JP2627990B2 - Heat transport system - Google Patents

Heat transport system

Info

Publication number
JP2627990B2
JP2627990B2 JP33050291A JP33050291A JP2627990B2 JP 2627990 B2 JP2627990 B2 JP 2627990B2 JP 33050291 A JP33050291 A JP 33050291A JP 33050291 A JP33050291 A JP 33050291A JP 2627990 B2 JP2627990 B2 JP 2627990B2
Authority
JP
Japan
Prior art keywords
water
heat
heat transport
thermoreversible
absorbing polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33050291A
Other languages
Japanese (ja)
Other versions
JPH05164424A (en
Inventor
晃徳 長松谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP33050291A priority Critical patent/JP2627990B2/en
Publication of JPH05164424A publication Critical patent/JPH05164424A/en
Application granted granted Critical
Publication of JP2627990B2 publication Critical patent/JP2627990B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は冷暖房装置の熱輸送シス
テムに係り、詳しくは熱輸送媒体として熱可逆型吸水性
高分子を含有する水溶液を用いて、その循環量を減少さ
せることができる熱輸送システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer system for a cooling and heating apparatus, and more particularly, to a heat transfer system using an aqueous solution containing a thermoreversible water-absorbing polymer as a heat transfer medium and capable of reducing the amount of circulation. Regarding transportation systems.

【0002】[0002]

【従来の技術】従来の吸収冷凍機は、主として水を冷媒
とし臭化リチウムを吸収剤として冷温水を発生させ、室
内空調機へ冷温水ポンプによる熱輸送手段で循環させて
冷暖房を行っている。即ち、図2に示されるように、吸
収冷凍機Sは冷房用冷却器Dと冷暖房用熱源1とを備
え、冷温水を発生させて室内空調機Rへ冷温水ポンプP
を用いて循環させている。そして、熱輸送媒体としての
冷温水は主として水であった。
2. Description of the Related Art Conventional absorption refrigerators perform cooling and heating by generating cold and hot water mainly using water as a refrigerant and lithium bromide as an absorbent, and circulating them to an indoor air conditioner by means of heat transport using a cold and hot water pump. . That is, as shown in FIG. 2, the absorption refrigerator S includes a cooling cooler D and a cooling and heating heat source 1, generates cold and hot water, and sends a cold and hot water pump P to the indoor air conditioner R.
It is circulated using. And cold and hot water as a heat transport medium was mainly water.

【0003】また、熱輸送媒体としての水に替わるもの
として、本出願人は特開平1−247968号、実開平
2−52062号に示されるフロンを提案している。
As an alternative to water as a heat transport medium, the present applicant has proposed CFCs disclosed in JP-A-1-247968 and JP-A-2-52062.

【0004】[0004]

【発明が解決しようとする課題】吸収冷凍機や吸収ヒー
トパイプの熱輸送回路(冷温水回路)の熱輸送媒体とし
て水を用いた場合、溶液の循環量が多いことや循環ポン
プの吐出圧が大きくなることから、冷温水ポンプの電気
消費量によるランニングコストが大きくなる欠点があっ
た。また、冷温水の熱の授受が顕熱のみによって変化す
るので熱輸送回路(冷温水回路)の配管が太くなって、
工事のイニシャルコストが高くなるという欠点もあっ
た。一方では、冷房時、室内空調機に導く冷水の温度は
7℃程度の低温が一般的であるが、この時の吸収冷凍機
の蒸発器における冷媒蒸発の温度は約5℃である。吸収
冷凍機は冷凍運転特性上冷水の温度が高い状態で運転さ
れることが望ましいが、このような低温で運転すること
は成績係数が低下し、ランニングコストの増大をまねく
欠点があった。
When water is used as a heat transport medium of a heat transport circuit (cooling / hot water circuit) of an absorption refrigerator or an absorption heat pipe, the circulation amount of the solution is large and the discharge pressure of the circulation pump is low. As a result, the running cost is increased due to the electricity consumption of the cold / hot water pump. Also, since the transfer of heat of cold and hot water changes only by sensible heat, the piping of the heat transport circuit (cooling and hot water circuit) becomes thicker,
There was also a disadvantage that the initial cost of the construction was high. On the other hand, during cooling, the temperature of cold water guided to the indoor air conditioner is generally as low as about 7 ° C., but the temperature of refrigerant evaporation in the evaporator of the absorption refrigerator at this time is about 5 ° C. It is desirable that the absorption refrigerator be operated in a state where the temperature of the chilled water is high in view of the refrigeration operation characteristics. However, operating at such a low temperature has a disadvantage that the coefficient of performance is reduced and the running cost is increased.

【0005】また、熱輸送回路(冷温水回路)の熱輸送
媒体としてフロンを用いた場合、フロン媒体を設定温度
で液体あるいは蒸気で循環させるので、そのときの循環
量や圧縮比率を満足させる循環用ポンプおよび圧縮機が
必要となり、また暖房時には冷房時よりも媒体温度が高
くなるため、さらに高圧の圧縮機が必要となる。そし
て、気相液相の相変化により体積の変化率が大きいので
膨張手段が必要となる。これらの結果、コストが高くな
るという欠点がある。また、暖房時にヒートサイフォン
方式を採用した場合、媒体の流れから室内空調機と吸収
冷凍機の位置が限定される(室内空調機は吸収冷凍機よ
りも上方に設置されなければならない)。しかも、フロ
ンはオゾン層を破壊するなどの環境問題もある。
When chlorofluorocarbon is used as a heat transport medium in a heat transport circuit (cooled / hot water circuit), the chlorofluorocarbon medium is circulated with a liquid or vapor at a set temperature. A pump and a compressor are required, and the medium temperature during heating is higher than during cooling, so a higher-pressure compressor is required. Since the rate of change in volume is large due to the phase change of the gas phase and the liquid phase, expansion means is required. As a result, there is a disadvantage that the cost is increased. Further, when the heat siphon system is employed for heating, the positions of the indoor air conditioner and the absorption refrigerator are limited by the flow of the medium (the indoor air conditioner must be installed above the absorption refrigerator). Moreover, CFCs have environmental problems such as destruction of the ozone layer.

【0006】従って、本発明の目的はこれら問題点を解
消し、熱輸送回路(冷温水回路)の熱輸送媒体として熱
可逆型吸水性高分子を含有する水溶液を循環させること
により、その循環量を減少させ、循環用ポンプの負荷を
少なくして、吸収冷凍機本体の所要動力を低減すること
のできる熱輸送システムを提供することにある。
Accordingly, an object of the present invention is to solve these problems and to circulate an aqueous solution containing a thermoreversible water-absorbing polymer as a heat transport medium of a heat transport circuit (cold / hot water circuit), thereby circulating the aqueous solution. It is an object of the present invention to provide a heat transport system capable of reducing the load on a circulation pump and reducing the required power of an absorption refrigerator main body.

【0007】[0007]

【課題を解決するための手段】上記の本発明の目的は、
熱輸送システムを以下の構成としたことから達成され
る。即ち、熱輸送回路の中に、冷房時の冷水温度付近に
転移温度を有する熱可逆型吸水性高分子Aと、暖房時の
温水温度付近に転移温度を有する熱可逆型吸水性高分子
Bとを含有する水溶液を循環させること、そして、この
熱輸送回路が吸収冷凍機の蒸発器と冷暖房用の室内空調
機の間に設けられていることを特徴とする。
SUMMARY OF THE INVENTION The object of the present invention is as follows.
This is achieved by the heat transport system having the following configuration. That is, in the heat transport circuit, a thermoreversible water-absorbing polymer A having a transition temperature near the cold water temperature during cooling, and a thermoreversible water-absorbing polymer B having a transition temperature near the warm water temperature during heating. And a heat transport circuit is provided between the evaporator of the absorption refrigerator and the indoor air conditioner for cooling and heating.

【0008】[0008]

【作用】本発明は熱輸送回路(冷温水回路)の熱輸送媒
体として熱可逆型吸水性高分子を含有する水溶液を循環
させることにより熱輸送を行う。この熱可逆型吸水性高
分子は転移温度以上で水から分離し、その温度以下では
水を吸着し溶解する。このとき、水からの分離作用のと
きは吸熱反応であり、吸水(吸着)作用のときは発熱反
応である。熱輸送回路(冷温水回路)の中に、冷房時の
冷水温度付近に転移温度を有する熱可逆型吸水性高分子
Aと、暖房時の温水温度付近に転移温度を有する熱可逆
型吸水性高分子Bとを含有する水溶液を循環させる。す
ると、冷房時には、熱可逆型吸水性高分子Aが吸収冷凍
機の蒸発器で冷却され、水溶液に溶解し、室内空調機に
輸送される。このとき熱可逆型吸水性高分子Bは転移温
度以下であるので当然水溶液に溶解している。室内空調
機に輸送された水溶液は、室内から熱を奪い熱可逆型吸
水性高分子Aの転移温度以上となって、熱可逆型吸水性
高分子Aは水から分離し、熱を吸着しつつ懸濁状態とな
って蒸発器に循環する。このとき熱可逆型吸水性高分子
Bの転移温度はより高温側にあるので、熱可逆型吸水性
高分子Bは水溶液として熱輸送回路(冷温水回路)内を
循環している。次に、暖房時には、熱輸送回路(冷温水
回路)内の水溶液の温度は高温になっており、熱可逆型
吸水性高分子Aはその転移温度以上となっていることか
ら、この高温では完全に懸濁状態となっている。しか
し、熱可逆型吸水性高分子Bは転移温度がこの高温状態
の付近にあるため、吸収冷凍機の蒸発器で加熱され水か
ら分離して懸濁状態となって室内空調機に入る。ここで
室内にて熱を放出して転移温度以下になった水溶液に、
熱可逆型吸水性高分子Bは溶解しつつ発熱して室内の暖
房を行う。このように本発明では、熱可逆型吸水性高分
子の相転移の際の吸熱および発熱(潜熱)を利用してい
るので、より効率的な熱輸送が可能である。
According to the present invention, heat is transported by circulating an aqueous solution containing a thermoreversible water-absorbing polymer as a heat transport medium of a heat transport circuit (cooling / heating water circuit). The thermoreversible water-absorbing polymer separates from water at a transition temperature or higher, and adsorbs and dissolves water at a temperature lower than the transition temperature. At this time, an endothermic reaction occurs when the water is separated from water, and an exothermic reaction occurs when the water is absorbed (adsorbed). In the heat transport circuit (cooling / heating water circuit), a thermoreversible water-absorbing polymer A having a transition temperature near the cooling water temperature during cooling and a thermoreversible water-absorbing polymer having a transition temperature near the warm water temperature during heating. The aqueous solution containing molecule B is circulated. Then, during cooling, the thermoreversible water-absorbent polymer A is cooled by the evaporator of the absorption refrigerator, dissolved in the aqueous solution, and transported to the indoor air conditioner. At this time, since the thermoreversible water-absorbing polymer B has a transition temperature or lower, it is naturally dissolved in the aqueous solution. The aqueous solution transported to the indoor air conditioner draws heat from the room and becomes higher than the transition temperature of the thermoreversible water-absorbing polymer A, and the thermoreversible water-absorbing polymer A separates from water and absorbs heat. It is suspended and circulated to the evaporator. At this time, since the transition temperature of the thermoreversible water-absorbing polymer B is on the higher temperature side, the thermoreversible water-absorbing polymer B is circulating as an aqueous solution in the heat transport circuit (cooling / heating water circuit). Next, at the time of heating, the temperature of the aqueous solution in the heat transport circuit (cold / hot water circuit) is high, and the thermoreversible water-absorbing polymer A is at or above its transition temperature. In a suspended state. However, since the transition temperature of the thermoreversible water-absorbing polymer B is in the vicinity of this high temperature state, it is heated by the evaporator of the absorption refrigerator and separated from water to be in a suspended state and enters the indoor air conditioner. Here, an aqueous solution that releases heat in the room and becomes lower than the transition temperature,
The thermoreversible water-absorbing polymer B generates heat while melting to heat the room. As described above, in the present invention, heat absorption and heat generation (latent heat) at the time of phase transition of the thermoreversible water-absorbing polymer are used, so that more efficient heat transport is possible.

【0009】[0009]

【実施例】以下に、本発明の一実施例を図面を参照しな
がら説明する。図1は本発明を実施する場合の概略図で
あり、符号Sは吸収冷凍機、Rは室内空調機およびCは
熱輸送回路(冷温水回路)を示している。熱輸送回路
(冷温水回路)Cは吸収冷凍機Sと室内空調機Rとを接
続している。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram in the case of carrying out the present invention, wherein reference symbol S denotes an absorption refrigerator, R denotes an indoor air conditioner, and C denotes a heat transport circuit (cooling / hot water circuit). The heat transport circuit (cooling / heating water circuit) C connects the absorption refrigerator S and the indoor air conditioner R.

【0010】吸収冷凍機Sには、臭化リチウムを吸収剤
とし、水を冷媒とする吸収液が循環しており、この希溶
液を加熱する高温再生器1と、加熱された希溶液から冷
媒蒸気と中間濃度の吸収液を分離する分離器2と、高温
熱交換器7で冷却された中間濃度の吸収液を前記冷媒蒸
気で加熱して再び冷媒蒸気を発生させる低温再生器3
と、低温再生器3で発生した冷媒蒸気と低温再生器3の
加熱に用いられた冷媒蒸気を凝縮させる凝縮器4と、こ
の凝縮器4で凝縮した冷媒液を蒸発させる蒸発器6と、
前記低温再生器3で冷媒を蒸発させて生成された吸収液
を希溶液と熱交換させて冷却する低温熱交換器8と、熱
交換器で冷却された吸収液に前記蒸発器6で蒸発した冷
媒蒸気を吸収させて希溶液を生成する吸収器5と、生成
された希溶液を熱交換器7および8を経て高温再生器1
へ送給する溶液循環ポンプ9と、蒸発器6の熱輸送媒体
が流れていない側と分離器2とを冷暖房切替弁10を介
して接続する管路とが備わっている。なお、分離器2か
ら蒸発器6に冷暖房切替弁10を介して配管で連絡され
るラインは、冷房時はこの冷暖房切替弁10が閉、暖房
時は開となる。そして、凝縮器4および吸収器5は冷却
手段11および12で冷却される。この冷却手段は空冷
式または水冷式のどちらでもよい。
In the absorption refrigerator S, an absorption liquid using lithium bromide as an absorbent and water as a refrigerant is circulated. A high-temperature regenerator 1 for heating the dilute solution, and a refrigerant from the heated dilute solution, A separator 2 for separating the vapor and the intermediate-concentration absorbent, and a low-temperature regenerator 3 for heating the intermediate-concentration absorbent cooled by the high-temperature heat exchanger 7 with the refrigerant vapor to generate refrigerant vapor again.
A condenser 4 for condensing the refrigerant vapor generated in the low-temperature regenerator 3 and the refrigerant vapor used for heating the low-temperature regenerator 3, an evaporator 6 for evaporating the refrigerant liquid condensed in the condenser 4,
A low-temperature heat exchanger 8 for exchanging heat with the dilute solution to cool the absorbing liquid generated by evaporating the refrigerant in the low-temperature regenerator 3 and an evaporator 6 for evaporating the absorbing liquid cooled in the heat exchanger. An absorber 5 for absorbing a refrigerant vapor to generate a dilute solution, and the generated dilute solution is passed through heat exchangers 7 and 8 to a high-temperature regenerator 1.
And a pipe connecting the side of the evaporator 6 where the heat transport medium is not flowing and the separator 2 via a cooling / heating switching valve 10. The line connected from the separator 2 to the evaporator 6 by a pipe via a cooling / heating switching valve 10 has the cooling / heating switching valve 10 closed during cooling and opened during heating. Then, the condenser 4 and the absorber 5 are cooled by the cooling means 11 and 12. This cooling means may be either air-cooled or water-cooled.

【0011】熱輸送回路(冷温水回路)Cは吸収冷凍機
Sの蒸発器6と接続しており、他方は室内空調機R内の
室内熱交換器13に連なっており、ここで室内との熱交
換を行っている。熱輸送回路(冷温水回路)Cには熱輸
送媒体としての熱可逆型吸水性高分子を含有する水溶液
が循環ポンプ14によって循環している。この熱輸送媒
体としての熱可逆型吸水性高分子を含有する水溶液に
は、冷房時の冷水温度付近に転移温度を有する熱可逆型
吸水性高分子Aと、暖房時の温水温度付近に転移温度を
有する熱可逆型吸水性高分子Bとが含まれている。
A heat transport circuit (cooling / heating water circuit) C is connected to the evaporator 6 of the absorption chiller S, and the other is connected to an indoor heat exchanger 13 in the indoor air conditioner R. Heat exchange. An aqueous solution containing a thermoreversible water-absorbing polymer as a heat transport medium is circulated in a heat transport circuit (cooled / hot water circuit) C by a circulation pump 14. The aqueous solution containing the thermoreversible water-absorbing polymer as a heat transport medium includes a thermoreversible water-absorbing polymer A having a transition temperature near a cold water temperature during cooling, and a transition temperature near a warm water temperature during heating. And a thermoreversible water-absorbing polymer B having the following formula:

【0012】これら熱可逆型吸水性高分子は各種の高分
子物質から合成可能であるが、以下に示すようなものが
用いられる。N−イソプロピルアクリルアミドやN−n
−プロピルアクリルアミドなどのN−置換アクリルアミ
ド誘導体、N−n−プロピルメタクリルアミドなどのN
−置換メタクリルアミド誘導体、N,N−ジ置換アクリ
ルアミド誘導体、ポリビニルメチルエーテルなどのポリ
エーテル系物質、およびビニルアルコール系物質等であ
る。
These thermoreversible water-absorbing polymers can be synthesized from various polymer substances, and the following ones are used. N-isopropylacrylamide or Nn
N-substituted acrylamide derivatives such as -propylacrylamide, N-substituted acrylamide such as Nn-propylmethacrylamide
-Substituted methacrylamide derivatives, N, N-disubstituted acrylamide derivatives, polyether substances such as polyvinyl methyl ether, and vinyl alcohol substances.

【0013】また、これら熱可逆型吸水性高分子の水溶
液における濃度は、いずれも10〜35重量%が望まし
い。10重量%以下の場合、全体の転移熱量が小さくな
りすぎて利用できず、35重量%以上の場合、水溶液の
粘度が高くなりすぎる。10〜35重量%のときには、
水溶液の粘度が水の約30倍以下の範囲内におさまる。
以下に、実施例を示す。
The concentration of the thermoreversible water-absorbing polymer in the aqueous solution is preferably 10 to 35% by weight. If it is 10% by weight or less, the total heat of transition becomes too small to be used, and if it is 35% by weight or more, the viscosity of the aqueous solution becomes too high. When it is 10 to 35% by weight,
The viscosity of the aqueous solution falls within a range of about 30 times or less of water.
An example is described below.

【0014】(実施例)熱可逆型吸水性高分子Aとして
転移温度9.5℃のポリ−N−アクリロイル−1,4−
ジオキサ−8−アザスピロ〔4,5〕デカンを用い、熱
可逆型吸水性高分子Bとして転移温度45.5℃のポリ
−N−エトキシエチルメタクリルアミドを用いた。これ
らをそれぞれ20重量%含む高分子水溶液を熱輸送媒体
として熱輸送回路(冷温水回路)Cに循環させる。冷房
暖房の切替えは、図1における吸収冷凍機S本体で行
い、熱輸送媒体は常に吸収冷凍機Sの蒸発器6内を流れ
る。
(Example) As a thermoreversible water-absorbing polymer A, poly-N-acryloyl-1,4- having a transition temperature of 9.5 ° C.
Dioxa-8-azaspiro [4,5] decane was used, and poly-N-ethoxyethyl methacrylamide having a transition temperature of 45.5 ° C. was used as the thermoreversible water-absorbing polymer B. A polymer aqueous solution containing each of these in an amount of 20% by weight is circulated through a heat transport circuit (cooled / hot water circuit) C as a heat transport medium. Switching between cooling and heating is performed by the absorption refrigerator S in FIG. 1, and the heat transport medium always flows through the evaporator 6 of the absorption refrigerator S.

【0015】冷房時は、冷暖房切替弁10が閉となって
おり、吸収冷凍機Sにおいて冷房システムが作動する。
この時、蒸発器6内では冷媒が蒸発して5℃程度の温度
となっている。その結果、熱輸送媒体中に含まれる熱可
逆型吸水性高分子AおよびBともに転移温度以下である
ために水に溶解して水溶液の状態となっている。この熱
輸送媒体が循環ポンプ14によって蒸発器6から室内空
調機Rに送られ、室内熱交換器13で室内の熱を奪って
温度が上昇し、10℃以上になると熱可逆型吸水性高分
子Aは転移温度以上になるため離水しながら吸熱して周
囲から熱を奪う。この場合、熱可逆型吸水性高分子Aは
懸濁状態となり、再び蒸発器6に戻って冷却されて水に
溶解して水溶液となる。熱可逆型吸水性高分子Bはこの
サイクルを通して転移温度以下であるので水溶液のまま
である。
At the time of cooling, the cooling / heating switching valve 10 is closed, and the cooling system operates in the absorption refrigerator S.
At this time, the refrigerant evaporates in the evaporator 6 to have a temperature of about 5 ° C. As a result, since both the thermoreversible water-absorbing polymers A and B contained in the heat transport medium have a transition temperature or lower, they are dissolved in water to be in an aqueous solution state. This heat transport medium is sent from the evaporator 6 to the indoor air conditioner R by the circulation pump 14, and the indoor heat exchanger 13 deprives the indoor heat of the room, and the temperature rises. Since A becomes higher than the transition temperature, it absorbs heat while removing water to take away heat from the surroundings. In this case, the thermoreversible water-absorbing polymer A is in a suspended state, returns to the evaporator 6 again, is cooled, is dissolved in water, and becomes an aqueous solution. Since the thermoreversible water-absorbing polymer B has a transition temperature or lower throughout this cycle, it remains an aqueous solution.

【0016】暖房時は、冷暖房切替弁10は開に切替
り、蒸発器6には分離器2から加熱された冷媒蒸気が導
入され、温度が60℃程度にまで上昇している。このた
め熱輸送媒体は加熱され、熱可逆型吸水性高分子Aおよ
びBともに転移温度以上となっているため水から分離し
懸濁状態となって蒸発器6から室内空調機Rに輸送され
る。この懸濁状態で室内空調機Rに入ってきた熱輸送媒
体は、室内熱交換器13において室内に熱を放出し、そ
の温度を低下する。その結果、温度が45.5℃以下に
なると熱可逆型吸水性高分子Bは転移温度以下になるの
で、水に溶解しつつ発熱し、周囲に放熱する。こうして
水溶液となった熱可逆型吸水性高分子Bは再び蒸発器6
に戻って加熱され離水して懸濁状態となる。熱可逆型吸
水性高分子Aはこのサイクルを通して転移温度以上であ
るので懸濁状態のままである。
At the time of heating, the cooling / heating switching valve 10 is opened, the heated refrigerant vapor is introduced from the separator 2 into the evaporator 6, and the temperature is raised to about 60 ° C. Therefore, the heat transport medium is heated, and since both the thermoreversible water-absorbing polymers A and B have a transition temperature or higher, they are separated from water to be suspended and transported from the evaporator 6 to the indoor air conditioner R. . The heat transport medium that has entered the indoor air conditioner R in this suspended state releases heat into the room in the indoor heat exchanger 13 and lowers its temperature. As a result, when the temperature becomes 45.5 ° C. or lower, the thermoreversible water-absorbing polymer B becomes lower than the transition temperature, so that it generates heat while dissolving in water and radiates heat to the surroundings. The thermoreversible water-absorbing polymer B thus converted to an aqueous solution is again supplied to the evaporator 6.
Then, it is heated and separated from the water to be suspended. Since the thermoreversible water-absorbing polymer A has a transition temperature or higher throughout this cycle, it remains in a suspended state.

【0017】このように本発明においては、熱可逆型吸
水性高分子の相転移時の吸熱や発熱を冷房時や暖房時に
利用しているので、効率のよい熱輸送が可能である。な
お、熱可逆型吸水性高分子Aとして、上記実施例で用い
たもの以外にも、転移温度11.0℃のポリ−N−1−
メトキシメチルプロピルアクリルアミドや転移温度8.
7℃のポリ−N−イソプロポキシプロピルアクリルアミ
ドが、また、熱可逆型吸水性高分子Bとして、転移温度
60.5℃のポリ−N−(2,2−ジメトキシエチル)
−N−メチルアクリルアミドや転移温度55.5℃のポ
リ−N−(1,3−ジオキソラン−2−イル)−N−メ
チルアクリルアミド等が利用可能であることが確認され
ている。
As described above, in the present invention, since heat absorption and heat generation at the time of phase transition of the thermoreversible water-absorbing polymer are utilized at the time of cooling or heating, efficient heat transport is possible. In addition, as the thermoreversible water-absorbing polymer A, in addition to those used in the above examples, poly-N-1- having a transition temperature of 11.0 ° C.
Methoxymethylpropyl acrylamide and transition temperature 8.
Poly-N-isopropoxypropyl acrylamide at 7 ° C. is a thermo-reversible water-absorbing polymer B, and poly-N- (2,2-dimethoxyethyl) having a transition temperature of 60.5 ° C.
It has been confirmed that -N-methylacrylamide and poly-N- (1,3-dioxolan-2-yl) -N-methylacrylamide having a transition temperature of 55.5 ° C. can be used.

【0018】[0018]

【発明の効果】上記のように、本発明によれば、熱可逆
型吸水性高分子の水からの分離時や水への溶解時の転移
熱(潜熱)を利用して熱輸送に供している。そこで水と
対比してその効果を調べてみる。熱輸送媒体の循環量を
600kg/h、温度の変化量を5℃とし、20重量%の熱
可逆型吸水性高分子を含む水溶液を用いるものとする。
この時の熱可逆型吸水性高分子の転移熱量は約20kcal
/kgである。まず、水の場合は、600kg/h×5℃×1
(比熱)×1(比重)=3000kcal/hで熱輸送可能で
ある。これに対し、熱可逆型吸水性高分子を用いた場
合、20重量%の熱可逆型吸水性高分子の転移熱(潜
熱)の収支は、600kg/h×1(比重)×0.2(水溶
液中の割合)×20kcal/kg=2400kcal/hであっ
て、熱可逆型吸水性高分子の相転移によって2400kc
al/hの熱の授受がある。次に、顕熱変化による収支は、
600kg/h×0.8(水溶液中の水の割合)×5℃×1
(比熱)×1(比重)=2400kcal/h、また、600
kg/h×0.2(水溶液中の割合)×5℃×0.3(比熱)
×1(比重)=180kcal/hであり、合計2580kcal
/hである。従って、熱可逆型吸水性高分子を用いた場合
には、転移熱(潜熱)の収支と顕熱変化による収支とを
合わせて合計4980kcal/hの熱を輸送できる。これを
水の場合と比較してみると、約1.6倍の熱輸送が可能
となる。即ち、熱可逆型吸水性高分子を熱輸送媒体とし
て利用することにより、熱輸送媒体の循環量の低減や吸
収冷凍機Sの熱交換器の小型化や室内空調機Rの小型軽
量化が可能となる。
As described above, according to the present invention, the heat reversible water-absorbing polymer is subjected to heat transport utilizing the heat of transition (latent heat) at the time of separation from water or at the time of dissolution in water. I have. So, let's examine the effect in comparison with water. The circulation rate of the heat transport medium is 600 kg / h, the temperature change is 5 ° C., and an aqueous solution containing 20% by weight of the thermoreversible water-absorbing polymer is used.
At this time, the transition heat of the thermoreversible water-absorbing polymer is about 20 kcal.
/ kg. First, in the case of water, 600 kg / h × 5 ° C. × 1
Heat transfer is possible at (specific heat) × 1 (specific gravity) = 3000 kcal / h. In contrast, when the thermoreversible water-absorbing polymer is used, the balance of the transition heat (latent heat) of the thermoreversible water-absorbing polymer of 20% by weight is 600 kg / h × 1 (specific gravity) × 0.2 ( Ratio in aqueous solution) × 20 kcal / kg = 2400 kcal / h, and 2400 kcal due to the phase transition of the thermoreversible water-absorbing polymer.
There is an exchange of heat of al / h. Next, the balance due to the sensible heat change is
600kg / h × 0.8 (water ratio in aqueous solution) × 5 ℃ × 1
(Specific heat) x 1 (specific gravity) = 2400 kcal / h and 600
kg / h x 0.2 (proportion in aqueous solution) x 5 ° C x 0.3 (specific heat)
X 1 (specific gravity) = 180 kcal / h, for a total of 2580 kcal
/ h. Therefore, when the thermoreversible water-absorbing polymer is used, a total of 4980 kcal / h of heat can be transported by combining the balance of the heat of transition (latent heat) and the balance by the change in sensible heat. If this is compared with the case of water, heat transport about 1.6 times is possible. That is, by using the thermoreversible water-absorbing polymer as the heat transport medium, it is possible to reduce the amount of circulation of the heat transport medium, to reduce the size of the heat exchanger of the absorption refrigerator S, and to reduce the size and weight of the indoor air conditioner R. Becomes

【0019】また、フロン系を用いた場合には、気相液
相の間の相変化によるため体積の変化率が大きく、圧縮
機のみならず膨張手段が必要となるが、熱可逆型吸水性
高分子を用いる場合は、同じ潜熱を得る相変化でも、水
溶液から懸濁状態(固相と液相の間)の変化であり、体
積の変化率も小さく熱輸送回路に必要となるものは、循
環ポンプのみでよくなった。
When a fluorocarbon-based material is used, the rate of change in volume is large due to the phase change between the gas phase and the liquid phase, and not only a compressor but also an expansion means is required. In the case of using a polymer, even a phase change that obtains the same latent heat is a change from an aqueous solution to a suspended state (between a solid phase and a liquid phase). Only the circulation pump improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施する場合の一実施例の概略図であ
る。
FIG. 1 is a schematic view of an embodiment for implementing the present invention.

【図2】従来の技術を説明するための図である。FIG. 2 is a diagram for explaining a conventional technique.

【符号の説明】[Explanation of symbols]

S 吸収冷凍機 R 室内空調機 C 熱輸送回路 6 蒸発器 13 室内熱交換器 14 循環ポンプ S Absorption refrigerator R Indoor air conditioner C Heat transport circuit 6 Evaporator 13 Indoor heat exchanger 14 Circulation pump

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 熱輸送回路の中に、冷房時の冷水温度付
近に転移温度を有する熱可逆型吸水性高分子Aと、暖房
時の温水温度付近に転移温度を有する熱可逆型吸水性高
分子Bとを含有する水溶液を循環させることを特徴とす
る熱輸送システム。
1. A thermoreversible water-absorbing polymer A having a transition temperature near a cold water temperature during cooling, and a thermoreversible water-absorbing polymer having a transition temperature near a hot water temperature during heating in a heat transport circuit. A heat transport system comprising circulating an aqueous solution containing a molecule B.
【請求項2】 請求項1において、熱輸送回路が吸収冷
凍機の蒸発器と冷暖房用の室内空調機の間に設けられて
いることを特徴とする熱輸送システム。
2. The heat transport system according to claim 1, wherein the heat transport circuit is provided between the evaporator of the absorption refrigerator and an indoor air conditioner for cooling and heating.
JP33050291A 1991-12-13 1991-12-13 Heat transport system Expired - Lifetime JP2627990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33050291A JP2627990B2 (en) 1991-12-13 1991-12-13 Heat transport system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33050291A JP2627990B2 (en) 1991-12-13 1991-12-13 Heat transport system

Publications (2)

Publication Number Publication Date
JPH05164424A JPH05164424A (en) 1993-06-29
JP2627990B2 true JP2627990B2 (en) 1997-07-09

Family

ID=18233346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33050291A Expired - Lifetime JP2627990B2 (en) 1991-12-13 1991-12-13 Heat transport system

Country Status (1)

Country Link
JP (1) JP2627990B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3778826A4 (en) 2018-04-05 2021-04-28 Mitsubishi Electric Corporation Heat storage material, method for preparing same, and heat storage tank

Also Published As

Publication number Publication date
JPH05164424A (en) 1993-06-29

Similar Documents

Publication Publication Date Title
JP2006017350A (en) Refrigeration device
JPH09269162A (en) Absorbing type freezer
JPH11351775A (en) Thermal storage apparatus
JP2627990B2 (en) Heat transport system
JPH0250058A (en) Air cooled absorbing type cooling and heating device
JP2003004334A (en) Waste heat recovery air conditioner
JP3397164B2 (en) Heat pump cycle type absorption refrigeration and heating simultaneous removal machine and method
JP2007333342A (en) Multi-effect absorption refrigerating machine
JP2003004330A (en) Exhaust heat recovery air conditioner
JPH01247968A (en) Apparatus for cooling and heating
JPS62182538A (en) Latent heat accumulating type heat retrieval heat pump air conditioner
JP2000234771A (en) Secondary refrigerant heat-storing air-conditioning system
JP3857955B2 (en) Absorption refrigerator
JPS5899661A (en) Engine waste-heat recovery absorption type cold and hot water machine
JP4282818B2 (en) Combined cooling system and combined cooling method
JP2892519B2 (en) Absorption heat pump equipment
JPS60207867A (en) Engine waste-heat recovery absorption type cold and hot water machine
JP2014119209A (en) Absorption type freezer and refrigeration system
JP2003021420A (en) Absorption refrigerating plant and its operating method
JPH10110976A (en) Natural circulating type heat transfer device
JPS6113885Y2 (en)
JPS5866741A (en) Space cooling and heating system utilizing solar heat or waste heat
JP2001004246A (en) Air conditioner
JP2004028373A (en) Refrigerating equipment combined with absorption type and compression type
JP2006194569A (en) Refrigerating system