WO2018198582A1 - Vehicular air conditioner - Google Patents

Vehicular air conditioner Download PDF

Info

Publication number
WO2018198582A1
WO2018198582A1 PCT/JP2018/010363 JP2018010363W WO2018198582A1 WO 2018198582 A1 WO2018198582 A1 WO 2018198582A1 JP 2018010363 W JP2018010363 W JP 2018010363W WO 2018198582 A1 WO2018198582 A1 WO 2018198582A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat
radiator
outdoor
battery
Prior art date
Application number
PCT/JP2018/010363
Other languages
French (fr)
Japanese (ja)
Inventor
徹也 石関
岡本 佳之
明 堀越
貴司 戸山
伸彦 藤井
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Priority to CN201880025556.2A priority Critical patent/CN110520316B/en
Publication of WO2018198582A1 publication Critical patent/WO2018198582A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series

Definitions

  • the present invention relates to a heat pump type air conditioner that air-conditions a vehicle interior of a vehicle, and more particularly to a vehicle air conditioner suitable for a hybrid vehicle or an electric vehicle having a shutter capable of preventing the flow of traveling wind into an outdoor heat exchanger. Is.
  • an air conditioner that can be applied to such a vehicle, a compressor that compresses and discharges the refrigerant, a radiator that is provided on the vehicle interior side and dissipates the refrigerant, and is provided on the vehicle interior side.
  • a heat absorber that absorbs the refrigerant, an outdoor heat exchanger that is provided outside the passenger compartment and vents the outside air, absorbs or dissipates the refrigerant, and decompresses the refrigerant flowing out of the radiator and flowing into the outdoor heat exchanger.
  • Dehumidifying and heating mode in which heat is radiated in the radiator and absorbed in the heat absorber and the outdoor heat exchanger, and the refrigerant discharged from the compressor is radiated in the radiator and the outdoor heat exchanger, and is absorbed in the heat absorber.
  • the compressor in the dehumidifying and cooling mode (dehumidifying and cooling operation), the compressor is controlled based on the temperature of the heat absorber to obtain a necessary heat absorption capability (dehumidification / cooling capability) in the heat absorber and based on the pressure of the radiator.
  • the valve opening degree of the outdoor expansion valve it is configured to obtain the necessary heat dissipation capability (heating capability, reheat amount) in the radiator. That is, when the heat dissipating capacity of the radiator is insufficient, the valve opening degree of the outdoor expansion valve is reduced.
  • the valve opening degree of the outdoor expansion valve decreases, the amount of circulating refrigerant in the heat absorber decreases, so that temperature spots are generated in the heat absorber.
  • the temperature spot of the heat absorber becomes extremely large, and the air blown out by the air outlet A phenomenon occurs in which the temperature differs.
  • the heat radiation capacity of the radiator is reduced by the amount of heat exchanged between the refrigerant and the outside air by the outdoor heat exchanger. It becomes easy to occur, and it will transfer to dehumidification heating mode (dehumidification heating operation) at an early stage. In order to prevent this, it is necessary to provide a special electric heater or the like to heat the air blown into the vehicle interior.
  • the present invention has been made to solve the conventional technical problems, and expands the executable range of the dehumidifying and cooling operation by preventing or suppressing the occurrence of temperature spots of the heat absorber in the dehumidifying and cooling operation.
  • An object of the present invention is to provide a vehicle air conditioner that can be used.
  • the vehicle air conditioner of the present invention heats the compressor that compresses the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air that dissipates the refrigerant and is supplied from the air flow passage to the vehicle interior.
  • the refrigerant discharged from the compressor is radiated by a radiator and an outdoor heat exchanger, and after depressurizing the radiated refrigerant, the dehumidifying and cooling operation is performed in which heat is absorbed by the heat absorber. In dehumidifying and cooling operation, If the thermal capacity is insufficient, characterized by closing the shutter.
  • the control device controls the operation of the compressor based on the temperature of the heat absorber in the dehumidifying and cooling operation, and the outdoor expansion valve based on the pressure of the radiator.
  • the control device controls the valve opening degree of the outdoor expansion valve so that the pressure of the radiator becomes a target value in the dehumidifying and cooling operation.
  • an air conditioner for a vehicle including an outdoor fan for ventilating outdoor air to the outdoor heat exchanger in each of the above inventions, and the controller stops the outdoor fan when the shutter is closed.
  • an air conditioning apparatus for a vehicle according to each of the above-mentioned inventions, wherein the control device removes the refrigerant discharged from the compressor if the heat dissipation capability of the radiator is insufficient even when the shutter is closed in the dehumidifying and cooling operation. After the heat is dissipated, the refrigerant that has been dissipated is depressurized, and then the operation shifts to an internal cycle operation in which heat is absorbed by a heat absorber.
  • the control device fully closes the outdoor expansion valve during internal cycle operation, and the refrigerant outlet of the outdoor heat exchanger communicates with the refrigerant suction side of the compressor. It is characterized by making it.
  • a compressor for compressing a refrigerant, an air flow passage through which air to be supplied to the vehicle interior flows, and a radiator for heating the air to be radiated from the refrigerant and supplied to the vehicle interior from the air flow passage.
  • a heat absorber for absorbing heat from the refrigerant and cooling the air supplied to the vehicle interior from the air flow passage, an outdoor heat exchanger for dissipating the refrigerant provided outside the vehicle compartment, and the outdoor from the radiator
  • An outdoor expansion valve for reducing the pressure of the refrigerant flowing into the heat exchanger, a shutter for preventing the running air from flowing into the outdoor heat exchanger, and a control device are provided, and at least discharged from the compressor by the control device.
  • a vehicle air conditioner that performs a dehumidifying and cooling operation in which heat is released from a radiator and an outdoor heat exchanger, and the radiated refrigerant is decompressed and then absorbed by a heat absorber.
  • the shutter In operation When the heat capacity is insufficient, the shutter is closed, so that the flow of running air to the outdoor heat exchanger is prevented and heat is not exchanged between the refrigerant and the outside air in the outdoor heat exchanger, or both It becomes possible to increase the heat dissipation amount of the refrigerant in the radiator by reducing the heat exchange amount extremely.
  • the operation of the compressor is controlled based on the temperature of the heat absorber in the dehumidifying and cooling operation, and the valve opening degree of the outdoor expansion valve is determined based on the pressure of the radiator.
  • the shutter is closed if the heat dissipating capacity of the heat sink is insufficient even if the valve opening degree of the outdoor expansion valve is reduced, or the invention of the invention of claim 3
  • the valve opening degree of the outdoor expansion valve is controlled to the minimum opening degree.
  • the control device as in the fourth aspect of the invention causes the trouble by stopping the outdoor blower when the shutter is closed. It is possible to increase the heat dissipation capability of the radiator.
  • the control device as in the invention of claim 5 allows the refrigerant discharged from the compressor to be dissipated by the radiator. Dissipate heat, depressurize the radiated refrigerant, and then shift to internal cycle operation in which heat is absorbed by the heat sink, thereby increasing the amount of refrigerant circulating in the heat sink than the dehumidifying and cooling operation to increase the heat radiation capacity in the heat sink, Comfortable cabin air conditioning can be maintained.
  • the refrigerant outlet of the outdoor heat exchanger is communicated with the refrigerant suction side of the compressor by the control device as in the sixth aspect of the invention.
  • the control device as in the sixth aspect of the invention.
  • FIG. 1 It is a block diagram of the air conditioning apparatus for vehicles of one Embodiment to which this invention is applied. It is a block diagram of the electric circuit of the controller of the vehicle air conditioner of FIG. It is a figure explaining the heating operation by the controller of FIG. It is a ph diagram of the heating operation of FIG. It is a figure explaining the dehumidification heating operation by the controller of FIG. It is a ph diagram of the dehumidification heating operation of FIG. It is a figure explaining the internal cycle driving
  • FIG. 10 is a ph diagram of the dehumidifying and cooling operation of FIG. 9. It is a figure explaining the cooling operation by the controller of FIG.
  • FIG. 12 is a ph diagram of the cooling operation of FIG. 11. It is a figure explaining the dehumidification cooling operation (shutter close) by the controller of FIG.
  • FIG. 14 is a ph diagram of the dehumidifying and cooling operation in FIG. 13. It is a figure explaining the 1st heating / battery cooling mode by the controller of FIG.
  • FIG. 16 is a ph diagram of the first heating / battery cooling mode in FIG. 15. It is a figure explaining the 3rd heating / battery cooling mode by the controller of FIG. FIG.
  • FIG. 18 is a ph diagram of the third heating / battery cooling mode in FIG. 17. It is a figure explaining the 2nd heating / battery cooling mode by the controller of FIG.
  • FIG. 20 is a ph diagram of the second heating / battery cooling mode in FIG. 19. It is another figure explaining the 2nd heating / battery cooling mode by the controller of FIG.
  • FIG. 22 is a ph diagram of the second heating / battery cooling mode in FIG. 21. It is another figure explaining the defrost / heating / battery cooling mode by the controller of FIG. It is a ph diagram of the defrost / heating / battery cooling mode of FIG. It is a figure explaining the air_conditioning
  • FIG. 26 is a ph diagram of the cooling / battery cooling mode of FIG. 25. It is a figure explaining the dehumidification cooling / battery cooling mode by the controller of FIG. It is a ph diagram in the dehumidifying cooling / battery cooling mode of FIG. It is a figure explaining the dehumidification cooling / battery cooling mode (shutter close) by the controller of FIG.
  • FIG. 30 is a ph diagram of the dehumidifying and cooling / battery cooling mode of FIG. 29. It is a figure explaining the internal cycle / battery cooling mode by the controller of FIG.
  • FIG. 32 is a ph diagram of the internal cycle / battery cooling mode of FIG. 31.
  • FIG. 34 is a ph diagram of the dehumidifying heating / battery cooling mode of FIG. 33. It is a figure explaining the battery cooling single mode by the controller of FIG. FIG. 36 is a ph diagram of the battery cooling single mode in FIG. 35.
  • FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention.
  • a vehicle according to an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted.
  • the battery 55 is mounted on the vehicle, and electric power charged in the battery 55 is used for traveling.
  • the vehicle air conditioner 1 according to the present invention is driven by the electric power of the battery 55.
  • the vehicle air conditioner 1 of the present invention is also driven by being supplied to an electric motor (not shown).
  • the vehicle air conditioner 1 of the embodiment performs heating operation by heat pump operation using the refrigerant circuit R in an electric vehicle that cannot be heated by engine waste heat, and further performs dehumidification heating operation, internal cycle operation, and dehumidification cooling. Air conditioning of the passenger compartment is performed by selectively executing each air conditioning operation of the operation and the cooling operation.
  • the present invention is not limited to an electric vehicle as a vehicle, but is also applicable to a so-called hybrid vehicle that uses an engine and an electric motor for traveling, and is also applicable to a normal vehicle that travels with an engine. Needless to say.
  • the vehicle air conditioner 1 performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and includes an electric compressor 2 that compresses refrigerant and vehicle interior air. Is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G, and dissipates the refrigerant into the vehicle compartment. And an outdoor expansion valve 6 comprising an electric valve that decompresses and expands the refrigerant during heating, and functions as a radiator that radiates the refrigerant during cooling and functions as an evaporator that absorbs the refrigerant during heating.
  • a heat absorber 9 to the accumulator 12 and the like are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed.
  • the outdoor expansion valve 6 expands the refrigerant flowing out of the radiator 4 and flowing into the outdoor heat exchanger 7 under reduced pressure, and can be fully closed.
  • the outdoor heat exchanger 7 is provided with an outdoor blower 15.
  • the outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing outside air through the outdoor heat exchanger 7, so that the outdoor air blower 15 can also be used outdoors even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). It is comprised so that external air may be ventilated by the heat exchanger 7.
  • the refrigerant pipe 13 ⁇ / b> A connected to the refrigerant outlet side of the outdoor heat exchanger 7 is connected to the refrigerant pipe 13 ⁇ / b> B via the check valve 18.
  • the check valve 18 has a forward direction on the refrigerant pipe 13B side.
  • the refrigerant pipe 13B is connected to the indoor expansion valve 8 via an electromagnetic valve 17 serving as an on-off valve that is opened during cooling.
  • the electromagnetic valve 17 and the indoor expansion valve 8 constitute a valve device for controlling the inflow of the refrigerant to the heat absorber 9.
  • the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched, and the branched refrigerant pipe 13D as the first bypass circuit has an electromagnetic valve 21 as a first on-off valve opened during heating.
  • the refrigerant pipe 13 ⁇ / b> C is connected to the accumulator 12, and the accumulator 12 is connected to the refrigerant suction side of the compressor 2. Furthermore, the refrigerant pipe 13E on the outlet side of the radiator 4 is branched into a refrigerant pipe 13J and a refrigerant pipe 13F before the outdoor expansion valve 6 (the refrigerant upstream side), and one of the branched refrigerant pipes 13J is the outdoor expansion valve 6. Is connected to the refrigerant inlet side of the outdoor heat exchanger 7.
  • the other branched refrigerant pipe 13F is located downstream of the check valve 18 and upstream of the refrigerant of the solenoid valve 17 via an electromagnetic valve 22 as a second on-off valve that is opened during dehumidification.
  • the refrigerant pipe 13A and the refrigerant pipe 13B are connected in communication with each other.
  • the refrigerant pipe 13F is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve 18, and the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve are connected.
  • This is a second bypass circuit that bypasses 18.
  • the outdoor expansion valve 6 is connected in parallel with a solenoid valve 20 as an on-off valve for bypass.
  • the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG. 1). 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation) which is air inside the vehicle compartment and the outside air (outside air introduction) which is outside the vehicle compartment. Furthermore, an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
  • the air (inside air and outside air) in the air flow passage 3 after flowing into the air flow passage 3 and passing through the heat absorber 9 is radiated into the air flow passage 3 on the air upstream side of the radiator 4.
  • An air mix damper 28 that adjusts the rate of ventilation through the vessel 4 is provided.
  • FOOT (foot), VENT (vent), and DEF (def) outlets are formed in the air flow passage 3 on the air downstream side of the radiator 4.
  • the air outlet 29 is provided with an air outlet switching damper 31 that performs switching control of air blowing from the air outlets.
  • the vehicle air conditioner 1 of the present invention includes a battery temperature adjusting device 61 for adjusting the temperature of the battery 55 by circulating a heat medium through the battery 55.
  • the battery temperature adjustment device 61 of the embodiment includes a circulation pump 62 as a circulation device for circulating a heat medium through the battery 55, a heat medium heater 66 as a heating device, and a refrigerant-heat medium heat exchanger 64. These and the battery 55 are annularly connected by a heat medium pipe 68.
  • the heat medium heater 66 is connected to the discharge side of the circulation pump 62, the inlet of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 is connected to the outlet of the heat medium heater 66, The inlet of the battery 55 is connected to the outlet of the heat medium flow path 64 ⁇ / b> A, and the outlet of the battery 55 is connected to the suction side of the circulation pump 62.
  • the heat medium used in the battery temperature adjusting device 61 for example, water, a refrigerant such as HFO-1234f, a liquid such as a coolant, or a gas such as air can be employed. In the embodiment, water is used as the heat medium.
  • the heat medium heater 66 is composed of an electric heater such as a PTC heater. Furthermore, it is assumed that a jacket structure is provided around the battery 55 so that the heat medium can circulate with the battery 55 in a heat exchange relationship.
  • the circulation pump 62 When the circulation pump 62 is operated, the heat medium discharged from the circulation pump 62 reaches the heat medium heater 66. If the heat medium heater 66 generates heat, it is heated there, and then It flows into the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64.
  • the heat medium exiting the heat medium flow path 64 ⁇ / b> A of the refrigerant-heat medium heat exchanger 64 reaches the battery 55.
  • the heat medium exchanges heat therewith with the battery 55 and is then circulated through the heat medium pipe 68 by being sucked into the circulation pump 62.
  • the outlet of the refrigerant pipe 13F of the refrigerant circuit R that is, the connecting portion between the refrigerant pipe 13F, the refrigerant pipe 13A, and the refrigerant pipe 13B is on the refrigerant downstream side (forward direction side) of the check valve 18 and is electromagnetically
  • One end of a branch pipe 72 serving as a branch circuit is connected to the upstream side of the refrigerant of the valve 17.
  • the branch pipe 72 is provided with an auxiliary expansion valve 73 composed of an electric valve.
  • the auxiliary expansion valve 73 decompresses and expands the refrigerant flowing into a refrigerant flow path 64B (described later) of the refrigerant-heat medium heat exchanger 64 and can be fully closed.
  • the other end of the branch pipe 72 is connected to the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, and one end of the refrigerant pipe 74 is connected to the outlet of the refrigerant flow path 64B.
  • the other end is connected to the refrigerant pipe 13C in front of the accumulator 12 (the refrigerant upstream side).
  • the auxiliary expansion valve 73 and the like also constitute part of the refrigerant circuit R and at the same time constitute part of the battery temperature adjusting device 61.
  • the refrigerant (a part or all of the refrigerant) discharged from the refrigerant pipe 13F and the outdoor heat exchanger 7 is decompressed by the auxiliary expansion valve 73, and then the refrigerant-heat medium heat exchanger. 64 flows into the refrigerant flow path 64B and evaporates there.
  • the refrigerant absorbs heat from the heat medium flowing through the heat medium flow path 64A in the process of flowing through the refrigerant flow path 64B, and then is sucked into the compressor 2 through the accumulator 12.
  • 32 is a controller (ECU) as a control device.
  • the controller 32 includes a microcomputer as an example of a computer having a processor, and inputs include an outside air temperature sensor 33 that detects the outside air temperature (Tam) of the vehicle and an outside air humidity sensor that detects the outside air humidity. 34, an HVAC suction temperature sensor 36 for detecting the temperature of the air sucked into the air flow passage 3 from the suction port 25, an inside air temperature sensor 37 for detecting the temperature of the air (inside air) in the passenger compartment, and the air in the passenger compartment Inside air humidity sensor 38 that detects humidity and indoor CO that detects the carbon dioxide concentration in the passenger compartment 2 A concentration sensor 39, a blowout temperature sensor 41 for detecting the temperature of air blown into the vehicle interior from the blowout port 29, a discharge pressure sensor 42 for detecting a discharge refrigerant pressure (discharge pressure Pd) of the compressor 2, and a compressor 2, a discharge temperature sensor 43 that detects the discharge refrigerant temperature 2, a suction temperature sensor 44 that detects the suction refrigerant temperature of the compressor 2, and the temperature of the
  • an air conditioning (air conditioner) operation unit 53 for setting a set temperature and switching of the air conditioning operation, and the temperature of the outdoor heat exchanger 7 (immediately after coming out of the outdoor heat exchanger 7)
  • the outdoor heat exchanger temperature TXO is the temperature of the refrigerant in the outdoor heat exchanger 7.
  • the outdoor heat exchanger temperature sensor 54 that detects the evaporation temperature) and the refrigerant pressure of the outdoor heat exchanger 7 (the pressure of the refrigerant in the outdoor heat exchanger 7 or immediately after exiting the outdoor heat exchanger 7).
  • the input of the controller 32 further includes a battery temperature sensor that detects the temperature of the battery 55 (the temperature of the battery 55 itself, the temperature of the heat medium that has exited the battery 55, or the temperature of the heat medium that enters the battery 55).
  • the output of the controller 32 includes the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the outlet switching damper 31, and the outdoor expansion.
  • the controller 32 switches between the air-conditioning operation of the heating operation, the dehumidifying heating operation, the internal cycle operation, the dehumidifying and cooling operation, and the cooling operation, and adjusts the temperature of the battery 55 within a predetermined appropriate temperature range.
  • each air conditioning operation of the refrigerant circuit R will be described.
  • FIGS. 3 and 4 show a refrigerant flow (solid arrow) in the refrigerant circuit R in the heating operation
  • FIG. 4 shows a ph diagram of the refrigerant circuit R in the heating operation.
  • each component apparatus of the refrigerant circuit R is shown on the ph diagram.
  • the controller 32 When the heating operation is selected by the controller 32 (auto mode) or by the manual operation (manual mode) to the air conditioning operation unit 53, the controller 32 opens the electromagnetic valve 21 (for heating) and the electromagnetic valve 17 (cooling). Close). Further, the solenoid valve 22 (for dehumidification) and the solenoid valve 20 (for bypass) are closed. The shutter 23 is opened. And the compressor 2 and each air blower 15 and 27 are drive
  • the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. Deprived, cooled, and condensed into liquid.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipes 13E and 13J.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15 (heat absorption).
  • the refrigerant circuit R becomes a heat pump. Then, the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 through the refrigerant pipe 13C through the refrigerant pipe 13A, the refrigerant pipe 13D, and the electromagnetic valve 21, and is separated into gas and liquid there. Repeated circulation inhaled. Since the air heated by the radiator 4 is blown out from the air outlet 29, the vehicle interior is thereby heated.
  • the controller 32 calculates a target radiator pressure PCO (target value of the pressure PCI of the radiator 4) from a target radiator temperature TCO (target value of the temperature TCI of the radiator 4) calculated from a target outlet temperature TAO described later.
  • the number of revolutions of the compressor 2 is controlled based on the target radiator pressure PCO and the refrigerant pressure of the radiator 4 (radiator pressure PCI. High pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47, Based on the temperature of the radiator 4 (the radiator temperature TCI) detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47, the valve opening degree of the outdoor expansion valve 6 is controlled. Controlling the degree of supercooling of the refrigerant at the outlet.
  • FIG. 5 shows a refrigerant flow (solid arrow) in the refrigerant circuit R in the dehumidifying heating operation
  • FIG. 6 shows a ph diagram of the refrigerant circuit R in the dehumidifying heating operation.
  • each component apparatus of the refrigerant circuit R is shown on the ph diagram.
  • the controller 32 opens the electromagnetic valve 22 and the electromagnetic valve 17 in the heating operation state. Further, the shutter 23 is opened.
  • the controller 32 controls the opening degree of the indoor expansion valve 8 so that the degree of superheat (SH) of the refrigerant at the outlet of the heat absorber 9 is maintained at a predetermined value.
  • the controller 32 controls the rotational speed of the compressor 2 based on the target radiator pressure PCO calculated from the target radiator temperature TCO and the radiator pressure PCI (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47.
  • the valve opening degree of the outdoor expansion valve 6 is controlled based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • FIG. 7 shows a refrigerant flow (solid arrow) in the refrigerant circuit R in the internal cycle operation
  • FIG. 8 shows a ph diagram of the refrigerant circuit R in the internal cycle operation.
  • each component apparatus of the refrigerant circuit R is shown on the ph diagram.
  • the controller 32 fully closes the outdoor expansion valve 6 in the dehumidifying and heating operation state (fully closed position).
  • the solenoid valve 21 is kept open, and the refrigerant outlet of the outdoor heat exchanger 7 is communicated with the refrigerant suction side of the compressor 2.
  • this internal cycle operation is a state in which the outdoor expansion valve 6 is fully closed by the control of the outdoor expansion valve 6 in the dehumidifying and heating operation
  • this internal cycle operation can also be regarded as a part of the dehumidifying and heating operation ( The shutter 23 is open).
  • the condensed refrigerant flowing through the refrigerant pipe 13 ⁇ / b> E via the radiator 4 passes through the electromagnetic valve 22 and becomes refrigerant. All flows into the pipe 13F.
  • coolant piping 13F reaches the indoor expansion valve 8 through the electromagnetic valve 17 from the refrigerant
  • the refrigerant After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 flows through the refrigerant pipe 13 ⁇ / b> C and repeats circulation that is sucked into the compressor 2 through the accumulator 12.
  • the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed. Since the refrigerant is circulated between the radiator 4 (radiation) and the heat absorber 9 (heat absorption) in the passage 3, heat from the outside air is not pumped up, and heating for the consumed power of the compressor 2 is performed. Ability is demonstrated. Since the entire amount of the refrigerant flows through the heat absorber 9 that exhibits the dehumidifying action, the dehumidifying capacity is higher than the dehumidifying and heating operation, but the heating capacity is lowered.
  • the outdoor expansion valve 6 is closed, the electromagnetic valve 21 is open, and the refrigerant outlet of the outdoor heat exchanger 7 communicates with the refrigerant suction side of the compressor 2, so that the liquid in the outdoor heat exchanger 7 is
  • the refrigerant flows out through the refrigerant pipe 13D and the electromagnetic valve 21 to the refrigerant pipe 13C, is collected by the accumulator 12, and the outdoor heat exchanger 7 is in a gas refrigerant state.
  • the controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 or the above-described radiator pressure PCI (high pressure of the refrigerant circuit R). At this time, the controller 32 controls the compressor 2 by selecting the lower one of the compressor target rotational speeds obtained from either calculation, depending on the temperature of the heat absorber 9 or the radiator pressure PCI.
  • FIGS. 9 and 10 show a refrigerant flow (solid arrow) in the refrigerant circuit R in the dehumidifying and cooling operation
  • FIG. 10 shows a ph diagram of the refrigerant circuit R in the dehumidifying and cooling operation.
  • each component apparatus of the refrigerant circuit R is shown on the ph diagram.
  • the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 22 and the electromagnetic valve 20 are closed. And the compressor 2 and each air blower 15 and 27 are drive
  • the shutter 23 is opened. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
  • the refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A and the check valve 18, and further reaches the indoor expansion valve 8 through the electromagnetic valve 17. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified. The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C, and repeats circulation that is sucked into the compressor 2 through the refrigerant pipe 13C.
  • Air that has been cooled and dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4 (reheating: lower heat dissipation capacity than during heating), so that dehumidification and cooling of the passenger compartment is performed. become.
  • the controller 32 sets the heat absorber temperature Te to the target heat absorber temperature TEO based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO that is the target value. While controlling the rotation speed of the compressor 2, the target radiator pressure PCO (radiator pressure) calculated from the radiator pressure PCI (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47 and the target radiator temperature TCO.
  • the necessary reheat amount by the radiator 4 is obtained by controlling the valve opening degree of the outdoor expansion valve 6 so that the radiator pressure PCI becomes the target radiator pressure PCO based on the PCI target value).
  • FIGS. 11 and 12 show a refrigerant flow (solid arrow) in the refrigerant circuit R in the cooling operation
  • FIG. 12 shows a ph diagram of the refrigerant circuit R in the cooling operation.
  • each component apparatus of the refrigerant circuit R is shown on the ph diagram.
  • the controller 32 opens the electromagnetic valve 20 in the dehumidifying and cooling operation state (the valve opening degree of the outdoor expansion valve 6 is free).
  • the air mix damper 28 is in a state of adjusting the ratio of air passing through the radiator 4. Further, the shutter 23 is opened. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Although the air in the air flow passage 3 is ventilated to the radiator 4, the ratio is small (because of only reheating during cooling), so this almost passes through, and the refrigerant exiting the radiator 4 is The refrigerant reaches the outdoor expansion valve 6 through the refrigerant pipe 13E.
  • the refrigerant passes through the refrigerant pipe 13J through the solenoid valve 20 and flows into the outdoor heat exchanger 7 as it is, and is then circulated by the outdoor air blower 15 by running or by the outdoor blower 15. It is cooled by air and condensed into liquid.
  • the refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A and the check valve 18, and further reaches the indoor expansion valve 8 through the electromagnetic valve 17. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates.
  • TAO (Tset ⁇ Tin) ⁇ K + Tbal (f (Tset, SUN, Tam)) .. (I)
  • Tset is the set temperature in the passenger compartment set by the air conditioning operation unit 53
  • Tin is the temperature of the passenger compartment air detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is the set temperature Tset
  • the solar radiation sensor 51 detects This is a balance value calculated from the amount of solar radiation SUN to be performed and the outside air temperature Tam detected by the outside air temperature sensor 33.
  • this target blowing temperature TAO is so high that the outside temperature Tam is low, and it falls as the outside temperature Tam rises.
  • the controller 32 selects one of the above air conditioning operations based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target outlet temperature TAO at the time of activation. In addition, after the activation, the air conditioning operations are selected and switched in accordance with changes in the environment and setting conditions such as the outside air temperature Tam and the target blowing temperature TAO.
  • the controller 32 is based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO that is the target value, and the heat absorber temperature Te.
  • the rotational speed of the compressor 2 is controlled so as to be the target heat absorber temperature TEO. Therefore, when the heat absorber temperature Te is satisfactory (the target heat absorber temperature TEO is at or close to the target heat absorber temperature TEO), the rotational speed of the compressor 2 is also low.
  • the controller 32 uses the radiator pressure PCI detected by the radiator pressure sensor 47 (the high pressure of the refrigerant circuit R) and the target radiator pressure PCO (the target value of the radiator pressure PCI) as the target heat dissipation.
  • the valve opening degree of the outdoor expansion valve 6 is controlled so as to obtain the vessel pressure PCO. Therefore, since the rotational speed of the compressor 2 cannot be increased when the heat absorber temperature Te is satisfactory, the controller 32 increases the valve opening degree of the outdoor expansion valve 6 as the radiator pressure PCI becomes lower than the target radiator pressure PCO. In order to increase the heat dissipating capability of the heat dissipator 4 by keeping the refrigerant in the heat dissipator 4 as much as possible.
  • the valve opening degree of the outdoor expansion valve 6 becomes smaller, the amount of circulating refrigerant in the heat absorber 9 decreases, so that temperature spots are generated in the heat absorber 9. And if the valve opening degree of the outdoor expansion valve 6 is reduced to the minimum control opening degree, the temperature spots of the heat absorber 9 become extremely large, and the air conditioning performance in the passenger compartment deteriorates (the air blown out by the air outlet). The air temperature will be different).
  • the heat exchange capacity of the radiator 4 is reduced by the amount of heat exchanged between the refrigerant and the outside air by the outdoor heat exchanger 7, and thus this problem occurs when the outside air temperature becomes low.
  • the controller 32 cannot reduce the radiator pressure PCI to the target radiator pressure PCO even if the valve opening degree of the outdoor expansion valve 6 is reduced (that is, In the case where the target radiator pressure PCO cannot be achieved by the control of the outdoor expansion valve 6), in this embodiment, even if the valve opening degree of the outdoor expansion valve 6 is set to the minimum control opening degree while the heat absorber temperature Te is satisfied, the radiator If the pressure PCI cannot be set to the target radiator pressure PCO, it is determined that the radiator 4 has insufficient heat dissipation capability, and the shutter 23 is closed and the outdoor fan 15 is stopped as shown in FIG. As a result, the traveling wind does not flow into the outdoor heat exchanger 7 and there is no ventilation of the outside air.
  • the heat of the refrigerant and the outside air in the outdoor heat exchanger 7 There is no exchange, or the heat exchange amount between the refrigerant and the outside air in the outdoor heat exchanger 7 becomes extremely small. Accordingly, the amount of heat dissipated by the refrigerant in the radiator 4 increases, so that the opening degree of the outdoor expansion valve 6 is remarkably reduced or the radiator pressure PCI is set to the target radiator pressure PCO without setting the minimum opening degree. As a result, temperature spots generated in the heat absorber 9 can be eliminated or suppressed. Further, by closing the shutter 23 in this way, the dehumidifying and cooling operation can be extended and the feasible range can be expanded without using a special electric heater or the like.
  • the controller 32 switches the air conditioning operation to the internal cycle operation of FIGS. 7 and 8.
  • coolant circulation amount of the radiator 4 (high-pressure side of the refrigerant circuit R) is increased rather than dehumidification cooling operation, the heat dissipation capability by the radiator 4 is increased, and comfortable vehicle interior air conditioning is maintained.
  • the valve opening of the outdoor expansion valve 6 is simply reduced to a predetermined small value in the dehumidifying and cooling operation.
  • the radiator pressure PCI cannot be made the target radiator pressure PCO even if it is reduced, or when the radiator pressure PCI cannot be made close to the target radiator pressure PCO, the heat dissipation capability of the radiator 4 May be determined to be insufficient.
  • the controller 32 of the vehicle air conditioner 1 of the present invention cools the temperature of the battery 55 within the appropriate temperature range by the battery temperature adjusting device 61 while performing the air conditioning operation as described above. Since the appropriate temperature range of the battery 55 is generally set to + 25 ° C. or higher and + 45 ° C. or lower, in the embodiment, the target battery temperature TBO (the target value of the temperature of the battery 55 (battery temperature Tb) is within the appropriate temperature range. For example, + 35 ° C.) is set.
  • TBO the target value of the temperature of the battery 55 (battery temperature Tb) is within the appropriate temperature range. For example, + 35 ° C.) is set.
  • the controller 32 uses the following formulas (II) and (III), for example, the required heating capacity Qtgt which is the heating capacity required for the radiator 4 and the heat dissipation.
  • the heating capacity Qhp that can be generated by the appliance 4 is calculated.
  • the controller 32 is requested
  • the required battery cooling capacity Qbat which is the cooling capacity of the battery 55, is calculated.
  • Qbat (Tb ⁇ TBO) ⁇ k1 ⁇ k2 (IV)
  • k1 is the specific heat [kj / kg ⁇ K] of the heat medium circulating in the battery temperature adjusting device 61
  • k2 is the flow rate of the heat medium [m. 3 / H].
  • the formula for calculating the required battery cooling capacity Qbat is not limited to the above, and may be calculated in consideration of other factors related to battery cooling other than the above.
  • the controller 32 sets all the auxiliary expansion valves 73 in the embodiment.
  • the battery temperature adjusting device 61 is also stopped.
  • the required battery cooling capacity Qbat calculated by the formula (IV) is positive.
  • the controller 32 opens the auxiliary expansion valve 73, operates the battery temperature adjusting device 61, and starts cooling the battery 55.
  • the controller 32 compares both of the required heating capacity Qtgt and the required battery cooling capacity Qbat, and compares the first and second heating / battery cooling modes described later with a second heating / battery cooling mode described later.
  • the third heating / battery cooling mode is switched and executed.
  • the controller 32 executes the first heating / battery cooling mode.
  • FIG. 15 shows a refrigerant flow (solid arrow) in the refrigerant circuit R and a heat medium flow (broken arrow) in the battery temperature adjusting device 61 in the first heating / battery cooling mode
  • FIG. 16 shows the first heating / battery cooling mode.
  • the ph diagram of the refrigerant circuit R in battery cooling mode is shown.
  • each component apparatus of the refrigerant circuit R is shown on the ph diagram.
  • the controller 32 In the first heating / battery cooling mode, the controller 32 further opens the electromagnetic valve 22 and opens the auxiliary expansion valve 73 in the heating operation state of the refrigerant circuit R shown in FIGS. Is the state to control. Then, the circulation pump 62 of the battery temperature adjusting device 61 is operated.
  • the refrigerant evaporated in the refrigerant flow path 64B is repeatedly circulated through the refrigerant pipe 74, the refrigerant pipe 13C, and the accumulator 12 and then sucked into the compressor 2 (indicated by solid arrows in FIG. 15).
  • the heat medium discharged from the circulation pump 62 passes through the heat medium heater 66 to reach the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 through the heat medium pipe 68, where it evaporates in the refrigerant flow path 64B.
  • the refrigerant absorbs heat and the heat medium is cooled.
  • the heat medium cooled by the endothermic action of the refrigerant exits the refrigerant-heat medium heat exchanger 64 and reaches the battery 55. After cooling the battery 55, the heat medium is repeatedly sucked into the circulation pump 62 (the broken line in FIG. 15). Indicated by an arrow). In this way, in the first heating / battery cooling mode, the refrigerant in the refrigerant circuit R evaporates in the outdoor heat exchanger 7 and the refrigerant-heat medium heat exchanger 64 and absorbs heat from the outside air, and the battery temperature adjusting device 61 It also absorbs heat from the heat medium (battery 55).
  • heat is pumped from the battery 55 via the heat medium, and the pumped heat is conveyed to the radiator 4 while being cooled, and can be used for heating the passenger compartment.
  • the controller 32 causes the heat medium heater 66 to generate heat (energization).
  • the heat medium heater 66 When the heat medium heater 66 generates heat, the heat medium discharged from the circulation pump 62 of the battery temperature adjusting device 61 is heated by the heat medium heater 66 and then the heat medium flow path of the refrigerant-heat medium heat exchanger 64.
  • the controller 32 stops the heat generation of the heat medium heater 66 (non-energization) when the heating capacity Qhp can achieve the required heating capacity Qtgt.
  • (8-2) Third heating / battery cooling mode
  • the controller 32 Perform heating / battery cooling mode.
  • FIG. 17 shows the refrigerant flow (solid arrow) in the refrigerant circuit R and the heat medium flow (broken arrow) in the battery temperature adjusting device 61 in the third heating / battery cooling mode
  • FIG. 18 shows the third heating / battery cooling mode.
  • the ph diagram of the refrigerant circuit R in battery cooling mode is shown.
  • each component apparatus of the refrigerant circuit R is shown on the ph diagram.
  • the controller 32 closes the electromagnetic valves 17, 20, 21 and fully closes the outdoor expansion valve 6, opens the electromagnetic valve 22, and opens the auxiliary expansion valve 73 to open the valve opening. Is the state to control.
  • the compressor 2 and the indoor fan 27 are operated, and the circulation pump 62 of the battery temperature adjusting device 61 is also operated (the heat medium heater 66 is not energized).
  • the heat medium heater 66 is not energized.
  • coolants which came out from the heat radiator 4 flow into the solenoid valve 22, and come to the refrigerant
  • the refrigerant then enters the branch pipe 72 and is depressurized by the auxiliary expansion valve 73, and then flows into the refrigerant flow path 64 ⁇ / b> B of the refrigerant-heat medium heat exchanger 64 through the branch pipe 72 and evaporates. At this time, an endothermic effect is exhibited.
  • the refrigerant evaporated in the refrigerant flow path 64B is repeatedly circulated through the refrigerant pipe 74, the refrigerant pipe 13C, and the accumulator 12 (indicated by solid arrows in FIG. 17).
  • the heat medium discharged from the circulation pump 62 passes through the heat medium heater 66 to reach the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 through the heat medium pipe 68, where it evaporates in the refrigerant flow path 64B.
  • the refrigerant absorbs heat and the heat medium is cooled.
  • the heat medium cooled by the endothermic action of the refrigerant leaves the refrigerant-heat medium heat exchanger 64 and reaches the battery 55.
  • the heat medium is repeatedly sucked into the circulation pump 62 (broken line in FIG. 18). Indicated by an arrow).
  • the refrigerant in the refrigerant circuit R evaporates in the refrigerant-heat medium heat exchanger 64 and absorbs heat only from the heat medium (battery 55) of the battery temperature adjusting device 61.
  • the refrigerant does not flow into the outdoor heat exchanger 7, and the refrigerant pumps up heat only from the battery 55 via the heat medium, so that while solving the problem of frost formation on the outdoor heat exchanger 7,
  • the battery 55 can be cooled and the heat pumped up from the battery 55 can be transferred to the radiator 4 to heat the passenger compartment.
  • FIG. 19 shows a refrigerant flow (solid arrow) in the refrigerant circuit R and a heat medium flow (broken arrow) in the battery temperature adjusting device 61 in the second heating / battery cooling mode
  • FIG. 20 shows the second heating / battery cooling mode.
  • the ph diagram of the refrigerant circuit R in battery cooling mode is shown.
  • each component apparatus of the refrigerant circuit R is shown on the ph diagram.
  • the controller 32 closes the electromagnetic valves 17, 20, 21, and 22, opens the outdoor expansion valve 6, and opens the auxiliary expansion valve 73 to control the valve opening. .
  • the compressor 2, the outdoor fan 15, and the indoor fan 27 are operated, the shutter 23 is opened, and the circulation pump 62 of the battery temperature adjusting device 61 is also operated (the heat medium heater 66 is not energized).
  • the refrigerant discharged from the radiator 4 flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6, and reaches the refrigerant upstream side of the electromagnetic valve 17 through the refrigerant pipe 13A.
  • the refrigerant then enters the branch pipe 72 and is depressurized by the auxiliary expansion valve 73, and then flows into the refrigerant flow path 64 ⁇ / b> B of the refrigerant-heat medium heat exchanger 64 through the branch pipe 72 and evaporates. At this time, an endothermic effect is exhibited.
  • the refrigerant evaporated in the refrigerant flow path 64B is repeatedly circulated through the refrigerant pipe 74, the refrigerant pipe 13C, and the accumulator 12 and then sucked into the compressor 2 (indicated by solid arrows in FIG. 19).
  • the heat medium discharged from the circulation pump 62 passes through the heat medium heater 66 to reach the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 through the heat medium pipe 68, where it evaporates in the refrigerant flow path 64B.
  • the refrigerant absorbs heat and the heat medium is cooled.
  • the heat medium cooled by the endothermic action of the refrigerant leaves the refrigerant-heat medium heat exchanger 64 and reaches the battery 55.
  • the heat pump repeats the circulation sucked into the circulation pump 62 (the broken line in FIG. 20). Indicated by an arrow).
  • the refrigerant in the refrigerant circuit R dissipates heat in the radiator 4 and the outdoor heat exchanger 7, evaporates in the refrigerant-heat medium heat exchanger 64, and the battery temperature adjusting device. Heat is absorbed from the heat medium 61 (battery 55).
  • the controller 32 adjusts the cooling capacity of the battery 55 by the battery temperature adjusting device 61 by controlling the operation (rotation speed NC) of the compressor 2 based on the battery temperature Tb detected by the battery temperature sensor 76 and the target battery temperature TBO. To do.
  • the flow rate of the refrigerant in the radiator 4 is controlled by controlling the valve opening degree of the outdoor expansion valve 6, the heat release amount of the refrigerant in the radiator 4 is adjusted, and the valve opening degree of the auxiliary expansion valve 73 is controlled.
  • the circulation of the refrigerant in the outdoor heat exchanger 7 is controlled, and the heat release amount of the refrigerant in the outdoor heat exchanger 7 is adjusted.
  • the battery 55 is cooled and the heat is discarded into the outside air so that the vehicle interior can be heated.
  • the heat generation amount of the battery 55 becomes extremely large, and the required battery cooling capacity Qbat becomes very large compared to the required heating capacity Qtgt (Qtgt ⁇ Qbat).
  • FIG. 21 shows the refrigerant flow (solid arrow) in the refrigerant circuit R and the heat medium flow (broken arrow) in the battery temperature adjusting device 61 in the second heating / battery cooling mode in this case
  • FIG. The ph diagram of the refrigerant circuit R in the second heating / battery cooling mode is shown (in FIG. 22, each component device of the refrigerant circuit R is shown on the ph diagram).
  • the electromagnetic valve 20 of the refrigerant circuit R is opened, so that the refrigerant radiated by the radiator 4 comes out of the radiator 4 and remains as it is in the outdoor heat exchanger 7. And flows into the outside air (indicated by solid arrows in FIG. 21). Thus, a large amount of excess heat can be released into the outside air while heating the vehicle interior using a large amount of heat generated by the battery 55.
  • the controller 32 controls the operation (rotation speed NC) of the compressor 2 based on the battery temperature Tb detected by the battery temperature sensor 76 and the target battery temperature TBO, thereby cooling the battery 55 by the battery temperature adjusting device 61. Adjust ability.
  • the controller 32 controls the ventilation to the outdoor heat exchanger 7 by opening and closing the rotation speed of the outdoor blower 15 and the shutter 23, and adjusts the heating capacity in the vehicle interior.
  • the controller 32 controls the air mix damper 28 to the radiator 4. For example, the air flow rate of the vehicle is controlled to decrease, and the heating capacity in the passenger compartment is adjusted.
  • the controller 32 radiates the refrigerant discharged from the compressor 2 with the radiator 4, depressurizes the radiated refrigerant, and then absorbs heat with the outdoor heat exchanger 7 and the refrigerant-heat medium heat exchanger 64.
  • the first heating / battery cooling mode the refrigerant discharged from the compressor 2 is radiated by the radiator 4 and the outdoor heat exchanger 7, and the radiated refrigerant is decompressed, and then the refrigerant-heat medium heat exchanger Since the second heating / battery cooling mode for absorbing heat at 64 is executed, the first heating / battery cooling mode is executed when the amount of heat generated by the battery 55 is small, and the outdoor heat exchanger 7 In addition, the vehicle interior can be heated while pumping up the heat of the battery 55 to cool the battery 55 and when the amount of heat generated by the battery 55 is large during rapid charging or the like, the second heating / Ba Run the luster cooling mode, emits thermal battery 55 to the outside air in the outdoor heat exchanger 7, while cooling the battery 55, it is possible to heat the passenger compartment.
  • the controller 32 prevents the refrigerant from flowing into the outdoor heat exchanger 7, radiates the refrigerant discharged from the compressor 2 with the radiator 4, depressurizes the radiated refrigerant, and then forms a refrigerant-heat medium.
  • the controller 32 switches and executes each heating / battery cooling mode described above based on the required heating capacity Qtgt required for the radiator 4 and the required battery cooling capacity Qbat required for the battery temperature adjusting device 61.
  • the controller 32 executes the first heating / battery cooling mode, and the required heating capacity Qtgt and the required battery cooling capacity Qbat are If the values are equal or approximate, the third heating / battery cooling mode is executed, and if the required battery cooling capacity Qbat is larger than the required heating capacity Qtgt, the second heating / battery cooling mode is executed.
  • the heating / battery cooling mode efficient heating of the passenger compartment and effective cooling of the battery 55 can be performed smoothly.
  • the controller 32 heats the heat medium by the heat medium heater 66 when the required heating capacity Qtgt cannot be achieved by the heating capacity Qhp that can be generated by the radiator 4.
  • the heat medium is heated by the heat medium heater 66 of the battery temperature adjusting device 61, The heat can be pumped up by the refrigerant to make up for the shortage.
  • the controller 32 adjusts the cooling capacity of the battery 55 by the battery temperature adjusting device 61 by controlling the operation of the compressor 2 (rotation speed NC) in the second heating / battery cooling mode, Since the refrigerant flow in the radiator 4 and the outdoor heat exchanger 7 or the ventilation to the radiator 4 and the outdoor heat exchanger 7 is controlled, the heating capacity of the vehicle interior by the radiator 4 is adjusted.
  • the heat generation amount of the battery 55 is large, the battery 55 is effectively cooled by adjusting the cooling capacity of the battery 55 by controlling the compressor 2 in the second heating / battery cooling mode. It becomes possible to adjust appropriately by controlling the circulation and ventilation of the refrigerant in the radiator 4 and the outdoor heat exchanger 7.
  • the controller 32 for controlling the flow of the refrigerant in the radiator 4 in this case is the outdoor expansion valve 6 for decompressing the refrigerant flowing into the outdoor heat exchanger 7, and the controller 32 is the outdoor heat exchanger.
  • the means for controlling the circulation of the refrigerant 7 is an auxiliary expansion valve 73 for reducing the pressure of the refrigerant flowing into the refrigerant-heat medium heat exchanger 64.
  • the controller 32 controls the ventilation to the radiator 4 in the embodiment by the air mix damper 28 for adjusting the ratio of the air in the air flow passage 3 to the radiator 4.
  • the means for controlling the ventilation to the outdoor heat exchanger 7 is an outdoor blower 15 for ventilating the outside air to the outdoor heat exchanger 7 and a shutter for preventing the running wind from flowing into the outdoor heat exchanger 7. 23.
  • the refrigerant circuit R absorbs heat from the outdoor expansion valve 6 for decompressing the refrigerant flowing out of the radiator 4 and flowing into the outdoor heat exchanger 7, and the refrigerant discharged from the outdoor heat exchanger 7.
  • a heat absorber 9 for cooling the air supplied from the flow passage 3 into the vehicle interior, an electromagnetic valve 17 and an indoor expansion valve 8 (valve device) for controlling the inflow of refrigerant to the heat absorber 9, and outdoor heat
  • a refrigerant pipe 13D (first bypass circuit) for sucking the refrigerant discharged from the exchanger 7 into the compressor 2 without flowing into the electromagnetic valve 17, and an electromagnetic valve 21 (first valve) provided in the refrigerant pipe 13D.
  • a refrigerant pipe 13F (second bypass circuit) for diverting the refrigerant from the radiator 4 from the refrigerant upstream side of the outdoor expansion valve 6 and flowing it to the refrigerant upstream side of the electromagnetic valve 17,
  • An electromagnetic valve 22 (second on-off valve) provided in the refrigerant pipe 13F;
  • the branch pipe 72 (branch circuit) for flowing the refrigerant from the medium pipe 13F to the refrigerant-heat medium heat exchanger 64 and the refrigerant that is provided in the branch pipe 72 and flows into the refrigerant-heat medium heat exchanger 64
  • An auxiliary expansion valve 73 for reducing the pressure and a check valve 18 for preventing the refrigerant from the refrigerant pipe 13F from flowing into the outdoor heat exchanger 7 are provided.
  • the controller 32 controls the outdoor expansion valve 6 and the electromagnetic valve 17.
  • the solenoid valve 21, the solenoid valve 22, the auxiliary expansion valve 73, and the circulation pump 62 of the battery temperature adjusting device 61 are controlled, and the first heating / battery cooling mode, the second heating / battery cooling mode, and the third heating / Since the battery cooling mode is switched and executed, the electromagnetic valve 21 and the electromagnetic valve 22 are opened, the electromagnetic valve 17 is closed, and the outdoor expansion valve 6 and the auxiliary expansion valve 73 are used for the outdoor heat exchanger 7 and the refrigerant-heat.
  • the first heating / battery cooling mode is executed by depressurizing the refrigerant flowing into the body heat exchanger 64, the solenoid valve 22 is opened, the outdoor expansion valve 6 is fully closed, and the solenoid valve 21 and the solenoid valve 17 are closed.
  • the auxiliary expansion valve 73 decompresses the refrigerant flowing into the refrigerant-heat medium heat exchanger 64 to execute the third heating / battery cooling mode, opens the outdoor expansion valve 6, opens the electromagnetic valve 21, the electromagnetic valve 22, and
  • the second heating / battery cooling mode can be executed by closing the electromagnetic valve 17 and reducing the pressure of the refrigerant flowing into the refrigerant-heat medium heat exchanger 64 by the auxiliary expansion valve 73.
  • the flow of the refrigerant into the heat absorber 9 is controlled by the electromagnetic valve 17 and the indoor expansion valve 8.
  • the indoor expansion valve 8 is constituted by an electric valve that can be fully closed, the electromagnetic valve 17 is deleted. It is also possible to achieve the role with only the indoor expansion valve 8. That is, in that case, in the embodiment of the present application, the operation of closing the electromagnetic valve 17 is an operation of fully closing the valve opening of the indoor expansion valve 8. (8-4) Defrosting / heating / battery cooling mode Next, the defrost / heating / battery cooling mode by the controller 32 will be described.
  • the controller 32 calculates, for example, the outdoor heat exchanger temperature TXObase at the time of non-frosting calculated from the outside air temperature Tam, the rotational speed NC of the compressor 2, and the outdoor heat exchanger temperature TXObase at the time of non-frosting and the outdoor
  • the outdoor heat exchanger temperature TXO detected by the heat exchanger temperature sensor 54 is constantly compared.
  • the defrosting / heating / battery cooling mode is performed in which heating of the vehicle interior and cooling of the battery 55 are performed while the outdoor heat exchanger 7 is defrosted (FIGS. 23 and 24).
  • the shutter 23 is closed in the state of the refrigerant circuit R in the second heating / battery cooling mode of FIG. 21 described above, and the inflow of traveling wind to the outdoor heat exchanger 7 is prevented. .
  • FIG. 23 shows the refrigerant flow (solid arrow) in the refrigerant circuit R and the heat medium flow (broken arrow) in the battery temperature adjusting device 61 in this defrost / heating / battery cooling mode, and FIG.
  • the ph diagram of the refrigerant circuit R in the battery cooling mode is shown (in FIG. 24, each component device of the refrigerant circuit R is shown on the ph diagram).
  • the high-temperature refrigerant discharged from the compressor 2 flows into the radiator 4 to dissipate heat, heats the air flowing through the air flow passage 3, and then passes through the electromagnetic valve 20 to the outdoor heat exchanger 7. Inflow. Since no outdoor air or traveling air is passed through the outdoor heat exchanger 7, the frost that has grown on the outdoor heat exchanger 7 is heated and melted by the high-temperature refrigerant that has flowed.
  • the refrigerant absorbs heat from the heat medium circulating in the battery temperature adjusting device 61.
  • the battery 55 is cooled and the vehicle interior is heated while the outdoor heat exchanger 7 is defrosted by the heat pumped up from the heat medium. It will be.
  • the heat medium heater 66 may be caused to generate heat by the controller 32.
  • the heat of the heat medium heater 66 is also pumped up by the refrigerant and conveyed to the outdoor heat exchanger 7 to contribute to defrosting.
  • the controller 32 allows the refrigerant discharged from the compressor 2 to flow into the radiator 4 and the outdoor heat exchanger 7 in a state in which the outside air is not passed through the outdoor heat exchanger 7 or in a state where the inflow of running air is blocked. Since the defrosting / heating / battery cooling mode in which the refrigerant-heat medium heat exchanger 64 absorbs heat is executed after the radiated refrigerant is decompressed by the auxiliary expansion valve 73, the refrigerant is discharged from the compressor 2.
  • Cooling / battery cooling mode Next, during the above-described cooling operation, when the battery temperature Tb rises due to charging / discharging or the like and becomes higher than the target battery temperature TBO (TBO ⁇ Tb), in the embodiment, the controller 32 opens the auxiliary expansion valve 73, and the battery The cooling / battery cooling mode is executed by operating the temperature adjustment device 61 to start cooling the battery 55 (FIGS. 25 and 26). In this cooling / battery cooling mode, the controller 32 opens the auxiliary expansion valve 73 to control the valve opening degree in the state of the refrigerant circuit R in the cooling operation of FIG.
  • FIG. 25 shows the refrigerant flow (solid arrow) in the refrigerant circuit R in this cooling / battery cooling mode and the heat medium flow (broken arrow) in the battery temperature adjusting device 61
  • FIG. 26 shows the refrigerant circuit in the cooling / battery cooling mode.
  • a ph diagram of R is shown (in FIG. 26, each component device of the refrigerant circuit R is shown on the ph diagram).
  • the high-temperature refrigerant discharged from the compressor 2 sequentially flows into the outdoor heat exchanger 7 through the radiator 4 and the electromagnetic valve 20, and exchanges heat with the outside air and traveling air that are ventilated by the outdoor blower 15.
  • a part of the refrigerant condensed in the outdoor heat exchanger 7 reaches the indoor expansion valve 8 and is decompressed there, and then flows into the heat absorber 9 and evaporates. Since the air in the air flow passage 3 is cooled by the heat absorption action at this time, the passenger compartment is cooled.
  • the remainder of the refrigerant condensed in the outdoor heat exchanger 7 is diverted to the branch pipe 72, decompressed by the auxiliary expansion valve 73, and then evaporated in the refrigerant flow path 64 ⁇ / b> B of the refrigerant-heat medium heat exchanger 64. Since the refrigerant absorbs heat from the heat medium circulating in the battery temperature adjusting device 61, the battery 55 is cooled in the same manner as described above.
  • the refrigerant from the heat absorber 9 is sucked into the compressor 2 through the refrigerant pipe 13C and the accumulator 12, and the refrigerant from the refrigerant-heat medium heat exchanger 64 is also passed from the refrigerant pipe 74 through the accumulator 12 to the compressor 2.
  • the controller 32 opens the auxiliary expansion valve 73,
  • the dehumidifying cooling / battery cooling mode is executed by operating the battery temperature adjusting device 61 to start cooling the battery 55 (FIGS. 27 and 28).
  • the controller 32 opens the auxiliary expansion valve 73 to control the valve opening degree in the state of the refrigerant circuit R in the dehumidifying cooling operation shown in FIG.
  • the pump 62 is also operated to bring the refrigerant and the heat medium into heat exchange in the refrigerant-heat medium heat exchanger 64.
  • the heat medium heater 66 is not energized.
  • FIG. 27 shows the refrigerant flow (solid arrow) in the refrigerant circuit R and the heat medium flow (broken arrow) in the battery temperature adjustment device 61 in this dehumidifying cooling / battery cooling mode
  • FIG. 28 shows the dehumidifying cooling / battery cooling mode in FIG.
  • the ph diagram of the refrigerant circuit R is shown (in FIG. 28, each component device of the refrigerant circuit R is shown on the ph diagram). Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
  • the refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. A part of the refrigerant exiting the outdoor heat exchanger 7 reaches the indoor expansion valve 8 where the pressure is reduced and then flows into the heat absorber 9 and evaporates.
  • the air supplied from the air flow passage 3 to the vehicle interior is cooled and dehumidified by the heat absorption action at this time, so that the vehicle interior is dehumidified and cooled.
  • the remainder of the refrigerant condensed in the outdoor heat exchanger 7 is diverted to the branch pipe 72, decompressed by the auxiliary expansion valve 73, and then evaporated in the refrigerant flow path 64 ⁇ / b> B of the refrigerant-heat medium heat exchanger 64. Since the refrigerant absorbs heat from the heat medium circulating in the battery temperature adjusting device 61, the battery 55 is cooled in the same manner as described above.
  • FIG. 29 shows the flow of refrigerant and the state of the shutter 23 in this dehumidifying cooling / battery cooling mode (shutter closed), and FIG. 30 shows a ph diagram of the refrigerant circuit R (in FIG.
  • each configuration of the refrigerant circuit R The instrument is shown on the ph diagram). That is, also in this case, since the running wind does not flow into the outdoor heat exchanger 7 and there is no ventilation of the outside air, as shown in the ph diagram of FIG. 30, the refrigerant and the outside air in the outdoor heat exchanger 7 The amount of heat exchange is extremely small. Accordingly, the amount of heat dissipated by the refrigerant in the radiator 4 increases, so that the opening degree of the outdoor expansion valve 6 is remarkably reduced or the radiator pressure PCI is set to the target radiator pressure PCO without setting the minimum opening degree. As a result, temperature spots generated in the heat absorber 9 can be prevented. As in the case of FIG.
  • the refrigerant that has exited the outdoor heat exchanger 7 is divided into one that is directed from the indoor expansion valve 8 to the heat absorber 9 and one that is directed to the branch pipe 72, and the refrigerant that has flowed into the branch pipe 72 is auxiliary expanded.
  • the refrigerant evaporates in the refrigerant flow path 64 ⁇ / b> B of the refrigerant-heat medium heat exchanger 64. Since the refrigerant absorbs heat from the heat medium circulating in the battery temperature adjusting device 61, the battery 55 is cooled in the same manner as described above.
  • the controller 32 opens the auxiliary expansion valve 73 to control the valve opening degree in the state of the refrigerant circuit R in the internal cycle operation of FIG.
  • the pump 62 is also operated to bring the refrigerant and the heat medium into heat exchange in the refrigerant-heat medium heat exchanger 64.
  • the heat medium heater 66 is not energized.
  • FIG. 31 shows the refrigerant flow (solid arrow) in the refrigerant circuit R in this internal cycle / battery cooling mode and the heat medium flow (broken arrow) in the battery temperature regulator 61
  • FIG. 32 shows the internal cycle / battery cooling mode.
  • the ph diagram of the refrigerant circuit R is shown (in FIG.
  • each component device of the refrigerant circuit R is shown on the ph diagram).
  • coolant discharged from the compressor 2 is thermally radiated with the heat radiator 4, it will flow to the refrigerant
  • a part of the refrigerant exiting the refrigerant pipe 13F reaches the indoor expansion valve 8 via the electromagnetic valve 17 from the refrigerant pipe 13B, and is decompressed there, and then flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the remaining refrigerant exiting the refrigerant pipe 13F is diverted to the branch pipe 72, decompressed by the auxiliary expansion valve 73, and then evaporated in the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64. Since the refrigerant absorbs heat from the heat medium circulating in the battery temperature adjusting device 61, the battery 55 is cooled in the same manner as described above.
  • the refrigerant from the heat absorber 9 is sucked into the compressor 2 through the refrigerant pipe 13C and the accumulator 12, and the refrigerant from the refrigerant-heat medium heat exchanger 64 is also passed from the refrigerant pipe 74 through the accumulator 12 to the compressor 2. Will be inhaled.
  • the controller 32 opens the auxiliary expansion valve 73 in the embodiment,
  • the dehumidifying heating / battery cooling mode is executed by operating the battery temperature adjusting device 61 and starting the cooling of the battery 55 (FIGS. 33 and 34).
  • the controller 32 opens the auxiliary expansion valve 73 and controls the valve opening degree in the state of the refrigerant circuit R in the dehumidifying heating operation of FIG.
  • FIG. 33 shows the refrigerant flow (solid arrow) in the refrigerant circuit R and the heat medium flow (broken arrow) in the dehumidifying heating / battery cooling mode
  • FIG. 34 shows the dehumidifying heating / battery cooling mode.
  • the ph diagram of the refrigerant circuit R is shown (in FIG. 34, each component device of the refrigerant circuit R is shown on the ph diagram).
  • a part of the condensed refrigerant exiting the radiator 4 is diverted, and the diverted refrigerant flows into the refrigerant pipe 13F through the electromagnetic valve 22, and comes out of the refrigerant pipe 13F, and a part of the refrigerant pipe is refrigerant pipe.
  • the refrigerant flows from 13B to the indoor expansion valve 8, and the remaining refrigerant flows to the outdoor expansion valve 6. That is, after a part of the divided refrigerant is decompressed by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates.
  • the remainder of the refrigerant exiting the refrigerant pipe 13F flows into the branch pipe 72, is decompressed by the auxiliary expansion valve 73, and evaporates in the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64. Since the refrigerant absorbs heat from the heat medium circulating in the battery temperature adjusting device 61, the battery 55 is cooled in the same manner as described above.
  • the refrigerant discharged from the heat absorber 9 is sucked into the compressor 2 through the refrigerant pipe 13C and the accumulator 12, and the refrigerant discharged from the outdoor heat exchanger 7 passes through the refrigerant pipe 13D, the electromagnetic valve 21, the refrigerant pipe 13C, and the accumulator 12. Then, the refrigerant that is sucked into the compressor 2 and exits the refrigerant-heat medium heat exchanger 64 is also sucked into the compressor 2 from the refrigerant pipe 74 through the accumulator 12.
  • the controller 32 executes the battery cooling single mode (FIGS. 35 and 36).
  • the battery cooling single mode since there is no passenger in the vehicle interior, there is no need to air-condition the vehicle interior, but the controller 32 operates the compressor 2 and also operates the outdoor blower 15. Further, the electromagnetic valve 20 is opened, and the auxiliary expansion valve 73 is also opened to decompress the refrigerant. Furthermore, the controller 32 closes the solenoid valve 17, the solenoid valve 21, and the solenoid valve 22, and also stops the indoor blower 26.
  • FIG. 35 shows the refrigerant flow (solid arrow) in the refrigerant circuit R in the battery cooling single mode and the heat medium flow (broken arrow) in the battery temperature adjusting device 61
  • FIG. 36 shows the refrigerant circuit R in the battery cooling single mode.
  • the ph diagram is shown (in FIG. 36, each component device of the refrigerant circuit R is shown on the ph diagram).
  • the solenoid valve 20 since the solenoid valve 20 is opened, the refrigerant passes through the refrigerant pipe 13J through the solenoid valve 20, flows into the outdoor heat exchanger 7 as it is, is cooled by the outside air ventilated by the outdoor blower 15, and is condensed and liquefied. To do.
  • the outdoor heat exchanger 7 In the case where frost has grown on the outdoor heat exchanger 7, the outdoor heat exchanger 7 is defrosted by the heat dissipation action at this time.
  • the refrigerant that has exited the outdoor heat exchanger 7 enters the refrigerant pipe 13A.
  • the electromagnetic valve 17 is closed, so that all of the refrigerant that has exited the outdoor heat exchanger 7 passes through the branch pipe 72 to the auxiliary expansion valve 73.
  • the refrigerant is decompressed by the auxiliary expansion valve 73 and then flows into the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64 to evaporate. At this time, an endothermic effect is exhibited.
  • the refrigerant evaporated in the refrigerant flow path 64B is repeatedly circulated through the refrigerant pipe 74, the refrigerant pipe 13C, and the accumulator 12 and then sucked into the compressor 2 (indicated by solid arrows in FIG. 35).
  • the heat medium discharged from the circulation pump 62 passes through the heat medium heater 66 to reach the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 through the heat medium pipe 68, where it evaporates in the refrigerant flow path 64B.
  • the refrigerant absorbs heat and the heat medium is cooled.
  • the heat medium cooled by the endothermic action of the refrigerant leaves the refrigerant-heat medium heat exchanger 64 and reaches the battery 55, and after cooling the battery 55, the circulation sucked into the circulation pump 62 is repeated.
  • the controller 32 controls the operation of the compressor 2 and the circulation pump 62 based on, for example, the battery temperature Tb detected by the battery temperature sensor 76 and the target battery temperature TBO.
  • the battery 55 has a charge / discharge performance that decreases when the battery temperature Tb becomes lower than the above-described appropriate temperature range in a low temperature environment.
  • the battery temperature adjusting device 61 is provided with the heat medium heater 66.
  • the controller 32 causes the heat medium heater 66 to generate heat and heats the heat medium circulated to the battery 55.
  • the battery temperature Tb is raised and maintained in an appropriate temperature range.
  • the controller 32 is configured to prevent the refrigerant from circulating through the refrigerant-heat medium heat exchanger 64 by fully closing the auxiliary expansion valve 73.
  • the configurations of the refrigerant circuit R and the battery temperature adjusting device 61 described in the above embodiments are not limited thereto, and it goes without saying that they can be changed without departing from the spirit of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Provided is a vehicular air conditioner capable of expanding the executable range in a dehumidifying/cooling operation by preventing or suppressing the occurrence of temperature variation in a heat sink during the dehumidifying/cooling operation. After a refrigerant discharged from a compressor (2) dissipates heat in a radiator (4) and an outdoor heat exchanger (7), and the resultant heat-dissipated refrigerant is depressurized, a dehumidifying/cooling operation is executed in which heat is absorbed by a heat sink (9). In the dehumidifying/cooling operation, the compressor is controlled on the basis of the temperature of the heat sink and the valve opening of an outdoor expansion valve (6) is controlled on the basis of the pressure of the radiator. In a case where the heat radiation capability of the radiator is insufficient in the dehumidifying/cooling operation, a shutter (23) is closed.

