JP2002195675A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2002195675A
JP2002195675A JP2001344787A JP2001344787A JP2002195675A JP 2002195675 A JP2002195675 A JP 2002195675A JP 2001344787 A JP2001344787 A JP 2001344787A JP 2001344787 A JP2001344787 A JP 2001344787A JP 2002195675 A JP2002195675 A JP 2002195675A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
heat
transfer tube
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001344787A
Other languages
Japanese (ja)
Other versions
JP3650358B2 (en
Inventor
Tetsuo Sano
哲夫 佐野
Hideaki Motohashi
秀明 本橋
Yasuhiro Arai
康弘 新井
Takayoshi Iwanaga
隆喜 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2001344787A priority Critical patent/JP3650358B2/en
Publication of JP2002195675A publication Critical patent/JP2002195675A/en
Application granted granted Critical
Publication of JP3650358B2 publication Critical patent/JP3650358B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner, in which the efficiency of heat exchange by heating tubes is improved, when heat exchangers are used compressor or an evaporator, and capacities of condensation and evaporation are enhanced to attain an improved cooling/heating operation. SOLUTION: Heat exchangers 3, 7, having non-azeotropic refrigerant as refrigerant, are used respectively as an evaporator or a condenser in the cooling mode or heating mode. In the heat exchangers, there are provided heating tubes, having a co-current refrigerant flow with the air flow passing through the heat exchangers 3, 7 and heating-tubes having a flow which becomes counter flow to the air flow.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、冷媒に非共沸混合冷
媒を用いた空気調和装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner using a non-azeotropic mixed refrigerant as a refrigerant.

【0002】[0002]

【従来の技術】一般に空気調和装置にあっては、圧縮機
と利用側熱交換器と減圧装置と熱源側熱交換器とにより
構成され、冷房モード時には、利用側熱交換器を蒸発器
として、熱源側熱交換器を凝縮器として使用する。ま
た、暖房モード時には、利用側熱交換器を凝縮器とし
て、熱源側熱交換器を蒸発器として使用する冷凍サイク
ルが構成され、サイクル内を冷媒が循環するようになっ
ている。
2. Description of the Related Art Generally, an air conditioner is composed of a compressor, a use side heat exchanger, a decompression device, and a heat source side heat exchanger. In a cooling mode, the use side heat exchanger is used as an evaporator. The heat source side heat exchanger is used as a condenser. In the heating mode, a refrigeration cycle is configured in which the use-side heat exchanger is used as a condenser and the heat-source-side heat exchanger is used as an evaporator, and the refrigerant circulates in the cycle.

【0003】[0003]

【発明が解決しようとする課題】冷凍サイクル内を循環
する冷媒は、一般にフロンガスが用いられ、地球環境に
悪影響を与える所から全廃される方向にあり、その代替
用として、地球環境に優しい非共沸混合冷媒が有力視さ
れている。
The refrigerant circulating in the refrigeration cycle generally uses chlorofluorocarbon gas and tends to be completely eliminated from places that have a bad influence on the global environment. Boiling mixed refrigerants are considered promising.

【0004】非共沸混合冷媒は、冷凍サイクルにおい
て、各冷媒の沸点の違いにより、蒸発過程、凝縮過程に
おいて蒸発温度、凝縮温度が変化する現象がある。これ
を温度勾配という。
[0004] The non-azeotropic refrigerant mixture has a phenomenon that in the refrigeration cycle, the evaporation temperature and the condensation temperature change in the evaporation process and the condensation process due to the difference in the boiling point of each refrigerant. This is called a temperature gradient.

【0005】冷媒回路の蒸発器では、冷媒液は気液平衡
を保ちながら冷媒蒸気となる。この間、蒸発温度は次第
に上昇していく。凝縮器では全くこの逆で、凝縮温度は
次第に低下していく。一方、空気は蒸発器では熱を奪わ
れて低温となり、凝縮器では熱を得て高温となる。これ
らの温度関係をまとめると表ー1の如くとなる。
[0005] In the evaporator of the refrigerant circuit, the refrigerant liquid becomes refrigerant vapor while maintaining the gas-liquid equilibrium. During this time, the evaporation temperature gradually rises. In a condenser, the opposite is true, and the condensation temperature gradually decreases. On the other hand, the air is deprived of heat in the evaporator and becomes low temperature, and the air obtains heat and becomes high temperature in the condenser. Table 1 summarizes these temperature relationships.

【0006】[0006]

【表1】 この非共沸混合冷媒の冷媒回路は、対向流方式の熱交換
を行なうことにより、相変化の温度が濃度に依存する特
性を利用して冷媒を冷気流体、あるいは加熱流体との熱
交換損失を減少させ、成績係数を向上させることができ
る。対向流方式とは、空気流に対して、冷媒の入口が最
も風下の列にあり、出口が最も風上の列にあって、冷媒
の風下の列から順次風上の列に流れるように配置された
場合をいう。これと逆の場合を並行流方式とよばれてお
り、凝縮器として用いる時に、対向流とする特開昭53
−104456号公報や、冷房モード時、暖房モード時
に対向流となるよう構成する特開昭59−115945
号公報及び特開昭63−302264号公報のものが提
案されている。
[Table 1] The refrigerant circuit of this non-azeotropic mixed refrigerant performs heat exchange in a counter-flow system, thereby utilizing the characteristic that the phase change temperature depends on the concentration to reduce the heat exchange loss of the refrigerant with a cool air fluid or a heated fluid. Can be reduced and the coefficient of performance can be improved. In the counterflow method, the inlet of the refrigerant is in the most leeward row, the outlet is in the most leeward row, and the refrigerant is arranged so that the refrigerant flows sequentially from the leeward row to the leeward row. This is the case. The reverse case is called a parallel flow system, and when used as a condenser, a counter flow is used.
Japanese Patent Application Laid-Open No. Sho.
And JP-A-63-302264 have been proposed.

【0007】しかしながら、前者にあっては、利用側熱
交換器を凝縮器として用いる時に、対向流として設定す
ると、蒸発器として用いる時は並行流となるため、冷房
モード時での熱交換効率が低下する問題を招来する。
However, in the former case, when the use side heat exchanger is used as a condenser, if it is set as a counter flow, the flow becomes parallel when used as an evaporator, so that the heat exchange efficiency in the cooling mode is reduced. This leads to a deteriorating problem.

