媒上流側)の冷媒配管13Cに接続されている。そして、これら補助膨張弁68や電磁弁69、冷媒-熱媒体熱交換器64の冷媒流路64B等も冷媒回路Rの一部を構成すると同時に、機器温度調整装置61の一部をも構成することになる。 The other end of the branch pipe 67 is connected to the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64, and one end of the refrigerant pipe 71 is connected to the outlet of the refrigerant channel 64B. The other end is connected to the refrigerant pipe 13C on the refrigerant upstream side (refrigerant upstream side of the accumulator 12) from the junction with the refrigerant pipe 13D. The auxiliary expansion valve 68, the solenoid valve 69, the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, and the like also constitute a part of the refrigerant circuit R and at the same time constitute a part of the device temperature adjustment device 61. It will be.

電磁弁69が開いている場合、室外熱交換器7から出た冷媒(一部又は全ての冷媒)は分岐配管67に流入し、補助膨張弁68で減圧された後、電磁弁69を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して、そこで蒸発する。冷媒は冷媒流路64Bを流れる過程で熱媒体流路64Aを流れる熱媒体から吸熱した後、冷媒配管71、冷媒配管13C、アキュムレータ12を経て冷媒配管13Kから圧縮機2に吸い込まれることになる。 When the solenoid valve 69 is open, the refrigerant (part or all of the refrigerant) coming out of the outdoor heat exchanger 7 flows into the branch pipe 67, is decompressed by the auxiliary expansion valve 68, and passes through the solenoid valve 69 to the refrigerant. - flows into the refrigerant flow path 64B of the heat medium heat exchanger 64 and evaporates there; After absorbing heat from the heat medium flowing through the heat medium flow path 64A in the course of flowing through the refrigerant flow path 64B, the refrigerant passes through the refrigerant pipe 71, the refrigerant pipe 13C, the accumulator 12, and is sucked into the compressor 2 from the refrigerant pipe 13K.

次に、図2は実施例の車両用空気調和装置1の制御装置11のブロック図を示している。制御装置11は、何れもプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成された空調コントローラ45及びヒートポンプコントローラ32から構成されており、これらがCAN(Controller Area Network)やLIN(Local Interconnect Network)を構成する車両通信バス65に接続されている。また、圧縮機2と補助ヒータ23、循環ポンプ62と熱媒体加熱ヒータ63も車両通信バス65に接続され、これら空調コントローラ45、ヒートポンプコントローラ32、圧縮機2、補助ヒータ23、循環ポンプ62及び熱媒体加熱ヒータ63が車両通信バス65を介してデータの送受信を行うように構成されている。 Next, FIG. 2 shows a block diagram of the control device 11 of the vehicle air conditioner 1 of the embodiment. The control device 11 includes an air-conditioning controller 45 and a heat pump controller 32, each of which is a microcomputer that is an example of a computer having a processor. is connected to a vehicle communication bus 65 that constitutes the The compressor 2 and the auxiliary heater 23, the circulation pump 62 and the heat medium heater 63 are also connected to the vehicle communication bus 65, and the air conditioning controller 45, the heat pump controller 32, the compressor 2, the auxiliary heater 23, the circulation pump 62 and the The medium heater 63 is configured to transmit and receive data via the vehicle communication bus 65 .

更に、車両通信バス65には走行を含む車両全般の制御を司る車両コントローラ72(ECU)と、バッテリ55の充放電の制御を司るバッテリコントローラ(BMS:Battery Management system)73と、GPSナビゲーション装置74が接続されている。車両コントローラ72やバッテリコントローラ73、GPSナビゲーション装置74もプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成されており、制御装置11を構成する空調コントローラ45とヒートポンプコントローラ32は、車両通信バス65を介してこれら車両コントローラ72やバッテリコントローラ73、GPSナビゲーション装置74と情報(データ)の送受信を行う構成とされている。 Further, the vehicle communication bus 65 includes a vehicle controller 72 (ECU) that controls the entire vehicle including running, a battery controller (BMS: Battery Management System) 73 that controls charging and discharging of the battery 55, and a GPS navigation device 74. is connected. The vehicle controller 72, the battery controller 73, and the GPS navigation device 74 are also composed of a microcomputer, which is an example of a computer having a processor. Information (data) is transmitted/received to/from these vehicle controller 72, battery controller 73, and GPS navigation device 74 via.

空調コントローラ45は、車両の車室内空調の制御を司る上位のコントローラであり、この空調コントローラ45の入力には、車両の外気温度Tamを検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれて吸熱器9に流入する空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、車室内に吹き出される空気の温度を検出する吹出温度センサ41と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速VSP)を検出するための車速センサ52の各出力と、車室内の設定温度や運転モードの切り換え等の車室内の空調設定操作や情報の表示を行うための空調操作部53が接続されている。尚、図中53Aはこの空調操作部53に設けられた表示出力装置としてのディスプレイである。 The air-conditioning controller 45 is a high-order controller that controls air-conditioning in the vehicle interior. A sensor 34, an HVAC intake temperature sensor 36 that detects the temperature of the air that is sucked into the air flow passage 3 from the intake port 25 and flows into the heat absorber 9, and an inside air temperature sensor 37 that detects the air (inside air) temperature in the passenger compartment. , an inside air humidity sensor 38 that detects the humidity of the air in the passenger compartment, an indoor CO 2 concentration sensor 39 that detects the carbon dioxide concentration in the passenger compartment, and a blowout temperature sensor 41 that detects the temperature of the air blown out into the passenger compartment. , for example, a photosensor type solar radiation sensor 51 for detecting the amount of solar radiation in the vehicle interior, each output of a vehicle speed sensor 52 for detecting the moving speed of the vehicle (vehicle speed VSP), the set temperature in the vehicle interior, An air-conditioning operation unit 53 is connected for performing air-conditioning setting operations in the passenger compartment, such as switching of driving modes, and for displaying information. Incidentally, reference numeral 53A in the figure denotes a display as a display output device provided in the air conditioning operation section 53.

また、空調コントローラ45の出力には、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31が接続され、それらは空調コントローラ45により制御される。 The output of the air conditioning controller 45 is connected to the outdoor fan 15, the indoor fan (blower fan) 27, the suction switching damper 26, the air mix damper 28, and the outlet switching damper 31. controlled by

ヒートポンプコントローラ32は、主に冷媒回路Rの制御を司るコントローラであり、このヒートポンプコントローラ32の入力には、放熱器4の冷媒入口温度Tcxin(圧縮機2の吐出冷媒温度でもある)を検出する放熱器入口温度センサ43と、放熱器4の冷媒出口温度Tciを検出する放熱器出口温度センサ44と、圧縮機2の吸込冷媒温度Tsを検出する吸込温度センサ46と、放熱器4の冷媒出口側の冷媒圧力(放熱器4の圧力:放熱器圧力Pci)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9の冷媒温度:吸熱器温度Te)を検出する吸熱器温度センサ48と、室外熱交換器7の出口の冷媒温度(室外熱交換器7の冷媒蒸発温度:室外熱交換器温度TXO)を検出する室外熱交換器温度センサ49と、補助ヒータ23の温度を検出する補助ヒータ温度センサ50A(運転席側)及び50B(助手席側)の各出力が接続されている。 The heat pump controller 32 is a controller that mainly controls the refrigerant circuit R, and the input of the heat pump controller 32 is a heat dissipation controller that detects the refrigerant inlet temperature Tcxin of the radiator 4 (also the discharge refrigerant temperature of the compressor 2). a radiator outlet temperature sensor 44 for detecting the refrigerant outlet temperature Tci of the radiator 4; a suction temperature sensor 46 for detecting the refrigerant suction temperature Ts of the compressor 2; A radiator pressure sensor 47 that detects the refrigerant pressure (pressure of the radiator 4: radiator pressure Pci) and a heat absorber temperature sensor that detects the temperature of the heat absorber 9 (refrigerant temperature of the heat absorber 9: heat absorber temperature Te) 48, an outdoor heat exchanger temperature sensor 49 that detects the refrigerant temperature at the outlet of the outdoor heat exchanger 7 (refrigerant evaporation temperature of the outdoor heat exchanger 7: outdoor heat exchanger temperature TXO), and the temperature of the auxiliary heater 23 The outputs of auxiliary heater temperature sensors 50A (driver's seat side) and 50B (passenger's seat side) are connected.

また、ヒートポンプコントローラ32の出力には、室外膨張弁6、電磁弁22(除湿用)、電磁弁17(冷房用)、電磁弁21(暖房用)、電磁弁20(バイパス用)、電磁弁35(キャビン用)及び電磁弁69(チラー用)の各電磁弁が接続され、それらはヒートポンプコントローラ32により制御される。尚、圧縮機2、補助ヒータ23、循環ポンプ62及び熱媒体加熱ヒータ63はそれぞれコントローラを内蔵しており、実施例では圧縮機2や補助ヒータ23、循環ポンプ62や熱媒体加熱ヒータ63のコントローラは車両通信バス65を介してヒートポンプコントローラ32とデータの送受信を行い、このヒートポンプコントローラ32によって制御される。 The output of the heat pump controller 32 includes the outdoor expansion valve 6, the solenoid valve 22 (for dehumidification), the solenoid valve 17 (for cooling), the solenoid valve 21 (for heating), the solenoid valve 20 (for bypass), the solenoid valve 35 (for cabin) and solenoid valve 69 (for chiller) are connected and controlled by the heat pump controller 32 . The compressor 2, the auxiliary heater 23, the circulation pump 62, and the heat medium heater 63 each incorporate a controller. transmits and receives data to and from the heat pump controller 32 via the vehicle communication bus 65 and is controlled by the heat pump controller 32 .

尚、機器温度調整装置61を構成する循環ポンプ62や熱媒体加熱ヒータ63はバッテリコントローラ73により制御されるようにしてもよい。また、このバッテリコントローラ73には機器温度調整装置61の冷媒-熱媒体熱交換器64の熱媒体流路64Aの出口側の熱媒体の温度(熱媒体温度Tw)を検出する熱媒体温度センサ76と、バッテリ55の温度(バッテリ55自体の温度:バッテリ温度Tcell)を検出するバッテリ温度センサ77の出力が接続されている。そして、実施例ではバッテリ55の残量(蓄電量)やバッテリ55の充電に関する情報(充電中であることの情報や充電完了時間、残充電時間等)、熱媒体温度Twやバッテリ温度Tcell、バッテリ55の発熱量(通電量等からバッテリコントローラ73が算出)等はバッテリコントローラ73から車両通信バス65を介して空調コントローラ45や車両コントローラ72に送信される。バッテリ55の充電時における充電完了時間や残充電時間に関する情報は、急速充電器等の外部の充電器から供給される情報である。また、車両コントローラ72からは走行用モータの出力Mpowerがヒートポンプコントローラ32や空調コントローラ45に送信される。 Note that the circulation pump 62 and the heat medium heater 63 that constitute the equipment temperature adjustment device 61 may be controlled by the battery controller 73 . The battery controller 73 also includes a heat medium temperature sensor 76 for detecting the temperature of the heat medium (heat medium temperature Tw) on the outlet side of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 of the device temperature adjustment device 61. and the output of a battery temperature sensor 77 that detects the temperature of the battery 55 (the temperature of the battery 55 itself: battery temperature Tcell) is connected. In the embodiment, the remaining amount (accumulated amount) of the battery 55, information on charging of the battery 55 (information indicating that charging is in progress, charging completion time, remaining charging time, etc.), heat medium temperature Tw, battery temperature Tcell, battery The amount of heat generated by 55 (calculated by the battery controller 73 from the amount of electricity supplied) and the like are transmitted from the battery controller 73 to the air conditioning controller 45 and the vehicle controller 72 via the vehicle communication bus 65 . The information on the charge completion time and the remaining charge time when charging the battery 55 is information supplied from an external charger such as a quick charger. Further, the vehicle controller 72 transmits the output Mpower of the running motor to the heat pump controller 32 and the air conditioning controller 45 .

ヒートポンプコントローラ32と空調コントローラ45は車両通信バス65を介して相互にデータの送受信を行い、各センサの出力や空調操作部53にて入力された設定に基づき、各機器を制御するものであるが、この場合の実施例では外気温度センサ33、外気湿度センサ34、HVAC吸込温度センサ36、内気温度センサ37、内気湿度センサ38、室内CO2濃度センサ39、吹出温度センサ41、日射センサ51、車速センサ52、空気流通路3に流入して当該空気流通路3内を流通する空気の風量Ga(空調コントローラ45が算出)、エアミックスダンパ28による風量割合SW(空調コントローラ45が算出)、室内送風機27の電圧(BLV)、前述したバッテリコントローラ73からの情報、GPSナビゲーション装置74からの情報、空調操作部53の出力は空調コントローラ45から車両通信バス65を介してヒートポンプコントローラ32に送信され、ヒートポンプコントローラ32による制御に供される構成とされている。 The heat pump controller 32 and the air conditioning controller 45 exchange data with each other via the vehicle communication bus 65, and control each device based on the output of each sensor and the setting input by the air conditioning operation unit 53. , in this embodiment, the outside air temperature sensor 33, the outside air humidity sensor 34, the HVAC intake temperature sensor 36, the inside air temperature sensor 37, the inside air humidity sensor 38, the indoor CO 2 concentration sensor 39, the outlet temperature sensor 41, the solar radiation sensor 51, the vehicle speed Sensor 52, air volume Ga of air flowing into the air circulation passage 3 and circulating in the air circulation passage 3 (calculated by the air conditioning controller 45), air volume ratio SW by the air mix damper 28 (calculated by the air conditioning controller 45), indoor blower 27 voltage (BLV), information from the battery controller 73 described above, information from the GPS navigation device 74, and the output of the air conditioning operation unit 53 are transmitted from the air conditioning controller 45 to the heat pump controller 32 via the vehicle communication bus 65, and the heat pump It is configured to be controlled by the controller 32 .

また、ヒートポンプコントローラ32からも冷媒回路Rの制御に関するデータ(情報)が車両通信バス65を介して空調コントローラ45に送信される。尚、前述したエアミックスダンパ28による風量割合SWは、0≦SW≦1の範囲で空調コントローラ45が算出する。そして、SW=1のときはエアミックスダンパ28により、吸熱器9を経た空気の全てが放熱器4及び補助ヒータ23に通風されることになる。 Data (information) regarding control of the refrigerant circuit R is also transmitted from the heat pump controller 32 to the air conditioning controller 45 via the vehicle communication bus 65 . The air volume ratio SW by the air mix damper 28 described above is calculated by the air conditioning controller 45 within the range of 0≦SW≦1. When SW=1, the air mix damper 28 causes all of the air that has passed through the heat absorber 9 to flow through the radiator 4 and the auxiliary heater 23 .

以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。この実施例では制御装置11(空調コントローラ45、ヒートポンプコントローラ32)は、暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、及び、空調優先+バッテリ冷却モードの各空調運転と、バッテリ冷却優先+空調モード、バッテリ冷却単独モードの各バッテリ冷却運転と、除霜モードを切り換えて実行する。これらが図3に示されている。 With the above configuration, the operation of the vehicle air conditioner 1 of the embodiment will now be described. In this embodiment, the control device 11 (the air conditioning controller 45 and the heat pump controller 32) operates in a heating mode, a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode, an air conditioning priority + battery cooling mode, and a battery cooling priority + Each battery cooling operation of the air conditioning mode and the battery cooling independent mode, and the defrosting mode are switched and executed. These are shown in FIG.

