JP6247993B2 - Air conditioner for vehicles - Google Patents

Air conditioner for vehicles Download PDF

Info

Publication number
JP6247993B2
JP6247993B2 JP2014086387A JP2014086387A JP6247993B2 JP 6247993 B2 JP6247993 B2 JP 6247993B2 JP 2014086387 A JP2014086387 A JP 2014086387A JP 2014086387 A JP2014086387 A JP 2014086387A JP 6247993 B2 JP6247993 B2 JP 6247993B2
Authority
JP
Japan
Prior art keywords
temperature
outdoor
radiator
air
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014086387A
Other languages
Japanese (ja)
Other versions
JP2015205563A (en
Inventor
竜 宮腰
竜 宮腰
鈴木 謙一
謙一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Holdings Corp
Original Assignee
Sanden Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Holdings Corp filed Critical Sanden Holdings Corp
Priority to JP2014086387A priority Critical patent/JP6247993B2/en
Priority to DE112015001874.3T priority patent/DE112015001874T5/en
Priority to CN201580020249.1A priority patent/CN106232400B/en
Priority to US15/304,997 priority patent/US10625560B2/en
Priority to PCT/JP2015/001595 priority patent/WO2015159485A1/en
Publication of JP2015205563A publication Critical patent/JP2015205563A/en
Application granted granted Critical
Publication of JP6247993B2 publication Critical patent/JP6247993B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Description

本発明は、車両の車室内を空調するヒートポンプ方式の空気調和装置、特にハイブリッド自動車や電気自動車に適用可能な車両用空気調和装置に関するものである。   The present invention relates to a heat pump type air conditioner that air-conditions a passenger compartment of a vehicle, and more particularly to a vehicle air conditioner that can be applied to a hybrid vehicle and an electric vehicle.

近年の環境問題の顕在化から、ハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する電動式の圧縮機と、車室内側に設けられて冷媒を放熱させる放熱器と、車室内側に設けられて冷媒を吸熱させる吸熱器と、車室外側に設けられて冷媒を放熱又は吸熱させる室外熱交換器と、室外熱交換器に流入する冷媒を減圧する膨張弁とを備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させる暖房モードと、圧縮機から吐出された冷媒を放熱器において放熱させ、放熱器において放熱した冷媒を吸熱器と室外熱交換器において吸熱させる除湿暖房モードと、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器において吸熱させる冷房モードと、圧縮機から吐出された冷媒を放熱器及び室外熱交換器において放熱させ、吸熱器において吸熱させる除湿冷房モードとを切り換え可能としたものが開発されている(例えば、特許文献1参照)。   Hybrid vehicles and electric vehicles have come into widespread use due to the emergence of environmental problems in recent years. And as an air conditioner that can be applied to such a vehicle, an electric compressor that compresses and discharges the refrigerant, a radiator that is provided on the vehicle interior side to dissipate the refrigerant, and on the vehicle interior side A heat absorber that absorbs the refrigerant, an outdoor heat exchanger that is provided outside the passenger compartment to dissipate or absorb the refrigerant, and an expansion valve that decompresses the refrigerant flowing into the outdoor heat exchanger. Heating mode in which the discharged refrigerant dissipates heat in the radiator, and the refrigerant dissipated in the radiator absorbs heat in the outdoor heat exchanger, and the refrigerant discharged from the compressor dissipates heat in the radiator, and the refrigerant dissipates heat in the radiator A dehumidifying and heating mode in which heat is absorbed by the heat absorber and the outdoor heat exchanger, a cooling mode in which the refrigerant discharged from the compressor is radiated in the outdoor heat exchanger and heat is absorbed in the heat absorber, and compression The refrigerant discharged from is radiated in the radiator and the outdoor heat exchanger, has been developed that was capable of switching the dehumidification cooling mode to heat absorption in the heat absorber (see, for example, Patent Document 1).

特開2012−176660号公報JP 2012-176660 A

しかしながら、環境条件によっては前記除湿暖房モードにおいて放熱器の温度と吸熱器の温度を両立させることが困難になる場合がある。特に、外気温度が+15℃〜+20℃程の環境では、放熱器の温度(高圧)は目標値に収束して満足するものの、室外熱交換器に流入する冷媒を減圧する膨張弁の弁開度を最低限に絞っても、吸熱器の温度が目標値まで下がらない場合がある。   However, depending on the environmental conditions, it may be difficult to make the temperature of the radiator and the temperature of the heat absorber compatible in the dehumidifying and heating mode. In particular, in an environment where the outside air temperature is about + 15 ° C. to + 20 ° C., the radiator temperature (high pressure) converges to the target value and is satisfied, but the valve opening of the expansion valve that reduces the refrigerant flowing into the outdoor heat exchanger Even if the temperature is reduced to the minimum, the temperature of the heat sink may not drop to the target value.

そこで、室外熱交換器への冷媒の流入を阻止して、吸熱器のみにて冷媒を吸熱させる内部サイクルモードというモードを作り、除湿暖房モードにおいて吸熱器の温度が下がらない場合には、係る内部サイクルモードに移行することも考えられる。しかしながら、この内部サイクルモードでは室内側の空気流通路内にある放熱器(放熱)と吸熱器(吸熱)の間で圧縮機により冷媒が循環されることになるので、冷媒回路内の冷媒量を適切に管理しなければならなくなる欠点があった。   Therefore, in order to prevent the refrigerant from flowing into the outdoor heat exchanger, create a mode called an internal cycle mode in which the refrigerant is absorbed only by the heat absorber, and when the temperature of the heat absorber does not decrease in the dehumidifying heating mode, It is also possible to shift to the cycle mode. However, in this internal cycle mode, since the refrigerant is circulated by the compressor between the radiator (heat radiation) and the heat absorber (heat absorption) in the air flow passage on the indoor side, the amount of refrigerant in the refrigerant circuit is reduced. There was a drawback that had to be managed properly.

本発明は、係る従来の技術的課題を解決するために成されたものであり、環境条件に対する除湿暖房モードの有効範囲を拡大し、車室内を円滑に除湿暖房することができる車両用空気調和装置を提供することを目的とする。   The present invention has been made to solve the above-described conventional technical problems, expands the effective range of the dehumidifying and heating mode with respect to environmental conditions, and can smoothly dehumidify and heat the vehicle interior. An object is to provide an apparatus.

本発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、この空気流通路に設けられて冷媒を放熱させる放熱器と、空気流通路に設けられて冷媒を吸熱させる吸熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、この室外熱交換器に流入する冷媒を減圧する室外膨張弁と、室外熱交換器に外気を通風する室外送風機と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器と室外熱交換器にて吸熱させる除湿暖房モードを実行するものであって、制御手段は、放熱器の温度が満足な状況で、室外膨張弁の弁開度を制御下限値としても吸熱器の温度が高い場合、室外送風機の風量を減少させることを特徴とする。   An air conditioner for a vehicle according to the present invention includes a compressor that compresses a refrigerant, an air flow passage through which air to be supplied to the vehicle interior flows, a radiator that is provided in the air flow passage and radiates heat from the refrigerant, and an air flow A heat absorber that absorbs the refrigerant by being provided in the road, an outdoor heat exchanger that is provided outside the vehicle cabin to absorb the refrigerant, an outdoor expansion valve that depressurizes the refrigerant flowing into the outdoor heat exchanger, and an outdoor heat exchanger An outdoor blower for ventilating the outside air and control means, and at least the refrigerant discharged from the compressor is radiated by the radiator by the control means, and after the decompressed refrigerant is decompressed, the heat absorber and the outdoor heat The dehumidifying and heating mode for absorbing heat by the exchanger is executed, and the control means has a high temperature even when the temperature of the radiator is satisfactory and the valve opening degree of the outdoor expansion valve is set as the control lower limit value. If the air flow of the outdoor fan is reduced And wherein the Rukoto.

請求項2の発明の車両用空気調和装置は、上記発明において制御手段は、放熱器の温度が満足な状況で、室外膨張弁の弁開度を制御上限値としても吸熱器の温度が低い場合、室外送風機の風量を増加させることを特徴とする。   The vehicle air conditioner according to a second aspect of the present invention is the vehicle air conditioner according to the above invention, wherein the control means is in a situation where the temperature of the radiator is satisfactory and the temperature of the heat absorber is low even when the valve opening degree of the outdoor expansion valve is set as the control upper limit value. The air volume of the outdoor fan is increased.

請求項3の発明の車両用空気調和装置は、上記各発明において制御手段は、吸熱器の温度が満足な状況で、圧縮機の回転数を制御下限値としても放熱器の温度が高い場合、室外送風機の風量を減少させることを特徴とする。   In the vehicle air conditioner of the invention of claim 3, in each of the above inventions, the control means is a situation where the temperature of the heat absorber is satisfactory, and the temperature of the radiator is high even if the rotation speed of the compressor is set as the control lower limit value. It is characterized by reducing the air volume of the outdoor blower.

請求項4の発明の車両用空気調和装置は、上記各発明において制御手段は、吸熱器の温度が満足な状況で、圧縮機の回転数を制御上限値としても放熱器の温度が低い場合、室外送風機の風量を増加させることを特徴とする。   In the vehicle air conditioner of the invention of claim 4, in each of the above inventions, the control means is a situation where the temperature of the heat sink is satisfactory, and the temperature of the radiator is low even if the rotation speed of the compressor is set as the control upper limit value. The air volume of the outdoor blower is increased.

請求項5の発明の車両用空気調和装置は、上記各発明において制御手段は、圧縮機の回転数を制御下限値とし、且つ、室外膨張弁の弁開度を制御下限値としても、放熱器の温度が高く、且つ、吸熱器の温度も高い場合、室外送風機の風量を減少させることを特徴とする。   According to a fifth aspect of the present invention, there is provided a vehicle air conditioner according to the above invention, wherein the control means has a radiator even if the rotational speed of the compressor is a control lower limit value and the valve opening of the outdoor expansion valve is a control lower limit value. When the temperature of the heat sink is high and the temperature of the heat absorber is also high, the air volume of the outdoor blower is reduced.

請求項6の発明の車両用空気調和装置は、上記各発明において制御手段は、圧縮機の回転数を制御上限値とし、且つ、室外膨張弁の弁開度を制御上限値としても、放熱器の温度が低く、且つ、吸熱器の温度も低い場合、室外送風機の風量を増加させることを特徴とする。   According to a sixth aspect of the present invention, there is provided a vehicle air conditioner according to the above invention, wherein the control means is configured such that the number of revolutions of the compressor is a control upper limit value and the valve opening of the outdoor expansion valve is a control upper limit value. When the temperature of the heat sink is low and the temperature of the heat absorber is also low, the air volume of the outdoor blower is increased.

請求項7の発明の車両用空気調和装置は、上記各発明において制御手段は、圧縮機の回転数を制御下限値とし、且つ、室外膨張弁の弁開度を制御上限値としても、放熱器の温度が高く、且つ、吸熱器の温度が低い場合、又は、圧縮機の回転数を制御上限値とし、且つ、室外膨張弁の弁開度を制御下限値としても、放熱器の温度が低く、且つ、吸熱器の温度が高い場合、除湿暖房モードは不成立として室外送風機の風量減少/増加制御を実行せず、運転モードを他のモードに切り換えることを特徴とする。   According to a seventh aspect of the present invention, there is provided a vehicle air conditioner according to the above-described invention, wherein the control means is configured such that the number of rotations of the compressor is a control lower limit value and the valve opening of the outdoor expansion valve is a control upper limit value. When the temperature of the heat sink is low, or the temperature of the radiator is low even if the rotation speed of the compressor is the control upper limit value and the valve opening of the outdoor expansion valve is the control lower limit value. When the temperature of the heat absorber is high, the dehumidifying and heating mode is not established, and the operation mode is switched to another mode without executing the air volume reduction / increase control of the outdoor fan.

請求項8の発明の車両用空気調和装置は、上記各発明において制御手段は、動作状態の過渡期には前記室外送風機の風量減少/増加制御を実行せず、又は、室外送風機の風量を最大とすることを特徴とする。   The air conditioner for a vehicle according to an eighth aspect of the present invention is the air conditioning apparatus for a vehicle according to each of the above inventions, wherein the control means does not execute the air volume reduction / increase control of the outdoor blower during the transition period of the operating state or maximizes the air flow of the outdoor blower It is characterized by.

請求項9の発明の車両用空気調和装置は、上記発明において制御手段は、外気温度、目標放熱器温度、目標吸熱器温度、空気流通路に流入した空気の質量風量、車室内温度、車室内湿度、のうちの何れか、又は、それらの組み合わせ、若しくは、それらの全てに基づき、過渡期における室外送風機の風量を決定することを特徴とする。   According to a ninth aspect of the present invention, there is provided an air conditioning apparatus for a vehicle according to the present invention, wherein the control means includes an outside air temperature, a target radiator temperature, a target heat absorber temperature, a mass air volume of air flowing into the air flow passage, a passenger compartment temperature, a passenger compartment. The air volume of the outdoor blower in the transition period is determined based on any one of the humidity, a combination thereof, or all of them.

請求項10の発明の車両用空気調和装置は、上記各発明において制御手段は、車速が高い場合、室外送風機の風量を減少させ、若しくは、当該室外送風機を停止させることを特徴とする。   The vehicle air conditioner according to a tenth aspect of the present invention is characterized in that, in each of the above inventions, the control means reduces the air volume of the outdoor blower or stops the outdoor blower when the vehicle speed is high.

請求項11の発明の車両用空気調和装置は、上記各発明に加えて室外熱交換器への走行風の流入を阻止するグリルシャッタを備え、制御手段は、グリルシャッタを閉じ、又は、グリルシャッタの開度により走行風の流入を制限した状態で、前記室外送風機の風量減少/増加制御を実行することを特徴とする。   An air conditioner for a vehicle according to an eleventh aspect of the present invention includes a grill shutter that prevents inflow of traveling wind into the outdoor heat exchanger in addition to the above inventions, and the control means closes the grill shutter or the grill shutter. The air volume reduction / increase control of the outdoor blower is executed in a state where the inflow of traveling wind is restricted by the opening degree of the outdoor air blower.

本発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、この空気流通路に設けられて冷媒を放熱させる放熱器と、空気流通路に設けられて冷媒を吸熱させる吸熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、この室外熱交換器に流入する冷媒を減圧する室外膨張弁と、室外熱交換器に外気を通風する室外送風機と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器と室外熱交換器にて吸熱させる除湿暖房モードを実行する車両用空気調和装置において、制御手段が、放熱器の温度が満足な状況で、室外膨張弁の弁開度を制御下限値としても吸熱器の温度が高い場合、室外送風機の風量を減少させるようにしたので、放熱器の温度が満足な状況にあるのに、環境条件により室外膨張弁の弁開度を制御下限値としても吸熱器の温度が高くなり、室外膨張弁では吸熱器の温度を制御できなくなったとき、制御手段は室外送風機の風量を減少させる。   According to the present invention, the compressor that compresses the refrigerant, the air flow passage through which the air supplied to the passenger compartment flows, the radiator that is provided in the air flow passage to dissipate the refrigerant, and the air flow passage are provided. A heat absorber that absorbs the refrigerant, an outdoor heat exchanger that is installed outside the vehicle and absorbs the refrigerant, an outdoor expansion valve that depressurizes the refrigerant flowing into the outdoor heat exchanger, and ventilate the outdoor air to the outdoor heat exchanger An outdoor blower and a control means, and at least the refrigerant discharged from the compressor is radiated by the radiator by the control means, and the radiated refrigerant is decompressed, and then the heat absorber and the outdoor heat exchanger are used. In the vehicle air conditioner that executes the dehumidifying and heating mode for absorbing heat, the control means is in a situation where the temperature of the radiator is satisfactory, and the temperature of the heat absorber is high even when the valve opening degree of the outdoor expansion valve is set as the control lower limit value. Reduced air volume of outdoor blower As a result, the temperature of the heat sink increases even when the temperature of the heat sink is satisfactory, but even if the valve opening degree of the outdoor expansion valve is set as the control lower limit value due to environmental conditions, the temperature of the heat sink increases with the outdoor expansion valve. When the temperature cannot be controlled, the control means decreases the air volume of the outdoor fan.

室外送風機の風量が減少すると、室外熱交換器における吸熱量が減少するので、放熱器の温度が低下する。このとき、放熱器の圧力(高圧)も低下するので、当該放熱器の圧力を維持するために圧縮機の回転数が上昇することになり、冷媒回路内の冷媒循環量が増大し、吸熱器への冷媒流入量も増加し、結果として吸熱器の温度を下げることができるようになる。これにより、環境条件に対する除湿暖房モードの有効範囲が拡大し、環境条件の広い範囲で除湿暖房モードによる車室内の除湿暖房空調を円滑に実現することができるようになる。   When the air volume of the outdoor blower decreases, the heat absorption amount in the outdoor heat exchanger decreases, so the temperature of the radiator decreases. At this time, since the pressure (high pressure) of the radiator is also reduced, the rotation speed of the compressor is increased to maintain the pressure of the radiator, the amount of refrigerant circulation in the refrigerant circuit is increased, and the heat absorber As a result, the temperature of the heat absorber can be lowered. Thereby, the effective range of the dehumidification heating mode with respect to environmental conditions expands, and the dehumidification heating air conditioning of the vehicle interior by a dehumidification heating mode can be implement | achieved smoothly in the wide range of environmental conditions.

