JPH07280375A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH07280375A
JPH07280375A JP6068297A JP6829794A JPH07280375A JP H07280375 A JPH07280375 A JP H07280375A JP 6068297 A JP6068297 A JP 6068297A JP 6829794 A JP6829794 A JP 6829794A JP H07280375 A JPH07280375 A JP H07280375A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
compressor
outdoor heat
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6068297A
Other languages
Japanese (ja)
Inventor
Masayuki Nonaka
正之 野中
Hiroaki Matsushima
弘章 松嶋
Kazuhiro Endo
和広 遠藤
Kazuya Matsuo
一也 松尾
Mitsuo Kudo
光夫 工藤
Mari Uchida
麻理 内田
Hiroshi Kogure
博志 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6068297A priority Critical patent/JPH07280375A/en
Publication of JPH07280375A publication Critical patent/JPH07280375A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To raise a heat exchanging efficiency as compared with that of parallel flows and to improve an efficiency by sealing non-azeotrope refrigerant in which at least two or more types of non-azeotrope refrigerants are mixed, and setting a refrigerant flowing direction of a heat exchanger as counterflows to an air flowing direction at the time of both heating and cooling. CONSTITUTION:The air conditioner comprises valves 2a-2d as first refrigerant channel switching units, and valves 4a-4d as second refrigerant channel switching units. At the time of heating, the valves 2a, 2c, 4a, 4c are set to open states in the first and second units, and the valves 2b, 2d, 4b, 4d are set to closed states. In the case of cooling, the valves 2b, 2d, 4b, 4d of the first and second units are set to open states, and the valves 2a, 2c, 4a, 4c are set to closed states. Thus, refrigerants flowing in an outdoor heat exchanger 7 and an indoor heat exchanger 3 become counterflow to the air flow at the time of both heating and cooling, and hence a temperature difference from the air flowing at its periphery is held.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気調和装置に係わ
り、特に非共沸混合冷媒を用いた空気調和装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner, and more particularly to an air conditioner using a non-azeotropic mixed refrigerant.

【0002】[0002]

【従来の技術】圧縮機、室内熱交換器、減圧装置、室外
熱交換器を接続してサイクルを構成し、サイクル内に少
なくとも2種類以上の冷媒を混合した非共沸混合冷媒を
封入している冷暖房が可能な従来の空気調和装置は、特
公平3−11388号公報に記載されているように、1
つの冷媒流路切り換え装置を、圧縮機の吐出側と吸い込
み側に接続したものであった。
2. Description of the Related Art A compressor, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger are connected to form a cycle, and a non-azeotropic mixed refrigerant in which at least two kinds of refrigerants are mixed is enclosed in the cycle. A conventional air conditioner capable of cooling and heating is, as described in Japanese Patent Publication No. 3-11388,
One refrigerant flow path switching device was connected to the discharge side and the suction side of the compressor.

【0003】[0003]

【発明が解決しようとする課題】上記特公平3−113
88号公報に記載の従来の装置では、暖房時と冷房時で
は冷媒の流れ方向が反転するだけであったので、次のよ
うな問題点があった。
[Patent Document 1] Japanese Patent Publication No. 3-113
In the conventional device described in Japanese Patent Publication No. 88, the flow direction of the refrigerant is only reversed during heating and during cooling, so that there are the following problems.

【0004】すなわちHFC−32/HFC−134a
(ハイドロフルオロカ−ボン−32/ハイドロフルオロ
カ−ボン−134aの略)などの非共沸混合冷媒は、図
2に示すように、凝縮あるいは蒸発過程の冷媒の状態で
ある二相域では、一定圧力下では露点温度と沸点温度が
異なり、同じ組成では乾き度が大きいほど温度が高いこ
とが単一冷媒と大きく異なる点である。そのため熱交換
器の列数が複数の場合、蒸発過程でも凝縮過程でも、冷
媒と周囲を流れる空気との熱交換効率を上昇させるため
には、図3に示すように、熱交換器の列ごとの冷媒流れ
方向を、熱交換を行う空気の流れ方向に対し、風下側か
ら風上側、すなわち対向流とし、熱交換器の入口から出
口にわたって常に空気と冷媒との温度差を保つ必要があ
る。
That is, HFC-32 / HFC-134a
As shown in FIG. 2, a non-azeotropic mixed refrigerant such as (hydrofluorocarbon-32 / hydrofluorocarbon-134a) is used in the two-phase region in which the refrigerant is in the state of condensation or evaporation. The dew point temperature and the boiling point temperature are different under a constant pressure, and the higher the dryness is, the higher the temperature is for the same composition. Therefore, when the number of rows of heat exchangers is more than one, in order to increase the heat exchange efficiency between the refrigerant and the air flowing around, both in the evaporation process and the condensation process, as shown in FIG. It is necessary to set the refrigerant flow direction from the leeward side to the upwind side, that is, the counterflow with respect to the flow direction of the air for heat exchange, and always maintain the temperature difference between the air and the refrigerant from the inlet to the outlet of the heat exchanger.

【0005】しかし、1つの冷媒流路切り換え装置を、
圧縮機の吐出側と吸い込み側に接続し、暖房時と冷房時
では冷媒の流れ方向が反転するだけの従来の空気調和装
置では、たとえば暖房時に対向流となっても、冷房時に
は図4に示すような並行流となり、熱交換効率が低下し
てしまうという問題点があった。
However, one refrigerant flow path switching device is
In the conventional air conditioner that is connected to the discharge side and the suction side of the compressor and only reverses the flow direction of the refrigerant during heating and cooling, for example, even if a counterflow occurs during heating, it is shown in FIG. 4 during cooling. Such a parallel flow has a problem that heat exchange efficiency is reduced.

【0006】本発明の目的は、少なくとも2種類の非共
沸混合冷媒を用いる空気調和装置において、暖房時、冷
房時ともに冷媒の流れ方向による熱交換効率の低下を防
ぎ、効率を向上した空気調和装置を提供することにあ
る。
An object of the present invention is to provide an air conditioner using at least two kinds of non-azeotropic mixed refrigerant, which prevents a decrease in heat exchange efficiency due to the flow direction of the refrigerant during heating and cooling, thereby improving efficiency. To provide a device.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の空気調和装置は、圧縮機、列数が複数の室
内熱交換器、減圧装置、列数が複数の室外熱交換器を接
続してサイクルを構成し、該サイクル内に非共沸冷媒を
少なくとも2種類以上混合した非共沸混合冷媒を封入
し、前記圧縮機の吐出側に、前記圧縮機の吐出側と、室
内熱交換器あるいは室外熱交換器とを選択的に接続し、
かつ前記減圧装置と、室内熱交換器あるいは室外熱交換
器とを選択的に接続するための第1の冷媒流路切り換え
装置を設け、前記圧縮機の吸い込み側に、該圧縮機の吸
い込み側と室内熱交換器あるいは室外熱交換器とを選択
的に接続し、かつ減圧装置と室内熱交換器あるいは室外
熱交換器とを選択的に接続するための第2の冷媒流路切
り換え装置を設けて、室内熱交換器および室外熱交換器
の列ごとの冷媒流れ方向が、暖房運転時、冷房運転時と
も同一方向から流れるように、かつ熱交換を行う空気の
風下側から風上側に流れるように構成したことを特徴と
するものである。
In order to achieve the above object, an air conditioner of the present invention comprises a compressor, an indoor heat exchanger having a plurality of rows, a pressure reducing device, and an outdoor heat exchanger having a plurality of rows. To form a cycle, and a non-azeotropic mixed refrigerant in which at least two kinds of non-azeotropic refrigerants are mixed is enclosed in the cycle, and the discharge side of the compressor and the indoor side Selectively connect a heat exchanger or outdoor heat exchanger,
Further, a first refrigerant flow path switching device for selectively connecting the decompression device and the indoor heat exchanger or the outdoor heat exchanger is provided, and the suction side of the compressor is connected to the suction side of the compressor. A second refrigerant flow path switching device is provided for selectively connecting the indoor heat exchanger or the outdoor heat exchanger and selectively connecting the pressure reducing device to the indoor heat exchanger or the outdoor heat exchanger. , So that the refrigerant flow direction for each row of the indoor heat exchanger and the outdoor heat exchanger flows from the same direction during the heating operation and the cooling operation, and from the leeward side of the air for heat exchange to the upwind side. It is characterized by being configured.

【0008】又、圧縮機、列数が複数の室内熱交換器、
膨脹装置、列数が複数の室外熱交換器を接続してサイク
ルを構成し、該サイクル内に非共沸冷媒を少なくとも2
種類以上混合した非共沸混合冷媒を封入し、前記圧縮機
の吐出側に、前記圧縮機の吐出側と、室内、室外のうち
の一方の熱交換器あるいはとを第2の冷媒流路切り換え
装置とを選択的に接続し、かつ前記膨脹装置と、室内、
室外のうち一方の熱交換器あるいは第2の冷媒流路切り
換え装置とを選択的に接続するための第1の冷媒流路切
り換え装置を設け、前記圧縮機の吸い込み側に、該圧縮
機の吸い込み側と室内、室外のうち一方の熱交換器ある
いは第2の冷媒流路切り換え装置とを選択的に接続し、
かつ第1の冷媒流路切り換え装置と室内、室外のうち一
方の熱交換器あるいは第1の流路切り換え装置とを選択
的に接続するための第2の冷媒流路切り換え装置を設け
て、室内熱交換器および室外熱交換器の列ごとの冷媒流
れ方向が、暖房運転時、冷房運転時とも同一方向から流
れるように、かつ熱交換を行う空気の風下側から風上側
に流れるように構成したことを特徴とするものである。
Further, a compressor, an indoor heat exchanger having a plurality of rows,
An expansion device and an outdoor heat exchanger having a plurality of rows are connected to form a cycle, and at least two non-azeotropic refrigerants are contained in the cycle.
A non-azeotropic mixed refrigerant, which is a mixture of more than one kind, is enclosed, and the discharge side of the compressor is switched to the second refrigerant flow path between the discharge side of the compressor and one of the indoor and outdoor heat exchangers. A device selectively connected to the inflator and a room;
A first refrigerant flow path switching device for selectively connecting one of the outdoor heat exchanger and the second refrigerant flow path switching device is provided, and a suction side of the compressor is provided on a suction side of the compressor. Selectively connect the heat exchanger of one of the side and the indoor or outdoor side or the second refrigerant flow path switching device,
In addition, a second refrigerant flow path switching device for selectively connecting the first refrigerant flow path switching device to one of the indoor and outdoor heat exchangers or the first flow path switching device is provided, Refrigerant flow direction for each row of the heat exchanger and the outdoor heat exchanger is configured to flow from the same direction during heating operation and cooling operation, and from the leeward side of the air for heat exchange to the upwind side. It is characterized by that.