【0008】また、後者にあっては、冷媒の流れを制御
する制御弁、回路等が増えて複雑化し、組付性、コスト
性の面において望ましくなく、しかも複雑化すること
で、流動抵抗などによる効率損失が起こる問題がある。
In the case of the latter, the number of control valves and circuits for controlling the flow of the refrigerant is increased and complicated, which is not desirable in terms of assemblability and cost performance. There is a problem that efficiency loss occurs due to

【0009】また、温度勾配のある冷媒を用いた際に、
考慮しなければならない事項に、対向流または並行流に
よる純伝熱現象的な熱交換率の変化以外に、空気を冷却
する熱交換器(蒸発器)として用いる場合、被冷却空気
中の水蒸気の結露による通風抵抗の増加を生じ、通風量
の低下による熱交換量の低下を考慮しなければならな
い。蒸発器におけるフィンと入口空気温度の差が大きく
なる並行流空気中の水蒸気は、フィン前端部表面に集中
して結露し、フィン間の通路を狭くし、風量低下による
熱交換量の低下も生じる。逆に小さくなる対向流ではフ
ィン前端部への水蒸気結露量は前者より減少し中央から
後端にかけてより平均的に結露することが知られてい
る。
When a refrigerant having a temperature gradient is used,
In addition to the change in heat exchange rate due to the pure heat transfer phenomenon due to the counterflow or parallel flow, it is necessary to consider that when used as a heat exchanger (evaporator) for cooling air, the water vapor in the air to be cooled is Consideration must be given to the reduction in heat exchange due to the reduction in ventilation due to the increase in ventilation resistance due to condensation. Water vapor in the parallel flow air where the difference between the fin and the inlet air temperature in the evaporator becomes large condensed and condensed on the front end surface of the fin, narrowing the passage between the fins, and reducing the amount of heat exchange due to the decrease in air volume . On the contrary, it is known that, in the case of the opposed flow which becomes smaller, the amount of water vapor dew condensation on the front end of the fin is smaller than that of the former, and dew condensation is more averaged from the center to the rear end.

【0010】そこで、この発明は、簡単な構造によっ
て、効率の良い冷房運転及び暖房運転ができるようにし
た空気調和装置を提供することを目的としている。
Accordingly, an object of the present invention is to provide an air conditioner capable of performing efficient cooling operation and heating operation with a simple structure.

【0011】[0011]

【課題を解決するための手段】前記目的を達成するため
に、この発明の請求項1にあっては、冷房モード時又は
暖房モード時に、熱交換器を蒸発器として、あるいは凝
縮器として使用する非共沸混合冷媒を用いた空気調和装
置において、凝縮器として使用する熱交換器は、熱交換
器を通過する空気流に対して冷媒の流れ方向が並行流と
なる伝熱管と、対向流となる伝熱管とを備えたことを特
徴とする。
According to the first aspect of the present invention, a heat exchanger is used as an evaporator or a condenser in a cooling mode or a heating mode. In an air conditioner using a non-azeotropic mixed refrigerant, a heat exchanger used as a condenser has a heat transfer tube in which the flow direction of the refrigerant is parallel to an air flow passing through the heat exchanger, and a counter flow. And a heat transfer tube.

【0012】請求項2にあっては、冷房モード時又は暖
房モード時に、熱交換器を蒸発器として、あるいは凝縮
器として使用する非共沸混合冷媒を用いた空気調和装置
において、蒸発器として使用する熱交換器は、熱交換器
を通過する空気流に対して冷媒の流れ方向が並行流とな
る伝熱管と、対向流となる伝熱管とを備えたことを特徴
とする。
According to a second aspect of the present invention, in a cooling mode or a heating mode, the heat exchanger is used as an evaporator in an air conditioner using a non-azeotropic mixed refrigerant used as an evaporator or a condenser. The heat exchanger includes a heat transfer tube in which the flow direction of the refrigerant is parallel to the air flow passing through the heat exchanger, and a heat transfer tube in which the flow direction is counter flow.

【0013】請求項3にあっては、熱交換器の伝熱管の
冷媒入口と冷媒出口とを、熱交換器を通過する空気流に
対して風上側で、かつ、同一位置の配置構造としたこと
を特徴とする。
According to a third aspect of the present invention, the refrigerant inlet and the refrigerant outlet of the heat transfer tube of the heat exchanger are arranged on the windward side of the airflow passing through the heat exchanger and at the same position. It is characterized by the following.

【0014】請求項4にあっては、前記熱交換器の伝熱
管の冷媒入口と冷媒出口とを近接させたことを特徴とす
る。
According to a fourth aspect of the present invention, the refrigerant inlet and the refrigerant outlet of the heat transfer tube of the heat exchanger are close to each other.

【0015】[0015]

【作用】かかる空気調和装置において、請求項1にあっ
ては、凝縮器として使用する熱交換器は、並行流で熱交
換効率が少し低下するが、対向流で凝縮液の過冷却が効
率よくとれて熱交換効率が向上し、総合的に凝縮能力を
確保し、簡単な構造で効率の高い冷房運転、暖房運転が
行える。
In such an air conditioner, the heat exchanger used as a condenser has a slightly reduced heat exchange efficiency in a parallel flow, but the supercooled condensate is efficiently cooled in a counter flow. As a result, heat exchange efficiency is improved, condensing capacity is secured comprehensively, and efficient cooling and heating operations can be performed with a simple structure.

【0016】また、請求項2にあっては、蒸発器として
使用する熱交換器は、並行流で熱交換効率が少し低下す
るが、対向流で熱交換効率が向上し、総合的に蒸発能力
を確保し、簡単な構造で効率の高い冷房運転、暖房運転
が行える。
According to the second aspect of the present invention, in the heat exchanger used as the evaporator, the heat exchange efficiency is slightly lowered in the parallel flow, but the heat exchange efficiency is improved in the counter flow, and the overall evaporation capacity is improved. And efficient cooling and heating operations can be performed with a simple structure.

【0017】また、請求項3にあっては、熱交換器の伝
熱管の冷媒入口と冷媒出口とを熱交換器を通過する空気
流に対して風上側で、かつ、同一位置の配置構造とした
ので、凝縮器として使用するときには、伝熱管の冷媒入
口と冷媒出口が、風上側の温度の低い空気と熱交換する
ため簡単な構造で過冷却が確実にとれるようになるとと
もに、蒸発器として使用するときには、伝熱管の冷媒入
口と冷媒出口が、風上側の温度の高い空気と熱交換する
ために適正な過熱度がとれ、湿り冷媒が圧縮機に戻るこ
とによる効率低下および圧縮機の寿命低下等の問題を簡
単な構造で解消できる。
According to the third aspect of the present invention, the refrigerant inlet and the refrigerant outlet of the heat transfer tube of the heat exchanger are arranged on the windward side of the airflow passing through the heat exchanger and at the same position. Therefore, when used as a condenser, the refrigerant inlet and refrigerant outlet of the heat transfer tube exchange heat with low-temperature air on the windward side, so that supercooling can be reliably achieved with a simple structure, and as an evaporator. When used, the refrigerant inlet and the refrigerant outlet of the heat transfer tube have an appropriate degree of superheat to exchange heat with high-temperature air on the windward side, and the efficiency of the compressor decreases due to the return of the wet refrigerant to the compressor and the life of the compressor. Problems such as deterioration can be solved with a simple structure.

【0018】また、請求項4にあっては、蒸発器として
使用する熱交換器の伝熱管の冷媒入口と冷媒出口とを近
接させたので、相互に熱交換し、低温度運転時に発生す
る着霜、凍結現象、あるいは結露現象が解消される結
果、簡単な構造で効率のよい通風量が確保できる。
In the present invention, since the refrigerant inlet and the refrigerant outlet of the heat transfer tube of the heat exchanger used as the evaporator are brought close to each other, heat exchange occurs between the refrigerant and the heat generated during the low temperature operation. As a result of eliminating the frost, freezing phenomenon, or condensation phenomenon, it is possible to secure an efficient ventilation with a simple structure.

【0019】[0019]

【実施例】以下、図面を参照しながらこの発明の実施例
を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0020】まず、図1と図2に基づき説明すると、図
1は冷媒に、例えば、R32とR134a等の非共沸混
合冷媒が用いられたヒートポンプタイプの空気調和装置
の配管図を示している。
First, referring to FIGS. 1 and 2, FIG. 1 shows a piping diagram of a heat pump type air conditioner using a non-azeotropic mixed refrigerant such as R32 and R134a as the refrigerant. .

【0021】空気調和装置は、圧縮機1と、利用側熱交
換器3と、減圧装置5と、熱源側熱交換器7とを有し、
冷・暖房モードに応じて四方弁9を操作することで、圧
縮機1から吐出される冷媒は、点線矢印の如く利用側熱
交換器3側へ、または、実線矢印の如く熱源側熱交換器
7側へ向かう流れの冷凍サイクルを構成するようにな
り、運転モードに対応した切換制御が可能となってい
る。
The air conditioner includes a compressor 1, a use side heat exchanger 3, a pressure reducing device 5, and a heat source side heat exchanger 7.
By operating the four-way valve 9 in accordance with the cooling / heating mode, the refrigerant discharged from the compressor 1 is directed to the use-side heat exchanger 3 as indicated by a dotted arrow, or to the heat source-side heat exchanger as indicated by a solid arrow. A refrigeration cycle having a flow toward the side 7 is configured, and switching control corresponding to the operation mode is possible.

【0022】利用側熱交換器3は、連続した伝熱管11
と所定のピッチで配置されたフィン13とから成り、冷
媒が実線矢印の如く回路15内を流れることで、蒸発器
として機能する一方、点線矢印の如く冷媒が流れること
で、凝縮器として機能する。
The use side heat exchanger 3 includes a continuous heat transfer tube 11
And the fins 13 arranged at a predetermined pitch. The refrigerant functions as an evaporator when the refrigerant flows through the circuit 15 as indicated by a solid arrow, and functions as a condenser when the refrigerant flows as indicated by a dotted arrow. .

【0023】空気流は横流ファン17が回転することで
矢印の如く流れ、フィン13の間を通過するようになっ
ており、a側が風上側、b側が風下側となっている。
The air flow flows as shown by the arrow as the cross flow fan 17 rotates, and passes between the fins 13. The a side is the leeward side and the b side is the leeward side.

【0024】また、利用側熱交換器3の伝熱管11の風
上a側の端末部19は、四方弁9と、伝熱管11の風下
b側の端末部21は、減圧装置5とそれぞれ接続連通し
ている。これにより、冷房モード時において、風下b側
の端末部21は、冷媒の入口側、風上a側の端末部19
は出口側となる対向流となるよう設定され、暖房モード
時には、風上a側の端末部19は冷媒の入口側、風下b
側の端末部21は出口側となる並行流となるよう設定さ
れている。
A terminal 19 on the windward a side of the heat transfer tube 11 of the use side heat exchanger 3 is connected to the four-way valve 9, and a terminal 21 on the leeward b side of the heat transfer tube 11 is connected to the pressure reducing device 5. Communicating. Thereby, in the cooling mode, the terminal portion 21 on the leeward side b is connected to the terminal portion 19 on the leeward side of the refrigerant.
Is set to be a counter flow on the outlet side, and in the heating mode, the terminal portion 19 on the upwind side a is on the inlet side of the refrigerant,
The terminal 21 on the side is set to be in a parallel flow on the exit side.

【0025】熱源側熱交換器7は、連続した伝熱管23
と所定のピッチで配置されたフィン25とから成り、冷
媒が実線矢印の如く回路15内を流れることで凝縮器と
して機能する一方、点線矢印の如く冷媒が流れること
で、蒸発器として機能する。空気流はファン27が回転
することで矢印の如く流れ、フィン25の間を通過する
ようになっており、a側が風上側、b側が風下側となっ
ている。
The heat source side heat exchanger 7 includes a continuous heat transfer tube 23
And the fins 25 arranged at a predetermined pitch. The refrigerant functions as a condenser by flowing through the circuit 15 as indicated by a solid arrow, and functions as an evaporator by flowing the refrigerant as indicated by a dotted arrow. The air flow flows as indicated by the arrow as the fan 27 rotates, and passes between the fins 25. The a side is the leeward side and the b side is the leeward side.

【0026】また、熱源側熱交換器7の伝熱管23の風
上a側の端末部29は、四方弁9と、伝熱管23の風下
b側の端末部31は、減圧装置5とそれぞれ接続連通し
ている。これにより冷房モード時において、風上a側の
端末部29は冷媒の入口側、風下側の端末部31は出口
側となる並行流となるよう設定され、暖房モード時に
は、風下b側の端末部31は冷媒の入口側、風上a側の
端末部29は出口側となる対向流となるよう設定されて
いる。
A terminal 29 on the windward a side of the heat transfer tube 23 of the heat source side heat exchanger 7 is connected to the four-way valve 9, and a terminal 31 on the leeward b side of the heat transfer tube 23 is connected to the pressure reducing device 5. Communicating. Thus, in the cooling mode, the terminal section 29 on the leeward side a is set to be in parallel with the inlet side of the refrigerant and the terminal section 31 on the leeward side is in the outlet side. In the heating mode, the terminal part on the leeward side b is set. Numeral 31 is set so that the terminal portion 29 on the inlet side of the refrigerant and on the windward side a has an opposite flow on the outlet side.

【0027】このように構成された空気調和装置におい
て、冷房モード時は、圧縮機1から吐出した高温・高圧
の冷媒蒸気は、四方弁9を介して熱源側熱交換器7に入
り、室外空気に放熱して凝縮する。凝縮した冷媒は減圧
装置5で減圧され低温・低圧となり利用側熱交換器3で
室内空気から吸熱して気化する。気化した冷媒は圧縮機
1に吸入され、再び高温・高圧の蒸気になって、冷凍サ
イクルを繰返すようになる。一方、ヒートポンプ暖房モ
ード時は、圧縮機1から吐出した高温・高圧の冷媒蒸気
は四方弁9を介してまず利用側熱交換器3に入り、室内
空気に放熱して凝縮する。凝縮した冷媒は減圧装置5で
減圧され低温・低圧となり熱源側熱交換器7で室外空気
から吸熱して気化する。気化した冷媒は圧縮機1に吸入
され、再び高温・高圧の蒸気になって、暖房サイクルを
繰返すようになる。
In the air conditioner thus configured, in the cooling mode, the high-temperature and high-pressure refrigerant vapor discharged from the compressor 1 enters the heat source side heat exchanger 7 through the four-way valve 9, and the outdoor air Heat and condense. The condensed refrigerant is decompressed by the decompression device 5, becomes low temperature and low pressure, and absorbs heat from indoor air in the use side heat exchanger 3 to be vaporized. The vaporized refrigerant is sucked into the compressor 1, becomes high-temperature and high-pressure vapor again, and repeats the refrigeration cycle. On the other hand, in the heat pump heating mode, the high-temperature and high-pressure refrigerant vapor discharged from the compressor 1 first enters the use side heat exchanger 3 via the four-way valve 9 and radiates heat to room air to be condensed. The condensed refrigerant is decompressed by the decompression device 5 to become low temperature and low pressure, and the heat source side heat exchanger 7 absorbs heat from the outdoor air to vaporize. The vaporized refrigerant is sucked into the compressor 1, becomes high-temperature and high-pressure steam again, and repeats the heating cycle.

【0028】この冷房モード時及び暖房モード時におい
て、利用側熱交換器3及び熱源側熱交換器7がいずれも
蒸発器として使用する運転モード時にあっては、対向流
になると共に、凝縮器として使用する場合は並行流とな
る。この場合、対向流となる蒸発器にあっては、入口
側、出口側の温度差が小さいため、フィン前端部への水
蒸気結露量は全体的に小さく抑えられ、通風量の減少は
見られず、総合的に効率の高い冷・暖房運転が行なえる
ようになる。
In the cooling mode and the heating mode, in the operation mode in which both the use-side heat exchanger 3 and the heat-source-side heat exchanger 7 are used as evaporators, the flow becomes countercurrent, and the heat exchanger 3 operates as a condenser. When used, it is a parallel flow. In this case, since the temperature difference between the inlet side and the outlet side is small in the evaporator having the counterflow, the amount of water vapor dew condensation on the front end of the fin is suppressed to be small as a whole, and no decrease in the ventilation amount is observed. In this way, the cooling and heating operation with high efficiency can be performed comprehensively.

【0029】その結果を、図2に示す。図2において凝
縮器にあっては、構成上、並行流となりマイナスとなる
が、これは、フィンの枚数を増やすことで、回復可能な
値である。
FIG. 2 shows the result. In FIG. 2, in the condenser, the flow becomes parallel due to the configuration and becomes negative, but this is a value that can be recovered by increasing the number of fins.

【0030】一般には、フィンの枚数を増やすと、蒸発
器として使用する時に、通風抵抗が増加し、性能の低下
が認められるが、この発明にあっては、対向流とするこ
とで、通風量の向上が図れるため、凝縮器として使用時
の性能改善が十分達成できる。
In general, when the number of fins is increased, ventilation resistance increases when the fin is used as an evaporator, and performance is reduced. Therefore, the performance when used as a condenser can be sufficiently improved.

【0031】図3は本発明に係る空気調和装置の配管図
を示したもので、冷媒の冷媒入口と冷媒出口との配置構
造に特徴をもたせたものである。
FIG. 3 shows a piping diagram of an air conditioner according to the present invention, which is characterized by the arrangement of a refrigerant inlet and a refrigerant outlet.

【0032】即ち、利用側熱交換器3の伝熱管11の冷
媒入口及び冷媒出口となる端末部19,21と、熱源側
熱交換器7の伝熱管23の冷媒入口及び冷媒出口となる
端末部29,31とを、それぞれ風上a側に配置し、風
上a側において、図面垂直軸線に対して同一位置で、し
かも、近接した配置構造とするものである。
That is, terminals 19 and 21 serving as a refrigerant inlet and a refrigerant outlet of the heat transfer tube 11 of the use side heat exchanger 3 and terminal portions serving as a refrigerant inlet and a refrigerant outlet of the heat transfer tube 23 of the heat source side heat exchanger 7. 29 and 31 are arranged on the windward a side, respectively, and on the windward a side, they are arranged at the same position and close to the vertical axis in the drawing.

【0033】利用側熱交換器3の伝熱管11において、
一方の端末部19は、四方弁を介して熱源側熱交換器7
となる伝熱管23の一方の端末部29と、他方の端末部
21は、減圧装置5を介して熱源側熱交換器7となる伝
熱管23の他方の端末部31とそれぞれ接続し、閉サイ
クルを構成している。
In the heat transfer tube 11 of the use side heat exchanger 3,
One terminal 19 is connected to the heat source side heat exchanger 7 through a four-way valve.
One end portion 29 of the heat transfer tube 23 and the other end portion 21 are connected to the other end portion 31 of the heat transfer tube 23 serving as the heat source side heat exchanger 7 via the decompression device 5, respectively. Is composed.

【0034】したがって、利用側熱交換器3と熱源側熱
交換器7は、冷房モード時あるいは、暖房モード時に、
圧縮機1から吐出された冷媒が四方弁9を介して実線矢
印、あるいは、点線矢印のように流れることで、蒸発器
として、あるいは、凝縮器としてそれぞれ機能するよう
になっている。
Therefore, the use-side heat exchanger 3 and the heat-source-side heat exchanger 7 are connected in the cooling mode or the heating mode.
When the refrigerant discharged from the compressor 1 flows through the four-way valve 9 as shown by a solid arrow or a dotted arrow, the refrigerant functions as an evaporator or a condenser.

【0035】この点について、まず、利用側熱交換器3
について具体的に説明する。
Regarding this point, first, the use side heat exchanger 3
Will be specifically described.

【0036】冷房モード時には冷媒が実線矢印の如く流
れることで、蒸発器として機能し、伝熱管11の端末部
21は冷媒入口、端末部19は冷媒出口となる。この時
の伝熱管11についてみると、図において冷媒入口とな
る端末部21を含む平行に配置された伝熱管11の下半
部が、熱交換器3を通過する空気流に対して冷媒の流れ
方向が並行流となる伝熱管領域となっている。また、冷
媒出口となる端末部19を含む平行に配置された伝熱管
11の上半部が、熱交換器3を通過する空気流に対して
冷媒の流れ方向が対向流となる伝熱管領域となってい
る。
In the cooling mode, the refrigerant flows as indicated by the solid arrows, thereby functioning as an evaporator. The terminal 21 of the heat transfer tube 11 serves as a refrigerant inlet, and the terminal 19 serves as a refrigerant outlet. Looking at the heat transfer tube 11 at this time, the lower half of the heat transfer tube 11 disposed in parallel with the terminal portion 21 serving as the refrigerant inlet in the drawing shows the flow of the refrigerant with respect to the air flow passing through the heat exchanger 3. The direction is a heat transfer tube region in which the flow is parallel. In addition, the upper half of the heat transfer tube 11 disposed in parallel with the terminal portion 19 serving as a refrigerant outlet is provided with a heat transfer tube region in which the flow direction of the refrigerant is opposite to the air flow passing through the heat exchanger 3. Has become.

【0037】一方、暖房モード時に、圧縮機1から吐出
された冷媒が点線矢印のように流れることで、利用側熱
交換器3は凝縮器として機能し、伝熱管11の端末部1
9は冷媒入口、端末部21は冷媒出口となる。この時の
伝熱管11についてみると、図において、冷媒入口とな
る端末部19を含む平行に配置された上半部が、熱交換
器3を通過する空気流に対して冷媒の流れ方向が並行流
となる伝熱管領域となっている。また、冷媒出口となる
端末部21を含む平行に配置された下半部が、熱交換器
3を通過する空気流に対して冷媒の流れ方向が対向流と
なる伝熱管領域となっている。
On the other hand, in the heating mode, the refrigerant discharged from the compressor 1 flows as shown by a dotted arrow, so that the use-side heat exchanger 3 functions as a condenser,
Reference numeral 9 denotes a refrigerant inlet, and the terminal 21 is a refrigerant outlet. Referring to the heat transfer tube 11 at this time, in the figure, the upper half arranged in parallel with the terminal portion 19 serving as the refrigerant inlet has the refrigerant flowing direction parallel to the air flow passing through the heat exchanger 3. It is a heat transfer tube area that becomes a flow. In addition, the lower half arranged in parallel with the terminal portion 21 serving as the refrigerant outlet is a heat transfer tube region in which the flow direction of the refrigerant is opposite to the flow of air passing through the heat exchanger 3.

【0038】次に、熱源側熱交換器7について具体的に
説明する。
Next, the heat source side heat exchanger 7 will be specifically described.

【0039】冷房モード時には冷媒が実線矢印の如く流
れることで、凝縮器として機能し、伝熱管23の端末部
29は冷媒入口、端末部31は冷媒出口となる。この時
の伝熱管23についてみると、図において冷媒入口とな
る端末部29を含む平行に配置された伝熱管23の上半
部が、熱交換器7を通過する空気流に対して冷媒の流れ
方向が並行流となる伝熱管領域となっている。また、冷
媒出口となる端末部31を含む平行に配置された伝熱管
23の下半部が、熱交換器7を通過する空気流に対して
冷媒の流れ方向が対向流となる伝熱管領域となってい
る。
In the cooling mode, the refrigerant flows as indicated by the solid line arrow, thereby functioning as a condenser. The terminal 29 of the heat transfer tube 23 serves as a refrigerant inlet, and the terminal 31 serves as a refrigerant outlet. Referring to the heat transfer tube 23 at this time, the upper half of the heat transfer tube 23 disposed in parallel with the terminal portion 29 serving as the refrigerant inlet in the drawing shows the flow of the refrigerant with respect to the air flow passing through the heat exchanger 7. The direction is a heat transfer tube region in which the flow is parallel. In addition, the lower half of the heat transfer tube 23 disposed in parallel with the terminal portion 31 serving as a refrigerant outlet is a heat transfer tube region where the flow direction of the refrigerant is in the counterflow with respect to the air flow passing through the heat exchanger 7. Has become.

【0040】一方、暖房モード時に、圧縮機1から吐出
された冷媒が点線矢印のように流れることで、熱源側熱
交換器7は蒸発器として機能し、伝熱管23の端末部3
1は冷媒入口、端末部29は冷媒出口となる。この時の
伝熱管23についてみると、図において、冷媒入口とな
る端末部31を含む平行に配置された下半部が、熱交換
器7を通過する空気流に対して冷媒の流れ方向が並行流
となる伝熱管領域となっている。また、冷媒出口となる
端末部29を含む平行に配置された上半部が熱交換器7
を通過する空気流に対して冷媒の流れ方向が対向流とな
る伝熱管領域となっている。
On the other hand, in the heating mode, the refrigerant discharged from the compressor 1 flows as indicated by the dotted arrow, so that the heat source side heat exchanger 7 functions as an evaporator,
1 is a refrigerant inlet, and the terminal part 29 is a refrigerant outlet. Referring to the heat transfer tube 23 at this time, in the figure, the lower half arranged in parallel with the terminal portion 31 serving as the refrigerant inlet has a flow direction of the refrigerant parallel to the air flow passing through the heat exchanger 7. It is a heat transfer tube area that becomes a flow. The upper half arranged in parallel with the terminal part 29 serving as a refrigerant outlet is the heat exchanger 7.
The flow direction of the refrigerant is a heat transfer tube region in which the flow direction is opposite to the air flow passing through the heat transfer tube.

【0041】したがって、熱交換器3又は7を凝縮器と
して使用する時に、並行流となる伝熱管11,23によ
り、熱交換効率が少し低下するが、対向流で凝縮液の過
冷却が効率よくとれて熱交換効率が向上し、総合的に凝
縮能力を確保し、簡単な構造で効率の高い冷房運転、暖
房運転が行えるようになる。
Therefore, when the heat exchanger 3 or 7 is used as a condenser, the heat exchange efficiency is slightly reduced by the heat transfer tubes 11 and 23 which are in a parallel flow, but the supercooling of the condensate is efficiently performed by the counter flow. As a result, the heat exchange efficiency is improved, the condensing capacity is secured comprehensively, and efficient cooling and heating operations can be performed with a simple structure.

【0042】また、熱交換器3又は7を蒸発器として使
用する時に並行流となる伝熱管11,23により、熱交
換効率が少し低下するが、対向流で熱交換効率が向上
し、総合的に蒸発能力を確保し、簡単な構造で効率の高
い冷房運転、暖房運転が行えるようになる。
When the heat exchanger 3 or 7 is used as an evaporator, the heat exchange efficiency is slightly reduced by the heat transfer tubes 11 and 23 which are in a parallel flow, but the heat exchange efficiency is improved by the counter flow and the overall flow is improved. As a result, a high efficiency cooling and heating operation can be performed with a simple structure.

【0043】一方、例えば、利用側熱交換器3の伝熱管
11の冷媒入口と冷媒出口とを熱交換器3を通過する空
気流に対して風上a側で、かつ、同一位置としたので、
凝縮器として使用するときには、伝熱管11の冷媒入口
19と冷媒出口21が、風上a側の温度の低い空気と熱
交換するため簡単な構造で過冷却が確実にとれるように
なる。蒸発器として使用するときには、伝熱管11の冷
媒入口21と冷媒出口19が、風上a側の温度の高い空
気と熱交換するために適正な過熱度がとれ、湿り冷媒が
圧縮機1に戻ることによる効率低下および圧縮機1の寿
命低下等の問題を簡単な構造で解消できる。
On the other hand, for example, the refrigerant inlet and the refrigerant outlet of the heat transfer tube 11 of the use side heat exchanger 3 are located on the windward side with respect to the airflow passing through the heat exchanger 3 and at the same position. ,
When used as a condenser, the refrigerant inlet 19 and the refrigerant outlet 21 of the heat transfer tube 11 exchange heat with low-temperature air on the windward a side, so that supercooling can be reliably achieved with a simple structure. When used as an evaporator, the refrigerant inlet 21 and the refrigerant outlet 19 of the heat transfer tube 11 have an appropriate degree of superheat for exchanging heat with high-temperature air on the windward a side, and the wet refrigerant returns to the compressor 1. Thus, problems such as a reduction in efficiency and a reduction in the life of the compressor 1 can be solved with a simple structure.

【0044】また、熱交換器3又は7を、例えば、蒸発
器として使用する時に、伝熱管11の冷媒入口及び冷媒
出口となる端末部19,21と端末部29,31とをそ
れぞれ近接させたので、冷媒入口及び冷媒出口相互に熱
交換が行なわれ、低温度運転時に発生する着霜、凍結現
象、あるいは結露現象が解消される結果、簡単な構造で
効率のよい通風量が確保できるようになる。
When the heat exchanger 3 or 7 is used, for example, as an evaporator, the terminals 19 and 21 serving as the refrigerant inlet and the refrigerant outlet of the heat transfer tube 11 and the terminals 29 and 31 are brought close to each other. Therefore, heat exchange is performed between the refrigerant inlet and the refrigerant outlet, and frosting, freezing phenomenon, or dew condensation phenomenon that occurs during low temperature operation is eliminated, so that an efficient ventilation amount can be secured with a simple structure. Become.

【0045】この場合、図4及び図5に示す手段を採用
することで、さらに能力の向上が図れる。即ち、伝熱管
11,23の各端末部19・21,29・31を風上a
側に配置し、伝熱管11側にあっては、各端末部19,
21を離して配置し、一方の端末部21を、風上a側の
伝熱管11に隣設させる。また、他方の伝熱管23側に
あっては、各端末部29,31を離して配置し、一方の
端末部31を、風上a側の伝熱管23に隣設し、利用
側、熱源側熱交換器3,7を蒸発器として使用する際
に、空気流に対し、冷媒の入口側を風上に設けた並行流
にすると共に、冷媒の出口側が風上a側に配置され、一
部出口側領域を対向流とするものである。
In this case, by adopting the means shown in FIGS. 4 and 5, the capability can be further improved. That is, the terminal portions 19, 21, 29, 31 of the heat transfer tubes 11, 23 are moved upwind a.
On the heat transfer tube 11 side, each terminal portion 19,
The heat transfer tubes 11 are arranged apart from each other, and one terminal portion 21 is disposed adjacent to the heat transfer tube 11 on the windward side a. On the other side of the heat transfer tube 23, the terminal portions 29 and 31 are arranged apart from each other, and one terminal portion 31 is provided adjacent to the heat transfer tube 23 on the windward a side, and the use side and the heat source side. When the heat exchangers 3 and 7 are used as evaporators, the inlet side of the refrigerant is parallel to the air flow provided on the windward side, and the outlet side of the refrigerant is arranged on the windward side a. The outlet side region is a counter flow.

【0046】なお、他の構成要件は、前記実施例と同一
であり、同一符号を符して説明は省略する。
The other components are the same as those in the above embodiment, and the same reference numerals are used and the description is omitted.

【0047】この実施例によれば、図3の実施例の効果
に加えて、入口側のもっとも低い伝熱管に近接して蒸発
器出口側が配設されるため、入口側からの熱の影響がな
くなり、冷却能力の損失が小さく抑えられる。したがっ
て、図6に示す実線の如く、入口側のフィン温度が上昇
し、出口側のフィン温度が低下することにより効率よく
フィン温度の平均化が図れるメリットがある。
According to this embodiment, in addition to the effect of the embodiment of FIG. 3, since the evaporator outlet side is arranged close to the lowest heat transfer tube on the inlet side, the influence of heat from the inlet side is reduced. And the loss of cooling capacity is kept small. Therefore, as shown by the solid line in FIG. 6, there is an advantage that the fin temperature on the inlet side increases and the fin temperature on the outlet side decreases, so that the fin temperatures can be efficiently averaged.

【0048】[0048]

【発明の効果】以上、説明したように、この発明の請求
項1によれば、熱交換器を凝縮器として使用する際に、
並行流で熱交換効率が少し低下するが、対向流で凝縮液
の過冷却が効率よくとれて熱交換効率が向上し、総合的
に凝縮能力を確保し、簡単な構造で効率の高い冷房運
転、暖房運転を行なうことができる。
As described above, according to the first aspect of the present invention, when the heat exchanger is used as a condenser,
The heat exchange efficiency is slightly reduced by the parallel flow, but the condensed liquid is efficiently supercooled by the counter flow to improve the heat exchange efficiency. , Heating operation can be performed.

【0049】また、この発明の請求項2によれば、熱交
換器を蒸発器として使用する際に、並行流で熱交換効率
が少し低下するが、対向流で熱交換効率が向上し、総合
的に蒸発能力を確保し、簡単な構造で効率の高い冷房運
転、暖房運転を行なうことができる。
According to the second aspect of the present invention, when the heat exchanger is used as an evaporator, the heat exchange efficiency is slightly reduced in the parallel flow, but the heat exchange efficiency is improved in the counter flow, and Efficient cooling operation and heating operation can be performed with a simple structure by ensuring evaporation efficiency.

【0050】また、この発明の請求項3によれば、熱交
換器の伝熱管の冷媒入口と冷媒出口とを、熱交換器を通
過する空気流に対して風上側で、かつ、同一位置とした
ので、凝縮器として使用するときには、伝熱管の冷媒入
口と冷媒出口が、風上側の温度の低い空気と熱交換する
ため簡単な構造で過冷却が確実にとれるようになるとと
もに、蒸発器として使用するときには、伝熱管の冷媒入
口と冷媒出口が、風上側の温度の高い空気と熱交換する
ために適正な過熱度がとれ、湿り冷媒が圧縮機に戻るこ
とによる効率低下および圧縮機の寿命低下等の問題を簡
単な構造で解消できる。
According to the third aspect of the present invention, the refrigerant inlet and the refrigerant outlet of the heat transfer tube of the heat exchanger are located on the windward side with respect to the airflow passing through the heat exchanger and at the same position. Therefore, when used as a condenser, the refrigerant inlet and refrigerant outlet of the heat transfer tube exchange heat with low-temperature air on the windward side, so that supercooling can be reliably achieved with a simple structure, and as an evaporator. When used, the refrigerant inlet and the refrigerant outlet of the heat transfer tube have an appropriate degree of superheat to exchange heat with high-temperature air on the windward side, and the efficiency of the compressor decreases due to the return of the wet refrigerant to the compressor and the life of the compressor. Problems such as deterioration can be solved with a simple structure.

【0051】また、この発明の請求項4によれば、蒸発
器として使用する熱交換器の伝熱管の冷媒入口と冷媒出
口とを近接させたので、相互に熱交換し、低温度運転時
に発生する着霜、凍結現象、あるいは結露現象が解消さ
れる結果、簡単な構造で効率のよい通風量を確保でき
る。
According to the fourth aspect of the present invention, since the refrigerant inlet and the refrigerant outlet of the heat transfer tube of the heat exchanger used as the evaporator are brought close to each other, they exchange heat with each other and generate during the low temperature operation. As a result, the frosting, freezing phenomenon or dew condensation phenomenon is eliminated, so that an efficient air flow can be secured with a simple structure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】空気調和装置の一実施形態を示した配管図の概
要説明図。
FIG. 1 is a schematic explanatory diagram of a piping diagram showing an embodiment of an air conditioner.

【図2】対向流及び並行流とした時の蒸発器と凝縮器の
温度勾配のみによる効率変化と、通風抵抗による効率変
化を示した説明図。
FIG. 2 is an explanatory diagram showing a change in efficiency due to only a temperature gradient between an evaporator and a condenser and a change in efficiency due to ventilation resistance when a counter flow and a parallel flow are used.

【図3】この発明にかかる空気調和装置の配管図を示し
た概要説明図。
FIG. 3 is a schematic explanatory view showing a piping diagram of the air conditioner according to the present invention.

【図4】冷媒の入口側と出口側の変形例を示した図3と
同様の説明図。
FIG. 4 is an explanatory view similar to FIG. 3, showing a modified example of the inlet side and the outlet side of the refrigerant.

【図5】図4のさらに別の変形例を示した一部分の熱交
換器の説明図。
FIG. 5 is an explanatory view of a partial heat exchanger showing still another modification of FIG. 4;

【図6】伝熱管の入口側と出口側の温度を示した説明
図。
FIG. 6 is an explanatory diagram showing temperatures at an inlet side and an outlet side of a heat transfer tube.

【符号の説明】[Explanation of symbols]

1 コンプレッサ 3 利用側熱交換器 5 減圧装置 7 熱源側熱交換器 9 四方弁 11,23 伝熱管 19,21 一方の伝熱管側の冷媒入口又は冷媒出口と
なる端末部 29,31 他方の伝熱管側の冷媒入口又は冷媒出口と
なる端末部 a 風上 b 風下
DESCRIPTION OF SYMBOLS 1 Compressor 3 Use side heat exchanger 5 Decompression device 7 Heat source side heat exchanger 9 Four way valve 11,23 Heat transfer tube 19,21 Terminal part which becomes a refrigerant inlet or a refrigerant outlet of one heat transfer tube side 29,31 The other heat transfer tube Terminal part which becomes refrigerant inlet or refrigerant outlet on the side a Upwind b Downwind

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新井 康弘 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝住空間システム技術研究所内 (72)発明者 岩永 隆喜 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝住空間システム技術研究所内 Fターム(参考) 3L092 AA01 BA11 BA12 BA15 DA14 FA12 FA16  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yasuhiro Arai 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Inside the Toshiba Living Space Systems Research Institute (72) Inventor Takayoshi Iwanaga 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Address Co., Ltd. Toshiba Living Space Systems Research Laboratory F-term (reference) 3L092 AA01 BA11 BA12 BA15 DA14 FA12 FA16

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 冷房モード時又は暖房モード時に、熱交
換器を蒸発器として、あるいは凝縮器として使用する非
共沸混合冷媒を用いた空気調和装置において、凝縮器と
して使用する熱交換器は、熱交換器を通過する空気流に
対して冷媒の流れ方向が並行流となる伝熱管と、対向流
となる伝熱管とを備えたことを特徴とする空気調和装
置。
In a cooling mode or a heating mode, in an air conditioner using a non-azeotropic mixed refrigerant which uses a heat exchanger as an evaporator or as a condenser, a heat exchanger used as a condenser includes: An air conditioner comprising: a heat transfer tube in which a flow direction of a refrigerant is parallel to an air flow passing through a heat exchanger;
【請求項2】 冷房モード時又は暖房モード時に、熱交
換器を蒸発器として、あるいは凝縮器として使用する非
共沸混合冷媒を用いた空気調和装置において、蒸発器と
して使用する熱交換器は、熱交換器を通過する空気流に
対して冷媒の流れ方向が並行流となる伝熱管と、対向流
となる伝熱管とを備えたことを特徴とする空気調和装
置。
2. An air conditioner using a non-azeotropic mixed refrigerant that uses a heat exchanger as an evaporator or a condenser in a cooling mode or a heating mode, wherein the heat exchanger used as an evaporator is: An air conditioner comprising: a heat transfer tube in which a flow direction of a refrigerant is parallel to an air flow passing through a heat exchanger;
【請求項3】 熱交換器の伝熱管の冷媒入口と冷媒出口
とを、熱交換器を通過する空気流に対して風上側で、か
つ、同一位置の配置構造としたことを特徴とする請求項
1又は請求項2記載の空気調和装置。
3. The heat exchanger according to claim 1, wherein a refrigerant inlet and a refrigerant outlet of the heat transfer tube of the heat exchanger are arranged on the windward side of an air flow passing through the heat exchanger and at the same position. The air conditioner according to claim 1 or 2.
【請求項4】 熱交換器の伝熱管の冷媒入口と冷媒出口
とを近接させたことを特徴とする請求項2記載の空気調
和装置。
4. The air conditioner according to claim 2, wherein the refrigerant inlet and the refrigerant outlet of the heat transfer tube of the heat exchanger are close to each other.
JP2001344787A 2001-11-09 2001-11-09 Air conditioner Expired - Fee Related JP3650358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001344787A JP3650358B2 (en) 2001-11-09 2001-11-09 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001344787A JP3650358B2 (en) 2001-11-09 2001-11-09 Air conditioner

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP24298493A Division JP3286038B2 (en) 1993-09-29 1993-09-29 Air conditioner

Publications (2)

Publication Number Publication Date
JP2002195675A true JP2002195675A (en) 2002-07-10
JP3650358B2 JP3650358B2 (en) 2005-05-18

Family

ID=19158254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001344787A Expired - Fee Related JP3650358B2 (en) 2001-11-09 2001-11-09 Air conditioner

Country Status (1)

Country Link
JP (1) JP3650358B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327707A (en) * 2006-06-09 2007-12-20 Hitachi Appliances Inc Air conditioner
JP2008275218A (en) * 2007-04-26 2008-11-13 Daikin Ind Ltd Heat exchanger
JP2009133624A (en) * 2005-03-14 2009-06-18 Mitsubishi Electric Corp Refrigerating/air-conditioning device
WO2014178164A1 (en) * 2013-04-30 2014-11-06 ダイキン工業株式会社 Indoor unit for air conditioning device
WO2015133626A1 (en) * 2014-03-07 2015-09-11 三菱電機株式会社 Heat exchanger and air conditioner
JP2016161239A (en) * 2015-03-03 2016-09-05 ダイキン工業株式会社 Heat exchanger and air conditioner
WO2018066075A1 (en) * 2016-10-04 2018-04-12 三菱電機株式会社 Refrigeration cycle device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133624A (en) * 2005-03-14 2009-06-18 Mitsubishi Electric Corp Refrigerating/air-conditioning device
JP2007327707A (en) * 2006-06-09 2007-12-20 Hitachi Appliances Inc Air conditioner
JP2008275218A (en) * 2007-04-26 2008-11-13 Daikin Ind Ltd Heat exchanger
CN104937353A (en) * 2013-04-30 2015-09-23 大金工业株式会社 Indoor unit for air conditioning device
JP2014215017A (en) * 2013-04-30 2014-11-17 ダイキン工業株式会社 Air conditioner indoor unit
WO2014178164A1 (en) * 2013-04-30 2014-11-06 ダイキン工業株式会社 Indoor unit for air conditioning device
CN104937353B (en) * 2013-04-30 2016-10-05 大金工业株式会社 The indoor units of air conditioner
US9568221B2 (en) 2013-04-30 2017-02-14 Daikin Industries, Ltd. Indoor unit for air conditioning device
WO2015133626A1 (en) * 2014-03-07 2015-09-11 三菱電機株式会社 Heat exchanger and air conditioner
JPWO2015133626A1 (en) * 2014-03-07 2017-04-06 三菱電機株式会社 Heat exchanger and air conditioner
JP2016161239A (en) * 2015-03-03 2016-09-05 ダイキン工業株式会社 Heat exchanger and air conditioner
WO2018066075A1 (en) * 2016-10-04 2018-04-12 三菱電機株式会社 Refrigeration cycle device
JPWO2018066075A1 (en) * 2016-10-04 2019-06-24 三菱電機株式会社 Refrigeration cycle device
EP3524917A4 (en) * 2016-10-04 2019-09-18 Mitsubishi Electric Corporation Refrigeration cycle device

Also Published As

Publication number Publication date
JP3650358B2 (en) 2005-05-18

Similar Documents

Publication Publication Date Title
KR100958399B1 (en) Hvac system with powered subcooler
WO2018047330A1 (en) Air conditioner
JP5137933B2 (en) Air conditioner
JP2006283989A (en) Cooling/heating system
JPH09145187A (en) Air conditioner
US5660056A (en) Air conditioner
JPH06213518A (en) Heat pump type air conditioner for mixed refrigerant
JP3286038B2 (en) Air conditioner
JPH07280375A (en) Air conditioner
JP3650358B2 (en) Air conditioner
JP6298992B2 (en) Air conditioner
JP2005233562A (en) Air conditioning method and device
JP3155645B2 (en) Air conditioner
JPH09257334A (en) Heat pump air conditioner
JPH11264629A (en) Cross fin coil type heat exchanger
JPH10196984A (en) Air conditioner
JPH08178445A (en) Heat pump type air conditioner
JP3885063B2 (en) Air conditioner
JPH1068560A (en) Refrigeration cycle device
JPH0798166A (en) Air-conditioner
JP7473857B1 (en) Refrigeration Cycle System
JPH08145490A (en) Heat exchanger for heat pump air conditioner
JPH07103622A (en) Air-conditioner
JP2005009808A (en) Heat exchanger for air conditioner
JPH0861799A (en) Air conditioner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees