JPS58104467A - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JPS58104467A
JPS58104467A JP20438181A JP20438181A JPS58104467A JP S58104467 A JPS58104467 A JP S58104467A JP 20438181 A JP20438181 A JP 20438181A JP 20438181 A JP20438181 A JP 20438181A JP S58104467 A JPS58104467 A JP S58104467A
Authority
JP
Japan
Prior art keywords
evaporator
condenser
heat pump
refrigerant
boiling point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20438181A
Other languages
Japanese (ja)
Inventor
雄二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20438181A priority Critical patent/JPS58104467A/en
Publication of JPS58104467A publication Critical patent/JPS58104467A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Central Heating Systems (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、非共沸混合冷媒を用いた熱ポンプ装置におい
て、冷凍サイクル上の工夫と相まって高効率であると共
に、より低温を得ることを可能としだ熱ポンプ装置を提
供することを目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a heat pump device using a non-azeotropic mixed refrigerant that, in combination with improvements in the refrigeration cycle, achieves high efficiency and makes it possible to obtain a lower temperature. The purpose is to provide

従来、非共沸混合冷媒を用いた熱ポンプ装置においては
、圧縮機、凝縮器、絞り装置、蒸発器等を単純に連結し
た冷凍サイクルにおいて、凝縮器かつ蒸発器に関し熱源
となる被加熱流体及び被冷却流体と非共沸混合冷媒をそ
れぞれ対向流に熱交換させることにより、熱交換過程の
不可逆損失を減少させる如く工夫することは公知の技術
である。
Conventionally, in a heat pump device using a non-azeotropic mixed refrigerant, in a refrigeration cycle in which a compressor, a condenser, a throttle device, an evaporator, etc. are simply connected, the heated fluid and the heat source are connected to the condenser and evaporator. It is a known technique to reduce the irreversible loss in the heat exchange process by causing the fluid to be cooled and the non-azeotropic mixed refrigerant to exchange heat in countercurrent flows.

しかるにかかる熱ポンプ装置において、被加熱流体の出
口温度としてより高温で、かつ被冷却流体の出口温度と
してより低温を得ることを目的とする場合、熱交換過程
の不可逆損失は減少するものの圧縮機の圧縮比は過大と
なり、そのため圧縮機入力は増大して充分な高効率性を
確保することは困難となるものである。たとえば被加熱
流体を給湯として利用し、被冷却流体を冷房として利用
する場合、被加熱流体の出口温度は70〜80℃が望ま
しく、被冷却流体の出口温度は6〜16℃が望ましいが
、両方の出口温度を同時に得ようとすると圧縮機入力は
かなり増大したものとなる。かつ非共沸混合冷媒を用い
て熱交換過程の不可逆損失を減少させようとしても、被
加熱流体の入口温度が70〜30℃の場合、約1Odo
gの温度差を得なければならず、これを非共沸混合冷媒
で不可逆損失を減少させようとすると、約150deg
の沸点差のある冷媒を混合させるのが望ましいものとな
るが、現実に冷凍サイクルで好適となるノ・ロゲン化炭
化水素類(以下フロンと称する)の中で、これらに適し
た組合せを見い出すことは、臨界温度、臨界圧力、比熱
等の関係できわめて困難となるものであり、不可逆損失
の減少の効果も低減されたものとなるものである。
However, in such a heat pump device, when the purpose is to obtain a higher exit temperature of the fluid to be heated and a lower exit temperature of the fluid to be cooled, although the irreversible loss in the heat exchange process is reduced, the compressor The compression ratio becomes excessive, and therefore the compressor input increases, making it difficult to ensure sufficiently high efficiency. For example, when the fluid to be heated is used for hot water supply and the fluid to be cooled is used for cooling, the exit temperature of the heated fluid is preferably 70 to 80°C, and the exit temperature of the cooled fluid is preferably 6 to 16°C, but both If an attempt is made to simultaneously obtain an outlet temperature of , the compressor input will be considerably increased. Even if an attempt is made to reduce irreversible loss in the heat exchange process using a non-azeotropic mixed refrigerant, if the inlet temperature of the heated fluid is 70 to 30°C, approximately 1 Odo
It is necessary to obtain a temperature difference of about 150 deg, and if you try to reduce the irreversible loss with a non-azeotropic mixed refrigerant,
Although it is desirable to mix refrigerants with boiling point differences of This is extremely difficult due to the critical temperature, critical pressure, specific heat, etc., and the effect of reducing irreversible loss is also reduced.