また、請求項2の発明によれば、上記発明に加えて制御手段が、放熱器の温度が満足な状況で、室外膨張弁の弁開度を制御上限値としても吸熱器の温度が低い場合、室外送風機の風量を増加させるようにしたので、放熱器の温度が満足な状況にあるのに、環境条件により室外膨張弁の弁開度を制御下限値としても吸熱器の温度が高くなり、室外膨張弁では吸熱器の温度を制御できなくなったとき、制御手段は室外送風機の風量を増加させる。   According to the invention of claim 2, in addition to the above-mentioned invention, when the temperature of the heat sink is low even when the control means is in a situation where the temperature of the radiator is satisfactory and the valve opening degree of the outdoor expansion valve is set as the control upper limit value Since the air volume of the outdoor fan was increased, the temperature of the heat sink increased even when the valve opening degree of the outdoor expansion valve was set as the control lower limit value due to environmental conditions, even though the temperature of the radiator was satisfactory. When the outdoor expansion valve cannot control the temperature of the heat absorber, the control means increases the air volume of the outdoor fan.

室外送風機の風量が増加すると、室外熱交換器における吸熱量が増加するので、放熱器の温度が上昇する。このとき、放熱器の圧力(高圧)も上昇するので、当該放熱器の圧力を維持するために圧縮機の回転数が低下することになり、冷媒回路内の冷媒循環量が減少し、吸熱器への冷媒流入量も減少し、結果として吸熱器の温度を上げることができるようになる。これにより、環境条件に対する除湿暖房モードの有効範囲をより一層拡大し、環境条件の更に広い範囲で除湿暖房モードによる円滑な車室内の除湿暖房空調を実現することができるようになる。   When the air volume of the outdoor blower increases, the heat absorption amount in the outdoor heat exchanger increases, so that the temperature of the radiator increases. At this time, since the pressure (high pressure) of the radiator also increases, the number of rotations of the compressor decreases to maintain the pressure of the radiator, the amount of refrigerant circulation in the refrigerant circuit decreases, and the heat absorber As a result, the temperature of the heat absorber can be increased. Thereby, the effective range of the dehumidification heating mode with respect to environmental conditions can be further expanded, and the smooth dehumidification heating air conditioning in a vehicle interior by a dehumidification heating mode can be implement | achieved in the wider range of environmental conditions.

また、請求項3の発明によれば、上記各発明に加えて制御手段が、吸熱器の温度が満足な状況で、圧縮機の回転数を制御下限値としても放熱器の温度が高い場合、室外送風機の風量を減少させるようにしたので、吸熱器の温度が満足な状況にあるのに、環境条件により圧縮機の回転数を制御下限値としても放熱器の温度が高くなり、圧縮機では放熱器の温度を制御できなくなったとき、制御手段は室外送風機の風量を減少させる。   Further, according to the invention of claim 3, in addition to the above inventions, when the temperature of the radiator is high even when the temperature of the heat absorber is satisfied and the compressor rotation speed is the control lower limit value, the control means Since the air volume of the outdoor blower was reduced, the temperature of the heat sink was satisfactory, but the temperature of the radiator increased even when the compressor rotation speed was set as the lower control limit due to environmental conditions. When it becomes impossible to control the temperature of the radiator, the control means reduces the air volume of the outdoor fan.

室外送風機の風量が減少すると、室外熱交換器における吸熱量が減少するので、放熱器の温度も低下する。これにより、環境条件に対する除湿暖房モードの有効範囲を更に拡大し、環境条件のより広い範囲で除湿暖房モードによる車室内の除湿暖房空調を円滑に実現することができるようになる。   When the air volume of the outdoor blower decreases, the heat absorption amount in the outdoor heat exchanger decreases, so the temperature of the radiator also decreases. As a result, the effective range of the dehumidifying and heating mode with respect to the environmental conditions can be further expanded, and the dehumidifying and heating air conditioning in the vehicle compartment in the dehumidifying and heating mode can be smoothly realized in a wider range of the environmental conditions.

また、請求項4の発明によれば、上記各発明に加えて制御手段が、吸熱器の温度が満足な状況で、圧縮機の回転数を制御上限値としても放熱器の温度が低い場合、室外送風機の風量を増加させるようにしたので、吸熱器の温度が満足な状況にあるのに、環境条件により圧縮機の回転数を制御上限値としても放熱器の温度が低くなり、圧縮機では放熱器の温度を制御できなくなったとき、制御手段は室外送風機の風量を増加させる。   Further, according to the invention of claim 4, in addition to the above inventions, when the temperature of the radiator is low even when the control means is in a situation where the temperature of the heat absorber is satisfactory and the rotation speed of the compressor is set as the control upper limit value, Since the air volume of the outdoor blower was increased, the temperature of the heat sink was satisfactory, but the temperature of the radiator decreased even if the rotational speed of the compressor was set as the upper control limit due to environmental conditions. When the temperature of the radiator cannot be controlled, the control means increases the air volume of the outdoor fan.

室外送風機の風量が増加すると、室外熱交換器における吸熱量が増加するので、放熱器の温度も上昇する。これにより、環境条件に対する除湿暖房モードの有効範囲を更に拡大し、環境条件のより広い範囲で除湿暖房モードによる車室内の除湿暖房空調を円滑に実現することができるようになる。   When the air volume of the outdoor blower increases, the heat absorption amount in the outdoor heat exchanger increases, so the temperature of the radiator also rises. As a result, the effective range of the dehumidifying and heating mode with respect to the environmental conditions can be further expanded, and the dehumidifying and heating air conditioning in the vehicle compartment in the dehumidifying and heating mode can be smoothly realized in a wider range of the environmental conditions.

また、請求項5の発明によれば、上記各発明に加えて制御手段が、圧縮機の回転数を制御下限値とし、且つ、室外膨張弁の弁開度を制御下限値としても、放熱器の温度が高く、且つ、吸熱器の温度も高い場合、室外送風機の風量を減少させるようにしたので、環境条件により圧縮機の回転数を制御下限値とし、且つ、室外膨張弁の弁開度を制御下限値としても、放熱器の温度が高く、且つ、吸熱器の温度も高くなり、圧縮機や室外膨張弁では放熱器の温度と吸熱器の温度を制御できなくなったとき、制御手段は室外送風機の風量を減少させる。   Further, according to the invention of claim 5, in addition to the above-mentioned inventions, the control means can provide a radiator even if the rotational speed of the compressor is set as the control lower limit value and the valve opening degree of the outdoor expansion valve is set as the control lower limit value. When the temperature of the air blower is high and the temperature of the heat sink is also high, the air flow rate of the outdoor fan is reduced, so that the rotational speed of the compressor is set as the control lower limit value according to the environmental conditions, and the valve opening degree of the outdoor expansion valve Is the control lower limit value, the temperature of the radiator is high and the temperature of the heat absorber is also high, and the control means is not able to control the temperature of the radiator and the temperature of the heat absorber with the compressor or the outdoor expansion valve. Reduce the air volume of the outdoor fan.

室外送風機の風量が減少すると、室外熱交換器における吸熱量が減少するので、先ず放熱器の温度を下げることができる。また、このとき放熱器の圧力(高圧)も下がるので、これを維持するために圧縮機の回転数は上昇することになり、冷媒回路内の冷媒循環量が増大し、吸熱器への冷媒流入量も増加し、結果として吸熱器の温度も下げることができるようになる。これにより、環境条件に対する除湿暖房モードの有効範囲を更に拡大し、環境条件のより広い範囲で除湿暖房モードによる車室内の除湿暖房空調を円滑に実現することができるようになる。   When the air volume of the outdoor blower decreases, the heat absorption amount in the outdoor heat exchanger decreases, so that the temperature of the radiator can be lowered first. At this time, since the pressure (high pressure) of the radiator also decreases, the rotation speed of the compressor increases to maintain this, and the amount of refrigerant circulation in the refrigerant circuit increases, and the refrigerant flows into the heat absorber. The amount increases, and as a result, the temperature of the heat absorber can be lowered. As a result, the effective range of the dehumidifying and heating mode with respect to the environmental conditions can be further expanded, and the dehumidifying and heating air conditioning in the vehicle compartment in the dehumidifying and heating mode can be smoothly realized in a wider range of the environmental conditions.

請求項6の発明によれば、上記各発明に加えて制御手段が、圧縮機の回転数を制御上限値とし、且つ、室外膨張弁の弁開度を制御上限値としても、放熱器の温度が低く、且つ、吸熱器の温度も低い場合、室外送風機の風量を増加させるようにしたので、環境条件により圧縮機の回転数を制御上限値とし、且つ、室外膨張弁の弁開度を制御上限値としても、放熱器の温度が低く、且つ、吸熱器の温度も低くなり、圧縮機や室外膨張弁では放熱器の温度と吸熱器の温度を制御できなくなったとき、制御手段は室外送風機の風量を増加させる。   According to the invention of claim 6, in addition to each of the above inventions, the control means can set the temperature of the radiator even if the rotational speed of the compressor is set as the control upper limit value and the valve opening degree of the outdoor expansion valve is set as the control upper limit value. Is low and the temperature of the heat absorber is low, the air volume of the outdoor blower is increased. Therefore, the rotational speed of the compressor is set to the upper control limit according to the environmental conditions, and the valve opening degree of the outdoor expansion valve is controlled. As the upper limit, when the temperature of the radiator is low and the temperature of the heat absorber becomes low, and the compressor and the outdoor expansion valve cannot control the temperature of the radiator and the temperature of the heat absorber, the control means is the outdoor fan. Increase airflow.

室外送風機の風量が増加すると、室外熱交換器における吸熱量が増加するので、先ず放熱器の温度を上げることができる。また、このとき放熱器の圧力(高圧)も上がるので、これを維持するために圧縮機の回転数は低下することになり、冷媒回路内の冷媒循環量が減少し、吸熱器への冷媒流入量も減少し、結果として吸熱器の温度も上げることができるようになる。これにより、環境条件に対する除湿暖房モードの有効範囲を更に拡大し、環境条件のより広い範囲で除湿暖房モードによる車室内の除湿暖房空調を円滑に実現することができるようになる。   When the air volume of the outdoor blower increases, the heat absorption amount in the outdoor heat exchanger increases, so that the temperature of the radiator can be raised first. In addition, since the pressure (high pressure) of the radiator also increases at this time, the rotation speed of the compressor decreases to maintain this, and the amount of refrigerant circulating in the refrigerant circuit decreases, and the refrigerant flows into the heat absorber. As a result, the temperature of the heat absorber can be increased. As a result, the effective range of the dehumidifying and heating mode with respect to the environmental conditions can be further expanded, and the dehumidifying and heating air conditioning in the vehicle compartment in the dehumidifying and heating mode can be smoothly realized in a wider range of the environmental conditions.

請求項7の発明によれば、上記各発明に加えて制御手段が、圧縮機の回転数を制御下限値とし、且つ、室外膨張弁の弁開度を制御上限値としても、放熱器の温度が高く、且つ、吸熱器の温度が低い場合、又は、圧縮機の回転数を制御上限値とし、且つ、室外膨張弁の弁開度を制御下限値としても、放熱器の温度が低く、且つ、吸熱器の温度が高い場合、除湿暖房モードは不成立として室外送風機の風量減少/増加制御を実行せず、運転モードを他のモードに切り換えるので、室外送風機の風量減少/増加制御を行っても除湿暖房モードが継続できない状況では他の運転モードに切り換えて車室内の空調を支障無く継続することができるようになる。   According to the invention of claim 7, in addition to each of the above inventions, the control means can set the temperature of the radiator even if the rotation speed of the compressor is set as the control lower limit value and the valve opening degree of the outdoor expansion valve is set as the control upper limit value. Is high and the temperature of the heat absorber is low, or the temperature of the radiator is low even if the rotational speed of the compressor is the control upper limit value and the valve opening of the outdoor expansion valve is the control lower limit value, and When the temperature of the heat absorber is high, the dehumidifying heating mode is not established, and the air volume reduction / increase control of the outdoor fan is not executed, and the operation mode is switched to another mode. In a situation where the dehumidifying and heating mode cannot be continued, the operation mode can be switched to another operation mode and the air conditioning in the passenger compartment can be continued without any trouble.

以上の発明において、請求項8の発明の如く制御手段が、動作状態の過渡期には前記室外送風機の風量減少/増加制御を実行せず、又は、室外送風機の風量を最大とすることにより、起動初期や除湿暖房モードへの切り換わり直後等の過渡期には室外送風機の風量減少/増加制御を禁止して、早期に安定状態に移行させることができるようになる。   In the above invention, the control means as in the invention of claim 8 does not execute the air volume reduction / increase control of the outdoor fan in the transitional period of the operation state, or maximizes the air volume of the outdoor fan, In the transition period such as the initial stage of startup or immediately after switching to the dehumidifying and heating mode, the air volume reduction / increase control of the outdoor blower is prohibited, and the stable state can be shifted to an early stage.

この場合、請求項9の発明の如く制御手段が、外気温度、目標放熱器温度、目標吸熱器温度、空気流通路に流入した空気の質量風量、車室内温度、車室内湿度、のうちの何れか、又は、それらの組み合わせ、若しくは、それらの全てに基づき、過渡期における室外送風機の風量を決定するようにすれば、過渡期においても環境条件に応じて適切な風量を室外熱交換器に供給することが可能となる。   In this case, as in the ninth aspect of the invention, the control means is any one of the outside air temperature, the target radiator temperature, the target heat absorber temperature, the mass air volume of the air flowing into the air flow passage, the passenger compartment temperature, and the passenger compartment humidity. If the air flow rate of the outdoor blower during the transition period is determined based on these, or a combination thereof, or all of them, an appropriate air volume can be supplied to the outdoor heat exchanger according to the environmental conditions even during the transition period. It becomes possible to do.

また、請求項10の発明の如く制御手段が、車速が高い場合、室外送風機の風量を減少させ、若しくは、当該室外送風機を停止させることにより、走行風で賄われる場合に不必要な室外送風機の運転を解消することが可能となる。   In addition, when the vehicle speed is high, the control means as in the invention of claim 10 reduces the air volume of the outdoor blower or stops the outdoor blower to stop the outdoor blower so that it is unnecessary for the outdoor blower. It becomes possible to eliminate driving.

更に、請求項11の発明の如く室外熱交換器への走行風の流入を阻止するグリルシャッタを備えている場合には、制御手段が、グリルシャッタを閉じ、又は、グリルシャッタの開度により走行風の流入を制限した状態で、前記室外送風機の風量減少/増加制御を実行するようにすれば、走行中における室外送風機による放熱器温度と吸熱器温度の制御性を向上させることが可能となるものである。   Further, in the case where the grill shutter for preventing the inflow of running air to the outdoor heat exchanger is provided as in the invention of claim 11, the control means closes the grill shutter or runs by the opening degree of the grill shutter. If the air volume reduction / increase control of the outdoor blower is executed in a state where the inflow of the wind is restricted, it becomes possible to improve the controllability of the radiator temperature and the heat sink temperature by the outdoor blower during traveling. Is.

本発明を適用した一実施形態としての車両用空気調和装置の構成図である。It is a lineblock diagram of the air harmony device for vehicles as one embodiment to which the present invention is applied. 図1の車両用空気調和装置のコントローラの電気回路のブロック図である。It is a block diagram of the electric circuit of the controller of the vehicle air conditioner of FIG. 図2のコントローラの除湿暖房モードにおける圧縮機制御に関する制御ブロック図である。It is a control block diagram regarding the compressor control in the dehumidification heating mode of the controller of FIG. 図2のコントローラの除湿暖房モードにおける室外膨張弁制御に関する制御ブロック図である。It is a control block diagram regarding the outdoor expansion valve control in the dehumidification heating mode of the controller of FIG. 図2のコントローラの除湿暖房モードにおける室外送風機制御のフローチャートである。It is a flowchart of the outdoor fan control in the dehumidification heating mode of the controller of FIG. 図5の除湿暖房状態の判定テーブルを説明する図である。It is a figure explaining the determination table of the dehumidification heating state of FIG. 図2のコントローラの除湿暖房モードにおいて、放熱器温度(高圧)が収束しているときの室外送風機制御に関する制御ブロック図の一例である。FIG. 3 is an example of a control block diagram related to outdoor fan control when the radiator temperature (high pressure) is converged in the dehumidifying and heating mode of the controller of FIG. 2. 図7の制御における各機器のタイミングチャートである。It is a timing chart of each apparatus in the control of FIG. 図7の室外送風機制御に関する制御ブロック図の他の例である。It is another example of the control block diagram regarding the outdoor fan control of FIG. 図2のコントローラの除湿暖房モードにおいて、吸熱器温度が収束しているときの室外送風機制御に関する制御ブロック図の一例である。It is an example of the control block diagram regarding outdoor fan control when the heat absorber temperature has converged in the dehumidifying and heating mode of the controller of FIG. 図10の制御における各機器のタイミングチャートである。It is a timing chart of each apparatus in the control of FIG. 図10室外送風機制御に関する制御ブロック図の他の例である。10 is another example of a control block diagram relating to outdoor fan control. 図2のコントローラの除湿暖房モードにおける過渡期の室外送風機制御を説明する図である。It is a figure explaining the outdoor fan control of the transition period in the dehumidification heating mode of the controller of FIG.

