JPH07269971A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH07269971A
JPH07269971A JP6059193A JP5919394A JPH07269971A JP H07269971 A JPH07269971 A JP H07269971A JP 6059193 A JP6059193 A JP 6059193A JP 5919394 A JP5919394 A JP 5919394A JP H07269971 A JPH07269971 A JP H07269971A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchangers
heat exchanger
air conditioner
exchangers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6059193A
Other languages
Japanese (ja)
Other versions
JP3054539B2 (en
Inventor
Ichiro Kamimura
一朗 上村
Kazuhiro Shimura
一廣 志村
Naoto Sakamoto
直人 坂本
Koji Inoue
幸治 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6059193A priority Critical patent/JP3054539B2/en
Publication of JPH07269971A publication Critical patent/JPH07269971A/en
Application granted granted Critical
Publication of JP3054539B2 publication Critical patent/JP3054539B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a low-cost air conditioner in which regulation of a refrigerant pressure between a plurality of heat exchangers can be simply executed, the heat exchangers can be effectively used and which has a simple structure. CONSTITUTION:An air conditioner has a plurality of heat exchangers 5a, 5b, 9a, 9b disposed in series by using non-azeotropic mixed refrigerants, and comprises a fixed resistor 15, and a bypass tube 16. Thus, when the exchangers are used as evaporators, it is passed through the resistor, and when the exchangers are used as condensers, it flows by avoiding the resistor. Accordingly, refrigerant pressures of the evaporators can be simply regulated without necessity of special control, and low-cost exchangers can be effectively used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蒸発器を備え、高沸点
冷媒と低沸点冷媒からなる非共沸混合冷媒を用いる空気
調和機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner equipped with an evaporator and using a non-azeotropic mixed refrigerant composed of a high boiling point refrigerant and a low boiling point refrigerant.

【0002】[0002]

【従来の技術】一般に、ヒートポンプ式空気調和機の冷
媒回路は、圧縮機、室内熱交換器、減圧装置、室外熱交
換器、四方弁とから構成されており、暖房運転時にはこ
の順序で冷媒が循環され、冷房運転時には暖房運転時と
は逆方向に冷媒が循環される。
2. Description of the Related Art Generally, a refrigerant circuit of a heat pump type air conditioner is composed of a compressor, an indoor heat exchanger, a pressure reducing device, an outdoor heat exchanger and a four-way valve. During the cooling operation, the refrigerant is circulated in the opposite direction to that during the heating operation.

【0003】このような運転の切り換えにより、一つの
回路により冷房運転と暖房運転とがなされるようになっ
ている。
By switching the operation as described above, the cooling operation and the heating operation can be performed by one circuit.

【0004】一方、かかるヒートポンプ式空気調和機に
おいて、冷媒として単一冷媒(例えば、Rー22)が使
用されている場合には、この単一冷媒の圧力が一定で且
つ気液混合時はその冷媒の温度は一定となる。
On the other hand, in such a heat pump type air conditioner, when a single refrigerant (for example, R-22) is used as the refrigerant, the pressure of the single refrigerant is constant and when the gas-liquid mixing is performed, The temperature of the refrigerant is constant.

【0005】一方、非共沸混合冷媒が使用されている場
合には、この非共沸混合冷媒の圧力が一定で且つ気液混
合時はその非共沸混合冷媒の等温線は、飽和液線から飽
和蒸気線に向かって右下りになっているため(温度グラ
イド:約5℃)、蒸発器の入口温度が最低で、出口温度
が最高となる。
On the other hand, when a non-azeotropic mixed refrigerant is used, the pressure of the non-azeotropic mixed refrigerant is constant and the isotherm of the non-azeotropic mixed refrigerant is saturated liquid line when gas-liquid mixing is performed. Since it goes to the right toward the saturated vapor line (temperature glide: about 5 ° C), the inlet temperature of the evaporator is the lowest and the outlet temperature is the highest.

【0006】ここで、蒸発器を有効的に使用するために
は、蒸発温度を低下させる必要があるが、出口温度は高
くなり平均蒸発温度は高く、蒸発器能力は低下する。
Here, in order to effectively use the evaporator, it is necessary to lower the evaporation temperature, but the outlet temperature becomes high, the average evaporation temperature becomes high, and the evaporator capacity decreases.