このうち、暖房モードと、除湿暖房モードと、除湿冷房モードと、冷房モードと、空調優先+バッテリ冷却モードの各空調運転は、実施例ではバッテリ55を充電しておらず、車両のイグニッション(IGN)がONされ、空調操作部53の空調スイッチがONされている場合に実行されるものである。但し、リモート運転時(プレ空調等)にはイグニッションがOFFの場合にも実行される。また、バッテリ55を充電中でもバッテリ冷却要求が無く、空調スイッチがONされているときは実行される。一方、バッテリ冷却優先+空調モードと、バッテリ冷却単独モードの各バッテリ冷却運転は、例えば急速充電器(外部電源)のプラグを接続し、バッテリ55に充電しているときに実行されるものである。但し、バッテリ冷却単独モードは、バッテリ55の充電中以外にも、空調スイッチがOFFで、バッテリ冷却要求があった場合(高外気温で走行時等)には実行される。 Of these, the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, and the air conditioning priority + battery cooling mode each air conditioning operation does not charge the battery 55 in the embodiment, and the vehicle ignition (IGN ) is turned on and the air conditioning switch of the air conditioning operation unit 53 is turned on. However, during remote operation (pre-air conditioning, etc.), it is executed even when the ignition is off. Also, even when the battery 55 is being charged, it is executed when there is no battery cooling request and the air conditioning switch is turned on. On the other hand, each battery cooling operation of the battery cooling priority + air conditioning mode and the battery cooling only mode is executed when the battery 55 is being charged by connecting the plug of a quick charger (external power supply), for example. . However, the battery cooling only mode is executed when the air conditioning switch is OFF and there is a request for cooling the battery (during running at a high outside temperature, etc.) other than when the battery 55 is being charged.

また、実施例ではヒートポンプコントローラ32は、イグニッションがONされているときや、イグニッションがOFFされていてもバッテリ55が充電中であるときは、機器温度調整装置61の循環ポンプ62を運転し、図4~図10に破線で示す如く熱媒体配管66内に熱媒体を循環させるものとする。更に、図3には示していないが、実施例のヒートポンプコントローラ32は、機器温度調整装置61の熱媒体加熱ヒータ63を発熱させることでバッテリ55を加熱するバッテリ加熱モードも実行する。 Further, in the embodiment, the heat pump controller 32 operates the circulation pump 62 of the equipment temperature adjustment device 61 when the ignition is turned on or when the battery 55 is being charged even when the ignition is turned off. 4 to 10, the heat medium is circulated in the heat medium pipe 66 as indicated by the dashed lines. Furthermore, although not shown in FIG. 3, the heat pump controller 32 of the embodiment also executes a battery heating mode in which the battery 55 is heated by causing the heat medium heater 63 of the equipment temperature adjustment device 61 to generate heat.

(1)暖房モード
先ず、図4を参照しながら暖房モードについて説明する。尚、各機器の制御はヒートポンプコントローラ32と空調コントローラ45の協働により実行されるものであるが、以下の説明ではヒートポンプコントローラ32を制御主体とし、簡略化して説明する。図4には暖房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。ヒートポンプコントローラ32により(オートモード)或いは空調コントローラ45の空調操作部53へのマニュアルの空調設定操作(マニュアルモード)により暖房モードが選択されると、ヒートポンプコントローラ32は電磁弁21を開き、電磁弁17、電磁弁20、電磁弁22、電磁弁35、電磁弁69を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
(1) Heating Mode First, the heating mode will be described with reference to FIG. The control of each device is executed by the cooperation of the heat pump controller 32 and the air conditioning controller 45, but in the following description, the heat pump controller 32 is the main control unit, and the description will be simplified. FIG. 4 shows how the refrigerant flows (solid line arrows) in the refrigerant circuit R in the heating mode. When the heating mode is selected by the heat pump controller 32 (auto mode) or by manual air conditioning setting operation (manual mode) to the air conditioning operation unit 53 of the air conditioning controller 45, the heat pump controller 32 opens the solenoid valve 21 and the solenoid valve 17 , the solenoid valve 20, the solenoid valve 22, the solenoid valve 35 and the solenoid valve 69 are closed. Then, the compressor 2 and the fans 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor fan 27 to the radiator 4 and the auxiliary heater 23 .

これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。 As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 . Since the air in the air circulation passage 3 is ventilated to the radiator 4, the air in the air circulation passage 3 exchanges heat with the high-temperature refrigerant in the radiator 4 and is heated. On the other hand, the refrigerant in the radiator 4 is cooled by the heat taken by the air, and is condensed and liquefied.

放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13E、13Jを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15により通風される外気中から熱を汲み上げる(吸熱)。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13D、電磁弁21を経て冷媒配管13Cに至り、更にこの冷媒配管13Cを経てアキュムレータ12に入り、そこで気液分離された後、冷媒配管13Kからガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。 After leaving the radiator 4, the refrigerant liquefied in the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipes 13E and 13J. The refrigerant that has flowed into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7 . The refrigerant that has flowed into the outdoor heat exchanger 7 evaporates, and draws up heat from the outside air blown by the outdoor blower 15 while the vehicle is running (heat absorption). That is, the refrigerant circuit R becomes a heat pump. The low-temperature refrigerant leaving the outdoor heat exchanger 7 passes through the refrigerant pipes 13A, 13D, and the electromagnetic valve 21, reaches the refrigerant pipe 13C, further passes through the refrigerant pipe 13C, enters the accumulator 12, and is separated into gas and liquid there. After that, the gas refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K, and the circulation is repeated. Since the air heated by the radiator 4 is blown out from the outlet 29, the vehicle interior is heated.

ヒートポンプコントローラ32は、車室内に吹き出される空気の目標温度(車室内に吹き出される空気の温度の目標値)である後述する目標吹出温度TAOから算出される目標ヒータ温度TCO(放熱器4の目標温度)から目標放熱器圧力PCOを算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、放熱器出口温度センサ44が検出する放熱器4の冷媒出口温度Tci及び放熱器圧力センサ47が検出する放熱器圧力Pciに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度を制御する。 The heat pump controller 32 sets a target heater temperature TCO (of the radiator 4) calculated from a target outlet temperature TAO, which is a target temperature of the air to be blown into the passenger compartment (a target value of the temperature of the air to be blown into the passenger compartment). The target radiator pressure PCO is calculated from the target temperature), and the rotation speed of the compressor 2 is determined based on this target radiator pressure PCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. while controlling the valve opening degree of the outdoor expansion valve 6 based on the refrigerant outlet temperature Tci of the radiator 4 detected by the radiator outlet temperature sensor 44 and the radiator pressure Pci detected by the radiator pressure sensor 47, Controls the degree of subcooling of the refrigerant at the outlet of the radiator 4 .

また、ヒートポンプコントローラ32は、必要とされる暖房能力に対して放熱器4による暖房能力(加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、低外気温時等にも車室内を支障無く暖房する。 Moreover, when the heating capacity (heating capacity) of the radiator 4 is insufficient for the required heating capacity, the heat pump controller 32 compensates for this deficiency with the heat generated by the auxiliary heater 23 . As a result, the vehicle interior can be heated without any problem even when the outside air temperature is low.

(2)除湿暖房モード
次に、図5を参照しながら除湿暖房モードについて説明する。図5は除湿暖房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。除湿暖房モードでは、ヒートポンプコントローラ32は電磁弁21、電磁弁22、電磁弁35を開き、電磁弁17、電磁弁20、電磁弁69は閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
(2) Dehumidifying Heating Mode Next, the dehumidifying heating mode will be described with reference to FIG. FIG. 5 shows how the refrigerant flows (solid line arrows) in the refrigerant circuit R in the dehumidifying and heating mode. In the dehumidifying heating mode, the heat pump controller 32 opens the solenoid valves 21, 22 and 35, and closes the solenoid valves 17, 20 and 69. Then, the compressor 2 and the fans 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor fan 27 to the radiator 4 and the auxiliary heater 23 .

これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。 As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 . Since the air in the air circulation passage 3 is ventilated to the radiator 4, the air in the air circulation passage 3 exchanges heat with the high-temperature refrigerant in the radiator 4 and is heated. On the other hand, the refrigerant in the radiator 4 is cooled by the heat taken by the air, and is condensed and liquefied.

放熱器4内で液化した冷媒は放熱器4を出た後、冷媒配管13Eを経て一部は冷媒配管13Jに入り、室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15により通風される外気中から熱を汲み上げる(吸熱)。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13D、電磁弁21を経て冷媒配管13Cに至り、この冷媒配管13Cを経てアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。 After the refrigerant liquefied in the radiator 4 exits the radiator 4 , a part of it enters the refrigerant pipe 13 J through the refrigerant pipe 13 E and reaches the outdoor expansion valve 6 . The refrigerant that has flowed into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7 . The refrigerant that has flowed into the outdoor heat exchanger 7 evaporates, and draws up heat from the outside air blown by the outdoor blower 15 while the vehicle is running (heat absorption). Then, the low-temperature refrigerant leaving the outdoor heat exchanger 7 reaches the refrigerant pipe 13C through the refrigerant pipe 13A, the refrigerant pipe 13D, and the electromagnetic valve 21, enters the accumulator 12 through the refrigerant pipe 13C, and is separated into gas and liquid there. After that, the gas refrigerant is repeatedly sucked into the compressor 2 through the refrigerant pipe 13K.

一方、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の残りは分流され、この分流された冷媒が電磁弁22を経て冷媒配管13Fに流入し、冷媒配管13Bに至る。次に、冷媒は室内膨張弁8に至り、この室内膨張弁8にて減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときに吸熱器9で生じる冷媒の吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。 On the other hand, the remainder of the condensed refrigerant flowing through the refrigerant pipe 13E through the radiator 4 is branched, and the branched refrigerant flows through the solenoid valve 22 into the refrigerant pipe 13F and reaches the refrigerant pipe 13B. Next, the refrigerant reaches the indoor expansion valve 8, is decompressed by the indoor expansion valve 8, flows through the electromagnetic valve 35 into the heat absorber 9, and evaporates. At this time, the heat absorbing action of the refrigerant generated in the heat absorber 9 causes moisture in the air blown out from the indoor fan 27 to condense and adhere to the heat absorber 9, so that the air is cooled and dehumidified.

吸熱器9で蒸発した冷媒は、冷媒配管13Cに出て冷媒配管13Dからの冷媒(室外熱交換器7からの冷媒)と合流した後、アキュムレータ12を経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4や補助ヒータ23(発熱している場合)を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。 The refrigerant evaporated in the heat absorber 9 exits the refrigerant pipe 13C, joins the refrigerant from the refrigerant pipe 13D (refrigerant from the outdoor heat exchanger 7), passes through the accumulator 12, and is sucked into the compressor 2 from the refrigerant pipe 13K. repeat the cycle. The air dehumidified by the heat absorber 9 is reheated in the course of passing through the radiator 4 and the auxiliary heater 23 (if it is generating heat), so dehumidifying and heating the vehicle interior is performed.

ヒートポンプコントローラ32は、実施例では目標ヒータ温度TCOから算出される目標放熱器圧力PCOと放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御するか、又は、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数を制御する。このとき、ヒートポンプコントローラ32は放熱器圧力Pciによるか吸熱器温度Teによるか、何れかの演算から得られる圧縮機目標回転数の低い方(後述するTGNChとTGNCcのうちの低い方)を選択して圧縮機2を制御する。また、吸熱器温度Teに基づいて室外膨張弁6の弁開度を制御する。 In the embodiment, the heat pump controller 32 controls the rotation of the compressor 2 based on the target radiator pressure PCO calculated from the target heater temperature TCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. Alternatively, the rotation speed of the compressor 2 is controlled based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO, which is its target value. . At this time, the heat pump controller 32 selects the lower one of the compressor target rotation speed (the lower one of TGNCh and TGNCc, which will be described later) obtained from calculation of either the radiator pressure Pci or the heat absorber temperature Te. to control the compressor 2. Further, the valve opening degree of the outdoor expansion valve 6 is controlled based on the heat absorber temperature Te.

また、ヒートポンプコントローラ32は、この除湿暖房モードにおいても必要とされる暖房能力に対して放熱器4による暖房能力(加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、低外気温時等にも車室内を支障無く除湿暖房する。 If the heating capacity (heating capacity) of the radiator 4 is insufficient for the required heating capacity even in this dehumidification heating mode, the heat pump controller 32 compensates for this deficiency with the heat generated by the auxiliary heater 23. . As a result, even when the outside air temperature is low, the interior of the vehicle can be dehumidified and heated without any trouble.

(3)除湿冷房モード
次に、図6を参照しながら除湿冷房モードについて説明する。図6は除湿冷房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。除湿冷房モードでは、ヒートポンプコントローラ32は電磁弁17、及び、電磁弁35を開き、電磁弁20、電磁弁21、電磁弁22、及び、電磁弁69を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
(3) Dehumidifying Cooling Mode Next, the dehumidifying cooling mode will be described with reference to FIG. FIG. 6 shows how the refrigerant flows (solid line arrows) in the refrigerant circuit R in the dehumidifying cooling mode. In the dehumidifying cooling mode, the heat pump controller 32 opens the solenoid valves 17 and 35 and closes the solenoid valves 20 , 21 , 22 and 69 . Then, the compressor 2 and the fans 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor fan 27 to the radiator 4 and the auxiliary heater 23 .

これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。 As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 . Since the air in the air circulation passage 3 is ventilated to the radiator 4, the air in the air circulation passage 3 exchanges heat with the high-temperature refrigerant in the radiator 4 and is heated. On the other hand, the refrigerant in the radiator 4 loses heat to the air, is cooled, and is condensed and liquefied.

放熱器4を出た冷媒は冷媒配管13E、13Jを経て室外膨張弁6に至り、暖房モードや除湿暖房モードよりも開き気味(大きい弁開度の領域)で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入り、逆止弁18を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着し、空気は冷却され、且つ、除湿される。 The refrigerant exiting the radiator 4 passes through the refrigerant pipes 13E and 13J, reaches the outdoor expansion valve 6, and passes through the outdoor expansion valve 6, which is controlled to be slightly more open than in the heating mode or the dehumidifying heating mode (area with a large valve opening). It flows into the outdoor heat exchanger 7 . The refrigerant that has flowed into the outdoor heat exchanger 7 is air-cooled there by traveling or by the outside air blown by the outdoor blower 15 and condensed. The refrigerant exiting the outdoor heat exchanger 7 passes through the refrigerant pipe 13A, the electromagnetic valve 17, the receiver-drier section 14, and the supercooling section 16, enters the refrigerant pipe 13B, and reaches the indoor expansion valve 8 via the check valve 18. After being decompressed by the indoor expansion valve 8, the refrigerant flows through the electromagnetic valve 35 into the heat absorber 9 and evaporates. Moisture in the air blown out from the indoor fan 27 condenses and adheres to the heat absorber 9 due to the heat absorbing action at this time, and the air is cooled and dehumidified.

吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこを経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4や補助ヒータ23(発熱している場合)を通過する過程で再加熱(除湿暖房時よりも加熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。 The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C, and is sucked into the compressor 2 through the refrigerant pipe 13K through the refrigerant pipe 13C. The air cooled by the heat absorber 9 and dehumidified is reheated (heating capacity is lower than during dehumidification heating) in the process of passing through the radiator 4 and the auxiliary heater 23 (if it is generating heat). Thus, dehumidification and cooling of the passenger compartment is performed.

ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)と吸熱器9の目標温度(吸熱器温度Teの目標値)である目標吸熱器温度TEOに基づき、吸熱器温度Teを目標吸熱器温度TEOにするように圧縮機2の回転数を制御すると共に、放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)と目標放熱器圧力PCO(放熱器圧力Pciの目標値)に基づき、放熱器圧力Pciを目標放熱器圧力PCOにするように室外膨張弁6の弁開度を制御することで放熱器4による必要なリヒート量(再加熱量)を得る。 The heat pump controller 32 absorbs heat based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO, which is the target temperature of the heat absorber 9 (target value of the heat absorber temperature Te). The rotation speed of the compressor 2 is controlled so that the device temperature Te becomes the target heat absorber temperature TEO, and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47 and the target radiator pressure PCO Based on (the target value of the radiator pressure Pci), the required reheating amount (reheating amount).

また、ヒートポンプコントローラ32は、この除湿冷房モードにおいても必要とされる暖房能力に対して放熱器4による暖房能力(再加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、車室内の温度を下げ過ぎること無く、除湿冷房する。 Also in this dehumidification cooling mode, if the heating capacity (reheating capacity) of the radiator 4 is insufficient for the required heating capacity, the heat pump controller 32 compensates for this deficiency with the heat generated by the auxiliary heater 23. do. As a result, dehumidification and cooling is performed without excessively lowering the temperature in the passenger compartment.

