JPH01312365A - Cooling and heating device - Google Patents

Cooling and heating device

Info

Publication number
JPH01312365A
JPH01312365A JP63143891A JP14389188A JPH01312365A JP H01312365 A JPH01312365 A JP H01312365A JP 63143891 A JP63143891 A JP 63143891A JP 14389188 A JP14389188 A JP 14389188A JP H01312365 A JPH01312365 A JP H01312365A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
coolant
flows
rectifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63143891A
Other languages
Japanese (ja)
Inventor
Takeshi Nakakoshi
中越 猛
Kazuaki Minato
和明 湊
Etsuo Shibata
悦雄 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP63143891A priority Critical patent/JPH01312365A/en
Publication of JPH01312365A publication Critical patent/JPH01312365A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves

Abstract

PURPOSE:To enable an effect of coolant-coolant heat exchanger to be realized in both heating and cooling operations by a method wherein the coolant-coolant heat exchanger is connected between a coolant outlet of an indoor heat exchanger and a first coolant flow regulator and between a coolant outlet of an outdoor heat exchanger and a second coolant flow regulator device. CONSTITUTION:Coolant heat effects heat-exchange with coolant vapor of low temperature and low pressure flowed out of a coolant outlet 2b of an indoor heat exchanger 2 to become over-cooled liquid, flows through a connection port 8d of a second coolant flow regulator of a coolant-coolant heat exchanger 8 and a connection port 7b of a coolant-coolant heat exchanger of a second coolant flow regulator device 7, flows again into the second coolant flow regulator device 7, flows out of a connection port 7d of an expansion valve along a flowing direction of a check valve and then reaches the expansion valve 5. Then, the coolant pressure is reduced by an expansion valve 5 and then the coolant becomes a coolant of low temperature and low pressure. After this operation, the coolant passes through a connection port 6d of the expansion valve in the first coolant flow regulator device 6 and flows into the first coolant flow regulator device 6, passes through a connection port 6a of the indoor heat exchanger and a coolant inlet port 2a of the indoor heat exchanger 2 along a flowing direction of the check valve and flows into the indoor heat exchanger 2. It may absorb heat from indoor air 9, evaporate and gasified to perform a cooling operation.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、蒸気圧縮式冷媒回路を有する冷暖房装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a heating and cooling system having a vapor compression refrigerant circuit.

(従来の技術) 近年、ヒートポンプサイクルを応用した冷暖房装置は、
インバータやマイクロプロセッサによるサイクル制御に
より機能性が向上し、しかも安全性、清浄性に優れてい
ることから、その地位を確立してきた。
(Conventional technology) In recent years, air-conditioning equipment that uses a heat pump cycle has been
It has established its position due to improved functionality through cycle control using inverters and microprocessors, as well as excellent safety and cleanliness.

そして、これらのヒートポンプサイクルの高機能、高効
率化策として熱交換器の大容量化、向流化、及び非共沸
混合冷媒の採用等が考えられてきた。
Increasing the capacity of the heat exchanger, countercurrent flow, and employing a non-azeotropic mixed refrigerant have been considered as measures to improve the functionality and efficiency of these heat pump cycles.

すなわち、熱交換器の大容量化によって空気と冷媒の温
度差を小さくすることができる。また、非共沸混合冷媒
を用い、向流式熱交換を行うことによって、空気と冷媒
の温度勾配を合わせることができ、これによって空気と
冷媒の温度差を小さくし、圧縮比を小さくしてヒートポ
ンプサイクルの高機能化、高効率化を図ることができる
That is, by increasing the capacity of the heat exchanger, the temperature difference between the air and the refrigerant can be reduced. In addition, by using a non-azeotropic refrigerant mixture and performing countercurrent heat exchange, it is possible to match the temperature gradients of the air and refrigerant, thereby reducing the temperature difference between the air and refrigerant and reducing the compression ratio. It is possible to improve the functionality and efficiency of the heat pump cycle.

一方、上記のように改善を加えたヒートポンプサイクル
は、空気と冷媒の温度差が小さいために、蒸発器では冷
媒の過熱が、凝縮器では過冷却が得にくくなっている。
On the other hand, in the heat pump cycle improved as described above, since the temperature difference between the air and the refrigerant is small, it is difficult to overheat the refrigerant in the evaporator and to subcool the refrigerant in the condenser.

すなわち、蒸発器で蒸発した冷媒の過熱が小さい場合、
小さな外乱であっても冷媒の過熱がなくなり、液冷媒を
含んだ冷媒が圧縮機に吸入、圧縮され異音を発生したり
、時には圧縮機が破壊することもあった。また、凝縮器
で凝縮した冷媒の過冷却が小さい場合、配管の圧力損失
等により、液冷媒中に冷媒気泡が発生し、膨張弁やキャ
ピラリチューブなどの減圧器での減圧作用が不安定にな
る。このため、冷媒流量、蒸発温度、上記冷媒の過熱が
一定せず、ヒートポンプサイクルの性能を低下させる原
因の一つとなっていた。
In other words, if the superheat of the refrigerant evaporated in the evaporator is small,
Even a small disturbance would cause the refrigerant to no longer be overheated, and the refrigerant, including liquid refrigerant, would be sucked into the compressor and compressed, producing abnormal noises and sometimes even destroying the compressor. In addition, if the subcooling of the refrigerant condensed in the condenser is small, refrigerant bubbles will occur in the liquid refrigerant due to pressure loss in piping, etc., and the pressure reduction effect in pressure reducers such as expansion valves and capillary tubes will become unstable. . For this reason, the refrigerant flow rate, evaporation temperature, and superheating of the refrigerant are not constant, which is one of the causes of degrading the performance of the heat pump cycle.

そのため、膨張弁での減圧を大きくし、蒸発温度を低下
させて冷媒の過熱を得る方法もあるが、性能の悪い蒸発
器を用いるのと同様であり良い方法ではない。また、冷
媒を必要以上に充填したり、凝縮器風量を減少させて凝
縮温度を上昇させることによって冷媒の過冷却を得る方
法もあるが、性能の悪い凝縮器を用いるのと同様であり
良い方法ではない。
Therefore, there is a method to superheat the refrigerant by increasing the pressure reduction in the expansion valve and lowering the evaporation temperature, but this is not a good method because it is the same as using an evaporator with poor performance. There are also methods to obtain supercooling of the refrigerant by charging more refrigerant than necessary or reducing the condenser air volume to increase the condensing temperature, but these methods are good as they are the same as using a condenser with poor performance. isn't it.

そこで従来から、ヒートポンプサイクルで蒸発器の冷媒
出口の過熱が得にくい場合は、冷媒−冷媒熱交換器を用
いて、圧縮機の冷媒吐出口から膨張弁までの高温、高圧
の冷媒と、蒸発器の冷媒出口から圧縮機の冷媒吸入口ま
での低温、低圧の冷媒とを熱交換し、圧縮機吸入冷媒の
過熱度を得る方法が考えられている。また、凝縮器の冷
媒出口の過冷却が得にくい場合は、冷媒−冷媒熱交換器
を用いて、膨張弁から圧縮機の冷媒吸入口までの低温、
低圧の冷媒と、凝縮器の冷媒出口から膨張弁までの高温
、高圧の冷媒とを熱交換して膨張弁の冷媒人口の過冷却
度を得る方法が考えられている。さらに、上記過熱、過
冷却の両方が得にくい場合は、同様に冷媒−冷媒熱交換
器を用いて、蒸発器の冷媒出口から圧縮機の冷媒吸入口
までの低温、低圧の冷媒と、凝縮器の冷媒出口から膨張
弁までの高温、高圧の冷媒とを熱交換し、圧縮機の吸入
冷媒の過熱度、及び膨張弁の冷媒入口の過冷却度を得る
方法が考えられている。
Conventionally, when it is difficult to obtain superheat at the refrigerant outlet of the evaporator in a heat pump cycle, a refrigerant-refrigerant heat exchanger is used to transfer the high-temperature, high-pressure refrigerant from the refrigerant discharge port of the compressor to the expansion valve and the evaporator. A method has been considered to exchange heat with a low-temperature, low-pressure refrigerant from the refrigerant outlet of the refrigerant to the refrigerant inlet of the compressor to obtain the degree of superheat of the refrigerant sucked into the compressor. In addition, if it is difficult to achieve supercooling at the refrigerant outlet of the condenser, a refrigerant-refrigerant heat exchanger may be used to maintain the low temperature from the expansion valve to the refrigerant inlet of the compressor.
A method has been considered to exchange heat between a low-pressure refrigerant and a high-temperature, high-pressure refrigerant from the refrigerant outlet of the condenser to the expansion valve to obtain the degree of subcooling of the refrigerant population at the expansion valve. Furthermore, if it is difficult to obtain both superheating and supercooling, a refrigerant-refrigerant heat exchanger may be used to transfer the low-temperature, low-pressure refrigerant from the refrigerant outlet of the evaporator to the refrigerant inlet of the compressor, and the condenser. A method has been considered in which the degree of superheating of the refrigerant sucked into the compressor and the degree of subcooling at the refrigerant inlet of the expansion valve are obtained by exchanging heat with a high temperature, high pressure refrigerant from the refrigerant outlet to the expansion valve.

冷媒循環サイクルの一例を第6図に示す。冷媒−冷媒熱
交換器を具備しないサイクルは、A−B−C−Dの行程
を、冷媒−冷媒熱交換器を具備し過熱、過冷却の両方を
得るサイクルはA’ −B’−C’−D’の行程を繰り
返す。以下にサイクル行程の説明を行う。
An example of a refrigerant circulation cycle is shown in FIG. A cycle without a refrigerant-refrigerant heat exchanger has the steps A-B-C-D, and a cycle with a refrigerant-refrigerant heat exchanger that obtains both superheating and supercooling has the steps A'-B'-C'. -Repeat process D'. The cycle process will be explained below.

A−Bの行程は圧縮機での圧縮行程、B−Cの行程は凝
縮器での凝縮行程、C−Dの行程は膨張弁での減圧行程
、D−Aの行程は蒸発器での蒸発行程を表している。A
’−B’の行程は圧縮機での圧縮行程、B’ −Cの行
程は凝縮機での凝縮行程、c−c’の行程は冷媒−冷媒
熱交換器での過冷却行程、C’−D’の行程は膨張弁で
の減圧行程、D’−Aの行程は蒸発器での蒸発行程、A
−A′の行程は冷媒−冷媒熱交換器での過熱行程を表し
ている。
The A-B stroke is the compression stroke in the compressor, the B-C stroke is the condensation stroke in the condenser, the C-D stroke is the pressure reduction stroke in the expansion valve, and the D-A stroke is the evaporation stroke in the evaporator. It represents the process. A
The '-B' stroke is the compression stroke in the compressor, the B'-C stroke is the condensation stroke in the condenser, the c-c' stroke is the supercooling stroke in the refrigerant-refrigerant heat exchanger, and C'- The D' stroke is the pressure reduction stroke in the expansion valve, the D'-A stroke is the evaporation stroke in the evaporator, and the A
The stroke -A' represents the superheating stroke in the refrigerant-refrigerant heat exchanger.

蒸発器での蒸発エンタルピー差は、冷媒−冷媒熱交換器
を具備しないサイクルではD−Aであるのに対し、冷媒
−冷媒熱交換器を具備したサイクルではD’−Aと大き
く、同じ冷媒循環流量であれば、冷媒−冷媒熱交換器を
具備しないサイクルよりも冷媒−冷媒熱交?#!器を具
備したサイクルの方が冷凍能力は大きい。同様に、凝縮
器での凝縮エンタルピー差は、冷媒−冷媒熱交換器を具
備しないサイクルではB−Cであるのに対し、冷媒−冷
媒熱交換器を具備したサイクルではB’ −Cと大きく
、同じ冷媒循環流量であれば、冷媒−冷媒熱交換器を具
備しないサイクルよりも冷媒−冷媒熱交換器を具備した
サイクルの方が加熱能力は大きい。
The evaporation enthalpy difference in the evaporator is D-A in a cycle without a refrigerant-refrigerant heat exchanger, whereas it is large as D'-A in a cycle with a refrigerant-refrigerant heat exchanger; If it is a flow rate, is the refrigerant-refrigerant heat exchanger better than a cycle without a refrigerant-refrigerant heat exchanger? #! A cycle equipped with a container has a larger refrigeration capacity. Similarly, the condensation enthalpy difference in the condenser is B-C in a cycle without a refrigerant-refrigerant heat exchanger, whereas it is as large as B'-C in a cycle with a refrigerant-refrigerant heat exchanger. For the same refrigerant circulation flow rate, a cycle equipped with a refrigerant-refrigerant heat exchanger has a larger heating capacity than a cycle not equipped with a refrigerant-refrigerant heat exchanger.

以上のように、冷媒−冷媒熱交換器を用いて過熱、過冷
却を十分に得ることによってヒートポンプサイクルの安
定性が増すとともに、冷凍能力、過熱能力も向上するこ
とが分かる。
As described above, it can be seen that by obtaining sufficient superheating and subcooling using a refrigerant-refrigerant heat exchanger, the stability of the heat pump cycle is increased, and the refrigerating capacity and superheating capacity are also improved.