以下、本発明の実施の形態について、図面に基づき詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の車両用空気調和装置1の一実施例の構成図を示している。この場合、本発明を適用する実施例の車両は、エンジン(内燃機関)を有さない電気自動車(EV)であって、バッテリに充電された電力で走行用の電動モータを駆動して走行するものであり(何れも図示せず)、本発明の車両用空気調和装置1もバッテリの電力で駆動されるものとする。   FIG. 1 shows a block diagram of an embodiment of a vehicle air conditioner 1 of the present invention. In this case, the vehicle of the embodiment to which the present invention is applied is an electric vehicle (EV) that does not have an engine (internal combustion engine), and travels by driving an electric motor for traveling with electric power charged in a battery. The vehicle air conditioner 1 of the present invention is also driven by battery power.

即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路を用いたヒートポンプ運転により暖房を行い、更に、除湿暖房や除湿冷房、冷房等の各運転モードを選択的に実行するものである。尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明は有効である。更には、エンジンで走行する通常の自動車にも本発明は適用可能である。   That is, the vehicle air conditioner 1 of the embodiment performs heating by a heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat, and further operates in each operation mode such as dehumidifying heating, dehumidifying cooling, and cooling. Is selectively executed. The present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling. Furthermore, the present invention is also applicable to a normal automobile that runs on an engine.

実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮して昇圧する電動式の圧縮機2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられて圧縮機2から吐出された高温高圧の冷媒を車室内に放熱させる放熱器4と、暖房時に冷媒を減圧膨張させる電子膨張弁から成る室外膨張弁(ECCV)6と、冷房時には冷媒を放熱させる放熱器として機能し、暖房時には冷媒を吸熱させる蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電子膨張弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒を吸熱させる吸熱器9と、吸熱器9における蒸発能力を調整する蒸発能力制御弁11と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。   An air conditioner 1 for a vehicle according to an embodiment performs air conditioning (heating, cooling, dehumidification, and ventilation) in a passenger compartment of an electric vehicle, and an electric compressor 2 that compresses and boosts a refrigerant. A radiator 4 provided in the air flow passage 3 of the HVAC unit 10 through which air in the passenger compartment is circulated to dissipate the high-temperature and high-pressure refrigerant discharged from the compressor 2 into the passenger compartment, and the refrigerant is decompressed and expanded during heating. The outdoor expansion valve (ECCV) 6 composed of an electronic expansion valve functions as a radiator that radiates the refrigerant during cooling, and exchanges heat between the refrigerant and the outside air so as to function as an evaporator that absorbs the refrigerant during heating. An outdoor heat exchanger 7, an indoor expansion valve 8 composed of an electronic expansion valve that decompresses and expands the refrigerant, a heat absorber 9 that is provided in the air flow passage 3 and absorbs the refrigerant from outside the vehicle compartment during cooling and dehumidification, Steam in the heat absorber 9 Evaporation capacity control valve 11 for adjusting the capacity, the accumulator 12 and the like are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed.

尚、室外熱交換器7には、車両の停止時等の外気を室外熱交換器7に通風して当該外気と冷媒とを熱交換させるための室外送風機15が設けられている。また、図中24はグリルシャッタである。このグリルシャッタ24は閉じられると、走行風が室外熱交換器7に流入することが阻止される。   The outdoor heat exchanger 7 is provided with an outdoor blower 15 for passing outside air when the vehicle is stopped or the like to the outdoor heat exchanger 7 to exchange heat between the outside air and the refrigerant. In the figure, reference numeral 24 denotes a grill shutter. When this grille shutter 24 is closed, the traveling wind is prevented from flowing into the outdoor heat exchanger 7.

また、室外熱交換器7は冷媒下流側にレシーバタンク部14と過冷却部16を順次有し、室外熱交換器7から出た冷媒配管13Aは冷房時に開放される電磁弁(開閉弁)17を介してレシーバタンク部14に接続され、過冷却部16の出口が逆止弁18を介して室内膨張弁8に接続されている。尚、レシーバタンク部14及び過冷却部16は構造的に室外熱交換器7の一部を構成しており、逆止弁18は室内膨張弁8側が順方向とされている。   The outdoor heat exchanger 7 has a receiver tank section 14 and a supercooling section 16 in order on the refrigerant downstream side, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is an electromagnetic valve (open / close valve) 17 that is opened during cooling. The outlet of the supercooling unit 16 is connected to the indoor expansion valve 8 via a check valve 18. The receiver tank section 14 and the supercooling section 16 structurally constitute a part of the outdoor heat exchanger 7, and the check valve 18 has a forward direction on the indoor expansion valve 8 side.

また、逆止弁18と室内膨張弁8間の冷媒配管13Bは、吸熱器9の出口側に位置する蒸発能力制御弁11を出た冷媒配管13Cと熱交換関係に設けられ、両者で内部熱交換器19を構成している。これにより、冷媒配管13Bを経て室内膨張弁8に流入する冷媒は、吸熱器9を出て蒸発能力制御弁11を経た低温の冷媒により冷却(過冷却)される構成とされている。   Further, the refrigerant pipe 13B between the check valve 18 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C exiting the evaporation capacity control valve 11 located on the outlet side of the heat absorber 9, and internal heat is generated by both. The exchanger 19 is configured. Thus, the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that has exited the heat absorber 9 and passed through the evaporation capacity control valve 11.

また、室外熱交換器7から出た冷媒配管13Aは分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁(開閉弁)21を介して内部熱交換器19の下流側における冷媒配管13Cに連通接続されている。更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6の手前で分岐しており、この分岐した冷媒配管13Fは、除湿時に開放される電磁弁(開閉弁)22を介して逆止弁18の下流側の冷媒配管13Bに連通接続されている。   Further, the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched, and this branched refrigerant pipe 13D is downstream of the internal heat exchanger 19 via an electromagnetic valve (open / close valve) 21 that is opened during heating. The refrigerant pipe 13C is connected in communication. Further, the refrigerant pipe 13E on the outlet side of the radiator 4 is branched before the outdoor expansion valve 6, and this branched refrigerant pipe 13F is non-returned via an electromagnetic valve (open / close valve) 22 that is opened during dehumidification. The refrigerant pipe 13B on the downstream side of the valve 18 is connected in communication.

また、吸熱器9の空気上流側における空気流通路3には、内気吸込口と外気吸込口の各吸込口(図1では代表して吸込口25で示す)が形成されており、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環モード)と、車室外の空気である外気(外気導入モード)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。   Further, in the air flow passage 3 on the air upstream side of the heat sink 9, each of the inside air suction port and the outside air suction port (represented by the suction port 25 in FIG. 1) is formed. 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) which is air inside the passenger compartment and the outside air (outside air introduction mode) which is outside the passenger compartment. Yes. Furthermore, an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.

また、図1において23は実施例の車両用空気調和装置1に設けられた補助加熱手段としての熱媒体循環回路を示している。この熱媒体循環回路23は循環手段を構成する循環ポンプ30と、熱媒体加熱電気ヒータ35と、空気流通路3の空気の流れに対して、放熱器4の空気上流側となる空気流通路3内に設けられた熱媒体−空気熱交換器40とを備え、これらが熱媒体配管23Aにより順次環状に接続されている。尚、この熱媒体循環回路23内で循環される熱媒体としては、例えば水、HFO−1234yfのような冷媒、クーラント等が採用される。   Moreover, in FIG. 1, 23 has shown the heat-medium circulation circuit as an auxiliary | assistant heating means provided in the air conditioning apparatus 1 for vehicles of the Example. The heat medium circulation circuit 23 includes a circulation pump 30 that constitutes a circulation means, a heat medium heating electric heater 35, and an air flow passage 3 on the upstream side of the radiator 4 with respect to the air flow in the air flow passage 3. The heat medium-air heat exchanger 40 provided in the inside is provided, and these are sequentially connected in an annular shape by the heat medium pipe 23A. As the heat medium circulated in the heat medium circuit 23, for example, water, a refrigerant such as HFO-1234yf, a coolant, or the like is employed.

そして、循環ポンプ30が運転され、熱媒体加熱電気ヒータ35に通電されて発熱すると、この熱媒体加熱電気ヒータ35により加熱された熱媒体が熱媒体−空気熱交換器40に循環されるよう構成されている。即ち、この熱交換器循環回路23の熱媒体−空気熱交換器40が所謂ヒータコアとなり、車室内の暖房を補完する。係る熱媒体循環回路23を採用することで、搭乗者の電気的な安全性を向上させている。   When the circulation pump 30 is operated and the heat medium heating electric heater 35 is energized to generate heat, the heat medium heated by the heat medium heating electric heater 35 is circulated to the heat medium-air heat exchanger 40. Has been. That is, the heat medium-air heat exchanger 40 of the heat exchanger circulation circuit 23 serves as a so-called heater core, and complements heating in the passenger compartment. By adopting such a heat medium circulation circuit 23, the passenger's electrical safety is improved.

また、熱媒体−空気熱交換器40及び放熱器4の空気上流側における空気流通路3内には、内気や外気の放熱器4への流通度合いを調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、フット、ベント、デフの各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口から空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。   An air mix damper 28 is provided in the air flow passage 3 on the air upstream side of the heat medium-air heat exchanger 40 and the radiator 4 to adjust the degree of flow of inside air and outside air to the radiator 4. . Further, in the air flow passage 3 on the downstream side of the radiator 4, foot, vent, and differential air outlets (represented by the air outlet 29 in FIG. 1) are formed. Is provided with a blower outlet switching damper 31 for switching and controlling the blowing of air from each of the blowout ports.

次に、図2において32はマイクロコンピュータから構成された制御手段としてのコントローラ(ECU)であり、このコントローラ32の入力には車両の外気温度を検出する外気温度センサ33と、車両の外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力を検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒圧力を検出する吸込圧力センサ44と、放熱器4の温度(放熱器4自体の温度、又は、放熱器4にて加熱された空気の温度)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器4内、又は、放熱器4を出た冷媒の圧力)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9自体、又は、吸熱器9にて冷却された空気の温度)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、温度や運転モードの切り換えを設定するための空調操作部53と、室外熱交換器7の温度を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力を検出する室外熱交換器圧力センサ56の各出力が接続されている。 Next, reference numeral 32 in FIG. 2 denotes a controller (ECU) as a control means composed of a microcomputer. The input of the controller 32 is an outside air temperature sensor 33 for detecting the outside air temperature of the vehicle, and the outside air humidity of the vehicle. An outside air humidity sensor 34 to detect, an HVAC suction temperature sensor 36 to detect the temperature sucked into the air flow passage 3 from the suction port 25, an inside air temperature sensor 37 to detect the temperature of the air (inside air) in the vehicle interior, and the vehicle interior The inside air humidity sensor 38 that detects the humidity of the air in the vehicle, the indoor CO 2 concentration sensor 39 that detects the carbon dioxide concentration in the vehicle interior, and the blowout temperature sensor 41 that detects the temperature of the air blown from the blowout port 29 into the vehicle interior. A discharge pressure sensor 42 for detecting the discharge refrigerant pressure of the compressor 2, a discharge temperature sensor 43 for detecting the discharge refrigerant temperature of the compressor 2, and a compression A suction pressure sensor 44 that detects the suction refrigerant pressure 2, a radiator temperature sensor 46 that detects the temperature of the radiator 4 (the temperature of the radiator 4 itself, or the temperature of the air heated by the radiator 4), and The radiator pressure sensor 47 that detects the refrigerant pressure of the radiator 4 (inside the radiator 4 or the pressure of the refrigerant that has exited the radiator 4) and the temperature of the heat absorber 9 (the heat absorber 9 itself or the heat absorber) And a heat absorber pressure sensor for detecting the refrigerant pressure of the heat absorber 9 (the pressure in the heat absorber 9 or the refrigerant discharged from the heat absorber 9). A sensor 49, a photosensor type solar radiation sensor 51 for detecting the amount of solar radiation in the passenger compartment, a vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, and switching of temperature and operation mode are set. For controlling the temperature of the air conditioning operation unit 53 and the outdoor heat exchanger 7 The outputs of the outdoor heat exchanger temperature sensor 54 for detecting the refrigerant and the outdoor heat exchanger pressure sensor 56 for detecting the refrigerant pressure of the outdoor heat exchanger 7 are connected.

また、コントローラ32の入力には更に、熱媒体循環回路23の熱媒体加熱電気ヒータ34の温度を検出する熱媒体加熱電気ヒータ温度センサ50と、熱媒体−空気熱交換器40の温度を検出する熱媒体−空気熱交換器温度センサ55の各出力も接続されている。   Further, the input of the controller 32 further detects the temperature of the heat medium heating electric heater temperature sensor 50 for detecting the temperature of the heat medium heating electric heater 34 of the heat medium circulation circuit 23 and the temperature of the heat medium-air heat exchanger 40. Each output of the heat medium-air heat exchanger temperature sensor 55 is also connected.

一方、コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吸込口切換ダンパ31と、室外膨張弁6、室内膨張弁8と、各電磁弁22、17、21と、循環ポンプ30と、熱媒体加熱電気ヒータ35と、蒸発能力制御弁11と、グリルシャッタ24が接続されている。そして、コントローラ32は各センサの出力と空調操作部53にて入力された設定に基づいてこれらを制御する。   On the other hand, the output of the controller 32 includes the compressor 2, the outdoor fan 15, the indoor fan (blower fan) 27, the suction switching damper 26, the air mix damper 28, the suction port switching damper 31, and the outdoor expansion. The valve 6, the indoor expansion valve 8, the electromagnetic valves 22, 17, 21, the circulation pump 30, the heat medium heating electric heater 35, the evaporation capacity control valve 11, and the grill shutter 24 are connected. And the controller 32 controls these based on the output of each sensor, and the setting input in the air-conditioning operation part 53. FIG.

以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。コントローラ32は実施例では大きく分けて暖房モードと、除湿暖房モードと、除湿冷房モードと、冷房モードの各運転モードを切り換えて実行する。先ず、各運転モードにおける冷媒の流れについて説明する。   Next, the operation of the vehicle air conditioner 1 having the above-described configuration will be described. In the embodiment, the controller 32 is roughly divided into a heating mode, a dehumidifying / heating mode, a dehumidifying / cooling mode, and a cooling mode. First, the refrigerant flow in each operation mode will be described.

(1)暖房モード
コントローラ32により或いは空調操作部53へのマニュアル操作により暖房モードが選択されると、コントローラ32は電磁弁21を開放し、電磁弁17、電磁弁22を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が熱媒体−空気熱交換器40及び放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は熱媒体−空気熱交換器40により加熱された後(熱媒体循環回路23が作動している場合)、放熱器4内の高温冷媒により加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
(1) Heating mode When the heating mode is selected by the controller 32 or by manual operation to the air conditioning operation unit 53, the controller 32 opens the electromagnetic valve 21, and closes the electromagnetic valve 17 and the electromagnetic valve 22. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state where the air blown out from the indoor blower 27 is passed through the heat medium-air heat exchanger 40 and the radiator 4. . Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the heat medium-air heat exchanger 40 (the heat medium circulation circuit 23 is activated). In the case), it is heated by the high-temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air, and is condensed and liquefied.

放熱器4内で液化した冷媒は冷媒配管13Eを経て室外膨張弁6に至り、そこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる(ヒートポンプ)。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13D及び電磁弁21を経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。熱媒体−空気熱交換器40や放熱器4にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。   The refrigerant liquefied in the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, is decompressed there, and then flows into the outdoor heat exchanger 7. The refrigerant that has flowed into the outdoor heat exchanger 7 evaporates, and pumps heat from the outside air that is ventilated by traveling or by the outdoor blower 15 (heat pump). Then, the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C through the refrigerant pipe 13D and the electromagnetic valve 21, and after being gas-liquid separated there, the gas refrigerant is sucked into the compressor 2. repeat. Since the air heated by the heat medium-air heat exchanger 40 or the radiator 4 is blown out from the air outlet 29, the vehicle interior is thereby heated.