(4)冷房モード(第1の運転モード、空調単独モード)
次に、図7を参照しながら冷房モードについて説明する。図7は冷房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。冷房モードでは、ヒートポンプコントローラ32は電磁弁17、電磁弁20、及び、電磁弁35を開き、電磁弁21、電磁弁22、及び、電磁弁69を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。尚、補助ヒータ23には通電されない。
(4) Cooling mode (first operation mode, air conditioning independent mode)
Next, the cooling mode will be described with reference to FIG. FIG. 7 shows how the refrigerant flows (solid line arrows) in the refrigerant circuit R in the cooling mode. In the cooling mode, the heat pump controller 32 opens the solenoid valves 17 , 20 and 35 and closes the solenoid valves 21 , 22 and 69 . Then, the compressor 2 and the fans 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor fan 27 to the radiator 4 and the auxiliary heater 23 . Incidentally, the auxiliary heater 23 is not energized.

これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒート(再加熱)のみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。このとき電磁弁20は開放されているので冷媒は電磁弁20を通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮液化する。 As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 . Although the air in the air flow passage 3 is ventilated to the radiator 4, the ratio is small (because it is only reheated (reheated) during cooling). The discharged refrigerant reaches the refrigerant pipe 13J through the refrigerant pipe 13E. At this time, since the solenoid valve 20 is open, the refrigerant passes through the solenoid valve 20 and flows into the outdoor heat exchanger 7 as it is, where it is air-cooled by running or by the outside air blown by the outdoor blower 15, and condensed and liquefied. do.

室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入り、逆止弁18を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときの吸熱作用で室内送風機27から吹き出されて吸熱器9と熱交換する空気は冷却される。 The refrigerant exiting the outdoor heat exchanger 7 passes through the refrigerant pipe 13A, the electromagnetic valve 17, the receiver-drier section 14, and the supercooling section 16, enters the refrigerant pipe 13B, and reaches the indoor expansion valve 8 via the check valve 18. After being decompressed by the indoor expansion valve 8, the refrigerant flows through the electromagnetic valve 35 into the heat absorber 9 and evaporates. Due to the endothermic action at this time, the air blown out from the indoor fan 27 and exchanging heat with the heat absorber 9 is cooled.

吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこから冷媒配管13Kを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房モードにおいては、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて圧縮機2の回転数を制御する。 The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C, and is sucked into the compressor 2 through the refrigerant pipe 13K. The air cooled by the heat absorber 9 is blown into the passenger compartment through the outlet 29, thereby cooling the passenger compartment. In this cooling mode, the heat pump controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 .

(5)空調優先+バッテリ冷却モード(第2の運転モード、空調優先+被温調対象冷却モード)
次に、図8を参照しながら空調優先+バッテリ冷却モードについて説明する。図8は空調優先+バッテリ冷却モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。空調優先+バッテリ冷却モードでは、ヒートポンプコントローラ32は電磁弁17、電磁弁20、電磁弁35、及び、電磁弁69を開き、電磁弁21、及び、電磁弁22を閉じる。
(5) Air conditioning priority + battery cooling mode (second operation mode, air conditioning priority + temperature controlled cooling mode)
Next, the air conditioning priority+battery cooling mode will be described with reference to FIG. FIG. 8 shows how the refrigerant flows (solid line arrows) in the refrigerant circuit R in the air conditioning priority + battery cooling mode. In the air conditioning priority+battery cooling mode, the heat pump controller 32 opens the solenoid valves 17 , 20 , 35 and 69 and closes the solenoid valves 21 and 22 .

そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。尚、この運転モードでは補助ヒータ23には通電されない。また、熱媒体加熱ヒータ63にも通電されない。 Then, the compressor 2 and the fans 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor fan 27 to the radiator 4 and the auxiliary heater 23 . Note that the auxiliary heater 23 is not energized in this operation mode. Also, the heating medium heater 63 is not energized.

これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒート(再加熱)のみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。このとき電磁弁20は開放されているので冷媒は電磁弁20を通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮液化する。 As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 . Although the air in the air flow passage 3 is ventilated to the radiator 4, the ratio is small (because it is only reheated (reheated) during cooling). The discharged refrigerant reaches the refrigerant pipe 13J through the refrigerant pipe 13E. At this time, since the solenoid valve 20 is open, the refrigerant passes through the solenoid valve 20 and flows into the outdoor heat exchanger 7 as it is, where it is air-cooled by running or by the outside air blown by the outdoor blower 15, and condensed and liquefied. do.

室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入る。この冷媒配管13Bに流入した冷媒は、逆止弁18を経た後に分流され、一方はそのまま冷媒配管13Bを流れて室内膨張弁8に至る。この室内膨張弁8に流入した冷媒はそこで減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときの吸熱作用で室内送風機27から吹き出されて吸熱器9と熱交換する空気は冷却される。 The refrigerant exiting the outdoor heat exchanger 7 passes through the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer section 14, and the supercooling section 16 and enters the refrigerant pipe 13B. The refrigerant that has flowed into the refrigerant pipe 13B is divided after passing through the check valve 18, and one part flows directly through the refrigerant pipe 13B and reaches the indoor expansion valve 8. As shown in FIG. After the refrigerant flowing into the indoor expansion valve 8 is decompressed there, it flows through the electromagnetic valve 35 into the heat absorber 9 and evaporates. Due to the endothermic action at this time, the air blown out from the indoor fan 27 and exchanging heat with the heat absorber 9 is cooled.

吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこから冷媒配管13Kを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。 The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C, and is sucked into the compressor 2 through the refrigerant pipe 13K. The air cooled by the heat absorber 9 is blown into the passenger compartment through the outlet 29, thereby cooling the passenger compartment.

他方、逆止弁18を経た冷媒の残りは分流され、分岐配管67に流入して補助膨張弁68に至る。ここで冷媒は減圧された後、電磁弁69を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入し、そこで蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管71、冷媒配管13C及びアキュムレータ12を順次経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す(図8に実線矢印で示す)。 On the other hand, the rest of the refrigerant that has passed through the check valve 18 is split, flows into the branch pipe 67 and reaches the auxiliary expansion valve 68 . After the refrigerant is decompressed here, it flows through the solenoid valve 69 into the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, where it evaporates. At this time, it exerts an endothermic action. The refrigerant evaporated in the refrigerant flow path 64B repeats the circulation of being sucked into the compressor 2 from the refrigerant pipe 13K through the refrigerant pipe 71, the refrigerant pipe 13C, and the accumulator 12 in sequence (indicated by solid arrows in FIG. 8).

一方、循環ポンプ62が運転されているので、この循環ポンプ62から吐出された熱媒体が熱媒体配管66内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒と熱交換し、吸熱されて熱媒体は冷却される。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は、熱媒体加熱ヒータ63に至る。但し、この運転モードでは熱媒体加熱ヒータ63は発熱されないので、熱媒体はそのまま通過してバッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は冷却されると共に、バッテリ55を冷却した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す(図8に破線矢印で示す)。 On the other hand, since the circulation pump 62 is in operation, the heat medium discharged from the circulation pump 62 reaches the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 through the heat medium pipe 66, where the refrigerant flow path It exchanges heat with the refrigerant that evaporates in 64B, absorbs heat, and cools the heat medium. The heat medium exiting the heat medium flow path 64 A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heater 63 . However, since the heating medium heater 63 does not generate heat in this operation mode, the heating medium passes through as it is, reaches the battery 55 , and exchanges heat with the battery 55 . As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 repeats the circulation of being sucked into the circulation pump 62 (indicated by the dashed arrow in FIG. 8).

この空調優先+バッテリ冷却モードにおいては、ヒートポンプコントローラ32は電磁弁35を開いた状態を維持し、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて後述する如く圧縮機2の回転数を制御する。また、実施例では熱媒体温度センサ76が検出する熱媒体の温度(熱媒体温度Tw:バッテリコントローラ73から送信される)に基づき、電磁弁69を以下の如く開閉制御する。尚、熱媒体温度Twは、実施例における被温調対象であるバッテリ55の温度を示す指標として採用している(以下、同じ)。 In this air conditioning priority + battery cooling mode, the heat pump controller 32 keeps the electromagnetic valve 35 open, and based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48, as will be described later. The rotation speed of the compressor 2 is controlled. Further, in the embodiment, based on the temperature of the heat medium detected by the heat medium temperature sensor 76 (heat medium temperature Tw: transmitted from the battery controller 73), the solenoid valve 69 is controlled to open and close as follows. Note that the heat medium temperature Tw is employed as an index indicating the temperature of the battery 55, which is subject to temperature regulation in the embodiment (same below).

即ち、ヒートポンプコントローラ32は、熱媒体温度Twの目標値としての所定の目標熱媒体温度TWOの上下に所定の温度差を有して上限値TULと下限値TLLを設定する。そして、電磁弁69を閉じている状態からバッテリ55の発熱等により熱媒体温度Twが高くなり、上限値TULまで上昇した場合(上限値TULを上回った場合、又は、上限値TUL以上となった場合。以下、同じ)、電磁弁69を開放する。これにより、冷媒は冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して蒸発し、熱媒体流路64Aを流れる熱媒体を冷却するので、この冷却された熱媒体によりバッテリ55は冷却される。 That is, the heat pump controller 32 sets the upper limit value TUL and the lower limit value TLL with a predetermined temperature difference above and below a predetermined target heat medium temperature TWO as a target value of the heat medium temperature Tw. Then, when the heat medium temperature Tw rises due to heat generation of the battery 55 or the like from the state where the electromagnetic valve 69 is closed and rises to the upper limit value TUL (when it exceeds the upper limit value TUL, or when it exceeds the upper limit value TUL (same below), the solenoid valve 69 is opened. As a result, the refrigerant flows into the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, evaporates, and cools the heat medium flowing through the heat medium flow path 64A. be done.

その後、熱媒体温度Twが下限値TLLまで低下した場合(下限値TLLを下回った場合、又は、下限値TLL以下となった場合。以下、同じ)、電磁弁69を閉じる。以後、このような電磁弁69の開閉を繰り返して、車室内の冷房を優先しながら、熱媒体温度Twを目標熱媒体温度TWOに制御し、バッテリ55の冷却を行う。 After that, when the heat medium temperature Tw drops to the lower limit TLL (below the lower limit TLL, or below the lower limit TLL; hereinafter the same), the electromagnetic valve 69 is closed. Thereafter, the opening and closing of the electromagnetic valve 69 are repeated to control the heat medium temperature Tw to the target heat medium temperature TWO while giving priority to cooling the vehicle interior, thereby cooling the battery 55 .

(6)空調運転の切り換え
ヒートポンプコントローラ32は下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、吹出口29から車室内に吹き出される空気の温度の目標値である。
TAO=(Tset-Tin)×K+Tbal(f(Tset、SUN、Tam))
・・(I)
ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する車室内空気の温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
(6) Switching of Air-Conditioning Operation The heat pump controller 32 calculates the aforementioned target blowout temperature TAO from the following equation (I). This target blowout temperature TAO is a target value for the temperature of the air blown out from the blowout port 29 into the vehicle interior.
TAO=(Tset−Tin)×K+Tbal(f(Tset, SUN, Tam))
... (I)
Here, Tset is the set temperature in the vehicle interior set by the air conditioning operation unit 53, Tin is the temperature of the interior air detected by the inside air temperature sensor 37, K is a coefficient, and Tbal is the set temperature Tset and the solar radiation sensor 51 detects. SUN and the outside air temperature Tam detected by the outside air temperature sensor 33 . In general, the lower the outside air temperature Tam is, the higher the target blowing temperature TAO is, and the higher the outside air temperature Tam is, the lower the target blowing temperature TAO is.

そして、ヒートポンプコントローラ32は起動時には外気温度センサ33が検出する外気温度Tamと目標吹出温度TAOとに基づいて上記各空調運転のうちの何れかの空調運転を選択する。また、起動後は外気温度Tamや目標吹出温度TAO、熱媒体温度Twやバッテリ温度Tcell等の運転条件や環境条件、設定条件の変化、バッテリコントローラ73からのバッテリ冷却要求(モード移行要求)に応じ、前記各空調運転を選択して切り換えていく。 Then, the heat pump controller 32 selects one of the above-described air conditioning operations based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target air temperature TAO at startup. In addition, after startup, the operating conditions such as the outside air temperature Tam, the target blowout temperature TAO, the heat medium temperature Tw and the battery temperature Tcell, the environmental conditions, changes in the setting conditions, and the battery cooling request (mode shift request) from the battery controller 73 , selects and switches each air conditioning operation.

(7)バッテリ冷却優先+空調モード(第2の運転モード、被温調対象冷却優先+空調モード)
次に、バッテリ55の充電中の動作について説明する。例えば急速充電器(外部電源)の充電用のプラグが接続され、バッテリ55が充電されているときに(これらの情報はバッテリコントローラ73から送信される)、車両のイグニッション(IGN)のON/OFFに拘わらず、バッテリ冷却要求があり、空調操作部53の空調スイッチがONされた場合、ヒートポンプコントローラ32はバッテリ冷却優先+空調モードを実行する。このバッテリ冷却優先+空調モードにおける冷媒回路Rの冷媒の流れ方は、図8に示した空調優先+バッテリ冷却モードの場合と同様である。
(7) Battery cooling priority + air conditioning mode (second operation mode, temperature controlled object cooling priority + air conditioning mode)
Next, the operation during charging of the battery 55 will be described. For example, when the charging plug of a quick charger (external power supply) is connected and the battery 55 is being charged (these information is transmitted from the battery controller 73), the ignition (IGN) of the vehicle is turned on/off. Regardless, when there is a battery cooling request and the air conditioning switch of the air conditioning operation unit 53 is turned on, the heat pump controller 32 executes the battery cooling priority + air conditioning mode. The flow of the refrigerant in the refrigerant circuit R in this battery cooling priority + air conditioning mode is the same as in the case of the air conditioning priority + battery cooling mode shown in FIG.

但し、このバッテリ冷却優先+空調モードの場合、実施例ではヒートポンプコントローラ32は電磁弁69を開いた状態に維持し、熱媒体温度センサ76(バッテリコントローラ73から送信される)が検出する熱媒体温度Twに基づいて後述する如く圧縮機2の回転数を制御する。また、実施例では吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づき、電磁弁35を以下の如く開閉制御する。 However, in the case of this battery cooling priority + air conditioning mode, in the embodiment, the heat pump controller 32 keeps the solenoid valve 69 open, and the heat medium temperature detected by the heat medium temperature sensor 76 (transmitted from the battery controller 73) Based on Tw, the rotation speed of the compressor 2 is controlled as described later. Further, in the embodiment, based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48, the opening/closing of the electromagnetic valve 35 is controlled as follows.

即ち、ヒートポンプコントローラ32は、吸熱器温度Teの目標値としての所定の目標吸熱器温度TEOの上下に所定の温度差を有して上限値TeULと下限値TeLLを設定する。そして、電磁弁35を閉じている状態から吸熱器温度Teが高くなり、上限値TeULまで上昇した場合(上限値TeULを上回った場合、又は、上限値TeUL以上となった場合。以下、同じ)、電磁弁35を開放する。これにより、冷媒は吸熱器9に流入して蒸発し、空気流通路3を流通する空気を冷却する。 That is, the heat pump controller 32 sets the upper limit value TeUL and the lower limit value TeLL with a predetermined temperature difference above and below a predetermined target heat absorber temperature TEO as the target value of the heat absorber temperature Te. Then, when the heat absorber temperature Te rises from the state where the solenoid valve 35 is closed and rises to the upper limit value TeUL (when it exceeds the upper limit value TeUL, or when it becomes equal to or higher than the upper limit value TeUL; the same shall apply hereinafter). , the solenoid valve 35 is opened. As a result, the refrigerant flows into the heat absorber 9 and evaporates, cooling the air flowing through the air flow passage 3 .

その後、吸熱器温度Teが下限値TeLLまで低下した場合(下限値TeLLを下回った場合、又は、TeLL以下となった場合。以下、同じ)、電磁弁35を閉じる。以後、このような電磁弁35の開閉を繰り返して、バッテリ55の冷却を優先しながら、吸熱器温度Teを目標吸熱器温度TEOに制御し、車室内の冷房を行う。 After that, when the heat absorber temperature Te drops to the lower limit TeLL (below the lower limit TeLL or below TeLL; the same applies hereinafter), the electromagnetic valve 35 is closed. Thereafter, the opening and closing of the electromagnetic valve 35 are repeated to control the heat absorber temperature Te to the target heat absorber temperature TEO while giving priority to cooling the battery 55, thereby cooling the passenger compartment.