【0007】又、蒸発温度を低下させるにも限度があ
り、入口から着霜を生じ、熱交換能力が低下するという
問題がある。
Further, there is a limit to lowering the evaporation temperature, and there is a problem that frost is generated from the inlet and the heat exchange capacity is lowered.

【0008】かかる問題点に対して、実公平3ー385
92号公報には、熱交換器を複数に分割して、分割した
熱交換器部分の間に圧力調節弁を配置することによっ
て、熱交換器の入口と出口における圧力の調節を図り、
入口側の着霜を防止する技術が提案されている。
[0008] For such problems, the fairness 3-385
In Japanese Patent Publication No. 92, the heat exchanger is divided into a plurality of parts, and a pressure control valve is arranged between the divided heat exchanger parts, whereby the pressure at the inlet and the outlet of the heat exchanger is adjusted,
Techniques have been proposed to prevent frost formation on the entrance side.

【0009】[0009]

【発明が解決しようとする課題】しかし、複数の熱交換
器の間に圧力調節弁を設けた従来技術の構成において、
圧力調節弁は機構が複雑であり且つ高価であるという問
題点がある。
However, in the structure of the prior art in which a pressure control valve is provided between a plurality of heat exchangers,
The pressure control valve has a problem that the mechanism is complicated and expensive.

【0010】また、従来の技術では、冷房運転と暖房運
転の切換え毎に圧力調節弁を所定の圧力に制御する必要
があるため、別に圧力調節弁の制御機構を必要とするの
で、構成が複雑になるという問題点がある。
Further, in the prior art, since the pressure control valve needs to be controlled to a predetermined pressure every time the cooling operation and the heating operation are switched, a separate control mechanism for the pressure control valve is required, so that the structure is complicated. There is a problem that becomes.

【0011】そこで、本発明は、上記課題を解決するた
めになされたものであり、複数の熱交換器の間における
冷媒圧力の調節が簡単にでき且つ構成が簡単で安価な空
気調和機を提供することを目的としている。
Therefore, the present invention has been made to solve the above problems, and provides an inexpensive air conditioner in which the refrigerant pressure between a plurality of heat exchangers can be easily adjusted and the structure is simple. The purpose is to do.

【0012】[0012]

【課題を解決するための手段】第1の本発明は、高沸点
冷媒と低沸点冷媒とからなる非共沸混合冷媒を用いると
ともに直列に配置された複数の熱交換器を有する空気調
和機において、前記熱交換器と前記熱交換器との間に
は、これらの熱交換器が蒸発器として作用するときに冷
媒に一定の抵抗を付与する固定抵抗と、これらの熱交換
器が凝縮器として作用するときに固定抵抗をバイパスし
て冷媒を流すバイパス管とを設けている。
The first aspect of the present invention is an air conditioner which uses a non-azeotropic mixed refrigerant composed of a high boiling point refrigerant and a low boiling point refrigerant and which has a plurality of heat exchangers arranged in series. Between the heat exchanger and the heat exchanger, a fixed resistance that gives a certain resistance to the refrigerant when these heat exchangers act as an evaporator, and these heat exchangers as a condenser. A bypass pipe is provided to bypass the fixed resistance and allow the refrigerant to flow when operating.

【0013】また、第2の発明は、能力可変型圧縮機の
能力が最大時に各蒸発器入口温度が等しくなるように抵
抗値を設定している。
In the second aspect of the invention, the resistance value is set so that the evaporator inlet temperatures become equal when the capacity of the variable capacity compressor is maximum.

【0014】[0014]

【作用】第1の発明によれば、熱交換器が蒸発器として
作用する場合には、最初の蒸発器に供給された冷媒は所
定の圧力で蒸発された後、次の蒸発器に固定抵抗を介し
て導入される。このとき、次の熱交換器では、バイパス
管を通過せず固定抵抗を通過し、この固定抵抗により圧
力損失が生じ入口圧力が低下する。
According to the first aspect of the invention, when the heat exchanger acts as an evaporator, the refrigerant supplied to the first evaporator is evaporated at a predetermined pressure and then fixed to the next evaporator. Be introduced via. At this time, in the next heat exchanger, it does not pass through the bypass pipe but through the fixed resistance, and this fixed resistance causes a pressure loss, and the inlet pressure decreases.

【0015】これにより、蒸発温度を着霜温度に近付け
ることができ、蒸発器の能力を大きくできる。
As a result, the evaporation temperature can be brought close to the frosting temperature, and the capacity of the evaporator can be increased.