【0009】又、圧縮機、列数が複数の室内熱交換器、
減圧装置、列数が複数の室外熱交換器を接続してサイク
ルを構成し、該サイクル内に非共沸冷媒を少なくとも2
種類以上混合した非共沸混合冷媒を封入し、前記圧縮機
の吐出側に第1の冷媒流路切り換え装置を、前記圧縮機
の吸い込み側に第2の冷媒流路切り換え装置を設けて、
前記第1の冷媒流路切り換え装置及び第2の冷媒流路切
り換え装置を切り換えることにより前記冷媒が圧縮機、
室内熱交換器、減圧装置、室外熱交換器、もしくは圧縮
機、室外熱交換器、減圧装置、室内熱交換器の順に循環
するように構成するとともに、室内熱交換器および室外
熱交換器の列ごとの冷媒流れ方向が、暖房運転時、冷房
運転時とも同一方向から流れるように、かつ熱交換を行
う空気の風下側から風上側に流れるように構成したこと
を特徴とするものである。
A compressor, an indoor heat exchanger having a plurality of rows,
A decompression device and an outdoor heat exchanger having a plurality of rows are connected to form a cycle, and at least two non-azeotropic refrigerants are contained in the cycle.
Enclosing a non-azeotropic mixed refrigerant mixed in more than one kind, providing a first refrigerant flow path switching device on the discharge side of the compressor, and a second refrigerant flow path switching device on the suction side of the compressor,
The refrigerant is compressed by switching between the first refrigerant flow path switching device and the second refrigerant flow path switching device,
The indoor heat exchanger, the decompression device, the outdoor heat exchanger, or the compressor, the outdoor heat exchanger, the decompression device, and the indoor heat exchanger are configured to circulate in this order, and a row of the indoor heat exchanger and the outdoor heat exchanger. It is characterized in that the refrigerant flows in the respective directions so as to flow from the same direction both during the heating operation and during the cooling operation and from the leeward side of the air for heat exchange to the upwind side.

【0010】又、圧縮機、第1の冷媒流路切り換え装
置、列数が複数の室内熱交換器、減圧装置、列数が複数
の室外熱交換器を接続してサイクルを構成し、該サイク
ル内に非共沸冷媒を少なくとも2種類以上混合した非共
沸混合冷媒を封入し、前記圧縮機の吸い込み側に、室内
熱交換器と圧縮機、室外熱交換器と減圧装置、あるいは
室外熱交換器と圧縮機、室内熱交換器と減圧装置とを選
択的に接続するための第2の冷媒流路切り換え装置を設
けることにより、室内熱交換器あるいは室外熱交換器の
うち一方の熱交換器の列ごとの冷媒流れ方向が、暖房運
転時、冷房運転時とも同一方向から流れるように、かつ
熱交換を行う空気の風下側から風上側に流れるように構
成したことを特徴とするものである。
A compressor, a first refrigerant flow path switching device, an indoor heat exchanger having a plurality of rows, a pressure reducing device, and an outdoor heat exchanger having a plurality of rows are connected to form a cycle. A non-azeotropic mixed refrigerant in which at least two kinds of non-azeotropic refrigerants are mixed is enclosed, and an indoor heat exchanger and a compressor, an outdoor heat exchanger and a pressure reducing device, or an outdoor heat exchange is provided on the suction side of the compressor. Of the indoor heat exchanger or the outdoor heat exchanger by providing a second refrigerant flow path switching device for selectively connecting the air conditioner and the compressor, and the indoor heat exchanger and the pressure reducing device. The flow direction of the refrigerant for each row is configured to flow from the same direction during heating operation and during cooling operation, and from the leeward side of the air for heat exchange to the upwind side. .

【0011】又、圧縮機、室内熱交換器、減圧装置、室
外熱交換器、複数の冷媒流路切り換え装置を設けてサイ
クルを構成し、前記冷媒流路切り換え装置が冷凍サイク
ルの圧力差を駆動力として作動する四方弁であって、該
四方弁を駆動するための圧力切り換え装置が、複数の四
方弁を共有化されて駆動されるように構成されているこ
とを特徴とするものである。
A compressor, an indoor heat exchanger, a pressure reducing device, an outdoor heat exchanger, and a plurality of refrigerant flow path switching devices are provided to form a cycle, and the refrigerant flow path switching device drives the pressure difference of the refrigeration cycle. A four-way valve that operates as a force, characterized in that a pressure switching device for driving the four-way valve is configured so that a plurality of four-way valves are shared and driven.

【0012】又、前記四方弁を駆動するための圧力配管
中に逆止弁を設け、循環する冷媒が短絡することを防止
するように構成したものである。又、前記列数が複数の
熱交換器が、各列の冷媒流れ方向を同一方向となるよう
に構成したものである。又、前記列数が複数の熱交換器
が、各列の間に間隙あるいは断熱材を設けて前記各列間
の熱伝達量を低下させたものである。又、前記暖房運転
時あるいは冷房運転時に凝縮器として作用する熱交換器
と膨張弁の間に受液器を設けたものである。
Further, a check valve is provided in the pressure pipe for driving the four-way valve so as to prevent the circulating refrigerant from being short-circuited. Further, the heat exchanger having a plurality of rows is configured such that the refrigerant flow direction of each row is the same direction. Further, in the heat exchanger having a plurality of rows, a gap or a heat insulating material is provided between the rows to reduce the amount of heat transfer between the rows. Further, a liquid receiver is provided between the expansion valve and the heat exchanger that functions as a condenser during the heating operation or the cooling operation.

【0013】[0013]

【作用】上記のように構成しているので、冷媒として非
共沸混合冷媒を用いた空気調和装置において、暖房時、
冷房時とも列ごとの冷媒流れ方向が、熱交換を行う空気
の風下側から風上側になっているので、冷媒が周囲を流
れる空気と温度差が保て、熱交換効率を上昇させること
ができる。
With the above-mentioned structure, the air conditioner using the non-azeotropic mixed refrigerant as the refrigerant, during heating,
Since the direction of the refrigerant flow for each row is from the leeward side to the upwind side of the air for heat exchange even during cooling, the temperature difference with the air flowing around the refrigerant can be maintained and the heat exchange efficiency can be increased. .

【0014】又、室外熱交換器および室内熱交換器内を
流れる冷媒は、暖房時、冷房時とも空気の流れに対し対
向流となるので、周囲を流れる空気と温度差が保てる。
Further, the refrigerant flowing in the outdoor heat exchanger and the indoor heat exchanger has a counterflow to the air flow during heating and cooling, so that a temperature difference with the air flowing around can be maintained.

【0015】また、暖房運転時、冷房運転時に凝縮器と
して作用する熱交換器と膨張弁の間に、受液器を設けて
いるので、受液器に流入する冷媒は、凝縮後の乾き度の
小さい冷媒であるので、受液器に滞留する液冷媒とは組
成差が小さくなり、循環する冷媒の組成と、封入したと
きの冷媒の組成との差が小さくなる。このため、冷媒を
封入するときの組成の管理が行いやすくなる。
Further, since the liquid receiver is provided between the expansion valve and the heat exchanger acting as a condenser during the heating operation and the cooling operation, the refrigerant flowing into the liquid receiver has a dryness after condensation. Since it is a small refrigerant, the composition difference between the refrigerant and the liquid refrigerant staying in the liquid receiver is small, and the difference between the composition of the circulating refrigerant and the composition of the refrigerant when sealed is small. Therefore, it becomes easy to manage the composition when the refrigerant is sealed.

【0016】又、暖房運転時、冷房運転時とも、室内熱
交換器および室外熱交換器には上側から冷媒が流入する
ので、熱交換器内の液溜りを最小限にでき、熱交換器の
性能低下を抑え、封入冷媒を必要以上に封入することな
く、最小限に抑えることができる。
Further, during the heating operation and the cooling operation, since the refrigerant flows into the indoor heat exchanger and the outdoor heat exchanger from the upper side, the liquid pool in the heat exchanger can be minimized and the heat exchanger It is possible to suppress performance deterioration and minimize the amount of the filled refrigerant without filling it more than necessary.

【0017】又、室内熱交換器を流れる冷媒は暖房運転
時と冷房運転時では冷媒の流れ方向が異なるので、室内
熱交換器を室外熱交換器と離して設置する場合は、2本
の冷媒配管が液側とガス側の2つに分かれるため、液側
の配管を細くすることができ、冷媒量を低減することが
できる。
Further, the refrigerant flowing through the indoor heat exchanger has a different flow direction between the heating operation and the cooling operation. Therefore, when the indoor heat exchanger is installed separately from the outdoor heat exchanger, two refrigerants are installed. Since the pipe is divided into the liquid side and the gas side, the liquid side pipe can be made thin and the amount of refrigerant can be reduced.

【0018】又、冷房運転時に第1の四方弁内の、凝縮
前の高温高圧の冷媒ガスの一部が、室外熱交換器を通ら
ずに、第1の四方弁内よりも低圧で冷媒温度も低い、第
2の四方弁へ流入するのを防ぐことができ、効率の低下
を防ぐことができる。
During the cooling operation, a part of the high-temperature high-pressure refrigerant gas in the first four-way valve before condensation does not pass through the outdoor heat exchanger and is at a lower pressure than in the first four-way valve. It is also possible to prevent the flow into the second four-way valve, which is low, and prevent a decrease in efficiency.

