JPH0248782Y2 - - Google Patents

Info

Publication number
JPH0248782Y2
JPH0248782Y2 JP4219684U JP4219684U JPH0248782Y2 JP H0248782 Y2 JPH0248782 Y2 JP H0248782Y2 JP 4219684 U JP4219684 U JP 4219684U JP 4219684 U JP4219684 U JP 4219684U JP H0248782 Y2 JPH0248782 Y2 JP H0248782Y2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
evaporator
gas
azeotropic mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4219684U
Other languages
Japanese (ja)
Other versions
JPS60155864U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4219684U priority Critical patent/JPS60155864U/en
Publication of JPS60155864U publication Critical patent/JPS60155864U/en
Application granted granted Critical
Publication of JPH0248782Y2 publication Critical patent/JPH0248782Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、冷媒自然循環サイクルを利用して空
気冷却を行う自然循環式冷却装置に関するもので
ある。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a natural circulation type cooling device that performs air cooling using a refrigerant natural circulation cycle.

(従来の技術) この種冷却装置において、冷却能力の制御を行
う場合、循環冷媒の流量を流量制御弁を用いて制
御する冷媒流量制御方式(例えば、特開昭48−
101640号報参照)あるいはフアン回転数を制御す
る風量制御方式(例えば、実開昭49−40043号公
報参照)等が採用されているが、いずれも、制御
弁や制御回路を必要とするため、装置が複雑化
し、信頼性も低下する。特に、電子機器室等のよ
うに塵埃等の発生をきらう場所に使用するものに
おいては、故障原因となる可動部分を可及的に少
なくする必要がある。
(Prior Art) In this type of cooling device, when controlling the cooling capacity, the refrigerant flow rate control method (for example, Japanese Patent Laid-Open No. 48-1999
101640) or an air volume control method that controls the fan rotation speed (for example, see Utility Model Application Publication No. 49-40043), but both require control valves and control circuits. This increases the complexity of the device and reduces its reliability. Particularly in devices that are used in places where dust and the like should not be generated, such as electronic equipment rooms, it is necessary to minimize the number of movable parts that can cause failures.

(考案の目的) 本考案は、上記問題点に鑑みてなされたもの
で、自然循環式冷却装置における循環冷媒とし
て、非共沸混合冷媒を使用し、該非共沸混合冷媒
の露点温度が設定空気温度より若干低くなるよう
にして、該設定空気温度以下に室内空気温度がな
つた時には冷却能力を可及的に小さくなし得るよ
うにし、以つて冷却能力制御を行わんとすること
を目的としている。
(Purpose of the invention) The present invention was made in view of the above problems, and uses a non-azeotropic mixed refrigerant as a circulating refrigerant in a natural circulation type cooling device, and uses a non-azeotropic mixed refrigerant whose dew point temperature is lower than the set air temperature. The purpose is to control the cooling capacity by setting the temperature to be slightly lower than the set air temperature so that when the indoor air temperature falls below the set air temperature, the cooling capacity can be reduced as much as possible. .

(考案の構成) 本考案は、高位にある凝縮器と低位にある蒸発
器とを液管およびガス管で連結して冷媒自然循環
回路を形成するとともに、該冷媒自然循環回路
に、非共沸混合冷媒を装置の運転圧力の下でその
露点温度が冷却対象空気の設定温度より若干低く
なるように封入し、且つ前記蒸発器の出口側とな
るガス管側に気液分離機構を設けたことを特徴と
し、このことにより、設定空気温度以下において
冷却能力を急激に低減せしめ、以つて冷却能力制
御を行わんとしているのである。
(Structure of the invention) The present invention connects a condenser located at a higher level and an evaporator located at a lower level through a liquid pipe and a gas pipe to form a refrigerant natural circulation circuit, and also includes a non-azeotropic A mixed refrigerant is sealed so that its dew point temperature is slightly lower than the set temperature of the air to be cooled under the operating pressure of the device, and a gas-liquid separation mechanism is provided on the gas pipe side that is the outlet side of the evaporator. As a result, the cooling capacity is rapidly reduced below the set air temperature, thereby controlling the cooling capacity.

(実施例) 以下、添付の図面を参照して、本考案の実施例
にかかる自然循環式冷却装置を説明する。
(Example) Hereinafter, a natural circulation type cooling device according to an example of the present invention will be described with reference to the accompanying drawings.

この冷却装置は、室外側の凝縮器1と、室内側
の蒸発器2,2と、両者を循環的に連絡する液管
3およびガス管4と、気液分離機構として作用す
る気液分離器5とからなつており、凝縮器1を蒸
発器2,2に対し高位置に配置するとともに、凝
縮器1と蒸発器2,2の各下部接続口間を液管3
で、又各上部接続口間をガス管4でそれぞれ連絡
させて重力に抗しない冷媒の自然流通が可能な如
く構成し且つ前記ガス管4において蒸発器2,2
の出口側に気液分離器5を介設して冷媒自然循環
回路6を構成している。なお、第2図図示の如
く、気液分離器5を特別に設けることなくガス管
4を適当に太くして気液分離機能をもたせるよう
にしてもよい。
This cooling device consists of a condenser 1 on the outdoor side, evaporators 2 and 2 on the indoor side, a liquid pipe 3 and a gas pipe 4 that cyclically connect the two, and a gas-liquid separator that acts as a gas-liquid separation mechanism. The condenser 1 is located at a higher position than the evaporators 2, 2, and a liquid pipe 3 is connected between the lower connection ports of the condenser 1 and the evaporators 2, 2.
The upper connection ports are connected by gas pipes 4 to allow natural flow of the refrigerant without resisting gravity, and the gas pipes 4 are connected to the evaporators 2 and 2.
A refrigerant natural circulation circuit 6 is constructed by interposing a gas-liquid separator 5 on the outlet side of the refrigerant. Incidentally, as shown in FIG. 2, the gas pipe 4 may be appropriately thickened to have a gas-liquid separation function without providing a special gas-liquid separator 5.

しかして、前記冷媒自然循環回路6には、非共
沸混合冷媒(例えば、R22とR12、R22と
R11、あるいはR22とR114等)が循環せ
しめられるが、該非共沸混合冷媒における混合比
(即ち、低沸点冷媒と高沸点冷媒との混合比)x
および冷媒自然循環回路6内の圧力は、該非共沸
混合冷媒の露点温度が冷却対象空気(即ち、室内
空気)の設定温度より若干低くなるように圧力を
コントロールして設定されている。符号7は冷媒
冷却装置である。
Therefore, although a non-azeotropic mixed refrigerant (for example, R22 and R12, R22 and R11, or R22 and R114, etc.) is circulated in the refrigerant natural circulation circuit 6, the mixing ratio of the non-azeotropic mixed refrigerant (i.e. , mixing ratio of low boiling point refrigerant and high boiling point refrigerant) x
The pressure in the refrigerant natural circulation circuit 6 is set by controlling the pressure so that the dew point temperature of the non-azeotropic mixed refrigerant is slightly lower than the set temperature of the air to be cooled (ie, indoor air). Reference numeral 7 is a refrigerant cooling device.

この自然循環式冷却装置は、次のように作用す
る。
This natural circulation type cooling device works as follows.

自然循環式冷却装置内において、非共沸混合冷
媒は、凝縮器1での放熱により液化された後、重
力にしたがつて液管3を蒸発器2,2側に流下
し、該蒸発器2,2にて室内空気と熱交換して室
内空気を冷却し、同時に自らは吸熱して蒸発ガス
化してガス管4を経て凝縮器1へ還流する。この
時、各気液分離器5には、各蒸発器2にて未蒸発
の冷媒液が貯溜される。
In the natural circulation type cooling device, the non-azeotropic mixed refrigerant is liquefied by heat radiation in the condenser 1, and then flows down the liquid pipe 3 toward the evaporators 2 and 2 according to gravity, and flows into the evaporator 2. , 2 to cool the indoor air by exchanging heat with the indoor air, and at the same time absorbs heat, evaporates into gas, and returns to the condenser 1 via the gas pipe 4. At this time, the refrigerant liquid that has not been evaporated in each evaporator 2 is stored in each gas-liquid separator 5 .

次に、蒸発器2における非共沸混合冷媒の状態
変化を第3図図示の濃度線図を参照して更に詳述
する。
Next, the state change of the non-azeotropic mixed refrigerant in the evaporator 2 will be described in further detail with reference to the concentration diagram shown in FIG.

第3図において、符号Tは温度、xは非共沸混
合冷媒における高沸点冷媒例えば、R12,R1
1,R114等の組成分率をそれぞれ示してお
り、第3図で右端の位置は高沸点冷媒例えば、R
12,R11,R114等だけの場合を示し、左
端の位置は低沸点冷媒例えば、R22だけの場合
を示している。
In FIG. 3, the symbol T is the temperature, and x is a high boiling point refrigerant in a non-azeotropic mixed refrigerant, for example, R12, R1
1, R114, etc., and the rightmost position in Figure 3 shows high boiling point refrigerants such as R114.
12, R11, R114, etc. are shown, and the leftmost position shows a case where only a low boiling point refrigerant such as R22 is used.

これによれば、組成x1の非共沸混合冷媒は、蒸
発開始点温度T1から蒸発終了点温度T2(換言すれ
ば、露点温度)まで蒸発器2内で温度変化する。
この冷媒の蒸発潜熱により空気が冷却される訳で
あるが、この時の冷却能力q[kcal/h]は、次
式のように表される。
According to this, the temperature of the non-azeotropic mixed refrigerant having the composition x 1 changes in the evaporator 2 from the evaporation start point temperature T 1 to the evaporation end point temperature T 2 (in other words, the dew point temperature).
The air is cooled by the latent heat of vaporization of the refrigerant, and the cooling capacity q [kcal/h] at this time is expressed as in the following equation.

q=Cp・G・E・ΔT1 (1) ここで、Cp:空気比熱[kcal/Kg℃]、G:空
気流量[Kg/h]、又、EおよびΔT1は、それぞ
れ蒸発器2の温度効率[−]および吸込空気温度
Ta1[℃]と冷媒温度Tr[℃]との温度差で、そ
れぞれ次式で表される。
q=Cp・G・E・ΔT 1 (1) Here, Cp: Air specific heat [kcal/Kg°C], G: Air flow rate [Kg/h], and E and ΔT 1 are the respective values of the evaporator 2. Temperature efficiency [-] and suction air temperature
The temperature difference between Ta 1 [℃] and the refrigerant temperature Tr [℃], each expressed by the following formula.

E=(Ta1−Ta2)/(Ta1−Tr) (2) ΔT1=Ta1−Tr (3) ここに、Ta2は吹出空気温度[℃]である。 E=(Ta 1 −Ta 2 )/(Ta 1 −Tr) (2) ΔT 1 =Ta 1 −Tr (3) Here, Ta 2 is the blowing air temperature [° C.].

そして、単一冷媒の場合は、冷媒温度Trは一
定で、前記(1),(2),(3)式より、結局 q=Cp・G・E・(Ta1−Tr) (4) となるが、非共沸混合冷媒の場合には、前述のよ
うに蒸発過程において冷媒温度TrがT1からT2
で変化するため、吸込空気温度Ta1との温度差が
変化することとなり、前記式(3)におけるΔTが伝
熱管位置により変化することとなる。このこと
は、第5図(非共沸混合冷媒を用いた場合におけ
る空気温度Ta1,Ta2および冷媒温度Trの伝熱管
位置による変化を示す特性図)および第6図(単
一冷媒を用いた場合における空気温度Ta1,Ta2
および冷媒温度Trの伝熱管位置による変化を示
す特性図)からも明らかであろう。
In the case of a single refrigerant, the refrigerant temperature Tr is constant, and from equations (1), (2), and (3) above, q=Cp・G・E・(Ta 1 −Tr) (4) However, in the case of a non-azeotropic mixed refrigerant, the refrigerant temperature Tr changes from T 1 to T 2 during the evaporation process as described above, so the temperature difference with the suction air temperature Ta 1 changes, and the above-mentioned ΔT in equation (3) changes depending on the position of the heat exchanger tube. This is shown in Figure 5 (characteristic diagram showing changes in air temperatures Ta 1 and Ta 2 and refrigerant temperature Tr depending on the heat transfer tube position when using a non-azeotropic mixed refrigerant) and Figure 6 (when using a single refrigerant). Air temperature Ta 1 , Ta 2 when
This is also clear from the characteristic diagram showing the change in refrigerant temperature Tr depending on the position of the heat transfer tube).

さて、非共沸混合冷媒で、冷媒温度Trが冷媒
のエンタルピーに対し直線状に変化する場合に
は、前記式(3)における吸込空気温度Ta1と冷媒温
度Trとの温度差ΔT1として、対数平均温度差を
用いればよいので、 ΔT=(Ta1−T1)−(Ta1−T2)/lnTa1−T1/Ta1−T
2 =T2−T1/lnTa1−T1/Ta1−T2 (5) となり、これと式(1)とから、冷却能力qは、次式
で表されることとなる。
Now, when the refrigerant temperature Tr changes linearly with the enthalpy of the refrigerant in a non-azeotropic mixed refrigerant, the temperature difference ΔT 1 between the suction air temperature Ta 1 and the refrigerant temperature Tr in the above equation (3) is expressed as: Since it is sufficient to use the logarithmic average temperature difference, ΔT=(Ta 1 −T 1 )−(Ta 1 −T 2 )/lnTa 1 −T 1 /Ta 1 −T
2 = T 2 −T 1 /lnTa 1 −T 1 /Ta 1 −T 2 (5) From this and equation (1), the cooling capacity q is expressed by the following equation.

q=Cp・G・E・T2−T1/lnTa1−T1/Ta1−T2 (6) 例えば、非共沸混合冷媒として、R22(低沸
点冷媒)とR114(高沸点冷媒)とを、重量比
で20%と80%の割合で混合したものを用いると、
この非共沸混合冷媒の蒸発圧力−エンタルピー線
図は、第7図のようになり、冷媒冷却装置7の冷
却温度を変化させて冷媒圧力を3Kg/cm・absと
なるように圧力をコントロールして用いると、蒸
発器2の入口での蒸発開始点温度T1は6℃、蒸
発終了点温度T2(換言すれば、露点温度)は24℃
となり、前記式(5)から、吸込空気温度Ta1と冷媒
温度Trとの入口平均温度差ΔT1は、吸込空気温
度Ta1を27℃とすると、 ΔT1=24−6/ln27−6/27−24=9.3 となる。ところが、吸込空気温度Ta1が低下し、
例えば、Ta1=25℃となると、 ΔT1=24−6/ln25−6/25−24=6.5 となる。そして、吸込空気温度Ta1がさらに低下
し、蒸発終了点温度T2(=24℃)に近付くにつれ
て、急に温度差ΔT1が低下し、Ta1=24℃で零に
なるような特性が得られる(第4図実線図示参
照)。
q=Cp・G・E・T 2 −T 1 /lnTa 1 −T 1 /Ta 1 −T 2 (6) For example, as a non-azeotropic mixed refrigerant, R22 (low boiling point refrigerant) and R114 (high boiling point refrigerant) When using a mixture of 20% and 80% by weight,
The evaporation pressure-enthalpy diagram of this non-azeotropic mixed refrigerant is as shown in Fig. 7, and the pressure is controlled so that the refrigerant pressure becomes 3 kg/cm・abs by changing the cooling temperature of the refrigerant cooling device 7. In this case, the evaporation start point temperature T 1 at the inlet of the evaporator 2 is 6°C, and the evaporation end point temperature T 2 (in other words, the dew point temperature) is 24°C.
From the above formula (5), the average inlet temperature difference ΔT 1 between the suction air temperature Ta 1 and the refrigerant temperature Tr is, assuming that the suction air temperature Ta 1 is 27°C, ΔT 1 = 24-6/ln27-6/ 27−24=9.3. However, the suction air temperature Ta 1 decreases,
For example, when Ta 1 =25°C, ΔT 1 =24-6/ln25-6/25-24=6.5. Then, as the suction air temperature Ta 1 further decreases and approaches the evaporation end point temperature T 2 (=24℃), the temperature difference ΔT 1 suddenly decreases and becomes zero at Ta 1 = 24℃. (See the solid line diagram in FIG. 4).

一方、同じ性能の蒸発器を単一の冷媒で使用す
る際に、例えば、吸込空気温度Ta1=27℃で同一
能力を得ようとすると、入口平均温度差ΔT1
9.3℃で用いればよいので、冷媒温度Trは、 Tr=Ta1−ΔT1=27−9.3=17.7 となり、吸込空気温度Ta1が17.7℃に低下するま
で直線的に冷却能力が低下することとなる(第4
図点線図示参照)。
On the other hand, when using evaporators with the same performance with a single refrigerant, for example, if you try to obtain the same capacity at a suction air temperature Ta 1 = 27°C, the average inlet temperature difference ΔT 1 =
Since it is sufficient to use the refrigerant at 9.3℃, the refrigerant temperature Tr is Tr=Ta 1 −ΔT 1 =27−9.3=17.7, and the cooling capacity decreases linearly until the suction air temperature Ta 1 drops to 17.7℃. Become (4th
(See the dotted line diagram in the figure).

従つて、第8図図示のように、吸込空気温度
Ta1が設定点=27℃で同一の能力を持つ単一冷媒
の場合と非共沸混合冷媒の場合とを比較すると、
吸込空気温度Ta1の低下で急激に冷却能力が低下
する特性を持つため、例えば、負荷が第8図のa
線からb線に低下すると、非共沸混合冷媒の場合
には、点b2でバランスすることとなつて、室温低
下が少なくなる。
Therefore, as shown in Figure 8, the intake air temperature
Comparing the case of a single refrigerant with the same capacity and the case of a non-azeotropic refrigerant mixture with Ta 1 set point = 27 °C,
Since the cooling capacity rapidly decreases with a decrease in the suction air temperature Ta 1 , for example, if the load is
When the temperature decreases from line b to line b, in the case of a non-azeotropic mixed refrigerant, the temperature is balanced at point b 2 and the room temperature decreases less.

これに対して、単一冷媒の場合には、点b1でバ
ランスすることとなつて、室温低下が大きくな
る。特に、室温に対して変化の大きい負荷(b′線
で示す)の場合には、点b1′でバランスすること
となつて、更に室温低下が大きくなる。このた
め、単一冷媒の場合には、冷媒流量制御弁等の特
別な冷却能力制御装置を用いるか、あるいは、第
9図鎖線図示の如く、蒸発温度を高くし(即ち、
蒸発器を大型化し)て対応する必要がある。
On the other hand, in the case of a single refrigerant, the temperature is balanced at point b1 and the room temperature decreases significantly. In particular, in the case of a load that changes significantly with respect to room temperature (as shown by line b'), the load is balanced at point b 1 ', and the drop in room temperature becomes even greater. For this reason, in the case of a single refrigerant, a special cooling capacity control device such as a refrigerant flow control valve is used, or the evaporation temperature is increased (i.e., as shown by the chain line in FIG. 9).
It is necessary to increase the size of the evaporator).

以上述べてきた如く、非共沸混合冷媒を用いる
ことにより、蒸発器2に室温制御上の好ましい特
性を与えることができることとなつているのであ
る。上記したように、吸込空気温度Ta1が冷媒の
露点温度T2に近付くにつれて冷却能力qが急激
に低下する特性は、冷媒を完全蒸発させるに必要
な温度差が蒸発器2の出口側でとれなくなるため
であるが、もし、蒸発器2の出口側が直接ガス管
4に接続され、未蒸発の液冷媒がガス管4を冷媒
ガスとともに凝縮器1に戻るような場合は、吸込
空気温度Ta1が冷媒の露点温度T2になつても冷却
能力qが完全に零にならず、効果が薄れることに
なる。そこで、本実施例では、蒸発器2の出口側
となるガス管4に気液分離器5を設けて、上記の
ようにして未蒸発の液冷媒が凝縮器1へ還流され
ることを防止し、吸込空気温度Ta1が冷媒の露点
温度T2になつた時には、冷却能力qが完全に零
になるようにしているのである。
As described above, by using a non-azeotropic mixed refrigerant, it is possible to provide the evaporator 2 with favorable characteristics in terms of room temperature control. As mentioned above, the characteristic that the cooling capacity q rapidly decreases as the suction air temperature Ta 1 approaches the dew point temperature T 2 of the refrigerant is due to the fact that the temperature difference required to completely evaporate the refrigerant cannot be created on the exit side of the evaporator 2. However, if the outlet side of the evaporator 2 is directly connected to the gas pipe 4 and the unevaporated liquid refrigerant returns to the condenser 1 along with the refrigerant gas through the gas pipe 4, the suction air temperature Ta 1 Even when the temperature reaches the dew point temperature T 2 of the refrigerant, the cooling capacity q does not become completely zero, and the effect becomes weaker. Therefore, in this embodiment, a gas-liquid separator 5 is provided in the gas pipe 4 on the outlet side of the evaporator 2 to prevent unevaporated liquid refrigerant from flowing back to the condenser 1 as described above. When the suction air temperature Ta 1 reaches the dew point temperature T 2 of the refrigerant, the cooling capacity q becomes completely zero.

なお、非共沸混合冷媒としては、露点温度T2
が適当に設定できれば、どんな冷媒でもよいが、
温度−エンタルピー曲線がガス側で大きく変化す
るような混合であれば、有効温度差が前記式(1)で
示される温度差よりも大きくとれるので好まし
い。
In addition, as a non-azeotropic mixed refrigerant, the dew point temperature T 2
Any refrigerant may be used as long as it can be set appropriately, but
A mixture in which the temperature-enthalpy curve changes significantly on the gas side is preferable because the effective temperature difference can be larger than the temperature difference shown by the above formula (1).

(考案の効果) 本考案によれば、冷媒自然循環式の冷却装置に
おいて、循環冷媒として非共沸混合冷媒を用い、
非共沸混合冷媒の露点温度が冷却対象空気の設定
温度より若干低くなるような混合比および圧力に
て使用し、蒸発器出口部で気液分離できる構造と
して、設定温度以下にて蒸発器の冷却能力が急激
に低下するようにしたので、特別な冷却能力制御
装置を設けることなく、冷却能力調整が可能とな
り、装置の単純化および信頼性の向上を図り得る
という実用的な効果がある。
(Effects of the invention) According to the invention, in a natural refrigerant circulation type cooling device, a non-azeotropic mixed refrigerant is used as the circulating refrigerant,
The non-azeotropic mixed refrigerant is used at a mixing ratio and pressure that makes the dew point temperature slightly lower than the set temperature of the air to be cooled, and has a structure that allows gas and liquid separation at the evaporator outlet. Since the cooling capacity is made to decrease rapidly, the cooling capacity can be adjusted without providing a special cooling capacity control device, and there is a practical effect that the apparatus can be simplified and reliability can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例にかかる自然循環式冷
却装置の系統図、第2図は本考案の他の実施例に
かかる自然循環式冷却装置の要部系統図、第3図
は第1図の冷却装置における蒸発器での冷媒の状
態変化を説明するための濃度線図、第4図は第1
図の冷却装置を用いた場合における吸込空気温度
に対する冷却能力の変化を示す特性図、第5図は
非共沸混合冷媒を用いた場合における空気温度お
よび冷媒温度の伝熱管位置による変化を示す特性
図、第6図は単一冷媒を用いた場合における空気
温度および冷媒温度の伝熱管位置による変化を示
す特性図、第7図はR22とR114とを重量比
で20%および80%で混合して得られた非共沸混合
冷媒を用いた場合の蒸発圧力−エンタルピー線
図、第8図はR22(20wt%)とR114
(80wt%)との非共沸混合冷媒を用いた場合と単
一冷媒を用いた場合とにおける吸込空気温度に対
する冷却能力の変化を示す特性図、第9図は第8
図における単一冷媒を用いた場合を修正した時の
状態を示す特性図である。 1……凝縮器、2……蒸発器、3……液管、4
……ガス管、5……気液分離機構、6……冷媒自
然循環回路。
FIG. 1 is a system diagram of a natural circulation cooling device according to an embodiment of the present invention, FIG. 2 is a system diagram of main parts of a natural circulation cooling device according to another embodiment of the present invention, and FIG. Figure 4 is a concentration diagram for explaining the state change of refrigerant in the evaporator of the cooling device shown in Figure 1.
Figure 5 is a characteristic diagram showing the change in cooling capacity with respect to the intake air temperature when using the cooling device shown in Figure 5. Figure 5 is a characteristic diagram showing the change in air temperature and refrigerant temperature depending on the position of the heat transfer tube when a non-azeotropic mixed refrigerant is used. Figure 6 is a characteristic diagram showing the changes in air temperature and refrigerant temperature depending on the heat transfer tube position when a single refrigerant is used, and Figure 7 is a characteristic diagram showing the changes in air temperature and refrigerant temperature depending on the position of the heat transfer tube when a single refrigerant is used. The evaporation pressure-enthalpy diagram when using the non-azeotropic mixed refrigerant obtained in Figure 8 shows R22 (20wt%) and R114.
Figure 9 is a characteristic diagram showing the change in cooling capacity with respect to the suction air temperature in the case of using a non-azeotropic mixed refrigerant with (80wt%) and the case of using a single refrigerant.
It is a characteristic diagram which shows the state when the case where a single refrigerant|coolant is used in the figure is corrected. 1... Condenser, 2... Evaporator, 3... Liquid pipe, 4
... Gas pipe, 5 ... Gas-liquid separation mechanism, 6 ... Refrigerant natural circulation circuit.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 高位にある凝縮器1と低位にある蒸発器2とを
液管3およびガス管4で連結して冷媒自然循環回
路6を形成するとともに、該冷媒自然循環回路6
には、非共沸混合冷媒を装置の運転圧力の下でそ
の露点温度が冷却対象空気の設定温度より若干低
くなるように封入し、且つ前記蒸発器2の出側と
なるガス管4側には気液分離機構5を設けたこと
を特徴とする自然循環式冷却装置。
A condenser 1 located at a high level and an evaporator 2 located at a low level are connected by a liquid pipe 3 and a gas pipe 4 to form a refrigerant natural circulation circuit 6.
, a non-azeotropic mixed refrigerant is sealed under the operating pressure of the device so that its dew point temperature is slightly lower than the set temperature of the air to be cooled, and is placed on the gas pipe 4 side which is the outlet side of the evaporator 2. is a natural circulation type cooling device characterized by being provided with a gas-liquid separation mechanism 5.
JP4219684U 1984-03-23 1984-03-23 Natural circulation cooling system Granted JPS60155864U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4219684U JPS60155864U (en) 1984-03-23 1984-03-23 Natural circulation cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4219684U JPS60155864U (en) 1984-03-23 1984-03-23 Natural circulation cooling system

Publications (2)

Publication Number Publication Date
JPS60155864U JPS60155864U (en) 1985-10-17
JPH0248782Y2 true JPH0248782Y2 (en) 1990-12-20

Family

ID=30552721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4219684U Granted JPS60155864U (en) 1984-03-23 1984-03-23 Natural circulation cooling system

Country Status (1)

Country Link
JP (1) JPS60155864U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724163B2 (en) * 1987-02-07 1995-03-15 東京電力株式会社 Forced cooling cable
JP7047899B2 (en) * 2018-03-29 2022-04-05 日本電気株式会社 Heat exchanger, heat exchange method, and air conditioning system

Also Published As

Publication number Publication date
JPS60155864U (en) 1985-10-17

Similar Documents

Publication Publication Date Title
JP2592625B2 (en) Heat absorbing device and method
WO2003095906A1 (en) Thermo siphon chiller refrigerator for use in cold district
JPS61119954A (en) Absorption heat pump/refrigeration system
JP4885481B2 (en) Cooling device operation method
US4809521A (en) Low pressure ratio high efficiency cooling system
CA2426526C (en) Phase-change heat transfer coupling for aqua-ammonia absorption systems
JP2003021429A (en) Absorption cooling system
JPH0248782Y2 (en)
US20230056774A1 (en) Sub-cooling a refrigerant in an air conditioning system
JP4112090B2 (en) Heat pump equipment
JPH06272978A (en) Air conditioner
JPH07269971A (en) Air conditioner
JPS58104466A (en) Heat pump device
JP2580275B2 (en) Air conditioning system using absorption refrigerator
JPS5862469A (en) Heat pump type refrigerator
JPH06307725A (en) Air conditioner
JP3281438B2 (en) Air conditioner
JP3785737B2 (en) Refrigeration equipment
SU1634950A1 (en) Self-contained air conditioner
JP3202157B2 (en) Air conditioner
JP3159038B2 (en) Absorption heat pump
JP2627990B2 (en) Heat transport system
JP3354244B2 (en) Refrigeration equipment
WO2024077206A1 (en) Free-cooling system suitable for chillers
JPS58104467A (en) Heat pump device