Description

車両用空気調和装置Air conditioner for vehicles
 本発明は、車両の車室内を空調するヒートポンプ方式の空気調和装置、特に室外熱交換器への走行風の流入を阻止できるシャッタを備えたハイブリッド自動車や電気自動車に好適な車両用空気調和装置に関するものである。 The present invention relates to a heat pump type air conditioner that air-conditions a vehicle interior of a vehicle, and more particularly to a vehicle air conditioner suitable for a hybrid vehicle or an electric vehicle having a shutter capable of preventing the flow of traveling wind into an outdoor heat exchanger. Is.
 近年の環境問題の顕在化から、バッテリから供給される電力で走行用モータを駆動するハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する圧縮機と、車室内側に設けられて冷媒を放熱させる放熱器と、車室内側に設けられて冷媒を吸熱させる吸熱器と、車室外側に設けられて外気が通風されると共に、冷媒を吸熱又は放熱させる室外熱交換器と、放熱器を出て室外熱交換器に流入する冷媒を減圧する室外膨張弁が接続された冷媒回路を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、室外熱交換器において吸熱させる暖房モード(暖房運転)と、圧縮機から吐出された冷媒を放熱器において放熱させ、吸熱器と室外熱交換器において吸熱させる除湿暖房モード(除湿暖房運転)と、圧縮機から吐出された冷媒を放熱器と室外熱交換器において放熱させ、吸熱器において吸熱させる除湿冷房モード(除湿冷房運転)と、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器において吸熱させる冷房モード(冷房運転)を切り換えて実行するものが開発されている(例えば、特許文献1参照)。また、前記特許文献ではグリルシャッタを設け、室外熱交換器への走行風の流入を阻止することができるようにしていた。 Since environmental problems have become apparent in recent years, hybrid vehicles and electric vehicles that drive a traveling motor with electric power supplied from a battery have become widespread. As an air conditioner that can be applied to such a vehicle, a compressor that compresses and discharges the refrigerant, a radiator that is provided on the vehicle interior side and dissipates the refrigerant, and is provided on the vehicle interior side. A heat absorber that absorbs the refrigerant, an outdoor heat exchanger that is provided outside the passenger compartment and vents the outside air, absorbs or dissipates the refrigerant, and decompresses the refrigerant flowing out of the radiator and flowing into the outdoor heat exchanger. It has a refrigerant circuit connected to an outdoor expansion valve, dissipates the refrigerant discharged from the compressor in the radiator and heats the refrigerant in the outdoor heat exchanger and heats the refrigerant discharged from the compressor. Dehumidifying and heating mode (dehumidifying and heating operation) in which heat is radiated in the radiator and absorbed in the heat absorber and the outdoor heat exchanger, and the refrigerant discharged from the compressor is radiated in the radiator and the outdoor heat exchanger, and is absorbed in the heat absorber. It has been developed to switch between a dehumidifying and cooling mode (dehumidifying and cooling operation) to be performed and a cooling mode (cooling operation) in which the refrigerant discharged from the compressor dissipates heat in the outdoor heat exchanger and absorbs heat in the heat absorber (see FIG. For example, see Patent Document 1). Further, in the above-mentioned patent document, a grill shutter is provided so that running air can be prevented from flowing into the outdoor heat exchanger.
特開2015−205564号公報Japanese Patent Laying-Open No. 2015-205564
 ここで、前記除湿冷房モード(除湿冷房運転)では、吸熱器の温度に基づいて圧縮機を制御し、吸熱器における必要な吸熱能力(除湿/冷房能力)を得ると共に、放熱器の圧力に基づいて室外膨張弁の弁開度を制御することで放熱器における必要な放熱能力(加熱能力、リヒート量)を得るように構成されている。即ち、放熱器の放熱能力が不足する場合には室外膨張弁の弁開度が縮小されるかたちとなる。
 しかしながら、室外膨張弁の弁開度が小さくなる程、吸熱器の循環冷媒量が減少するため、吸熱器に温度斑が生じるようになる。そして、吸熱器の温度が満足な状態で、室外膨張弁の弁開度が制御上の最小開度まで縮小されると、吸熱器の温度斑は極めて大きくなり、吹出口によって吹き出される空気の温度が異なってしまう現象が生じる。
 特に、除湿冷房モード(除湿冷房運転)では室外熱交換器で冷媒が外気と熱交換する分、放熱器における放熱能力は低くなるため、外気温度が低くなった場合等にはこのような問題が生じ易くなり、早期に除湿暖房モード(除湿暖房運転)に移行してしまうことになる。これを防止するには格別な電気ヒータ等を設けて車室内に吹き出される空気を加熱する必要があるが、その場合には消費電力が増大する欠点がある。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、除湿冷房運転における吸熱器の温度斑の発生を防止若しくは抑制することで、除湿冷房運転の実行可能範囲を拡げることができる車両用空気調和装置を提供することを目的とする。
Here, in the dehumidifying and cooling mode (dehumidifying and cooling operation), the compressor is controlled based on the temperature of the heat absorber to obtain a necessary heat absorption capability (dehumidification / cooling capability) in the heat absorber and based on the pressure of the radiator. By controlling the valve opening degree of the outdoor expansion valve, it is configured to obtain the necessary heat dissipation capability (heating capability, reheat amount) in the radiator. That is, when the heat dissipating capacity of the radiator is insufficient, the valve opening degree of the outdoor expansion valve is reduced.
However, as the valve opening degree of the outdoor expansion valve decreases, the amount of circulating refrigerant in the heat absorber decreases, so that temperature spots are generated in the heat absorber. And when the temperature of the heat sink is satisfactory and the valve opening of the outdoor expansion valve is reduced to the minimum control opening, the temperature spot of the heat absorber becomes extremely large, and the air blown out by the air outlet A phenomenon occurs in which the temperature differs.
In particular, in the dehumidifying and cooling mode (dehumidifying and cooling operation), the heat radiation capacity of the radiator is reduced by the amount of heat exchanged between the refrigerant and the outside air by the outdoor heat exchanger. It becomes easy to occur, and it will transfer to dehumidification heating mode (dehumidification heating operation) at an early stage. In order to prevent this, it is necessary to provide a special electric heater or the like to heat the air blown into the vehicle interior. In this case, however, there is a disadvantage that the power consumption increases.
The present invention has been made to solve the conventional technical problems, and expands the executable range of the dehumidifying and cooling operation by preventing or suppressing the occurrence of temperature spots of the heat absorber in the dehumidifying and cooling operation. An object of the present invention is to provide a vehicle air conditioner that can be used.
 本発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を放熱させるための室外熱交換器と、放熱器から出て室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、室外熱交換器への走行風の流入を阻止するためのシャッタと、制御装置を備え、この制御装置により少なくとも、圧縮機から吐出された冷媒を放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる除湿冷房運転を実行するものであって、制御装置は、除湿冷房運転において放熱器の放熱能力が不足する場合、シャッタを閉じることを特徴とする。
 請求項2の発明の車両用空気調和装置は、上記発明において制御装置は、除湿冷房運転においては吸熱器の温度に基づいて圧縮機の運転を制御し、放熱器の圧力に基づいて室外膨張弁の弁開度を制御すると共に、吸熱器の温度が満足な状態で、室外膨張弁の弁開度を縮小させても放熱器の放熱能力が不足する場合、シャッタを閉じることを特徴とする。
 請求項3の発明の車両用空気調和装置は、上記各発明において制御装置は、除湿冷房運転においては、放熱器の圧力がその目標値となるように室外膨張弁の弁開度を制御すると共に、当該室外膨張弁の弁開度を制御上の最小開度としても放熱器の圧力を目標値とすることができない場合、放熱器の放熱能力が不足していると判断してシャッタを閉じることを特徴とする。
 請求項4の発明の車両用空気調和装置は、上記各発明において室外熱交換器に外気を通風するための室外送風機を備え、制御装置は、シャッタを閉じた場合、室外送風機も停止することを特徴とする。
 請求項5の発明の車両用空気調和装置は、上記各発明において制御装置は、除湿冷房運転においてシャッタを閉じても放熱器の放熱能力が不足する場合、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる内部サイクル運転に移行することを特徴とする。
 請求項6の発明の車両用空気調和装置は、上記発明において制御装置は、内部サイクル運転では室外膨張弁を全閉とすると共に、室外熱交換器の冷媒出口は圧縮機の冷媒吸込側に連通させることを特徴とする。
The vehicle air conditioner of the present invention heats the compressor that compresses the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air that dissipates the refrigerant and is supplied from the air flow passage to the vehicle interior. A heat sink for absorbing heat from the air flow passage to cool the air supplied to the passenger compartment, an outdoor heat exchanger for dissipating the refrigerant provided outside the passenger compartment, and a radiator An outdoor expansion valve for depressurizing refrigerant flowing out of the outdoor heat exchanger, a shutter for preventing the flow of traveling wind into the outdoor heat exchanger, and a control device, and at least by this control device, The refrigerant discharged from the compressor is radiated by a radiator and an outdoor heat exchanger, and after depressurizing the radiated refrigerant, the dehumidifying and cooling operation is performed in which heat is absorbed by the heat absorber. In dehumidifying and cooling operation, If the thermal capacity is insufficient, characterized by closing the shutter.
According to a second aspect of the present invention, in the vehicle air conditioner of the present invention, the control device controls the operation of the compressor based on the temperature of the heat absorber in the dehumidifying and cooling operation, and the outdoor expansion valve based on the pressure of the radiator. When the temperature of the heat sink is satisfactory and the heat release capacity of the radiator is insufficient even when the valve opening of the outdoor expansion valve is reduced, the shutter is closed.
According to a third aspect of the present invention, in the above-described invention, the control device controls the valve opening degree of the outdoor expansion valve so that the pressure of the radiator becomes a target value in the dehumidifying and cooling operation. If the pressure of the radiator cannot be set to the target value even if the valve opening degree of the outdoor expansion valve is set to the minimum control opening degree, it is determined that the heat radiating capacity of the radiator is insufficient and the shutter is closed. It is characterized by.
According to a fourth aspect of the present invention, there is provided an air conditioner for a vehicle including an outdoor fan for ventilating outdoor air to the outdoor heat exchanger in each of the above inventions, and the controller stops the outdoor fan when the shutter is closed. Features.
According to a fifth aspect of the present invention, there is provided an air conditioning apparatus for a vehicle according to each of the above-mentioned inventions, wherein the control device removes the refrigerant discharged from the compressor if the heat dissipation capability of the radiator is insufficient even when the shutter is closed in the dehumidifying and cooling operation. After the heat is dissipated, the refrigerant that has been dissipated is depressurized, and then the operation shifts to an internal cycle operation in which heat is absorbed by a heat absorber.
According to a sixth aspect of the present invention, in the vehicle air conditioner according to the sixth aspect, the control device fully closes the outdoor expansion valve during internal cycle operation, and the refrigerant outlet of the outdoor heat exchanger communicates with the refrigerant suction side of the compressor. It is characterized by making it.
 本発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を放熱させるための室外熱交換器と、放熱器から出て室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、室外熱交換器への走行風の流入を阻止するためのシャッタと、制御装置を備え、この制御装置により少なくとも、圧縮機から吐出された冷媒を放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる除湿冷房運転を実行する車両用空気調和装置において、制御装置が、除湿冷房運転において放熱器の放熱能力が不足する場合、シャッタを閉じるようにしたので、室外熱交換器への走行風の流入を阻止して室外熱交換器にて冷媒と外気とが熱交換しないようにし、若しくは、両者の熱交換量を極めて小さくして放熱器における冷媒の放熱量を増大させることができるようになる。
 これにより、例えば、請求項2の発明の如く制御装置により、除湿冷房運転においては吸熱器の温度に基づいて圧縮機の運転を制御し、放熱器の圧力に基づいて室外膨張弁の弁開度を制御する場合に、吸熱器の温度が満足な状態で、室外膨張弁の弁開度を縮小させても放熱器の放熱能力が不足する場合にシャッタを閉じ、或いは、請求項3の発明の如く制御装置により、除湿冷房運転においては、放熱器の圧力がその目標値となるように室外膨張弁の弁開度を制御する場合に、当該室外膨張弁の弁開度を制御上の最小開度としても放熱器の圧力を目標値とすることができない場合、放熱器の放熱能力が不足していると判断してシャッタを閉じることで、吸熱器に生じる温度斑を解消若しくは抑制しながら、放熱器における必要な放熱能力を得ることができるようになる。
 従って、本発明によれば格別なヒータ等を用いること無く、除湿冷房運転を延長することができるようになり、その実行可能範囲を拡げて快適な車室内空調を実現することができるようになる。
 また、室外熱交換器に外気を通風するための室外送風機が設けられている場合には、請求項4の発明の如く制御装置により、シャッタを閉じた場合は室外送風機も停止することで、支障無く放熱器における放熱能力の増大を図ることができるようになる。
 一方、上述したように除湿冷房運転においてシャッタを閉じても放熱器の放熱能力が不足する場合には、請求項5の発明の如く制御装置により、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる内部サイクル運転に移行することで、除湿冷房運転よりも放熱器の冷媒循環量を増やして放熱器における放熱能力を増大させ、快適な車室内空調を維持することができるようになる。
 ここで、上記内部サイクル運転で室外膨張弁を全閉とする場合は、請求項6の発明の如く制御装置により、室外熱交換器の冷媒出口を圧縮機の冷媒吸込側に連通させておくことで、冷媒循環量を増やして放熱器における暖房能力と吸熱器における除湿能力を向上させることができるようになる。
According to the present invention, a compressor for compressing a refrigerant, an air flow passage through which air to be supplied to the vehicle interior flows, and a radiator for heating the air to be radiated from the refrigerant and supplied to the vehicle interior from the air flow passage. A heat absorber for absorbing heat from the refrigerant and cooling the air supplied to the vehicle interior from the air flow passage, an outdoor heat exchanger for dissipating the refrigerant provided outside the vehicle compartment, and the outdoor from the radiator An outdoor expansion valve for reducing the pressure of the refrigerant flowing into the heat exchanger, a shutter for preventing the running air from flowing into the outdoor heat exchanger, and a control device are provided, and at least discharged from the compressor by the control device. In a vehicle air conditioner that performs a dehumidifying and cooling operation in which heat is released from a radiator and an outdoor heat exchanger, and the radiated refrigerant is decompressed and then absorbed by a heat absorber. In operation When the heat capacity is insufficient, the shutter is closed, so that the flow of running air to the outdoor heat exchanger is prevented and heat is not exchanged between the refrigerant and the outside air in the outdoor heat exchanger, or both It becomes possible to increase the heat dissipation amount of the refrigerant in the radiator by reducing the heat exchange amount extremely.
Thus, for example, in the dehumidifying and cooling operation, the operation of the compressor is controlled based on the temperature of the heat absorber in the dehumidifying and cooling operation, and the valve opening degree of the outdoor expansion valve is determined based on the pressure of the radiator. In the case where the temperature of the heat sink is satisfactory, the shutter is closed if the heat dissipating capacity of the heat sink is insufficient even if the valve opening degree of the outdoor expansion valve is reduced, or the invention of the invention of claim 3 As described above, in the dehumidifying and cooling operation, when the valve opening degree of the outdoor expansion valve is controlled so that the pressure of the radiator becomes the target value, the valve opening degree of the outdoor expansion valve is controlled to the minimum opening degree. Even if the temperature of the radiator cannot be set to the target value, it is judged that the heat dissipation capability of the radiator is insufficient and the shutter is closed, while eliminating or suppressing temperature spots generated in the heat absorber, Obtaining the required heat dissipation capability of the radiator It becomes possible.
Therefore, according to the present invention, it is possible to extend the dehumidifying and cooling operation without using a special heater or the like, and it is possible to extend the feasible range and realize a comfortable vehicle interior air conditioning. .
Further, when the outdoor heat exchanger is provided with an outdoor blower for ventilating the outside air, the control device as in the fourth aspect of the invention causes the trouble by stopping the outdoor blower when the shutter is closed. It is possible to increase the heat dissipation capability of the radiator.
On the other hand, if the heat dissipating capability of the radiator is insufficient even when the shutter is closed in the dehumidifying and cooling operation as described above, the control device as in the invention of claim 5 allows the refrigerant discharged from the compressor to be dissipated by the radiator. Dissipate heat, depressurize the radiated refrigerant, and then shift to internal cycle operation in which heat is absorbed by the heat sink, thereby increasing the amount of refrigerant circulating in the heat sink than the dehumidifying and cooling operation to increase the heat radiation capacity in the heat sink, Comfortable cabin air conditioning can be maintained.
Here, when the outdoor expansion valve is fully closed in the internal cycle operation, the refrigerant outlet of the outdoor heat exchanger is communicated with the refrigerant suction side of the compressor by the control device as in the sixth aspect of the invention. Thus, it is possible to increase the refrigerant circulation amount and improve the heating capacity in the radiator and the dehumidifying capacity in the heat absorber.
本発明を適用した一実施形態の車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles of one Embodiment to which this invention is applied. 図1の車両用空気調和装置のコントローラの電気回路のブロック図である。It is a block diagram of the electric circuit of the controller of the vehicle air conditioner of FIG. 図2のコントローラによる暖房運転を説明する図である。It is a figure explaining the heating operation by the controller of FIG. 図3の暖房運転のp−h線図である。It is a ph diagram of the heating operation of FIG. 図2のコントローラによる除湿暖房運転を説明する図である。It is a figure explaining the dehumidification heating operation by the controller of FIG. 図5の除湿暖房運転のp−h線図である。It is a ph diagram of the dehumidification heating operation of FIG. 図2のコントローラによる内部サイクル運転を説明する図である。It is a figure explaining the internal cycle driving | operation by the controller of FIG. 図7の内部サイクル運転のp−h線図である。It is a ph diagram of the internal cycle operation of FIG. 図2のコントローラによる除湿冷房運転を説明する図である。It is a figure explaining the dehumidification cooling operation by the controller of FIG. 図9の除湿冷房運転のp−h線図である。FIG. 10 is a ph diagram of the dehumidifying and cooling operation of FIG. 9. 図2のコントローラによる冷房運転を説明する図である。It is a figure explaining the cooling operation by the controller of FIG. 図11の冷房運転のp−h線図である。FIG. 12 is a ph diagram of the cooling operation of FIG. 11. 図2のコントローラによる除湿冷房運転(シャッタ閉)を説明する図である。It is a figure explaining the dehumidification cooling operation (shutter close) by the controller of FIG. 図13の除湿冷房運転のp−h線図である。FIG. 14 is a ph diagram of the dehumidifying and cooling operation in FIG. 13. 図2のコントローラによる第1の暖房/バッテリ冷却モードを説明する図である。It is a figure explaining the 1st heating / battery cooling mode by the controller of FIG. 図15の第1の暖房/バッテリ冷却モードのp−h線図である。FIG. 16 is a ph diagram of the first heating / battery cooling mode in FIG. 15. 図2のコントローラによる第3の暖房/バッテリ冷却モードを説明する図である。It is a figure explaining the 3rd heating / battery cooling mode by the controller of FIG. 図17の第3の暖房/バッテリ冷却モードのp−h線図である。FIG. 18 is a ph diagram of the third heating / battery cooling mode in FIG. 17. 図2のコントローラによる第2の暖房/バッテリ冷却モードを説明する図である。It is a figure explaining the 2nd heating / battery cooling mode by the controller of FIG. 図19の第2の暖房/バッテリ冷却モードのp−h線図である。FIG. 20 is a ph diagram of the second heating / battery cooling mode in FIG. 19. 図2のコントローラによる第2の暖房/バッテリ冷却モードを説明するもう一つの図である。It is another figure explaining the 2nd heating / battery cooling mode by the controller of FIG. 図21の第2の暖房/バッテリ冷却モードのp−h線図である。FIG. 22 is a ph diagram of the second heating / battery cooling mode in FIG. 21. 図2のコントローラによる除霜/暖房/バッテリ冷却モードを説明するもう一つの図である。It is another figure explaining the defrost / heating / battery cooling mode by the controller of FIG. 図23の除霜/暖房/バッテリ冷却モードのp−h線図である。It is a ph diagram of the defrost / heating / battery cooling mode of FIG. 図2のコントローラによる冷房/バッテリ冷却モードを説明する図である。It is a figure explaining the air_conditioning | cooling / battery cooling mode by the controller of FIG. 図25の冷房/バッテリ冷却モードのp−h線図である。FIG. 26 is a ph diagram of the cooling / battery cooling mode of FIG. 25. 図2のコントローラによる除湿冷房/バッテリ冷却モードを説明する図である。It is a figure explaining the dehumidification cooling / battery cooling mode by the controller of FIG. 図27の除湿冷房/バッテリ冷却モードのp−h線図である。It is a ph diagram in the dehumidifying cooling / battery cooling mode of FIG. 図2のコントローラによる除湿冷房/バッテリ冷却モード(シャッタ閉)を説明する図である。It is a figure explaining the dehumidification cooling / battery cooling mode (shutter close) by the controller of FIG. 図29の除湿冷房/バッテリ冷却モードのp−h線図である。FIG. 30 is a ph diagram of the dehumidifying and cooling / battery cooling mode of FIG. 29. 図2のコントローラによる内部サイクル/バッテリ冷却モードを説明する図である。It is a figure explaining the internal cycle / battery cooling mode by the controller of FIG. 図31の内部サイクル/バッテリ冷却モードのp−h線図である。FIG. 32 is a ph diagram of the internal cycle / battery cooling mode of FIG. 31. 図2のコントローラによる除湿暖房/バッテリ冷却モードを説明する図である。It is a figure explaining the dehumidification heating / battery cooling mode by the controller of FIG. 図33の除湿暖房/バッテリ冷却モードのp−h線図である。FIG. 34 is a ph diagram of the dehumidifying heating / battery cooling mode of FIG. 33. 図2のコントローラによるバッテリ冷却単独モードを説明する図である。It is a figure explaining the battery cooling single mode by the controller of FIG. 図35のバッテリ冷却単独モードのp−h線図である。FIG. 36 is a ph diagram of the battery cooling single mode in FIG. 35.
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。
 図1は本発明の一実施例の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、車両にバッテリ55が搭載され、このバッテリ55に充電された電力を走行用の電動モータ(図示せず)に供給することで駆動し、走行するものであり、本発明の車両用空気調和装置1も、バッテリ55の電力で駆動されるものとする。
 即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路Rを用いたヒートポンプ運転により暖房運転を行い、更に、除湿暖房運転や内部サイクル運転、除湿冷房運転、冷房運転の各空調運転を選択的に実行することで車室内の空調を行うものである。
 尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明が有効であり、更には、エンジンで走行する通常の自動車にも適用可能であることは云うまでもない。
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を車室内に放熱させる放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6と、冷房時には冷媒を放熱させる放熱器として機能し、暖房時には冷媒を吸熱させる蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁(機械式膨張弁でも良い)から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱させる吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。室外膨張弁6は放熱器4から出て室外熱交換器7に流入する冷媒を減圧膨張させると共に全閉も可能とされている。
 尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。また、図中23はグリルシャッタと称されるシャッタである。このシャッタ23が閉じられると、走行風が室外熱交換器7に流入することが阻止される構成とされている。
 また、室外熱交換器7の冷媒出口側に接続された冷媒配管13Aは、逆止弁18を介して冷媒配管13Bに接続されている。尚、逆止弁18は冷媒配管13B側が順方向とされている。この冷媒配管13Bは冷房時に開放される開閉弁としての電磁弁17を介して室内膨張弁8に接続されている。実施例では、これら電磁弁17及び室内膨張弁8が、吸熱器9への冷媒の流入を制御するための弁装置を構成する。
 また、室外熱交換器7から出た冷媒配管13Aは分岐しており、この分岐した第1のパイパス回路としての冷媒配管13Dは、暖房時に開放される第1の開閉弁としての電磁弁21を介して吸熱器9の出口側に位置する冷媒配管13Cに連通接続されている。そして、この冷媒配管13Cがアキュムレータ12に接続され、アキュムレータ12は圧縮機2の冷媒吸込側に接続されている。
 更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6の手前(冷媒上流側)で冷媒配管13Jと冷媒配管13Fに分岐しており、分岐した一方の冷媒配管13Jが室外膨張弁6を介して室外熱交換器7の冷媒入口側に接続されている。また、分岐した他方の冷媒配管13Fは除湿時に開放される第2の開閉弁としての電磁弁22を介して逆止弁18の冷媒下流側であって、電磁弁17の冷媒上流側に位置する冷媒配管13Aと冷媒配管13Bとの接続部に連通接続されている。
 これにより、冷媒配管13Fは室外膨張弁6、室外熱交換器7及び逆止弁18の直列回路に対して並列に接続されたかたちとなり、室外膨張弁6、室外熱交換器7及び逆止弁18をバイパスする第2のバイパス回路となる。また、室外膨張弁6にはバイパス用の開閉弁としての電磁弁20が並列に接続されている。
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環)と、車室外の空気である外気(外気導入)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
 また、放熱器4の空気上流側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を放熱器4に通風する割合を調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口から空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。
 更に、本発明の車両用空気調和装置1は、バッテリ55に熱媒体を循環させて当該バッテリ55の温度を調整するためのバッテリ温度調整装置61を備えている。実施例のバッテリ温度調整装置61は、バッテリ55に熱媒体を循環させるための循環装置としての循環ポンプ62と、加熱装置としての熱媒体加熱ヒータ66と、冷媒−熱媒体熱交換器64を備え、それらとバッテリ55が熱媒体配管68にて環状に接続されている。
 この実施例の場合、循環ポンプ62の吐出側に熱媒体加熱ヒータ66が接続され、熱媒体加熱ヒータ66の出口に冷媒−熱媒体熱交換器64の熱媒体流路64Aの入口が接続され、この熱媒体流路64Aの出口にバッテリ55の入口が接続され、バッテリ55の出口が循環ポンプ62の吸込側に接続されている。
 このバッテリ温度調整装置61で使用される熱媒体としては、例えば水、HFO−1234fのような冷媒、クーラント等の液体、空気等の気体が採用可能である。尚、実施例では水を熱媒体として採用している。また、熱媒体加熱ヒータ66はPTCヒータ等の電気ヒータから構成されている。更に、バッテリ55の周囲には例えば熱媒体が当該バッテリ55と熱交換関係で流通可能なジャケット構造が施されているものとする。
 そして、循環ポンプ62が運転されると、循環ポンプ62から吐出された熱媒体は熱媒体加熱ヒータ66に至り、熱媒体加熱ヒータ66が発熱されている場合にはそこで加熱された後、次に冷媒−熱媒体熱交換器64の熱媒体流路64Aに流入する。この冷媒−熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体はバッテリ55に至る。熱媒体はそこでバッテリ55と熱交換した後、循環ポンプ62に吸い込まれることで熱媒体配管68内を循環される。
 一方、冷媒回路Rの冷媒配管13Fの出口、即ち、冷媒配管13Fと冷媒配管13A及び冷媒配管13Bとの接続部には、逆止弁18の冷媒下流側(順方向側)であって、電磁弁17の冷媒上流側に位置して分岐回路としての分岐配管72の一端が接続されている。この分岐配管72には電動弁から構成された補助膨張弁73が設けられている。この補助膨張弁73は冷媒−熱媒体熱交換器64の後述する冷媒流路64Bに流入する冷媒を減圧膨張させると共に全閉も可能とされている。そして、分岐配管72の他端は冷媒−熱媒体熱交換器64の冷媒流路64Bに接続されており、この冷媒流路64Bの出口には冷媒配管74の一端が接続され、冷媒配管74の他端はアキュムレータ12の手前(冷媒上流側)の冷媒配管13Cに接続されている。そして、これら補助膨張弁73等も冷媒回路Rの一部を構成すると同時に、バッテリ温度調整装置61の一部をも構成することになる。
 補助膨張弁73が開いている場合、冷媒配管13Fや室外熱交換器7から出た冷媒(一部又は全ての冷媒)はこの補助膨張弁73で減圧された後、冷媒−熱媒体熱交換器64の冷媒流路64Bに流入し、そこで蒸発する。冷媒は冷媒流路64Bを流れる過程で熱媒体流路64Aを流れる熱媒体から吸熱した後、アキュムレータ12を経て圧縮機2に吸い込まれることになる。
 次に、図2において32は制御装置としてのコントローラ(ECU)である。このコントローラ32は、プロセッサを備えたコンピュータの一例としてのマイクロコンピュータから構成されており、その入力には車両の外気温度(Tam)を検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO濃度センサ39と、吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力(吐出圧力Pd)を検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒温度を検出する吸込温度センサ44と、放熱器4の温度(放熱器4を経た空気の温度、又は、放熱器4自体の温度:放熱器温度TCI)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器4内、又は、放熱器4を出た直後の冷媒の圧力:放熱器圧力PCI)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9を経た空気の温度、又は、吸熱器9自体の温度:吸熱器温度Te)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た直後の冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、設定温度や空調運転の切り換えを設定するための空調(エアコン)操作部53と、室外熱交換器7の温度(室外熱交換器7から出た直後の冷媒の温度、又は、室外熱交換器7自体の温度:室外熱交換器温度TXO。室外熱交換器7が蒸発器として機能するとき、室外熱交換器温度TXOは室外熱交換器7における冷媒の蒸発温度となる)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(室外熱交換器7内、又は、室外熱交換器7から出た直後の冷媒の圧力)を検出する室外熱交換器圧力センサ56の各出力が接続されている。
 また、コントローラ32の入力には更に、バッテリ55の温度(バッテリ55自体の温度、又は、バッテリ55を出た熱媒体の温度、或いは、バッテリ55に入る熱媒体の温度)を検出するバッテリ温度センサ76と、熱媒体加熱ヒータ66の温度(熱媒体加熱ヒータ66自体の温度、熱媒体加熱ヒータ66を出た熱媒体の温度)を検出する熱媒体加熱ヒータ温度センサ77と、冷媒−熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体の温度を検出する第1出口温度センサ78と、冷媒流路64Bを出た冷媒の温度を検出する第2の出口温度センサ79の各出力も接続されている。
 一方、コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31と、室外膨張弁6、室内膨張弁8と、電磁弁22(除湿)、電磁弁17(冷房)、電磁弁21(暖房)、電磁弁20(バイパス)の各電磁弁と、シャッタ23、循環ポンプ62、熱媒体加熱ヒータ66、補助膨張弁73が接続されている。そして、コントローラ32は各センサの出力と空調操作部53にて入力された設定に基づいてこれらを制御するものである。
 以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。コントローラ32は実施例では暖房運転と、除湿暖房運転と、内部サイクル運転と、除湿冷房運転と、冷房運転の各空調運転を切り換えて実行すると共に、バッテリ55の温度を所定の適温範囲内に調整する。先ず、冷媒回路Rの各空調運転について説明する。
 (1)暖房運転
 最初に、図3及び図4を参照しながら暖房運転について説明する。図3は暖房運転における冷媒回路Rの冷媒の流れ(実線矢印)を示し、図4は暖房運転における冷媒回路Rのp−h線図を示している。尚、図4では冷媒回路Rの各構成機器をp−h線図上に示している。コントローラ32により(オートモード)、或いは、空調操作部53へのマニュアル操作(マニュアルモード)により暖房運転が選択されると、コントローラ32は電磁弁21(暖房用)を開放し、電磁弁17(冷房用)を閉じる。また、電磁弁22(除湿用)、電磁弁20(バイパス用)を閉じる。尚、シャッタ23は開放する。
 そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4に通風される割合を調整する状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は放熱器4を出た後、冷媒配管13E、13Jを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる(吸熱)。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13D、電磁弁21を経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。
 コントローラ32は、後述する目標吹出温度TAOから算出される目標放熱器温度TCO(放熱器4の温度TCIの目標値)から目標放熱器圧力PCO(放熱器4の圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、放熱器温度センサ46が検出する放熱器4の温度(放熱器温度TCI)及び放熱器圧力センサ47が検出する放熱器圧力PCIに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度を制御する。前記目標放熱器温度TCOは基本的にはTCO=TAOとされるが、制御上の所定の制限が設けられる。
 (2)除湿暖房運転
 次に、図5及び図6を参照しながら除湿暖房運転について説明する。図5は除湿暖房運転における冷媒回路Rの冷媒の流れ(実線矢印)を示し、図6は除湿暖房運転における冷媒回路Rのp−h線図を示している。尚、図6では冷媒回路Rの各構成機器をp−h線図上に示している。除湿暖房運転では、コントローラ32は上記暖房運転の状態において電磁弁22と電磁弁17を開放する。また、シャッタ23は開放する。これにより、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部が分流され、この分流された冷媒が電磁弁22を経て冷媒配管13Fに流入し、冷媒配管13Bから室内膨張弁8に流れ、残りの冷媒が室外膨張弁6に流れるようになる。即ち、分流された一部の冷媒が室内膨張弁8にて減圧された後、吸熱器9に流入して蒸発する。
 コントローラ32は吸熱器9の出口における冷媒の過熱度(SH)を所定値に維持するように室内膨張弁8の弁開度を制御するが、このときに吸熱器9で生じる冷媒の吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。分流されて冷媒配管13Jに流入した残りの冷媒は、室外膨張弁6で減圧された後、室外熱交換器7で蒸発することになる。
 吸熱器9で蒸発した冷媒は、冷媒配管13Cに出て冷媒配管13Dからの冷媒(室外熱交換器7からの冷媒)と合流した後、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。
 コントローラ32は目標放熱器温度TCOから算出される目標放熱器圧力PCOと放熱器圧力センサ47が検出する放熱器圧力PCI(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて室外膨張弁6の弁開度を制御する。
 (3)内部サイクル運転