【0019】[0019]

【実施例】以下、本発明の第1の実施例を図1、図5か
ら図7により説明する。図1は本実施例に関わる空気調
和装置の構成図、図5は、列間で断熱を施した熱交換器
の効果の説明図、図6は列ごとの冷媒流れ方向が異なる
熱交換器の効果の説明図、図7は列ごとの冷媒流れ方向
を同一にした熱交換器の効果の説明図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIGS. 1 and 5 to 7. FIG. 1 is a configuration diagram of an air conditioner according to the present embodiment, FIG. 5 is an explanatory diagram of an effect of a heat exchanger having heat insulation between rows, and FIG. FIG. 7 is an explanatory diagram of the effect, and FIG. 7 is an explanatory diagram of the effect of the heat exchanger in which the refrigerant flow direction is the same for each row.

【0020】図1に示すように、1は圧縮機、2a〜2
dは第1の冷媒流路切り替え装置としての弁、3は列数
が複数の室内熱交換器、4a〜4dは第2の冷媒流路切
り替え装置としての弁、5は受液器、6は減圧装置とし
ての膨張弁、7は列数が複数の室外熱交換器で、第1の
冷媒流路切り換え装置は、圧縮機1の吐出側に、圧縮機
1の吐出側と膨張弁6が、それぞれ室内熱交換器3ある
いは室外熱交換器7に選択接続できるように設けてい
る。第2の冷媒流路切り換え装置は、圧縮機1の吸い込
み側に、室内熱交換器3と室外熱交換器7が、それぞれ
圧縮機1あるいは膨張弁6に選択接続できるように設け
るている。これらは配管接続されていて冷凍サイクルが
構成されており、冷媒には非共沸混合冷媒、たとえばH
FC−32/HFC−134aあるいはHFC−32/
HFC−125/HFC−134aが用いられている。
8は室内送風ファン、9は室外送風ファンである。ま
た、室内熱交換器3および室外熱交換器7は、図5に示
すように各列ごとにフィンが独立して設けられ、各列の
間には断熱するために間隙が設けられていて、冷媒の流
れ方向は、図7に示すように、各列とも同一方向となっ
ている。
As shown in FIG. 1, 1 is a compressor, 2a to 2a.
d is a valve as a first refrigerant flow path switching device, 3 is an indoor heat exchanger having a plurality of rows, 4a to 4d are valves as a second refrigerant flow path switching device, 5 is a liquid receiver, and 6 is An expansion valve as a pressure reducing device, 7 is an outdoor heat exchanger having a plurality of rows, and the first refrigerant flow path switching device has a discharge side of the compressor 1, a discharge side of the compressor 1, and an expansion valve 6, The indoor heat exchanger 3 and the outdoor heat exchanger 7 are provided so that they can be selectively connected. The second refrigerant flow path switching device is provided on the suction side of the compressor 1 so that the indoor heat exchanger 3 and the outdoor heat exchanger 7 can be selectively connected to the compressor 1 or the expansion valve 6, respectively. These are connected by piping to form a refrigeration cycle, and the refrigerant is a non-azeotropic mixed refrigerant such as H 2
FC-32 / HFC-134a or HFC-32 /
HFC-125 / HFC-134a is used.
Reference numeral 8 is an indoor blower fan, and 9 is an outdoor blower fan. Further, as shown in FIG. 5, the indoor heat exchanger 3 and the outdoor heat exchanger 7 are provided with fins independently for each row, and a gap is provided between each row for heat insulation, The flow direction of the refrigerant is the same in each row as shown in FIG.

【0021】このように構成された空気調和装置の動作
について、まず暖房を例にとり説明する。暖房時は第1
および第2の冷媒流路切り換え装置において、弁2a、
2c、4a、4cは開状態に設定され、弁2b、2d、
4b、4dは閉状態に設定される。圧縮機1で圧縮され
た高温高圧の冷媒ガスは、弁2aを通り、室内熱交換器
3に上方から流入し、室内送風ファン8により送風され
てくる空気に対し、風上の列に向かって流れ、空気に放
熱して凝縮する。ここで、以下風上の列に向かって流れ
る場合を対向流、風下の列に向かって流れる場合を並行
流と呼ぶ。そして弁4aを通り、受液器5に流入し、余
剰冷媒は滞留し、循環する冷媒は膨張弁6で減圧され、
弁2cを通り、室外熱交換器7に上方から流入し、室外
送風ファン9により送風されてくる空気に対し対向流に
流れ、空気から吸熱して蒸発する。そして弁4cを通り
再び圧縮機1へ戻る。
The operation of the thus-configured air conditioner will first be described by taking heating as an example. First when heating
In the second refrigerant flow path switching device, the valves 2a,
2c, 4a, 4c are set to the open state and valves 2b, 2d,
4b and 4d are set to the closed state. The high-temperature high-pressure refrigerant gas compressed by the compressor 1 passes through the valve 2a, flows into the indoor heat exchanger 3 from above, and is directed toward the windward row with respect to the air blown by the indoor blower fan 8. It flows and dissipates heat into the air and condenses. Here, the case of flowing toward the row on the leeward side is referred to as the counter flow, and the case of flowing toward the row on the leeward side is referred to as the parallel flow. Then, passing through the valve 4a, flowing into the liquid receiver 5, the surplus refrigerant is accumulated, and the circulating refrigerant is decompressed by the expansion valve 6,
After passing through the valve 2c, the air flows into the outdoor heat exchanger 7 from above, flows in a counterflow to the air blown by the outdoor blower fan 9, absorbs heat from the air, and evaporates. Then, it returns to the compressor 1 again through the valve 4c.

【0022】また冷房の場合は、第1および第2の冷媒
流路切り替え装置において、弁2b、2d、4b、4d
は開状態に設定され、弁2a、2c、4a、4cは閉状
態に設定する。圧縮機1で圧縮された高温高圧の冷媒ガ
スは、弁2dを通り、室外熱交換器7に暖房時と同様に
上方から流入し、室外送風ファン9により送風されてく
る空気に対し対向流に流れ、空気に放熱して凝縮する。
そして弁4dを通り、受液器5に流入し、余剰冷媒は滞
留し、循環する冷媒は膨張弁6で減圧される。そして弁
2bを通り、室内熱交換器3に暖房時と同様に上方から
流入し、室内送風ファン8により送風されてくる空気に
対し対向流に流れ、空気から吸熱して蒸発する。そして
弁4dを通り再び圧縮機1へ戻る。
In the case of cooling, the valves 2b, 2d, 4b, 4d are used in the first and second refrigerant flow path switching devices.
Is set to the open state and the valves 2a, 2c, 4a and 4c are set to the closed state. The high-temperature high-pressure refrigerant gas compressed by the compressor 1 passes through the valve 2d, flows into the outdoor heat exchanger 7 from above as in the case of heating, and becomes a counterflow to the air blown by the outdoor blower fan 9. It flows and dissipates heat into the air and condenses.
Then, through the valve 4d, it flows into the liquid receiver 5, the surplus refrigerant is accumulated, and the circulating refrigerant is decompressed by the expansion valve 6. Then, it passes through the valve 2b, flows into the indoor heat exchanger 3 from above as in the case of heating, flows in a counterflow to the air blown by the indoor blower fan 8, absorbs heat from the air, and evaporates. Then, it returns to the compressor 1 again through the valve 4d.

【0023】以上説明したように、室外熱交換器7およ
び室内熱交換器3内を流れる冷媒は、暖房時、冷房時と
も空気の流れに対し対向流となるので、周囲を流れる空
気と温度差が保てる。このため、従来の装置のように暖
房、冷房のいずれかのモードの時に熱交換器内の冷媒流
れ方向が、空気の流れ方向に対し並行流となることによ
って熱交換効率が低下することを防止でき、さらにその
低下分を熱交換器の伝熱面積で補う必要がなくなるの
で、熱交換器を小型にすることができる。
As described above, the refrigerant flowing in the outdoor heat exchanger 7 and the indoor heat exchanger 3 becomes a counterflow to the air flow during heating and cooling, so that there is a temperature difference from the air flowing around. Can be kept. Therefore, it is possible to prevent the heat exchange efficiency from decreasing due to the flow direction of the refrigerant in the heat exchanger being parallel to the air flow direction in the heating or cooling mode as in the conventional device. Moreover, since it is not necessary to compensate for the decrease by the heat transfer area of the heat exchanger, the heat exchanger can be downsized.

【0024】また、暖房時、冷房時とも凝縮器としての
熱交換器と膨張弁6の間に、受液器5を設けることがで
きる。このため受液器5に流入する冷媒は、凝縮後の乾
き度の小さい冷媒であるので、受液器5に滞留する液冷
媒とは組成差が小さくなり、循環する冷媒の組成と、封
入したときの冷媒の組成との差が小さくなる。このた
め、冷媒を封入するときの組成の管理が行いやすくな
る。
Further, the liquid receiver 5 can be provided between the expansion valve 6 and the heat exchanger as a condenser both during heating and during cooling. Therefore, since the refrigerant flowing into the liquid receiver 5 is a refrigerant having a low degree of dryness after condensation, the composition difference between the refrigerant and the liquid refrigerant staying in the liquid receiver 5 becomes small, and the composition of the circulating refrigerant and the enclosed refrigerant. The difference with the composition of the refrigerant becomes smaller. Therefore, it becomes easy to manage the composition when the refrigerant is sealed.

【0025】又、暖房時、冷房時とも、室内熱交換器3
および室外熱交換器7には上側から冷媒が流入するの
で、熱交換器内の液溜りを最小限にでき、熱交換器の性
能低下を抑え、封入冷媒を必要以上に封入することな
く、最小限に抑えることができる。
The indoor heat exchanger 3 is used both during heating and during cooling.
And since the refrigerant flows into the outdoor heat exchanger 7 from the upper side, the liquid pool in the heat exchanger can be minimized, the performance deterioration of the heat exchanger can be suppressed, and the enclosed refrigerant is not enclosed more than necessary, and the minimum You can keep it to the limit.

【0026】室内熱交換器3および室外熱交換器7は、
各列ごとにフィンを独立に形成させ、間隙を設けて断熱
を行うことにより、列間フィンを介して熱伝導によって
の熱移動がなくなり、熱交換効率の低下を防ぐことがで
きる。但し、フィンを独立に形成させず、間隙などを設
けることによって断熱を行っていない場合でも、対向流
化の効果は得られる。
The indoor heat exchanger 3 and the outdoor heat exchanger 7 are
By independently forming the fins for each row and providing a gap to perform heat insulation, heat transfer due to heat conduction via the inter-row fins is eliminated, and a decrease in heat exchange efficiency can be prevented. However, even if the fins are not formed independently and the heat is not provided by providing a gap or the like, the effect of counterflow can be obtained.

【0027】又、室内熱交換器3および室外熱交換器7
は各列の冷媒流れ方向が同一であるので、熱交換器効率
の低下を防ぐことができる。つまり、図6に示すように
列ごとの冷媒流れ方向が異なる場合は、各列内でのフィ
ンの温度勾配の形状が、列ごとに一様でなく、熱交換を
行う空気との温度差が小さくなる部分が生じ、熱交換効
率が低下してしまうが、図7に示すように列ごとの冷媒
流れ方向を同一とすると、各列内でのフィンの温度勾配
の形状が、列ごとに一様となり、熱交換を行う空気との
温度差を保てるため、熱交換効率を向上できる。
Further, the indoor heat exchanger 3 and the outdoor heat exchanger 7
Since the flow direction of the refrigerant in each row is the same, it is possible to prevent the efficiency of the heat exchanger from decreasing. That is, as shown in FIG. 6, when the refrigerant flow direction in each row is different, the shape of the temperature gradient of the fins in each row is not uniform in each row, and the temperature difference with the air for heat exchange is different. Although a portion becomes smaller and heat exchange efficiency is reduced, if the refrigerant flow direction is the same in each row as shown in FIG. 7, the shape of the temperature gradient of the fins in each row becomes uniform in each row. As a result, the temperature difference with the air for heat exchange can be maintained, so that the heat exchange efficiency can be improved.

【0028】本発明の第2の実施例を図8により説明す
る。図8は本実施例に関わる空気調和装置の構成図であ
る。
A second embodiment of the present invention will be described with reference to FIG. FIG. 8 is a configuration diagram of the air conditioner according to the present embodiment.

【0029】図8において、1は圧縮機、2a〜2dは
第1の冷媒流路切り替え装置としての弁、3は列数が複
数の室内熱交換器、4a〜4dは第2の冷媒流路切り替
え装置としての弁、6は減圧装置としての膨張弁、7は
列数が複数の室外熱交換器で、第1の冷媒流路切り換え
装置は、圧縮機1の吐出側に、圧縮機1の吐出側と膨張
弁11が、それぞれ室外熱交換器7あるいは第2の冷媒
流路切り換え装置に選択接続できるように設けてあり、
第2の冷媒流路切り換え装置は、圧縮機1の吸い込み側
に室内熱交換器3と室外熱交換器7が、それぞれ圧縮機
1あるいは第1の冷媒流路切り換え装置に選択接続でき
るように設けている。これらは順に配管接続されていて
冷凍サイクルが構成されている。8は室内送風ファン、
9は室外送風ファンである。冷媒には第1の実施例と同
様に、非共沸混合冷媒、たとえばHFC−32/HFC
−125/HFC−134aが用いられている。
In FIG. 8, 1 is a compressor, 2a to 2d are valves as a first refrigerant passage switching device, 3 is an indoor heat exchanger having a plurality of rows, and 4a to 4d are second refrigerant passages. A valve as a switching device, 6 is an expansion valve as a pressure reducing device, 7 is an outdoor heat exchanger having a plurality of rows, and the first refrigerant flow path switching device is provided on the discharge side of the compressor 1 with the compressor 1 The discharge side and the expansion valve 11 are provided so as to be selectively connectable to the outdoor heat exchanger 7 or the second refrigerant flow path switching device, respectively.
The second refrigerant passage switching device is provided on the suction side of the compressor 1 so that the indoor heat exchanger 3 and the outdoor heat exchanger 7 can be selectively connected to the compressor 1 or the first refrigerant passage switching device, respectively. ing. These are sequentially connected by piping to form a refrigeration cycle. 8 is an indoor blower fan,
9 is an outdoor blower fan. As the refrigerant, a non-azeotropic mixed refrigerant such as HFC-32 / HFC is used as in the first embodiment.
-125 / HFC-134a is used.

【0030】このように構成された空気調和装置の動作
について、まず暖房を例にとり説明する。暖房時は第1
および第2の冷媒流路切り替え装置において、弁2a、
2c、4b、4dを開状態に設定し、弁2b、2d、4
a、4cを閉状態に設定する。圧縮機1で圧縮された高
温高圧の冷媒ガスは、弁2aを通り、弁4bを通り、室
内熱交換器3に下方から流入し、室内送風ファン8によ
り送風されてくる空気に対し対向流に流れ、空気に放熱
して凝縮する。そして膨張弁6で減圧され、弁2cを通
り、室外熱交換器7に上方から流入し、室外送風ファン
9により送風されてくる空気に対し対向流に流れ、空気
から吸熱して蒸発する。そして弁4dを通り再び圧縮機
1へ戻る。
The operation of the thus-configured air conditioner will first be described taking heating as an example. First when heating
In the second refrigerant flow switching device, the valve 2a,
2c, 4b and 4d are set to the open state, and valves 2b, 2d and 4 are set.
Set a and 4c to the closed state. The high-temperature and high-pressure refrigerant gas compressed by the compressor 1 passes through the valve 2a and the valve 4b, flows into the indoor heat exchanger 3 from below, and becomes a counterflow to the air blown by the indoor blower fan 8. It flows and dissipates heat into the air and condenses. Then, the pressure is reduced by the expansion valve 6, passes through the valve 2c, flows into the outdoor heat exchanger 7 from above, flows in a counterflow to the air blown by the outdoor blower fan 9, absorbs heat from the air, and evaporates. Then, it returns to the compressor 1 again through the valve 4d.

【0031】また冷房の場合は、第1および第2の冷媒
流路切り替え装置において、弁2b、2d、4a、4c
を開状態に設定し、弁2a、2c、4b、4dは閉状態
に設定する。圧縮機1で圧縮された高温高圧の冷媒ガス
は、弁2dを通り、室外熱交換器7に暖房時と同様に上
方から流入し、室外送風ファン9により送風されてくる
空気に対し対向流に流れ、空気に放熱して凝縮する。そ
して弁4cを通り、弁2bを通り、膨張弁6で減圧さ
れ、室内熱交換器3に暖房時とは逆に上方から流入し、
室内送風ファン8により送風されてくる空気に対し並行
流に流れ、空気から吸熱して蒸発する。そして弁4aを
通り再び圧縮機1へ戻る。
In the case of cooling, the valves 2b, 2d, 4a, 4c are used in the first and second refrigerant flow path switching devices.
Is set to an open state, and the valves 2a, 2c, 4b, and 4d are set to a closed state. The high-temperature high-pressure refrigerant gas compressed by the compressor 1 passes through the valve 2d, flows into the outdoor heat exchanger 7 from above as in the case of heating, and becomes a counterflow to the air blown by the outdoor blower fan 9. It flows and dissipates heat into the air and condenses. Then, the pressure is reduced by the expansion valve 6 through the valve 4c, the valve 2b, and flows into the indoor heat exchanger 3 from above, which is the reverse of the heating time.
The air blown by the indoor blower fan 8 flows in parallel with the air and absorbs heat from the air and evaporates. Then, it returns to the compressor 1 again through the valve 4a.

【0032】以上述べたように、室外熱交換器7を流れ
る冷媒は、暖房時、冷房時とも空気の流れに対し対向流
となり、並行流に比べ熱交換効率を向上させることがで
きる。一方、室内熱交換器3を流れる冷媒は暖房時と冷
房時では冷媒の流れ方向が異なるので、室内熱交換器を
室外熱交換器と離して設置する場合は、2本の冷媒配管
が液側とガス側の2つに分かれるため、液側の配管を細
くすることができ、冷媒量を低減することができる。
As described above, the refrigerant flowing through the outdoor heat exchanger 7 becomes a counter flow to the air flow during heating and cooling, and the heat exchange efficiency can be improved as compared with the parallel flow. On the other hand, the refrigerant flowing through the indoor heat exchanger 3 has different flow directions during heating and cooling, so when the indoor heat exchanger is installed separately from the outdoor heat exchanger, the two refrigerant pipes are connected to the liquid side. Since it is divided into two parts, the gas side and the gas side, the liquid side pipe can be made thin and the amount of refrigerant can be reduced.

【0033】本発明の第3の実施例を図9により説明す
る。図9は本実施例に関わる空気調和装置の構成図であ
る。
A third embodiment of the present invention will be described with reference to FIG. FIG. 9 is a configuration diagram of the air conditioner according to the present embodiment.

【0034】本実施例では、第1の実施例における第1
および第2の冷媒流路切り替え装置として、冷凍サイク
ルの圧力差を駆動力として作動する四方弁を用いてお
り、駆動するための圧力切り換え装置を、第1および第
2の冷媒流路切り換え装置で共有化させて構成してい
る。図9において、1は圧縮機、10は第1の四方弁、
12は第2の四方弁で、内部にはピストン11および1
3が挿入されている。3は列数が複数の室内熱交換器、
6は減圧装置としての膨張弁、7は列数が複数の室外熱
交換器で、これらは順に配管接続されていて冷凍サイク
ルが構成されている。8は室内送風ファン、9は室外送
風ファン、17は四方弁を駆動するための圧力切り換え
装置としてのパイロットバルブである。そしてパイロッ
トバルブ17には、圧力配管14〜16が3本接続され
ており、第1の圧力配管14は、図9に示すように、途
中で分岐し、図9中に示す第1の四方弁10の左端と、
第2の四方弁12の右端に接続されている。第2の圧力
配管15は、圧縮機1の吸い込み側に接続されており、
第3の圧力配管16は、途中で分岐し第1の四方弁10
の右端と、第2の四方弁12の左端に接続されている。
In this embodiment, the first embodiment of the first embodiment is used.
A four-way valve that operates by using the pressure difference of the refrigeration cycle as a driving force is used as the second refrigerant flow path switching device, and the pressure switching device for driving the first and second refrigerant flow path switching devices is used. It is configured to be shared. In FIG. 9, 1 is a compressor, 10 is a first four-way valve,
12 is a second four-way valve, which has pistons 11 and 1 inside.
3 is inserted. 3 is an indoor heat exchanger with multiple rows,
Reference numeral 6 is an expansion valve as a pressure reducing device, 7 is an outdoor heat exchanger having a plurality of rows, and these are connected in sequence to form a refrigeration cycle. Reference numeral 8 is an indoor blower fan, 9 is an outdoor blower fan, and 17 is a pilot valve as a pressure switching device for driving the four-way valve. Three pressure pipes 14 to 16 are connected to the pilot valve 17, and the first pressure pipe 14 branches in the middle as shown in FIG. 9, and the first four-way valve shown in FIG. The left end of 10,
It is connected to the right end of the second four-way valve 12. The second pressure pipe 15 is connected to the suction side of the compressor 1,
The third pressure pipe 16 branches off in the middle, and the first four-way valve 10
Is connected to the right end of the second four-way valve 12.