本発明は、上記しだ熱ポンプ装置の欠点を解消するもの
であり、以下実施例とともに詳細に説明する。第1図は
本発明になる非共沸混合冷媒を用いた熱ポンプ装置の一
実施例であり、1は圧縮機。
The present invention eliminates the drawbacks of the above-mentioned insulating heat pump device, and will be described in detail below along with examples. FIG. 1 shows an embodiment of a heat pump device using a non-azeotropic mixed refrigerant according to the present invention, and 1 is a compressor.

2は第1凝縮器、3は気液分離器であり、非共沸混合冷
媒を用いるとき液相側には高沸点冷媒をより多く含み気
相側には低沸点冷媒をより多く含むことになる。4は気
相成分を液化するだめの第2凝縮器、6,6は絞り装置
、7,8はそれぞれ低沸点冷媒と高沸点冷媒をより多く
含む成分に対する第1及び第2蒸発器、9は両蒸発器7
.8力・らの冷媒を合流させ′て収容するアキームレー
タであり、出力は圧縮機1の吸入口に接続されている。
2 is a first condenser, 3 is a gas-liquid separator, and when a non-azeotropic mixed refrigerant is used, the liquid phase side contains more high boiling point refrigerant and the gas phase side contains more low boiling point refrigerant. Become. 4 is a second condenser for liquefying the gas phase components; 6 and 6 are throttle devices; 7 and 8 are first and second evaporators for components containing more low-boiling point refrigerant and higher boiling point refrigerant, respectively; 9 is a second condenser for liquefying the gas phase component; Both evaporators 7
.. This is an achievator that combines and stores 8 refrigerants, and its output is connected to the suction port of the compressor 1.

ここで、被加熱流体は凝縮器2,4において、第2凝縮
器4と第1凝縮器2の順にかつそれぞれの凝縮器におい
て対向流となる如く熱交換し、被冷却流体は蒸発器7,
8において、第2蒸発器8と第1蒸発器7の順にかつそ
れぞれの蒸発器において対向流となる如く熱交換させる
ことを特徴とするものである。
Here, the fluid to be heated exchanges heat in the condensers 2 and 4 in the order of the second condenser 4 and the first condenser 2 so as to have counterflow in each condenser, and the fluid to be cooled is in the evaporator 7,
8 is characterized in that heat is exchanged in the order of the second evaporator 8 and the first evaporator 7 so as to form counterflows in each evaporator.

次に上記した実施例の作用を、第2図に示した一定圧力
における低沸点冷媒濃度対温度のグラフで説明する。な
お、この第2図においては説明の都合上、一定の凝縮圧
力と蒸発圧力のグラフを上下に並べて配置している。第
2図上に示した8〜1点は、第1図における実施例つa
−j点における圧力・温度・濃度に対応している。すな
わち、点a −bは第1凝縮器2の凝縮過程であり、非
共沸混合冷媒を用いているため、温度低下が見られる。
Next, the operation of the above-described embodiment will be explained with reference to the graph of low boiling point refrigerant concentration versus temperature at constant pressure shown in FIG. In FIG. 2, for convenience of explanation, graphs of constant condensation pressure and evaporation pressure are arranged vertically. Points 8 to 1 shown on the top of FIG.
It corresponds to the pressure, temperature, and concentration at point −j. That is, points a-b are the condensation process of the first condenser 2, and since a non-azeotropic mixed refrigerant is used, a decrease in temperature is observed.

点C及びdは気液分離器3で分離される気相及び液相の
状態点である。点a−eは第2凝縮器4の凝縮過程であ
り、低沸点冷媒をより多く含んでいるため、第1凝縮器
2と同一の凝縮圧力でありながら、より低い温度レベル
での温度低下が起る。
Points C and d are state points of the gas phase and liquid phase separated by the gas-liquid separator 3. Points a-e are the condensation process of the second condenser 4, which contains more low-boiling point refrigerant, so the temperature decreases at a lower temperature level even though the condensation pressure is the same as that of the first condenser 2. It happens.