コントローラ32は放熱器圧力センサ47が検出する放熱器4の冷媒圧力、即ち、放熱器圧力PCI(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、放熱器温度センサ46が検出する放熱器4の温度(放熱器温度TCI)に基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度SCを制御する。   The controller 32 controls the number of revolutions of the compressor 2 based on the refrigerant pressure of the radiator 4 detected by the radiator pressure sensor 47, that is, the radiator pressure PCI (high pressure of the refrigerant circuit R), and the radiator temperature sensor. The valve opening degree of the outdoor expansion valve 6 is controlled on the basis of the temperature of the radiator 4 (radiator temperature TCI) detected by 46, and the supercooling degree SC of the refrigerant at the outlet of the radiator 4 is controlled.

(2)除湿暖房モード
次に、除湿暖房モードでは、コントローラ32は上記暖房モードの状態において電磁弁22を開放する。これにより、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部が分流され、電磁弁22を経て冷媒配管13F及び13Bより内部熱交換器19を経て室内膨張弁8に至るようになる。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
(2) Dehumidifying heating mode Next, in the dehumidifying heating mode, the controller 32 opens the electromagnetic valve 22 in the heating mode. As a result, a part of the condensed refrigerant flowing through the refrigerant pipe 13E via the radiator 4 is diverted to reach the indoor expansion valve 8 via the electromagnetic valve 22 and the refrigerant pipes 13F and 13B via the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.

吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cにて冷媒配管13Dからの冷媒と合流した後、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。   The refrigerant evaporated in the heat absorber 9 merges with the refrigerant from the refrigerant pipe 13D in the refrigerant pipe 13C through the evaporation capacity control valve 11 and the internal heat exchanger 19, and then repeats circulation sucked into the compressor 2 through the accumulator 12. . Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed.

コントローラ32は放熱器圧力センサ47が検出する放熱器圧力PCI(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて室外膨張弁6の弁開度を制御する。   The controller 32 controls the rotational speed of the compressor 2 based on the radiator pressure PCI (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47 and the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48. The valve opening degree of the outdoor expansion valve 6 is controlled based on the (heat absorber temperature Te).

図3は除湿暖房モード(前記暖房モードも同様)における圧縮機2の目標回転数(圧縮機目標回転数)TGNChを決定するコントローラ32の制御ブロック図である。コントローラ32のF/F(フィードフォワード)操作量演算部58は外気温度センサ33から得られる外気温度Tamと、吸熱器9の温度の目標値である目標吸熱器温度TEOと、空気流通路3に流入した空気の質量風量Gaと、放熱器4の出口における過冷却度SCの目標値である目標過冷却度TGSCと、放熱器4の温度の目標値である目標放熱器温度TCOと、放熱器4の圧力の目標値である目標放熱器圧力PCOに基づいて圧縮機目標回転数のF/F操作量TGNChffを演算する。   FIG. 3 is a control block diagram of the controller 32 for determining the target rotational speed (compressor target rotational speed) TGNCh of the compressor 2 in the dehumidifying and heating mode (the same applies to the heating mode). An F / F (feed forward) manipulated variable calculation unit 58 of the controller 32 is provided in the outside air temperature Tam obtained from the outside air temperature sensor 33, the target heat absorber temperature TEO that is the target value of the heat absorber 9, and the air flow passage 3. The mass air volume Ga of the inflowed air, the target supercooling degree TGSC that is the target value of the supercooling degree SC at the outlet of the radiator 4, the target radiator temperature TCO that is the target value of the temperature of the radiator 4, and the radiator The F / F manipulated variable TGNChff of the compressor target rotational speed is calculated based on the target radiator pressure PCO that is the target value of the pressure of 4.

前記目標放熱器圧力PCOは上記目標過冷却度TGSCと目標放熱器温度TCOに基づいて目標値演算部59が演算する。更に、F/B(フィードバック)操作量演算部60はこの目標放熱器圧力PCOと放熱器4の冷媒圧力である放熱器圧力PCIに基づいて圧縮機目標回転数のF/B操作量TGNChfbを演算する。そして、F/F操作量演算部58が演算したF/F操作量TGNCnffとF/B操作量演算部60が演算したTGNChfbは加算器61で加算され、リミット設定部62で制御上限値と制御下限値のリミットが付けられた後、圧縮機目標回転数TGNChとして決定される。除湿暖房モード(前記暖房モードも同様)においては、コントローラ32はこの圧縮機目標回転数TGNChに基づいて圧縮機2の回転数を制御する。   The target radiator pressure PCO is calculated by the target value calculator 59 based on the target subcooling degree TGSC and the target radiator temperature TCO. Further, the F / B (feedback) manipulated variable calculator 60 calculates the F / B manipulated variable TGNChfb of the compressor target rotational speed based on the target radiator pressure PCO and the radiator pressure PCI that is the refrigerant pressure of the radiator 4. To do. The F / F manipulated variable TGNCnff computed by the F / F manipulated variable computing unit 58 and the TGNChfb computed by the F / B manipulated variable computing unit 60 are added by the adder 61, and the control upper limit value and the control are controlled by the limit setting unit 62. After the lower limit is set, it is determined as the compressor target rotational speed TGNCh. In the dehumidifying and heating mode (the heating mode is the same), the controller 32 controls the rotation speed of the compressor 2 based on the compressor target rotation speed TGNCh.

次に、図4は除湿暖房モードにおける室外膨張弁6の目標開度(室外膨張弁目標開度)TGECCVteを決定するコントローラ32の制御ブロック図である。コントローラ32のF/F操作量演算部65は、吸熱器9の目標吸熱器温度TEOと、目標放熱器温度TCOと、空気の質量風量Gaと、外気温度Tamに基づいて室外膨張弁目標開度のF/F操作量TGECCVteffを演算する。   Next, FIG. 4 is a control block diagram of the controller 32 for determining the target opening degree (outdoor expansion valve target opening degree) TGECCVte of the outdoor expansion valve 6 in the dehumidifying and heating mode. The F / F manipulated variable calculation unit 65 of the controller 32 is based on the target heat absorber temperature TEO of the heat absorber 9, the target heat radiator temperature TCO, the air mass air volume Ga, and the outdoor air temperature Tam, and the outdoor expansion valve target opening degree. F / F manipulated variable TGECCVteff is calculated.

また、F/B操作量演算部63は、目標吸熱器温度TEOと吸熱器温度Teに基づいて室外膨張弁目標開度のF/B操作量TGECCVtefbを演算する。そして、F/F操作量演算部65が演算したF/F操作量TGECCVteffとF/B操作量演算部63で演算されたF/B操作量TGECCVtefbは加算器66で加算され、リミット設定部67で制御上限値と制御下限値のリミットが付けられた後、室外膨張弁目標開度TGECCVteとして決定される。除湿暖房モードにおいては、コントローラ32はこの室外膨張弁目標開度TGECCVteに基づいて室外膨張弁6の弁開度を制御する。   Further, the F / B manipulated variable calculator 63 calculates the F / B manipulated variable TGECCVtefb of the outdoor expansion valve target opening based on the target heat absorber temperature TEO and the heat absorber temperature Te. Then, the F / F manipulated variable TGECCVteff computed by the F / F manipulated variable computing unit 65 and the F / B manipulated variable TGECCVtefb computed by the F / B manipulated variable computing unit 63 are added by an adder 66 and a limit setting unit 67 is added. After the control upper limit value and the control lower limit value are set, the outdoor expansion valve target opening degree TGECCVte is determined. In the dehumidifying and heating mode, the controller 32 controls the valve opening degree of the outdoor expansion valve 6 based on the outdoor expansion valve target opening degree TGECCVte.

(3)除湿冷房モード
次に、除湿冷房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21、電磁弁22を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が熱媒体−空気熱交換器40及び放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され(熱媒体循環回路40は停止)、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
(3) Dehumidifying and Cooling Mode Next, in the dehumidifying and cooling mode, the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21 and the electromagnetic valve 22. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state where the air blown out from the indoor blower 27 is passed through the heat medium-air heat exchanger 40 and the radiator 4. . Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4 (the heat medium circulation circuit 40 is stopped). The refrigerant in 4 is deprived of heat by the air and cooled to condensate.

放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバタンク部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。   The refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver tank unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.

室外熱交換器7の過冷却部16を出た冷媒は逆止弁18を経て冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。   The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B through the check valve 18, and reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.

吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱(暖房時よりも放熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。   The refrigerant evaporated in the heat absorber 9 passes through the evaporation capacity control valve 11 and the internal heat exchanger 19, reaches the accumulator 12 through the refrigerant pipe 13 </ b> C, and repeats circulation sucked into the compressor 2 through the refrigerant pipe 13 </ b> C. The air cooled and dehumidified by the heat absorber 9 is reheated (having a lower heat dissipation capacity than that during heating) in the process of passing through the radiator 4, thereby dehumidifying and cooling the vehicle interior. .

コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度に基づいて圧縮機2の回転数を制御すると共に、前述した冷媒回路Rの高圧圧力(放熱器圧力PCI)に基づいて室外膨張弁6の弁開度を制御し、放熱器4の冷媒圧力(放熱器圧力PCI)を制御する。   The controller 32 controls the rotational speed of the compressor 2 based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48, and also uses the outdoor expansion valve based on the high pressure (radiator pressure PCI) of the refrigerant circuit R described above. 6 is controlled to control the refrigerant pressure of the radiator 4 (radiator pressure PCI).

(4)冷房モード
次に、冷房モードでは、コントローラ32は上記除湿冷房モードの状態において室外膨張弁6を全開(弁開度を制御上限)とし、エアミックスダンパ28は放熱器4に空気が通風されない状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されないので、ここは通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至る。
(4) Cooling Mode Next, in the cooling mode, the controller 32 fully opens the outdoor expansion valve 6 (the valve opening is the upper limit of control) in the dehumidifying and cooling mode state, and the air mix damper 28 allows air to flow to the radiator 4. It is assumed that it will not be done. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is not ventilated to the radiator 4, it only passes here, and the refrigerant exiting the radiator 4 reaches the outdoor expansion valve 6 via the refrigerant pipe 13E.

このとき室外膨張弁6は全開であるので冷媒はそのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバタンク部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。   At this time, since the outdoor expansion valve 6 is fully opened, the refrigerant flows into the outdoor heat exchanger 7 as it is, where it is cooled by air or by outside air ventilated by the outdoor blower 15 to be condensed and liquefied. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver tank unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.

室外熱交換器7の過冷却部16を出た冷媒は逆止弁18を経て冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。   The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B through the check valve 18, and reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled.

吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過すること無く吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房モードにおいては、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度Teに基づいて圧縮機2の回転数を制御する。そして、コントローラ32は、外気温度や目標吹出温度に応じて上記各運転モードを選択し、切り換えていくものである。   The refrigerant evaporated in the heat absorber 9 passes through the evaporation capacity control valve 11 and the internal heat exchanger 19, reaches the accumulator 12 through the refrigerant pipe 13 </ b> C, and repeats circulation sucked into the compressor 2 through the refrigerant pipe 13 </ b> C. The air that has been cooled and dehumidified by the heat absorber 9 is blown into the vehicle interior from the outlet 29 without passing through the radiator 4, thereby cooling the vehicle interior. In this cooling mode, the controller 32 controls the rotational speed of the compressor 2 based on the temperature Te of the heat absorber 9 detected by the heat absorber temperature sensor 48. And the controller 32 selects and switches each said operation mode according to outside temperature or target blowing temperature.

(5)除湿暖房モードにおける室外送風機15の制御
次に、図5〜図13を参照しながら、コントローラ32による前記除湿暖房モードにおける室外送風機15の制御について説明する。実施例でコントローラ32は、放熱器圧力センサ47が検出する放熱器圧力PCI(高圧)が目標放熱器圧力PCOに収束しているか否か、或いは、それより高いか低いかで、放熱器温度TCIが目標放熱器温度TCOに収束している(この状態を満足な状況と云う)か否か、或いは、それより高いか低いかを判定する。また、吸熱器温度センサ48が検出する吸熱器温度Teに基づき、吸熱器温度Teが目標吸熱器温度TEOに収束している(この状態を満足な状況と云う)か否か、或いは、それより高いか低いかを判定するものとする。
(5) Control of outdoor fan 15 in dehumidifying and heating mode Next, control of the outdoor fan 15 in the dehumidifying and heating mode by the controller 32 will be described with reference to FIGS. In the embodiment, the controller 32 determines whether or not the radiator pressure PCI (high pressure) detected by the radiator pressure sensor 47 has converged to the target radiator pressure PCO, or higher or lower. Is converged to the target radiator temperature TCO (this state is referred to as a satisfactory situation), or higher or lower than that. Further, based on the heat absorber temperature Te detected by the heat absorber temperature sensor 48, whether or not the heat absorber temperature Te has converged to the target heat absorber temperature TEO (this state is referred to as a satisfactory situation), or from that It shall be judged whether it is high or low.

コントローラ32は、図5のステップS1で各センサからのデータを読み込み、ステップS2で、現在の運転モードが除湿暖房モードであるか否か判断する。そして、現在の運転モードが除湿暖房モードであれば、ステップS3に進み、除湿暖房モードが安定しているか否か判断する。このとき、車両用空気調和装置1の起動直後である場合や、除湿暖房モードに切り換わった直後である等の過渡期であるとき、コントローラ32はステップS17に進んで室外送風機15の通常制御を実行する。この通常制御でコントローラ32は、後述する室外送風機15の風量減少/増加制御を実行せず、室外送風機15に印加する電圧を最大として風量を最大とする。これにより、起動初期や除湿暖房モードへの切り換わり直後等の過渡期に、早期に安定状態に移行させる。尚、このとき室外送風機15の風量を最大とするのでは無く、予め設定された印加電圧による所定の風量で制御するようにしてもよい。   The controller 32 reads data from each sensor in step S1 of FIG. 5, and determines whether or not the current operation mode is the dehumidifying heating mode in step S2. If the current operation mode is the dehumidifying and heating mode, the process proceeds to step S3 to determine whether or not the dehumidifying and heating mode is stable. At this time, when the vehicle air conditioner 1 is immediately after starting or during a transitional period such as immediately after switching to the dehumidifying and heating mode, the controller 32 proceeds to step S17 and performs normal control of the outdoor fan 15. Run. In this normal control, the controller 32 does not execute the air volume reduction / increase control of the outdoor blower 15 to be described later, and maximizes the air volume with the voltage applied to the outdoor blower 15 being maximized. Thereby, it is made to shift to a stable state at an early stage in a transition period such as the initial stage of startup or immediately after switching to the dehumidifying and heating mode. At this time, the air volume of the outdoor blower 15 may not be maximized, but may be controlled by a predetermined air volume based on a preset applied voltage.

一方、ステップS3で除湿暖房モードが安定した後である場合、コントローラ32はステップS4に進み、図6の除湿暖房状態の判定テーブルを参照して現在の除湿暖房状態を判定する。図6の除湿暖房状態の判定テーブルにおいてケースナンバー0は、放熱器温度TCI(PCI(高圧)から判断)と吸熱器温度Teが双方とも目標放熱器温度TCO及び目標吸熱器温度TEOに収束しており、且つ、圧縮機2の回転数と室外膨張弁6の弁開度が制御範囲内にある場合である。   On the other hand, when the dehumidifying and heating mode is stabilized in step S3, the controller 32 proceeds to step S4 and determines the current dehumidifying and heating state with reference to the determination table of the dehumidifying and heating state in FIG. In the determination table of the dehumidifying and heating state in FIG. 6, the case number 0 indicates that the radiator temperature TCI (determined from PCI (high pressure)) and the heat absorber temperature Te are both converged to the target radiator temperature TCO and the target heat absorber temperature TEO. And the rotational speed of the compressor 2 and the valve opening degree of the outdoor expansion valve 6 are within the control range.

図6のケースナンバー1は、放熱器温度TCIは目標放熱器温度TCOに収束しているが、吸熱器温度Teが目標吸熱器温度TEOより高く、且つ、圧縮機2の回転数は制御範囲内であるが、室外膨張弁6は閉方向に張り付いて弁開度が制御下限値となっている場合、ケースナンバー2は、放熱器温度TCIは目標放熱器温度TCOに収束しているが、吸熱器温度Teが目標吸熱器温度TEOより低く、且つ、圧縮機2の回転数は制御範囲内であるが、室外膨張弁6は開方向に張り付いて弁開度が制御上限値となっている場合である。これらは何れも室外膨張弁6の弁開度では吸熱器温度Teを制御できなくなっている場合である。   In case number 1 in FIG. 6, the radiator temperature TCI converges to the target radiator temperature TCO, but the heat absorber temperature Te is higher than the target heat absorber temperature TEO, and the rotation speed of the compressor 2 is within the control range. However, when the outdoor expansion valve 6 is stuck in the closing direction and the valve opening is the control lower limit value, the case number 2 is that the radiator temperature TCI converges to the target radiator temperature TCO. The endothermic temperature Te is lower than the target endothermic temperature TEO and the rotational speed of the compressor 2 is within the control range, but the outdoor expansion valve 6 sticks in the opening direction and the valve opening becomes the control upper limit value. This is the case. These are cases where the heat absorber temperature Te cannot be controlled by the valve opening degree of the outdoor expansion valve 6.