(8)バッテリ冷却単独モード(第1の運転モード、被温調対象冷却単独モード)
次に、イグニッションのON/OFFに拘わらず、空調操作部53の空調スイッチがOFFされた状態で、急速充電器の充電用のプラグが接続され、バッテリ55が充電されているとき、バッテリ冷却要求があった場合、ヒートポンプコントローラ32はバッテリ冷却単独モードを実行する。但し、バッテリ55の充電中以外にも、空調スイッチがOFFで、バッテリ冷却要求があった場合(高外気温で走行時等)には実行される。図9はこのバッテリ冷却単独モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。バッテリ冷却単独モードでは、ヒートポンプコントローラ32は電磁弁17、電磁弁20、及び、電磁弁69を開き、電磁弁21、電磁弁22、及び、電磁弁35を閉じる。
(8) Battery cooling single mode (first operation mode, temperature controlled target cooling single mode)
Next, regardless of ON/OFF of the ignition, when the charging plug of the quick charger is connected with the air conditioning switch of the air conditioning operation unit 53 turned off and the battery 55 is being charged, a battery cooling request is made. If there is, the heat pump controller 32 executes the battery cooling only mode. However, it is executed when the air conditioning switch is OFF and there is a battery cooling request (during running at high outside temperature, etc.) other than when the battery 55 is being charged. FIG. 9 shows how the refrigerant flows (solid line arrows) in the refrigerant circuit R in this battery cooling independent mode. In the battery cooling only mode, heat pump controller 32 opens solenoid valves 17 , 20 and 69 and closes solenoid valves 21 , 22 and 35 .

そして、圧縮機2、及び、室外送風機15を運転する。尚、室内送風機27は運転されず、補助ヒータ23にも通電されない。また、この運転モードでは熱媒体加熱ヒータ63も通電されない。 Then, the compressor 2 and the outdoor fan 15 are operated. The indoor blower 27 is not operated, and the auxiliary heater 23 is not energized. In this operation mode, the heating medium heater 63 is also not energized.

これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されないので、ここは通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。このとき、電磁弁20は開放されているので冷媒は電磁弁20を通過し、そのまま室外熱交換器7に流入し、そこで室外送風機15により通風される外気によって空冷され、凝縮液化する。 As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 . Since the air in the air circulation passage 3 is not ventilated to the radiator 4, it only passes through here, and the refrigerant coming out of the radiator 4 reaches the refrigerant pipe 13J through the refrigerant pipe 13E. At this time, since the solenoid valve 20 is open, the refrigerant passes through the solenoid valve 20 and flows into the outdoor heat exchanger 7 as it is, where it is air-cooled by the outside air blown by the outdoor blower 15 and condensed and liquefied.

室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入る。この冷媒配管13Bに流入した冷媒は、逆止弁18を経た後、全てが分岐配管67に流入して補助膨張弁68に至る。ここで冷媒は減圧された後、電磁弁69を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入し、そこで蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管71、冷媒配管13C及びアキュムレータ12を順次経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す(図9に実線矢印で示す)。 The refrigerant exiting the outdoor heat exchanger 7 passes through the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer section 14, and the supercooling section 16 and enters the refrigerant pipe 13B. The refrigerant that has flowed into this refrigerant pipe 13 B passes through the check valve 18 , then all flows into the branch pipe 67 and reaches the auxiliary expansion valve 68 . After the refrigerant is decompressed here, it flows through the solenoid valve 69 into the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, where it evaporates. At this time, it exerts an endothermic action. Refrigerant evaporated in this refrigerant flow path 64B repeats circulation by being sucked into the compressor 2 through the refrigerant pipe 13K through the refrigerant pipe 71, the refrigerant pipe 13C, and the accumulator 12 in sequence (indicated by solid arrows in FIG. 9).

一方、循環ポンプ62が運転されているので、この循環ポンプ62から吐出された熱媒体が熱媒体配管66内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒により吸熱され、熱媒体は冷却されるようになる。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は、熱媒体加熱ヒータ63に至る。但し、この運転モードでは熱媒体加熱ヒータ63は発熱されないので、熱媒体はそのまま通過してバッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は冷却されると共に、バッテリ55を冷却した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す(図9に破線矢印で示す)。 On the other hand, since the circulation pump 62 is in operation, the heat medium discharged from the circulation pump 62 reaches the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 through the heat medium pipe 66, where the refrigerant flow path Heat is absorbed by the refrigerant that evaporates in 64B, and the heat medium becomes cooled. The heat medium exiting the heat medium flow path 64 A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heater 63 . However, since the heating medium heater 63 does not generate heat in this operation mode, the heating medium passes through as it is, reaches the battery 55 , and exchanges heat with the battery 55 . As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 repeats the circulation of being sucked into the circulation pump 62 (indicated by the dashed arrow in FIG. 9).

このバッテリ冷却単独モードにおいても、ヒートポンプコントローラ32は熱媒体温度センサ76が検出する熱媒体温度Twに基づいて後述する如く圧縮機2の回転数を制御することにより、バッテリ55を冷却する。 Also in this battery cooling only mode, the heat pump controller 32 cools the battery 55 by controlling the rotation speed of the compressor 2 based on the heat medium temperature Tw detected by the heat medium temperature sensor 76, as will be described later.

(9)除霜モード
次に、図10を参照しながら室外熱交換器7の除霜モードについて説明する。図10は除霜モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。前述した如く暖房モードでは、室外熱交換器7では冷媒が蒸発し、外気から吸熱して低温となるため、室外熱交換器7には外気中の水分が霜となって付着する。
(9) Defrosting Mode Next, the defrosting mode of the outdoor heat exchanger 7 will be described with reference to FIG. FIG. 10 shows how the refrigerant flows (solid line arrows) in the refrigerant circuit R in the defrosting mode. As described above, in the heating mode, the refrigerant evaporates in the outdoor heat exchanger 7 and absorbs heat from the outside air to lower the temperature.

そこで、ヒートポンプコントローラ32は室外熱交換器温度センサ49が検出する室外熱交換器温度TXO(室外熱交換器7における冷媒蒸発温度)と、室外熱交換器7の無着霜時における冷媒蒸発温度TXObaseとの差ΔTXO(=TXObase-TXO)を算出しており、室外熱交換器温度TXOが無着霜時における冷媒蒸発温度TXObaseより低下して、その差ΔTXOが所定値以上に拡大した状態が所定時間継続した場合、室外熱交換器7に着霜しているものと判定して所定の着霜フラグをセットする。 Therefore, the heat pump controller 32 detects the outdoor heat exchanger temperature TXO (refrigerant evaporation temperature in the outdoor heat exchanger 7) detected by the outdoor heat exchanger temperature sensor 49, and the refrigerant evaporation temperature TXObase when the outdoor heat exchanger 7 is not frosted. The difference ΔTXO (= TXObase - TXO) is calculated, and the outdoor heat exchanger temperature TXO is lower than the refrigerant evaporation temperature TXObase when no frost is formed, and the difference ΔTXO is expanded to a predetermined value or more. If it continues for a long time, it is determined that the outdoor heat exchanger 7 is frosted, and a predetermined frosting flag is set.

そして、この着霜フラグがセットされており、空調操作部53の空調スイッチがOFFされた状態で、急速充電器に充電用のプラグが接続され、バッテリ55が充電されるとき、ヒートポンプコントローラ32は以下の如く室外熱交換器7の除霜モードを実行する。 When the frost formation flag is set and the air conditioning switch of the air conditioning operation unit 53 is turned off, the charging plug is connected to the quick charger and the battery 55 is charged. The defrosting mode of the outdoor heat exchanger 7 is executed as follows.

ヒートポンプコントローラ32はこの除霜モードでは、冷媒回路Rを前述した暖房モードの状態とした上で、室外膨張弁6の弁開度を全開とする。そして、圧縮機2を運転し、当該圧縮機2から吐出された高温の冷媒を放熱器4、室外膨張弁6を経て室外熱交換器7に流入させ、当該室外熱交換器7の着霜を融解させる(図10)。そして、ヒートポンプコントローラ32は室外熱交換器温度センサ49が検出する室外熱交換器温度TXOが所定の除霜終了温度(例えば、+3℃等)より高くなった場合、室外熱交換器7の除霜が完了したものとして除霜モードを終了する。 In this defrosting mode, the heat pump controller 32 sets the refrigerant circuit R to the above-described heating mode state and fully opens the outdoor expansion valve 6 . Then, the compressor 2 is operated, and the high-temperature refrigerant discharged from the compressor 2 is made to flow into the outdoor heat exchanger 7 through the radiator 4 and the outdoor expansion valve 6 to prevent frost formation on the outdoor heat exchanger 7. Let it melt (Fig. 10). Then, when the outdoor heat exchanger temperature TXO detected by the outdoor heat exchanger temperature sensor 49 becomes higher than a predetermined defrosting end temperature (for example, +3° C.), the heat pump controller 32 defrosts the outdoor heat exchanger 7. is completed and the defrosting mode is terminated.

(10)バッテリ加熱モード
また、空調運転を実行しているとき、或いは、バッテリ55を充電しているとき、ヒートポンプコントローラ32はバッテリ加熱モードを実行する。このバッテリ加熱モードでは、ヒートポンプコントローラ32は循環ポンプ62を運転し、熱媒体加熱ヒータ63に通電する。尚、電磁弁69は閉じる。
(10) Battery Heating Mode Further, when the air conditioning operation is being performed or the battery 55 is being charged, the heat pump controller 32 performs the battery heating mode. In this battery heating mode, the heat pump controller 32 operates the circulation pump 62 and energizes the heat medium heater 63 . Incidentally, the electromagnetic valve 69 is closed.

これにより、循環ポンプ62から吐出された熱媒体は熱媒体配管66内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこを通過して熱媒体加熱ヒータ63に至る。このとき熱媒体加熱ヒータ63は発熱されているので、熱媒体は熱媒体加熱ヒータ63により加熱されて温度上昇した後、バッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は加熱されると共に、バッテリ55を加熱した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す。 As a result, the heat medium discharged from the circulation pump 62 reaches the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 through the heat medium pipe 66 and reaches the heat medium heater 63 through the heat medium flow path 64A. At this time, since the heat medium heater 63 is generating heat, the heat medium is heated by the heat medium heater 63 to raise its temperature, and then reaches the battery 55 and exchanges heat with the battery 55 . As a result, the battery 55 is heated, and the heat medium after heating the battery 55 is sucked into the circulation pump 62 to repeat circulation.

このバッテリ加熱モードにおいては、ヒートポンプコントローラ32は熱媒体温度センサ76が検出する熱媒体温度Twに基づいて熱媒体加熱ヒータ63の通電を制御することにより、熱媒体温度Twを所定の目標熱媒体温度TWOに調整し、バッテリ55を加熱する。 In this battery heating mode, the heat pump controller 32 controls the energization of the heat medium heater 63 based on the heat medium temperature Tw detected by the heat medium temperature sensor 76, thereby increasing the heat medium temperature Tw to a predetermined target heat medium temperature. Adjust to TWO and heat the battery 55 .

(11)ヒートポンプコントローラ32による圧縮機2の制御
また、ヒートポンプコントローラ32は、暖房モードでは放熱器圧力Pciに基づき、図11の制御ブロック図により圧縮機2の目標回転数(圧縮機目標回転数)TGNChを算出し、除湿冷房モード、冷房モード、空調優先+バッテリ冷却モードでは、吸熱器温度Teに基づき、図12の制御ブロック図により圧縮機2の目標回転数(圧縮機目標回転数)TGNCcを算出する。尚、除湿暖房モードでは圧縮機目標回転数TGNChと圧縮機目標回転数TGNCcのうちの低い方向を選択する。また、バッテリ冷却優先+空調モード、バッテリ冷却単独モードでは、熱媒体温度Twに基づき、図13の制御ブロック図により圧縮機2の目標回転数(圧縮機目標回転数)TGNCcbを算出する。
(11) Control of the compressor 2 by the heat pump controller 32 In addition, in the heating mode, the heat pump controller 32 controls the target rotation speed of the compressor 2 (compressor target rotation speed) according to the control block diagram of FIG. 11 based on the radiator pressure Pci. TGNCh is calculated, and in the dehumidification cooling mode, cooling mode, air conditioning priority + battery cooling mode, based on the heat absorber temperature Te, the target rotation speed (compressor target rotation speed) TGNCc of the compressor 2 is calculated according to the control block diagram of FIG. calculate. In the dehumidification heating mode, the lower direction of the compressor target rotation speed TGNCh and the compressor target rotation speed TGNCc is selected. In the battery cooling priority + air conditioning mode and the battery cooling only mode, the target rotation speed of the compressor 2 (compressor target rotation speed) TGNCcb is calculated based on the heat medium temperature Tw according to the control block diagram of FIG. 13 .

(11-1)放熱器圧力Pciに基づく圧縮機目標回転数TGNChの算出
先ず、図11を用いて放熱器圧力Pciに基づく圧縮機2の制御について詳述する。図11は放熱器圧力Pciに基づいて圧縮機2の目標回転数(圧縮機目標回転数)TGNChを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F(フィードフォワード)操作量演算部78は外気温度センサ33から得られる外気温度Tamと、室内送風機27のブロワ電圧BLVと、SW=(TAO-Te)/(Thp-Te)で得られるエアミックスダンパ28による風量割合SWと、放熱器4の出口における冷媒の過冷却度SCの目標値である目標過冷却度TGSCと、ヒータ温度Thpの目標値である前述した目標ヒータ温度TCOと、放熱器4の圧力の目標値である目標放熱器圧力PCOに基づいて圧縮機目標回転数のF/F操作量TGNChffを算出する。
(11-1) Calculation of Compressor Target Rotation Speed TGNCh Based on Radiator Pressure Pci First, control of the compressor 2 based on the radiator pressure Pci will be described in detail with reference to FIG. FIG. 11 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCh of the compressor 2 based on the radiator pressure Pci. The F/F (feedforward) manipulated variable calculator 78 of the heat pump controller 32 calculates the outside air temperature Tam obtained from the outside air temperature sensor 33, the blower voltage BLV of the indoor fan 27, and SW=(TAO−Te)/(Thp−Te). ) obtained by the air mix damper 28, the target supercooling degree TGSC which is the target value of the supercooling degree SC of the refrigerant at the outlet of the radiator 4, and the target heater temperature Thp which is the target value of the heater temperature Thp Based on the temperature TCO and the target radiator pressure PCO, which is the target value of the pressure of the radiator 4, the F/F operation amount TGNChff of the compressor target rotation speed is calculated.

尚、ヒータ温度Thpは放熱器4の風下側の空気温度(推定値)であり、放熱器圧力センサ47が検出する放熱器圧力Pciと放熱器出口温度センサ44が検出する放熱器4の冷媒出口温度Tciから算出(推定)する。また、過冷却度SCは放熱器入口温度センサ43と放熱器出口温度センサ44が検出する放熱器4の冷媒入口温度Tcxinと冷媒出口温度Tciから算出される。 The heater temperature Thp is the air temperature (estimated value) on the leeward side of the radiator 4. The radiator pressure Pci detected by the radiator pressure sensor 47 and the refrigerant outlet of the radiator 4 detected by the radiator outlet temperature sensor 44 It is calculated (estimated) from the temperature Tci. Further, the degree of supercooling SC is calculated from the refrigerant inlet temperature Tcxin and the refrigerant outlet temperature Tci of the radiator 4 detected by the radiator inlet temperature sensor 43 and radiator outlet temperature sensor 44 .