点e−f及び点ci−c、はそれぞれ絞り装置6.6の
入口及び出口を表わし、凝縮圧力から蒸発圧力への圧力
低下と共に温度低下をもたらすことができる。点f−h
及び点g−iはそれぞれ蒸発器7゜8の蒸発過程であり
、凝縮器2,4とは逆に温度上昇が見られるが、点f−
hは低沸点冷媒をより多く含んでいるため、より低い温
度レベルで蒸発させることは容易なことである。点jは
蒸発器7゜8からの冷媒が混合されるアキュームレータ
9の出口における状態点を表わし、過熱蒸気の状態で圧
縮機1に吸入され、圧縮機1では点j(蒸発圧力)から
点a(凝縮圧力)まで圧縮される。
Points e-f and ci-c represent the inlet and outlet, respectively, of the throttling device 6.6, which can bring about a temperature drop as well as a pressure drop from the condensing pressure to the evaporation pressure. point f-h
Point g-i and point g-i are the evaporation process of evaporator 7°8, and a temperature rise is observed in contrast to condensers 2 and 4, but point f-
Since h contains more low-boiling refrigerant, it is easier to evaporate at lower temperature levels. Point j represents the state point at the outlet of the accumulator 9, where the refrigerant from the evaporator 7°8 is mixed, and is drawn into the compressor 1 in the state of superheated vapor, in which the refrigerant flows from point j (evaporation pressure) to point a. (condensation pressure).

従って、本発明の特徴とするところの一つは、第2図上
部の破線で示した如く被加熱流体が非共沸混合冷媒と対
向流となる様に、点a −c −b −aの順に冷媒と
熱交換させることによって、広い温度範囲で被加熱流体
と冷媒の温度差を小さくすることが可能となり、不可逆
損失を減少させることができるものである。特に点C−
eの凝縮過程を有効に熱回収するわけであるから、前記
した熱ポンプ給湯装置の如き大きな沸点差の冷媒の組合
せる求める必要がなく、約30〜1100deの沸点差
の冷媒の組合せが好適となり、フロン類の中でこれらの
組合せを見つけることはより容易となる。
Therefore, one of the features of the present invention is that the fluid to be heated flows between points a-c-b-a so that the fluid to be heated flows counter-currently to the non-azeotropic mixed refrigerant as shown by the broken line in the upper part of FIG. By sequentially exchanging heat with the refrigerant, it is possible to reduce the temperature difference between the fluid to be heated and the refrigerant over a wide temperature range, thereby reducing irreversible loss. Especially point C-
Since heat is effectively recovered from the condensation process of e, there is no need to use a combination of refrigerants with a large boiling point difference as in the heat pump water heater described above, and a combination of refrigerants with a boiling point difference of about 30 to 1100 de is suitable. , it will be easier to find these combinations among fluorocarbons.

また、第2図の下部の破線で示した如く、被冷却流体が
非共沸混合冷媒と対向流となる様に、点i −g −h
 −fの順に冷媒と熱交換させることによって、凝縮過
程と同じく不可逆損失を減少させることができるもので
ある。特に前記した給湯と冷房の同時利用の様な場合、
従来の単純な冷凍サイクルと比べて、同一の圧縮比のと
きは点f −hのより低い温度レベルと熱交換するため
低温を得ることができ、逆に同じ温度レベルの低温を得
るときには圧縮比が低減され高温率な運転を保持するこ
とか可能となる。
In addition, as shown by the broken line at the bottom of FIG.
By exchanging heat with the refrigerant in the order of −f, irreversible loss can be reduced as in the condensation process. Especially when using hot water supply and cooling at the same time as mentioned above,
Compared to a conventional simple refrigeration cycle, when the compression ratio is the same, a lower temperature can be obtained by exchanging heat with the lower temperature level at point f - h, and conversely, when obtaining a lower temperature at the same temperature level, the compression ratio is reduced, making it possible to maintain high-temperature operation.

次に本発明の異なる実# q7,4 vg 3図に示す
Next, a different example of the present invention is shown in Figure 3.

第3図において、10〜16及”び18は、各々第1図
の実施例における1〜7及び9と同じ機能をもつ構成要
素である。第3図における実施例の特は低沸点成分用第
1蒸発器7と高沸点成分用第2蒸発器8を並列としてア
キュームレータ9に合流させるのに対して、第3図にお
いては低沸点成分用第1蒸発器16の出口を高沸点成分
用絞り装置16と第2の蒸発器17の中間で合流させ、
第2の蒸発器17においては元の組成となった非共沸混
合冷媒を蒸発させることにある。なお第3図の実施例に
おいても、被加熱流体は第2凝縮器13と第1凝縮器1
1の順にかつそれぞれの凝縮器において対向流となる如
く熱交換し、被冷却流体は第2蒸発器17と第1蒸発器
16の順にかつそれぞれの蒸発器において対向流となる
如く熱交換させることにより、第1図の実施例と同じ効
果を期待できるものであり、特に第3図の実施例におい
ては、第2蒸発器17の冷媒出口温度を第2図の実施例
の第2蒸廃蕎8のそれより低くでき全体としてせまい温
度幅で変化する蒸発冷媒と被冷却流・  体を熱交換す
ることが可能となる。
In FIG. 3, 10 to 16 and 18 are components having the same functions as 1 to 7 and 9 in the embodiment in FIG. 1, respectively.The embodiment in FIG. The first evaporator 7 and the second evaporator 8 for high-boiling components are arranged in parallel and merge into the accumulator 9, whereas in FIG. to join the device 16 and the second evaporator 17 in the middle,
The purpose of the second evaporator 17 is to evaporate the non-azeotropic refrigerant mixture, which has its original composition. In the embodiment shown in FIG. 3 as well, the heated fluid is supplied to the second condenser 13 and the first condenser 1
1 and in each condenser so that the flow is counter-current, and the fluid to be cooled is heat-exchanged in the order of the second evaporator 17 and the first evaporator 16 so that the flow is counter-current in each evaporator. Therefore, the same effect as the embodiment shown in FIG. 1 can be expected. In particular, in the embodiment shown in FIG. It is possible to exchange heat between the evaporative refrigerant, which changes in a narrow overall temperature range, and the stream/body to be cooled.

なお第1図及び第3図の実施例においては、基本的な構
成を示したものであり、たとえば絞り装置6,6や絞り
装置14.16に流入する冷媒の過冷却をとるためにサ
イクル内熱交換器(図示せず)を設けたものや四方弁(
図示せず)を設けてサイクルを切換える如く工夫したも
の1両凝縮器や画然発器を一体として構成したもの等も
本発明に含まれるものである、また本発明になる熱ポン
プ装置の具体的応用として、熱ポンプ給湯装置や給湯冷
房装置が一例として考えられるが、給湯等の高温度レベ
ルで利用する際には機器の耐圧等の観点から見て、非共
沸混合冷媒の組合せとしては、クロロジフルオロメタン
(フロン22. 沸点−41℃)とそれより沸点の大き
なフロン、好ましくは約30〜100 degの沸点差
のフロン、さらに機器の負圧をさけるために、好ましく
は約40〜8゜dogの沸点差のフロン、具体的には、
1,2−ジクロロテトラフルオロエタン(フロン114
. 沸点4℃)、ジクロロフルオロメタン(フロン21
゜沸点9℃)、トリクロロフルオロメタン(フロン11
、沸点24℃)等が好適となるものである。
In the embodiments shown in FIGS. 1 and 3, the basic configuration is shown. For example, in order to subcool the refrigerant flowing into the expansion devices 6, 6 and the expansion devices 14 and 16, One equipped with a heat exchanger (not shown) or a four-way valve (
The present invention also includes a heat pump device that is devised to switch the cycle by providing a heat pump (not shown), and a heat pump device that integrates a single condenser and a natural generator. Examples of practical applications include heat pump hot water supply equipment and hot water supply cooling equipment, but when used at high temperature levels such as hot water supply, from the viewpoint of equipment pressure resistance, it is recommended to use non-azeotropic mixed refrigerant combinations. , chlorodifluoromethane (Freon 22. Boiling point -41°C) and Freon with a higher boiling point, preferably with a boiling point difference of about 30 to 100 degrees, and in order to avoid negative pressure in the equipment, preferably about 40 to 8 degrees Freon with a boiling point difference of ゜dog, specifically,
1,2-dichlorotetrafluoroethane (Freon 114
.. boiling point 4℃), dichlorofluoromethane (Freon 21
゜boiling point 9℃), trichlorofluoromethane (Freon 11
, boiling point 24°C), etc. are suitable.

 0 以上説明した如く本発明の熱ポンプ装置は、非共沸混合
冷媒を用いた冷凍サイクルにおいて、圧縮機、第1凝縮
器、気液分離器、第2凝縮器、絞り装置、第1及び第2
蒸発器等から成り、第2凝縮器及び第1蒸発器には気液
分離器で分離される低沸点冷媒を多く含む成分を流入さ
せ、被加熱流体は第2凝縮器と第1凝縮器の順にかつそ
れぞれの凝縮器で対向流となる如く熱交換させ、被冷却
流体は第2蒸発器と第1蒸発器の順にかつそれぞれの蒸
発器で対向流となる如く熱交換させる如く構成すること
によって、高効率であると共によシ高温、よシ低温を共
ることか可能となり、特に被加熱流体を給湯等の高温度
レベルで利用する際には非共沸混合冷媒の組合せがより
容易になる等の効果も合せ有するものである。
0 As explained above, the heat pump device of the present invention includes a compressor, a first condenser, a gas-liquid separator, a second condenser, a throttle device, a first and a first condenser, in a refrigeration cycle using a non-azeotropic mixed refrigerant. 2
It consists of an evaporator, etc., and a component containing a large amount of low boiling point refrigerant separated by a gas-liquid separator flows into the second condenser and the first evaporator, and the fluid to be heated flows between the second condenser and the first condenser. By configuring the cooling fluid to be heat exchanged in order and in counterflow in each condenser, and for the fluid to be cooled to be heat exchanged in order in the second evaporator and the first evaporator and in counterflow in each evaporator. In addition to being highly efficient, it is also possible to operate at both high and low temperatures, making it easier to combine non-azeotropic refrigerants especially when the fluid to be heated is used at high temperature levels such as hot water supply. It also has the following effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の熱ポンプ装置の一実施例の
回路構成図、第2図は同熱ポンプ装置の各状態点を説明
するための低沸点冷媒濃度対温度の特性図、第3図は本
発明の異なる実施例の熱ポンプ装置の回路構成図である
。 1,1o ・・・・圧縮機、2,11・・・ ・第1凝
縮器、3.12・・・・・気液分離器、4.13・・・
・・第2凝縮器、5,6,14.15・・・・・・絞り
装置、716 ・・・・・第1蒸発器、8,17・・・
・・・第2蒸発器。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名・・
]11 第2図 侭邊セ、)勺泉儂廣
FIG. 1 is a circuit configuration diagram of an embodiment of a heat pump device according to an embodiment of the present invention, and FIG. 2 is a characteristic diagram of low boiling point refrigerant concentration versus temperature for explaining each state point of the heat pump device. FIG. 3 is a circuit diagram of a heat pump device according to a different embodiment of the present invention. 1,1o... Compressor, 2,11... ・First condenser, 3.12... Gas-liquid separator, 4.13...
...Second condenser, 5,6,14.15... Throttle device, 716 ...First evaporator, 8,17...
...Second evaporator. Name of agent: Patent attorney Toshio Nakao and one other person...
] 11 Figure 2 侭麊Se, ) 庺泉儂廣

Claims (1)

【特許請求の範囲】 (1)非共沸混合冷媒を用い、少なくとも圧縮機。 第1凝縮器、気液分離器、第2凝縮器、絞り装置。 第1及び第2蒸発器で冷凍サイクルを形成し、前記第2
凝縮器及び第1蒸発器には気液分離器で分離される低沸
点冷媒を多く含む成分を流入させ、被加熱流体は第2凝
縮器と第1凝縮器の順にかつそれぞれの凝縮器で対向流
となる如く供給し、被冷却流体は第2蒸発器と第1蒸発
器の順にかつそれぞれの蒸発器で対向流となる如く熱交
換させる熱ポンプ装置。 (2)第2蒸発器には気液分離器で分離される高沸点冷
媒を多く含む成分を流入させる特許請求の範間第1項に
記載の熱ポンプ装置。 (3)第2蒸発器には第1蒸発器を流れる低沸点成分と
気液分離器で分離・減圧後の高沸点成分を合流させて流
入させる特許請求の範囲第1項に記載の熱ポンプ装置。 (4)第1及び第2凝縮器もしくは第1及び第2蒸発器
の少なくとも一方を一体として構成した特許請求の範囲
第1項、第2項または第3項に記載の熱ポンプ装置。 (6)非共沸混合冷媒の組合せとしてクロロジフルオロ
メタンとそれより沸点の大きな第2のフロンを混合した
特許請求の範囲第1項から第4項の何れかに記載の熱ポ
ンプ装置。
[Claims] (1) At least a compressor using a non-azeotropic mixed refrigerant. A first condenser, a gas-liquid separator, a second condenser, and a throttling device. A refrigeration cycle is formed by the first and second evaporators, and the second evaporator
A component containing a large amount of low boiling point refrigerant separated by a gas-liquid separator is introduced into the condenser and the first evaporator, and the fluid to be heated is passed through the second condenser and the first condenser in that order and facing each other in each condenser. A heat pump device in which the fluid to be cooled is supplied to the second evaporator and the first evaporator in order, and heat is exchanged in each evaporator so that the fluid flows counter-currently. (2) The heat pump device according to claim 1, wherein a component containing a large amount of high-boiling refrigerant separated by a gas-liquid separator flows into the second evaporator. (3) The heat pump according to claim 1, wherein the low boiling point components flowing through the first evaporator and the high boiling point components separated and depressurized by the gas-liquid separator are combined and flowed into the second evaporator. Device. (4) The heat pump device according to claim 1, 2, or 3, wherein at least one of the first and second condensers or the first and second evaporators is integrated. (6) The heat pump device according to any one of claims 1 to 4, wherein chlorodifluoromethane and a second fluorocarbon having a boiling point higher than that of chlorodifluoromethane are mixed as a non-azeotropic refrigerant combination.
JP20438181A 1981-12-16 1981-12-16 Heat pump device Pending JPS58104467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20438181A JPS58104467A (en) 1981-12-16 1981-12-16 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20438181A JPS58104467A (en) 1981-12-16 1981-12-16 Heat pump device

Publications (1)

Publication Number Publication Date
JPS58104467A true JPS58104467A (en) 1983-06-21

Family

ID=16489581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20438181A Pending JPS58104467A (en) 1981-12-16 1981-12-16 Heat pump device

Country Status (1)

Country Link
JP (1) JPS58104467A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036845A (en) * 1983-08-10 1985-02-26 株式会社荏原製作所 Refrigerator
JPS6294768A (en) * 1985-10-18 1987-05-01 株式会社デンソー Refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036845A (en) * 1983-08-10 1985-02-26 株式会社荏原製作所 Refrigerator
JPS6294768A (en) * 1985-10-18 1987-05-01 株式会社デンソー Refrigerator

Similar Documents

Publication Publication Date Title
US7032411B2 (en) Integrated dual circuit evaporator
JPH10332212A (en) Refrigeration cycle of air conditioner
JPS63308084A (en) Operation medium mixture
JPS58104467A (en) Heat pump device
JPS58104466A (en) Heat pump device
JPH0192286A (en) Working medium mixture
Kaushik et al. Modeling and simulation studies on single/double-effect absorption cycle using water-multicomponent salt (MCS) mixture
JPH0248782Y2 (en)
JPS63238367A (en) Refrigeration cycle device
JPH1068560A (en) Refrigeration cycle device
JP3785737B2 (en) Refrigeration equipment
JPH0861799A (en) Air conditioner
JPS582564A (en) Composite absorption type refrigerator
JPS6246781B2 (en)
JPH07208822A (en) Heat pump type refrigerating cycle
JPS59117580A (en) Refrigerant composition
KR100302581B1 (en) Refrigeration cycle apparatus for refrigerant mixtures
JPS59115945A (en) Heat pump device
JPH01139683A (en) Working medium mixture
JPS59117579A (en) Refrigerant composition
JPS59153074A (en) Refrigeration cycle device
JPS61285350A (en) Method of adjusting composition ratio of mixed refrigerant in heat pump
JPH03260557A (en) Binary refrigerating plant
JP2000088371A (en) Heat pump device using non-azeotrope refrigerant
JPS586376A (en) Absorption type air conditioner