そこで、本発明者らは、第5図に示すヒートポンプ式冷
暖房装置をすでに提案している。図中の矢印のうち、実
線矢印は冷房時、破線矢印は暖房時の冷媒の流れを示し
ている。
Therefore, the present inventors have already proposed a heat pump type air-conditioning device shown in FIG. Among the arrows in the figure, solid arrows indicate the flow of refrigerant during cooling, and dashed arrows indicate the flow of refrigerant during heating.

すなわち、冷房運転時、圧縮器51から吐出した高温、
高圧の冷媒蒸気は電磁四方弁52を介して室外熱交換器
53に入り、室外空気に放熱することにより凝縮して高
温、高圧の液体となり冷媒−冷媒熱交換器54に入る。
That is, the high temperature discharged from the compressor 51 during cooling operation,
The high-pressure refrigerant vapor enters the outdoor heat exchanger 53 via the electromagnetic four-way valve 52 and condenses by dissipating heat to the outdoor air, becoming a high-temperature, high-pressure liquid and entering the refrigerant-refrigerant heat exchanger 54.

この冷媒−冷媒熱交換器54には、室内熱交換器56に
おいて室内空気から吸熱し蒸発した低温、低圧の冷媒蒸
気が流入しているので、この冷媒−冷媒熱交換器54に
おいて、室外熱交換器53からの高温、高圧の液体冷媒
が室内熱交換器56からの低温、低圧の冷媒蒸気に放熱
して、十分過冷却した液体冷媒となる。この十分過冷却
した液体冷媒は、減圧器である膨張弁55に入って減圧
され低温、低圧となって室内熱交換器56に入り、該室
内熱交換器56において再び室内空気から吸熱、蒸発し
た低温、低圧の冷媒蒸気になる。その低温、低圧の冷媒
蒸気は、再び前記冷媒−冷媒熱交換器54に入る。
Low-temperature, low-pressure refrigerant vapor that has absorbed heat from the indoor air and evaporated in the indoor heat exchanger 56 flows into the refrigerant-refrigerant heat exchanger 54, so that the refrigerant-refrigerant heat exchanger 54 performs outdoor heat exchange. The high-temperature, high-pressure liquid refrigerant from the container 53 radiates heat to the low-temperature, low-pressure refrigerant vapor from the indoor heat exchanger 56, becoming a sufficiently supercooled liquid refrigerant. This sufficiently supercooled liquid refrigerant enters the expansion valve 55, which is a pressure reducer, is depressurized, becomes low temperature and low pressure, and enters the indoor heat exchanger 56. In the indoor heat exchanger 56, it again absorbs heat from the indoor air and evaporates. It becomes a low-temperature, low-pressure refrigerant vapor. The low temperature, low pressure refrigerant vapor enters the refrigerant-refrigerant heat exchanger 54 again.

この冷媒−冷媒熱交換器54には、前記室外熱交換器5
3において室外空気に放熱し凝縮した高温、高圧の液体
冷媒が流入しているので、この冷媒−冷媒熱交換器54
において、室内熱交換器56からの低温、低圧の冷媒蒸
気が室外熱交換器53からの高温、高圧の液体冷媒から
吸熱し、十分過熱した冷媒蒸気となる。この冷媒蒸気は
、電磁四方弁52を介して圧縮機51に吸入され、圧縮
されて、再び高温、高圧の冷媒蒸気となる。このように
、冷房運転時は効率の良いサイクルを形成することにな
る。この場合、蒸発器は室内熱交換器56に相当し、凝
縮器は室外熱交換器53に相当する。
This refrigerant-refrigerant heat exchanger 54 includes the outdoor heat exchanger 5
3, the high-temperature, high-pressure liquid refrigerant that has radiated heat to the outdoor air and condensed is flowing into the refrigerant-refrigerant heat exchanger 54.
At this time, the low temperature, low pressure refrigerant vapor from the indoor heat exchanger 56 absorbs heat from the high temperature, high pressure liquid refrigerant from the outdoor heat exchanger 53, and becomes sufficiently superheated refrigerant vapor. This refrigerant vapor is sucked into the compressor 51 via the electromagnetic four-way valve 52, is compressed, and becomes high-temperature, high-pressure refrigerant vapor again. In this way, an efficient cycle is formed during cooling operation. In this case, the evaporator corresponds to the indoor heat exchanger 56, and the condenser corresponds to the outdoor heat exchanger 53.

一方、暖房運転時、電磁四方弁52の流路は冷房運転時
とは逆になるように切り替えられるので、今度は室内熱
交換器56が凝縮器に相当し、室外熱交換器53が蒸発
器に相当する。
On the other hand, during heating operation, the flow path of the electromagnetic four-way valve 52 is switched to be opposite to that during cooling operation, so the indoor heat exchanger 56 corresponds to the condenser, and the outdoor heat exchanger 53 corresponds to the evaporator. corresponds to

すなわち、圧縮機51から吐出した高温、高圧の冷媒蒸
気は電磁四方弁52を介して冷媒−冷媒熱交換器54に
入る。この冷媒−冷媒熱交換器54には、減圧器である
膨張弁55からの低温、低圧の冷媒が流入しているので
、この冷媒−冷媒熱交換器54において、電磁四方弁5
2からの高温、高圧の冷媒蒸気が膨張弁55からの低温
、低圧の冷媒に放熱し、エンタルピーを減少させてから
室内熱交換器56に入る。そして、ここで室内空気に放
熱して凝縮し、高温、高圧の液体冷媒となる。
That is, high temperature, high pressure refrigerant vapor discharged from the compressor 51 enters the refrigerant-refrigerant heat exchanger 54 via the electromagnetic four-way valve 52. Since low-temperature, low-pressure refrigerant flows into this refrigerant-refrigerant heat exchanger 54 from an expansion valve 55 that is a pressure reducer, in this refrigerant-refrigerant heat exchanger 54, an electromagnetic four-way valve 5
The high-temperature, high-pressure refrigerant vapor from the expansion valve 55 radiates heat to the low-temperature, low-pressure refrigerant from the expansion valve 55 to reduce its enthalpy before entering the indoor heat exchanger 56 . There, it radiates heat into the indoor air and condenses, becoming a high-temperature, high-pressure liquid refrigerant.

この液体冷媒は減圧器である膨張弁55に入って減圧さ
れ、低温、低圧となって冷媒−冷媒熱交換器54に入る
。そして、ここで低温、低圧の液体冷媒が前記圧縮機5
1から吐出した高温、高圧の冷媒蒸気から吸熱し、エン
タルピーを増加させてから室外熱交換器53に入り、こ
こで室外空気から吸熱、蒸発して低温、低圧の蒸気にな
り、電磁四方弁52を介して圧縮機51に吸入される。
This liquid refrigerant enters an expansion valve 55, which is a pressure reducer, and is reduced in pressure, becomes low temperature and low pressure, and enters a refrigerant-refrigerant heat exchanger 54. Here, the low temperature, low pressure liquid refrigerant is supplied to the compressor 5.
It absorbs heat from the high-temperature, high-pressure refrigerant vapor discharged from 1, increases its enthalpy, and then enters the outdoor heat exchanger 53, where it absorbs heat from the outdoor air and evaporates to become low-temperature, low-pressure vapor, which is then passed through the electromagnetic four-way valve 52. The air is sucked into the compressor 51 via.

そして、ここで圧縮され、再び高温、高圧の冷媒蒸気と
なる。このように、暖房運転時は効率の悪いサイクルを
形成することになる。
Here, it is compressed and becomes high-temperature, high-pressure refrigerant vapor again. In this way, an inefficient cycle is formed during heating operation.

すなわち、第6回を用いて説明すると、暖房運転時にお
ける蒸発器での蒸発エンタルピー差は、冷媒−冷媒熱交
換器を具備しないサイクルでは、D−Aであるのに対し
、冷媒−冷媒熱交換器を具備したサイクルではD’−A
と小さい。これは、同じ冷媒循環流量であれば、冷媒−
冷媒熱交換器を具備しないサイクルよりも冷媒−冷媒熱
交換器を具備したサイクルの方が冷凍能力が小さいこと
を示している。同様に、凝縮器での凝縮エンタルピー差
は、冷媒−冷媒熱交換器を具備しないサイクルではB−
Cであるのに対し、冷媒−冷媒熱交換器を具備したサイ
クルではB”−Cと小さい。
That is, to explain using Part 6, the evaporation enthalpy difference in the evaporator during heating operation is D-A in a cycle that does not include a refrigerant-refrigerant heat exchanger, whereas in a cycle that does not include a refrigerant-refrigerant heat exchanger, D'-A for cycles equipped with
And small. This means that if the refrigerant circulation flow rate is the same, the refrigerant -
This shows that the cycle equipped with a refrigerant-refrigerant heat exchanger has a smaller refrigerating capacity than the cycle without a refrigerant heat exchanger. Similarly, the condensation enthalpy difference in the condenser is B- for a cycle without a refrigerant-refrigerant heat exchanger.
C, whereas in a cycle equipped with a refrigerant-refrigerant heat exchanger, it is as small as B''-C.

これは同じ冷媒循環流量であれば、冷媒−冷媒熱交換器
を具備しないサイクルよりも冷媒−冷媒熱交換器を具備
したサイクルの方が加熱能力が小さいことを示している
。この理由は、冷媒−冷媒熱交換器において、行程B−
B“冷媒と、行程D−D″冷媒とが、お互いに出力とし
て取り出せない無駄な熱交換を行い、蒸発器での蒸発エ
ンタルピー差、凝縮器での凝縮エンタルピー差を減少さ
せるためである。
This indicates that for the same refrigerant circulation flow rate, a cycle equipped with a refrigerant-refrigerant heat exchanger has a smaller heating capacity than a cycle not equipped with a refrigerant-refrigerant heat exchanger. The reason for this is that in the refrigerant-refrigerant heat exchanger, the stroke B-
This is because the B "refrigerant" and the stroke D-D" refrigerant exchange wasteful heat with each other that cannot be extracted as output, thereby reducing the difference in evaporation enthalpy in the evaporator and the difference in condensation enthalpy in the condenser.

(発明が解決しようとする課題) 以上のように、冷媒−冷媒熱交換器を用いて過熱、過冷
却を十分に得ることによってヒートポンプサイクルの安
定性が増すばかりでなく、冷凍能力、加熱能力を向上さ
せることはできるが、電磁四方弁等で冷媒の流路を切り
替えることによって暖房と冷房の両方を行う装置では、
暖房と冷房のどちらか一方にしかその効果を得ることが
できないといった問題があった。
(Problems to be Solved by the Invention) As described above, by obtaining sufficient superheating and subcooling using a refrigerant-refrigerant heat exchanger, the stability of the heat pump cycle is not only increased, but also the cooling capacity and heating capacity are increased. However, in devices that perform both heating and cooling by switching the refrigerant flow path using an electromagnetic four-way valve,
There was a problem in that the effect could only be obtained for either heating or cooling.

本発明は係る実情に鑑みてなされたもので、暖房と冷房
のどちらにでも冷媒−冷媒熱交換器の効果を発揮できる
冷暖房装置を提供するものである。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a heating and cooling device that can exhibit the effects of a refrigerant-refrigerant heat exchanger for both heating and cooling.

(課題を解決するための手段) 本発明の冷暖房装置は、圧縮機、室内熱交換器、室外熱
交換器、及び膨張弁を有する冷媒回路であって、該冷媒
回路に、前記室内熱交換器を流れる冷媒の流れ方向を一
定方向とする第1冷媒整流装置と、前記室外熱交換器を
流れる冷媒の流れ方向を一定方向とする第2冷媒整流装
置と、前記室内熱交換器から流出する冷媒と前記室外熱
交換器から流出する冷媒とを熱交換する冷媒−冷媒熱交
換器とが設けられ、前記冷媒−冷媒熱交換器は前記室内
熱交換器の冷媒出口と前記第1冷媒整流装置との間、及
び前記室外熱交換器の冷媒出口と前記第2冷媒整流装置
との間に接続されたものである。
(Means for Solving the Problems) A heating and cooling device of the present invention includes a refrigerant circuit including a compressor, an indoor heat exchanger, an outdoor heat exchanger, and an expansion valve, and the refrigerant circuit includes the indoor heat exchanger. a first refrigerant rectifier in which the flow direction of the refrigerant flowing through the outdoor heat exchanger is a constant direction; a second refrigerant rectifier in which the flow direction of the refrigerant flowing in the outdoor heat exchanger is a constant direction; and a refrigerant flowing out from the indoor heat exchanger. and a refrigerant-refrigerant heat exchanger for exchanging heat between the refrigerant and the refrigerant flowing out from the outdoor heat exchanger, and the refrigerant-refrigerant heat exchanger connects the refrigerant outlet of the indoor heat exchanger and the first refrigerant rectifier. and between the refrigerant outlet of the outdoor heat exchanger and the second refrigerant rectifier.

(作用) 第1図に示すように、冷房運転時、圧縮機lから吐出さ
れた冷媒は、実線矢印で示すように、電磁四方弁4を経
由した後、第2冷媒整流装置7に流入し、該第2冷媒整
流装置7によって流れ方向が限定されて室外熱交換器3
の冷媒人口3aから室外熱交換器3に流入する。そして
、室外熱交換器3の冷媒出口3bから流出し、冷媒−冷
媒熱交換器8を経由した後、再び第2冷媒整流装置7に
よって流れ方向が限定され、該第2冷媒整流装置7を経
由した後膨張弁5に至る。そして、膨張弁5から流出し
た冷媒は第1冷媒整流装置6に流入し、第1冷媒整流装
置6によって流れ方向が限定されて室内熱交換器2の冷
媒人口2aから室内熱交換器2に流入する。そして、室
内熱交換器2の冷媒出口2bから流出し、冷媒−冷媒熱
交換器8を経由した後、再び第1冷媒整流装置6によっ
て流れ方向が限定され、該第1冷媒整流装置6を経由し
た後、電磁四方弁4を経て再び圧縮m1に戻る。
(Function) As shown in FIG. 1, during cooling operation, the refrigerant discharged from the compressor 1 passes through the electromagnetic four-way valve 4 and then flows into the second refrigerant rectifier 7, as shown by the solid arrow. , the flow direction is limited by the second refrigerant rectifying device 7 and the outdoor heat exchanger 3
The refrigerant flows into the outdoor heat exchanger 3 from the refrigerant population 3a. Then, after flowing out from the refrigerant outlet 3b of the outdoor heat exchanger 3 and passing through the refrigerant-refrigerant heat exchanger 8, the flow direction is again limited by the second refrigerant rectifying device 7, and passing through the second refrigerant rectifying device 7. After that, it reaches the expansion valve 5. Then, the refrigerant flowing out from the expansion valve 5 flows into the first refrigerant rectifying device 6, and the flow direction is limited by the first refrigerant rectifying device 6, and the refrigerant flows into the indoor heat exchanger 2 from the refrigerant population 2a of the indoor heat exchanger 2. do. Then, after flowing out from the refrigerant outlet 2b of the indoor heat exchanger 2 and passing through the refrigerant-refrigerant heat exchanger 8, the flow direction is again limited by the first refrigerant rectifying device 6, and passing through the first refrigerant rectifying device 6. After that, it passes through the electromagnetic four-way valve 4 and returns to compression m1 again.

また、暖房運転時、圧縮機1から吐出された冷媒は、破
線矢印で示すように、電磁四方弁4を経由した後、第1
・冷媒整流装置6に流入し、第1冷媒整流装置6によっ
て流れ方向が限定されて室内熱交換器2の冷媒出口2b
から流出し、冷媒−冷媒熱交換器8を経由した後、再び
第1冷媒整流装置6によって流れ方向が限定され、該第
1冷媒整流装置6を経由した後膨張弁5に至る。そして
、膨張弁5から流出した冷媒は第2冷媒整流装置7に流
入し、第2冷媒整流装置6によって流れ方向が限定され
て室外熱交換器3の冷媒人口3aから室内熱交換器2に
流入する。そして、室外熱交換器3の冷媒出口3bから
流出し、冷媒−冷媒熱交換器8を経由した後、再び第2
冷媒整流装置7によって流れ方向が限定され、該第2冷
媒整流装置7を経由した後、電磁四方弁4を経て再び圧
縮機lに戻る。
In addition, during heating operation, the refrigerant discharged from the compressor 1 passes through the electromagnetic four-way valve 4 and then into the first
- The refrigerant flows into the refrigerant rectifying device 6, the flow direction is limited by the first refrigerant rectifying device 6, and the refrigerant exit 2b of the indoor heat exchanger 2
After passing through the refrigerant-refrigerant heat exchanger 8 , the flow direction is again limited by the first refrigerant rectifier 6 , and the refrigerant flows through the first refrigerant rectifier 6 to the post-expansion valve 5 . Then, the refrigerant flowing out from the expansion valve 5 flows into the second refrigerant rectifying device 7, where the flow direction is limited by the second refrigerant rectifying device 6, and the refrigerant flows into the indoor heat exchanger 2 from the refrigerant population 3a of the outdoor heat exchanger 3. do. Then, the refrigerant flows out from the refrigerant outlet 3b of the outdoor heat exchanger 3, passes through the refrigerant-refrigerant heat exchanger 8, and then returns to the second refrigerant.
The flow direction of the refrigerant is limited by the refrigerant rectifier 7, and after passing through the second refrigerant rectifier 7, the refrigerant passes through the electromagnetic four-way valve 4 and returns to the compressor l.

以上のように、室内熱交換器2の冷媒の流れ方向は、第
1冷媒整流装置6によって冷房、暖房の区別なく一定と
なり、冷媒は冷媒出口2bから流出する。また、室外熱
交換器3の冷媒の流れ方向も、第2冷媒整流装置7によ
って冷房、暖房の区別なく一定となり、冷媒は冷媒出口
3bから流出する。すなわち、暖房、冷房のどちらの場
合でも室内熱交換器2、室外熱交換器3から流出した冷
媒を冷媒−冷媒熱交換器8で熱交換させることができる
As described above, the flow direction of the refrigerant in the indoor heat exchanger 2 is kept constant regardless of cooling or heating by the first refrigerant rectifier 6, and the refrigerant flows out from the refrigerant outlet 2b. Further, the flow direction of the refrigerant in the outdoor heat exchanger 3 is also kept constant regardless of cooling or heating by the second refrigerant rectifier 7, and the refrigerant flows out from the refrigerant outlet 3b. That is, in either case of heating or cooling, the refrigerant flowing out from the indoor heat exchanger 2 and the outdoor heat exchanger 3 can be heat-exchanged by the refrigerant-refrigerant heat exchanger 8.

(実施例) 以下、本発明の一実施例を図面を参照して説明する。(Example) Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

〔第1実施例〕 第1図は本発明の実施例を示す冷暖房装置のシステム構
成図である。
[First Embodiment] FIG. 1 is a system configuration diagram of a heating and cooling device showing an embodiment of the present invention.

同図において、本装置は、圧縮機1、室内熱交換器2、
室外熱交換器3、電磁四方弁4、膨張弁5、第1冷媒整
流装置6、第2冷媒整流装置7、冷媒−冷媒熱交換器8
から構成されている。
In the figure, this device includes a compressor 1, an indoor heat exchanger 2,
Outdoor heat exchanger 3, electromagnetic four-way valve 4, expansion valve 5, first refrigerant rectifier 6, second refrigerant rectifier 7, refrigerant-refrigerant heat exchanger 8
It consists of

圧縮機1の吐出口及び吸入口は、電磁四方弁4を介して
第1冷媒整流装置6の圧縮機接続口6C及び第2冷媒整
流装置7の圧縮機接続ロアCに接続されている。また、
第1冷媒整流装置6の膨張弁接読口6dと第2冷媒整流
装置7の膨張弁接続ロアdとが膨張弁5を介して接続さ
れている。第1冷媒整流装置6及び第2冷媒整流装置7
は、それぞれ4個の逆止弁6e、6f、6g、6h、及
び7e、7f、7g、7hで構成されている。そして、
第1冷媒整流装置6の室内熱交換器接続口6aは室内熱
交換器2の冷媒人口2aと接続され、室内熱交換器2の
冷媒出口2bは冷媒−冷媒熱交換器8の室内熱交換器接
続口8aと接続され、冷媒−冷媒熱交換器8の第1冷媒
整流装置接続口8bは第1冷媒整流装置6の冷媒−冷媒
熱交換器接続口6bと接続されている。また、第2冷媒
整流装置7の室外熱交換器接続ロアaは室外熱交換器3
の冷媒人口3aと接続され、室外熱交換器3の冷媒出口
3bは冷媒−冷媒熱交換器8の室外熱交換器接続口8C
と接続され、冷媒−冷媒熱交換器8の第2冷媒整流装置
接続口8dは第2冷媒整流装置7の冷媒−冷媒熱交換器
接続口7bと接続されている。
The discharge port and suction port of the compressor 1 are connected to the compressor connection port 6C of the first refrigerant rectifier 6 and the compressor connection lower C of the second refrigerant rectifier 7 via the electromagnetic four-way valve 4. Also,
The expansion valve connection port 6d of the first refrigerant rectifier 6 and the expansion valve connection lower d of the second refrigerant rectifier 7 are connected via the expansion valve 5. First refrigerant rectifier 6 and second refrigerant rectifier 7
are each composed of four check valves 6e, 6f, 6g, 6h, and 7e, 7f, 7g, 7h. and,
The indoor heat exchanger connection port 6a of the first refrigerant rectifier 6 is connected to the refrigerant population 2a of the indoor heat exchanger 2, and the refrigerant outlet 2b of the indoor heat exchanger 2 is connected to the indoor heat exchanger of the refrigerant-refrigerant heat exchanger 8. The first refrigerant rectifier connection port 8b of the refrigerant-refrigerant heat exchanger 8 is connected to the refrigerant-refrigerant heat exchanger connection port 6b of the first refrigerant rectifier 6. In addition, the outdoor heat exchanger connection lower a of the second refrigerant rectifier 7 is connected to the outdoor heat exchanger 3.
The refrigerant outlet 3b of the outdoor heat exchanger 3 is connected to the outdoor heat exchanger connection port 8C of the refrigerant-refrigerant heat exchanger 8.
The second refrigerant rectifier connection port 8d of the refrigerant-refrigerant heat exchanger 8 is connected to the refrigerant-refrigerant heat exchanger connection port 7b of the second refrigerant rectifier 7.

なお、第1図中、室内熱交換器2の波形の矢印9は室内
空気の流れを、室外熱交換器3の波形の矢印10は室外
空気の流れをそれぞれ示している。
In FIG. 1, wavy arrows 9 of the indoor heat exchanger 2 indicate the flow of indoor air, and wavy arrows 10 of the outdoor heat exchanger 3 indicate the flow of outdoor air.

また、冷房運転時の冷媒の流れを実線の矢印、暖房運転
時の冷媒の流れを破線の矢印で示している。
Further, the flow of refrigerant during cooling operation is shown by solid line arrows, and the flow of refrigerant during heating operation is shown by broken line arrows.

次に、上記冷暖房装置の動作を説明する。冷房運転時、
圧縮機1から吐出された高温高圧の冷媒蒸気は、電磁四
方弁4を通り(実線の矢印)第2冷媒整流装置7の圧縮
機接続ロアCを通って第2冷媒整流装置7に流入し、逆
止弁の流れ方向に従い室外熱交換器接続ロアaより流出
する。そして、室外熱交換器3の冷媒人口3aを通って
室外熱交換器3に流入し、室外空気10に放熱して凝縮
、液化する。この後、冷媒出口3bより流出し、冷媒−
冷媒熱交換器8の室外熱交換器接続口8Cを通って冷媒
−冷媒熱交換器8に流入する。そして、ここで室内熱交
換器2の冷媒出口2bから流出した低温低圧の冷媒蒸気
と熱交換して過冷却液となり、冷媒−冷媒熱交換器8の
第2冷媒整流装置接続口8d、及び第2冷媒整流装置7
の冷媒−冷媒熱交換器接続口7bを通って再び第2冷媒
整流装置7に流入し、逆止弁の流れ方向に従い膨張弁接
続ロアdから流出して膨張弁5に至る。そして、膨張弁
5で減圧膨張され低温低圧の冷媒になる。
Next, the operation of the heating and cooling device will be explained. During cooling operation,
The high-temperature, high-pressure refrigerant vapor discharged from the compressor 1 passes through the electromagnetic four-way valve 4 (solid arrow), passes through the compressor connection lower C of the second refrigerant rectifier 7, and flows into the second refrigerant rectifier 7. It flows out from the outdoor heat exchanger connection lower a according to the flow direction of the check valve. Then, the refrigerant flows into the outdoor heat exchanger 3 through the refrigerant population 3a of the outdoor heat exchanger 3, radiates heat to the outdoor air 10, and is condensed and liquefied. After this, the refrigerant flows out from the refrigerant outlet 3b, and the refrigerant -
The refrigerant flows into the refrigerant-refrigerant heat exchanger 8 through the outdoor heat exchanger connection port 8C of the refrigerant heat exchanger 8. Here, it exchanges heat with the low-temperature, low-pressure refrigerant vapor flowing out from the refrigerant outlet 2b of the indoor heat exchanger 2, and becomes a supercooled liquid, which is then transferred to the second refrigerant rectifier connection port 8d of the refrigerant-refrigerant heat exchanger 8, and the 2 Refrigerant rectifier 7
The refrigerant flows into the second refrigerant rectifier 7 again through the refrigerant-refrigerant heat exchanger connection port 7b, flows out from the expansion valve connection lower d according to the flow direction of the check valve, and reaches the expansion valve 5. The refrigerant is then expanded under reduced pressure in the expansion valve 5 to become a low-temperature, low-pressure refrigerant.

この後、第1冷媒整流装置6の膨張弁接続口6dを通っ
て第1冷媒整流装置6に流入し、逆止弁の流れ方向に従
い室内熱交換器接続口6a、及び室内熱交換器2の冷媒
人口2aを通って室内熱交換器2に流入し、室内空気9
から吸熱して蒸発、気化して冷房が行われる。この熱交
換によって、冷媒は低温低圧の蒸気となって冷媒出口2
bより流出し、冷媒−冷媒熱交換器8の室内熱交換器接
続口8aを通って冷媒−冷媒熱交換器8に流入する。
After that, the refrigerant flows into the first refrigerant rectifier 6 through the expansion valve connection port 6d of the first refrigerant rectifier 6, and flows into the indoor heat exchanger connection port 6a and the indoor heat exchanger 2 according to the flow direction of the check valve. The refrigerant flows into the indoor heat exchanger 2 through the refrigerant population 2a, and the indoor air 9
It absorbs heat from the air, evaporates, and evaporates to provide cooling. Through this heat exchange, the refrigerant turns into low-temperature, low-pressure vapor, and the refrigerant exits the refrigerant outlet 2.
b, and flows into the refrigerant-refrigerant heat exchanger 8 through the indoor heat exchanger connection port 8a of the refrigerant-refrigerant heat exchanger 8.

そして、ここで室外熱交換器3の冷媒出口3bから流出
した高温高圧の液化冷媒と熱交換し、過熱蒸気になって
冷媒−冷媒熱交換器8の第1冷媒整流装置接続口8b、
及び第1冷媒整流装置6の冷媒−冷媒熱交換器接続口6
bを通って再び第1冷媒整流装置6に流入する。そして
、逆止弁の流れ方向に従い第1冷媒整流装置6の圧縮機
接続口6Cから流出し、電磁四方弁4を通って圧縮機1
に吸入され、再び圧縮される。このサイクルを冷房運転
中繰り返し行うものである。
Here, it exchanges heat with the high-temperature, high-pressure liquefied refrigerant flowing out from the refrigerant outlet 3b of the outdoor heat exchanger 3, and turns into superheated vapor, and the first refrigerant rectifier connection port 8b of the refrigerant-refrigerant heat exchanger 8,
and the refrigerant-refrigerant heat exchanger connection port 6 of the first refrigerant rectifier 6
b and flows into the first refrigerant rectifying device 6 again. The refrigerant then flows out from the compressor connection port 6C of the first refrigerant rectifier 6 according to the flow direction of the check valve, passes through the electromagnetic four-way valve 4, and then flows into the compressor 1.
is inhaled and compressed again. This cycle is repeated during cooling operation.

一方、暖房運転時は従来の冷暖房装置と同様に電磁四方
弁4が破線の接続になり、冷媒は室内熱交換器2で凝縮
、液化し、室外熱交換器3において蒸発、気化するが、
第1冷媒整流装置6、第2冷媒整流装置7の作用によっ
て室内熱交換器2、室外熱交換器3の冷媒の流れ方向、
冷媒の出口は上記冷房運転時と同一となる。
On the other hand, during heating operation, the electromagnetic four-way valve 4 is connected as shown in the broken line, similar to conventional air-conditioning equipment, and the refrigerant is condensed and liquefied in the indoor heat exchanger 2, and evaporated and vaporized in the outdoor heat exchanger 3.
By the action of the first refrigerant rectifier 6 and the second refrigerant rectifier 7, the flow direction of the refrigerant in the indoor heat exchanger 2 and the outdoor heat exchanger 3,
The outlet of the refrigerant is the same as in the above-mentioned cooling operation.

上記に示すように、室内熱交換器2の冷媒の流れ方向は
、第1冷媒整流装置6によって冷房、暖房の区別なく一
定となり、冷媒の冷媒出口2bから流出することになる
。また、室外熱交換器3の冷媒の流れ方向も、第2冷媒
整流装置7によって冷房、暖房の区別なく一定となり、
冷媒は冷媒出口3bから流出することになる。このよう
に、暖房、冷房のどちらの場合でも、室内熱交換器2、
及び室外熱交換器3から流出した冷媒を、冷媒−冷媒熱
交換器8で熱交換させることができる。
As shown above, the flow direction of the refrigerant in the indoor heat exchanger 2 is kept constant regardless of cooling or heating by the first refrigerant rectifier 6, and the refrigerant flows out from the refrigerant outlet 2b. Furthermore, the flow direction of the refrigerant in the outdoor heat exchanger 3 is also made constant regardless of cooling or heating by the second refrigerant rectifier 7.
The refrigerant will flow out from the refrigerant outlet 3b. In this way, for both heating and cooling, the indoor heat exchanger 2,
And the refrigerant flowing out from the outdoor heat exchanger 3 can be heat-exchanged by the refrigerant-refrigerant heat exchanger 8.

〔第2実施例〕 本実施例を第2図に示す。本実施例は、上記第1実施例
の冷媒−冷媒熱交換器8に替えて、上記室内熱交換器2
の冷媒出口管に上記室外熱交換器3の冷媒出口管を内装
してなる二重背型熱交換器81を用いた冷暖房装置で、
その他の構成や動作は上記第1実施例の冷暖房装置と同
様である。
[Second Example] This example is shown in FIG. In this embodiment, the indoor heat exchanger 2 is used instead of the refrigerant-refrigerant heat exchanger 8 of the first embodiment.
A heating and cooling system using a double-back type heat exchanger 81 in which the refrigerant outlet pipe of the outdoor heat exchanger 3 is installed inside the refrigerant outlet pipe,
The other configurations and operations are the same as those of the air conditioning system of the first embodiment.

〔第3実施例] 本実施例を第3図に示す。本実施例は、上記第1実施例
の冷媒−冷媒熱交換器8に替えて、上記室外熱交換器3
の冷媒出口管中に上記室内熱交換器2の冷媒出口管を内
装してなる二重背型熱交換器82を用いた冷暖房装置で
、その他の構成や動作は上記第1実施例の冷暖房装置と
同様である。
[Third Example] This example is shown in FIG. In this embodiment, instead of the refrigerant-refrigerant heat exchanger 8 of the first embodiment, the outdoor heat exchanger 3 is used.
This is an air-conditioning system using a double-back type heat exchanger 82 in which the refrigerant outlet pipe of the indoor heat exchanger 2 is installed inside the refrigerant exit pipe of the indoor heat exchanger 2, and the other configuration and operation are the same as the air-conditioning system of the first embodiment. It is similar to

〔第4実施例〕 本実施例を第4図に示す。本実施例は、上記第1実施例
の冷媒−冷媒熱交換器8に替えて、熱媒体11を封入し
た密閉容器に上記室内熱交換器2の冷媒出口管と上記室
外熱交換器3の冷媒出口管とを内装してなる熱交換器8
3を用いた冷暖房装置で、その他の構成や動作は上記第
1実施例の冷暖房装置と同様である。
[Fourth Example] This example is shown in FIG. In this embodiment, instead of the refrigerant-refrigerant heat exchanger 8 of the first embodiment, a closed container containing a heat medium 11 is used to connect the refrigerant outlet pipe of the indoor heat exchanger 2 and the refrigerant of the outdoor heat exchanger 3. Heat exchanger 8 with outlet pipe inside
The other configurations and operations are the same as those of the air conditioning apparatus of the first embodiment.

(発明の効果) 以上の説明から明らかなように、電磁四方弁等で冷媒の
流路を切り替えて暖房と冷房の両方を行う冷暖房装置シ
ステムに、冷媒−冷媒熱交換器、第1冷媒整流装置、第
2冷媒整流装置を設けることによって、暖房と冷房の別
なく過熱、過冷却を十分に得ることができるので、ヒー
トポンプサイクルの安定性を増すことができるとともに
、冷凍能力、加熱能力を向上させることができる。
(Effects of the Invention) As is clear from the above description, a heating and cooling system that performs both heating and cooling by switching the refrigerant flow path using an electromagnetic four-way valve etc. includes a refrigerant-refrigerant heat exchanger and a first refrigerant rectifier. By providing the second refrigerant rectifier, it is possible to obtain sufficient superheating and subcooling regardless of heating or cooling, thereby increasing the stability of the heat pump cycle and improving the refrigerating capacity and heating capacity. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明の図面を示し、第1図は第
1実施例の冷暖房装置を示すシステム構成図、第2図は
第2実施例の冷暖房装置を示すシステム構成図、第3図
は第3実施例の冷暖房装置を示すシステム構成図、第4
図は第4実施例の冷暖房装置を示すシステム構成図、第
5図は冷媒−冷媒熱交換器を用いた従来の冷暖房装置を
示すシステム構成図、第6図は冷媒の循環サイクルを示
すグラフである。 ■・・・圧縮器       2・・・室内熱交換器3
・・・室外熱交換器    4・・・電磁四方弁5・・
・膨張弁 6・−・第1冷媒整流装置  7・・・第2冷媒整流装
置8・・・冷媒−冷媒熱交換器 9・・・室内空気の流
れIO・・・室外空気の流れ
1 to 4 show drawings of the present invention, in which FIG. 1 is a system configuration diagram showing the air conditioning system of the first embodiment, FIG. 2 is a system configuration diagram showing the air conditioning system of the second embodiment, and FIG. Figure 3 is a system configuration diagram showing the air conditioning system of the third embodiment;
Figure 5 is a system configuration diagram showing the air conditioning system of the fourth embodiment, Figure 5 is a system configuration diagram showing a conventional air conditioning system using a refrigerant-refrigerant heat exchanger, and Figure 6 is a graph showing the refrigerant circulation cycle. be. ■...Compressor 2...Indoor heat exchanger 3
...Outdoor heat exchanger 4...Solenoid four-way valve 5...
- Expansion valve 6 - - First refrigerant rectifier 7 - Second refrigerant rectifier 8 - Refrigerant-refrigerant heat exchanger 9 - Indoor air flow IO - Outdoor air flow

Claims (1)

【特許請求の範囲】[Claims] 1)圧縮機、室内熱交換器、室外熱交換器、及び膨張弁
を有する冷媒回路であって、該冷媒回路に、前記室内熱
交換器を流れる冷媒の流れ方向を一定方向とする第1冷
媒整流装置と、前記室外熱交換器を流れる冷媒の流れ方
向を一定方向とする第2冷媒整流装置と、前記室内熱交
換器から流出する冷媒と前記室外熱交換器から流出する
冷媒とを熱交換する冷媒−冷媒熱交換器とが設けられ、
前記冷媒−冷媒熱交換器は前記室内熱交換器の冷媒出口
と前記第1冷媒整流装置との間、及び前記室外熱交換器
の冷媒出口と前記第2冷媒整流装置との間に接続された
ことを特徴とする冷暖房装置。
1) A refrigerant circuit having a compressor, an indoor heat exchanger, an outdoor heat exchanger, and an expansion valve, the refrigerant circuit having a first refrigerant having a constant flow direction of the refrigerant flowing through the indoor heat exchanger. a rectifier, a second refrigerant rectifier that makes the flow direction of the refrigerant flowing through the outdoor heat exchanger constant, and a refrigerant flowing out from the indoor heat exchanger and a refrigerant flowing out from the outdoor heat exchanger for heat exchange. A refrigerant-refrigerant heat exchanger is provided,
The refrigerant-refrigerant heat exchanger is connected between the refrigerant outlet of the indoor heat exchanger and the first refrigerant rectifier, and between the refrigerant outlet of the outdoor heat exchanger and the second refrigerant rectifier. A heating and cooling device characterized by:
JP63143891A 1988-06-10 1988-06-10 Cooling and heating device Pending JPH01312365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63143891A JPH01312365A (en) 1988-06-10 1988-06-10 Cooling and heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63143891A JPH01312365A (en) 1988-06-10 1988-06-10 Cooling and heating device

Publications (1)

Publication Number Publication Date
JPH01312365A true JPH01312365A (en) 1989-12-18

Family

ID=15349444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63143891A Pending JPH01312365A (en) 1988-06-10 1988-06-10 Cooling and heating device

Country Status (1)

Country Link
JP (1) JPH01312365A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626030A (en) * 1994-11-24 1997-05-06 Sanyo Electric Co., Ltd. Refrigerant flow amount control valve and refrigerating apparatus therewith
KR100367175B1 (en) * 2000-10-05 2003-01-09 진금수 Heat pump system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626030A (en) * 1994-11-24 1997-05-06 Sanyo Electric Co., Ltd. Refrigerant flow amount control valve and refrigerating apparatus therewith
KR100367175B1 (en) * 2000-10-05 2003-01-09 진금수 Heat pump system

Similar Documents

Publication Publication Date Title
JP2554208B2 (en) Heat pump water heater
US6167715B1 (en) Direct refrigerant geothermal heat exchange or multiple source subcool/postheat/precool system therefor
US6460358B1 (en) Flash gas and superheat eliminator for evaporators and method therefor
JPH09170832A (en) Refrigerating cycle device having two evaporation temperature
JP2006052934A (en) Heat exchange apparatus and refrigerating machine
CN108759142B (en) Special cascade air source high-temperature heat pump cooling and heating system
JPH02290475A (en) Heat pump type air conditioner
US6631624B1 (en) Phase-change heat transfer coupling for aqua-ammonia absorption systems
JPH10160269A (en) Refrigerating device
JP2006003023A (en) Refrigerating unit
JPH04103571U (en) Heat pump water heater
JPH0275863A (en) Room heating/cooling apparatus
JPH02161263A (en) Air conditioner
JPH01312365A (en) Cooling and heating device
JP2006029714A (en) Ejector cycle
JPH06241582A (en) Heat accumulative type cooling device
WO2023218612A1 (en) Refrigeration cycle device
JPH04268165A (en) Double-stage compression and freezing cycle device
JP3084918B2 (en) Heat pump water heater
JP2000283598A (en) Method for controlling engine heat pump
JP2685583B2 (en) Heat pump heat recovery device
KR20060065874A (en) Heat pump type air conditioner
JPH08303879A (en) Refrigerating unit
JP2000320908A (en) Refrigerating cycle circuit
JPH0894192A (en) Vapor compression type refrigerating device