前記目標放熱器圧力PCOは上記目標過冷却度TGSCと目標ヒータ温度TCOに基づいて目標値演算部79が算出する。更に、F/B(フィードバック)操作量演算部81はこの目標放熱器圧力PCOと放熱器圧力Pciに基づくPID演算若しくはPI演算により圧縮機目標回転数のF/B操作量TGNChfbを算出する。そして、F/F操作量演算部78が算出したF/F操作量TGNChffとF/B操作量演算部81が算出したF/B操作量TGNChfbは加算器82で加算され、TGNCh00としてリミット設定部83に入力される。 The target radiator pressure PCO is calculated by the target value calculator 79 based on the target supercooling degree TGSC and the target heater temperature TCO. Further, the F/B (feedback) manipulated variable calculation section 81 calculates the F/B manipulated variable TGNChfb of the compressor target rotation speed by PID calculation or PI calculation based on the target radiator pressure PCO and the radiator pressure Pci. Then, the F/F manipulated variable TGNChff calculated by the F/F manipulated variable calculator 78 and the F/B manipulated variable TGNChfb calculated by the F/B manipulated variable calculator 81 are added by the adder 82 to obtain TGNCh00 as the limit setter. 83.

リミット設定部83では制御上の下限回転数ECNpdLimLoと上限回転数ECNpdLimHiのリミットが付けられてTGNCh0とされた後、圧縮機OFF制御部84を経て圧縮機目標回転数TGNChとして決定される。通常モードではヒートポンプコントローラ32は、この放熱器圧力Pciに基づいて算出された圧縮機目標回転数TGNChにより圧縮機2の運転を制御する。 In the limit setting unit 83, the lower limit rotation speed ECNpdLimLo and the upper limit rotation speed ECNpdLimHi for control are limited to TGNCh0, and then through the compressor OFF control unit 84, it is determined as the compressor target rotation speed TGNCh. In the normal mode, the heat pump controller 32 controls the operation of the compressor 2 based on the compressor target rotational speed TGNCh calculated based on the radiator pressure Pci.

尚、圧縮機OFF制御部84は、圧縮機目標回転数TGNChが上述した下限回転数ECNpdLimLoとなり、放熱器圧力Pciが目標放熱器圧力PCOの上下に設定された所定の上限値PULと下限値PLLのうちの上限値PULまで上昇した状態(上限値PULを上回った状態、又は、上限値PUL以上となった状態。以下、同じ)が所定時間th1継続した場合、圧縮機2を停止させて圧縮機2をON-OFF制御するON-OFFモードに入る。 In the compressor OFF control unit 84, the compressor target rotation speed TGNCh becomes the above-described lower limit rotation speed ECNpdLimLo, and the radiator pressure Pci is set above and below the target radiator pressure PCO to the predetermined upper limit PUL and lower limit PLL. of the upper limit value PUL (state of exceeding the upper limit value PUL, or state of exceeding the upper limit value PUL; hereinafter the same) continues for a predetermined time th1, the compressor 2 is stopped and compression Enter the ON-OFF mode for ON-OFF control of the machine 2.

この圧縮機2のON-OFFモードでは、放熱器圧力Pciが下限値PLLまで低下した場合(下限値PLLを下回った場合、又は、下限値PLL以下となった場合。以下、同じ)、圧縮機2を起動して圧縮機目標回転数TGNChを下限回転数ECNpdLimLoとして運転し、その状態で放熱器圧力Pciが上限値PULまで上昇した場合は圧縮機2を再度停止させる。即ち、下限回転数ECNpdLimLoでの圧縮機2の運転(ON)と、停止(OFF)を繰り返す。そして、放熱器圧力Pciが下限値PULまで低下し、圧縮機2を起動した後、放熱器圧力Pciが下限値PULより高くならない状態が所定時間th2継続した場合、圧縮機2のON-OFFモードを終了し、通常モードに復帰するものである。 In the ON-OFF mode of the compressor 2, when the radiator pressure Pci drops to the lower limit PLL (below the lower limit PLL or below the lower limit PLL; hereinafter the same), the compressor 2 is started to operate with the compressor target rotation speed TGNCh set to the lower limit rotation speed ECNpdLimLo, and when the radiator pressure Pci rises to the upper limit value PUL in this state, the compressor 2 is stopped again. That is, the operation (ON) and stop (OFF) of the compressor 2 at the lower limit rotation speed ECNpdLimLo are repeated. Then, after the radiator pressure Pci has decreased to the lower limit value PUL and the compressor 2 has been started, when the state in which the radiator pressure Pci does not exceed the lower limit value PUL continues for a predetermined time th2, the ON-OFF mode of the compressor 2 and return to normal mode.

(11-2)吸熱器温度Teに基づく圧縮機目標回転数TGNCcの算出
次に、図12を用いて吸熱器温度Teに基づく圧縮機2の制御について詳述する。図12は吸熱器温度Teに基づいて圧縮機2の目標回転数(圧縮機目標回転数)TGNCcを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F(フィードフォワード)操作量演算部86は外気温度Tamと、空気流通路3内を流通する空気の風量Ga(室内送風機27のブロワ電圧BLVでもよい)と、目標放熱器圧力PCOと、バッテリ温度センサ77が検出するバッテリ温度Tcell(バッテリコントローラ73から送信される)と、走行用モータの出力Mpower(車両コントローラ72から送信される)と、車速VSPと、バッテリ55の発熱量(バッテリコントローラ73から送信される)と、吸熱器温度Teの目標値である目標吸熱器温度TEOに基づいて圧縮機目標回転数のF/F操作量TGNCcffを算出する。
(11-2) Calculation of Compressor Target Rotational Speed TGNCc Based on Heat Absorber Temperature Te Next, control of the compressor 2 based on the heat absorber temperature Te will be described in detail with reference to FIG. FIG. 12 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed of the compressor 2 (compressor target rotation speed) TGNCc based on the heat absorber temperature Te. The F/F (feedforward) manipulated variable calculation unit 86 of the heat pump controller 32 calculates the outside air temperature Tam, the air volume Ga (which may be the blower voltage BLV of the indoor fan 27) circulating in the air flow passage 3, and the target radiator. Pressure PCO, battery temperature Tcell detected by battery temperature sensor 77 (transmitted from battery controller 73), drive motor output Mpower (transmitted from vehicle controller 72), vehicle speed VSP, and heat generation of battery 55 A F/F operation amount TGNCcff of the compressor target rotation speed is calculated based on the amount (transmitted from the battery controller 73) and the target heat absorber temperature TEO, which is the target value of the heat absorber temperature Te.

また、F/B操作量演算部87は目標吸熱器温度TEOと吸熱器温度Teに基づくPID演算若しくはPI演算により圧縮機目標回転数のF/B操作量TGNCcfbを算出する。そして、F/F操作量演算部86が算出したF/F操作量TGNCcffとF/B操作量演算部87が算出したF/B操作量TGNCcfbは加算器88で加算され、TGNCc00としてリミット設定部89に入力される。 Further, the F/B operation amount calculation unit 87 calculates the F/B operation amount TGNCcfb of the compressor target rotation speed by PID calculation or PI calculation based on the target heat absorber temperature TEO and the heat absorber temperature Te. Then, the F/F manipulated variable TGNCcff calculated by the F/F manipulated variable calculator 86 and the F/B manipulated variable TGNCcfb calculated by the F/B manipulated variable calculator 87 are added by the adder 88 to form TGNCc00, which is calculated by the limit setting unit. 89.

リミット設定部89では制御上の下限回転数TGNCcLimLoと上限回転数TGNCcLimHiのリミットが付けられてTGNCc0とされた後、圧縮機OFF制御部91を経て圧縮機目標回転数TGNCcとして決定される。通常モードではヒートポンプコントローラ32は、この吸熱器温度Teに基づいて算出された圧縮機目標回転数TGNCcにより圧縮機2の運転を制御する。 In the limit setting unit 89, the lower limit rotation speed TGNCcLimLo and the upper limit rotation speed TGNCcLimHi are set to TGNCc0 for control, and then through the compressor OFF control unit 91, the compressor target rotation speed TGNCc is determined. In the normal mode, the heat pump controller 32 controls the operation of the compressor 2 based on the compressor target rotational speed TGNCc calculated based on the heat absorber temperature Te.

尚、圧縮機OFF制御部91は、圧縮機目標回転数TGNCcが上述した下限回転数TGNCcLimLoとなり、吸熱器温度Teが目標吸熱器温度TEOの上下に設定された上限値TeULと下限値TeLLのうちの下限値TeLLまで低下した状態が所定時間tc1継続した場合、圧縮機2を停止させて圧縮機2をON-OFF制御するON-OFFモードに入る。 Note that the compressor OFF control unit 91 sets the compressor target rotation speed TGNCc to the above-described lower limit rotation speed TGNCcLimLo, and the heat absorber temperature Te is set between the upper limit value TeUL and the lower limit value TeLL set above and below the target heat absorber temperature TEO. continues for a predetermined time tc1, the compressor 2 is stopped to enter the ON-OFF mode in which the compressor 2 is ON-OFF controlled.

この場合の圧縮機2のON-OFFモードでは、吸熱器温度Teが上限値TeULまで上昇した場合、圧縮機2を起動して圧縮機目標回転数TGNCcを下限回転数TGNCcLimLoとして運転し、その状態で吸熱器温度Teが下限値TeLLまで低下した場合は圧縮機2を再度停止させる。即ち、下限回転数TGNCcLimLoでの圧縮機2の運転(ON)と、停止(OFF)を繰り返す。そして、吸熱器温度Teが上限値TeULまで上昇し、圧縮機2を起動した後、吸熱器温度Teが上限値TeULより低くならない状態が所定時間tc2継続した場合、この場合の圧縮機2のON-OFFモードを終了し、通常モードに復帰するものである。 In the ON-OFF mode of the compressor 2 in this case, when the heat absorber temperature Te rises to the upper limit TeUL, the compressor 2 is started and operated with the compressor target rotation speed TGNCc set to the lower limit rotation speed TGNCcLimLo, and the state When the heat absorber temperature Te drops to the lower limit TeLL at , the compressor 2 is stopped again. That is, the operation (ON) and stop (OFF) of the compressor 2 at the lower limit rotational speed TGNCcLimLo are repeated. Then, after the heat absorber temperature Te rises to the upper limit value TeUL and the compressor 2 is started, when the state where the heat absorber temperature Te does not fall below the upper limit value TeUL continues for a predetermined time tc2, the compressor 2 is turned ON in this case. - Ends the OFF mode and returns to the normal mode.

(11-3)熱媒体温度Twに基づく圧縮機目標回転数TGNCcbの算出
次に、図13を用いて熱媒体温度Twに基づく圧縮機2の制御について詳述する。図13は熱媒体温度Twに基づいて圧縮機2の目標回転数(圧縮機目標回転数)TGNCcbを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F(フィードフォワード)操作量演算部92は外気温度Tamと、目標放熱器圧力PCOと、目標吸熱器温度TEOと、機器温度調整装置61内の熱媒体の流量Gw(循環ポンプ62の出力から算出される)と、バッテリ温度Tcellと、走行用モータの出力Mpower(車両コントローラ72から送信される)と、車速VSPと、バッテリ55の発熱量(バッテリコントローラ73から送信される)と、熱媒体温度Twの目標値である目標熱媒体温度TWOに基づいて圧縮機目標回転数のF/F操作量TGNCcbffを算出する。
(11-3) Calculation of Compressor Target Rotation Speed TGNCcb Based on Heat Medium Temperature Tw Next, control of the compressor 2 based on the heat medium temperature Tw will be described in detail with reference to FIG. FIG. 13 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCcb of the compressor 2 based on the heat medium temperature Tw. The F/F (feedforward) manipulated variable calculation unit 92 of the heat pump controller 32 calculates the outside air temperature Tam, the target radiator pressure PCO, the target heat sink temperature TEO, and the flow rate Gw (circulation the output of the pump 62), the battery temperature Tcell, the drive motor output Mpower (transmitted from the vehicle controller 72), the vehicle speed VSP, and the amount of heat generated by the battery 55 (transmitted from the battery controller 73). ) and the target heat medium temperature TWO, which is the target value of the heat medium temperature Tw, the F/F operation amount TGNCcbff of the compressor target rotation speed is calculated.

また、F/B操作量演算部93は目標熱媒体温度TWOと熱媒体温度Twに基づくPID演算若しくはPI演算により圧縮機目標回転数のF/B操作量TGNCcbfbを算出する。そして、F/F操作量演算部92が算出したF/F操作量TGNCcbffとF/B操作量演算部93が算出したF/B操作量TGNCcbfbは加算器94で加算され、TGNCcb00としてリミット設定部96に入力される。 Further, the F/B operation amount calculation unit 93 calculates the F/B operation amount TGNCcbfb of the compressor target rotation speed by PID calculation or PI calculation based on the target heat medium temperature TWO and the heat medium temperature Tw. Then, the F/F manipulated variable TGNCcbff calculated by the F/F manipulated variable calculator 92 and the F/B manipulated variable TGNCcbfb calculated by the F/B manipulated variable calculator 93 are added by the adder 94 to obtain TGNCcb00 as the limit setter. 96.

リミット設定部96では制御上の下限回転数TGNCcbLimLoと上限回転数TGNCcbLimHiのリミットが付けられてTGNCcb0とされた後、圧縮機OFF制御部97を経て圧縮機目標回転数TGNCcbとして決定される。通常モードではヒートポンプコントローラ32は、この熱媒体温度Twに基づいて算出された圧縮機目標回転数TGNCcbにより圧縮機2の運転を制御する。 In the limit setting unit 96, the lower limit rotation speed TGNCcbLimLo and the upper limit rotation speed TGNCcbLimHi for control are set to TGNCcb0. In the normal mode, the heat pump controller 32 controls the operation of the compressor 2 based on the compressor target rotational speed TGNCcb calculated based on the heat medium temperature Tw.

尚、圧縮機OFF制御部97は、圧縮機目標回転数TGNCcbが上述した下限回転数TGNCcbLimLoとなり、熱媒体温度Twが目標熱媒体温度TWOの上下に設定された上限値TULと下限値TLLのうちの下限値TLLまで低下した状態が所定時間tcb1継続した場合、圧縮機2を停止させて圧縮機2のON-OFF制御するON-OFFモードに入る。 Note that the compressor OFF control unit 97 sets the compressor target rotation speed TGNCcb to the above-described lower limit rotation speed TGNCcbLimLo, and sets the heat medium temperature Tw between the upper limit value TUL and the lower limit value TLL set above and below the target heat medium temperature TWO. continues for a predetermined time tcb1, the compressor 2 is stopped and the ON-OFF mode for ON-OFF control of the compressor 2 is entered.

この場合の圧縮機2のON-OFFモードでは、熱媒体温度Twが上限値TULまで上昇した場合、圧縮機2を起動して圧縮機目標回転数TGNCcbを下限回転数TGNCcbLimLoとして運転し、その状態で熱媒体温度Twが下限値TLLまで低下した場合は圧縮機2を再度停止させる。即ち、下限回転数TGNCcbLimLoでの圧縮機2の運転(ON)と、停止(OFF)を繰り返す。そして、熱媒体温度Twが上限値TULまで上昇し、圧縮機2を起動した後、熱媒体温度Twが上限値TULより低くならない状態が所定時間tcb2継続した場合、この場合の圧縮機2のON-OFFモードを終了し、通常モードに復帰するものである。 In the ON-OFF mode of the compressor 2 in this case, when the heat medium temperature Tw rises to the upper limit value TUL, the compressor 2 is started and operated with the compressor target rotation speed TGNCcb set to the lower limit rotation speed TGNCcbLimlo, and the state When the heat medium temperature Tw drops to the lower limit TLL at , the compressor 2 is stopped again. That is, the operation (ON) and stop (OFF) of the compressor 2 at the lower limit rotational speed TGNCcbLimLo are repeated. Then, after the heat medium temperature Tw rises to the upper limit value TUL and the compressor 2 is started, if the state where the heat medium temperature Tw does not fall below the upper limit value TUL continues for a predetermined time tcb2, the ON state of the compressor 2 in this case is determined. - Ends the OFF mode and returns to the normal mode.

(12)ヒートポンプコントローラ32による圧縮機回転数上昇制御(その1)
次に、図14を参照しながら前述した冷房モード(第1の運転モード)から空調優先+バッテリ冷却モード(第2の運転モード)に移行する際、及び、バッテリ冷却単独モード(第1の運転モード)からバッテリ冷却優先+空調モード(第2の運転モード)に移行する際に、ヒートポンプコントローラ32が実行する圧縮機回転数上昇制御の一例について説明する。尚、図14は上記の移行の際の両方について纏めて示している。
(12) Compressor speed increase control by heat pump controller 32 (part 1)
Next, when shifting from the cooling mode (first operation mode) described above with reference to FIG. An example of the compressor rotational speed increase control executed by the heat pump controller 32 when shifting from the battery cooling priority + air conditioning mode (second operation mode) from the battery cooling priority + air conditioning mode (second operation mode) will be described. It should be noted that FIG. 14 collectively shows both of the transitions described above.

前述した冷房モードから空調優先+バッテリ冷却モードに移行した直後は、それらを含む熱交換の経路が増えるため、圧縮機2の能力(回転数)が不足する状態となり、車室内に吹き出される空気の温度が一時的に高くなってしまい、使用者に不快感を与えると共に、バッテリ55の冷却も遅延するようになる。 Immediately after shifting from the cooling mode to the air conditioning priority + battery cooling mode, the number of heat exchange paths including them increases, so the capacity (rotation speed) of the compressor 2 is insufficient, and the air blown into the vehicle interior. The temperature of the battery 55 temporarily rises, giving discomfort to the user and delaying the cooling of the battery 55 .

ここで、冷房モードを実行しているときに、例えば、熱媒体温度センサ76が検出する熱媒体温度Twが前述した上限値TULまで上昇した場合、或いは、バッテリ温度センサ77が検出するバッテリ温度Tcellが所定の上限値まで上昇した場合、バッテリコントローラ73はバッテリ冷却要求をヒートポンプコントローラ32や空調コントローラ45に出力する。例えば、図14の時刻t1でヒートポンプコントローラ32にバッテリ冷却要求が入力された場合、これがモード移行要求となり、ヒートポンプコントローラ32はこの場合の圧縮機回転数上昇制御を開始し、先ず目標吸熱器温度TEOを所定値TEO1だけ低下させる。 Here, when the cooling mode is executed, for example, if the heat medium temperature Tw detected by the heat medium temperature sensor 76 rises to the upper limit value TUL described above, or if the battery temperature Tcell detected by the battery temperature sensor 77 rises to a predetermined upper limit, the battery controller 73 outputs a battery cooling request to the heat pump controller 32 and the air conditioning controller 45 . For example, when a battery cooling request is input to the heat pump controller 32 at time t1 in FIG. 14, this becomes a mode shift request, and the heat pump controller 32 starts compressor rotation speed increase control in this case. is reduced by a predetermined value TEO1.

これにより、図12のF/F操作量演算部86が算出する圧縮機目標回転数のF/F操作量TGNCcffが上昇していくので、最終的に算出される圧縮機目標回転数TGNCcも通常時の値から上昇していき、圧縮機2の実際の回転数も上昇していく。そして、例えば、図14の時刻t2で圧縮機目標回転数TGNCcが所定値TGNCc1まで上昇した場合、又は、時刻t1から所定時間ts1が経過した場合、ヒートポンプコントローラ32は電磁弁69を開き、運転モードを空調優先+バッテリ冷却モードに移行させる。 As a result, the F/F operation amount TGNCcff of the compressor target rotation speed calculated by the F/F operation amount calculation unit 86 in FIG. As it increases from the time value, the actual rotation speed of the compressor 2 also increases. Then, for example, when the compressor target rotation speed TGNCc rises to a predetermined value TGNCc1 at time t2 in FIG. to air conditioning priority + battery cooling mode.

このような圧縮機回転数上昇制御を実行することにより、冷房モードから空調優先+バッテリ冷却モードに移行した直後の圧縮機2の能力(回転数)不足を解消し、車室内の空調とバッテリ55の冷却の両立性を高めて、信頼性と商品性を向上させることができるようになる。尚、移行後の圧縮機2の制御は、前述した空調優先+バッテリ冷却モードでの回転数制御に復帰する。また、前述した如く電磁弁69と補助膨張弁68は電磁弁付き膨張弁にて構成しているので、圧縮機2の回転数が上昇した状態で電磁弁69を開いたときの差圧が軽減され、騒音も抑制される。 By executing such compressor rotation speed increase control, the lack of capacity (rotation speed) of the compressor 2 immediately after shifting from the cooling mode to the air conditioning priority + battery cooling mode is resolved, and the air conditioning in the vehicle compartment and the battery 55 It is possible to improve reliability and marketability by enhancing the compatibility of cooling. Note that the control of the compressor 2 after the shift returns to the rotation speed control in the air-conditioning priority+battery cooling mode described above. Further, as described above, since the solenoid valve 69 and the auxiliary expansion valve 68 are configured by the expansion valve with the solenoid valve, the differential pressure when the solenoid valve 69 is opened while the rotation speed of the compressor 2 is increased is reduced. and reduce noise.

また、バッテリ冷却単独モードからバッテリ冷却優先+空調モードに移行した直後も、圧縮機2の能力が不足する状態となるため、車室内の空調が遅延すると共に、バッテリ55の冷却能力も一時的に低下してしまう。 In addition, even immediately after the mode is shifted from the battery cooling only mode to the battery cooling priority + air conditioning mode, the capacity of the compressor 2 is insufficient. will decline.

ここで、バッテリ冷却単独モードを実行しているときに、空調操作部53の空調スイッチがONされた場合、空調コントローラ45は空調要求をヒートポンプコントローラ32に出力する。同じく図14の時刻t1でヒートポンプコントローラ32に空調要求が入力された場合、これがモード移行要求となり、ヒートポンプコントローラ32はこの場合の圧縮機回転数上昇制御を開始し、先ず目標熱媒体温度TWOを所定値TWO1だけ低下させる。 Here, when the air conditioning switch of the air conditioning operation unit 53 is turned on while the battery cooling independent mode is being executed, the air conditioning controller 45 outputs an air conditioning request to the heat pump controller 32 . Similarly, when an air conditioning request is input to the heat pump controller 32 at time t1 in FIG. Decrease by the value TWO1.

これにより、図13のF/F操作量演算部92が算出する圧縮機目標回転数のF/F操作量TGNCcbffが上昇していくので、最終的に算出される圧縮機目標回転数TGNCcbも通常時の値から上昇していき、圧縮機2の実際の回転数も上昇していく。そして、例えば、図14の時刻t2で圧縮機目標回転数TGNCcbが所定値TGNCcb1まで上昇した場合、ヒートポンプコントローラ32は電磁弁35を開き、運転モードをバッテリ冷却優先+空調モードに移行させる。 As a result, the F/F operation amount TGNCcbff of the compressor target rotation speed calculated by the F/F operation amount calculation unit 92 in FIG. As it increases from the time value, the actual rotation speed of the compressor 2 also increases. Then, for example, when the compressor target rotation speed TGNCcb rises to a predetermined value TGNCcb1 at time t2 in FIG. 14, the heat pump controller 32 opens the solenoid valve 35 and shifts the operation mode to the battery cooling priority+air conditioning mode.

このような圧縮機回転数上昇制御実行することにより、バッテリ冷却単独モードからバッテリ冷却優先+空調モードに移行した直後の圧縮機2の能力(回転数)不足を解消し、バッテリ55の冷却と車室内の空調の両立性を高めて、信頼性と商品性を向上させることができるようになる。尚、移行後の圧縮機2の制御は、前述したバッテリ冷却優先+空調モードでの回転数制御に復帰する。また、前述した如く電磁弁35と室内膨張弁8は電磁弁付き膨張弁にて構成しているので、圧縮機2の回転数が上昇した状態で電磁弁35を開いたときの差圧が軽減され、騒音も抑制される。 By executing such compressor rotation speed increase control, the lack of capacity (rotation speed) of the compressor 2 immediately after shifting from the battery cooling only mode to the battery cooling priority + air conditioning mode is eliminated, and the battery 55 is cooled and the vehicle is cooled. It is possible to enhance the compatibility of indoor air conditioning and improve reliability and marketability. Note that the control of the compressor 2 after the transition returns to the rotational speed control in the above-described battery cooling priority + air conditioning mode. Further, as described above, since the solenoid valve 35 and the indoor expansion valve 8 are configured by an expansion valve with a solenoid valve, the differential pressure when the solenoid valve 35 is opened while the rotation speed of the compressor 2 is increased is reduced. and reduce noise.

また、実施例ではヒートポンプコントローラ32が、冷房モードとバッテリ冷却単独モードにおいて、吸熱器9と冷媒-熱媒体熱交換器64のうちの何れか一方で冷媒を蒸発させると共に、空調優先+バッテリ冷却モードと、バッテリ冷却優先+空調モードにおいては、吸熱器9及び冷媒-熱媒体熱交換器64で冷媒を蒸発させるようにしたので、冷房モードとバッテリ冷却単独モードでは車室内の冷房とバッテリ55の冷却をそれぞれ行い、空調優先+バッテリ冷却モードと、バッテリ冷却優先+空調モードでは車室内を冷房しながらバッテリ55の冷却を行うことができるようになる。 In addition, in the embodiment, the heat pump controller 32 evaporates the refrigerant in either the heat absorber 9 or the refrigerant-heat medium heat exchanger 64 in the cooling mode and the battery cooling single mode, and the air conditioning priority + battery cooling mode In the battery cooling priority + air conditioning mode, the refrigerant is evaporated in the heat absorber 9 and the refrigerant-heat medium heat exchanger 64, so in the cooling mode and the battery cooling only mode, the vehicle interior is cooled and the battery 55 is cooled. are performed respectively, and in the air conditioning priority + battery cooling mode and the battery cooling priority + air conditioning mode, the battery 55 can be cooled while cooling the vehicle interior.

そして、実施例では冷房モードから空調優先+被温調対象冷却モードに移行する際、及び、バッテリ冷却単独モードからバッテリ冷却優先+空調モードに移行する際、圧縮機回転数上昇制御を実行するようにしているので、冷房モードから空調優先+バッテリ冷却モードに移行した直後に車室内に吹き出される空気の温度が上昇し、使用者が不快感を覚える不都合や、バッテリ冷却単独モードからバッテリ冷却優先+空調モードに移行した直後にバッテリ55の冷却性能が低下する不都合を未然に回避して、車室内の空調とバッテリ55の冷却の両立性を高めることができるようになる。 Further, in the embodiment, when shifting from the cooling mode to the air conditioning priority + temperature controlled cooling mode, and when shifting from the battery cooling only mode to the battery cooling priority + air conditioning mode, the compressor rotation speed increase control is executed. Therefore, the temperature of the air blown into the vehicle interior rises immediately after switching from cooling mode to air conditioning priority + battery cooling mode, and the user feels uncomfortable. It is possible to avoid the inconvenience that the cooling performance of the battery 55 deteriorates immediately after shifting to the + air-conditioning mode, and improve the compatibility between the air-conditioning in the passenger compartment and the cooling of the battery 55 .

この場合、実施例では吸熱器9への冷媒の流通を制御する電磁弁35と、冷媒-熱媒体熱交換器64への冷媒の流通を制御する電磁弁69を設け、ヒートポンプコントローラ32が、冷房モードとバッテリ冷却単独モードにおいて、電磁弁35と電磁弁69のうちの何れか一方を開き、他方を閉じると共に、空調優先+バッテリ冷却モードと、バッテリ冷却優先+空調モードにおいては、電磁弁35及び電磁弁69を開くようにしたので、各運転モードを円滑に実行することができるようになる。 In this case, in the embodiment, a solenoid valve 35 for controlling the flow of the refrigerant to the heat absorber 9 and a solenoid valve 69 for controlling the flow of the refrigerant to the refrigerant-heat medium heat exchanger 64 are provided, and the heat pump controller 32 controls the cooling In the mode and the battery cooling only mode, one of the solenoid valve 35 and the solenoid valve 69 is opened and the other is closed. Since the solenoid valve 69 is opened, each operation mode can be executed smoothly.

更に、実施例では電磁弁35を開いて吸熱器温度Teで圧縮機2の回転数を制御し、電磁弁69を閉じる冷房モードと、電磁弁69を開いて熱媒体温度Twで圧縮機2の回転数を制御し、電磁弁35を閉じるバッテリ冷却単独モードを実行するようにしているので、車室内の冷房と、バッテリ55の冷却を円滑に行うことができるようになる。 Furthermore, in the embodiment, the electromagnetic valve 35 is opened to control the rotation speed of the compressor 2 with the heat absorber temperature Te, and the electromagnetic valve 69 is closed in the cooling mode. Since the battery cooling independent mode in which the rotation speed is controlled and the electromagnetic valve 35 is closed is executed, the cooling of the vehicle interior and the cooling of the battery 55 can be performed smoothly.

また、実施例では電磁弁35を開き、吸熱器温度Teで圧縮機2の回転数を制御し、熱媒体温度Twで電磁弁69を開閉制御する空調優先+バッテリ冷却モードと、電磁弁69を開き、熱媒体温度Twで圧縮機2の回転数を制御し、吸熱器温度Teで電磁弁35を開閉制御するバッテリ冷却優先+空調モードを実行するようにしているので、車室内の冷房を行いながらバッテリ55の冷却を行うなかで、状況に応じて車室内の冷房を優先するか、バッテリ55の冷却を優先するかを切り換え、快適な車室内冷房と効果的なバッテリ55の冷却を実現することができるようになる。 In the embodiment, the electromagnetic valve 35 is opened, the rotation speed of the compressor 2 is controlled by the heat absorber temperature Te, and the opening and closing of the electromagnetic valve 69 is controlled by the heat medium temperature Tw. Since the battery cooling priority + air conditioning mode is executed by opening and controlling the rotation speed of the compressor 2 with the heat medium temperature Tw and opening and closing the solenoid valve 35 with the heat sink temperature Te, the vehicle interior is cooled. While cooling the battery 55 while cooling the battery 55, priority is given to cooling the vehicle interior or to cooling the battery 55 depending on the situation, and comfortable cooling of the vehicle interior and effective cooling of the battery 55 are realized. be able to

また、この実施例の如く圧縮機回転数上昇制御で、F/F操作量演算部86、92に入力される目標吸熱器温度TEOや目標熱媒体温度TWOを低下させることにより、圧縮機目標回転数TGNCcやTGNCcbを上昇させるようにすれば、冷房モードやバッテリ冷却単独モードにおいて、圧縮機回転数上昇制御により的確に圧縮機2の回転数を上昇させることができるようになる。 Further, as in this embodiment, by reducing the target heat absorber temperature TEO and the target heat medium temperature TWO input to the F/F manipulated variable calculation units 86 and 92 in the compressor rotation speed increase control, the compressor target rotation speed By increasing the numbers TGNCc and TGNCcb, the rotation speed of the compressor 2 can be increased accurately by the compressor rotation speed increase control in the cooling mode and the battery cooling single mode.

更に、実施例の如く冷房モードや、バッテリ冷却単独モードにおいて、バッテリ冷却要求や空調要求(何れもモード移行要求)が入力された場合、ヒートポンプコントローラ32が圧縮機回転数上昇制御により圧縮機2の回転数を上昇させた後、空調優先+バッテリ冷却モードや、バッテリ冷却優先+空調モードに移行するようにすれば、空調優先+バッテリ冷却モードやバッテリ冷却優先+空調モードに移行する前に、確実に圧縮機2の回転数を上昇させておくことができるようになる。 Furthermore, when a battery cooling request or an air conditioning request (both of which are mode transition requests) is input in the cooling mode or the battery cooling single mode as in the embodiment, the heat pump controller 32 controls the compressor 2 by increasing the compressor rotation speed. After increasing the number of revolutions, if the air conditioning priority + battery cooling mode or the battery cooling priority + air conditioning mode is selected, the air conditioning priority + battery cooling mode or the battery cooling priority + air conditioning mode is ensured. As a result, the rotation speed of the compressor 2 can be increased immediately.

(13)ヒートポンプコントローラ32による圧縮機回転数上昇制御(その2)
次に、前述した冷房モード(第1の運転モード)から空調優先+バッテリ冷却モード(第2の運転モード)に移行する際に、ヒートポンプコントローラ32が実行する圧縮機回転数上昇制御の他の実施例について説明する。冷房モードにおいて走行用モータの出力Mpowerが高くなった場合には、バッテリ55の温度が上昇するため、その後、バッテリ冷却要求が出されて空調優先+バッテリ冷却モードに移行することが予想される。
(13) Compressor speed increase control by heat pump controller 32 (part 2)
Next, another implementation of the compressor rotation speed increase control executed by the heat pump controller 32 when shifting from the cooling mode (first operation mode) to the air conditioning priority + battery cooling mode (second operation mode) An example will be described. When the output Mpower of the running motor increases in the cooling mode, the temperature of the battery 55 rises, so it is expected that a battery cooling request will be issued thereafter and the mode will shift to the air conditioning priority+battery cooling mode.

そこで、ヒートポンプコントローラ32は、走行用モータの出力Mpowerが所定の閾値Mpower1以上となった場合、前述した圧縮機回転数上昇制御(目標吸熱器温度TEOを下げる)を実行する。これにより、空調優先+バッテリ冷却モードに移行する前に、圧縮機2の回転数を上昇させておき、移行直後の車室内の空調とバッテリ55の冷却の両立性を高めることが可能となる。特に、この場合にはバッテリ冷却要求が入力される前に圧縮機2の回転数を上昇させておくことができるので、早期に空調優先+バッテリ冷却モードに移行することができる。 Therefore, the heat pump controller 32 executes the above-described compressor rotational speed increase control (lowering the target heat absorber temperature TEO) when the output Mpower of the running motor becomes equal to or greater than the predetermined threshold value Mpower1. As a result, the rotation speed of the compressor 2 is increased before shifting to the air conditioning priority + battery cooling mode, and compatibility between the air conditioning of the passenger compartment and the cooling of the battery 55 immediately after the transition can be improved. In particular, in this case, since the rotation speed of the compressor 2 can be increased before the battery cooling request is input, it is possible to quickly shift to the air conditioning priority + battery cooling mode.

(14)ヒートポンプコントローラ32による圧縮機回転数上昇制御(その3)
次に、図15を参照しながら前述した冷房モード(第1の運転モード)から空調優先+バッテリ冷却モード(第2の運転モード)に移行する際に、ヒートポンプコントローラ32が実行する圧縮機回転数上昇制御のもう一つの他の実施例について説明する。
(14) Compressor rotation speed increase control by heat pump controller 32 (Part 3)
Next, when shifting from the cooling mode (first operation mode) described above with reference to FIG. Another embodiment of the rise control will be described.

冷房モードにおいて、走行用モータの出力Mpowerが急激に上昇しているときや、バッテリ温度Tcellが急激に上昇しているとき、バッテリ55の発熱量が急激に上昇しているときにも、その後、空調優先+バッテリ冷却モードに移行することが予想される。ヒートポンプコントローラ32は、例えば図15の時刻t3で、走行用モータの出力Mpowerが上昇する傾きが所定の閾値X1以上となった場合、又は、バッテリ温度Tcellが情報する傾きが所定の閾値X2以上となった場合、若しくは、バッテリ55の発熱量が所定の閾値X3以上となった場合、ヒートポンプコントローラ32はこの場合の圧縮機回転数上昇制御を開始し、先ず目標熱吸熱器温度TEOを所定値TEO1だけ低下させる。尚、上記各閾値X1~X3は予め実験により求めた値である。 In the cooling mode, even when the output Mpower of the driving motor is rapidly increasing, when the battery temperature Tcell is rapidly increasing, and when the amount of heat generated by the battery 55 is rapidly increasing, It is expected that the mode will shift to air conditioning priority + battery cooling mode. The heat pump controller 32, for example, at time t3 in FIG. or when the amount of heat generated by the battery 55 becomes equal to or greater than the predetermined threshold value X3, the heat pump controller 32 starts compressor rotational speed increase control in this case, and first increases the target heat absorber temperature TEO to a predetermined value TEO1. only lower. Incidentally, the thresholds X1 to X3 are values obtained in advance by experiments.

これにより、前述同様に圧縮機目標回転数TGNCcが上昇していくので、圧縮機2の実際の回転数(実回転数)も上昇していく。ヒートポンプコントローラ32は、圧縮機目標回転数TGNCcを所定値TGNCc1まで上昇させる。その後、時刻t4でバッテリ冷却要求が入力されたら、ヒートポンプコントローラ32は空調優先+バッテリ冷却モードに移行し、この場合は時刻t5まで運転モード切換処理を行う。そして、この運転モード切換処理中に電磁弁69を開く。 As a result, the compressor target rotation speed TGNCc increases in the same manner as described above, so the actual rotation speed (actual rotation speed) of the compressor 2 also increases. The heat pump controller 32 increases the compressor target rotational speed TGNCc to a predetermined value TGNCc1. After that, when a battery cooling request is input at time t4, the heat pump controller 32 shifts to the air conditioning priority+battery cooling mode, and in this case, operation mode switching processing is performed until time t5. Then, the electromagnetic valve 69 is opened during this operation mode switching process.

このような圧縮機回転数上昇制御により、冷房モードから空調優先+バッテリ冷却モードに移行した直後の圧縮機2の能力(回転数)不足を解消し、車室内の空調とバッテリ55の冷却の両立性を高めて、信頼性と商品性を向上させることができるようになる。特に、この場合もバッテリ冷却要求が入力される前に圧縮機2の回転数を上昇させておくことができるので、早期に空調優先+バッテリ冷却モードに移行することができる。尚、移行後の圧縮機2の制御は、前述した空調優先+バッテリ冷却モードでの回転数制御に復帰する。 This compressor rotation speed increase control eliminates the lack of capacity (rotation speed) of the compressor 2 immediately after shifting from the cooling mode to the air conditioning priority + battery cooling mode, and achieves both air conditioning in the passenger compartment and cooling of the battery 55. It will be possible to improve reliability and marketability. In particular, in this case as well, the rotation speed of the compressor 2 can be increased before the battery cooling request is input, so that the air conditioning priority+battery cooling mode can be transitioned to at an early stage. Note that the control of the compressor 2 after the shift returns to the rotation speed control in the air-conditioning priority+battery cooling mode described above.

(15)ヒートポンプコントローラ32による圧縮機回転数上昇制御(その4)
また、冷房モードを実行しているときに、例えば高速道路での高速走行が継続された場合にも、その後、バッテリ55の温度が上昇して空調優先+バッテリ冷却モードに移行することが予想される。そこで、ヒートポンプコントローラ32は、冷房モードにおいてGPSナビゲーション装置74から得られるナビゲーション情報が、例えば、今後高速道路を走ることを示していて、バッテリ55の温度が上昇すると予測される場合、前述した圧縮機回転数上昇制御(目標吸熱器温度TEOを下げる)を実行する。
(15) Compressor speed increase control by heat pump controller 32 (part 4)
Further, when the cooling mode is executed, for example, when high-speed driving continues on a highway, it is expected that the temperature of the battery 55 will rise and the mode will shift to the air-conditioning priority+battery cooling mode. be. Therefore, if the navigation information obtained from the GPS navigation device 74 in the cooling mode indicates, for example, that the vehicle will run on a highway in the future, and the temperature of the battery 55 is expected to rise, the heat pump controller 32 controls the compressor as described above. Rotational speed increase control (to lower the target heat absorber temperature TEO) is executed.

これにより、バッテリ冷却要求が入力される前に圧縮機2の回転数を上昇させておくことができるようになるので、早期に空調優先+バッテリ冷却モードに移行することができるようになる。 As a result, the rotation speed of the compressor 2 can be increased before the battery cooling request is input, so that the air conditioning priority + battery cooling mode can be shifted early.

尚、ヒートポンプコントローラ32は前述した(12)の圧縮機回転数上昇制御に代えて、(13)~(15)の圧縮機回転数上昇制御を実行するものであるが、(13)~(15)の圧縮機回転数上昇制御は、それらの何れか、又は、それらの組み合わせ、若しくは、それらの全てを実行するものとする。 The heat pump controller 32 executes the compressor rotation speed increase control of (13) to (15) instead of the compressor rotation speed increase control of (12) described above. ), any one of them, a combination thereof, or all of them shall be executed.

(16)圧縮機回転数上昇制御を実行するときの車室内過剰冷房の抑制制御
ここで、冷房モードにおいて圧縮機2の回転数を上昇させると、空調優先+バッテリ冷却モードに移行する前の期間、即ち、図14の時刻t1~t2の期間や、図15の時刻t3~t4の期間は車室内に吹き出される空気の温度が低下する。
(16) Suppression control of excessive cooling in the vehicle interior when executing compressor rotation speed increase control Here, when the rotation speed of the compressor 2 is increased in the cooling mode, the air conditioning priority + period before shifting to the battery cooling mode That is, the temperature of the air blown into the passenger compartment decreases during the period from time t1 to t2 in FIG. 14 and the period from time t3 to t4 in FIG.

そこで、ヒートポンプコントローラ32は、冷房モードから空調優先+バッテリ冷却モードに移行する際の圧縮機回転数上昇制御を実行する場合、室内送風機27の運転を抑制する。即ち、室内送風機27の回転数を低下させることで、車室内が過剰に冷房される不都合を解消する。 Therefore, the heat pump controller 32 suppresses the operation of the indoor fan 27 when executing the compressor rotational speed increase control when shifting from the cooling mode to the air conditioning priority+battery cooling mode. That is, by lowering the rotational speed of the indoor blower 27, the problem of excessive cooling of the passenger compartment can be eliminated.

(17)圧縮機回転数上昇制御を実行するときの吹出温度の低下抑制制御
上記に代えて、若しくは、上記に加えて、圧縮機回転数上昇制御を実行する場合、ヒートポンプコントローラ32がエアミックスダンパ28を制御し、放熱器4に通風する空気の割合を高くするようにしてもよい。これにより、車室内に供給される空気の温度低下が抑制されるので、車室内が過剰に冷房される不都合を解消することができるようになる。
(17) Blowout temperature drop suppression control when executing compressor rotation speed increase control Alternatively, or in addition to the above, when executing compressor rotation speed increase control, the heat pump controller 32 uses an air mix damper 28 may be controlled to increase the proportion of air ventilating the radiator 4 . As a result, a decrease in the temperature of the air supplied into the vehicle interior is suppressed, so that the inconvenience of excessive cooling of the vehicle interior can be eliminated.

尚、前述した実施例では熱媒体温度Twを被温調対象の温度を示す指標として採用したが、バッテリ温度Tcellを採用してもよい。また、実施例では熱媒体を循環させてバッテリ55の温調を行うようにしたが、それに限らず、冷媒とバッテリ55(被温調対象)を直接熱交換させるようにしてもよい。 In the above-described embodiment, the heat medium temperature Tw is used as an index indicating the temperature of the object to be temperature controlled, but the battery temperature Tcell may be used. Further, in the embodiment, the temperature of the battery 55 is controlled by circulating the heat medium, but the present invention is not limited to this, and the refrigerant and the battery 55 (the target of temperature control) may be directly heat-exchanged.

また、実施例では車室内の冷房とバッテリ55の冷却を同時に行う空調優先+バッテリ冷却モードとバッテリ冷却優先+空調モードで車室内を冷房しながらバッテリ55を冷却することができる車両用空気調和装置1で説明したが、バッテリ55の冷却は冷房中に限らず、他の空調運転、例えば前述した除湿暖房モードとバッテリ55の冷却を同時に行うようにしてもよい。その場合には除湿暖房モードも本発明における空調単独モードとなり、電磁弁69を開き、冷媒配管13Fを経て吸熱器9に向かう冷媒の一部を分岐配管67に流入させ、冷媒-熱媒体熱交換器64に流すことになる。 In addition, in the embodiment, the vehicle air conditioner can cool the battery 55 while cooling the vehicle interior in the air conditioning priority + battery cooling mode and the battery cooling priority + air conditioning mode in which the vehicle interior is cooled and the battery 55 is cooled at the same time. 1, the cooling of the battery 55 is not limited to the cooling operation, and the cooling of the battery 55 may be performed simultaneously with another air conditioning operation, for example, the dehumidification heating mode described above. In that case, the dehumidification heating mode also becomes the air conditioning single mode in the present invention, opens the solenoid valve 69, flows a part of the refrigerant heading for the heat absorber 9 through the refrigerant pipe 13F into the branch pipe 67, and refrigerant-heat medium heat exchange It will flow into the container 64 .

更に、実施例では電磁弁35を吸熱器用弁装置、電磁弁69を被温調対象用弁装置としたが、室内膨張弁8や補助膨張弁68を全閉可能な電動弁にて構成した場合には、各電磁弁35や69は不要となり、室内膨張弁8が本発明における吸熱器用弁装置となり、補助膨張弁68が被温調対象用弁装置となる Further, in the embodiment, the solenoid valve 35 is a heat absorber valve device and the solenoid valve 69 is a temperature controlled valve device. , the solenoid valves 35 and 69 are not required, the indoor expansion valve 8 serves as the heat absorber valve device of the present invention, and the auxiliary expansion valve 68 serves as the temperature controlled valve device .

また、実施例で説明した冷媒回路Rの構成や数値はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。更にまた、実施例では暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、空調優先+バッテリ冷却モード等の各運転モードを有する車両用空気調和装置1で本発明を説明したが、それに限らず、例えば冷房モード、空調優先+バッテリ冷却モード、バッテリ冷却優先+空調モード、バッテリ冷却単独モードを実行可能とされた車両用空気調和装置にも本発明は有効である。 It goes without saying that the configuration and numerical values of the refrigerant circuit R described in the embodiment are not limited thereto, and can be changed without departing from the scope of the present invention. Furthermore, in the embodiments, the present invention has been described with the vehicle air conditioner 1 having operation modes such as a heating mode, a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode, and an air conditioning priority + battery cooling mode. For example, the present invention is also effective for a vehicle air conditioner capable of executing a cooling mode, an air conditioning priority + battery cooling mode, a battery cooling priority + air conditioning mode, and a battery cooling only mode.

1 車両用空気調和装置
2 圧縮機
3 空気流通路
4 放熱器
6 室外膨張弁
7 室外熱交換器
8 室内膨張弁
9 吸熱器(蒸発器)
11 制御装置
32 ヒートポンプコントローラ(制御装置の一部を構成)
35 電磁弁(吸熱器用弁装置)
45 空調コントローラ(制御装置の一部を構成)
55 バッテリ(被温調対象)
61 機器温度調整装置
64 冷媒-熱媒体熱交換器(蒸発器、被温調対象用熱交換器)
68 補助膨張弁
69 電磁弁(被温調対象用弁装置)
72 車両コントローラ
73 バッテリコントローラ
77 バッテリ温度センサ
76 熱媒体温度センサ
R 冷媒回路
1 Vehicle Air Conditioner 2 Compressor 3 Air Flow Path 4 Radiator 6 Outdoor Expansion Valve 7 Outdoor Heat Exchanger 8 Indoor Expansion Valve 9 Heat Absorber (Evaporator)
11 control device 32 heat pump controller (part of control device)
35 Solenoid valve (valve device for heat absorber)
45 air conditioning controller (constitutes part of the control device)
55 Battery (target for temperature control)
61 Equipment temperature adjustment device 64 Refrigerant-heat medium heat exchanger (evaporator, heat exchanger for temperature control object)
68 Auxiliary expansion valve 69 Solenoid valve (valve device for temperature control target)
72 vehicle controller 73 battery controller 77 battery temperature sensor 76 heat medium temperature sensor R refrigerant circuit

Claims (9)

冷媒を圧縮する圧縮機と、
冷媒を蒸発させて車室内に供給する空気を冷却するための吸熱器と、
冷媒を蒸発させて車両に搭載された被温調対象を冷却するための被温調対象用熱交換器と、
前記吸熱器への冷媒の流通を制御する吸熱器用弁装置と、
前記被温調対象用熱交換器への冷媒の流通を制御する被温調対象用弁装置と、
制御装置を少なくとも備えて前記車室内を空調する車両用空気調和装置において、
前記制御装置は少なくとも、
前記吸熱器用弁装置を開いて前記吸熱器で冷媒を蒸発させ、当該吸熱器の温度に基づいて前記圧縮機の回転数を制御し、前記被温調対象用弁装置を閉じる空調単独モードと、
前記被温調対象用弁装置を開いて前記被温調対象用熱交換器で冷媒を蒸発させ、当該被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて前記圧縮機の回転数を制御し、前記吸熱器用弁装置を閉じる被温調対象冷却単独モードと、
前記吸熱器用弁装置を開き、前記吸熱器の温度に基づいて前記圧縮機の回転数を制御し、前記被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて前記被温調対象用弁装置を開閉制御して、前記吸熱器及び前記被温調対象用熱交換器で冷媒を蒸発させる空調優先+被温調対象冷却モードと、
前記被温調対象用弁装置を開き、前記被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて前記圧縮機の回転数を制御し、前記吸熱器の温度に基づいて前記吸熱器用弁装置を開閉制御して、前記被温調対象用熱交換器及び前記吸熱器で冷媒を蒸発させる被温調対象冷却優先+空調モードを有し、それらを切り換えて実行すると共に、
前記空調単独モードから前記空調優先+被温調対象冷却モードに移行する際、及び、前記被温調対象冷却単独モードから前記被温調対象冷却優先+空調モードに移行する際、移行する前に、前記圧縮機の回転数を上昇させる圧縮機回転数上昇制御を実行することを特徴とする車両用空気調和装置。
a compressor that compresses a refrigerant;
a heat absorber for evaporating the refrigerant and cooling the air supplied to the vehicle interior;
a temperature control object heat exchanger for evaporating a refrigerant to cool a temperature control object mounted on a vehicle;
a heat absorber valve device for controlling the flow of refrigerant to the heat absorber;
a temperature control target valve device for controlling the flow of refrigerant to the temperature control target heat exchanger;
In a vehicle air conditioner that includes at least a control device and air-conditions the interior of the vehicle,
The control device at least
an air conditioning single mode in which the heat absorber valve device is opened to evaporate the refrigerant in the heat absorber, the rotation speed of the compressor is controlled based on the temperature of the heat absorber, and the temperature control target valve device is closed;
The temperature control target valve device is opened to evaporate the refrigerant in the temperature control target heat exchanger, and the compressor is operated based on the temperature of the temperature control target heat exchanger or the temperature of the target cooled by it. A single temperature-controlled cooling mode for controlling the rotation speed of and closing the heat absorber valve device;
opening the heat absorber valve device, controlling the rotation speed of the compressor based on the temperature of the heat absorber, an air conditioning priority + temperature controlled target cooling mode in which the control target valve device is controlled to open and close to evaporate the refrigerant in the heat absorber and the temperature control target heat exchanger;
opening the temperature control target valve device, controlling the rotation speed of the compressor based on the temperature of the temperature control target heat exchanger or the temperature of the object cooled by it, and controlling the rotation speed of the compressor based on the temperature of the heat absorber Controlling the opening and closing of the heat absorber valve device to have a temperature control object cooling priority + air conditioning mode in which refrigerant is evaporated in the temperature control object heat exchanger and the heat absorber, and switching between these modes,
Before shifting from the air conditioning single mode to the air conditioning priority + temperature controlled cooling mode, and when shifting from the temperature controlled cooling single mode to the temperature controlled cooling priority + air conditioning mode 1. An air conditioner for a vehicle, characterized in that a compressor rotation speed increase control is executed to increase the rotation speed of the compressor.
前記制御装置は、前記空調単独モードでは前記吸熱器の目標温度に基づくフィードフォワード演算により前記圧縮機の目標回転数を算出し、前記被温調対象冷却単独モードでは前記被温調対象用熱交換器又はそれにより冷却される対象の目標温度に基づくフィードフォワード演算により前記圧縮機の目標回転数を算出すると共に、In the air conditioning single mode, the control device calculates a target rotation speed of the compressor by feedforward calculation based on the target temperature of the heat absorber, and in the temperature controlled target cooling single mode, the heat exchange for the temperature controlled target Calculate the target rotation speed of the compressor by feedforward calculation based on the target temperature of the device or the object to be cooled by it,
前記圧縮機回転数上昇制御では、前記各目標温度を低下させることにより、前記圧縮機の目標回転数を上昇させることを特徴とする請求項1に記載の車両用空気調和装置。2. The vehicle air conditioner according to claim 1, wherein in the compressor rotational speed increase control, the target rotational speed of the compressor is increased by lowering each of the target temperatures.
前記制御装置は、前記空調単独モード、又は、前記被温調対象冷却単独モードにおいて、所定のモード移行要求が入力された場合、前記圧縮機回転数上昇制御により前記圧縮機の回転数を上昇させた後、前記空調優先+被温調対象冷却モード、又は、前記被温調対象冷却優先+空調モードに移行することを特徴とする請求項1又は請求項2に記載の車両用空気調和装置。When a predetermined mode transition request is input in the air conditioning single mode or the temperature controlled cooling single mode, the control device increases the rotation speed of the compressor by the compressor rotation speed increase control. 3. The vehicular air conditioner according to claim 1 or 2, wherein the mode is shifted to the air conditioning priority + temperature controlled target cooling mode or the temperature controlled target cooling priority + air conditioning mode. 前記被温調対象は前記車両に搭載されたバッテリであり、前記車両の走行用モータは前記バッテリからの給電により駆動され、the object to be temperature controlled is a battery mounted in the vehicle, and a driving motor of the vehicle is driven by power supply from the battery;
前記制御装置は、前記空調単独モードにおいて、所定のモード移行要求が入力された場合、前記空調優先+被温調対象冷却モードに移行すると共に、When a predetermined mode transition request is input in the air conditioning single mode, the control device transitions to the air conditioning priority + temperature controlled cooling mode,
前記空調単独モードにおいて、前記走行用モータの出力が所定の閾値以上となった場合、又は、前記走行用モータの出力が上昇する傾きが所定の閾値以上となった場合、前記圧縮機回転数上昇制御を実行することを特徴とする請求項1又は請求項2に記載の車両用空気調和装置。In the air conditioning single mode, when the output of the driving motor exceeds a predetermined threshold value, or when the slope of the increase in the output of the driving motor exceeds a predetermined threshold value, the compressor rotation speed increases. 3. The vehicle air conditioner according to claim 1, wherein control is executed.
前記制御装置は、前記空調単独モードにおいて、所定のモード移行要求が入力された場合、前記空調優先+被温調対象冷却モードに移行すると共に、When a predetermined mode transition request is input in the air conditioning single mode, the control device transitions to the air conditioning priority + temperature controlled cooling mode,
前記空調単独モードにおいて、前記被温調対象の温度が上昇する傾きが所定の閾値以上となった場合、前記圧縮機回転数上昇制御を実行することを特徴とする請求項1、請求項2又は請求項4のうちの何れかに記載の車両用空気調和装置。In the air-conditioning independent mode, the compressor rotational speed increase control is executed when the slope of the increase in the temperature of the object to be temperature controlled becomes equal to or greater than a predetermined threshold value. The vehicle air conditioner according to claim 4 .
前記制御装置は、前記空調単独モードにおいて、所定のモード移行要求が入力された場合、前記空調優先+被温調対象冷却モードに移行すると共に、When a predetermined mode transition request is input in the air conditioning single mode, the control device transitions to the air conditioning priority + temperature controlled cooling mode,
前記空調単独モードにおいて、前記被温調対象の発熱量が上昇する傾きが所定の閾値以上となった場合、前記圧縮機回転数上昇制御を実行することを特徴とする請求項1、請求項2、請求項4又は請求項5のうちの何れかに記載の車両用空気調和装置。In the air-conditioning independent mode, the compressor rotation speed increase control is executed when the slope of the increase in the amount of heat generated by the object to be temperature-controlled is greater than or equal to a predetermined threshold value. 6. The vehicle air conditioner according to claim 4 or 5.
前記制御装置は、前記空調単独モードにおいて、所定のモード移行要求が入力された場合、前記空調優先+被温調対象冷却モードに移行すると共に、When a predetermined mode transition request is input in the air conditioning single mode, the control device transitions to the air conditioning priority + temperature controlled cooling mode,
前記空調単独モードにおいて、ナビゲーション情報から前記被温調対象の温度が上昇すると予測される場合、前記圧縮機回転数上昇制御を実行することを特徴とする請求項1、請求項2、請求項4乃至請求項6のうちの何れかに記載の車両用空気調和装置。In the air-conditioning independent mode, when the navigation information predicts that the temperature of the object to be temperature-controlled will rise, the compressor rotational speed increase control is executed. The vehicle air conditioner according to any one of claims 6 to 7.
前記吸熱器と熱交換した空気を前記車室内に送給するための室内送風機を備え、An indoor fan for supplying air heat-exchanged with the heat absorber into the vehicle interior,
前記制御装置は、前記空調単独モードから前記空調優先+被温調対象冷却モードに移行する際の前記圧縮機回転数上昇制御を実行する場合、前記室内送風機の運転を抑制することを特徴とする請求項1乃至請求項7のうちの何れかに記載の車両用空気調和装置。The control device suppresses the operation of the indoor fan when executing the compressor rotation speed increase control when shifting from the air conditioning only mode to the air conditioning priority + temperature controlled cooling mode. The vehicle air conditioner according to any one of claims 1 to 7.
前記冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、a radiator for radiating heat from the refrigerant to heat the air supplied to the vehicle interior;
前記吸熱器を経た空気が前記放熱器に通風される割合を調整するためのエアミックスダンパを備え、An air mix damper for adjusting the ratio of air passing through the heat absorber to the heat radiator,
前記制御装置は、前記空調単独モードから前記空調優先+被温調対象冷却モードに移行する際の前記圧縮機回転数上昇制御を実行する場合、前記エアミックスダンパにより前記車室内に供給される空気の温度低下を抑制することを特徴とする請求項1乃至請求項8のうちの何れかに記載の車両用空気調和装置。When executing the compressor rotation speed increase control when shifting from the air conditioning only mode to the air conditioning priority + temperature controlled cooling mode, the control device controls the air supplied to the vehicle interior by the air mix damper. 9. The vehicle air conditioner according to any one of claims 1 to 8, wherein the temperature drop of the air conditioner is suppressed.
JP2018221266A 2018-11-27 2018-11-27 Vehicle air conditioner Active JP7300264B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018221266A JP7300264B2 (en) 2018-11-27 2018-11-27 Vehicle air conditioner
DE112019005898.3T DE112019005898B4 (en) 2018-11-27 2019-10-18 vehicle air conditioning
PCT/JP2019/041093 WO2020110509A1 (en) 2018-11-27 2019-10-18 Vehicle air conditioner
CN201980074264.2A CN113015639A (en) 2018-11-27 2019-10-18 Air conditioner for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018221266A JP7300264B2 (en) 2018-11-27 2018-11-27 Vehicle air conditioner

Publications (2)

Publication Number Publication Date
JP2020083099A JP2020083099A (en) 2020-06-04
JP7300264B2 true JP7300264B2 (en) 2023-06-29

Family

ID=70853973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018221266A Active JP7300264B2 (en) 2018-11-27 2018-11-27 Vehicle air conditioner

Country Status (4)

Country Link
JP (1) JP7300264B2 (en)
CN (1) CN113015639A (en)
DE (1) DE112019005898B4 (en)
WO (1) WO2020110509A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112622561B (en) * 2020-12-18 2022-09-13 长城汽车股份有限公司 Passenger compartment and battery cooling method and device and vehicle
FR3126199A1 (en) * 2021-06-17 2023-02-24 Valeo Systemes Thermiques REFRIGERANT FLUID CIRCUIT CONSTITUTING A HEAT TREATMENT SYSTEM
CN113879072B (en) * 2021-11-02 2024-03-22 北京汽车集团越野车有限公司 Control method and device of vehicle-mounted air conditioning system
FR3129197B1 (en) * 2021-11-15 2024-03-01 Valeo Systemes Thermiques Thermal conditioning system
US20230318516A1 (en) * 2022-03-31 2023-10-05 Cummins Inc. Systems and method for controlling flow of coolant to components of a vehicle
CN114889397A (en) * 2022-05-04 2022-08-12 上海热翼智控系统有限公司 Method for accurately identifying frosting of heat exchanger on outer side of heat pump air-conditioning vehicle and implementation device thereof
CN116101031B (en) * 2023-04-12 2023-07-07 蔚来汽车科技(安徽)有限公司 Vehicle cooling system, control method thereof and vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120297809A1 (en) 2011-05-26 2012-11-29 Neil Carpenter Refrigerant loop for battery electric vehicle with internal heat exchanger for heat exchange with coolant
JP2013151231A (en) 2012-01-25 2013-08-08 Denso Corp Vehicle air-conditioning system
JP2014037178A (en) 2012-08-13 2014-02-27 Calsonic Kansei Corp Thermal management system for electric vehicle
US20150013367A1 (en) 2012-03-28 2015-01-15 Magna E-Car Systems Of America, Inc. Vehicle cooling with adjustable flow expansion valve
US20160221413A1 (en) 2015-02-04 2016-08-04 Ford Global Technologies, Llc Climate control system for a vehicle
US20170088006A1 (en) 2015-09-24 2017-03-30 Ford Global Technologies, Llc Hybrid vehicle with combined cabin and battery cooling
JP2018184108A (en) 2017-04-26 2018-11-22 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE367942T1 (en) * 2005-06-02 2007-08-15 Delphi Tech Inc COOLING SYSTEM FOR AN AIR CONDITIONER
JP5860361B2 (en) 2012-08-13 2016-02-16 カルソニックカンセイ株式会社 Thermal management system for electric vehicles
JP6073653B2 (en) * 2012-11-09 2017-02-01 サンデンホールディングス株式会社 Air conditioner for vehicles
JP6125312B2 (en) 2013-04-26 2017-05-10 サンデンホールディングス株式会社 Air conditioner for vehicles
JP6174414B2 (en) * 2013-08-07 2017-08-02 サンデンホールディングス株式会社 Air conditioner for vehicles
JP6247993B2 (en) * 2014-04-18 2017-12-13 サンデンホールディングス株式会社 Air conditioner for vehicles
JP6418779B2 (en) * 2014-05-08 2018-11-07 サンデンホールディングス株式会社 Air conditioner for vehicles
US10293658B2 (en) 2016-04-29 2019-05-21 Ford Global Technologies, Llc Traction battery cooling system for an electrified vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120297809A1 (en) 2011-05-26 2012-11-29 Neil Carpenter Refrigerant loop for battery electric vehicle with internal heat exchanger for heat exchange with coolant
JP2013151231A (en) 2012-01-25 2013-08-08 Denso Corp Vehicle air-conditioning system
US20150013367A1 (en) 2012-03-28 2015-01-15 Magna E-Car Systems Of America, Inc. Vehicle cooling with adjustable flow expansion valve
JP2014037178A (en) 2012-08-13 2014-02-27 Calsonic Kansei Corp Thermal management system for electric vehicle
US20160221413A1 (en) 2015-02-04 2016-08-04 Ford Global Technologies, Llc Climate control system for a vehicle
US20170088006A1 (en) 2015-09-24 2017-03-30 Ford Global Technologies, Llc Hybrid vehicle with combined cabin and battery cooling
JP2018184108A (en) 2017-04-26 2018-11-22 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicle

Also Published As

Publication number Publication date
CN113015639A (en) 2021-06-22
DE112019005898B4 (en) 2023-08-03
JP2020083099A (en) 2020-06-04
WO2020110509A1 (en) 2020-06-04
DE112019005898T5 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
JP6997558B2 (en) Vehicle air conditioner
JP7300264B2 (en) Vehicle air conditioner
JP7221639B2 (en) Vehicle air conditioner
JP7372732B2 (en) Vehicle air conditioner
CN113165476A (en) Air conditioner for vehicle
JP7213665B2 (en) VEHICLE BATTERY TEMPERATURE ADJUSTMENT DEVICE AND VEHICLE AIR CONDITIONER WITH SAME
WO2020129493A1 (en) Vehicle air-conditioning apparatus
WO2020121737A1 (en) Vehicular air-conditioning device
CN109661317B (en) Air conditioner for vehicle
JP7233915B2 (en) Vehicle air conditioner
JP7221650B2 (en) Vehicle air conditioner
JP7233953B2 (en) Vehicle air conditioner
JP7280689B2 (en) Vehicle air conditioner
WO2022064944A1 (en) Air conditioner for vehicle
JP2020079004A (en) Vehicle air conditioner
JP7387520B2 (en) Vehicle air conditioner
WO2020100524A1 (en) Vehicle air-conditioning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211015

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230421

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230421

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230619

R150 Certificate of patent or registration of utility model

Ref document number: 7300264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150