図6のケースナンバー3は、吸熱器温度Teは目標吸熱器温度TEOに収束しているが、放熱器温度TCIが目標放熱器温度TCOより高く、且つ、室外膨張弁6の弁開度は制御範囲内であるが、圧縮機2の回転数は制御下限値に張り付いている場合であり、ケースナンバー4は、吸熱器温度Teは目標吸熱器温度TEOに収束しているが、放熱器温度TCIが目標放熱器温度TCOより低く、且つ、室外膨張弁6の弁開度は制御範囲内であるが、圧縮機2の回転数は制御上限値に張り付いている場合である。これらは何れも圧縮機2の回転数では放熱器温度TCIを制御できなくなっている場合である。   In case number 3 in FIG. 6, the heat absorber temperature Te converges to the target heat absorber temperature TEO, but the radiator temperature TCI is higher than the target radiator temperature TCO, and the valve opening degree of the outdoor expansion valve 6 is controlled. Although it is within the range, the rotation speed of the compressor 2 is stuck to the control lower limit value. In case number 4, the heat absorber temperature Te converges to the target heat absorber temperature TEO, but the radiator temperature This is a case where the TCI is lower than the target radiator temperature TCO and the opening degree of the outdoor expansion valve 6 is within the control range, but the rotational speed of the compressor 2 is stuck to the control upper limit value. These are cases where the radiator temperature TCI cannot be controlled at the rotational speed of the compressor 2.

図6のケースナンバー5は、放熱器温度TCI及び吸熱器温度Teの双方が目標放熱器温度TCO及び目標吸熱器温度TEOより高く、且つ、圧縮機2の回転数は制御下限値に張り付き、室外膨張弁6の弁開度も閉方向に張り付いて制御下限値となっている場合であり、ケースナンバー6は、放熱器温度TCI及び吸熱器温度Teの双方が目標放熱器温度TCO及び目標吸熱器温度TEOより低く、且つ、圧縮機2の回転数は制御上限値に張り付き、室外膨張弁6の弁開度も開方向に張り付いて制御上限値となっている場合である。これらは何れも圧縮機2の回転数や室外膨張弁6の弁開度では放熱器温度TCIと吸熱器温度Teを制御できなくなっている場合である。   Case number 5 in FIG. 6 shows that both the radiator temperature TCI and the heat absorber temperature Te are higher than the target radiator temperature TCO and the target heat absorber temperature TEO, and the rotational speed of the compressor 2 sticks to the control lower limit value. In this case, the valve opening degree of the expansion valve 6 is stuck in the closing direction and becomes the control lower limit value. Case number 6 shows that both the radiator temperature TCI and the heat absorber temperature Te are the target radiator temperature TCO and the target heat absorption. This is a case where the temperature is lower than the chamber temperature TEO, the rotational speed of the compressor 2 sticks to the control upper limit value, and the valve opening degree of the outdoor expansion valve 6 sticks in the opening direction to the control upper limit value. These are cases where the radiator temperature TCI and the heat absorber temperature Te cannot be controlled by the rotational speed of the compressor 2 and the valve opening degree of the outdoor expansion valve 6.

図6のケースナンバー7は、放熱器温度TCIは目標放熱器温度TCOより高く、吸熱器温度Teは目標吸熱器温度TEOより低く、且つ、圧縮機2の回転数は制御下限値に張り付き、室外膨張弁6の弁開度は開方向に張り付いて制御上限値となっている場合であり、ケースナンバー8は、放熱器温度TCIは目標放熱器温度TCOより低く、吸熱器温度Teは目標吸熱器温度TEOより高く、且つ、圧縮機2の回転数は制御上限値に張り付き、室外膨張弁6の弁開度は閉方向に張り付いて制御下限値となっている場合である。これらも圧縮機2の回転数や室外膨張弁6の弁開度では放熱器温度TCIと吸熱器温度Teを制御できなくなっている場合である。   Case number 7 in FIG. 6 is that the radiator temperature TCI is higher than the target radiator temperature TCO, the heat absorber temperature Te is lower than the target heat absorber temperature TEO, and the rotational speed of the compressor 2 is stuck to the control lower limit value. The valve opening degree of the expansion valve 6 is sticking in the opening direction to reach the control upper limit value. In case number 8, the radiator temperature TCI is lower than the target radiator temperature TCO, and the heat absorber temperature Te is the target heat absorption. This is a case where the temperature is higher than the chamber temperature TEO, the rotational speed of the compressor 2 sticks to the control upper limit value, and the valve opening degree of the outdoor expansion valve 6 sticks in the closing direction to the control lower limit value. These are also cases where the radiator temperature TCI and the heat absorber temperature Te cannot be controlled by the rotational speed of the compressor 2 and the valve opening degree of the outdoor expansion valve 6.

コントローラ32は、ステップS4において放熱器圧力PCIと吸熱器温度Teに基づき、現在の除湿暖房状態が図6のどのケースに当てはまるか判断し、ケースナンバー0である場合、即ち、放熱器温度TCI及び吸熱器温度Teが双方とも目標放熱器温度TCO及び目標吸熱器温度TEOに収束しており、且つ、圧縮機2の回転数及び室外膨張弁6の弁開度が双方とも制御範囲内にある場合には、ステップS5、ステップS9、ステップS11、ステップS13、ステップS15からステップS17に進んで前述した室外送風機15の通常制御を実行する。   In step S4, the controller 32 determines which case in FIG. 6 the current dehumidifying heating state applies to based on the radiator pressure PCI and the heat absorber temperature Te. If the case number is 0, that is, the radiator temperature TCI and When both the heat absorber temperature Te converges to the target heat radiator temperature TCO and the target heat absorber temperature TEO, and both the rotation speed of the compressor 2 and the valve opening degree of the outdoor expansion valve 6 are within the control range. In step S5, step S9, step S11, step S13, step S15 to step S17, the normal control of the outdoor blower 15 described above is executed.

一方、現在の除湿暖房状態がケースナンバー1、又は、ケースナンバー2である場合、即ち、放熱器温度TCIは目標放熱器温度TCOに収束しているが、吸熱器温度Teが目標吸熱器温度TEOより高く、且つ、圧縮機2の回転数は制御範囲内であるが、室外膨張弁6は閉方向に張り付いて弁開度が制御下限値となっている場合、又は、放熱器温度TCIは目標放熱器温度TCOに収束しているが、吸熱器温度Teが目標吸熱器温度TEOより低く、且つ、圧縮機2の回転数は制御範囲内であるが、室外膨張弁6は開方向に張り付いて弁開度が制御上限値となっている場合、コントローラ32はステップS5からステップS6に進んで、図6のケースナンバー1、2に対応する欄の最下段に示す方式で吸熱器温度Teに基づき、室外送風機15の印加電圧である室外送風機電圧FANVout(風量)を制御する。   On the other hand, when the current dehumidifying and heating state is case number 1 or case number 2, that is, the radiator temperature TCI has converged to the target radiator temperature TCO, but the heat absorber temperature Te is the target heat absorber temperature TEO. It is higher and the rotation speed of the compressor 2 is within the control range, but the outdoor expansion valve 6 sticks in the closing direction and the valve opening is the control lower limit value, or the radiator temperature TCI is Although it has converged to the target radiator temperature TCO, the heat absorber temperature Te is lower than the target heat absorber temperature TEO, and the rotational speed of the compressor 2 is within the control range, but the outdoor expansion valve 6 is stretched in the opening direction. If the valve opening is the control upper limit value, the controller 32 proceeds from step S5 to step S6, and the heat absorber temperature Te is applied in the manner shown at the bottom of the column corresponding to case numbers 1 and 2 in FIG. Based on outdoor blower 5 is a applied voltage to control the outdoor blower voltage FANVout (air volume).

図7はこの場合の室外送風機15の制御ブロック図の一例を示しており、コントローラ32の室外送風機電圧補正部71は、吸熱器温度Teと目標吸熱器温度TEOの差(Te−TEO)に基づいて室外送風機電圧補正値FANVouthosを上限値FANVouthosHi(正の値。例えば10V)と下限値FANVouthosLo(負の値。例えば、−10V)の間で決定する。その方法は、差(Te−TEO)が大きい、即ち、吸熱器温度Teが高いときから0に低下するまでは室外送風機電圧補正値FANVouthosを下限値FANVouthosLoとし、差(Te−TEO)が0から更に負の値に低下するに従って所定の傾斜を有して室外送風機電圧補正値FANVouthosを上限値FANVouthosHiまで増大させていく。   FIG. 7 shows an example of a control block diagram of the outdoor blower 15 in this case, and the outdoor blower voltage correction unit 71 of the controller 32 is based on the difference (Te−TEO) between the heat absorber temperature Te and the target heat absorber temperature TEO. The outdoor fan voltage correction value FANVouthos is determined between an upper limit value FANVouthosHi (positive value, for example, 10V) and a lower limit value FANVouthosLo (negative value, for example, -10V). In this method, the difference (Te-TEO) is large, that is, the outdoor fan voltage correction value FANVouthos is set to the lower limit value FANVouthosLo from the time when the heat absorber temperature Te is high until it decreases to 0, and the difference (Te-TEO) is from 0. Further, the outdoor fan voltage correction value FANVouthos is increased to the upper limit value FANVouthosHi with a predetermined inclination as it decreases to a negative value.

差(Te−TEO)が小さい(負の値)、即ち、吸熱器温度Teが低いときから0に上昇するまでは室外送風機電圧補正値FANVouthosを上限値FANVouthosHiとし、差(Te−TEO)が0から更に上昇するに従って所定の傾斜を有して室外送風機電圧補正値FANVouthosを下限値FANVouthosLoまで低下させていくというものである。   The difference (Te-TEO) is small (a negative value), that is, the outdoor fan voltage correction value FANVouthos is set to the upper limit value FANVouthosHi until the heat absorber temperature Te rises to 0 and the difference (Te-TEO) is 0. The outdoor fan voltage correction value FANVouthos is lowered to the lower limit value FANVouthosLo with a predetermined inclination as it further rises.

このようにして室外送風機電圧補正部71で決定された室外送風機電圧補正値FANVouthosは、加算器72でベースとなる室外送風機電圧FANVoutbaseに加算され、リミット設定部73で制御上限値と制御下限値のリミットが付けられた後、室外送風機電圧FANVoutとして決定される。   The outdoor fan voltage correction value FANVouthos determined in this way by the outdoor fan voltage correction unit 71 is added to the base outdoor fan voltage FANVoutbase by the adder 72, and the control upper limit value and the control lower limit value are set by the limit setting unit 73. After the limit is set, it is determined as the outdoor fan voltage FANVout.

即ち、図6のケースナンバー1の如く吸熱器温度Teが目標吸熱器温度TEOより高い場合は、室外送風機電圧補正値FANVouthosが負の値でその絶対値が大きくなるので、室外送風機電圧FANVoutは低下し、風量が減少する。室外送風機15の風量が減少すると、室外熱交換器7での吸熱量が減少するので、放熱器温度TCIが低下する。同時に放熱器圧力PCIも低下するので、コントローラ32は放熱器圧力PCIを目標放熱器圧力PCOに維持するために圧縮機2の目標回転数TGNCh(図3)を上昇させる。これにより、冷媒回路R内の冷媒循環量が増大し、吸熱器9への冷媒流入量も増加するので、結果として吸熱器温度Teが下がることになる。   That is, when the heat absorber temperature Te is higher than the target heat absorber temperature TEO as in case number 1 in FIG. 6, the outdoor fan voltage correction value FANVouthos is a negative value and its absolute value increases, so the outdoor fan voltage FANVout decreases. However, the air volume decreases. When the air volume of the outdoor blower 15 decreases, the heat absorption amount in the outdoor heat exchanger 7 decreases, so that the radiator temperature TCI decreases. At the same time, since the radiator pressure PCI also decreases, the controller 32 increases the target rotational speed TGNCh (FIG. 3) of the compressor 2 in order to maintain the radiator pressure PCI at the target radiator pressure PCO. As a result, the amount of refrigerant circulating in the refrigerant circuit R increases and the amount of refrigerant flowing into the heat absorber 9 also increases. As a result, the heat absorber temperature Te decreases.

また、図6のケースナンバー2の如く吸熱器温度Teが目標吸熱器温度TEOより低い場合は、室外送風機電圧補正値FANVouthosが正の値で大きくなるので、室外送風機電圧FANVoutは上昇し、風量が増加する。室外送風機15の風量が増加すると、室外熱交換器7での吸熱量が増加するので、放熱器温度TCIが上昇する。同時に放熱器圧力PCIも上昇するので、コントローラ32は放熱器圧力PCIを目標放熱器圧力PCOに維持するために圧縮機2の目標回転数TGNCh(図3)を低下させる。これにより、冷媒回路R内の冷媒循環量が減少し、吸熱器9への冷媒流入量も減少するので、結果として吸熱器温度Teが上がることになる。   In addition, when the heat absorber temperature Te is lower than the target heat absorber temperature TEO as in case number 2 in FIG. 6, the outdoor fan voltage correction value FANVouthos becomes a positive value, so the outdoor fan voltage FANVout increases and the air volume increases. To increase. When the air volume of the outdoor blower 15 increases, the heat absorption amount in the outdoor heat exchanger 7 increases, so that the radiator temperature TCI increases. At the same time, since the radiator pressure PCI also increases, the controller 32 decreases the target rotational speed TGNCh (FIG. 3) of the compressor 2 in order to maintain the radiator pressure PCI at the target radiator pressure PCO. As a result, the amount of refrigerant circulating in the refrigerant circuit R decreases and the amount of refrigerant flowing into the heat absorber 9 also decreases. As a result, the heat absorber temperature Te increases.

図8は係る吸熱器温度Teに基づいた室外送風機15の風量減少/増加制御の様子を示している。この図において室外送風機通常制御の範囲は前述した過渡期を示している。除湿暖房モードが安定した後、放熱器圧力PCIが目標放熱器圧力PCOに収束している(即ち、放熱器温度TCIが目標放熱器温度TCOに収束している)ものの、吸熱器温度Teは目標吸熱器温度TEOより高く、且つ、圧縮機2の回転数は制御範囲内となっているものの、室外膨張弁6の弁開度は制御下限値に張り付いてしまった場合(所定時間判定する)、コントローラ32は室外送風機電圧FANVoutを低下させて風量を減少させる(室外送風機風量下げ制御)。また、放熱器圧力PCIが目標放熱器圧力PCOに収束している(即ち、放熱器温度TCIが目標放熱器温度TCOに収束している)ものの、吸熱器温度Teは目標吸熱器温度TEOより低く、且つ、圧縮機2の回転数は制御範囲内となっているものの、室外膨張弁6の弁開度は制御上限値に張り付いてしまった場合(所定時間判定する)、コントローラ32は室外送風機電圧FANVoutを上昇させて風量を増加させる(室外送風機風量上げ制御)。   FIG. 8 shows a state of the air volume reduction / increase control of the outdoor fan 15 based on the heat absorber temperature Te. In this figure, the range of the outdoor blower normal control indicates the transition period described above. After the dehumidifying heating mode is stabilized, the radiator pressure PCI has converged to the target radiator pressure PCO (that is, the radiator temperature TCI has converged to the target radiator temperature TCO), but the radiator temperature Te is the target. When the temperature of the outdoor expansion valve 6 is stuck to the control lower limit value although it is higher than the heat absorber temperature TEO and the rotational speed of the compressor 2 is within the control range (determined for a predetermined time) The controller 32 reduces the outdoor fan voltage FANVout to reduce the air volume (outdoor fan air volume lowering control). Further, although the radiator pressure PCI has converged to the target radiator pressure PCO (that is, the radiator temperature TCI has converged to the target radiator temperature TCO), the heat absorber temperature Te is lower than the target heat absorber temperature TEO. When the rotation speed of the compressor 2 is within the control range, but the valve opening degree of the outdoor expansion valve 6 is stuck to the control upper limit value (determined for a predetermined time), the controller 32 is used as the outdoor blower. The voltage FANVout is increased to increase the air volume (outdoor fan air volume increase control).

これらにより、環境条件に対する除湿暖房モードの有効範囲(守備範囲)が拡大し、環境条件の広い範囲で除湿暖房モードによる車室内の除湿暖房空調を円滑に実現することができるようになり、前述した内部サイクルモードを廃止することが可能となる。   As a result, the effective range (defense range) of the dehumidifying and heating mode with respect to the environmental conditions is expanded, and the dehumidifying and heating air conditioning in the vehicle interior in the dehumidifying and heating mode can be smoothly realized in a wide range of the environmental conditions. The internal cycle mode can be abolished.

ここで、図9は係るケースナンバー1又は2のときの室外送風機15の制御ブロック図の他の例を示している。この場合、吸熱器温度Teと目標吸熱器温度TEOの差(Te−TEO)が減算器76で算出され、この差(Te−TEO)が不感帯部77を介して増幅器78で増幅される。増幅された値には加算器79で前回値(1/Z)が加算される。即ち、この場合はフィードバック(F/B)制御となる。加算器79を経た値はリミット設定部81で制御上限値と制御下限値のリミットが付けられた後、室外送風機電圧補正値FANVouthosとなって減算器82でベースとなる室外送風機電圧FANVoutbaseから減算され、リミット設定部83で制御上限値と制御下限値のリミットが付けられた後、室外送風機電圧FANVoutとして決定される。   Here, FIG. 9 shows another example of a control block diagram of the outdoor blower 15 when the case number is 1 or 2. In this case, a difference (Te−TEO) between the heat absorber temperature Te and the target heat absorber temperature TEO is calculated by the subtractor 76, and this difference (Te−TEO) is amplified by the amplifier 78 via the dead zone 77. The previous value (1 / Z) is added by the adder 79 to the amplified value. That is, in this case, feedback (F / B) control is performed. The value after passing through the adder 79 is subjected to the limit of the control upper limit value and the control lower limit value by the limit setting unit 81, then becomes the outdoor fan voltage correction value FANVouthos and is subtracted from the base outdoor fan voltage FANVoutbase by the subtractor 82. After the limit of the control upper limit value and the control lower limit value is set by the limit setting unit 83, the outdoor blower voltage FANVout is determined.

即ち、吸熱器温度Teが目標吸熱器温度TEOより高い場合(ケースナンバー1)は、室外送風機電圧補正値FANVouthosが正の値で大きくなるので、室外送風機電圧FANVoutは低下し、風量が減少する。逆に、吸熱器温度Teが目標吸熱器温度TEOより低い場合(ケースナンバー2)は、室外送風機電圧補正値FANVouthosが負の値でその絶対値が大きくなるので、室外送風機電圧FANVoutは上昇し、風量が増加する。これにより、図7の場合と同様に環境条件に対する除湿暖房モードの有効範囲が拡大し、環境条件の広い範囲で除湿暖房モードによる車室内の除湿暖房空調を円滑に実現することができるようになる。   That is, when the heat absorber temperature Te is higher than the target heat absorber temperature TEO (case number 1), the outdoor fan voltage correction value FANVouthos increases with a positive value, so the outdoor fan voltage FANVout decreases and the air volume decreases. Conversely, when the heat absorber temperature Te is lower than the target heat absorber temperature TEO (case number 2), since the outdoor fan voltage correction value FANVouthos is a negative value and its absolute value increases, the outdoor fan voltage FANVout increases, The air volume increases. As a result, the effective range of the dehumidifying and heating mode with respect to the environmental condition is expanded as in the case of FIG. .

他方、現在の除湿暖房状態がケースナンバー3、又は、ケースナンバー4である場合、即ち、吸熱器温度Teは目標吸熱器温度TEOに収束しているが、放熱器温度TCIが目標放熱器温度TCOより高く、且つ、室外膨張弁6の弁開度は制御範囲内であるが、圧縮機2の回転数は制御下限値に張り付いている場合、又は、吸熱器温度Teは目標吸熱器温度TEOに収束しているが、放熱器温度TCIが目標放熱器温度TCOより低く、且つ、室外膨張弁6の弁開度は制御範囲内であるが、圧縮機2の回転数は制御上限値に張り付いている場合、コントローラ32はステップS5からステップS9、ステップS9からステップS10に進んで、図6のケースナンバー3、4に対応する欄の最下段に示す方式で放熱器圧力PCI(高圧)に基づき、室外送風機15の印加電圧である室外送風機電圧FANVout(風量)を制御する。   On the other hand, when the current dehumidifying and heating state is case number 3 or case number 4, that is, the heat absorber temperature Te has converged to the target heat absorber temperature TEO, but the heat radiator temperature TCI is equal to the target heat radiator temperature TCO. Higher and the opening degree of the outdoor expansion valve 6 is within the control range, but the rotation speed of the compressor 2 is stuck to the control lower limit value, or the heat absorber temperature Te is the target heat absorber temperature TEO. However, although the radiator temperature TCI is lower than the target radiator temperature TCO and the valve opening degree of the outdoor expansion valve 6 is within the control range, the rotation speed of the compressor 2 is set to the control upper limit value. If so, the controller 32 proceeds from step S5 to step S9 and from step S9 to step S10, and sets the radiator pressure PCI (high pressure) in the manner shown at the bottom of the column corresponding to case numbers 3 and 4 in FIG. Base Controls outdoor blower voltage FANVout (air volume) is the applied voltage of the outdoor blower 15.

図10はこの場合の室外送風機15の制御ブロック図の一例を示しており、コントローラ32のこの場合の室外送風機電圧補正部84は、目標放熱器圧力PCOと放熱器圧力PCIの差(PCO−PCI)に基づいて室外送風機電圧補正値FANVouthosを上限値FANVouthosHi(正の値。例えば10V)と下限値FANVouthosLo(負の値。例えば、−10V)の間で決定する。その方法は、差(PCO−PCI)が小さい(負の値)、即ち、放熱器圧力PCIが高い(放熱器温度TCIが高い)ときから0に上昇するまでは室外送風機電圧補正値FANVouthosを下限値FANVouthosLoとし、差(PCO−PCI)が0から更に上昇するに従って所定の傾斜を有して室外送風機電圧補正値FANVouthosを上限値FANVouthosHiまで増大させていく。   FIG. 10 shows an example of a control block diagram of the outdoor blower 15 in this case. The outdoor blower voltage correction unit 84 of the controller 32 in this case is the difference between the target radiator pressure PCO and the radiator pressure PCI (PCO−PCI). ) To determine the outdoor fan voltage correction value FANVouthos between the upper limit value FANVouthosHi (positive value, for example, 10V) and the lower limit value FANVouthosLo (negative value, for example, -10V). The method is such that the difference (PCO−PCI) is small (negative value), that is, the outdoor fan voltage correction value FANVouthos is the lower limit from when the radiator pressure PCI is high (the radiator temperature TCI is high) until it rises to zero. With the value FANVouthosLo, the outdoor fan voltage correction value FANVouthos is increased to the upper limit value FANVouthosHi with a predetermined slope as the difference (PCO−PCI) further increases from 0.

差(PCO−PCI)が大きい、即ち、放熱器圧力PCIが低いときから0に低下するまでは室外送風機電圧補正値FANVouthosを上限値FANVouthosHiとし、差(PCO−PCI)が0から更に負の値に低下するに従って所定の傾斜を有して室外送風機電圧補正値FANVouthosを下限値FANVouthosLoまで低下させていくというものである。   The difference (PCO-PCI) is large, that is, the outdoor fan voltage correction value FANVouthos is set to the upper limit value FANVouthosHi from when the radiator pressure PCI is low to 0, and the difference (PCO-PCI) is a further negative value from 0 The outdoor fan voltage correction value FANVouthos is lowered to the lower limit value FANVouthosLo with a predetermined inclination as the value decreases.

このようにして室外送風機電圧補正部84で決定された室外送風機電圧補正値FANVouthosは、加算器72でベースとなる室外送風機電圧FANVoutbaseに加算され、リミット設定部73で制御上限値と制御下限値のリミットが付けられた後、室外送風機電圧FANVoutとして決定される。   The outdoor fan voltage correction value FANVouthos determined in this way by the outdoor fan voltage correction unit 84 is added to the outdoor fan voltage FANVoutbase as a base by the adder 72, and the control upper limit value and the control lower limit value are set by the limit setting unit 73. After the limit is set, it is determined as the outdoor fan voltage FANVout.

即ち、図6のケースナンバー3の如く放熱器温度TCIが目標放熱器温度TCOより高い場合は、室外送風機電圧補正値FANVouthosが負の値でその絶対値が大きくなるので、室外送風機電圧FANVoutは低下し、風量が減少する。室外送風機15の風量が減少すると、室外熱交換器7での吸熱量が減少するので、放熱器温度TCIも低下することになる。   That is, when the radiator temperature TCI is higher than the target radiator temperature TCO as in case number 3 in FIG. 6, the outdoor fan voltage correction value FANVouthos is a negative value and its absolute value increases, so the outdoor fan voltage FANVout decreases. However, the air volume decreases. When the air volume of the outdoor blower 15 decreases, the heat absorption amount in the outdoor heat exchanger 7 decreases, so that the radiator temperature TCI also decreases.

また、図6のケースナンバー4の如く放熱器温度TCIが目標放熱器温度TCOより低い場合は、室外送風機電圧補正値FANVouthosが正の値で大きくなるので、室外送風機電圧FANVoutは上昇し、風量が増加する。室外送風機15の風量が増加すると、室外熱交換器7での吸熱量が増加するので、放熱器温度TCIも上昇することになる。   In addition, when the radiator temperature TCI is lower than the target radiator temperature TCO as in case number 4 in FIG. 6, the outdoor fan voltage correction value FANVouthos becomes a positive value, so that the outdoor fan voltage FANVout increases and the air volume increases. To increase. When the air volume of the outdoor blower 15 increases, the heat absorption amount in the outdoor heat exchanger 7 increases, so that the radiator temperature TCI also increases.

図11は係る放熱器圧力PCIに基づいた室外送風機15の風量減少/増加制御の様子を示している。この図において室外送風機通常制御の範囲は前述した過渡期を示している。除湿暖房モードが安定した後、吸熱器温度Teが目標吸熱器温度TEOに収束している(即ち、吸熱器温度Teが目標吸熱器温度TEOに収束している)ものの、放熱器圧力PCIは目標放熱器圧力PCOより高く、且つ、室外膨張弁6の弁開度は制御範囲内となっているものの、圧縮機2の回転数は制御下限値に張り付いてしまった場合(所定時間判定する)、コントローラ32は室外送風機電圧FANVoutを低下させて風量を減少させる(室外送風機風量下げ制御)。また、吸熱器温度Teが目標吸熱器温度TEOに収束している(即ち、吸熱器温度Teが目標吸熱器温度TEOに収束している)ものの、放熱器圧力PCIは目標放熱器圧力PCOより低く、且つ、室外膨張弁6の弁開度は制御範囲内となっているものの、圧縮機2の回転数は制御上限値に張り付いてしまった場合(所定時間判定する)、コントローラ32は室外送風機電圧FANVoutを上昇させて風量を増加させる(室外送風機風量上げ制御)。   FIG. 11 shows a state of air volume reduction / increase control of the outdoor fan 15 based on the radiator pressure PCI. In this figure, the range of the outdoor blower normal control indicates the transition period described above. After the dehumidifying and heating mode is stabilized, the heat absorber temperature Te has converged to the target heat absorber temperature TEO (that is, the heat absorber temperature Te has converged to the target heat absorber temperature TEO), but the radiator pressure PCI is the target. When the pressure of the outdoor expansion valve 6 is higher than the radiator pressure PCO and the opening degree of the outdoor expansion valve 6 is within the control range, but the rotation speed of the compressor 2 is stuck to the control lower limit value (determined for a predetermined time) The controller 32 reduces the outdoor fan voltage FANVout to reduce the air volume (outdoor fan air volume lowering control). Further, although the heat absorber temperature Te has converged to the target heat absorber temperature TEO (that is, the heat absorber temperature Te has converged to the target heat absorber temperature TEO), the radiator pressure PCI is lower than the target radiator pressure PCO. In addition, when the opening degree of the outdoor expansion valve 6 is within the control range, but the rotation speed of the compressor 2 is stuck to the control upper limit value (determined for a predetermined time), the controller 32 is used as the outdoor blower. The voltage FANVout is increased to increase the air volume (outdoor fan air volume increase control).

これらにより、環境条件に対する除湿暖房モードの有効範囲が拡大し、環境条件の広い範囲で除湿暖房モードによる車室内の除湿暖房空調を円滑に実現することができるようになり、前述した内部サイクルモードを廃止することが可能となる。   As a result, the effective range of the dehumidifying and heating mode with respect to the environmental conditions is expanded, and the dehumidifying and heating air conditioning in the passenger compartment can be smoothly realized in the dehumidifying and heating mode over a wide range of the environmental conditions. It can be abolished.

ここで、図12は係るケースナンバー3又は4のときの室外送風機15の制御ブロック図の他の例を示している。この場合、目標放熱器圧力PCOと放熱器圧力PCIの差(PCO−PCI)が減算器86で算出され、この差(PCO−PCI)が不感帯部87を介して増幅器88で増幅される。増幅された値には加算器89で前回値(1/Z)が加算される。即ち、この場合はフィードバック(F/B)制御となる。加算器89を経た値はリミット設定部91で制御上限値と制御下限値のリミットが付けられた後、室外送風機電圧補正値FANVouthosとなって加算器92でベースとなる室外送風機電圧FANVoutbaseに加算され、リミット設定部93で制御上限値と制御下限値のリミットが付けられた後、室外送風機電圧FANVoutとして決定される。   Here, FIG. 12 shows another example of a control block diagram of the outdoor blower 15 when the case number is 3 or 4. In this case, the difference (PCO−PCI) between the target radiator pressure PCO and the radiator pressure PCI is calculated by the subtractor 86, and this difference (PCO−PCI) is amplified by the amplifier 88 via the dead zone 87. The previous value (1 / Z) is added by the adder 89 to the amplified value. That is, in this case, feedback (F / B) control is performed. The value passed through the adder 89 is subjected to limit of the control upper limit value and the control lower limit value by the limit setting unit 91, and then becomes the outdoor fan voltage correction value FANVouthos and is added to the base outdoor fan voltage FANVoutbase by the adder 92. After the limit of the control upper limit value and the control lower limit value is given by the limit setting unit 93, the outdoor blower voltage FANVout is determined.

即ち、放熱器温度TCI(放熱器圧力PCIで判断)が目標放熱器温度TCO(目標放熱器圧力PCOと比較)より高い場合(ケースナンバー3)は、室外送風機電圧補正値FANVouthosが負の値でその絶対値が大きくなるので、室外送風機電圧FANVoutは低下し、風量が減少する。逆に、放熱器温度TCI(放熱器圧力PCI)が目標放熱器温度TCO(目標放熱器圧力PCO)より低い場合(ケースナンバー4)は、室外送風機電圧補正値FANVouthosが正の値で大きくなるので、室外送風機電圧FANVoutは上昇し、風量が増加する。これにより、図10の場合と同様に環境条件に対する除湿暖房モードの有効範囲が拡大し、環境条件の広い範囲で除湿暖房モードによる車室内の除湿暖房空調を円滑に実現することができるようになる。   That is, when the radiator temperature TCI (determined by the radiator pressure PCI) is higher than the target radiator temperature TCO (compared with the target radiator pressure PCO) (case number 3), the outdoor fan voltage correction value FANVouthos is a negative value. Since the absolute value becomes large, the outdoor fan voltage FANVout decreases and the air volume decreases. Conversely, when the radiator temperature TCI (radiator pressure PCI) is lower than the target radiator temperature TCO (target radiator pressure PCO) (case number 4), the outdoor fan voltage correction value FANVouthos increases with a positive value. The outdoor fan voltage FANVout increases and the air volume increases. As a result, the effective range of the dehumidifying and heating mode with respect to the environmental conditions is expanded as in the case of FIG. .

また、現在の除湿暖房状態がケースナンバー5である場合、即ち、放熱器温度TCI及び吸熱器温度Teがともに目標放熱器温度TCO及び目標吸熱器温度TEOより高く、且つ、圧縮機2の回転数は制御下限値に張り付き、室外膨張弁6の弁開度は閉方向に張り付いて制御下限値になっている場合、コントローラ32はステップS5からステップS9、ステップS9からステップS11に進み、ステップS11からはステップS12に進んで、図6のケースナンバー5に対応する欄の最下段に示す方式で放熱器圧力PCI(高圧)、又は、吸熱器温度Teに基づき、室外送風機15の印加電圧である室外送風機電圧FANVout(風量)を制御する。   Further, when the current dehumidifying and heating state is case number 5, that is, the radiator temperature TCI and the heat absorber temperature Te are both higher than the target radiator temperature TCO and the target heat absorber temperature TEO, and the rotation speed of the compressor 2 Sticks to the control lower limit value, and when the valve opening degree of the outdoor expansion valve 6 sticks in the closing direction to the control lower limit value, the controller 32 proceeds from step S5 to step S9, and from step S9 to step S11, step S11. The process proceeds to step S12, where the applied voltage of the outdoor blower 15 is based on the radiator pressure PCI (high pressure) or the heat absorber temperature Te in the manner shown at the bottom of the column corresponding to case number 5 in FIG. The outdoor fan voltage FANVout (air volume) is controlled.

放熱器温度TCIが高く、吸熱器温度Teも高い場合には、前述した図7、図9の吸熱器温度Teに基づく制御によっても、図10、図12の放熱器圧力PCIに基づく制御によっても、何れも室外送風機電圧FANVoutを低下させるものとなるので、それらのうちの小さい方の値(Min)を採用し、室外送風機15の風量を減少させる。   When the radiator temperature TCI is high and the heat absorber temperature Te is also high, the control based on the heat absorber temperature Te in FIGS. 7 and 9 described above or the control based on the radiator pressure PCI in FIGS. In both cases, the outdoor blower voltage FANVout is lowered, so the smaller value (Min) is adopted to reduce the air volume of the outdoor blower 15.

室外送風機15の風量が減少すると、室外熱交換器7における吸熱量が減少するので、先ず放熱器4の温度を下げることができる。また、このとき放熱器圧力PCI(高圧)も下がるので、目標放熱器圧力PCOに維持するために圧縮機2の目標回転数TGNCh(図3)は上昇することになり、冷媒回路R内の冷媒循環量が増大し、吸熱器9への冷媒流入量も増加し、結果として吸熱器9の温度も下げることができる。これにより、環境条件に対する除湿暖房モードの有効範囲を更に拡大し、環境条件のより広い範囲で除湿暖房モードによる車室内の除湿暖房空調を円滑に実現することができるようになる。   When the air volume of the outdoor blower 15 decreases, the heat absorption amount in the outdoor heat exchanger 7 decreases, so that the temperature of the radiator 4 can be lowered first. At this time, the radiator pressure PCI (high pressure) also decreases, so that the target rotational speed TGNCh (FIG. 3) of the compressor 2 increases to maintain the target radiator pressure PCO, and the refrigerant in the refrigerant circuit R The amount of circulation increases, the amount of refrigerant flowing into the heat absorber 9 also increases, and as a result, the temperature of the heat absorber 9 can also be lowered. As a result, the effective range of the dehumidifying and heating mode with respect to the environmental conditions can be further expanded, and the dehumidifying and heating air conditioning in the vehicle compartment in the dehumidifying and heating mode can be smoothly realized in a wider range of the environmental conditions.

また、現在の除湿暖房状態がケースナンバー6である場合、即ち、放熱器温度TCI及び吸熱器温度Teのともに目標放熱器温度TCO及び目標吸熱器温度TEOより低く、且つ、圧縮機2の回転数は制御上限値に張り付き、室外膨張弁6の弁開度は開方向に張り付いて制御上限値になっている場合、コントローラ32はステップS5からステップS9、ステップS9からステップS11、ステップS11からステップS13に進み、ステップS13からはステップS14に進んで、図6のケースナンバー6に対応する欄の最下段に示す方式で放熱器圧力PCI(高圧)、又は、吸熱器温度Teに基づき、室外送風機15の印加電圧である室外送風機電圧FANVout(風量)を制御する。   When the current dehumidifying and heating state is case number 6, that is, both the radiator temperature TCI and the heat absorber temperature Te are lower than the target radiator temperature TCO and the target heat absorber temperature TEO, and the rotation speed of the compressor 2 Sticks to the control upper limit value, and when the valve opening degree of the outdoor expansion valve 6 sticks in the opening direction to the control upper limit value, the controller 32 performs steps S5 to S9, steps S9 to S11, and steps S11 to S11. The process proceeds to S13, and from Step S13 to Step S14, the outdoor blower is based on the radiator pressure PCI (high pressure) or the heat absorber temperature Te in the manner shown at the bottom of the column corresponding to case number 6 in FIG. The outdoor fan voltage FANVout (air volume), which is an applied voltage of 15, is controlled.

放熱器温度TCIが低く、吸熱器温度Teも低い場合には、前述した図7、図9の吸熱器温度Teに基づく制御によっても、図10、図12の放熱器圧力PCIに基づく制御によっても、何れも室外送風機電圧FANVoutを上昇させるものとなるので、それらのうちの大きい方の値(Max)を採用し、室外送風機15の風量を増加させる。   When the radiator temperature TCI is low and the heat absorber temperature Te is also low, the control based on the heat absorber temperature Te in FIGS. 7 and 9 described above or the control based on the radiator pressure PCI in FIGS. Since both increase the outdoor fan voltage FANVout, the larger value (Max) of them is adopted, and the air volume of the outdoor fan 15 is increased.

室外送風機15の風量が増加すると、室外熱交換器7における吸熱量が増加するので、先ず放熱器4の温度を上げることができる。また、このとき放熱器圧力PCI(高圧)も上がるので、目標放熱器圧力PCOに維持するために圧縮機2の目標回転数TGNCh(図3)は低下することになり、冷媒回路R内の冷媒循環量が減少し、吸熱器9への冷媒流入量も減少し、結果として吸熱器9の温度も上げることができる。これにより、同様に環境条件に対する除湿暖房モードの有効範囲を更に拡大し、環境条件のより広い範囲で除湿暖房モードによる車室内の除湿暖房空調を円滑に実現することができるようになる。   When the air flow rate of the outdoor fan 15 increases, the heat absorption amount in the outdoor heat exchanger 7 increases, so that the temperature of the radiator 4 can be raised first. At this time, since the radiator pressure PCI (high pressure) also increases, the target rotational speed TGNCh (FIG. 3) of the compressor 2 decreases to maintain the target radiator pressure PCO, and the refrigerant in the refrigerant circuit R The amount of circulation is reduced, the amount of refrigerant flowing into the heat absorber 9 is also reduced, and as a result, the temperature of the heat absorber 9 can be increased. Accordingly, the effective range of the dehumidifying and heating mode with respect to the environmental conditions can be further expanded in the same manner, and the dehumidifying and heating air conditioning in the vehicle compartment in the dehumidifying and heating mode can be smoothly realized in a wider range of the environmental conditions.

ここで、現在の除湿暖房状態がケースナンバー7又は8である場合、即ち、放熱器温度TCIが目標放熱器温度TCOより高く、吸熱器温度Teが目標吸熱器温度TEOより低く、且つ、圧縮機2の回転数は制御下限値に張り付き、室外膨張弁6の弁開度は開方向に張り付いて制御上限値になっている場合(ケースナンバー7)、又は、放熱器温度TCIが目標放熱器温度TCOより低く、吸熱器温度Teが目標吸熱器温度TEOより高く、且つ、圧縮機2の回転数は制御上限値に張り付き、室外膨張弁6の弁開度は閉方向に張り付いて制御下限値になっている場合(ケースナンバー8)、コントローラ32はステップS15からステップS16に進んで除湿暖房モードは成立しないものと判定し、他の運転モードに切り換える。   Here, when the current dehumidifying and heating state is case number 7 or 8, that is, the radiator temperature TCI is higher than the target radiator temperature TCO, the heat absorber temperature Te is lower than the target heat absorber temperature TEO, and the compressor When the rotational speed of 2 sticks to the control lower limit value and the valve opening degree of the outdoor expansion valve 6 sticks in the opening direction to reach the control upper limit value (case number 7), or the radiator temperature TCI is the target radiator. The temperature is lower than the temperature TCO, the heat absorber temperature Te is higher than the target heat absorber temperature TEO, the rotation speed of the compressor 2 is stuck to the control upper limit value, and the valve opening degree of the outdoor expansion valve 6 is stuck in the closing direction. If it is a value (case number 8), the controller 32 proceeds from step S15 to step S16, determines that the dehumidifying and heating mode is not established, and switches to another operation mode.

また、ステップS6、ステップS10、ステップS12、ステップS14で室外送風機15の風量減少/増加制御を実行した後、コントローラ32はステップS7に進んで放熱器温度TCI及び吸熱器温度Teが目標放熱器温度TCO及び目標吸熱器温度TEOに収束しているか否か判断する。そして、収束している場合にはステップS8に進んで除湿暖房モードを継続可能と判定し、除湿暖房モードを継続する。ステップS7で放熱器温度TCI及び吸熱器温度Teが収束していない場合には、ステップS16に進んで除湿暖房モードは成立しないものと判定し、他の運転モードに切り換えるものである。   In addition, after executing the air volume reduction / increase control of the outdoor fan 15 in step S6, step S10, step S12, and step S14, the controller 32 proceeds to step S7, and the radiator temperature TCI and the heat absorber temperature Te are set to the target radiator temperature. It is determined whether or not the TCO and the target heat absorber temperature TEO are converged. And when it has converged, it progresses to step S8, determines with dehumidification heating mode being able to be continued, and continues dehumidification heating mode. When the radiator temperature TCI and the heat absorber temperature Te are not converged in step S7, the process proceeds to step S16 to determine that the dehumidifying / heating mode is not established and to switch to another operation mode.

(5−1)過渡期における室外送風機15の制御の他の例
尚、上記実施例では車両用空気調和装置1の起動直後である場合や、除湿暖房モードに切り換わった直後である等の過渡期であるとき、除湿暖房モードが安定するまでは、コントローラ32は室外送風機15の風量を最大とし、或いは、所定の風量とするようにしたが(通常制御)、それに限らず、下記の式(I)により過渡期における室外送風機電圧FANVoutを決定するようにしてもよい。
FANVout=f(Tam、TCO、TEO、Ga、Tin、RHin)・・(I)
(5-1) Other Examples of Control of Outdoor Blower 15 in Transition Period In the above embodiment, a transition such as immediately after startup of the vehicle air conditioner 1 or immediately after switching to the dehumidifying heating mode is performed. In the period, until the dehumidifying and heating mode is stabilized, the controller 32 maximizes the air volume of the outdoor fan 15 or a predetermined air volume (normal control). The outdoor fan voltage FANVout in the transition period may be determined by I).
FANVout = f (Tam, TCO, TEO, Ga, Tin, RHin) (I)

この場合、Tamは前述した外気温度、TCOは前述した目標放熱器温度、TEOは前述した目標吸熱器温度、Gaは前述した空気の質量風量、Tinは内気温度センサ37が検出する車室内温度、RHinは内気湿度センサ38が検出する車室内湿度であり、これらのパラメータに基づいて室外送風機電圧FANVoutを決定するものであるが、各パラメータによる制御の傾向を図13に示す。   In this case, Tam is the above-described outside air temperature, TCO is the above-described target heat radiator temperature, TEO is the above-mentioned target heat absorber temperature, Ga is the above-described mass air volume of air, Tin is the vehicle interior temperature detected by the inside air temperature sensor 37, RHin is the vehicle interior humidity detected by the inside air humidity sensor 38, and determines the outdoor fan voltage FANVout based on these parameters. The control tendency by each parameter is shown in FIG.

即ち、外気温度Tamが高い場合、コントローラ32は式(I)の室外送風機電圧FANVoutを下げ、風量を下げる方向に制御する。外気温度Tamが高い場合には、室外熱交換器7における吸熱量も増えるため、室外送風機15の風量を下げることで過剰な吸熱を回避する。逆に、外気温度Tamが低い場合には、式(I)の室外送風機電圧FANVoutを上げ、風量を上げる方向に制御し、室外熱交換器7からの吸熱を促進する。これらにより、係る過渡期における放熱器温度TCIと吸熱器温度Teを各目標値に収束させる。   That is, when the outdoor air temperature Tam is high, the controller 32 controls the outdoor fan voltage FANVout of the formula (I) to decrease and the air volume to decrease. When the outdoor air temperature Tam is high, the amount of heat absorbed in the outdoor heat exchanger 7 also increases, so excessive heat absorption is avoided by reducing the air volume of the outdoor blower 15. On the contrary, when the outdoor temperature Tam is low, the outdoor fan voltage FANVout of the formula (I) is increased and controlled to increase the air volume, and the heat absorption from the outdoor heat exchanger 7 is promoted. Thus, the radiator temperature TCI and the heat absorber temperature Te in the transition period are converged to each target value.

また、目標放熱器温度TCOが高い場合、コントローラ32は式(I)の室外送風機電圧FANVoutを上げ、風量を上げる方向に制御して室外熱交換器7からの吸熱を促進する。逆に、目標放熱器温度TCOが低い場合には、式(I)の室外送風機電圧FANVoutを下げ、風量を下げる方向に制御し、室外熱交換器7からの過剰な吸熱を回避する。これらにより、係る過渡期における放熱器温度TCIと吸熱器温度Teを各目標値に収束させる。   Further, when the target radiator temperature TCO is high, the controller 32 increases the outdoor fan voltage FANVout of the formula (I) and controls the direction of increasing the air volume to promote the heat absorption from the outdoor heat exchanger 7. On the other hand, when the target radiator temperature TCO is low, the outdoor fan voltage FANVout of the formula (I) is decreased and the air volume is controlled to be decreased to avoid excessive heat absorption from the outdoor heat exchanger 7. Thus, the radiator temperature TCI and the heat absorber temperature Te in the transition period are converged to each target value.

また、目標吸熱器温度TEOが高い場合、コントローラ32は式(I)の室外送風機電圧FANVoutを上げ、風量を上げる方向に制御して室外熱交換器7からの吸熱を促進し、前述同様に循環冷媒量を減少させて吸熱器温度Teの低下を抑制する。逆に、目標吸熱器温度TEOが低い場合には、式(I)の室外送風機電圧FANVoutを下げ、風量を下げる方向に制御し、室外熱交換器7からの吸熱を削減して前述同様に循環冷媒量を増やし、吸熱器温度Teの低下を促進する。これらにより、係る過渡期における放熱器温度TCIと吸熱器温度Teを各目標値に収束させる。   In addition, when the target heat absorber temperature TEO is high, the controller 32 increases the outdoor fan voltage FANVout of the formula (I) and controls the air flow in the direction of increasing the air volume to promote heat absorption from the outdoor heat exchanger 7 and circulate in the same manner as described above. The refrigerant quantity is decreased to suppress the decrease in the heat absorber temperature Te. On the contrary, when the target heat absorber temperature TEO is low, the outdoor fan voltage FANVout of the formula (I) is lowered to control the direction of air flow, and the heat absorption from the outdoor heat exchanger 7 is reduced to circulate in the same manner as described above. The amount of refrigerant is increased, and the decrease in the heat absorber temperature Te is promoted. Thus, the radiator temperature TCI and the heat absorber temperature Te in the transition period are converged to each target value.

また、空気流通路3に流入した空気の質量風量Gaが高い場合、コントローラ32は式(I)の室外送風機電圧FANVoutを上げ、風量を上げる方向に制御して室外熱交換器7からの吸熱量を増やす。逆に、質量風量Gaが低い場合には、式(I)の室外送風機電圧FANVoutを下げ、風量を下げる方向に制御し、室外熱交換器7からの吸熱を削減する。これらにより、係る過渡期における放熱器温度TCIと吸熱器温度Teを各目標値に収束させながら、吹出温度の過剰な上昇や低下を防ぐ。   Further, when the mass air volume Ga of the air flowing into the air flow passage 3 is high, the controller 32 increases the outdoor fan voltage FANVout of the formula (I) and controls the air volume to be increased to control the heat absorption amount from the outdoor heat exchanger 7. Increase. On the contrary, when the mass air volume Ga is low, the outdoor fan voltage FANVout of the formula (I) is lowered and controlled so as to lower the air volume, and the heat absorption from the outdoor heat exchanger 7 is reduced. Thus, the radiator temperature TCI and the heat absorber temperature Te in the transition period are converged to the respective target values, and an excessive increase or decrease in the blowing temperature is prevented.

また、車室内温度Tinが高い場合、コントローラ32は式(I)の室外送風機電圧FANVoutを下げ、風量を下げる方向に制御し、室外熱交換器7での過剰な吸熱を回避する。逆に、車室内温度Tinが低い場合には、式(I)の室外送風機電圧FANVoutを上げ、風量を上げる方向に制御し、室外熱交換器7からの吸熱を促進する。これらにより、係る過渡期における放熱器温度TCIと吸熱器温度Teを各目標値に収束させながら、車室内温度を維持する。   Further, when the vehicle interior temperature Tin is high, the controller 32 controls the outdoor fan voltage FANVout of the formula (I) to be lowered so as to reduce the air volume, thereby avoiding excessive heat absorption in the outdoor heat exchanger 7. On the contrary, when the vehicle interior temperature Tin is low, the outdoor fan voltage FANVout of the formula (I) is increased and controlled to increase the air volume, and the heat absorption from the outdoor heat exchanger 7 is promoted. Thus, the vehicle interior temperature is maintained while the radiator temperature TCI and the heat absorber temperature Te in the transition period are converged to the respective target values.

また、車室内湿度RHinが高い場合、コントローラ32は式(I)の室外送風機電圧FANVoutを下げ、風量を下げる方向に制御し、前述同様に循環冷媒量を増大させて吸熱器温度Teを確保し、車室内湿度の低下を図る。逆に、車室内湿度RHinが低い場合には、式(I)の室外送風機電圧FANVoutを上げ、風量を上げる方向に制御し、前述同様に循環冷媒量を減少させて吸熱器温度Teの低下を抑制する。これらにより、係る過渡期における放熱器温度TCIと吸熱器温度Teを各目標値に収束させながら、車室内湿度を維持する。   When the vehicle interior humidity RHin is high, the controller 32 controls the outdoor fan voltage FANVout in formula (I) to decrease and the air volume to decrease, and increases the circulating refrigerant volume to secure the heat absorber temperature Te as described above. Reduce the humidity in the passenger compartment. On the contrary, when the vehicle interior humidity RHin is low, the outdoor fan voltage FANVout of the formula (I) is increased to control the air volume to be increased, and the circulating refrigerant amount is decreased to reduce the heat sink temperature Te as described above. Suppress. Thus, the vehicle interior humidity is maintained while the radiator temperature TCI and the heat absorber temperature Te in the transition period are converged to the respective target values.

(5−2)車速を考慮した室外送風機15の制御の他の例
ここで、車速センサ52が検出する車両の速度、即ち、車速が高い場合(所定値より高い、若しくは、段階的にリニアに制御)は、コントローラ32により室外送風機電圧FANVoutを低下させ、室外送風機15の風量を減少させ、若しくは室外送風機15を停止させるように制御してもよい。
(5-2) Other Examples of Control of Outdoor Blower 15 Considering Vehicle Speed Here, when the vehicle speed detected by the vehicle speed sensor 52, that is, when the vehicle speed is high (higher than a predetermined value or linearly in stages) Control) may be controlled by the controller 32 so as to decrease the outdoor fan voltage FANVout, reduce the air volume of the outdoor fan 15, or stop the outdoor fan 15.

車速が高い場合には、室外熱交換器7への風量は走行風で賄われるので、室外送風機15の風量を減少、若しくは、零とすることで、不必要な室外送風機15の運転を解消することが可能となる。   When the vehicle speed is high, the air flow to the outdoor heat exchanger 7 is covered by the traveling wind, so unnecessary air fan 15 operation is eliminated by reducing or reducing the air flow of the outdoor blower 15 to zero. It becomes possible.

(5−3)グリルシャッタ24と協働した室外送風機15の制御の他の例
更に、前述した各実施例の室外送風機15の風量減少/増加制御を行う場合、コントローラ32によりグリルシャッタ24を閉じ、又は、グリルシャッタ24の開度により走行風の室外熱交換器7への流入を制限した状態としてもよい。
(5-3) Other examples of control of outdoor blower 15 in cooperation with grill shutter 24 Further, when performing air volume reduction / increase control of outdoor blower 15 in each of the above-described embodiments, controller 32 closes grill shutter 24. Alternatively, the flow of the traveling wind to the outdoor heat exchanger 7 may be limited by the opening of the grill shutter 24.

グリルシャッタ24を閉じ、又は、グリルシャッタ24の開度により走行風の室外熱交換器7への流入を制限した状態で室外送風機15の風量減少/増加制御を実行するようにすれば、室外熱交換器7への風量の全て、又は、殆どを室外送風機15で制御できるようになるので、走行中における室外送風機15による放熱器温度TCIと吸熱器温度Teの制御性を向上させることが可能となる。   If the air flow reduction / increase control of the outdoor blower 15 is executed in a state where the grill shutter 24 is closed or the inflow of the traveling wind into the outdoor heat exchanger 7 is restricted by the opening of the grill shutter 24, the outdoor heat Since all or most of the air flow to the exchanger 7 can be controlled by the outdoor fan 15, it is possible to improve the controllability of the radiator temperature TCI and the heat absorber temperature Te by the outdoor fan 15 during traveling. Become.

尚、上記実施例では暖房モード、除湿暖房モード、除湿冷房モード、冷房モードの各運転モードを切り換えて実行する車両用空気調和装置1について本発明を適用したが、それに加えて所謂内部サイクルモードを実行してもよい。その場合にも、除湿暖房モードの有効範囲を拡大して、できるだけ内部サイクルモードの実行を回避することが可能となる。   In the above-described embodiment, the present invention is applied to the vehicle air conditioner 1 that performs switching between the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, and the cooling mode, but in addition to this, the so-called internal cycle mode is applied. May be executed. Even in that case, the effective range of the dehumidifying and heating mode can be expanded to avoid the execution of the internal cycle mode as much as possible.

また、上記実施例で説明した冷媒回路の構成や各数値はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能である。   Further, the configuration and each numerical value of the refrigerant circuit described in the above embodiment are not limited thereto, and can be changed without departing from the gist of the present invention.

1 車両用空気調和装置
2 圧縮機
3 空気流通路
4 放熱器
6 室外膨張弁
7 室外熱交換器
8 室内膨張弁
9 吸熱器
15 室外送風機
24 グリルシャッタ
32 コントローラ(制御手段)
R 冷媒回路
DESCRIPTION OF SYMBOLS 1 Vehicle air conditioner 2 Compressor 3 Air flow path 4 Radiator 6 Outdoor expansion valve 7 Outdoor heat exchanger 8 Indoor expansion valve 9 Heat absorber 15 Outdoor blower 24 Grill shutter 32 Controller (control means)
R refrigerant circuit

Claims (11)

冷媒を圧縮する圧縮機と、
車室内に供給する空気が流通する空気流通路と、
該空気流通路に設けられて冷媒を放熱させる放熱器と、
前記空気流通路に設けられて冷媒を吸熱させる吸熱器と、
前記車室外に設けられて冷媒を吸熱させる室外熱交換器と、
該室外熱交換器に流入する冷媒を減圧する室外膨張弁と、
前記室外熱交換器に外気を通風する室外送風機と、
制御手段とを備え、
該制御手段により少なくとも、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器と前記室外熱交換器にて吸熱させる除湿暖房モードを実行する車両用空気調和装置において、
前記制御手段は、前記放熱器の温度が満足な状況で、前記室外膨張弁の弁開度を制御下限値としても前記吸熱器の温度が高い場合、前記室外送風機の風量を減少させることを特徴とする車両用空気調和装置。
A compressor for compressing the refrigerant;
An air flow passage through which air to be supplied into the passenger compartment flows;
A radiator that is provided in the air flow passage to dissipate the refrigerant;
A heat absorber provided in the air flow passage to absorb the refrigerant;
An outdoor heat exchanger provided outside the passenger compartment to absorb heat from the refrigerant;
An outdoor expansion valve that depressurizes the refrigerant flowing into the outdoor heat exchanger;
An outdoor blower for ventilating outside air to the outdoor heat exchanger;
Control means,
A dehumidifying heating mode is performed in which at least the refrigerant discharged from the compressor is radiated by the radiator and the radiated refrigerant is depressurized by the control means, and is then absorbed by the heat absorber and the outdoor heat exchanger. In a vehicle air conditioner that
The control means reduces the air volume of the outdoor fan when the temperature of the heat radiator is high and the temperature of the heat absorber is high even if the valve opening degree of the outdoor expansion valve is set as a control lower limit value. A vehicle air conditioner.
前記制御手段は、前記放熱器の温度が満足な状況で、前記室外膨張弁の弁開度を制御上限値としても前記吸熱器の温度が低い場合、前記室外送風機の風量を増加させることを特徴とする請求項1に記載の車両用空気調和装置。   The control means increases the air volume of the outdoor blower when the temperature of the heat sink is low and the temperature of the heat absorber is low even when the valve opening degree of the outdoor expansion valve is set as a control upper limit value in a situation where the temperature of the heat radiator is satisfactory. The air conditioning apparatus for a vehicle according to claim 1. 前記制御手段は、前記吸熱器の温度が満足な状況で、前記圧縮機の回転数を制御下限値としても前記放熱器の温度が高い場合、前記室外送風機の風量を減少させることを特徴とする請求項1又は請求項2に記載の車両用空気調和装置。   The control means reduces the air volume of the outdoor fan when the temperature of the heat absorber is satisfactory and the temperature of the radiator is high even if the rotation speed of the compressor is set as a control lower limit value. The vehicle air conditioner according to claim 1 or 2. 前記制御手段は、前記吸熱器の温度が満足な状況で、前記圧縮機の回転数を制御上限値としても前記放熱器の温度が低い場合、前記室外送風機の風量を増加させることを特徴とする請求項1乃至請求項3のうちの何れかに記載の車両用空気調和装置。   The control means increases the air volume of the outdoor blower when the temperature of the heat absorber is satisfactory and the temperature of the radiator is low even if the rotation speed of the compressor is set as a control upper limit value. The vehicle air conditioner according to any one of claims 1 to 3. 前記制御手段は、前記圧縮機の回転数を制御下限値とし、且つ、前記室外膨張弁の弁開度を制御下限値としても、前記放熱器の温度が高く、且つ、前記吸熱器の温度も高い場合、前記室外送風機の風量を減少させることを特徴とする請求項1乃至請求項4のうちの何れかに記載の車両用空気調和装置。   The control means has a high temperature of the radiator and a temperature of the heat absorber even when the rotation speed of the compressor is a control lower limit value and the valve opening of the outdoor expansion valve is a control lower limit value. The air conditioner for a vehicle according to any one of claims 1 to 4, wherein when it is high, the air volume of the outdoor fan is reduced. 前記制御手段は、前記圧縮機の回転数を制御上限値とし、且つ、前記室外膨張弁の弁開度を制御上限値としても、前記放熱器の温度が低く、且つ、前記吸熱器の温度も低い場合、前記室外送風機の風量を増加させることを特徴とする請求項1乃至請求項5のうちの何れかに記載の車両用空気調和装置。   The control means has a low temperature of the radiator and a temperature of the heat absorber even when the rotation speed of the compressor is a control upper limit value and the valve opening of the outdoor expansion valve is a control upper limit value. The air conditioner for a vehicle according to any one of claims 1 to 5, wherein when it is low, the air volume of the outdoor fan is increased. 前記制御手段は、前記圧縮機の回転数を制御下限値とし、且つ、前記室外膨張弁の弁開度を制御上限値としても、前記放熱器の温度が高く、且つ、前記吸熱器の温度が低い場合、又は、前記圧縮機の回転数を制御上限値とし、且つ、前記室外膨張弁の弁開度を制御下限値としても、前記放熱器の温度が低く、且つ、前記吸熱器の温度が高い場合、除湿暖房モードは不成立として前記室外送風機の風量減少/増加制御を実行せず、運転モードを他のモードに切り換えることを特徴とする請求項1乃至請求項6のうちの何れかに記載の車両用空気調和装置。   The control means is configured such that the temperature of the radiator is high and the temperature of the heat absorber is high even if the rotation speed of the compressor is a control lower limit value and the valve opening of the outdoor expansion valve is a control upper limit value. If it is low, or if the rotation speed of the compressor is the control upper limit value and the valve opening of the outdoor expansion valve is the control lower limit value, the temperature of the radiator is low and the temperature of the heat absorber is 7. If high, the dehumidifying heating mode is not established, and the air volume reduction / increase control of the outdoor fan is not executed, and the operation mode is switched to another mode. Air conditioner for vehicles. 前記制御手段は、動作状態の過渡期には前記室外送風機の風量減少/増加制御を実行せず、又は、室外送風機の風量を最大とすることを特徴とする請求項1乃至請求項7のうちの何れかに記載の車両用空気調和装置。   The control means does not execute the air volume reduction / increase control of the outdoor blower during the transition period of the operating state, or maximizes the air volume of the outdoor blower. The vehicle air conditioner according to any one of the above. 前記制御手段は、外気温度、目標放熱器温度、目標吸熱器温度、前記空気流通路に流入した空気の質量風量、車室内温度、車室内湿度、のうちの何れか、又は、それらの組み合わせ、若しくは、それらの全てに基づき、前記過渡期における前記室外送風機の風量を決定することを特徴とする請求項8に記載の車両用空気調和装置。   The control means is any one of an outside air temperature, a target radiator temperature, a target heat absorber temperature, a mass air volume of air flowing into the air flow passage, a vehicle interior temperature, a vehicle interior humidity, or a combination thereof, Alternatively, the vehicle air conditioner according to claim 8, wherein the air volume of the outdoor blower in the transition period is determined based on all of them. 前記制御手段は、車速が高い場合、前記室外送風機の風量を減少させ、若しくは、当該室外送風機を停止させることを特徴とする請求項1乃至請求項9のうちの何れかに記載の車両用空気調和装置。   10. The vehicle air according to claim 1, wherein when the vehicle speed is high, the control unit reduces the air volume of the outdoor blower or stops the outdoor blower. Harmony device. 前記室外熱交換器への走行風の流入を阻止するグリルシャッタを備え、
前記制御手段は、前記グリルシャッタを閉じ、又は、グリルシャッタの開度により走行風の流入を制限した状態で、前記室外送風機の風量減少/増加制御を実行することを特徴とする請求項1乃至請求項10のうちの何れかに記載の車両用空気調和装置。
A grill shutter for preventing the flow of traveling wind into the outdoor heat exchanger;
2. The air flow reduction / increase control of the outdoor blower is performed in a state in which the control unit closes the grill shutter or restricts inflow of running air by the opening of the grill shutter. The vehicle air conditioner according to claim 10.
JP2014086387A 2014-04-18 2014-04-18 Air conditioner for vehicles Active JP6247993B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014086387A JP6247993B2 (en) 2014-04-18 2014-04-18 Air conditioner for vehicles
DE112015001874.3T DE112015001874T5 (en) 2014-04-18 2015-03-20 Vehicle air conditioning
CN201580020249.1A CN106232400B (en) 2014-04-18 2015-03-20 Air conditioner for vehicles
US15/304,997 US10625560B2 (en) 2014-04-18 2015-03-20 Vehicle air conditioner
PCT/JP2015/001595 WO2015159485A1 (en) 2014-04-18 2015-03-20 Vehicle air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014086387A JP6247993B2 (en) 2014-04-18 2014-04-18 Air conditioner for vehicles

Publications (2)

Publication Number Publication Date
JP2015205563A JP2015205563A (en) 2015-11-19
JP6247993B2 true JP6247993B2 (en) 2017-12-13

Family

ID=54602807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014086387A Active JP6247993B2 (en) 2014-04-18 2014-04-18 Air conditioner for vehicles

Country Status (1)

Country Link
JP (1) JP6247993B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6607638B2 (en) * 2015-12-14 2019-11-20 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicles
JP2018122635A (en) * 2017-01-30 2018-08-09 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicle
JP2019131038A (en) * 2018-01-31 2019-08-08 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioning device for vehicle
JP7280689B2 (en) * 2018-11-16 2023-05-24 サンデン株式会社 Vehicle air conditioner
JP7300264B2 (en) * 2018-11-27 2023-06-29 サンデン株式会社 Vehicle air conditioner
CN115817113B (en) * 2022-12-22 2024-06-11 中国重汽集团济南动力有限公司 Fan control method for pure electric vehicle and automobile

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06191253A (en) * 1992-12-24 1994-07-12 Nippondenso Co Ltd Air conditioner for vehicle
JPH07172160A (en) * 1993-12-22 1995-07-11 Matsushita Electric Ind Co Ltd Heat pump cooling, heating and dehumidifying apparatus for electric vehicle
JP3540858B2 (en) * 1995-04-05 2004-07-07 サンデン株式会社 Vehicle air conditioner
WO2011125694A1 (en) * 2010-03-31 2011-10-13 本田技研工業株式会社 Heat pump air conditioning system for vehicle

Also Published As

Publication number Publication date
JP2015205563A (en) 2015-11-19

Similar Documents

Publication Publication Date Title
WO2015159485A1 (en) Vehicle air conditioner
JP5999637B2 (en) Air conditioner for vehicles
JP6005484B2 (en) Air conditioner for vehicles
JP6418779B2 (en) Air conditioner for vehicles
JP6073653B2 (en) Air conditioner for vehicles
JP6633303B2 (en) Vehicle air conditioner
JP6073651B2 (en) Air conditioner for vehicles
JP6619572B2 (en) Air conditioner for vehicles
JP6247993B2 (en) Air conditioner for vehicles
JP6607638B2 (en) Air conditioner for vehicles
JP6353328B2 (en) Air conditioner for vehicles
JP2014094673A5 (en)
WO2014073691A1 (en) Vehicle air conditioner
WO2017146268A1 (en) Vehicle air conditioner
CN110214092B (en) Air conditioner for vehicle
JP2014094677A5 (en)
JP6247994B2 (en) Air conditioner for vehicles
WO2018116962A1 (en) Air conditioning device for vehicle
WO2018225486A1 (en) Air-conditioning device for vehicles
JP2019073053A (en) Air-conditioner for vehicle
JP6917794B2 (en) Vehicle air conditioner
WO2018110212A1 (en) Vehicle air-conditioning apparatus
JP6738156B2 (en) Vehicle air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171120

R150 Certificate of patent or registration of utility model

Ref document number: 6247993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350