【0035】このように構成された空気調和装置の動作
について、まず暖房を例にとり説明する。暖房時はパイ
ロットバルブ17は、第1の圧力配管14と第2の圧力
配管15が導通するように作動する。第1の圧力配管1
4と第2の圧力配管15が導通ことにより第1の四方弁
10と第2の四方弁12内のピストン11および13
は、それぞれ図9中に示す低圧側の左側に移動し、四方
弁10、12と第1の圧力配管14は封鎖される。冷凍
サイクルとして動作は、第1の実施例の暖房時の動作と
同様になる。
The operation of the thus-configured air conditioner will first be described taking heating as an example. During heating, the pilot valve 17 operates so that the first pressure pipe 14 and the second pressure pipe 15 are electrically connected. First pressure line 1
4 and the second pressure pipe 15 are electrically connected, the pistons 11 and 13 in the first four-way valve 10 and the second four-way valve 12 are connected.
Moves to the left side on the low pressure side shown in FIG. 9, and the four-way valves 10 and 12 and the first pressure pipe 14 are closed. The operation as a refrigeration cycle is similar to the operation during heating in the first embodiment.

【0036】また、冷房時はパイロットバルブ17が、
第2の圧力配管15と第3の圧力配管16とを導通する
ように作動する。第2の圧力配管15と第3の圧力配管
16とを導通することにより第1の四方弁10と第2の
四方弁12内のピストン11および13は、図9中に示
すようにそれぞれ低圧側の右側に移動し、四方弁10、
12と第2の圧力配管16は封鎖される。冷凍サイクル
としての動作は、第1の実施例の冷房時の動作と同様に
なる。
When cooling, the pilot valve 17 is
It operates so that the second pressure pipe 15 and the third pressure pipe 16 are electrically connected. By connecting the second pressure pipe 15 and the third pressure pipe 16 to each other, the pistons 11 and 13 in the first four-way valve 10 and the second four-way valve 12 respectively have a low pressure side as shown in FIG. To the right of the four-way valve 10,
12 and the second pressure pipe 16 are closed. The operation as a refrigeration cycle is similar to the operation during cooling in the first embodiment.

【0037】本実施例では、第1および第2の冷媒流路
切り換え装置を四方弁としたことで部品点数が減り、さ
らに2つの四方弁10、12の切り換えも1つのパイロ
ットバルブ17のみで行うので、より信頼性の高い空気
調和装置を提供することができる。また、パイロットバ
ルブ17の駆動に電磁コイルなどの電力を必要とするも
のを用いている場合は、共通化したことにより削減でき
た電磁コイル分だけ省電力とすることができる。
In this embodiment, since the first and second refrigerant flow path switching devices are four-way valves, the number of parts is reduced, and the switching between the two four-way valves 10 and 12 is performed by only one pilot valve 17. Therefore, a more reliable air conditioner can be provided. Further, when the pilot valve 17 is driven by an electromagnetic coil or the like which requires electric power, it is possible to save power by the electromagnetic coil that is reduced by the common use.

【0038】本発明の第4の実施例を図10により説明
する。図10は本実施例に関わる空気調和装置の構成図
である。
A fourth embodiment of the present invention will be described with reference to FIG. FIG. 10 is a configuration diagram of the air conditioner according to the present embodiment.

【0039】本実施例は、第2の実施例と第3の実施例
を複合して構成したものである。第2の実施例で述べた
ように、室内熱交換器3を流れる冷媒は暖房時と冷房時
では冷媒の流れ方向が異なるので、セパレート型のエア
コンのように室内熱交換器を室外熱交換器と離して設置
する場合は、2本の冷媒配管が液側とガス側の2つに分
かれるため、液側の配管を細くすることができ、封入冷
媒量を削減することができ、配管スペースを小さくする
ことができる。また、パイロットバルブの駆動に電磁コ
イルなどの電力を必要とするものを用いている場合は、
共通化したことにより削減できた電磁コイル分だけ省電
力とすることができる。
This embodiment is a combination of the second embodiment and the third embodiment. As described in the second embodiment, since the refrigerant flowing through the indoor heat exchanger 3 has different flow directions during heating and cooling, the indoor heat exchanger is replaced by an outdoor heat exchanger like a separate type air conditioner. When installed separately, the two refrigerant pipes are divided into the liquid side and the gas side, so the liquid side pipe can be made thinner, the amount of enclosed refrigerant can be reduced, and the piping space can be reduced. Can be made smaller. Also, if you are using something that requires electric power such as an electromagnetic coil to drive the pilot valve,
Power consumption can be reduced by the amount of electromagnetic coils that have been reduced due to the common use.

【0040】本発明の第5の実施例を図11により説明
する。図11は本実施例に関する空気調和装置の構成図
である。
A fifth embodiment of the present invention will be described with reference to FIG. FIG. 11 is a configuration diagram of the air conditioner according to this embodiment.

【0041】本実施例は、第4の実施例において、第1
の圧力配管14に設けられた第1の四方弁10と、第2
の四方弁12への分岐点との間に、逆止弁18を第2の
四方弁12からパイロットバルブ17へ順方向となるよ
うに設けたものである。
This embodiment is the same as the first embodiment in the fourth embodiment.
The first four-way valve 10 provided in the pressure pipe 14 of the
The check valve 18 is provided in the forward direction from the second four-way valve 12 to the pilot valve 17 between the branch point to the four-way valve 12.

【0042】このように構成することにより、冷房時に
第1の四方弁10内の、凝縮前の高温高圧の冷媒ガスの
一部が、室外熱交換器7を通らずに、第1の四方弁10
内よりも低圧で冷媒温度も低い、第2の四方弁12へ流
入するのを防ぐことができ、効率の低下を防ぐことがで
きる。
With this configuration, a part of the high-temperature high-pressure refrigerant gas in the first four-way valve 10 before condensation does not pass through the outdoor heat exchanger 7 during the cooling operation, and the first four-way valve 10 does not pass through the outdoor heat exchanger 7. 10
It is possible to prevent the refrigerant from flowing into the second four-way valve 12, which has a lower pressure and a lower refrigerant temperature than the inside, and prevents the efficiency from decreasing.

【0043】本発明の第6の実施例を図12により説明
する。図12は本実施例に関する空気調和装置の構成図
である。
A sixth embodiment of the present invention will be described with reference to FIG. FIG. 12 is a configuration diagram of the air conditioner according to this embodiment.

【0044】図12において、1は圧縮機、10は第1
の冷媒流路切り換え装置としての四方弁、3は列数が複
数の室内熱交換器、6は減圧装置としての膨張弁、7は
列数が複数の室外熱交換器、19a〜19dは第2の冷
媒流路切り換え装置としての逆止弁で、四方弁10は、
圧縮機1の吐出側と吸い込み側が、それぞれ室内熱交換
器3と第2の冷媒流路切り換え装置に選択接続できるよ
うに設け、第2の冷媒流路切り換え装置としての逆止弁
19a〜19dは、室外熱交換器7の冷媒流れ方向を冷
房時、暖房とも一定方向となるように、それぞれ室外熱
交換器7の下側から膨張弁6、室外熱交換器7の下側か
ら四方弁10、四方弁10から室外熱交換器7の上側、
膨張弁6から室外熱交換器7の上側を順方向となるよう
に設けられ、これらは配管接続されていて冷凍サイクル
が構成されている。冷媒には非共沸混合冷媒が用いられ
ている。8は室内送風ファン、9は室外送風ファンであ
る。
In FIG. 12, 1 is a compressor and 10 is a first
Four-way valve as a refrigerant flow path switching device, 3 is an indoor heat exchanger having a plurality of rows, 6 is an expansion valve as a pressure reducing device, 7 is an outdoor heat exchanger having a plurality of rows, and 19a to 19d are second The four-way valve 10 is a check valve as a refrigerant flow path switching device of
The discharge side and the suction side of the compressor 1 are provided so as to be selectively connected to the indoor heat exchanger 3 and the second refrigerant flow path switching device, respectively, and the check valves 19a to 19d as the second refrigerant flow path switching devices are provided. , The expansion valve 6 from the lower side of the outdoor heat exchanger 7 and the four-way valve 10 from the lower side of the outdoor heat exchanger 7 so that the refrigerant flow direction of the outdoor heat exchanger 7 is constant during cooling. From the four-way valve 10 to the upper side of the outdoor heat exchanger 7,
The expansion valve 6 and the upper side of the outdoor heat exchanger 7 are provided so as to be in the forward direction, and these are connected by piping to form a refrigeration cycle. A non-azeotropic mixed refrigerant is used as the refrigerant. Reference numeral 8 is an indoor blower fan, and 9 is an outdoor blower fan.

【0045】このように構成された空気調和装置の動作
について、まず暖房を例にとり説明する。暖房時は圧縮
機1で圧縮された高温高圧のガスは、四方弁10を通
り、室内熱交換器3に上方から流入し、室内送風ファン
8により送風されてくる空気に対し対向流に流れ、空気
に放熱して凝縮する。そして膨張弁6で減圧され、順方
向に逆止弁19dを通り、室外熱交換器7に上方から流
入し、室内送風ファン9により送風されてくる空気に対
し対向流に流れ、空気から吸熱して蒸発する。そして逆
止弁19aには、その下流側に室外熱交換器7内での圧
力損失分だけ高圧であるので流れず、逆止弁19bを通
り、逆止弁19cには、その下流側に室外熱交換器7内
での圧力損失分だけ高圧であるので流れず、四方弁10
を通り、圧縮機1へ戻る。
The operation of the thus-configured air conditioner will first be described taking heating as an example. During heating, the high-temperature high-pressure gas compressed by the compressor 1 passes through the four-way valve 10, flows into the indoor heat exchanger 3 from above, and flows in a counterflow to the air blown by the indoor blower fan 8, It radiates heat to the air and condenses. Then, the pressure is reduced by the expansion valve 6, passes through the check valve 19d in the forward direction, flows into the outdoor heat exchanger 7 from above, flows in a counterflow to the air blown by the indoor blower fan 9, and absorbs heat from the air. Evaporate. The check valve 19a does not flow to the downstream side because it has a high pressure corresponding to the pressure loss in the outdoor heat exchanger 7, and therefore does not flow, and passes through the check valve 19b, and the check valve 19c has the outdoor side on the downstream side. Since the pressure is high due to the pressure loss in the heat exchanger 7, it does not flow and the four-way valve 10
Pass through and return to compressor 1.

【0046】また、冷房時は圧縮機1で圧縮された高温
高圧のガスは、四方弁10を通り、順方向である19c
を通り、室外熱交換器7に上方から流入し、室外送風フ
ァン9により送風されてくる空気に対し対向流に流れ、
空気に放熱して凝縮する。そして逆止弁19bには、そ
の下流側に室外熱交換器7内での圧力損失分だけ高圧で
あるので流れず、逆止弁19aを通り、逆止弁19dに
は、その下流側に室外熱交換器7内での圧力損失分だけ
高圧であるので流れず、膨張弁6に流入して減圧され、
室内熱交換器3に下方から流入し、室内送風ファン8に
より送風されてくる空気に対し並行流に流れ、空気から
吸熱して蒸発する。そして四方弁10を通り、圧縮機1
へ戻る。
During cooling, the high-temperature and high-pressure gas compressed by the compressor 1 passes through the four-way valve 10 and is in the forward direction 19c.
And flows into the outdoor heat exchanger 7 from above and flows counter to the air blown by the outdoor blower fan 9,
It radiates heat to the air and condenses. The check valve 19b does not flow to the check valve 19b because it has a high pressure corresponding to the pressure loss in the outdoor heat exchanger 7 on the downstream side thereof, and the check valve 19b passes through the check valve 19a. It does not flow because it has a high pressure corresponding to the pressure loss in the heat exchanger 7, and it flows into the expansion valve 6 and is decompressed,
The air flowing into the indoor heat exchanger 3 from below and flowing in parallel with the air blown by the indoor blower fan 8 absorbs heat from the air and evaporates. Then, through the four-way valve 10, the compressor 1
Return to.

【0047】以上のように本実施例では、室外熱交換器
7を流れる冷媒は、暖房時、冷房時とも空気の流れに対
し対向流となり、室内熱交換器3を流れる冷媒は暖房時
と冷房時では冷媒の流れ方向が異なるので、第2の実施
例と同様の効果があるのに加え、第2の冷媒流路切り換
え装置として逆止弁を用いているので、四方弁のように
駆動装置や圧力配管を必要としないので、省電力の空気
調和装置とすることができる。
As described above, in this embodiment, the refrigerant flowing through the outdoor heat exchanger 7 becomes a counterflow to the air flow during heating and cooling, and the refrigerant flowing through the indoor heat exchanger 3 during heating and cooling. Since the flow direction of the refrigerant is different from time to time, the same effect as in the second embodiment is obtained, and in addition, since a check valve is used as the second refrigerant flow path switching device, a drive device like a four-way valve is used. Since no pressure pipes or pressure pipes are required, a power-saving air conditioner can be obtained.

【0048】なお、これまで記した実施例は、すべて熱
交換器のパス数が1パスの場合であったが、熱交換器や
熱交換器内でパス数が複数となる場合にも有効である。
In the above-mentioned embodiments, all the heat exchangers have one pass, but they are also effective when the heat exchanger or the heat exchanger has a plurality of passes. is there.

【0049】[0049]

【発明の効果】以上述べたように、本発明によれば、少
なくとも2種類以上の非共沸冷媒を混合した非共沸混合
冷媒を封入した空気調和装置において、熱交換器の冷媒
流れ方向が、暖房時、冷房時とも空気の流れ方向に対し
対向流となるようにしたことにより、並行流に比べ熱交
換効率を上昇させることができ、高効率の空気調和装置
提供できる。 又、冷媒として非共沸混合冷媒を用いた
空気調和装置において、暖房時、冷房時とも列ごとの冷
媒流れ方向が、熱交換を行う空気の風下側から風上側に
なっているので、冷媒が周囲を流れる空気と温度差が保
て、熱交換効率を上昇させることができる。
As described above, according to the present invention, in the air conditioner enclosing the non-azeotropic mixed refrigerant in which at least two kinds of non-azeotropic refrigerants are mixed, the refrigerant flow direction of the heat exchanger is changed. The heat exchange efficiency can be increased as compared with the parallel flow by providing the counterflow to the air flow direction both during heating and during cooling, so that a highly efficient air conditioner can be provided. Further, in an air conditioner using a non-azeotropic mixed refrigerant as a refrigerant, the refrigerant flow direction for each row during heating and cooling is from the leeward side of the air for heat exchange to the upwind side, so the refrigerant is The temperature difference with the air flowing around can be maintained, and the heat exchange efficiency can be increased.

【0050】又、室外熱交換器および室内熱交換器内を
流れる冷媒は、暖房時、冷房時とも空気の流れに対し対
向流となるので、周囲を流れる空気と温度差が保てる。
The refrigerant flowing in the outdoor heat exchanger and the indoor heat exchanger has a counterflow to the air flow during heating and cooling, so that the temperature difference with the air flowing around can be maintained.

【0051】また、暖房運転時、冷房運転時に凝縮器と
して作用する熱交換器と膨張弁の間に、受液器を設けて
いるので、受液器に流入する冷媒は、凝縮後の乾き度の
小さい冷媒であるので、受液器に滞留する液冷媒とは組
成差が小さくなり、循環する冷媒の組成と、封入したと
きの冷媒の組成との差が小さくなる。このため、冷媒を
封入するときの組成の管理が行いやすくなる。
Further, since the liquid receiver is provided between the expansion valve and the heat exchanger that functions as a condenser during the heating operation and the cooling operation, the refrigerant flowing into the liquid receiver has a dryness after condensation. Since it is a small refrigerant, the composition difference between the refrigerant and the liquid refrigerant staying in the liquid receiver is small, and the difference between the composition of the circulating refrigerant and the composition of the refrigerant when sealed is small. Therefore, it becomes easy to manage the composition when the refrigerant is sealed.

【0052】又、暖房運転時、冷房運転時とも、室内熱
交換器および室外熱交換器には上側から冷媒が流入する
ので、熱交換器内の液溜りを最小限にでき、熱交換器の
性能低下を抑え、封入冷媒を必要以上に封入することな
く、最小限に抑えることができる。
Also, during both heating operation and cooling operation, the refrigerant flows into the indoor heat exchanger and the outdoor heat exchanger from the upper side, so that the liquid pool in the heat exchanger can be minimized and the heat exchanger It is possible to suppress performance deterioration and minimize the amount of the filled refrigerant without filling it more than necessary.

【0053】又、室内熱交換器を流れる冷媒は暖房運転
時と冷房運転時では冷媒の流れ方向が異なるので、室内
熱交換器を室外熱交換器と離して設置する場合は、2本
の冷媒配管が液側とガス側の2つに分かれるため、液側
の配管を細くすることができ、冷媒量を低減することが
できる。
Further, since the refrigerant flowing through the indoor heat exchanger has a different flow direction between the heating operation and the cooling operation, when the indoor heat exchanger is installed separately from the outdoor heat exchanger, two refrigerants are installed. Since the pipe is divided into the liquid side and the gas side, the liquid side pipe can be made thin and the amount of refrigerant can be reduced.

【0054】又、冷房運転時に第1の四方弁内の、凝縮
前の高温高圧の冷媒ガスの一部が、室外熱交換器を通ら
ずに、第1の四方弁内よりも低圧で冷媒温度も低い、第
2の四方弁へ流入するのを防ぐことができ、効率の低下
を防ぐことができる。
Further, during the cooling operation, a part of the high-temperature high-pressure refrigerant gas in the first four-way valve before condensation does not pass through the outdoor heat exchanger, and the refrigerant temperature is lower than that in the first four-way valve. It is also possible to prevent the flow into the second four-way valve, which is low, and prevent a decrease in efficiency.

【0055】[0055]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例である空気調和装置の構
成図である。
FIG. 1 is a configuration diagram of an air conditioner that is a first embodiment of the present invention.

【図2】非共沸混合冷媒の気液平衡線図である。FIG. 2 is a vapor-liquid equilibrium diagram of a non-azeotropic mixed refrigerant.

【図3】非共沸混合冷媒の蒸発過程での冷媒・空気温度
の説明図である。
FIG. 3 is an explanatory diagram of a refrigerant / air temperature in a process of evaporating a non-azeotropic mixed refrigerant.

【図4】非共沸混合冷媒の蒸発過程での冷媒・空気温度
の説明図である。
FIG. 4 is an explanatory diagram of a refrigerant / air temperature in a process of evaporating a non-azeotropic mixed refrigerant.

【図5】列間で断熱を施した熱交換器の効果の説明図で
ある。
FIG. 5 is an explanatory diagram of an effect of a heat exchanger having heat insulation between rows.

【図6】列ごとの冷媒流れ方向が異なるようにした熱交
換器の効果の説明図である。
FIG. 6 is an explanatory diagram of an effect of the heat exchanger in which the refrigerant flow direction is different for each row.

【図7】列ごとの冷媒流れ方向を同一にした熱交換器の
効果の説明図である。
FIG. 7 is an explanatory diagram of an effect of the heat exchanger in which the refrigerant flow direction is the same for each row.

【図8】本発明の第二の実施例である空気調和装置の構
成図である。
FIG. 8 is a configuration diagram of an air conditioner that is a second embodiment of the present invention.

【図9】本発明の第三の実施例である空気調和装置の構
成図である。
FIG. 9 is a configuration diagram of an air conditioner that is a third embodiment of the present invention.

【図10】本発明の第四の実施例である空気調和装置の
構成図である。
FIG. 10 is a configuration diagram of an air conditioner that is a fourth embodiment of the present invention.

【図11】本発明の第五の実施例である空気調和装置の
構成図である。
FIG. 11 is a configuration diagram of an air conditioner that is a fifth embodiment of the present invention.

【図12】本発明の第六の実施例である空気調和装置の
構成図である。
FIG. 12 is a configuration diagram of an air conditioner that is a sixth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…圧縮機、2a〜2d…弁、3…室内熱交換器、4a
〜4d…弁、5…受液器、6…膨張弁、7…室外熱交換
器、8…室内ファン、9…室外ファン、10…第1の四
方弁、11…第1の四方弁内のピストン、12…第2の
四方弁、13…第2の四方弁内のピストン、14…第1
の圧力配管、15…第2の圧力配管、16…第3の圧力
配管、17…パイロットバルブ、18…逆止弁、19a
〜19d…逆止弁。
1 ... Compressor, 2a-2d ... Valve, 3 ... Indoor heat exchanger, 4a
... 4d ... Valve, 5 ... Liquid receiver, 6 ... Expansion valve, 7 ... Outdoor heat exchanger, 8 ... Indoor fan, 9 ... Outdoor fan, 10 ... First four-way valve, 11 ... Inside first four-way valve Piston, 12 ... Second four-way valve, 13 ... Piston in second four-way valve, 14 ... First
Pressure pipe, 15 ... Second pressure pipe, 16 ... Third pressure pipe, 17 ... Pilot valve, 18 ... Check valve, 19a
~ 19d ... Check valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松尾 一也 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 工藤 光夫 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 内田 麻理 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 小暮 博志 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所リビング機器事業部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuya Matsuo 502 Jinritsucho, Tsuchiura-shi, Ibaraki Prefecture Hiritsu Manufacturing Co., Ltd.Mechanical Research Institute (72) Inventor Mitsuo Kudo 502 Jinritsucho, Tsuchiura-shi, Ibaraki Hiritsu Co., Ltd. Machinery Research Laboratory (72) Inventor Mari Uchida 502 Jinritsucho, Tsuchiura City, Ibaraki Prefecture Hitate Manufacturing Co., Ltd. (72) Inventor Hiroshi Kogure 800 Tomita, Ohira-cho, Shimotsuga-gun, Tochigi Hitachi Living Equipment Co., Ltd. Within the business unit

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、列数が複数の室内熱交換器、減圧
装置、列数が複数の室外熱交換器を接続してサイクルを
構成し、該サイクル内に非共沸冷媒を少なくとも2種類
以上混合した非共沸混合冷媒を封入し、前記圧縮機の吐
出側に、前記圧縮機の吐出側と、室内熱交換器あるいは
室外熱交換器とを選択的に接続し、かつ前記減圧装置
と、室内熱交換器あるいは室外熱交換器とを選択的に接
続するための第1の冷媒流路切り換え装置を設け、前記
圧縮機の吸い込み側に、該圧縮機の吸い込み側と室内熱
交換器あるいは室外熱交換器とを選択的に接続し、かつ
減圧装置と室内熱交換器あるいは室外熱交換器とを選択
的に接続するための第2の冷媒流路切り換え装置を設け
て、室内熱交換器および室外熱交換器の列ごとの冷媒流
れ方向が、暖房運転時、冷房運転時とも同一方向から流
れるように、かつ熱交換を行う空気の風下側から風上側
に流れるように構成したことを特徴とする空気調和装
置。
1. A cycle is formed by connecting a compressor, an indoor heat exchanger having a plurality of rows, a pressure reducing device, and an outdoor heat exchanger having a plurality of rows, and at least two non-azeotropic refrigerants are contained in the cycle. Encapsulating a non-azeotropic mixed refrigerant mixed in more than one kind, selectively connecting the discharge side of the compressor and the indoor heat exchanger or the outdoor heat exchanger to the discharge side of the compressor, and the decompression device. And a first refrigerant flow path switching device for selectively connecting the indoor heat exchanger or the outdoor heat exchanger, the suction side of the compressor and the indoor heat exchanger. Alternatively, a second refrigerant flow path switching device for selectively connecting the outdoor heat exchanger and selectively connecting the pressure reducing device to the indoor heat exchanger or the outdoor heat exchanger is provided, and the indoor heat exchange is performed. The refrigerant flow direction for each row of the heat exchanger and the outdoor heat exchanger is the heating operation. The air conditioning apparatus characterized by being configured to flow in the same direction during both the cooling operation and the leeward side of the air exchanging heat to flow on the windward side.
【請求項2】圧縮機、列数が複数の室内熱交換器、膨脹
装置、列数が複数の室外熱交換器を接続してサイクルを
構成し、該サイクル内に非共沸冷媒を少なくとも2種類
以上混合した非共沸混合冷媒を封入し、前記圧縮機の吐
出側に、前記圧縮機の吐出側と、室内、室外のうちの一
方の熱交換器あるいはとを第2の冷媒流路切り換え装置
とを選択的に接続し、かつ前記膨脹装置と、室内、室外
のうち一方の熱交換器あるいは第2の冷媒流路切り換え
装置とを選択的に接続するための第1の冷媒流路切り換
え装置を設け、前記圧縮機の吸い込み側に、該圧縮機の
吸い込み側と室内、室外のうち一方の熱交換器あるいは
第2の冷媒流路切り換え装置とを選択的に接続し、かつ
第1の冷媒流路切り換え装置と室内、室外のうち一方の
熱交換器あるいは第1の流路切り換え装置とを選択的に
接続するための第2の冷媒流路切り換え装置を設けて、
室内熱交換器および室外熱交換器の列ごとの冷媒流れ方
向が、暖房運転時、冷房運転時とも同一方向から流れる
ように、かつ熱交換を行う空気の風下側から風上側に流
れるように構成したことを特徴とする空気調和装置。
2. A cycle is formed by connecting a compressor, an indoor heat exchanger having a plurality of rows, an expansion device, and an outdoor heat exchanger having a plurality of rows, and at least two non-azeotropic refrigerants are contained in the cycle. A non-azeotropic mixed refrigerant, which is a mixture of more than one kind, is enclosed, and the discharge side of the compressor is switched to the second refrigerant flow path between the discharge side of the compressor and one of the indoor and outdoor heat exchangers. A first refrigerant flow path switching device for selectively connecting the expansion device and the expansion device and either the indoor or outdoor heat exchanger or the second refrigerant flow path switching device. A device is provided, and the suction side of the compressor is selectively connected to the suction side of the compressor and one of the indoor heat exchanger and the outdoor heat exchanger or the second refrigerant flow switching device; Refrigerant flow path switching device and either indoor or outdoor heat exchanger or And providing the second refrigerant flow path switching device for selectively connecting the first flow path switching device,
The refrigerant flow direction for each row of the indoor heat exchanger and the outdoor heat exchanger is configured to flow from the same direction during heating operation and cooling operation, and from the leeward side of the air for heat exchange to the upwind side. An air conditioner characterized by the above.
【請求項3】圧縮機、列数が複数の室内熱交換器、減圧
装置、列数が複数の室外熱交換器を接続してサイクルを
構成し、該サイクル内に非共沸冷媒を少なくとも2種類
以上混合した非共沸混合冷媒を封入し、前記圧縮機の吐
出側に第1の冷媒流路切り換え装置を、前記圧縮機の吸
い込み側に第2の冷媒流路切り換え装置を設けて、前記
第1の冷媒流路切り換え装置及び第2の冷媒流路切り換
え装置を切り換えることにより前記冷媒が圧縮機、室内
熱交換器、減圧装置、室外熱交換器、もしくは圧縮機、
室外熱交換器、減圧装置、室内熱交換器の順に循環する
ように構成するとともに、室内熱交換器および室外熱交
換器の列ごとの冷媒流れ方向が、暖房運転時、冷房運転
時とも同一方向から流れるように、かつ熱交換を行う空
気の風下側から風上側に流れるように構成したことを特
徴とする空気調和装置。
3. A cycle is formed by connecting a compressor, an indoor heat exchanger having a plurality of rows, a pressure reducing device, and an outdoor heat exchanger having a plurality of rows, and at least two non-azeotropic refrigerants are contained in the cycle. By enclosing a non-azeotropic mixed refrigerant mixed in more than one kind, a first refrigerant flow path switching device is provided on the discharge side of the compressor, and a second refrigerant flow path switching device is provided on the suction side of the compressor, By switching between the first refrigerant flow path switching device and the second refrigerant flow path switching device, the refrigerant is compressed by the compressor, the indoor heat exchanger, the pressure reducing device, the outdoor heat exchanger, or the compressor.
It is configured to circulate in the order of the outdoor heat exchanger, the pressure reducing device, and the indoor heat exchanger, and the refrigerant flow direction for each row of the indoor heat exchanger and the outdoor heat exchanger is the same direction during heating operation and cooling operation. An air conditioner characterized in that it is configured to flow from the leeward side to the leeward side of the air for heat exchange.
【請求項4】圧縮機、第1の冷媒流路切り換え装置、列
数が複数の室内熱交換器、減圧装置、列数が複数の室外
熱交換器を接続してサイクルを構成し、該サイクル内に
非共沸冷媒を少なくとも2種類以上混合した非共沸混合
冷媒を封入し、前記圧縮機の吸い込み側に、室内熱交換
器と圧縮機、室外熱交換器と減圧装置、あるいは室外熱
交換器と圧縮機、室内熱交換器と減圧装置とを選択的に
接続するための第2の冷媒流路切り換え装置を設けるこ
とにより、室内熱交換器あるいは室外熱交換器のうち一
方の熱交換器の列ごとの冷媒流れ方向が、暖房運転時、
冷房運転時とも同一方向から流れるように、かつ熱交換
を行う空気の風下側から風上側に流れるように構成した
ことを特徴とする空気調和装置。
4. A cycle is constituted by connecting a compressor, a first refrigerant flow path switching device, an indoor heat exchanger having a plurality of rows, a pressure reducing device, and an outdoor heat exchanger having a plurality of rows, and the cycle is formed. A non-azeotropic mixed refrigerant in which at least two kinds of non-azeotropic refrigerants are mixed is enclosed, and an indoor heat exchanger and a compressor, an outdoor heat exchanger and a pressure reducing device, or an outdoor heat exchange is provided on the suction side of the compressor. Of the indoor heat exchanger or the outdoor heat exchanger by providing a second refrigerant flow path switching device for selectively connecting the air conditioner and the compressor, and the indoor heat exchanger and the pressure reducing device. The flow direction of the refrigerant for each row of
An air conditioner configured to flow from the same direction even during a cooling operation, and to flow from the leeward side to the windward side of air for heat exchange.
【請求項5】圧縮機、室内熱交換器、減圧装置、室外熱
交換器、複数の冷媒流路切り換え装置を設けてサイクル
を構成し、前記冷媒流路切り換え装置が冷凍サイクルの
圧力差を駆動力として作動する四方弁であって、該四方
弁を駆動するための圧力切り換え装置が、複数の四方弁
を共有化されて駆動されるように構成されていることを
特徴とする空気調和装置。
5. A cycle is formed by providing a compressor, an indoor heat exchanger, a pressure reducing device, an outdoor heat exchanger, and a plurality of refrigerant flow path switching devices, and the refrigerant flow path switching device drives the pressure difference of a refrigeration cycle. An air conditioner, which is a four-way valve that operates as force, wherein a pressure switching device for driving the four-way valve is configured to be driven by sharing a plurality of four-way valves.
【請求項6】前記四方弁を駆動するための圧力配管中に
逆止弁を設け、循環する冷媒が短絡することを防止する
ように構成した請求項5に記載の空気調和装置。
6. The air conditioner according to claim 5, wherein a check valve is provided in the pressure pipe for driving the four-way valve to prevent the circulating refrigerant from being short-circuited.
【請求項7】前記列数が複数の熱交換器が、各列の冷媒
流れ方向を同一方向となるように構成した請求項1から
5のいずれかに記載の空気調和装置。
7. The air conditioner according to claim 1, wherein the heat exchangers having a plurality of rows have the same refrigerant flow direction in each row.
【請求項8】前記列数が複数の熱交換器が、各列の間に
間隙あるいは断熱材を設けて前記各列間の熱伝達量を低
下させたものである請求項1から7のいずれかに記載の
空気調和装置。
8. A heat exchanger having a plurality of rows, wherein a gap or a heat insulating material is provided between the rows to reduce the amount of heat transfer between the rows. The air conditioner according to claim 1.
【請求項9】前記暖房運転時あるいは冷房運転時に凝縮
器として作用する熱交換器と膨張弁の間に受液器を設け
た請求項1から8のいずれかに記載の空気調和装置。
9. The air conditioner according to claim 1, wherein a liquid receiver is provided between the expansion valve and the heat exchanger that functions as a condenser during the heating operation or the cooling operation.
JP6068297A 1994-04-06 1994-04-06 Air conditioner Pending JPH07280375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6068297A JPH07280375A (en) 1994-04-06 1994-04-06 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6068297A JPH07280375A (en) 1994-04-06 1994-04-06 Air conditioner

Publications (1)

Publication Number Publication Date
JPH07280375A true JPH07280375A (en) 1995-10-27

Family

ID=13369715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6068297A Pending JPH07280375A (en) 1994-04-06 1994-04-06 Air conditioner

Country Status (1)

Country Link
JP (1) JPH07280375A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004507706A (en) * 2000-09-01 2004-03-11 シンヴェント・エイエス Reversible vapor compression system
JP2009222362A (en) * 2008-03-18 2009-10-01 Daikin Ind Ltd Refrigerating device
JP2009257740A (en) * 2008-03-25 2009-11-05 Daikin Ind Ltd Refrigerating apparatus
CN102980333A (en) * 2012-12-05 2013-03-20 海信(山东)空调有限公司 Air conditioner refrigerant circulating system comprising multiple four-way valves and air conditioner
JP2015145776A (en) * 2014-03-06 2015-08-13 東プレ株式会社 Refrigeration device and operation method of refrigeration device
WO2018189805A1 (en) * 2017-04-11 2018-10-18 三菱電機株式会社 Refrigeration cycle device
JP2019143870A (en) * 2018-02-20 2019-08-29 三菱電機株式会社 Air conditioner
JP6576603B1 (en) * 2019-02-27 2019-09-18 三菱電機株式会社 Air conditioner
JP6698951B1 (en) * 2019-02-27 2020-05-27 三菱電機株式会社 Air conditioner
TWI709723B (en) * 2014-02-03 2020-11-11 日商東普雷股份有限公司 Refrigeration device and operation method of refrigeration device
WO2020261387A1 (en) * 2019-06-25 2020-12-30 三菱電機株式会社 Air conditioner
JPWO2021214832A1 (en) * 2020-04-20 2021-10-28
WO2023013347A1 (en) * 2021-08-02 2023-02-09 パナソニックIpマネジメント株式会社 Refrigeration cycle device
WO2023190202A1 (en) * 2022-03-30 2023-10-05 ダイキン工業株式会社 Refrigeration cycle device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004507706A (en) * 2000-09-01 2004-03-11 シンヴェント・エイエス Reversible vapor compression system
JP2009222362A (en) * 2008-03-18 2009-10-01 Daikin Ind Ltd Refrigerating device
JP2009257740A (en) * 2008-03-25 2009-11-05 Daikin Ind Ltd Refrigerating apparatus
CN102980333A (en) * 2012-12-05 2013-03-20 海信(山东)空调有限公司 Air conditioner refrigerant circulating system comprising multiple four-way valves and air conditioner
TWI709723B (en) * 2014-02-03 2020-11-11 日商東普雷股份有限公司 Refrigeration device and operation method of refrigeration device
JP2015145776A (en) * 2014-03-06 2015-08-13 東プレ株式会社 Refrigeration device and operation method of refrigeration device
WO2018189805A1 (en) * 2017-04-11 2018-10-18 三菱電機株式会社 Refrigeration cycle device
JP2019143870A (en) * 2018-02-20 2019-08-29 三菱電機株式会社 Air conditioner
WO2020174618A1 (en) * 2019-02-27 2020-09-03 三菱電機株式会社 Air-conditioning device
CN113454408B (en) * 2019-02-27 2022-07-01 三菱电机株式会社 Air conditioning apparatus
JP6698951B1 (en) * 2019-02-27 2020-05-27 三菱電機株式会社 Air conditioner
JP6576603B1 (en) * 2019-02-27 2019-09-18 三菱電機株式会社 Air conditioner
CN113439188A (en) * 2019-02-27 2021-09-24 三菱电机株式会社 Air conditioner
CN113454408A (en) * 2019-02-27 2021-09-28 三菱电机株式会社 Air conditioning apparatus
WO2020174619A1 (en) * 2019-02-27 2020-09-03 三菱電機株式会社 Air conditioning device
US11906191B2 (en) 2019-02-27 2024-02-20 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2020261387A1 (en) * 2019-06-25 2020-12-30 三菱電機株式会社 Air conditioner
JPWO2021214832A1 (en) * 2020-04-20 2021-10-28
EP4141348A4 (en) * 2020-04-20 2023-08-09 Mitsubishi Electric Corporation Refrigeration cycle device
WO2021214832A1 (en) * 2020-04-20 2021-10-28 三菱電機株式会社 Refrigeration cycle device
WO2023013347A1 (en) * 2021-08-02 2023-02-09 パナソニックIpマネジメント株式会社 Refrigeration cycle device
WO2023190202A1 (en) * 2022-03-30 2023-10-05 ダイキン工業株式会社 Refrigeration cycle device
JP2023148435A (en) * 2022-03-30 2023-10-13 ダイキン工業株式会社 Refrigeration cycle device

Similar Documents

Publication Publication Date Title
WO2018047330A1 (en) Air conditioner
JPH07324844A (en) Six-way switching valve and refrigerator using the same
EP1512925A2 (en) Condenser
EP1512924A3 (en) Air conditioner comprising heat exchanger and means for switching cooling cycle
JPH07280375A (en) Air conditioner
KR950011986A (en) Air conditioner employing azeotropic mixture refrigerant
US5660056A (en) Air conditioner
JP2010501826A (en) Air conditioner for communication equipment
EP3492839A1 (en) Refrigeration cycle device
JPWO2018138770A1 (en) Heat source side unit and refrigeration cycle apparatus
CN210951942U (en) Thermal management system
KR100225636B1 (en) Airconditioner for both cooling and warming
CN108119953A (en) Splitting heat pump air conditioner device
WO2003062710A1 (en) Heat pump type air conditioner
KR20140145025A (en) Out door unit capable of defrosting and heat pump system including the out door unit
JP2997504B2 (en) Air conditioner
CN115031438B (en) Efficient defrosting heat pump type small air conditioner
JPH0798162A (en) Air-conditioner
JP2002195675A (en) Air conditioner
JPH10253204A (en) Method for operating air conditioner and air conditioner
JPH08178445A (en) Heat pump type air conditioner
KR20050043089A (en) Heat pump
WO2023013347A1 (en) Refrigeration cycle device
JPH1068560A (en) Refrigeration cycle device
JPH10196984A (en) Air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060116

A131 Notification of reasons for refusal

Effective date: 20070116

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A02 Decision of refusal

Effective date: 20070515

Free format text: JAPANESE INTERMEDIATE CODE: A02