 次に、図7及び図8を参照しながら内部サイクル運転について説明する。図7は内部サイクル運転における冷媒回路Rの冷媒の流れ(実線矢印)を示し、図8は内部サイクル運転における冷媒回路Rのp−h線図を示している。尚、図8では冷媒回路Rの各構成機器をp−h線図上に示している。内部サイクル運転では、コントローラ32は上記除湿暖房運転の状態において室外膨張弁6を全閉とする(全閉位置)。但し、電磁弁21は開いた状態を維持し、室外熱交換器7の冷媒出口は圧縮機2の冷媒吸込側に連通させておく。即ち、この内部サイクル運転は除湿暖房運転における室外膨張弁6の制御で当該室外膨張弁6を全閉とした状態であるので、この内部サイクル運転も除湿暖房運転の一部と捉えることができる(シャッタ23は開)。
 但し、室外膨張弁6が閉じられることにより、室外熱交換器7への冷媒の流入は阻止されることになるので、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒は電磁弁22を経て冷媒配管13Fに全て流れるようになる。そして、冷媒配管13Fを流れる冷媒は冷媒配管13Bより電磁弁17を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は冷媒配管13Cを流れ、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより、車室内の除湿暖房が行われることになるが、この内部サイクル運転では室内側の空気流通路3内にある放熱器4(放熱)と吸熱器9(吸熱)の間で冷媒が循環されることになるので、外気からの熱の汲み上げは行われず、圧縮機2の消費動力分の暖房能力が発揮される。除湿作用を発揮する吸熱器9には冷媒の全量が流れるので、上記除湿暖房運転に比較すると除湿能力は高いが、暖房能力は低くなる。
 また、室外膨張弁6は閉じられるものの、電磁弁21は開いており、室外熱交換器7の冷媒出口は圧縮機2の冷媒吸込側に連通しているので、室外熱交換器7内の液冷媒は冷媒配管13D及び電磁弁21を経て冷媒配管13Cに流出し、アキュムレータ12に回収され、室外熱交換器7内はガス冷媒の状態となる。これにより、電磁弁21を閉じたときに比して、冷媒回路R内を循環する冷媒量が増え、放熱器4における暖房能力と吸熱器9における除湿能力を向上させることができるようになる。
 コントローラ32は吸熱器9の温度、又は、前述した放熱器圧力PCI(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御する。このとき、コントローラ32は吸熱器9の温度によるか放熱器圧力PCIによるか、何れかの演算から得られる圧縮機目標回転数の低い方を選択して圧縮機2を制御する。
 (4)除湿冷房運転
 次に、図9及び図10を参照しながら除湿冷房運転について説明する。図9は除湿冷房運転における冷媒回路Rの冷媒の流れ(実線矢印)を示し、図10は除湿冷房運転における冷媒回路Rのp−h線図を示している。尚、図10では冷媒回路Rの各構成機器をp−h線図上に示している。除湿冷房運転では、コントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁22、電磁弁20を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4に通風される割合を調整する状態とする。また、シャッタ23は開放する。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
 放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13A、逆止弁18を経て冷媒配管13Bに入り、更に電磁弁17を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は冷媒配管13Cを経てアキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程でリヒート(再加熱:暖房時よりも放熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。
 コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づき、吸熱器温度Teを目標吸熱器温度TEOにするように圧縮機2の回転数を制御すると共に、放熱器圧力センサ47が検出する放熱器圧力PCI(冷媒回路Rの高圧圧力)と目標放熱器温度TCOから算出される目標放熱器圧力PCO(放熱器圧力PCIの目標値)に基づき、放熱器圧力PCIを目標放熱器圧力PCOにするように室外膨張弁6の弁開度を制御することで放熱器4による必要なリヒート量を得る。
 (5)冷房運転
 次に、図11及び図12を参照しながら冷房運転について説明する。図11は冷房運転における冷媒回路Rの冷媒の流れ(実線矢印)を示し、図12は冷房運転における冷媒回路Rのp−h線図を示している。尚、図12では冷媒回路Rの各構成機器をp−h線図上に示している。冷房運転では、コントローラ32は上記除湿冷房運転の状態において電磁弁20を開く(室外膨張弁6の弁開度は自由)。尚、エアミックスダンパ28は放熱器4に空気が通風される割合を調整する状態とする。また、シャッタ23は開放する。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒートのみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至る。このとき電磁弁20は開放されているので冷媒は電磁弁20を経て冷媒配管13Jを通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13A、逆止弁18を経て冷媒配管13Bに入り、更に電磁弁17を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着し、空気は冷却される。
 吸熱器9で蒸発した冷媒は冷媒配管13Cを経てアキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房運転においては、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて圧縮機2の回転数を制御する。
 (6)空調運転の切り換え
 コントローラ32は下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、吹出口29から車室内に吹き出される空気の温度の目標値である。
 TAO=(Tset−Tin)×K+Tbal(f(Tset、SUN、Tam))
                                   ・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する車室内空気の温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
 そして、コントローラ32は起動時には外気温度センサ33が検出する外気温度Tamと目標吹出温度TAOとに基づいて上記各空調運転のうちの何れかの空調運転を選択する。また、起動後は外気温度Tamや目標吹出温度TAO等の環境や設定条件の変化に応じて前記各空調運転を選択し、切り換えていくものである。
 (7)除湿冷房運転時のシャッタ23の制御と内部サイクル運転への切換
 ここで、前述した除湿冷房運転では、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づき、吸熱器温度Teを目標吸熱器温度TEOにするように圧縮機2の回転数を制御する。従って、吸熱器温度Teが満足(目標吸熱器温度TEOになっている、若しくは、それに近い値になっている)な状態では、圧縮機2の回転数も低くなる。
 また、コントローラ32は放熱器圧力センサ47が検出する放熱器圧力PCI(冷媒回路Rの高圧圧力)と目標放熱器圧力PCO(放熱器圧力PCIの目標値)に基づき、放熱器圧力PCIを目標放熱器圧力PCOにするように室外膨張弁6の弁開度を制御する。従って、吸熱器温度Teが満足な状態では圧縮機2の回転数も上げられないため、目標放熱器圧力PCOよりも放熱器圧力PCIが低くなる程、コントローラ32は室外膨張弁6の弁開度を縮小し、できるだけ放熱器4に冷媒をとどめるようにして放熱器4における放熱能力を上げるようにする。
 しかしながら、室外膨張弁6の弁開度が小さくなる程、吸熱器9の循環冷媒量が減少するため、吸熱器9に温度斑が生じるようになる。そして、室外膨張弁6の弁開度が制御上の最小開度まで縮小されると、吸熱器9の温度斑は極めて大きくなって、車室内の空調性能が悪化してしまう(吹出口によって吹き出される空気の温度が異なってしまう)。特に、除湿冷房運転では前述した如く室外熱交換器7で冷媒が外気と熱交換する分、放熱器4における放熱能力は低くなるため、外気温度が低くなった場合等にはこのような問題が生じ易くなり、早期に内部サイクル運転、若しくは、除湿暖房運転に移行してしまうことになる。これを防止するには格別な電気ヒータ等を設けて車室内に吹き出される空気を加熱する必要があるが、その分消費電力が増大してしまう。
 そこで、コントローラ32は前述した図9及び図10の除湿冷房運転において、室外膨張弁6の弁開度を縮小させても放熱器圧力PCIを目標放熱器圧力PCOとすることができない場合(即ち、室外膨張弁6の制御では目標放熱器圧力PCOを達成できない場合)、この実施例では吸熱器温度Teが満足な状態で室外膨張弁6の弁開度を制御上の最小開度としても放熱器圧力PCIを目標放熱器圧力PCOにすることができない場合、放熱器4の放熱能力が不足していると判断して、図13に示す如くシャッタ23を閉じ、室外送風機15も停止する。
 これにより、室外熱交換器7には走行風が流入しなくなり、且つ、外気の通風も無くなるので、図14のp−h線図に示す如く、室外熱交換器7における冷媒と外気との熱交換は無くなり、若しくは、室外熱交換器7における冷媒と外気との熱交換量は極めて小さくなる。その分、放熱器4における冷媒の放熱量が増大するため、室外膨張弁6の弁開度を著しく縮小し、或いは、最小開度としなくとも、放熱器圧力PCIを目標放熱器圧力PCOとすることができるようになり、吸熱器9に生じる温度斑も解消若しくは抑制することができるようになる。
 また、このようにシャッタ23を閉じることで、格別な電気ヒータ等を用いること無く、除湿冷房運転を延長してその実行可能範囲を拡大することができるようになる。しかしながら、上記のようにシャッタ23を閉じても放熱器圧力PCIを目標放熱器圧力PCOとすることができない場合、コントローラ32は空調運転を図7及び図8の内部サイクル運転に切り換える。これにより、除湿冷房運転よりも放熱器4(冷媒回路Rの高圧側)の冷媒循環量を増やして、放熱器4による放熱能力を増大させ、快適な車室内空調を維持する。
 尚、この実施例では吸熱器温度Teが満足な状態で、室外膨張弁6の弁開度を制御上の最小開度まで縮小しても放熱器圧力PCIを目標放熱器圧力PCOにすることができない場合に、放熱器4における放熱能力が不足していると判断することとしたが、吸熱器温度Teに拘わらず、除湿冷房運転において単に室外膨張弁6の弁開度を所定の小さい値まで縮小させても放熱器圧力PCIを目標放熱器圧力PCOにすることができない場合、或いは、放熱器圧力PCIを目標放熱器圧力PCOに近い値にすることができない場合に、放熱器4における放熱能力が不足していると判断するようにしてもよい。
 (8)バッテリ55の温度調整
 次に、図15~図36を参照しながらコントローラ32によるバッテリ55の温度調整制御について説明する。前述した如くバッテリ55は自己発熱等により温度が高くなった状態で充放電を行うと、劣化が進行する。そこで、本発明の車両用空気調和装置1のコントローラ32は、上記の如き空調運転を実行しながら、バッテリ温度調整装置61により、バッテリ55の温度を適温範囲内に冷却する。このバッテリ55の適温範囲は一般的には+25℃以上+45℃以下とされているため、実施例ではこの適温範囲内にバッテリ55の温度(バッテリ温度Tb)の目標値である目標バッテリ温度TBO(例えば、+35℃)を設定するものとする。
 (8−1)第1の暖房/バッテリ冷却モード
 コントローラ32は、暖房運転(図3、図4)においては、例えば下記式(II)、(III)を用いて放熱器4に要求される車室内の暖房能力である要求暖房能力Qtgtと、放熱器4が発生可能な暖房能力Qhpを算出している。
 Qtgt=(TCO−Te)×Cpa×ρ×Qair         ・・(II)
 Qhp=f(Tam、NC、BLV、VSP、FANVout、Te)・・(III)
 ここで、Teは吸熱器温度センサ48が検出する吸熱器9の温度、Cpaは放熱器4に流入する空気の比熱[kj/kg・K]、ρは放熱器4に流入する空気の密度(比体積)[kg/m]、Qairは放熱器4を通過する風量[m/h](室内送風機27のブロワ電圧BLVなどから推定)、VSPは車速センサ52から得られる車速、FANVoutは室外送風機15の電圧である。
 また、コントローラ32は、バッテリ温度センサ76が検出するバッテリ55の温度(バッテリ温度Tb)と上述した目標バッテリ温度TBOとに基づき、例えば下記式(IV)を用いてバッテリ温度調整装置61に要求されるバッテリ55の冷却能力である要求バッテリ冷却能力Qbatを算出している。
 Qbat=(Tb−TBO)×k1×k2              ・・(IV)
 ここで、k1はバッテリ温度調整装置61内を循環する熱媒体の比熱[kj/kg・K]、k2は熱媒体の流量[m/h]である。尚、要求バッテリ冷却能力Qbatを算出する式は上記に限られるものでは無く、上記以外のバッテリ冷却に関連する他のファクターを加味して算出してもよい。
 バッテリ温度Tbが目標バッテリ温度TBOより低い場合(Tb<TBO)は、上記式(IV)で算出される要求バッテリ冷却能力Qbatはマイナスとなるため、実施例ではコントローラ32は補助膨張弁73を全閉とし、バッテリ温度調整装置61も停止している。一方、前述した暖房運転中に、充放電等によりバッテリ温度Tbが上昇し、目標バッテリ温度TBOより高くなった場合(TBO<Tb)、式(IV)で算出される要求バッテリ冷却能力Qbatがプラスに転じるので、実施例ではコントローラ32は補助膨張弁73を開き、バッテリ温度調整装置61を運転してバッテリ55の冷却を開始する。
 その場合、コントローラ32は上記要求暖房能力Qtgtと要求バッテリ冷却能力Qbatに基づき、両者を比較して、ここで説明する第1の暖房/バッテリ冷却モードと、後述する第2の暖房/バッテリ冷却モード及び第3の暖房/バッテリ冷却モードを切り換えて実行する。
 先ず、車室内の暖房負荷が大きく(例えば内気の温度が低く)、且つ、バッテリ55の発熱量が小さい(冷却負荷が小さい)状況で、要求暖房能力Qtgtが要求バッテリ冷却能力Qbatよりも大きい場合(Qtgt>Qbat)、コントローラ32は第1の暖房/バッテリ冷却モードを実行する。図15はこの第1の暖房/バッテリ冷却モードにおける冷媒回路Rの冷媒の流れ(実線矢印)とバッテリ温度調整装置61の熱媒体の流れ(破線矢印)を示し、図16は第1の暖房/バッテリ冷却モードにおける冷媒回路Rのp−h線図を示している。尚、図16では冷媒回路Rの各構成機器をp−h線図上に示している。
 この第1の暖房/バッテリ冷却モードでは、コントローラ32は図3及び図4に示した冷媒回路Rの暖房運転の状態で、更に電磁弁22を開き、補助膨張弁73も開いてその弁開度を制御する状態とする。そして、バッテリ温度調整装置61の循環ポンプ62を運転する。これにより、放熱器4から出た冷媒の一部が室外膨張弁6の冷媒上流側で分流され、冷媒配管13Fを経て電磁弁17の冷媒上流側に至る。冷媒は次に分岐配管72に入り、補助膨張弁73で減圧された後、分岐配管72を経て冷媒−熱媒体熱交換器64の冷媒流路64Bに流入して蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管74、冷媒配管13C及びアキュムレータ12を順次経て圧縮機2に吸い込まれる循環を繰り返す(図15に実線矢印で示す)。
 一方、循環ポンプ62から吐出された熱媒体は熱媒体加熱ヒータ66を経て熱媒体配管68内を冷媒−熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒により吸熱され、熱媒体は冷却される。冷媒の吸熱作用で冷却された熱媒体は、冷媒−熱媒体熱交換器64を出てバッテリ55に至り、当該バッテリ55を冷却した後、循環ポンプ62に吸い込まれる循環を繰り返す(図15に破線矢印で示す)。
 このようにして第1の暖房/バッテリ冷却モードでは、冷媒回路Rの冷媒が室外熱交換器7と冷媒−熱媒体熱交換器64にて蒸発し、外気から吸熱すると共にバッテリ温度調整装置61の熱媒体(バッテリ55)からも吸熱する。これにより、熱媒体を介してバッテリ55から熱を汲み上げ、バッテリ55を冷却しながら、汲み上げた熱を放熱器4に搬送し、車室内の暖房に利用することができるようになる。
 この第1の暖房/バッテリ冷却モードにおいて、上記のように外気からの吸熱とバッテリ55から吸熱によっても前述した放熱器4の暖房能力Qhpにより要求暖房能力Qtgtを達成できない場合(Qtgt>Qhp)、コントローラ32は熱媒体加熱ヒータ66を発熱させる(通電)。
 熱媒体加熱ヒータ66が発熱すると、バッテリ温度調整装置61の循環ポンプ62から吐出された熱媒体は、熱媒体加熱ヒータ66で加熱された後、冷媒−熱媒体熱交換器64の熱媒体流路64Aに流入するようになるので、熱媒体加熱ヒータ66の熱も冷媒流路64Bで蒸発する冷媒により汲み上げられるようになり、放熱器4による暖房能力Qhpが増大して要求暖房能力Qtgtを達成することができるようになる。尚、コントローラ32は暖房能力Qhpが要求暖房能力Qtgtを達成できるようになった時点で熱媒体加熱ヒータ66の発熱を停止する(非通電)。
 (8−2)第3の暖房/バッテリ冷却モード
 次に、車室内の暖房負荷とバッテリ55の冷却負荷が略同じ場合、即ち、要求暖房能力Qtgtと要求バッテリ冷却能力Qbatが等しいか、近似する場合(Qtgt≒Qbat)、コントローラ32は第3の暖房/バッテリ冷却モードを実行する。図17はこの第3の暖房/バッテリ冷却モードにおける冷媒回路Rの冷媒の流れ(実線矢印)とバッテリ温度調整装置61の熱媒体の流れ(破線矢印)を示し、図18は第3の暖房/バッテリ冷却モードにおける冷媒回路Rのp−h線図を示している。尚、図18では冷媒回路Rの各構成機器をp−h線図上に示している。
 この第3の暖房/バッテリ冷却モードでは、コントローラ32は電磁弁17、20、21を閉じ、室外膨張弁6を全閉とし、電磁弁22を開き、補助膨張弁73も開いてその弁開度を制御する状態とする。そして、圧縮機2及び室内送風機27を運転し、バッテリ温度調整装置61の循環ポンプ62も運転する(熱媒体加熱ヒータ66は非通電)。これにより、放熱器4から出た全ての冷媒が電磁弁22に流れ、冷媒配管13Fを経て電磁弁17の冷媒上流側に至るようになる。冷媒は次に分岐配管72に入り、補助膨張弁73で減圧された後、分岐配管72を経て冷媒−熱媒体熱交換器64の冷媒流路64Bに流入して蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管74、冷媒配管13C及びアキュムレータ12を順次経て圧縮機2に吸い込まれる循環を繰り返す(図17に実線矢印で示す)。
 一方、循環ポンプ62から吐出された熱媒体は熱媒体加熱ヒータ66を経て熱媒体配管68内を冷媒−熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒により吸熱され、熱媒体は冷却される。冷媒の吸熱作用で冷却された熱媒体は、冷媒−熱媒体熱交換器64を出てバッテリ55に至り、当該バッテリ55を冷却した後、循環ポンプ62に吸い込まれる循環を繰り返す(図18に破線矢印で示す)。
 このようにして第3の暖房/バッテリ冷却モードでは、冷媒回路Rの冷媒が冷媒−熱媒体熱交換器64にて蒸発し、バッテリ温度調整装置61の熱媒体(バッテリ55)のみから吸熱する。これにより、冷媒は室外熱交換器7に流入せず、冷媒は熱媒体を介してバッテリ55のみから熱を汲み上げることになるので、室外熱交換器7への着霜の問題を解消しながら、バッテリ55を冷却し、当該バッテリ55から汲み上げた熱を放熱器4に搬送して車室内を暖房することができるようになる。
 (8−3)第2の暖房/バッテリ冷却モード
 次に、車室内の暖房負荷が小さく(例えば内気の温度が比較的高く)、バッテリ55の発熱量が大きい(冷却負荷が大きい)場合、即ち、要求バッテリ冷却能力Qbatが要求暖房能力Qtgtより大きい場合(Qtgt<Qbat)、コントローラ32は第2の暖房/バッテリ冷却モードを実行する。図19はこの第2の暖房/バッテリ冷却モードにおける冷媒回路Rの冷媒の流れ(実線矢印)とバッテリ温度調整装置61の熱媒体の流れ(破線矢印)を示し、図20は第2の暖房/バッテリ冷却モードにおける冷媒回路Rのp−h線図を示している。尚、図20では冷媒回路Rの各構成機器をp−h線図上に示している。
 この第2の暖房/バッテリ冷却モードでは、コントローラ32は電磁弁17、20、21、22を閉じ、室外膨張弁6を開き、補助膨張弁73も開いてその弁開度を制御する状態とする。そして、圧縮機2、室外送風機15及び室内送風機27を運転し、シャッタ23を開放し、バッテリ温度調整装置61の循環ポンプ62も運転する(熱媒体加熱ヒータ66は非通電)。これにより、放熱器4から出た冷媒は室外膨張弁6を経て室外熱交換器7に流入し、冷媒配管13Aを経て電磁弁17の冷媒上流側に至るようになる。冷媒は次に分岐配管72に入り、補助膨張弁73で減圧された後、分岐配管72を経て冷媒−熱媒体熱交換器64の冷媒流路64Bに流入して蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管74、冷媒配管13C及びアキュムレータ12を順次経て圧縮機2に吸い込まれる循環を繰り返す(図19に実線矢印で示す)。
 一方、循環ポンプ62から吐出された熱媒体は熱媒体加熱ヒータ66を経て熱媒体配管68内を冷媒−熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒により吸熱され、熱媒体は冷却される。冷媒の吸熱作用で冷却された熱媒体は、冷媒−熱媒体熱交換器64を出てバッテリ55に至り、当該バッテリ55を冷却した後、循環ポンプ62に吸い込まれる循環を繰り返す(図20に破線矢印で示す)。
 このようにして第2の暖房/バッテリ冷却モードでは、冷媒回路Rの冷媒は放熱器4と室外熱交換器7で放熱し、冷媒−熱媒体熱交換器64にて蒸発し、バッテリ温度調整装置61の熱媒体(バッテリ55)から吸熱するようになる。コントローラ32はバッテリ温度センサ76が検出するバッテリ温度Tbと目標バッテリ温度TBOに基づいて圧縮機2の運転(回転数NC)を制御することで、バッテリ温度調整装置61によるバッテリ55の冷却能力を調整する。
 また、室外膨張弁6の弁開度を制御して放熱器4の冷媒の流通を制御し、当該放熱器4における冷媒の放熱量を調整し、補助膨張弁73の弁開度を制御して室外熱交換器7の冷媒の流通を制御し、当該室外熱交換器7における冷媒の放熱量を調整する。これにより、バッテリ55を冷却してその熱を外気中に廃棄し、車室内の暖房も行うことができるようになる。
 ここで、バッテリ55の急速充電が行われる等により、バッテリ55の発熱量が極めて大きくなり、要求バッテリ冷却能力Qbatが要求暖房能力Qtgtに比べて極めて大きくなった場合(Qtgt<<Qbat)、コントローラ32は図19、図20の第2の暖房/バッテリ冷却モードの状態において、更に電磁弁20を開く。図21はこの場合の第2の暖房/バッテリ冷却モードにおける冷媒回路Rの冷媒の流れ(実線矢印)とバッテリ温度調整装置61の熱媒体の流れ(破線矢印)を示し、図22はこの場合の第2の暖房/バッテリ冷却モードにおける冷媒回路Rのp−h線図を示している(図22では冷媒回路Rの各構成機器をp−h線図上に示している)。
 上記のように図19、図20の状態に加えて冷媒回路Rの電磁弁20が開放されることで、放熱器4で放熱した冷媒は、当該放熱器4から出てそのまま室外熱交換器7に流入し、外気中に放熱するようになる(図21に実線矢印で示す)。これにより、バッテリ55で発生した大量の熱を利用して車室内を暖房しながら、大量の余分な熱は外気中に放出することができるようになる。コントローラ32はこの場合もバッテリ温度センサ76が検出するバッテリ温度Tbと目標バッテリ温度TBOに基づいて圧縮機2の運転(回転数NC)を制御することで、バッテリ温度調整装置61によるバッテリ55の冷却能力を調整する。
 また、コントローラ32は室外送風機15の回転数やシャッタ23を開閉することで室外熱交換器7への通風を制御し、車室内の暖房能力を調整する。但し、室外送風機15の回転数を最大としても放熱器4における暖房能力が過多となる場合(バッテリ55の発熱量が極めて大きい状況)、コントローラ32はエアミックスダンパ28を制御して放熱器4への通風割合を例えば下げる方向に制御し、車室内の暖房能力を調整する。
 上述した如くコントローラ32が、圧縮機2から吐出された冷媒を放熱器4にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器7と冷媒−熱媒体熱交換器64にて吸熱させる第1の暖房/バッテリ冷却モードと、圧縮機2から吐出された冷媒を放熱器4と室外熱交換器7にて放熱させ、放熱した当該冷媒を減圧した後、冷媒−熱媒体熱交換器64にて吸熱させる第2の暖房/バッテリ冷却モードを実行するようにしたので、バッテリ55の発熱量が小さいときは、第1の暖房/バッテリ冷却モードを実行し、室外熱交換器7で外気から吸熱し、更に、バッテリ55の熱を汲み上げて当該バッテリ55を冷却しながら、車室内を暖房することができると共に、急速充電時等にバッテリ55の発熱量が大きいときには、第2の暖房/バッテリ冷却モードを実行し、室外熱交換器7でバッテリ55の熱を外気中に放出し、バッテリ55を冷却しながら、車室内を暖房することができるようになる。
 このように、車室内の暖房を行うときに室外熱交換器7での冷媒の吸熱と放熱を切り換えることができるので、バッテリ55の熱を有効に利用して効率良く車室内の暖房を行って室外熱交換器7への着霜を抑制しながら、適切にバッテリ55の冷却を行うことができるようになる。
 更に、コントローラ32は、室外熱交換器7への冷媒の流入を阻止し、圧縮機2から吐出された冷媒を放熱器4にて放熱させ、放熱した当該冷媒を減圧した後、冷媒−熱媒体熱交換器64のみで吸熱させる第3の暖房/バッテリ冷却モードを実行するので、車室内の暖房に必要な熱量(暖房負荷)とバッテリの発熱量(バッテリ冷却負荷)が略等しくなるときには、第3の暖房/バッテリ冷却モードを実行し、バッテリ55から汲み上げた熱だけで車室内を暖房することができるようになる。これにより、室外熱交換器7への着霜の問題を解消しながら、効率的に車室内を暖房し、適切にバッテリ55を冷却することができるようになる。
 この場合、コントローラ32は放熱器4に要求される要求暖房能力Qtgtと、バッテリ温度調整装置61に要求される要求バッテリ冷却能力Qbatに基づき、前述した各暖房/バッテリ冷却モードを切り換えて実行するので、車室内の暖房とバッテリ55の冷却を適切に両立させることが可能となる。
 具体的には実施例では、コントローラ32は、要求暖房能力Qtgtが要求バッテリ冷却能力Qbatよりも大きい場合、第1の暖房/バッテリ冷却モードを実行し、要求暖房能力Qtgtと要求バッテリ冷却能力Qbatが等しいか近似する値である場合、第3の暖房/バッテリ冷却モードを実行し、要求バッテリ冷却能力Qbatが要求暖房能力Qtgtよりも大きい場合、第2の暖房/バッテリ冷却モードを実行するので、各暖房/バッテリ冷却モードを適切に切り換えて効率的な車室内の暖房と、効果的なバッテリ55の冷却を円滑に行うことができるようになる。
 また、コントローラ32は、第1の暖房/バッテリ冷却モードにおいて、放熱器4が発生可能な暖房能力Qhpにより要求暖房能力Qtgtを達成できない場合、熱媒体加熱ヒータ66により熱媒体を加熱するので、バッテリ55の発熱量が小さく、第1の暖房/バッテリ冷却モードで放熱器4による車室内の暖房能力が不足するときには、バッテリ温度調整装置61の熱媒体加熱ヒータ66により熱媒体を加熱して、この熱を冷媒により汲み上げ、不足分を補完することが可能となる。
 また、実施例ではコントローラ32が、第2の暖房/バッテリ冷却モードにおいて、圧縮機2の運転(回転数NC)を制御することでバッテリ温度調整装置61によるバッテリ55の冷却能力を調整すると共に、放熱器4や室外熱交換器7の冷媒の流通、又は、放熱器4や室外熱交換器7への通風を制御することで放熱器4による車室内の暖房能力を調整するようにしたので、バッテリ55の発熱量が大きいときに、第2の暖房/バッテリ冷却モードで圧縮機2の制御によりバッテリ55の冷却能力を調整することで効果的にバッテリ55を冷却し、放熱器4による暖房は当該放熱器4や室外熱交換器7の冷媒の流通や通風を制御することで適切に調整することができるようになる。
 この場合のコントローラ32が放熱器4の冷媒の流通を制御する手段は、実施例では室外熱交換器7に流入する冷媒を減圧するための室外膨張弁6であり、コントローラ32が室外熱交換器7の冷媒の流通を制御する手段は、冷媒−熱媒体熱交換器64に流入する冷媒を減圧するための補助膨張弁73である。また、コントローラ32が放熱器4への通風を制御する手段は、実施例では空気流通路3内の空気を放熱器4に通風する割合を調整するためのエアミックスダンパ28であり、コントローラ32が室外熱交換器7への通風を制御する手段は、実施例では室外熱交換器7に外気を通風するための室外送風機15や室外熱交換器7への走行風の流入を阻止するためのシャッタ23である。
 そして、実施例では冷媒回路Rに、放熱器4から出て室外熱交換器7に流入する冷媒を減圧するための室外膨張弁6と、室外熱交換器7から出た冷媒を吸熱させて空気流通路3から車室内に供給する空気を冷却するための吸熱器9と、この吸熱器9への冷媒の流入を制御するための電磁弁17及び室内膨張弁8(弁装置)と、室外熱交換器7から出た冷媒を電磁弁17に流すこと無く、圧縮機2に吸い込ませるための冷媒配管13D(第1のバイパス回路)と、この冷媒配管13Dに設けられた電磁弁21(第1の開閉弁)と、放熱器4から出た冷媒を室外膨張弁6の冷媒上流側から分流して電磁弁17の冷媒上流側に流すための冷媒配管13F(第2のバイパス回路)と、この冷媒配管13Fに設けられた電磁弁22(第2の開閉弁)と、冷媒配管13Fから出た冷媒を冷媒−熱媒体熱交換器64に流すための分岐配管72(分岐回路)と、この分岐配管72に設けられて冷媒−熱媒体熱交換器64に流入する冷媒を減圧するための補助膨張弁73と、冷媒配管13Fから出た冷媒が室外熱交換器7に流入することを阻止するための逆止弁18を設け、コントローラ32により室外膨張弁6、電磁弁17、電磁弁21、電磁弁22、補助膨張弁73及びバッテリ温度調整装置61の循環ポンプ62を制御し、第1の暖房/バッテリ冷却モード、第2の暖房/バッテリ冷却モード及び第3の暖房/バッテリ冷却モードを切り換えて実行するようにしたので、電磁弁21及び電磁弁22を開き、電磁弁17を閉じて室外膨張弁6及び補助膨張弁73により室外熱交換器7及び冷媒−熱媒体熱交換器64に流入する冷媒を減圧することで第1の暖房/バッテリ冷却モードを実行し、電磁弁22を開き、室外膨張弁6を全閉とし、電磁弁21及び電磁弁17を閉じて補助膨張弁73により冷媒−熱媒体熱交換器64に流入する冷媒を減圧することで第3の暖房/バッテリ冷却モードを実行し、室外膨張弁6を開き、電磁弁21、電磁弁22及び電磁弁17を閉じて補助膨張弁73により冷媒−熱媒体熱交換器64に流入する冷媒を減圧することで第2の暖房/バッテリ冷却モードを実行することができるようになる。
 尚、実施例では電磁弁17と室内膨張弁8で吸熱器9への冷媒の流入を制御したが、室内膨張弁8を全閉可能な電動弁で構成すれば、電磁弁17を削除し、室内膨張弁8のみでその役割を達成することも可能である。即ち、その場合には本願の実施例において電磁弁17を閉じる動作は室内膨張弁8の弁開度を全閉とする動作となる。
 (8−4)除霜/暖房/バッテリ冷却モード
 次に、コントローラ32による除霜/暖房/バッテリ冷却モードについて説明する。暖房運転中には前述した如く室外熱交換器7は蒸発器として機能するため、室外熱交換器7には外気中の水分が霜となって成長し、熱交換効率が低下して来る。コントローラ32は、例えば外気温度Tamや圧縮機2の回転数NC等から算出される無着霜時の室外熱交換器温度TXObaseを算出し、この無着霜時の室外熱交換器温度TXObaseと室外熱交換器温度センサ54が検出する室外熱交換器温度TXOとを常時比較している。そして、室外熱交換器温度TXOが無着霜時の室外熱交換器温度TXObaseより低下してその差が所定値以上となった場合、前述した式(IV)で算出される要求バッテリ冷却能力Qbatがプラスとなっているときには、室外熱交換器7を除霜しながら車室内の暖房とバッテリ55の冷却を行う除霜/暖房/バッテリ冷却モードを実行する(図23、図24)。
 この除霜/暖房/バッテリ冷却モードは、前述した図21の第2の暖房/バッテリ冷却モードの冷媒回路Rの状態においてシャッタ23を閉じ、室外熱交換器7への走行風の流入を阻止する。また、室外送風機15は停止し、圧縮機2と室内送風機27を運転する。そして、バッテリ温度調整装置61の循環ポンプ62も運転し、冷媒−熱媒体熱交換器64において冷媒と熱媒体とを熱交換させる。尚、実施例の如くシャッタ23が設けられている場合にはそれを閉めるが、設けられていない場合には、室外送風機15を停止して外気の強制通風を停止するのみとなる。図23はこの除霜/暖房/バッテリ冷却モードにおける冷媒回路Rの冷媒の流れ(実線矢印)とバッテリ温度調整装置61の熱媒体の流れ(破線矢印)を示し、図24は除霜/暖房/バッテリ冷却モードにおける冷媒回路Rのp−h線図を示している(図24では冷媒回路Rの各構成機器をp−h線図上に示している)。
 これにより、圧縮機2から吐出された高温の冷媒は、放熱器4に流入して放熱し、空気流通路3内を流通する空気を加熱した後、電磁弁20を経て室外熱交換器7に流入する。この室外熱交換器7には外気や走行風は通風されないので、室外熱交換器7に成長した着霜は、流入した高温の冷媒によって加熱され、融解されていく。一方、冷媒は室外熱交換器7で凝縮し、室外熱交換器7から出て前述同様に分岐配管72に入り、補助膨張弁73で減圧された後、冷媒−熱媒体熱交換器64の冷媒流路64Bで蒸発する。
 冷媒はここでバッテリ温度調整装置61内を循環する熱媒体から吸熱するので、結果としてバッテリ55を冷却し、熱媒体から汲み上げた熱で室外熱交換器7を除霜しながら車室内を暖房することになる。尚、室外熱交換器7を急速除霜したい場合には、コントローラ32により熱媒体加熱ヒータ66を発熱させてもよい。その場合には、熱媒体加熱ヒータ66の熱も冷媒により汲み上げられ、室外熱交換器7に搬送されて除霜に寄与することになる。
 このようにコントローラ32は、室外熱交換器7に外気を通風しない状態、若しくは、走行風の流入を阻止した状態で、圧縮機2から吐出された冷媒を放熱器4と室外熱交換器7にて放熱させ、放熱した当該冷媒を補助膨張弁73で減圧した後、冷媒−熱媒体熱交換器64にて吸熱させる除霜/暖房/バッテリ冷却モードを実行するので、圧縮機2から吐出された高温の冷媒によって室外熱交換器7の除霜を行いながら、バッテリ55の熱を汲み上げて車室内の暖房を行うことができるようになる。
 (8−5)冷房/バッテリ冷却モード
 次に、前述した冷房運転中に、充放電等によりバッテリ温度Tbが上昇し、目標バッテリ温度TBOより高くなった場合(TBO<Tb)、実施例ではコントローラ32は補助膨張弁73を開き、バッテリ温度調整装置61を運転してバッテリ55の冷却を開始することで冷房/バッテリ冷却モードを実行する(図25、図26)。
 この冷房/バッテリ冷却モードでは、コントローラ32は前述した図11の冷房運転の冷媒回路Rの状態において、補助膨張弁73を開いてその弁開度を制御し、バッテリ温度調整装置61の循環ポンプ62も運転して、冷媒−熱媒体熱交換器64において冷媒と熱媒体とを熱交換させる状態とする。尚、熱媒体加熱ヒータ66には通電しない。図25はこの冷房/バッテリ冷却モードにおける冷媒回路Rの冷媒の流れ(実線矢印)とバッテリ温度調整装置61の熱媒体の流れ(破線矢印)を示し、図26は冷房/バッテリ冷却モードにおける冷媒回路Rのp−h線図を示している(図26では冷媒回路Rの各構成機器をp−h線図上に示している)。
 これにより、圧縮機2から吐出された高温の冷媒は、放熱器4、電磁弁20を順次経て室外熱交換器7に流入し、そこで室外送風機15により通風される外気や走行風と熱交換して放熱し、凝縮する。室外熱交換器7で凝縮した冷媒の一部は室内膨張弁8に至り、そこで減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で空気流通路3内の空気が冷却されるので、車室内は冷房される。
 室外熱交換器7で凝縮した冷媒の残りは分岐配管72に分流され、補助膨張弁73で減圧された後、冷媒−熱媒体熱交換器64の冷媒流路64Bで蒸発する。冷媒はここでバッテリ温度調整装置61内を循環する熱媒体から吸熱するのでバッテリ55は前述同様に冷却される。尚、吸熱器9から出た冷媒は冷媒配管13C、アキュムレータ12を経て圧縮機2に吸い込まれ、冷媒−熱媒体熱交換器64を出た冷媒も冷媒配管74からアキュムレータ12を経て圧縮機2に吸い込まれることになる。
 (8−6)除湿冷房/バッテリ冷却モード
 次に、前述した除湿冷房運転中に、充放電等によりバッテリ温度Tbが上昇し、目標バッテリ温度TBOより高くなった場合(TBO<Tb)、実施例ではコントローラ32は補助膨張弁73を開き、バッテリ温度調整装置61を運転してバッテリ55の冷却を開始することで除湿冷房/バッテリ冷却モードを実行する(図27、図28)。
 この除湿冷房/バッテリ冷却モードでは、コントローラ32は前述した図9の除湿冷房運転の冷媒回路Rの状態において、補助膨張弁73を開いてその弁開度を制御し、バッテリ温度調整装置61の循環ポンプ62も運転して、冷媒−熱媒体熱交換器64において冷媒と熱媒体とを熱交換させる状態とする。尚、熱媒体加熱ヒータ66には通電しない。図27はこの除湿冷房/バッテリ冷却モードにおける冷媒回路Rの冷媒の流れ(実線矢印)とバッテリ温度調整装置61の熱媒体の流れ(破線矢印)を示し、図28は除湿冷房/バッテリ冷却モードにおける冷媒回路Rのp−h線図を示している(図28では冷媒回路Rの各構成機器をp−h線図上に示している)。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。放熱器4を出た冷媒は室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒の一部は室内膨張弁8に至り、そこで減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で空気流通路3から車室内に供給される空気は冷却され、且つ、除湿されるので、車室内は除湿冷房される。
 室外熱交換器7で凝縮した冷媒の残りは分岐配管72に分流され、補助膨張弁73で減圧された後、冷媒−熱媒体熱交換器64の冷媒流路64Bで蒸発する。冷媒はここでバッテリ温度調整装置61内を循環する熱媒体から吸熱するのでバッテリ55は前述同様に冷却される。尚、吸熱器9から出た冷媒は冷媒配管13C、アキュムレータ12を経て圧縮機2に吸い込まれ、冷媒−熱媒体熱交換器64を出た冷媒も冷媒配管74からアキュムレータ12を経て圧縮機2に吸い込まれることになる。
 尚、前述した図13に示す如くこの除湿冷房運転においてシャッタ23を閉じ、室外送風機15も停止した状態においてもバッテリ55の冷却を行うことができる。この除湿冷房/バッテリ冷却モード(シャッタ閉)の冷媒の流れとシャッタ23の状態を図29に示し、冷媒回路Rのp−h線図を図30に示す(図30では冷媒回路Rの各構成機器をp−h線図上に示している)。
 即ち、この場合にも室外熱交換器7には走行風が流入しなくなり、外気の通風も無くなるので、図30のp−h線図に示す如く、室外熱交換器7における冷媒と外気との熱交換量は極めて小さくなる。その分、放熱器4における冷媒の放熱量が増大するため、室外膨張弁6の弁開度を著しく縮小し、或いは、最小開度としなくとも、放熱器圧力PCIを目標放熱器圧力PCOとすることができるようになり、吸熱器9に生じる温度斑も防止することができるようになる。
 室外熱交換器7を出た冷媒は図27の場合と同様に室内膨張弁8から吸熱器9に向かうものと分岐配管72に向かいものとに分流され、分岐配管72に流入した冷媒は補助膨張弁73で減圧された後、冷媒−熱媒体熱交換器64の冷媒流路64Bで蒸発する。冷媒はここでバッテリ温度調整装置61内を循環する熱媒体から吸熱するのでバッテリ55は前述同様に冷却される。尚、吸熱器9から出た冷媒は冷媒配管13C、アキュムレータ12を経て圧縮機2に吸い込まれ、冷媒−熱媒体熱交換器64を出た冷媒も冷媒配管74からアキュムレータ12を経て圧縮機2に吸い込まれることになる。
 (8−7)内部サイクル/バッテリ冷却モード
 次に、前述した内部サイクル運転中に、充放電等によりバッテリ温度Tbが上昇し、目標バッテリ温度TBOより高くなった場合(TBO<Tb)、実施例ではコントローラ32は補助膨張弁73を開き、バッテリ温度調整装置61を運転してバッテリ55の冷却を開始することで内部サイクル/バッテリ冷却モードを実行する(図31、図32)。
 この内部サイクル/バッテリ冷却モードでは、コントローラ32は前述した図7の内部サイクル運転の冷媒回路Rの状態において、補助膨張弁73を開いてその弁開度を制御し、バッテリ温度調整装置61の循環ポンプ62も運転して、冷媒−熱媒体熱交換器64において冷媒と熱媒体とを熱交換させる状態とする。尚、熱媒体加熱ヒータ66には通電しない。図31はこの内部サイクル/バッテリ冷却モードにおける冷媒回路Rの冷媒の流れ(実線矢印)とバッテリ温度調整装置61の熱媒体の流れ(破線矢印)を示し、図32は内部サイクル/バッテリ冷却モードにおける冷媒回路Rのp−h線図を示している(図32では冷媒回路Rの各構成機器をp−h線図上に示している)。
 これにより、圧縮機2から吐出された高温の冷媒は放熱器4で放熱した後、電磁弁22を経て冷媒配管13Fに全て流れるようになる。そして、冷媒配管13Fを出た冷媒の一部は冷媒配管13Bより電磁弁17を経て室内膨張弁8に至り、そこで減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 冷媒配管13Fを出た冷媒の残りは分岐配管72に分流され、補助膨張弁73で減圧された後、冷媒−熱媒体熱交換器64の冷媒流路64Bで蒸発する。冷媒はここでバッテリ温度調整装置61内を循環する熱媒体から吸熱するのでバッテリ55は前述同様に冷却される。尚、吸熱器9から出た冷媒は冷媒配管13C、アキュムレータ12を経て圧縮機2に吸い込まれ、冷媒−熱媒体熱交換器64を出た冷媒も冷媒配管74からアキュムレータ12を経て圧縮機2に吸い込まれることになる。
 (8−8)除湿暖房/バッテリ冷却モード
 次に、前述した除湿暖房運転中に、充放電等によりバッテリ温度Tbが上昇し、目標バッテリ温度TBOより高くなった場合(TBO<Tb)、実施例ではコントローラ32は補助膨張弁73を開き、バッテリ温度調整装置61を運転してバッテリ55の冷却を開始することで除湿暖房/バッテリ冷却モードを実行する(図33、図34)。
 この除湿暖房/バッテリ冷却モードでは、コントローラ32は前述した図5の除湿暖房運転の冷媒回路Rの状態において、補助膨張弁73を開いてその弁開度を制御し、バッテリ温度調整装置61の循環ポンプ62も運転して、冷媒−熱媒体熱交換器64において冷媒と熱媒体とを熱交換させる状態とする。図33はこの除湿暖房/バッテリ冷却モードにおける冷媒回路Rの冷媒の流れ(実線矢印)とバッテリ温度調整装置61の熱媒体の流れ(破線矢印)を示し、図34は除湿暖房/バッテリ冷却モードにおける冷媒回路Rのp−h線図を示している(図34では冷媒回路Rの各構成機器をp−h線図上に示している)。
 これにより、放熱器4を出た凝縮冷媒の一部が分流され、この分流された冷媒が電磁弁22を経て冷媒配管13Fに流入し、冷媒配管13Fから出てその内の一部が冷媒配管13Bから室内膨張弁8に流れ、残りの冷媒が室外膨張弁6に流れるようになる。即ち、分流された冷媒の内の一部が室内膨張弁8にて減圧された後、吸熱器9に流入して蒸発する。このときに吸熱器9で生じる冷媒の吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。また、放熱器4から出た凝縮冷媒の残りは、室外膨張弁6で減圧された後、室外熱交換器7で蒸発し、外気から吸熱する。
 一方、冷媒配管13Fを出た冷媒の残りは分岐配管72に流入し、補助膨張弁73で減圧された後、冷媒−熱媒体熱交換器64の冷媒流路64Bで蒸発する。冷媒はここでバッテリ温度調整装置61内を循環する熱媒体から吸熱するのでバッテリ55は前述同様に冷却される。尚、吸熱器9から出た冷媒は冷媒配管13C、アキュムレータ12を経て圧縮機2に吸い込まれ、室外熱交換器7から出た冷媒は冷媒配管13D、電磁弁21、冷媒配管13C及びアキュムレータ12を経て圧縮機2に吸い込まれ、冷媒−熱媒体熱交換器64を出た冷媒も冷媒配管74からアキュムレータ12を経て圧縮機2に吸い込まれることになる。
 (8−9)バッテリ冷却単独モード
 次に、例えば車両を停車し、バッテリ55を充電しているとき等に、バッテリ温度Tbが自己発熱等で上昇し、目標バッテリ温度TBOより高くなった場合(TBO<Tb)、実施例ではコントローラ32はバッテリ冷却単独モードを実行する(図35、図36)。このバッテリ冷却単独モードでは車室内に搭乗者はいないので、車室内を空調する必要はないが、コントローラ32は圧縮機2を運転し、室外送風機15も運転する。また、電磁弁20を開き、補助膨張弁73も開いて冷媒を減圧する。
 更に、コントローラ32は電磁弁17、電磁弁21、電磁弁22を閉じ、室内送風機26も停止する。そして、コントローラ32は循環ポンプ62を運転し、冷媒−熱媒体熱交換器64において冷媒と熱媒体を熱交換させる状態とする。図35はこのバッテリ冷却単独モードにおける冷媒回路Rの冷媒の流れ(実線矢印)とバッテリ温度調整装置61の熱媒体の流れ(破線矢印)を示し、図36はバッテリ冷却単独モードにおける冷媒回路Rのp−h線図を示している(図36では冷媒回路Rの各構成機器をp−h線図上に示している)。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4を経て冷媒配管13Eから室外膨張弁6に至る。このとき電磁弁20は開放されているので冷媒は電磁弁20を経て冷媒配管13Jを通過し、そのまま室外熱交換器7に流入し、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7に着霜が成長していた場合は、このときの放熱作用で室外熱交換器7は除霜されることになる。
 室外熱交換器7を出た冷媒は冷媒配管13Aに入るが、このとき電磁弁17は閉じているので、室外熱交換器7を出た全ての冷媒は分岐配管72を経て補助膨張弁73に至る。冷媒はこの補助膨張弁73で減圧された後、冷媒−熱媒体熱交換器64の冷媒流路64Bに流入して蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は冷媒配管74、冷媒配管13C、及び、アキュムレータ12を順次経て圧縮機2に吸い込まれる循環を繰り返す(図35に実線矢印で示す)。
 一方、循環ポンプ62から吐出された熱媒体は熱媒体加熱ヒータ66を経て熱媒体配管68内を冷媒−熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒により吸熱され、熱媒体は冷却される。冷媒の吸熱作用で冷却された熱媒体は冷媒−熱媒体熱交換器64を出てバッテリ55に至り、当該バッテリ55を冷却した後、循環ポンプ62に吸い込まれる循環を繰り返す。コントローラ32は、例えばバッテリ温度センサ76が検出するバッテリ温度Tbと目標バッテリ温度TBOに基づいて圧縮機2及び循環ポンプ62の運転を制御するものである。
 尚、バッテリ55は低温環境下で前述した適温範囲よりバッテリ温度Tbが低くなると充放電性能が低下するが、実施例ではバッテリ温度調整装置61に熱媒体加熱ヒータ66が設けられているので、バッテリ温度Tbが上記適温範囲より低下した場合、コントローラ32により熱媒体加熱ヒータ66を発熱させ、バッテリ55に循環される熱媒体を加熱する。これにより、バッテリ温度Tbを上昇させて適温範囲に維持する。但し、その場合コントローラ32は、補助膨張弁73を全閉として冷媒−熱媒体熱交換器64に冷媒を循環させないようにするものである。
 また、上記各実施例で説明した冷媒回路Rやバッテリ温度調整装置61の構成はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention. A vehicle according to an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted. The battery 55 is mounted on the vehicle, and electric power charged in the battery 55 is used for traveling. The vehicle air conditioner 1 according to the present invention is driven by the electric power of the battery 55. The vehicle air conditioner 1 of the present invention is also driven by being supplied to an electric motor (not shown).
That is, the vehicle air conditioner 1 of the embodiment performs heating operation by heat pump operation using the refrigerant circuit R in an electric vehicle that cannot be heated by engine waste heat, and further performs dehumidification heating operation, internal cycle operation, and dehumidification cooling. Air conditioning of the passenger compartment is performed by selectively executing each air conditioning operation of the operation and the cooling operation.
Note that the present invention is not limited to an electric vehicle as a vehicle, but is also applicable to a so-called hybrid vehicle that uses an engine and an electric motor for traveling, and is also applicable to a normal vehicle that travels with an engine. Needless to say.
The vehicle air conditioner 1 according to the embodiment performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and includes an electric compressor 2 that compresses refrigerant and vehicle interior air. Is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G, and dissipates the refrigerant into the vehicle compartment. And an outdoor expansion valve 6 comprising an electric valve that decompresses and expands the refrigerant during heating, and functions as a radiator that radiates the refrigerant during cooling and functions as an evaporator that absorbs the refrigerant during heating. An outdoor heat exchanger 7 that performs heat exchange, an indoor expansion valve 8 that includes an electric valve (or a mechanical expansion valve) that decompresses and expands the refrigerant, and a vehicle that is provided in the air flow passage 3 during cooling and dehumidification Absorbs heat from inside and outside into refrigerant A heat absorber 9 to the accumulator 12 and the like are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed. The outdoor expansion valve 6 expands the refrigerant flowing out of the radiator 4 and flowing into the outdoor heat exchanger 7 under reduced pressure, and can be fully closed.
The outdoor heat exchanger 7 is provided with an outdoor blower 15. The outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing outside air through the outdoor heat exchanger 7, so that the outdoor air blower 15 can also be used outdoors even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). It is comprised so that external air may be ventilated by the heat exchanger 7. FIG. In the figure, reference numeral 23 denotes a shutter called a grill shutter. When the shutter 23 is closed, the traveling wind is prevented from flowing into the outdoor heat exchanger 7.
The refrigerant pipe 13 </ b> A connected to the refrigerant outlet side of the outdoor heat exchanger 7 is connected to the refrigerant pipe 13 </ b> B via the check valve 18. The check valve 18 has a forward direction on the refrigerant pipe 13B side. The refrigerant pipe 13B is connected to the indoor expansion valve 8 via an electromagnetic valve 17 serving as an on-off valve that is opened during cooling. In the embodiment, the electromagnetic valve 17 and the indoor expansion valve 8 constitute a valve device for controlling the inflow of the refrigerant to the heat absorber 9.
Further, the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched, and the branched refrigerant pipe 13D as the first bypass circuit has an electromagnetic valve 21 as a first on-off valve opened during heating. Through the refrigerant pipe 13 </ b> C located on the outlet side of the heat absorber 9. The refrigerant pipe 13 </ b> C is connected to the accumulator 12, and the accumulator 12 is connected to the refrigerant suction side of the compressor 2.
Furthermore, the refrigerant pipe 13E on the outlet side of the radiator 4 is branched into a refrigerant pipe 13J and a refrigerant pipe 13F before the outdoor expansion valve 6 (the refrigerant upstream side), and one of the branched refrigerant pipes 13J is the outdoor expansion valve 6. Is connected to the refrigerant inlet side of the outdoor heat exchanger 7. The other branched refrigerant pipe 13F is located downstream of the check valve 18 and upstream of the refrigerant of the solenoid valve 17 via an electromagnetic valve 22 as a second on-off valve that is opened during dehumidification. The refrigerant pipe 13A and the refrigerant pipe 13B are connected in communication with each other.
Thus, the refrigerant pipe 13F is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve 18, and the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve are connected. This is a second bypass circuit that bypasses 18. The outdoor expansion valve 6 is connected in parallel with a solenoid valve 20 as an on-off valve for bypass.
The air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG. 1). 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation) which is air inside the vehicle compartment and the outside air (outside air introduction) which is outside the vehicle compartment. Furthermore, an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
Further, the air (inside air and outside air) in the air flow passage 3 after flowing into the air flow passage 3 and passing through the heat absorber 9 is radiated into the air flow passage 3 on the air upstream side of the radiator 4. An air mix damper 28 that adjusts the rate of ventilation through the vessel 4 is provided. Further, FOOT (foot), VENT (vent), and DEF (def) outlets (represented by the outlet 29 as a representative in FIG. 1) are formed in the air flow passage 3 on the air downstream side of the radiator 4. The air outlet 29 is provided with an air outlet switching damper 31 that performs switching control of air blowing from the air outlets.
Furthermore, the vehicle air conditioner 1 of the present invention includes a battery temperature adjusting device 61 for adjusting the temperature of the battery 55 by circulating a heat medium through the battery 55. The battery temperature adjustment device 61 of the embodiment includes a circulation pump 62 as a circulation device for circulating a heat medium through the battery 55, a heat medium heater 66 as a heating device, and a refrigerant-heat medium heat exchanger 64. These and the battery 55 are annularly connected by a heat medium pipe 68.
In this embodiment, the heat medium heater 66 is connected to the discharge side of the circulation pump 62, the inlet of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 is connected to the outlet of the heat medium heater 66, The inlet of the battery 55 is connected to the outlet of the heat medium flow path 64 </ b> A, and the outlet of the battery 55 is connected to the suction side of the circulation pump 62.
As the heat medium used in the battery temperature adjusting device 61, for example, water, a refrigerant such as HFO-1234f, a liquid such as a coolant, or a gas such as air can be employed. In the embodiment, water is used as the heat medium. The heat medium heater 66 is composed of an electric heater such as a PTC heater. Furthermore, it is assumed that a jacket structure is provided around the battery 55 so that the heat medium can circulate with the battery 55 in a heat exchange relationship.
When the circulation pump 62 is operated, the heat medium discharged from the circulation pump 62 reaches the heat medium heater 66. If the heat medium heater 66 generates heat, it is heated there, and then It flows into the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64. The heat medium exiting the heat medium flow path 64 </ b> A of the refrigerant-heat medium heat exchanger 64 reaches the battery 55. The heat medium exchanges heat therewith with the battery 55 and is then circulated through the heat medium pipe 68 by being sucked into the circulation pump 62.
On the other hand, the outlet of the refrigerant pipe 13F of the refrigerant circuit R, that is, the connecting portion between the refrigerant pipe 13F, the refrigerant pipe 13A, and the refrigerant pipe 13B is on the refrigerant downstream side (forward direction side) of the check valve 18 and is electromagnetically One end of a branch pipe 72 serving as a branch circuit is connected to the upstream side of the refrigerant of the valve 17. The branch pipe 72 is provided with an auxiliary expansion valve 73 composed of an electric valve. The auxiliary expansion valve 73 decompresses and expands the refrigerant flowing into a refrigerant flow path 64B (described later) of the refrigerant-heat medium heat exchanger 64 and can be fully closed. The other end of the branch pipe 72 is connected to the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, and one end of the refrigerant pipe 74 is connected to the outlet of the refrigerant flow path 64B. The other end is connected to the refrigerant pipe 13C in front of the accumulator 12 (the refrigerant upstream side). The auxiliary expansion valve 73 and the like also constitute part of the refrigerant circuit R and at the same time constitute part of the battery temperature adjusting device 61.
When the auxiliary expansion valve 73 is open, the refrigerant (a part or all of the refrigerant) discharged from the refrigerant pipe 13F and the outdoor heat exchanger 7 is decompressed by the auxiliary expansion valve 73, and then the refrigerant-heat medium heat exchanger. 64 flows into the refrigerant flow path 64B and evaporates there. The refrigerant absorbs heat from the heat medium flowing through the heat medium flow path 64A in the process of flowing through the refrigerant flow path 64B, and then is sucked into the compressor 2 through the accumulator 12.
Next, in FIG. 2, 32 is a controller (ECU) as a control device. The controller 32 includes a microcomputer as an example of a computer having a processor, and inputs include an outside air temperature sensor 33 that detects the outside air temperature (Tam) of the vehicle and an outside air humidity sensor that detects the outside air humidity. 34, an HVAC suction temperature sensor 36 for detecting the temperature of the air sucked into the air flow passage 3 from the suction port 25, an inside air temperature sensor 37 for detecting the temperature of the air (inside air) in the passenger compartment, and the air in the passenger compartment Inside air humidity sensor 38 that detects humidity and indoor CO that detects the carbon dioxide concentration in the passenger compartment 2 A concentration sensor 39, a blowout temperature sensor 41 for detecting the temperature of air blown into the vehicle interior from the blowout port 29, a discharge pressure sensor 42 for detecting a discharge refrigerant pressure (discharge pressure Pd) of the compressor 2, and a compressor 2, a discharge temperature sensor 43 that detects the discharge refrigerant temperature 2, a suction temperature sensor 44 that detects the suction refrigerant temperature of the compressor 2, and the temperature of the radiator 4 (the temperature of the air passing through the radiator 4 or the radiator 4 Radiator temperature sensor 46 for detecting the temperature of itself: radiator temperature TCI) and refrigerant pressure of radiator 4 (pressure of refrigerant in radiator 4 or immediately after radiator 4 is released: radiator pressure PCI) A heat sink pressure sensor 47 for detecting heat, a heat absorber temperature sensor 48 for detecting the temperature of the heat absorber 9 (the temperature of air passing through the heat absorber 9 or the temperature of the heat absorber 9 itself: the heat absorber temperature Te), and the heat absorption Pressure of the refrigerant in the heat sink 9 ( , A heat absorber pressure sensor 49 that detects the pressure of the refrigerant immediately after exiting the heat absorber 9, a photosensor-type solar radiation sensor 51 for detecting the amount of solar radiation into the vehicle interior, and the vehicle moving speed (vehicle speed). ) For detecting a vehicle speed sensor 52, an air conditioning (air conditioner) operation unit 53 for setting a set temperature and switching of the air conditioning operation, and the temperature of the outdoor heat exchanger 7 (immediately after coming out of the outdoor heat exchanger 7) The temperature of the refrigerant or the temperature of the outdoor heat exchanger 7 itself: the outdoor heat exchanger temperature TXO When the outdoor heat exchanger 7 functions as an evaporator, the outdoor heat exchanger temperature TXO is the temperature of the refrigerant in the outdoor heat exchanger 7. The outdoor heat exchanger temperature sensor 54 that detects the evaporation temperature) and the refrigerant pressure of the outdoor heat exchanger 7 (the pressure of the refrigerant in the outdoor heat exchanger 7 or immediately after exiting the outdoor heat exchanger 7). Detecting outdoor heat exchanger pressure sensor 56 Each output is connected.
Further, the input of the controller 32 further includes a battery temperature sensor that detects the temperature of the battery 55 (the temperature of the battery 55 itself, the temperature of the heat medium that has exited the battery 55, or the temperature of the heat medium that enters the battery 55). 76, a heat medium heater temperature sensor 77 that detects the temperature of the heat medium heater 66 (the temperature of the heat medium heater 66 itself, the temperature of the heat medium that has exited the heat medium heater 66), and the refrigerant-heat medium heat Each output of the 1st exit temperature sensor 78 which detects the temperature of the heat carrier which came out of heat carrier channel 64A of exchanger 64, and the 2nd outlet temperature sensor 79 which detects the temperature of the refrigerant which went out of refrigerant channel 64B. Is also connected.
On the other hand, the output of the controller 32 includes the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the outlet switching damper 31, and the outdoor expansion. Valve 6, indoor expansion valve 8, solenoid valve 22 (dehumidification), solenoid valve 17 (cooling), solenoid valve 21 (heating), solenoid valve 20 (bypass) solenoid valve, shutter 23, circulation pump 62, heat A medium heater 66 and an auxiliary expansion valve 73 are connected. And the controller 32 controls these based on the output of each sensor and the setting input in the air-conditioning operation part 53. FIG.
Next, the operation of the vehicle air conditioner 1 having the above-described configuration will be described. In the embodiment, the controller 32 switches between the air-conditioning operation of the heating operation, the dehumidifying heating operation, the internal cycle operation, the dehumidifying and cooling operation, and the cooling operation, and adjusts the temperature of the battery 55 within a predetermined appropriate temperature range. To do. First, each air conditioning operation of the refrigerant circuit R will be described.
(1) Heating operation
First, the heating operation will be described with reference to FIGS. 3 and 4. FIG. 3 shows a refrigerant flow (solid arrow) in the refrigerant circuit R in the heating operation, and FIG. 4 shows a ph diagram of the refrigerant circuit R in the heating operation. In addition, in FIG. 4, each component apparatus of the refrigerant circuit R is shown on the ph diagram. When the heating operation is selected by the controller 32 (auto mode) or by the manual operation (manual mode) to the air conditioning operation unit 53, the controller 32 opens the electromagnetic valve 21 (for heating) and the electromagnetic valve 17 (cooling). Close). Further, the solenoid valve 22 (for dehumidification) and the solenoid valve 20 (for bypass) are closed. The shutter 23 is opened.
And the compressor 2 and each air blower 15 and 27 are drive | operated, and the air mix damper 28 sets it as the state which adjusts the ratio by which the air blown out from the indoor air blower 27 is ventilated by the heat radiator 4. FIG. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. Deprived, cooled, and condensed into liquid.
The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipes 13E and 13J. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15 (heat absorption). That is, the refrigerant circuit R becomes a heat pump. Then, the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 through the refrigerant pipe 13C through the refrigerant pipe 13A, the refrigerant pipe 13D, and the electromagnetic valve 21, and is separated into gas and liquid there. Repeated circulation inhaled. Since the air heated by the radiator 4 is blown out from the air outlet 29, the vehicle interior is thereby heated.
The controller 32 calculates a target radiator pressure PCO (target value of the pressure PCI of the radiator 4) from a target radiator temperature TCO (target value of the temperature TCI of the radiator 4) calculated from a target outlet temperature TAO described later. The number of revolutions of the compressor 2 is controlled based on the target radiator pressure PCO and the refrigerant pressure of the radiator 4 (radiator pressure PCI. High pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47, Based on the temperature of the radiator 4 (the radiator temperature TCI) detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47, the valve opening degree of the outdoor expansion valve 6 is controlled. Controlling the degree of supercooling of the refrigerant at the outlet. The target radiator temperature TCO is basically set to TCO = TAO, but a predetermined restriction on control is provided.
(2) Dehumidifying heating operation
Next, the dehumidifying and heating operation will be described with reference to FIGS. 5 and 6. FIG. 5 shows a refrigerant flow (solid arrow) in the refrigerant circuit R in the dehumidifying heating operation, and FIG. 6 shows a ph diagram of the refrigerant circuit R in the dehumidifying heating operation. In addition, in FIG. 6, each component apparatus of the refrigerant circuit R is shown on the ph diagram. In the dehumidifying heating operation, the controller 32 opens the electromagnetic valve 22 and the electromagnetic valve 17 in the heating operation state. Further, the shutter 23 is opened. Thereby, a part of the condensed refrigerant flowing through the refrigerant pipe 13E through the radiator 4 is divided, and the divided refrigerant flows into the refrigerant pipe 13F through the electromagnetic valve 22, and flows from the refrigerant pipe 13B to the indoor expansion valve 8. The remaining refrigerant flows into the outdoor expansion valve 6. That is, a part of the divided refrigerant is decompressed by the indoor expansion valve 8 and then flows into the heat absorber 9 to evaporate.
The controller 32 controls the opening degree of the indoor expansion valve 8 so that the degree of superheat (SH) of the refrigerant at the outlet of the heat absorber 9 is maintained at a predetermined value. Since moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat absorber 9, the air is cooled and dehumidified. The remaining refrigerant that is divided and flows into the refrigerant pipe 13J is depressurized by the outdoor expansion valve 6 and then evaporated by the outdoor heat exchanger 7.
The refrigerant evaporated in the heat absorber 9 flows out into the refrigerant pipe 13C and joins with the refrigerant from the refrigerant pipe 13D (the refrigerant from the outdoor heat exchanger 7), and then repeats circulation that is sucked into the compressor 2 through the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed.
The controller 32 controls the rotational speed of the compressor 2 based on the target radiator pressure PCO calculated from the target radiator temperature TCO and the radiator pressure PCI (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. At the same time, the valve opening degree of the outdoor expansion valve 6 is controlled based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
(3) Internal cycle operation
Next, the internal cycle operation will be described with reference to FIGS. FIG. 7 shows a refrigerant flow (solid arrow) in the refrigerant circuit R in the internal cycle operation, and FIG. 8 shows a ph diagram of the refrigerant circuit R in the internal cycle operation. In addition, in FIG. 8, each component apparatus of the refrigerant circuit R is shown on the ph diagram. In the internal cycle operation, the controller 32 fully closes the outdoor expansion valve 6 in the dehumidifying and heating operation state (fully closed position). However, the solenoid valve 21 is kept open, and the refrigerant outlet of the outdoor heat exchanger 7 is communicated with the refrigerant suction side of the compressor 2. That is, since this internal cycle operation is a state in which the outdoor expansion valve 6 is fully closed by the control of the outdoor expansion valve 6 in the dehumidifying and heating operation, this internal cycle operation can also be regarded as a part of the dehumidifying and heating operation ( The shutter 23 is open).
However, since the inflow of the refrigerant to the outdoor heat exchanger 7 is blocked by closing the outdoor expansion valve 6, the condensed refrigerant flowing through the refrigerant pipe 13 </ b> E via the radiator 4 passes through the electromagnetic valve 22 and becomes refrigerant. All flows into the pipe 13F. And the refrigerant | coolant which flows through the refrigerant | coolant piping 13F reaches the indoor expansion valve 8 through the electromagnetic valve 17 from the refrigerant | coolant piping 13B. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
The refrigerant evaporated in the heat absorber 9 flows through the refrigerant pipe 13 </ b> C and repeats circulation that is sucked into the compressor 2 through the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed. Since the refrigerant is circulated between the radiator 4 (radiation) and the heat absorber 9 (heat absorption) in the passage 3, heat from the outside air is not pumped up, and heating for the consumed power of the compressor 2 is performed. Ability is demonstrated. Since the entire amount of the refrigerant flows through the heat absorber 9 that exhibits the dehumidifying action, the dehumidifying capacity is higher than the dehumidifying and heating operation, but the heating capacity is lowered.
Although the outdoor expansion valve 6 is closed, the electromagnetic valve 21 is open, and the refrigerant outlet of the outdoor heat exchanger 7 communicates with the refrigerant suction side of the compressor 2, so that the liquid in the outdoor heat exchanger 7 is The refrigerant flows out through the refrigerant pipe 13D and the electromagnetic valve 21 to the refrigerant pipe 13C, is collected by the accumulator 12, and the outdoor heat exchanger 7 is in a gas refrigerant state. Thereby, compared with when the solenoid valve 21 is closed, the amount of refrigerant circulating in the refrigerant circuit R increases, and the heating capacity in the radiator 4 and the dehumidifying capacity in the heat absorber 9 can be improved.
The controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 or the above-described radiator pressure PCI (high pressure of the refrigerant circuit R). At this time, the controller 32 controls the compressor 2 by selecting the lower one of the compressor target rotational speeds obtained from either calculation, depending on the temperature of the heat absorber 9 or the radiator pressure PCI.
(4) Dehumidifying and cooling operation
Next, the dehumidifying and cooling operation will be described with reference to FIGS. 9 and 10. FIG. 9 shows a refrigerant flow (solid arrow) in the refrigerant circuit R in the dehumidifying and cooling operation, and FIG. 10 shows a ph diagram of the refrigerant circuit R in the dehumidifying and cooling operation. In addition, in FIG. 10, each component apparatus of the refrigerant circuit R is shown on the ph diagram. In the dehumidifying and cooling operation, the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 22 and the electromagnetic valve 20 are closed. And the compressor 2 and each air blower 15 and 27 are drive | operated, and the air mix damper 28 sets it as the state which adjusts the ratio by which the air blown out from the indoor air blower 27 is ventilated by the heat radiator 4. FIG. Further, the shutter 23 is opened. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
The refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A and the check valve 18, and further reaches the indoor expansion valve 8 through the electromagnetic valve 17. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C, and repeats circulation that is sucked into the compressor 2 through the refrigerant pipe 13C. Air that has been cooled and dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4 (reheating: lower heat dissipation capacity than during heating), so that dehumidification and cooling of the passenger compartment is performed. become.
The controller 32 sets the heat absorber temperature Te to the target heat absorber temperature TEO based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO that is the target value. While controlling the rotation speed of the compressor 2, the target radiator pressure PCO (radiator pressure) calculated from the radiator pressure PCI (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47 and the target radiator temperature TCO. The necessary reheat amount by the radiator 4 is obtained by controlling the valve opening degree of the outdoor expansion valve 6 so that the radiator pressure PCI becomes the target radiator pressure PCO based on the PCI target value).
(5) Cooling operation
Next, the cooling operation will be described with reference to FIGS. 11 and 12. FIG. 11 shows a refrigerant flow (solid arrow) in the refrigerant circuit R in the cooling operation, and FIG. 12 shows a ph diagram of the refrigerant circuit R in the cooling operation. In addition, in FIG. 12, each component apparatus of the refrigerant circuit R is shown on the ph diagram. In the cooling operation, the controller 32 opens the electromagnetic valve 20 in the dehumidifying and cooling operation state (the valve opening degree of the outdoor expansion valve 6 is free). Note that the air mix damper 28 is in a state of adjusting the ratio of air passing through the radiator 4. Further, the shutter 23 is opened.
Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Although the air in the air flow passage 3 is ventilated to the radiator 4, the ratio is small (because of only reheating during cooling), so this almost passes through, and the refrigerant exiting the radiator 4 is The refrigerant reaches the outdoor expansion valve 6 through the refrigerant pipe 13E. At this time, since the solenoid valve 20 is opened, the refrigerant passes through the refrigerant pipe 13J through the solenoid valve 20 and flows into the outdoor heat exchanger 7 as it is, and is then circulated by the outdoor air blower 15 by running or by the outdoor blower 15. It is cooled by air and condensed into liquid. The refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A and the check valve 18, and further reaches the indoor expansion valve 8 through the electromagnetic valve 17. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, and the air is cooled.
The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C, and repeats circulation that is sucked into the compressor 2 through the refrigerant pipe 13C. The air cooled and dehumidified by the heat absorber 9 is blown out from the outlet 29 into the vehicle interior, thereby cooling the vehicle interior. In this cooling operation, the controller 32 controls the rotational speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
(6) Switching air conditioning operation
The controller 32 calculates the target blowing temperature TAO described above from the following formula (I). This target blowing temperature TAO is a target value of the temperature of the air blown out from the blowout port 29 into the vehicle interior.
TAO = (Tset−Tin) × K + Tbal (f (Tset, SUN, Tam))
.. (I)
Here, Tset is the set temperature in the passenger compartment set by the air conditioning operation unit 53, Tin is the temperature of the passenger compartment air detected by the inside air temperature sensor 37, K is a coefficient, Tbal is the set temperature Tset, and the solar radiation sensor 51 detects This is a balance value calculated from the amount of solar radiation SUN to be performed and the outside air temperature Tam detected by the outside air temperature sensor 33. And generally this target blowing temperature TAO is so high that the outside temperature Tam is low, and it falls as the outside temperature Tam rises.
The controller 32 selects one of the above air conditioning operations based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target outlet temperature TAO at the time of activation. In addition, after the activation, the air conditioning operations are selected and switched in accordance with changes in the environment and setting conditions such as the outside air temperature Tam and the target blowing temperature TAO.
(7) Control of shutter 23 during dehumidifying and cooling operation and switching to internal cycle operation
Here, in the dehumidifying and cooling operation described above, the controller 32 is based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO that is the target value, and the heat absorber temperature Te. The rotational speed of the compressor 2 is controlled so as to be the target heat absorber temperature TEO. Therefore, when the heat absorber temperature Te is satisfactory (the target heat absorber temperature TEO is at or close to the target heat absorber temperature TEO), the rotational speed of the compressor 2 is also low.
Further, the controller 32 uses the radiator pressure PCI detected by the radiator pressure sensor 47 (the high pressure of the refrigerant circuit R) and the target radiator pressure PCO (the target value of the radiator pressure PCI) as the target heat dissipation. The valve opening degree of the outdoor expansion valve 6 is controlled so as to obtain the vessel pressure PCO. Therefore, since the rotational speed of the compressor 2 cannot be increased when the heat absorber temperature Te is satisfactory, the controller 32 increases the valve opening degree of the outdoor expansion valve 6 as the radiator pressure PCI becomes lower than the target radiator pressure PCO. In order to increase the heat dissipating capability of the heat dissipator 4 by keeping the refrigerant in the heat dissipator 4 as much as possible.
However, as the valve opening degree of the outdoor expansion valve 6 becomes smaller, the amount of circulating refrigerant in the heat absorber 9 decreases, so that temperature spots are generated in the heat absorber 9. And if the valve opening degree of the outdoor expansion valve 6 is reduced to the minimum control opening degree, the temperature spots of the heat absorber 9 become extremely large, and the air conditioning performance in the passenger compartment deteriorates (the air blown out by the air outlet). The air temperature will be different). In particular, in the dehumidifying and cooling operation, as described above, the heat exchange capacity of the radiator 4 is reduced by the amount of heat exchanged between the refrigerant and the outside air by the outdoor heat exchanger 7, and thus this problem occurs when the outside air temperature becomes low. It becomes easy to occur and will shift to internal cycle operation or dehumidification heating operation at an early stage. In order to prevent this, it is necessary to provide a special electric heater or the like to heat the air blown into the passenger compartment, but the power consumption increases accordingly.
Therefore, in the dehumidifying and cooling operation of FIG. 9 and FIG. 10 described above, the controller 32 cannot reduce the radiator pressure PCI to the target radiator pressure PCO even if the valve opening degree of the outdoor expansion valve 6 is reduced (that is, In the case where the target radiator pressure PCO cannot be achieved by the control of the outdoor expansion valve 6), in this embodiment, even if the valve opening degree of the outdoor expansion valve 6 is set to the minimum control opening degree while the heat absorber temperature Te is satisfied, the radiator If the pressure PCI cannot be set to the target radiator pressure PCO, it is determined that the radiator 4 has insufficient heat dissipation capability, and the shutter 23 is closed and the outdoor fan 15 is stopped as shown in FIG.
As a result, the traveling wind does not flow into the outdoor heat exchanger 7 and there is no ventilation of the outside air. Therefore, as shown in the ph diagram of FIG. 14, the heat of the refrigerant and the outside air in the outdoor heat exchanger 7 There is no exchange, or the heat exchange amount between the refrigerant and the outside air in the outdoor heat exchanger 7 becomes extremely small. Accordingly, the amount of heat dissipated by the refrigerant in the radiator 4 increases, so that the opening degree of the outdoor expansion valve 6 is remarkably reduced or the radiator pressure PCI is set to the target radiator pressure PCO without setting the minimum opening degree. As a result, temperature spots generated in the heat absorber 9 can be eliminated or suppressed.
Further, by closing the shutter 23 in this way, the dehumidifying and cooling operation can be extended and the feasible range can be expanded without using a special electric heater or the like. However, if the radiator pressure PCI cannot be set to the target radiator pressure PCO even when the shutter 23 is closed as described above, the controller 32 switches the air conditioning operation to the internal cycle operation of FIGS. 7 and 8. Thereby, the refrigerant | coolant circulation amount of the radiator 4 (high-pressure side of the refrigerant circuit R) is increased rather than dehumidification cooling operation, the heat dissipation capability by the radiator 4 is increased, and comfortable vehicle interior air conditioning is maintained.
In this embodiment, it is possible to set the radiator pressure PCI to the target radiator pressure PCO even if the valve opening degree of the outdoor expansion valve 6 is reduced to the minimum control opening degree when the heat absorber temperature Te is satisfactory. If it is not possible, it is determined that the heat dissipating capacity of the radiator 4 is insufficient. However, regardless of the heat absorber temperature Te, the valve opening of the outdoor expansion valve 6 is simply reduced to a predetermined small value in the dehumidifying and cooling operation. When the radiator pressure PCI cannot be made the target radiator pressure PCO even if it is reduced, or when the radiator pressure PCI cannot be made close to the target radiator pressure PCO, the heat dissipation capability of the radiator 4 May be determined to be insufficient.
(8) Temperature adjustment of the battery 55
Next, the temperature adjustment control of the battery 55 by the controller 32 will be described with reference to FIGS. As described above, when the battery 55 is charged and discharged in a state where the temperature is increased due to self-heating or the like, the deterioration proceeds. Therefore, the controller 32 of the vehicle air conditioner 1 of the present invention cools the temperature of the battery 55 within the appropriate temperature range by the battery temperature adjusting device 61 while performing the air conditioning operation as described above. Since the appropriate temperature range of the battery 55 is generally set to + 25 ° C. or higher and + 45 ° C. or lower, in the embodiment, the target battery temperature TBO (the target value of the temperature of the battery 55 (battery temperature Tb) is within the appropriate temperature range. For example, + 35 ° C.) is set.
(8-1) First heating / battery cooling mode
In the heating operation (FIGS. 3 and 4), the controller 32 uses the following formulas (II) and (III), for example, the required heating capacity Qtgt which is the heating capacity required for the radiator 4 and the heat dissipation. The heating capacity Qhp that can be generated by the appliance 4 is calculated.
Qtgt = (TCO−Te) × Cpa × ρ × Qair (II)
Qhp = f (Tam, NC, BLV, VSP, FANVout, Te) (III)
Here, Te is the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48, Cpa is the specific heat [kj / kg · K] of the air flowing into the radiator 4, and ρ is the density of the air flowing into the radiator 4 ( Specific volume) [kg / m 3 Qair is the amount of air passing through the radiator 4 [m 3 / H] (estimated from the blower voltage BLV of the indoor blower 27), VSP is the vehicle speed obtained from the vehicle speed sensor 52, and FANVout is the voltage of the outdoor blower 15.
Moreover, the controller 32 is requested | required of the battery temperature adjustment apparatus 61, for example using following formula (IV) based on the temperature (battery temperature Tb) of the battery 55 which the battery temperature sensor 76 detects, and the target battery temperature TBO mentioned above. The required battery cooling capacity Qbat, which is the cooling capacity of the battery 55, is calculated.
Qbat = (Tb−TBO) × k1 × k2 (IV)
Here, k1 is the specific heat [kj / kg · K] of the heat medium circulating in the battery temperature adjusting device 61, and k2 is the flow rate of the heat medium [m. 3 / H]. The formula for calculating the required battery cooling capacity Qbat is not limited to the above, and may be calculated in consideration of other factors related to battery cooling other than the above.
When the battery temperature Tb is lower than the target battery temperature TBO (Tb <TBO), the required battery cooling capacity Qbat calculated by the above formula (IV) is negative. Therefore, in the embodiment, the controller 32 sets all the auxiliary expansion valves 73 in the embodiment. The battery temperature adjusting device 61 is also stopped. On the other hand, when the battery temperature Tb rises due to charging / discharging or the like during the heating operation described above and becomes higher than the target battery temperature TBO (TBO <Tb), the required battery cooling capacity Qbat calculated by the formula (IV) is positive. Therefore, in the embodiment, the controller 32 opens the auxiliary expansion valve 73, operates the battery temperature adjusting device 61, and starts cooling the battery 55.
In that case, the controller 32 compares both of the required heating capacity Qtgt and the required battery cooling capacity Qbat, and compares the first and second heating / battery cooling modes described later with a second heating / battery cooling mode described later. The third heating / battery cooling mode is switched and executed.
First, when the heating load in the passenger compartment is large (for example, the temperature of the inside air is low) and the heat generation amount of the battery 55 is small (the cooling load is small), the required heating capacity Qtgt is larger than the required battery cooling capacity Qbat. (Qtgt> Qbat), the controller 32 executes the first heating / battery cooling mode. FIG. 15 shows a refrigerant flow (solid arrow) in the refrigerant circuit R and a heat medium flow (broken arrow) in the battery temperature adjusting device 61 in the first heating / battery cooling mode, and FIG. 16 shows the first heating / battery cooling mode. The ph diagram of the refrigerant circuit R in battery cooling mode is shown. In addition, in FIG. 16, each component apparatus of the refrigerant circuit R is shown on the ph diagram.
In the first heating / battery cooling mode, the controller 32 further opens the electromagnetic valve 22 and opens the auxiliary expansion valve 73 in the heating operation state of the refrigerant circuit R shown in FIGS. Is the state to control. Then, the circulation pump 62 of the battery temperature adjusting device 61 is operated. Thereby, a part of the refrigerant discharged from the radiator 4 is diverted on the refrigerant upstream side of the outdoor expansion valve 6 and reaches the refrigerant upstream side of the electromagnetic valve 17 through the refrigerant pipe 13F. The refrigerant then enters the branch pipe 72 and is depressurized by the auxiliary expansion valve 73, and then flows into the refrigerant flow path 64 </ b> B of the refrigerant-heat medium heat exchanger 64 through the branch pipe 72 and evaporates. At this time, an endothermic effect is exhibited. The refrigerant evaporated in the refrigerant flow path 64B is repeatedly circulated through the refrigerant pipe 74, the refrigerant pipe 13C, and the accumulator 12 and then sucked into the compressor 2 (indicated by solid arrows in FIG. 15).
On the other hand, the heat medium discharged from the circulation pump 62 passes through the heat medium heater 66 to reach the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 through the heat medium pipe 68, where it evaporates in the refrigerant flow path 64B. The refrigerant absorbs heat and the heat medium is cooled. The heat medium cooled by the endothermic action of the refrigerant exits the refrigerant-heat medium heat exchanger 64 and reaches the battery 55. After cooling the battery 55, the heat medium is repeatedly sucked into the circulation pump 62 (the broken line in FIG. 15). Indicated by an arrow).
In this way, in the first heating / battery cooling mode, the refrigerant in the refrigerant circuit R evaporates in the outdoor heat exchanger 7 and the refrigerant-heat medium heat exchanger 64 and absorbs heat from the outside air, and the battery temperature adjusting device 61 It also absorbs heat from the heat medium (battery 55). Thus, heat is pumped from the battery 55 via the heat medium, and the pumped heat is conveyed to the radiator 4 while being cooled, and can be used for heating the passenger compartment.
In the first heating / battery cooling mode, when the required heating capacity Qtgt cannot be achieved by the above-described heating capacity Qhp of the radiator 4 by heat absorption from the outside air and heat absorption from the battery 55 as described above (Qtgt> Qhp), The controller 32 causes the heat medium heater 66 to generate heat (energization).
When the heat medium heater 66 generates heat, the heat medium discharged from the circulation pump 62 of the battery temperature adjusting device 61 is heated by the heat medium heater 66 and then the heat medium flow path of the refrigerant-heat medium heat exchanger 64. 64A, the heat of the heat medium heater 66 is also pumped up by the refrigerant evaporating in the refrigerant flow path 64B, and the heating capability Qhp by the radiator 4 is increased to achieve the required heating capability Qtgt. Will be able to. The controller 32 stops the heat generation of the heat medium heater 66 (non-energization) when the heating capacity Qhp can achieve the required heating capacity Qtgt.
(8-2) Third heating / battery cooling mode
Next, when the heating load in the passenger compartment and the cooling load of the battery 55 are substantially the same, that is, when the required heating capacity Qtgt and the required battery cooling capacity Qbat are equal or approximate (Qtgt≈Qbat), the controller 32 Perform heating / battery cooling mode. FIG. 17 shows the refrigerant flow (solid arrow) in the refrigerant circuit R and the heat medium flow (broken arrow) in the battery temperature adjusting device 61 in the third heating / battery cooling mode, and FIG. 18 shows the third heating / battery cooling mode. The ph diagram of the refrigerant circuit R in battery cooling mode is shown. In addition, in FIG. 18, each component apparatus of the refrigerant circuit R is shown on the ph diagram.
In this third heating / battery cooling mode, the controller 32 closes the electromagnetic valves 17, 20, 21 and fully closes the outdoor expansion valve 6, opens the electromagnetic valve 22, and opens the auxiliary expansion valve 73 to open the valve opening. Is the state to control. Then, the compressor 2 and the indoor fan 27 are operated, and the circulation pump 62 of the battery temperature adjusting device 61 is also operated (the heat medium heater 66 is not energized). Thereby, all the refrigerant | coolants which came out from the heat radiator 4 flow into the solenoid valve 22, and come to the refrigerant | coolant upstream side of the solenoid valve 17 through the refrigerant | coolant piping 13F. The refrigerant then enters the branch pipe 72 and is depressurized by the auxiliary expansion valve 73, and then flows into the refrigerant flow path 64 </ b> B of the refrigerant-heat medium heat exchanger 64 through the branch pipe 72 and evaporates. At this time, an endothermic effect is exhibited. The refrigerant evaporated in the refrigerant flow path 64B is repeatedly circulated through the refrigerant pipe 74, the refrigerant pipe 13C, and the accumulator 12 (indicated by solid arrows in FIG. 17).
On the other hand, the heat medium discharged from the circulation pump 62 passes through the heat medium heater 66 to reach the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 through the heat medium pipe 68, where it evaporates in the refrigerant flow path 64B. The refrigerant absorbs heat and the heat medium is cooled. The heat medium cooled by the endothermic action of the refrigerant leaves the refrigerant-heat medium heat exchanger 64 and reaches the battery 55. After cooling the battery 55, the heat medium is repeatedly sucked into the circulation pump 62 (broken line in FIG. 18). Indicated by an arrow).
Thus, in the third heating / battery cooling mode, the refrigerant in the refrigerant circuit R evaporates in the refrigerant-heat medium heat exchanger 64 and absorbs heat only from the heat medium (battery 55) of the battery temperature adjusting device 61. As a result, the refrigerant does not flow into the outdoor heat exchanger 7, and the refrigerant pumps up heat only from the battery 55 via the heat medium, so that while solving the problem of frost formation on the outdoor heat exchanger 7, The battery 55 can be cooled and the heat pumped up from the battery 55 can be transferred to the radiator 4 to heat the passenger compartment.
(8-3) Second heating / battery cooling mode
Next, when the heating load in the passenger compartment is small (for example, the temperature of the inside air is relatively high) and the amount of heat generated by the battery 55 is large (the cooling load is large), that is, the required battery cooling capacity Qbat is larger than the required heating capacity Qtgt. If so (Qtgt <Qbat), the controller 32 executes the second heating / battery cooling mode. FIG. 19 shows a refrigerant flow (solid arrow) in the refrigerant circuit R and a heat medium flow (broken arrow) in the battery temperature adjusting device 61 in the second heating / battery cooling mode, and FIG. 20 shows the second heating / battery cooling mode. The ph diagram of the refrigerant circuit R in battery cooling mode is shown. In addition, in FIG. 20, each component apparatus of the refrigerant circuit R is shown on the ph diagram.
In the second heating / battery cooling mode, the controller 32 closes the electromagnetic valves 17, 20, 21, and 22, opens the outdoor expansion valve 6, and opens the auxiliary expansion valve 73 to control the valve opening. . Then, the compressor 2, the outdoor fan 15, and the indoor fan 27 are operated, the shutter 23 is opened, and the circulation pump 62 of the battery temperature adjusting device 61 is also operated (the heat medium heater 66 is not energized). As a result, the refrigerant discharged from the radiator 4 flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6, and reaches the refrigerant upstream side of the electromagnetic valve 17 through the refrigerant pipe 13A. The refrigerant then enters the branch pipe 72 and is depressurized by the auxiliary expansion valve 73, and then flows into the refrigerant flow path 64 </ b> B of the refrigerant-heat medium heat exchanger 64 through the branch pipe 72 and evaporates. At this time, an endothermic effect is exhibited. The refrigerant evaporated in the refrigerant flow path 64B is repeatedly circulated through the refrigerant pipe 74, the refrigerant pipe 13C, and the accumulator 12 and then sucked into the compressor 2 (indicated by solid arrows in FIG. 19).
On the other hand, the heat medium discharged from the circulation pump 62 passes through the heat medium heater 66 to reach the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 through the heat medium pipe 68, where it evaporates in the refrigerant flow path 64B. The refrigerant absorbs heat and the heat medium is cooled. The heat medium cooled by the endothermic action of the refrigerant leaves the refrigerant-heat medium heat exchanger 64 and reaches the battery 55. After the battery 55 is cooled, the heat pump repeats the circulation sucked into the circulation pump 62 (the broken line in FIG. 20). Indicated by an arrow).
In this way, in the second heating / battery cooling mode, the refrigerant in the refrigerant circuit R dissipates heat in the radiator 4 and the outdoor heat exchanger 7, evaporates in the refrigerant-heat medium heat exchanger 64, and the battery temperature adjusting device. Heat is absorbed from the heat medium 61 (battery 55). The controller 32 adjusts the cooling capacity of the battery 55 by the battery temperature adjusting device 61 by controlling the operation (rotation speed NC) of the compressor 2 based on the battery temperature Tb detected by the battery temperature sensor 76 and the target battery temperature TBO. To do.
In addition, the flow rate of the refrigerant in the radiator 4 is controlled by controlling the valve opening degree of the outdoor expansion valve 6, the heat release amount of the refrigerant in the radiator 4 is adjusted, and the valve opening degree of the auxiliary expansion valve 73 is controlled. The circulation of the refrigerant in the outdoor heat exchanger 7 is controlled, and the heat release amount of the refrigerant in the outdoor heat exchanger 7 is adjusted. As a result, the battery 55 is cooled and the heat is discarded into the outside air so that the vehicle interior can be heated.
Here, when the battery 55 is rapidly charged or the like, the heat generation amount of the battery 55 becomes extremely large, and the required battery cooling capacity Qbat becomes very large compared to the required heating capacity Qtgt (Qtgt << Qbat). 32 further opens the electromagnetic valve 20 in the state of the second heating / battery cooling mode of FIGS. FIG. 21 shows the refrigerant flow (solid arrow) in the refrigerant circuit R and the heat medium flow (broken arrow) in the battery temperature adjusting device 61 in the second heating / battery cooling mode in this case, and FIG. The ph diagram of the refrigerant circuit R in the second heating / battery cooling mode is shown (in FIG. 22, each component device of the refrigerant circuit R is shown on the ph diagram).
As described above, in addition to the states of FIG. 19 and FIG. 20, the electromagnetic valve 20 of the refrigerant circuit R is opened, so that the refrigerant radiated by the radiator 4 comes out of the radiator 4 and remains as it is in the outdoor heat exchanger 7. And flows into the outside air (indicated by solid arrows in FIG. 21). Thus, a large amount of excess heat can be released into the outside air while heating the vehicle interior using a large amount of heat generated by the battery 55. Again, the controller 32 controls the operation (rotation speed NC) of the compressor 2 based on the battery temperature Tb detected by the battery temperature sensor 76 and the target battery temperature TBO, thereby cooling the battery 55 by the battery temperature adjusting device 61. Adjust ability.
Moreover, the controller 32 controls the ventilation to the outdoor heat exchanger 7 by opening and closing the rotation speed of the outdoor blower 15 and the shutter 23, and adjusts the heating capacity in the vehicle interior. However, if the heating capacity of the radiator 4 is excessive even when the number of rotations of the outdoor blower 15 is maximized (a situation where the heat generation amount of the battery 55 is extremely large), the controller 32 controls the air mix damper 28 to the radiator 4. For example, the air flow rate of the vehicle is controlled to decrease, and the heating capacity in the passenger compartment is adjusted.
As described above, the controller 32 radiates the refrigerant discharged from the compressor 2 with the radiator 4, depressurizes the radiated refrigerant, and then absorbs heat with the outdoor heat exchanger 7 and the refrigerant-heat medium heat exchanger 64. The first heating / battery cooling mode, the refrigerant discharged from the compressor 2 is radiated by the radiator 4 and the outdoor heat exchanger 7, and the radiated refrigerant is decompressed, and then the refrigerant-heat medium heat exchanger Since the second heating / battery cooling mode for absorbing heat at 64 is executed, the first heating / battery cooling mode is executed when the amount of heat generated by the battery 55 is small, and the outdoor heat exchanger 7 In addition, the vehicle interior can be heated while pumping up the heat of the battery 55 to cool the battery 55 and when the amount of heat generated by the battery 55 is large during rapid charging or the like, the second heating / Ba Run the luster cooling mode, emits thermal battery 55 to the outside air in the outdoor heat exchanger 7, while cooling the battery 55, it is possible to heat the passenger compartment.
In this way, when the vehicle interior is heated, the heat absorption and heat dissipation of the refrigerant in the outdoor heat exchanger 7 can be switched, so the heat of the battery 55 can be effectively used to efficiently heat the vehicle interior. The battery 55 can be appropriately cooled while suppressing frost formation on the outdoor heat exchanger 7.
Further, the controller 32 prevents the refrigerant from flowing into the outdoor heat exchanger 7, radiates the refrigerant discharged from the compressor 2 with the radiator 4, depressurizes the radiated refrigerant, and then forms a refrigerant-heat medium. Since the third heating / battery cooling mode in which heat is absorbed only by the heat exchanger 64 is executed, when the amount of heat necessary for heating the vehicle interior (heating load) and the amount of heat generated by the battery (battery cooling load) become substantially equal, No. 3 heating / battery cooling mode is executed, and the vehicle interior can be heated only with the heat pumped up from the battery 55. Thereby, the vehicle interior can be efficiently heated and the battery 55 can be appropriately cooled while solving the problem of frost formation on the outdoor heat exchanger 7.
In this case, the controller 32 switches and executes each heating / battery cooling mode described above based on the required heating capacity Qtgt required for the radiator 4 and the required battery cooling capacity Qbat required for the battery temperature adjusting device 61. Thus, it is possible to appropriately balance heating of the passenger compartment and cooling of the battery 55.
Specifically, in the embodiment, when the required heating capacity Qtgt is greater than the required battery cooling capacity Qbat, the controller 32 executes the first heating / battery cooling mode, and the required heating capacity Qtgt and the required battery cooling capacity Qbat are If the values are equal or approximate, the third heating / battery cooling mode is executed, and if the required battery cooling capacity Qbat is larger than the required heating capacity Qtgt, the second heating / battery cooling mode is executed. By appropriately switching the heating / battery cooling mode, efficient heating of the passenger compartment and effective cooling of the battery 55 can be performed smoothly.
Further, in the first heating / battery cooling mode, the controller 32 heats the heat medium by the heat medium heater 66 when the required heating capacity Qtgt cannot be achieved by the heating capacity Qhp that can be generated by the radiator 4. When the heat generation amount of 55 is small and the heating capacity of the vehicle interior by the radiator 4 is insufficient in the first heating / battery cooling mode, the heat medium is heated by the heat medium heater 66 of the battery temperature adjusting device 61, The heat can be pumped up by the refrigerant to make up for the shortage.
In the embodiment, the controller 32 adjusts the cooling capacity of the battery 55 by the battery temperature adjusting device 61 by controlling the operation of the compressor 2 (rotation speed NC) in the second heating / battery cooling mode, Since the refrigerant flow in the radiator 4 and the outdoor heat exchanger 7 or the ventilation to the radiator 4 and the outdoor heat exchanger 7 is controlled, the heating capacity of the vehicle interior by the radiator 4 is adjusted. When the heat generation amount of the battery 55 is large, the battery 55 is effectively cooled by adjusting the cooling capacity of the battery 55 by controlling the compressor 2 in the second heating / battery cooling mode. It becomes possible to adjust appropriately by controlling the circulation and ventilation of the refrigerant in the radiator 4 and the outdoor heat exchanger 7.
In this embodiment, the controller 32 for controlling the flow of the refrigerant in the radiator 4 in this case is the outdoor expansion valve 6 for decompressing the refrigerant flowing into the outdoor heat exchanger 7, and the controller 32 is the outdoor heat exchanger. The means for controlling the circulation of the refrigerant 7 is an auxiliary expansion valve 73 for reducing the pressure of the refrigerant flowing into the refrigerant-heat medium heat exchanger 64. The controller 32 controls the ventilation to the radiator 4 in the embodiment by the air mix damper 28 for adjusting the ratio of the air in the air flow passage 3 to the radiator 4. In the embodiment, the means for controlling the ventilation to the outdoor heat exchanger 7 is an outdoor blower 15 for ventilating the outside air to the outdoor heat exchanger 7 and a shutter for preventing the running wind from flowing into the outdoor heat exchanger 7. 23.
In the embodiment, the refrigerant circuit R absorbs heat from the outdoor expansion valve 6 for decompressing the refrigerant flowing out of the radiator 4 and flowing into the outdoor heat exchanger 7, and the refrigerant discharged from the outdoor heat exchanger 7. A heat absorber 9 for cooling the air supplied from the flow passage 3 into the vehicle interior, an electromagnetic valve 17 and an indoor expansion valve 8 (valve device) for controlling the inflow of refrigerant to the heat absorber 9, and outdoor heat A refrigerant pipe 13D (first bypass circuit) for sucking the refrigerant discharged from the exchanger 7 into the compressor 2 without flowing into the electromagnetic valve 17, and an electromagnetic valve 21 (first valve) provided in the refrigerant pipe 13D. Open / close valve), a refrigerant pipe 13F (second bypass circuit) for diverting the refrigerant from the radiator 4 from the refrigerant upstream side of the outdoor expansion valve 6 and flowing it to the refrigerant upstream side of the electromagnetic valve 17, An electromagnetic valve 22 (second on-off valve) provided in the refrigerant pipe 13F; The branch pipe 72 (branch circuit) for flowing the refrigerant from the medium pipe 13F to the refrigerant-heat medium heat exchanger 64 and the refrigerant that is provided in the branch pipe 72 and flows into the refrigerant-heat medium heat exchanger 64 An auxiliary expansion valve 73 for reducing the pressure and a check valve 18 for preventing the refrigerant from the refrigerant pipe 13F from flowing into the outdoor heat exchanger 7 are provided. The controller 32 controls the outdoor expansion valve 6 and the electromagnetic valve 17. The solenoid valve 21, the solenoid valve 22, the auxiliary expansion valve 73, and the circulation pump 62 of the battery temperature adjusting device 61 are controlled, and the first heating / battery cooling mode, the second heating / battery cooling mode, and the third heating / Since the battery cooling mode is switched and executed, the electromagnetic valve 21 and the electromagnetic valve 22 are opened, the electromagnetic valve 17 is closed, and the outdoor expansion valve 6 and the auxiliary expansion valve 73 are used for the outdoor heat exchanger 7 and the refrigerant-heat. The first heating / battery cooling mode is executed by depressurizing the refrigerant flowing into the body heat exchanger 64, the solenoid valve 22 is opened, the outdoor expansion valve 6 is fully closed, and the solenoid valve 21 and the solenoid valve 17 are closed. The auxiliary expansion valve 73 decompresses the refrigerant flowing into the refrigerant-heat medium heat exchanger 64 to execute the third heating / battery cooling mode, opens the outdoor expansion valve 6, opens the electromagnetic valve 21, the electromagnetic valve 22, and The second heating / battery cooling mode can be executed by closing the electromagnetic valve 17 and reducing the pressure of the refrigerant flowing into the refrigerant-heat medium heat exchanger 64 by the auxiliary expansion valve 73.
In the embodiment, the flow of the refrigerant into the heat absorber 9 is controlled by the electromagnetic valve 17 and the indoor expansion valve 8. However, if the indoor expansion valve 8 is constituted by an electric valve that can be fully closed, the electromagnetic valve 17 is deleted. It is also possible to achieve the role with only the indoor expansion valve 8. That is, in that case, in the embodiment of the present application, the operation of closing the electromagnetic valve 17 is an operation of fully closing the valve opening of the indoor expansion valve 8.
(8-4) Defrosting / heating / battery cooling mode
Next, the defrost / heating / battery cooling mode by the controller 32 will be described. Since the outdoor heat exchanger 7 functions as an evaporator during the heating operation as described above, moisture in the outdoor air grows as frost in the outdoor heat exchanger 7 and the heat exchange efficiency decreases. The controller 32 calculates, for example, the outdoor heat exchanger temperature TXObase at the time of non-frosting calculated from the outside air temperature Tam, the rotational speed NC of the compressor 2, and the outdoor heat exchanger temperature TXObase at the time of non-frosting and the outdoor The outdoor heat exchanger temperature TXO detected by the heat exchanger temperature sensor 54 is constantly compared. When the outdoor heat exchanger temperature TXO is lower than the outdoor heat exchanger temperature TXObase at the time of non-frosting and the difference becomes a predetermined value or more, the required battery cooling capacity Qbat calculated by the above-described formula (IV). Is positive, the defrosting / heating / battery cooling mode is performed in which heating of the vehicle interior and cooling of the battery 55 are performed while the outdoor heat exchanger 7 is defrosted (FIGS. 23 and 24).
In the defrosting / heating / battery cooling mode, the shutter 23 is closed in the state of the refrigerant circuit R in the second heating / battery cooling mode of FIG. 21 described above, and the inflow of traveling wind to the outdoor heat exchanger 7 is prevented. . Further, the outdoor blower 15 is stopped, and the compressor 2 and the indoor blower 27 are operated. Then, the circulation pump 62 of the battery temperature adjusting device 61 is also operated, and the refrigerant and the heat medium are heat-exchanged in the refrigerant-heat medium heat exchanger 64. When the shutter 23 is provided as in the embodiment, it is closed. When the shutter 23 is not provided, the outdoor blower 15 is stopped and the forced ventilation of the outside air is only stopped. FIG. 23 shows the refrigerant flow (solid arrow) in the refrigerant circuit R and the heat medium flow (broken arrow) in the battery temperature adjusting device 61 in this defrost / heating / battery cooling mode, and FIG. The ph diagram of the refrigerant circuit R in the battery cooling mode is shown (in FIG. 24, each component device of the refrigerant circuit R is shown on the ph diagram).
Thus, the high-temperature refrigerant discharged from the compressor 2 flows into the radiator 4 to dissipate heat, heats the air flowing through the air flow passage 3, and then passes through the electromagnetic valve 20 to the outdoor heat exchanger 7. Inflow. Since no outdoor air or traveling air is passed through the outdoor heat exchanger 7, the frost that has grown on the outdoor heat exchanger 7 is heated and melted by the high-temperature refrigerant that has flowed. On the other hand, the refrigerant condenses in the outdoor heat exchanger 7, exits from the outdoor heat exchanger 7, enters the branch pipe 72 as described above, and is decompressed by the auxiliary expansion valve 73, and then the refrigerant of the refrigerant-heat medium heat exchanger 64. It evaporates in the channel 64B.
Here, the refrigerant absorbs heat from the heat medium circulating in the battery temperature adjusting device 61. As a result, the battery 55 is cooled and the vehicle interior is heated while the outdoor heat exchanger 7 is defrosted by the heat pumped up from the heat medium. It will be. In addition, when it is desired to rapidly defrost the outdoor heat exchanger 7, the heat medium heater 66 may be caused to generate heat by the controller 32. In that case, the heat of the heat medium heater 66 is also pumped up by the refrigerant and conveyed to the outdoor heat exchanger 7 to contribute to defrosting.
As described above, the controller 32 allows the refrigerant discharged from the compressor 2 to flow into the radiator 4 and the outdoor heat exchanger 7 in a state in which the outside air is not passed through the outdoor heat exchanger 7 or in a state where the inflow of running air is blocked. Since the defrosting / heating / battery cooling mode in which the refrigerant-heat medium heat exchanger 64 absorbs heat is executed after the radiated refrigerant is decompressed by the auxiliary expansion valve 73, the refrigerant is discharged from the compressor 2. While defrosting the outdoor heat exchanger 7 with the high-temperature refrigerant, the heat of the battery 55 can be pumped up to heat the vehicle interior.
(8-5) Cooling / battery cooling mode
Next, during the above-described cooling operation, when the battery temperature Tb rises due to charging / discharging or the like and becomes higher than the target battery temperature TBO (TBO <Tb), in the embodiment, the controller 32 opens the auxiliary expansion valve 73, and the battery The cooling / battery cooling mode is executed by operating the temperature adjustment device 61 to start cooling the battery 55 (FIGS. 25 and 26).
In this cooling / battery cooling mode, the controller 32 opens the auxiliary expansion valve 73 to control the valve opening degree in the state of the refrigerant circuit R in the cooling operation of FIG. And the refrigerant-heat medium heat exchanger 64 is brought into a state where heat exchange is performed between the refrigerant and the heat medium. The heat medium heater 66 is not energized. FIG. 25 shows the refrigerant flow (solid arrow) in the refrigerant circuit R in this cooling / battery cooling mode and the heat medium flow (broken arrow) in the battery temperature adjusting device 61, and FIG. 26 shows the refrigerant circuit in the cooling / battery cooling mode. A ph diagram of R is shown (in FIG. 26, each component device of the refrigerant circuit R is shown on the ph diagram).
As a result, the high-temperature refrigerant discharged from the compressor 2 sequentially flows into the outdoor heat exchanger 7 through the radiator 4 and the electromagnetic valve 20, and exchanges heat with the outside air and traveling air that are ventilated by the outdoor blower 15. To dissipate heat and condense. A part of the refrigerant condensed in the outdoor heat exchanger 7 reaches the indoor expansion valve 8 and is decompressed there, and then flows into the heat absorber 9 and evaporates. Since the air in the air flow passage 3 is cooled by the heat absorption action at this time, the passenger compartment is cooled.
The remainder of the refrigerant condensed in the outdoor heat exchanger 7 is diverted to the branch pipe 72, decompressed by the auxiliary expansion valve 73, and then evaporated in the refrigerant flow path 64 </ b> B of the refrigerant-heat medium heat exchanger 64. Since the refrigerant absorbs heat from the heat medium circulating in the battery temperature adjusting device 61, the battery 55 is cooled in the same manner as described above. The refrigerant from the heat absorber 9 is sucked into the compressor 2 through the refrigerant pipe 13C and the accumulator 12, and the refrigerant from the refrigerant-heat medium heat exchanger 64 is also passed from the refrigerant pipe 74 through the accumulator 12 to the compressor 2. Will be inhaled.
(8-6) Dehumidifying cooling / battery cooling mode
Next, during the above-described dehumidifying and cooling operation, when the battery temperature Tb rises due to charging / discharging or the like and becomes higher than the target battery temperature TBO (TBO <Tb), in the embodiment, the controller 32 opens the auxiliary expansion valve 73, The dehumidifying cooling / battery cooling mode is executed by operating the battery temperature adjusting device 61 to start cooling the battery 55 (FIGS. 27 and 28).
In the dehumidifying cooling / battery cooling mode, the controller 32 opens the auxiliary expansion valve 73 to control the valve opening degree in the state of the refrigerant circuit R in the dehumidifying cooling operation shown in FIG. The pump 62 is also operated to bring the refrigerant and the heat medium into heat exchange in the refrigerant-heat medium heat exchanger 64. The heat medium heater 66 is not energized. FIG. 27 shows the refrigerant flow (solid arrow) in the refrigerant circuit R and the heat medium flow (broken arrow) in the battery temperature adjustment device 61 in this dehumidifying cooling / battery cooling mode, and FIG. 28 shows the dehumidifying cooling / battery cooling mode in FIG. The ph diagram of the refrigerant circuit R is shown (in FIG. 28, each component device of the refrigerant circuit R is shown on the ph diagram).
Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates. The refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. A part of the refrigerant exiting the outdoor heat exchanger 7 reaches the indoor expansion valve 8 where the pressure is reduced and then flows into the heat absorber 9 and evaporates. At this time, the air supplied from the air flow passage 3 to the vehicle interior is cooled and dehumidified by the heat absorption action at this time, so that the vehicle interior is dehumidified and cooled.
The remainder of the refrigerant condensed in the outdoor heat exchanger 7 is diverted to the branch pipe 72, decompressed by the auxiliary expansion valve 73, and then evaporated in the refrigerant flow path 64 </ b> B of the refrigerant-heat medium heat exchanger 64. Since the refrigerant absorbs heat from the heat medium circulating in the battery temperature adjusting device 61, the battery 55 is cooled in the same manner as described above. The refrigerant from the heat absorber 9 is sucked into the compressor 2 through the refrigerant pipe 13C and the accumulator 12, and the refrigerant from the refrigerant-heat medium heat exchanger 64 is also passed from the refrigerant pipe 74 through the accumulator 12 to the compressor 2. Will be inhaled.
Note that as shown in FIG. 13 described above, the battery 55 can be cooled even when the shutter 23 is closed and the outdoor fan 15 is stopped in this dehumidifying and cooling operation. FIG. 29 shows the flow of refrigerant and the state of the shutter 23 in this dehumidifying cooling / battery cooling mode (shutter closed), and FIG. 30 shows a ph diagram of the refrigerant circuit R (in FIG. 30, each configuration of the refrigerant circuit R). The instrument is shown on the ph diagram).
That is, also in this case, since the running wind does not flow into the outdoor heat exchanger 7 and there is no ventilation of the outside air, as shown in the ph diagram of FIG. 30, the refrigerant and the outside air in the outdoor heat exchanger 7 The amount of heat exchange is extremely small. Accordingly, the amount of heat dissipated by the refrigerant in the radiator 4 increases, so that the opening degree of the outdoor expansion valve 6 is remarkably reduced or the radiator pressure PCI is set to the target radiator pressure PCO without setting the minimum opening degree. As a result, temperature spots generated in the heat absorber 9 can be prevented.
As in the case of FIG. 27, the refrigerant that has exited the outdoor heat exchanger 7 is divided into one that is directed from the indoor expansion valve 8 to the heat absorber 9 and one that is directed to the branch pipe 72, and the refrigerant that has flowed into the branch pipe 72 is auxiliary expanded. After the pressure is reduced by the valve 73, the refrigerant evaporates in the refrigerant flow path 64 </ b> B of the refrigerant-heat medium heat exchanger 64. Since the refrigerant absorbs heat from the heat medium circulating in the battery temperature adjusting device 61, the battery 55 is cooled in the same manner as described above. The refrigerant from the heat absorber 9 is sucked into the compressor 2 through the refrigerant pipe 13C and the accumulator 12, and the refrigerant from the refrigerant-heat medium heat exchanger 64 is also passed from the refrigerant pipe 74 through the accumulator 12 to the compressor 2. Will be inhaled.
(8-7) Internal cycle / battery cooling mode
Next, during the internal cycle operation described above, when the battery temperature Tb rises due to charging / discharging or the like and becomes higher than the target battery temperature TBO (TBO <Tb), the controller 32 opens the auxiliary expansion valve 73 in the embodiment, The internal temperature / battery cooling mode is executed by operating the battery temperature adjusting device 61 and starting the cooling of the battery 55 (FIGS. 31 and 32).
In this internal cycle / battery cooling mode, the controller 32 opens the auxiliary expansion valve 73 to control the valve opening degree in the state of the refrigerant circuit R in the internal cycle operation of FIG. The pump 62 is also operated to bring the refrigerant and the heat medium into heat exchange in the refrigerant-heat medium heat exchanger 64. The heat medium heater 66 is not energized. FIG. 31 shows the refrigerant flow (solid arrow) in the refrigerant circuit R in this internal cycle / battery cooling mode and the heat medium flow (broken arrow) in the battery temperature regulator 61, and FIG. 32 shows the internal cycle / battery cooling mode. The ph diagram of the refrigerant circuit R is shown (in FIG. 32, each component device of the refrigerant circuit R is shown on the ph diagram).
Thereby, after the high-temperature refrigerant | coolant discharged from the compressor 2 is thermally radiated with the heat radiator 4, it will flow to the refrigerant | coolant piping 13F through the electromagnetic valve 22 altogether. Then, a part of the refrigerant exiting the refrigerant pipe 13F reaches the indoor expansion valve 8 via the electromagnetic valve 17 from the refrigerant pipe 13B, and is decompressed there, and then flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
The remaining refrigerant exiting the refrigerant pipe 13F is diverted to the branch pipe 72, decompressed by the auxiliary expansion valve 73, and then evaporated in the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64. Since the refrigerant absorbs heat from the heat medium circulating in the battery temperature adjusting device 61, the battery 55 is cooled in the same manner as described above. The refrigerant from the heat absorber 9 is sucked into the compressor 2 through the refrigerant pipe 13C and the accumulator 12, and the refrigerant from the refrigerant-heat medium heat exchanger 64 is also passed from the refrigerant pipe 74 through the accumulator 12 to the compressor 2. Will be inhaled.
(8-8) Dehumidifying heating / battery cooling mode
Next, during the above-described dehumidifying heating operation, when the battery temperature Tb increases due to charging / discharging or the like and becomes higher than the target battery temperature TBO (TBO <Tb), the controller 32 opens the auxiliary expansion valve 73 in the embodiment, The dehumidifying heating / battery cooling mode is executed by operating the battery temperature adjusting device 61 and starting the cooling of the battery 55 (FIGS. 33 and 34).
In the dehumidifying heating / battery cooling mode, the controller 32 opens the auxiliary expansion valve 73 and controls the valve opening degree in the state of the refrigerant circuit R in the dehumidifying heating operation of FIG. The pump 62 is also operated to bring the refrigerant and the heat medium into heat exchange in the refrigerant-heat medium heat exchanger 64. FIG. 33 shows the refrigerant flow (solid arrow) in the refrigerant circuit R and the heat medium flow (broken arrow) in the dehumidifying heating / battery cooling mode, and FIG. 34 shows the dehumidifying heating / battery cooling mode. The ph diagram of the refrigerant circuit R is shown (in FIG. 34, each component device of the refrigerant circuit R is shown on the ph diagram).
As a result, a part of the condensed refrigerant exiting the radiator 4 is diverted, and the diverted refrigerant flows into the refrigerant pipe 13F through the electromagnetic valve 22, and comes out of the refrigerant pipe 13F, and a part of the refrigerant pipe is refrigerant pipe. The refrigerant flows from 13B to the indoor expansion valve 8, and the remaining refrigerant flows to the outdoor expansion valve 6. That is, after a part of the divided refrigerant is decompressed by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. At this time, moisture in the air blown out from the indoor blower 27 is condensed and attached to the heat absorber 9 by the heat absorption action of the refrigerant generated in the heat absorber 9, so that the air is cooled and dehumidified. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed. In addition, the remaining condensed refrigerant from the radiator 4 is depressurized by the outdoor expansion valve 6 and then evaporated by the outdoor heat exchanger 7 to absorb heat from the outside air.
On the other hand, the remainder of the refrigerant exiting the refrigerant pipe 13F flows into the branch pipe 72, is decompressed by the auxiliary expansion valve 73, and evaporates in the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64. Since the refrigerant absorbs heat from the heat medium circulating in the battery temperature adjusting device 61, the battery 55 is cooled in the same manner as described above. Note that the refrigerant discharged from the heat absorber 9 is sucked into the compressor 2 through the refrigerant pipe 13C and the accumulator 12, and the refrigerant discharged from the outdoor heat exchanger 7 passes through the refrigerant pipe 13D, the electromagnetic valve 21, the refrigerant pipe 13C, and the accumulator 12. Then, the refrigerant that is sucked into the compressor 2 and exits the refrigerant-heat medium heat exchanger 64 is also sucked into the compressor 2 from the refrigerant pipe 74 through the accumulator 12.
(8-9) Battery cooling single mode
Next, for example, when the vehicle is stopped and the battery 55 is being charged, when the battery temperature Tb rises due to self-heating or the like and becomes higher than the target battery temperature TBO (TBO <Tb), in the embodiment, the controller 32 executes the battery cooling single mode (FIGS. 35 and 36). In this battery cooling single mode, since there is no passenger in the vehicle interior, there is no need to air-condition the vehicle interior, but the controller 32 operates the compressor 2 and also operates the outdoor blower 15. Further, the electromagnetic valve 20 is opened, and the auxiliary expansion valve 73 is also opened to decompress the refrigerant.
Furthermore, the controller 32 closes the solenoid valve 17, the solenoid valve 21, and the solenoid valve 22, and also stops the indoor blower 26. Then, the controller 32 operates the circulation pump 62 so that the refrigerant and the heat medium are exchanged in the refrigerant-heat medium heat exchanger 64. FIG. 35 shows the refrigerant flow (solid arrow) in the refrigerant circuit R in the battery cooling single mode and the heat medium flow (broken arrow) in the battery temperature adjusting device 61, and FIG. 36 shows the refrigerant circuit R in the battery cooling single mode. The ph diagram is shown (in FIG. 36, each component device of the refrigerant circuit R is shown on the ph diagram).
Thus, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 passes through the radiator 4 and reaches the outdoor expansion valve 6 from the refrigerant pipe 13E. At this time, since the solenoid valve 20 is opened, the refrigerant passes through the refrigerant pipe 13J through the solenoid valve 20, flows into the outdoor heat exchanger 7 as it is, is cooled by the outside air ventilated by the outdoor blower 15, and is condensed and liquefied. To do. In the case where frost has grown on the outdoor heat exchanger 7, the outdoor heat exchanger 7 is defrosted by the heat dissipation action at this time.
The refrigerant that has exited the outdoor heat exchanger 7 enters the refrigerant pipe 13A. At this time, the electromagnetic valve 17 is closed, so that all of the refrigerant that has exited the outdoor heat exchanger 7 passes through the branch pipe 72 to the auxiliary expansion valve 73. It reaches. The refrigerant is decompressed by the auxiliary expansion valve 73 and then flows into the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64 to evaporate. At this time, an endothermic effect is exhibited. The refrigerant evaporated in the refrigerant flow path 64B is repeatedly circulated through the refrigerant pipe 74, the refrigerant pipe 13C, and the accumulator 12 and then sucked into the compressor 2 (indicated by solid arrows in FIG. 35).
On the other hand, the heat medium discharged from the circulation pump 62 passes through the heat medium heater 66 to reach the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 through the heat medium pipe 68, where it evaporates in the refrigerant flow path 64B. The refrigerant absorbs heat and the heat medium is cooled. The heat medium cooled by the endothermic action of the refrigerant leaves the refrigerant-heat medium heat exchanger 64 and reaches the battery 55, and after cooling the battery 55, the circulation sucked into the circulation pump 62 is repeated. The controller 32 controls the operation of the compressor 2 and the circulation pump 62 based on, for example, the battery temperature Tb detected by the battery temperature sensor 76 and the target battery temperature TBO.
The battery 55 has a charge / discharge performance that decreases when the battery temperature Tb becomes lower than the above-described appropriate temperature range in a low temperature environment. However, in the embodiment, the battery temperature adjusting device 61 is provided with the heat medium heater 66. When the temperature Tb falls below the appropriate temperature range, the controller 32 causes the heat medium heater 66 to generate heat and heats the heat medium circulated to the battery 55. Thereby, the battery temperature Tb is raised and maintained in an appropriate temperature range. However, in that case, the controller 32 is configured to prevent the refrigerant from circulating through the refrigerant-heat medium heat exchanger 64 by fully closing the auxiliary expansion valve 73.
The configurations of the refrigerant circuit R and the battery temperature adjusting device 61 described in the above embodiments are not limited thereto, and it goes without saying that they can be changed without departing from the spirit of the present invention.
 1 車両用空気調和装置
 2 圧縮機
 3 空気流通路
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁(弁装置)
 9 吸熱器
 13D 冷媒配管(第1のバイパス回路)
 13F 冷媒配管(第2のバイパス回路)
 15 室外送風機
 17 電磁弁(開閉弁、弁装置)
 18 逆止弁
 20 電磁弁(開閉弁)
 21 電磁弁(第1の開閉弁
 22 電磁弁(第2の開閉弁)
 23 シャッタ
 27 室内送風機
 28 エアミックスダンパ
 32 コントローラ(制御装置)
 55 バッテリ
 61 バッテリ温度調整装置
 62 循環ポンプ
 64 冷媒−熱媒体熱交換器
 66 熱媒体加熱ヒータ(加熱装置)
 72 分岐配管(分岐回路)
 73 補助膨張弁
 R 冷媒回路
DESCRIPTION OF SYMBOLS 1 Vehicle air conditioner 2 Compressor 3 Air flow path 4 Radiator 6 Outdoor expansion valve 7 Outdoor heat exchanger 8 Indoor expansion valve (valve device)
9 Heat absorber 13D Refrigerant piping (first bypass circuit)
13F Refrigerant piping (second bypass circuit)
15 Outdoor blower 17 Solenoid valve (open / close valve, valve device)
18 Check valve 20 Solenoid valve (open / close valve)
21 Solenoid valve (first on-off valve 22 Solenoid valve (second on-off valve)
23 Shutter 27 Indoor Blower 28 Air Mix Damper 32 Controller (Control Device)
55 Battery 61 Battery temperature adjusting device 62 Circulation pump 64 Refrigerant-heat medium heat exchanger 66 Heat medium heater (heating device)
72 Branch piping (branch circuit)
73 Auxiliary expansion valve R Refrigerant circuit

Claims (6)

  1.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     前記冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     前記冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
     車室外に設けられて前記冷媒を放熱させるための室外熱交換器と、
     前記放熱器から出て前記室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、
     前記室外熱交換器への走行風の流入を阻止するためのシャッタと、
     制御装置を備え、
     該制御装置により少なくとも、前記圧縮機から吐出された前記冷媒を前記放熱器及び前記室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる除湿冷房運転を実行する車両用空気調和装置において、
     前記制御装置は、前記除湿冷房運転において前記放熱器の放熱能力が不足する場合、前記シャッタを閉じることを特徴とする車両用空気調和装置。
    A compressor for compressing the refrigerant;
    An air flow passage through which air to be supplied into the passenger compartment flows;
    A radiator for dissipating the refrigerant and heating the air supplied from the air flow passage to the vehicle interior;
    A heat absorber for absorbing the refrigerant to cool the air supplied from the air flow passage to the vehicle interior;
    An outdoor heat exchanger provided outside the passenger compartment to dissipate the refrigerant,
    An outdoor expansion valve for decompressing the refrigerant flowing out of the radiator and flowing into the outdoor heat exchanger;
    A shutter for preventing running air from flowing into the outdoor heat exchanger;
    Equipped with a control device,
    A dehumidifying and cooling operation in which at least the refrigerant discharged from the compressor is radiated by the radiator and the outdoor heat exchanger, and the radiated refrigerant is depressurized and then absorbed by the heat absorber. In the vehicle air conditioner to be executed,
    The control device closes the shutter when the heat dissipating capability of the radiator is insufficient in the dehumidifying and cooling operation.
  2.  前記制御装置は、前記除湿冷房運転においては前記吸熱器の温度に基づいて前記圧縮機の運転を制御し、前記放熱器の圧力に基づいて前記室外膨張弁の弁開度を制御すると共に、
     前記吸熱器の温度が満足な状態で、前記室外膨張弁の弁開度を縮小させても前記放熱器の放熱能力が不足する場合、前記シャッタを閉じることを特徴とする請求項1に記載の車両用空気調和装置。
    In the dehumidifying and cooling operation, the control device controls the operation of the compressor based on the temperature of the heat absorber, and controls the valve opening degree of the outdoor expansion valve based on the pressure of the radiator.
    2. The shutter according to claim 1, wherein the shutter is closed when the heat dissipation capability of the radiator is insufficient even when the valve opening degree of the outdoor expansion valve is reduced while the temperature of the heat absorber is satisfactory. Air conditioner for vehicles.
  3.  前記制御装置は、前記除湿冷房運転においては、前記放熱器の圧力がその目標値となるように前記室外膨張弁の弁開度を制御すると共に、
     当該室外膨張弁の弁開度を制御上の最小開度としても前記放熱器の圧力を前記目標値とすることができない場合、前記放熱器の放熱能力が不足していると判断して前記シャッタを閉じることを特徴とする請求項1又は請求項2に記載の車両用空気調和装置。
    The control device, in the dehumidifying and cooling operation, controls the valve opening of the outdoor expansion valve so that the pressure of the radiator becomes the target value,
    If the pressure of the radiator cannot be set to the target value even when the valve opening of the outdoor expansion valve is set to the minimum control opening, it is determined that the heat dissipation capability of the radiator is insufficient. The vehicle air conditioner according to claim 1 or 2, wherein the air conditioner is closed.
  4.  前記室外熱交換器に外気を通風するための室外送風機を備え、
     前記制御装置は、前記シャッタを閉じた場合、前記室外送風機も停止することを特徴とする請求項1乃至請求項3のうちの何れかに記載の車両用空気調和装置。
    An outdoor fan for ventilating the outdoor air to the outdoor heat exchanger,
    4. The vehicle air conditioner according to claim 1, wherein when the shutter is closed, the outdoor blower is also stopped. 5.
  5.  前記制御装置は、前記除湿冷房運転において前記シャッタを閉じても前記放熱器の放熱能力が不足する場合、前記圧縮機から吐出された前記冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる内部サイクル運転に移行することを特徴とする請求項1乃至請求項4のうちの何れかに記載の車両用空気調和装置。 In the dehumidifying and cooling operation, when the heat dissipation capability of the radiator is insufficient even when the shutter is closed, the control device causes the refrigerant discharged from the compressor to radiate heat by the radiator, and the radiated refrigerant is removed. The vehicle air conditioner according to any one of claims 1 to 4, wherein after the pressure is reduced, the vehicle moves to an internal cycle operation in which heat is absorbed by the heat absorber.
  6.  前記制御装置は、前記内部サイクル運転では前記室外膨張弁を全閉とすると共に、前記室外熱交換器の冷媒出口は前記圧縮機の冷媒吸込側に連通させることを特徴とする請求項5に記載の車両用空気調和装置。 The said control apparatus makes the said refrigerant | coolant exit of the said outdoor heat exchanger communicate with the refrigerant | coolant suction side of the said compressor while fully closing the said outdoor expansion valve in the said internal cycle driving | operation. Air conditioner for vehicles.
PCT/JP2018/010363 2017-04-26 2018-03-09 Vehicular air conditioner WO2018198582A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880025556.2A CN110520316B (en) 2017-04-26 2018-03-09 Air conditioner for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-087672 2017-04-26
JP2017087672A JP6963405B2 (en) 2017-04-26 2017-04-26 Vehicle air conditioner

Publications (1)

Publication Number Publication Date
WO2018198582A1 true WO2018198582A1 (en) 2018-11-01

Family

ID=63918324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010363 WO2018198582A1 (en) 2017-04-26 2018-03-09 Vehicular air conditioner

Country Status (3)

Country Link
JP (1) JP6963405B2 (en)
CN (1) CN110520316B (en)
WO (1) WO2018198582A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020162A1 (en) * 2019-07-29 2021-02-04 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner
CN113453926A (en) * 2019-02-15 2021-09-28 三电汽车空调系统株式会社 Air conditioner for vehicle
CN114126901A (en) * 2019-07-29 2022-03-01 三电汽车空调系统株式会社 Air conditioner for vehicle
CN114269574A (en) * 2019-08-26 2022-04-01 三电汽车空调系统株式会社 Battery cooling device for vehicle and vehicle air conditioner comprising same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7092429B2 (en) * 2018-06-29 2022-06-28 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner
JP2020115049A (en) * 2019-01-17 2020-07-30 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular air conditioner
JP7233986B2 (en) * 2019-03-12 2023-03-07 サンデン株式会社 Vehicle air conditioner
JP7176987B2 (en) * 2019-03-20 2022-11-22 トヨタ自動車株式会社 Heat demand arbitrator
JP2020185969A (en) * 2019-05-17 2020-11-19 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioning device for vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319077A (en) * 1991-04-26 1993-12-03 Nippondenso Co Ltd Air conditioner for automobile
JPH08276720A (en) * 1995-04-05 1996-10-22 Sanden Corp Air conditioner for vehicle
US20140374060A1 (en) * 2011-12-15 2014-12-25 Valeo Systemes Thermiques Device for air conditioning a drive train and a passenger compartment of a vehicle
JP2015205564A (en) * 2014-04-18 2015-11-19 サンデンホールディングス株式会社 Vehicular air-conditioning system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RO62064A (en) * 1971-01-26 1977-10-15 Ferodo Sa AIR CONDITIONING DEVICE
JP2008284963A (en) * 2007-05-16 2008-11-27 Honda Motor Co Ltd Vehicle
JP2013193603A (en) * 2012-03-21 2013-09-30 Aisin Seiki Co Ltd Grille shutter apparatus
JP6192434B2 (en) * 2013-08-23 2017-09-06 サンデンホールディングス株式会社 Air conditioner for vehicles
JP6223753B2 (en) * 2013-09-04 2017-11-01 サンデンホールディングス株式会社 Air conditioner for vehicles
KR102205848B1 (en) * 2013-12-31 2021-01-21 한온시스템 주식회사 Cooling module and Cooling System for Vehicles
DE112015001874T5 (en) * 2014-04-18 2017-02-16 Sanden Holdings Corporation Vehicle air conditioning
CN104002642A (en) * 2014-06-03 2014-08-27 北京汽车股份有限公司 Automobile ventilation grille and automobile

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319077A (en) * 1991-04-26 1993-12-03 Nippondenso Co Ltd Air conditioner for automobile
JPH08276720A (en) * 1995-04-05 1996-10-22 Sanden Corp Air conditioner for vehicle
US20140374060A1 (en) * 2011-12-15 2014-12-25 Valeo Systemes Thermiques Device for air conditioning a drive train and a passenger compartment of a vehicle
JP2015205564A (en) * 2014-04-18 2015-11-19 サンデンホールディングス株式会社 Vehicular air-conditioning system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113453926A (en) * 2019-02-15 2021-09-28 三电汽车空调系统株式会社 Air conditioner for vehicle
WO2021020162A1 (en) * 2019-07-29 2021-02-04 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner
JP2021020570A (en) * 2019-07-29 2021-02-18 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular air conditioner
CN114126901A (en) * 2019-07-29 2022-03-01 三电汽车空调系统株式会社 Air conditioner for vehicle
JP7280770B2 (en) 2019-07-29 2023-05-24 サンデン株式会社 Vehicle air conditioner
CN114126901B (en) * 2019-07-29 2023-09-12 三电汽车空调系统株式会社 Air conditioner for vehicle
US11958337B2 (en) 2019-07-29 2024-04-16 Sanden Corporation Vehicle air conditioning apparatus
CN114269574A (en) * 2019-08-26 2022-04-01 三电汽车空调系统株式会社 Battery cooling device for vehicle and vehicle air conditioner comprising same
CN114269574B (en) * 2019-08-26 2023-11-17 三电汽车空调系统株式会社 Battery cooling device for vehicle and air conditioning device for vehicle comprising same

Also Published As

Publication number Publication date
CN110520316A (en) 2019-11-29
CN110520316B (en) 2023-02-28
JP2018184109A (en) 2018-11-22
JP6963405B2 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
JP7095848B2 (en) Vehicle air conditioner
JP6855281B2 (en) Vehicle air conditioner
CN110891807B (en) Air conditioner for vehicle
JP6997558B2 (en) Vehicle air conditioner
WO2018198582A1 (en) Vehicular air conditioner
WO2018193770A1 (en) Vehicular air conditioning device
WO2019150830A1 (en) Vehicle air-conditioning device
WO2020066719A1 (en) Vehicle air conditioner
WO2017104588A1 (en) Vehicle air conditioner
JP6571430B2 (en) Air conditioner for vehicles
WO2020110509A1 (en) Vehicle air conditioner
WO2019181311A1 (en) Control system for vehicle
WO2019058826A1 (en) Vehicle air conditioner
WO2019163398A1 (en) Vehicle control system
WO2019181312A1 (en) Vehicle air conditioner
WO2019163399A1 (en) Vehicle control system
WO2017146267A1 (en) Air-conditioning device for vehicle
JP7164986B2 (en) Vehicle air conditioner
JP2019172267A (en) Vehicular air-conditioner
WO2020235262A1 (en) Vehicle air conditioner
WO2019181310A1 (en) Vehicle air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790902

Country of ref document: EP

Kind code of ref document: A1