【0016】かかる固定抵抗は、冷媒に所定の抵抗を付
与するだけの簡単なものであるから、制御機構を必要と
せず、冷媒圧力の調節が簡単且つ安価にできる。
Since such a fixed resistance is as simple as imparting a predetermined resistance to the refrigerant, no control mechanism is required, and the refrigerant pressure can be adjusted easily and inexpensively.

【0017】熱交換器が凝縮器として作用する場合に
は、最初の凝縮器に供給された冷媒は、固定抵抗を通過
せずに、バイパス管を通過して次の凝縮器に供給され
る。従って、暖房運転と冷房運転との切換えに伴って何
等の制御も必要ないから、空気調和機の構成全体を簡易
且つ安価にすることができる。
When the heat exchanger acts as a condenser, the refrigerant supplied to the first condenser does not pass through the fixed resistance but passes through the bypass pipe and is fed to the next condenser. Therefore, no control is required along with the switching between the heating operation and the cooling operation, so that the overall configuration of the air conditioner can be simplified and made inexpensive.

【0018】また、第2の本発明によれば、容易に且つ
最も効率的に抵抗値の設定をすることができる。
According to the second aspect of the present invention, the resistance value can be set easily and most efficiently.

【0019】[0019]

【実施例】以下に、添付図面を参照して本発明の一実施
例を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

【0020】図1は、本発明の実施例にかかる空気調和
機の回路図である。この実施例にかかる、空気調和機
は、冷媒回路を循環する冷媒として高沸点冷媒と低沸点
冷媒からなる非共沸混合冷媒が用いられている。
FIG. 1 is a circuit diagram of an air conditioner according to an embodiment of the present invention. The air conditioner according to this embodiment uses a non-azeotropic mixed refrigerant composed of a high-boiling point refrigerant and a low-boiling point refrigerant as the refrigerant circulating in the refrigerant circuit.

【0021】図1の冷媒回路において、圧縮機3、室内
熱交換器5a、5b、減圧装置7、室外熱交換器9a、
9b、流路切換え弁としての四方弁11、アキュムレー
タ13とが、この順序で配置されている。
In the refrigerant circuit of FIG. 1, the compressor 3, the indoor heat exchangers 5a and 5b, the pressure reducing device 7, the outdoor heat exchanger 9a,
9b, a four-way valve 11 as a flow path switching valve, and an accumulator 13 are arranged in this order.

【0022】熱交換器としての室外熱交換器9a、9
b、と、室内熱交換器5a、5bとは、それぞれファン
20を備えており、室内空気または室外空気と熱交換さ
れている。
Outdoor heat exchangers 9a, 9 as heat exchangers
b and the indoor heat exchangers 5a and 5b are each provided with a fan 20, and heat is exchanged with indoor air or outdoor air.

【0023】室内熱交換器5a、5bと室外熱交換器9
a、9bとは、それぞれ、複数の熱交換器を直列に配置
した構成であり、または一つの熱交換器を直列に分割し
た構成となっている。
Indoor heat exchangers 5a, 5b and outdoor heat exchanger 9
Each of a and 9b is a configuration in which a plurality of heat exchangers are arranged in series, or one heat exchanger is divided in series.

【0024】室外熱交換器9a、9bは、冷房時に凝縮
器、暖房時に蒸発器としてそれぞれ作用するものであ
り、室内熱交換器5a、5bは冷房時に蒸発器として暖
房時に凝縮器としてそれぞれ作用するものである。
The outdoor heat exchangers 9a and 9b act as a condenser during cooling and as an evaporator during heating, respectively, and the indoor heat exchangers 5a and 5b act as an evaporator during cooling and as a condenser during heating, respectively. It is a thing.

【0025】室内熱交換器5a、5bとの間には、固定
抵抗15とこの固定抵抗15をバイパスするバイパス管
16とが設けられており、このバイパス管16には一方
向弁17が配置されており、凝縮器として作用する場合
には、一方向弁17(バイパス管16)を通過し、蒸発
器として作用する場合には固定抵抗15を通過するよう
になっている。
A fixed resistor 15 and a bypass pipe 16 bypassing the fixed resistor 15 are provided between the indoor heat exchangers 5a and 5b, and a one-way valve 17 is arranged in the bypass pipe 16. When it functions as a condenser, it passes through the one-way valve 17 (bypass pipe 16), and when it functions as an evaporator, it passes through the fixed resistance 15.

【0026】同様に、室外熱交換器9a、9bとの間に
は、固定抵抗15と一方向弁17が設けられたバイパス
管16と配置されており、凝縮器として作用する場合に
は、一方向弁17(バイパス管16)を通過し、蒸発器
として作用する場合には固定抵抗15を通過するもので
ある。
Similarly, a fixed resistor 15 and a bypass pipe 16 provided with a one-way valve 17 are arranged between the outdoor heat exchangers 9a and 9b, and when acting as a condenser, It passes through the directional valve 17 (bypass pipe 16) and through the fixed resistor 15 when acting as an evaporator.

【0027】尚、ヒートポンプ式空気調和装置では、室
内熱交換器5a、5bが蒸発器として作用する場合には
室外熱交換器9a、9bは凝縮器と作用するようになっ
ており、室内熱交換器5a、5bが凝縮器として作用す
る場合には室外熱交換器9a、9bは蒸発器と作用する
ものである。
In the heat pump type air conditioner, when the indoor heat exchangers 5a and 5b act as evaporators, the outdoor heat exchangers 9a and 9b act as condensers, so that the indoor heat exchange is performed. When the reactors 5a and 5b act as condensers, the outdoor heat exchangers 9a and 9b act as evaporators.

【0028】固定抵抗15は、公知のものであり、例え
ば細管コイル状に形成したものやオリフィス等が用いら
れる。
The fixed resistor 15 is a well-known one, and for example, one formed in the shape of a thin tube coil or an orifice is used.

【0029】四方弁11は、冷房運転時には破線で示す
ように冷媒を流すように位置して、冷媒回路を構成し、
暖房運転時には実線に示すように位置される。このよう
に四方弁を切換えることにより冷房と暖房時の冷媒流路
が切換えられる。
The four-way valve 11 is positioned so that the refrigerant flows as shown by the broken line during the cooling operation, and constitutes a refrigerant circuit.
It is positioned as shown by the solid line during heating operation. In this way, by switching the four-way valve, the refrigerant flow paths for cooling and heating can be switched.

【0030】冷媒としては、高沸点冷媒と低沸点冷媒と
からなる非共沸混合冷媒が用いられているが、例えば、
R134a(化学式;CH2 FCF3 )、R125(化
学式;C2 HF5 )、R32(化学式;CH2 2 )の
混合冷媒が用いられる。
As the refrigerant, a non-azeotropic mixed refrigerant composed of a high boiling point refrigerant and a low boiling point refrigerant is used.
A mixed refrigerant of R134a (chemical formula; CH 2 FCF 3 ), R125 (chemical formula; C 2 HF 5 ) and R32 (chemical formula; CH 2 F 2 ) is used.

【0031】尚、一般に、R134aの沸点は−26℃
であり、R125の沸点が−48℃であり、R32の沸
点は−52℃である。
The boiling point of R134a is generally -26 ° C.
The boiling point of R125 is −48 ° C., and the boiling point of R32 is −52 ° C.

【0032】次に、上記実施例の作用を説明する。Next, the operation of the above embodiment will be described.

【0033】暖房運転時には、図1中に実線矢印で示す
ように四方弁が位置し、圧縮機3、室内熱交換器5a、
5b、減圧装置7、室外熱交換器9a、9b、四方弁1
1、アキュムレータ13の順序で冷媒が循環される。
During the heating operation, the four-way valve is positioned as shown by the solid arrow in FIG. 1, the compressor 3, the indoor heat exchanger 5a,
5b, decompression device 7, outdoor heat exchangers 9a, 9b, four-way valve 1
First, the refrigerant is circulated in the order of the accumulator 13.

【0034】圧縮機3から最初の室内熱交換器5aに導
入された冷媒は、一方向弁17(バイパス管16)を介
して次の室内熱交換器5bに導入されて、最初の室内熱
交換器5a及び次の室内熱交換器5bにより室内空気が
熱交換される。
The refrigerant introduced from the compressor 3 into the first indoor heat exchanger 5a is introduced into the next indoor heat exchanger 5b via the one-way valve 17 (bypass pipe 16), and the first indoor heat exchanger 5a is exchanged. The indoor air is heat-exchanged by the device 5a and the next indoor heat exchanger 5b.

【0035】室内熱交換器5a、5bを通過した冷媒
は、続いて、減圧装置7から、室外熱交換器9a、9b
に導入され、この室外熱交換器9a、9bが蒸発器とし
て作用して、冷媒は気化されて外気から熱を汲み上げ
る。
The refrigerant that has passed through the indoor heat exchangers 5a and 5b is continuously discharged from the pressure reducing device 7 into the outdoor heat exchangers 9a and 9b.
The outdoor heat exchangers 9a and 9b act as an evaporator, and the refrigerant is vaporized and pumps heat from the outside air.

【0036】室外熱交換器9a、9bでは、図4に示す
ように、高沸点冷媒と低沸点冷媒とからなる非共沸混合
冷媒は、温度グライドにより蒸発器入口温度が低く、出
口温度が高くなるが、室外熱交換器9a、9bの間には
固定抵抗15が介在されているので、次の室外熱交換器
9bにおける入口圧力が低下することにより蒸発温度が
低下し暖房運転の効率が良い。
In the outdoor heat exchangers 9a and 9b, as shown in FIG. 4, the non-azeotropic mixed refrigerant composed of the high boiling point refrigerant and the low boiling point refrigerant has a low temperature at the evaporator inlet and a high temperature at the outlet due to the temperature glide. However, since the fixed resistance 15 is interposed between the outdoor heat exchangers 9a and 9b, the inlet pressure in the next outdoor heat exchanger 9b decreases, the evaporation temperature decreases, and the heating operation efficiency is good. .

【0037】このことは、冷房運転時における室内熱交
換器5a、5bが蒸発器として作用する場合にも同様で
ある。
This also applies to the case where the indoor heat exchangers 5a and 5b function as evaporators during the cooling operation.

【0038】一方、冷房運転時には、図1中に破線で示
すように四方弁11が位置し、圧縮機3、室外熱交換器
9b、9a、減圧装置7、室内熱交換器5a、5b、四
方弁11、アキュムレータ13の順序で冷媒が循環され
る。
On the other hand, during the cooling operation, the four-way valve 11 is positioned as shown by the broken line in FIG. 1, and the compressor 3, the outdoor heat exchangers 9b and 9a, the pressure reducing device 7, the indoor heat exchangers 5a and 5b, and the four-way valve are provided. The refrigerant is circulated in the order of the valve 11 and the accumulator 13.

【0039】圧縮機3から最初の室外熱交換器9bに導
入された冷媒は、一方向弁17(バイパス管16)を介
して次の室外熱交換器9aに導入される。これらの室外
熱交換器9a、9bはそれぞれ凝縮器として作用され
る。次に、冷媒は減圧装置7から、室内熱交換器5a、
5bに導入され、この室内熱交換器5a、5bが蒸発器
として作用して、冷媒は気化されて外気から熱を汲み上
げる。
The refrigerant introduced from the compressor 3 into the first outdoor heat exchanger 9b is introduced into the next outdoor heat exchanger 9a via the one-way valve 17 (bypass pipe 16). These outdoor heat exchangers 9a and 9b each act as a condenser. Next, the refrigerant flows from the decompression device 7 to the indoor heat exchanger 5a,
5b, the indoor heat exchangers 5a, 5b act as an evaporator, the refrigerant is vaporized and pumps heat from the outside air.

【0040】室内熱交換器5a、5bでは、前述した暖
房運転時の室外熱交換器9a、9bと同様に、温度グラ
イドにより蒸発器入口温度が低く、出口温度が高くなる
が、室外熱交換器5a、5bの間には固定抵抗15が介
在されているので、次の室外熱交換器5bにおける入口
圧力が低下することにより蒸発温度が低下し暖房運転の
効率が良い。
In the indoor heat exchangers 5a and 5b, like the outdoor heat exchangers 9a and 9b in the heating operation described above, the temperature glide causes the evaporator inlet temperature to be low and the outlet temperature to be high. Since the fixed resistance 15 is interposed between 5a and 5b, the evaporation temperature is lowered by the decrease of the inlet pressure in the next outdoor heat exchanger 5b, and the heating operation efficiency is good.

【0041】次に、固定抵抗15について、図5を参照
して説明する。
Next, the fixed resistor 15 will be described with reference to FIG.

【0042】ここで、図5と図1とを対比させるため図
1に示した部材と同一部材には同一符号を記入して、そ
の説明は省略した。
Here, in order to compare FIG. 5 with FIG. 1, the same members as those shown in FIG. 1 are designated by the same reference numerals and the description thereof is omitted.

【0043】固定抵抗15の抵抗値は次のようにして決
定する。室外熱交換器9a、9bが蒸発器として作用す
る暖房運転時において、最初の室外熱交換器9aの入口
温度をT1 と、次の室外熱交換器9bの入口温度をT2
とする。
The resistance value of the fixed resistor 15 is determined as follows. During the heating operation in which the outdoor heat exchangers 9a and 9b act as evaporators, the inlet temperature of the first outdoor heat exchanger 9a is T 1, and the inlet temperature of the next outdoor heat exchanger 9b is T 2.
And

【0044】固定抵抗15の抵抗値は、圧縮機が能力可
変型と設定した場合に、この圧縮機の能力が最大(室内
の空調負荷大)時に、前述のT1 とT2 とがほぼ等しく
なるように選定する。
The resistance value of the fixed resistor 15 is such that when the compressor is set to have a variable capacity type, the above-mentioned T 1 and T 2 are substantially equal when the capacity of the compressor is maximum (the air conditioning load in the room is large). Select to be

【0045】こうすることにより、熱交換器能力を有効
に利用でき、着霜の問題も解決できる。なお、T1 とT
2 は着霜限界温度、例えば−1℃程度に設定することが
好ましい。
By doing so, the heat exchanger capacity can be effectively utilized and the problem of frost formation can be solved. Note that T 1 and T
2 is preferably set to a frost formation limit temperature, for example, about -1 ° C.

【0046】又、上述したように能力可変型(例えばイ
ンバータ)の圧縮機の場合、室内の空調負荷の減少にと
もない、能力(圧縮機の回転数もしくは運転周波数)が
低下すると、固定抵抗15での圧力損失が減少し、次の
熱交換器9bの入口圧力も圧縮機能力が最大時よりも高
く、入口温度T2 も高くなり熱交換器能力も減少するが
室内の空調負荷が減少しているので問題ない。
Further, as described above, in the case of the variable capacity type (eg, inverter) compressor, if the capacity (compressor rotation speed or operating frequency) decreases as the air conditioning load in the room decreases, the fixed resistance 15 is used. Pressure loss is reduced, the inlet pressure of the next heat exchanger 9b is higher than the maximum compression function force, the inlet temperature T 2 is also increased, and the heat exchanger capacity is reduced, but the air conditioning load in the room is reduced. There is no problem because it exists.

【0047】本発明は、上述した実施例に限定されず、
本発明の要旨を逸脱しない範囲で種々変形可能である。
The present invention is not limited to the above embodiment,
Various modifications can be made without departing from the scope of the present invention.

【0048】例えば、図2に示すように、夫々の室外熱
交換器29a、29bには温水等の熱源水を導入する構
成とし、且つこれら室外これら室外熱交換器29a、2
9b同士を配管28つないで、暖房運転時には、温水熱
源により熱量を夫々の室外熱交換器29a、29bへ補
うものであっても同様な効果を得ることができる。
For example, as shown in FIG. 2, a heat source water such as hot water is introduced into each of the outdoor heat exchangers 29a and 29b, and the outdoor heat exchangers 29a and 2b are outdoor.
Similar effects can be obtained even if the pipes 28 are connected to each other and the amount of heat is supplemented to the respective outdoor heat exchangers 29a and 29b by the hot water heat source during the heating operation.

【0049】また、図3に示すように、一対の室内熱交
換器5a、5bと室内熱交換器6a、6bとをそれぞれ
並列に設け、更に同様に一対の室外熱交換器9a、9
b、あるいは室外熱交換器10a、10bとをそれぞれ
並列に設けたマルチ形、さらに室内外両熱交換器が同一
配管系統に接続された、いわゆるダブルマルチ形の空気
調和機であっても同様な効果を得ることができる。
Further, as shown in FIG. 3, a pair of indoor heat exchangers 5a, 5b and indoor heat exchangers 6a, 6b are provided in parallel, and similarly, a pair of outdoor heat exchangers 9a, 9b.
b, or a so-called double multi-type air conditioner in which the outdoor heat exchangers 10a and 10b are provided in parallel, respectively, and both indoor and outdoor heat exchangers are connected to the same piping system. The effect can be obtained.

【0050】更に、本実施例では熱交換器を2つ直列に
配置する構成であるが、これに限らず、3個または4個
熱交換器を直列に配置し、各熱交換器の間に固定抵抗と
一方向弁とを並列に配置する構成であっても同様な効果
を得ることができる。
Further, in the present embodiment, two heat exchangers are arranged in series, but the present invention is not limited to this, and three or four heat exchangers are arranged in series, and between each heat exchanger. Even if the fixed resistance and the one-way valve are arranged in parallel, the same effect can be obtained.

【0051】[0051]

【発明の効果】第1の本発明によれば、冷媒として高沸
点冷媒と低沸点冷媒とからなる非共沸混合冷媒を用いた
空気調和装置において、直列に配置された複数の熱交換
器の間に、固定抵抗と、この固定抵抗をバイパスするバ
イパス管とを配置した構成であるから、複数の熱交換器
の間における冷媒圧力の調節が簡単且つ安価にできる。
According to the first aspect of the present invention, in an air conditioner using a non-azeotropic mixed refrigerant composed of a high boiling point refrigerant and a low boiling point refrigerant as a refrigerant, a plurality of heat exchangers arranged in series are used. Since the fixed resistance and the bypass pipe that bypasses the fixed resistance are arranged between them, the refrigerant pressure between the plurality of heat exchangers can be adjusted easily and inexpensively.

【0052】即ち、固定抵抗により冷媒に所定の抵抗を
付与するだけの簡単構成で、制御機構を必要とせず、冷
媒圧力の調節が簡単且つ安価にでき、熱交換器の有効利
用が図れる。
That is, with a simple structure in which a predetermined resistance is given to the refrigerant by a fixed resistance, a control mechanism is not required, the refrigerant pressure can be adjusted easily and inexpensively, and the heat exchanger can be effectively used.

【0053】また、第2の本発明により、固定抵抗値を
設定すれば、容易に且つ最も効率的に抵抗値の設定をす
ることができる。
According to the second aspect of the present invention, if the fixed resistance value is set, the resistance value can be set easily and most efficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の空気調和機の実施例を示す冷媒回路図
である。
FIG. 1 is a refrigerant circuit diagram showing an embodiment of an air conditioner of the present invention.

【図2】本発明の他の実施例による空気調和機の冷媒回
路図である。
FIG. 2 is a refrigerant circuit diagram of an air conditioner according to another embodiment of the present invention.

【図3】本発明の他の実施例による空気調和機の冷媒回
路図である。
FIG. 3 is a refrigerant circuit diagram of an air conditioner according to another embodiment of the present invention.

【図4】本発明の実施例におけるモリエル線図である。FIG. 4 is a Mollier diagram in the example of the present invention.

【図5】本発明による固定抵抗値の決定方法を説明する
図である。
FIG. 5 is a diagram illustrating a method of determining a fixed resistance value according to the present invention.

【符号の説明】[Explanation of symbols]

3 圧縮機 5a、5b 室内熱交換器 5a、5b 室外熱交換器 15 固定抵抗 16 バイパス管 3 Compressor 5a, 5b Indoor heat exchanger 5a, 5b Outdoor heat exchanger 15 Fixed resistance 16 Bypass pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 幸治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Inoue 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高沸点冷媒と低沸点冷媒とからなる非共
沸混合冷媒を用いるとともに直列に配置された複数の熱
交換器を有する空気調和機において、 前記熱交換器と前記熱交換器との間には、これらの熱交
換器が蒸発器として作用するときに冷媒に一定の抵抗を
付与する固定抵抗と、これらの熱交換器が凝縮器として
作用するときに前記固定抵抗をバイパスして冷媒を流す
バイパス管とを設けたことを特徴とする空気調和機。
1. An air conditioner that uses a non-azeotropic mixed refrigerant composed of a high-boiling-point refrigerant and a low-boiling-point refrigerant and that has a plurality of heat exchangers arranged in series, wherein the heat exchanger and the heat exchanger are In between, a fixed resistance that gives a certain resistance to the refrigerant when these heat exchangers act as an evaporator, and a bypass of the fixed resistance when these heat exchangers act as a condenser. An air conditioner provided with a bypass pipe through which a refrigerant flows.
【請求項2】 前記非共沸混合冷媒を前記熱交換器へ送
り込む圧縮機として能力可変型のものを用い、且つ前記
固定抵抗は、この能力可変型圧縮機の能力が最大時に蒸
発器として作用している各熱交換器の入口温度が等しく
なるように抵抗値を設定したことを特徴とする請求項1
に記載の空気調和機。
2. A compressor of variable capacity is used as a compressor for feeding the non-azeotropic mixed refrigerant to the heat exchanger, and the fixed resistor acts as an evaporator when the capacity of the variable capacity compressor is maximum. 2. The resistance value is set so that the inlet temperatures of the respective heat exchangers are equalized.
Air conditioner described in.
JP6059193A 1994-03-29 1994-03-29 Air conditioner Expired - Lifetime JP3054539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6059193A JP3054539B2 (en) 1994-03-29 1994-03-29 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6059193A JP3054539B2 (en) 1994-03-29 1994-03-29 Air conditioner

Publications (2)

Publication Number Publication Date
JPH07269971A true JPH07269971A (en) 1995-10-20
JP3054539B2 JP3054539B2 (en) 2000-06-19

Family

ID=13106344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6059193A Expired - Lifetime JP3054539B2 (en) 1994-03-29 1994-03-29 Air conditioner

Country Status (1)

Country Link
JP (1) JP3054539B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005114061A3 (en) * 2004-04-19 2007-06-28 Eksigent Technologies Llc Electrokinetic pump driven heat transfer system
JP2009222357A (en) * 2008-02-18 2009-10-01 Daikin Ind Ltd Refrigeration device
WO2009130876A1 (en) * 2008-04-21 2009-10-29 ダイキン工業株式会社 Heat exchanger unit
EP2672205A3 (en) * 2012-06-06 2014-03-12 Mitsubishi Heavy Industries, Ltd. Heat exchanger system
US8979511B2 (en) 2011-05-05 2015-03-17 Eksigent Technologies, Llc Gel coupling diaphragm for electrokinetic delivery systems

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005114061A3 (en) * 2004-04-19 2007-06-28 Eksigent Technologies Llc Electrokinetic pump driven heat transfer system
US7559356B2 (en) * 2004-04-19 2009-07-14 Eksident Technologies, Inc. Electrokinetic pump driven heat transfer system
JP2009222357A (en) * 2008-02-18 2009-10-01 Daikin Ind Ltd Refrigeration device
WO2009130876A1 (en) * 2008-04-21 2009-10-29 ダイキン工業株式会社 Heat exchanger unit
JP2009257708A (en) * 2008-04-21 2009-11-05 Daikin Ind Ltd Heat exchanger unit
US8671714B2 (en) 2008-04-21 2014-03-18 Daikin Industries, Ltd. Heat exchanger unit
US8979511B2 (en) 2011-05-05 2015-03-17 Eksigent Technologies, Llc Gel coupling diaphragm for electrokinetic delivery systems
EP2672205A3 (en) * 2012-06-06 2014-03-12 Mitsubishi Heavy Industries, Ltd. Heat exchanger system

Also Published As

Publication number Publication date
JP3054539B2 (en) 2000-06-19

Similar Documents

Publication Publication Date Title
JP3540530B2 (en) Air conditioner
JP2979926B2 (en) Air conditioner
JP4922669B2 (en) Air conditioner and heat exchanger for air conditioner
JP5137933B2 (en) Air conditioner
JP2008530498A (en) HVAC system with powered supercooler
JPH06213518A (en) Heat pump type air conditioner for mixed refrigerant
JP3054539B2 (en) Air conditioner
JP2997504B2 (en) Air conditioner
JP6336066B2 (en) Air conditioner
JP4104218B2 (en) Air conditioner
JP3456871B2 (en) Refrigeration circuit with heat exchanger for refrigeration capacity control
JPH0798162A (en) Air-conditioner
JP2002195675A (en) Air conditioner
KR20050043089A (en) Heat pump
JPH1151412A (en) Indoor unit for air-conditioner, and its indoor heat exchanger
JP2020201007A (en) Refrigerant cycle system
JP7357137B1 (en) air conditioner
KR100544873B1 (en) Multi-air conditioner for both cooling and heating which air cooling efficiency is improved
JPH11264629A (en) Cross fin coil type heat exchanger
JPH10196984A (en) Air conditioner
JP2005009808A (en) Heat exchanger for air conditioner
JP7473857B1 (en) Refrigeration Cycle System
JPH08145490A (en) Heat exchanger for heat pump air conditioner
JP4608828B2 (en) Air conditioner, dehumidifier, and throttle mechanism
JPH07294042A (en) Refrigerator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees