JP3281438B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP3281438B2
JP3281438B2 JP05352793A JP5352793A JP3281438B2 JP 3281438 B2 JP3281438 B2 JP 3281438B2 JP 05352793 A JP05352793 A JP 05352793A JP 5352793 A JP5352793 A JP 5352793A JP 3281438 B2 JP3281438 B2 JP 3281438B2
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
liquid
gas
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05352793A
Other languages
Japanese (ja)
Other versions
JPH06265240A (en
Inventor
哲夫 佐野
康弘 新井
隆喜 岩永
哲司 山下
功一 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP05352793A priority Critical patent/JP3281438B2/en
Publication of JPH06265240A publication Critical patent/JPH06265240A/en
Application granted granted Critical
Publication of JP3281438B2 publication Critical patent/JP3281438B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0254Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in series arrangements
    • F25B2313/02541Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in series arrangements during cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0254Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in series arrangements
    • F25B2313/02543Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in series arrangements during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、冷媒に混合冷媒を用
いた空気調和装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner using a mixed refrigerant as a refrigerant.

【0002】[0002]

【従来の技術】一般に、ヒートポンプ式の空気調和装置
にあっては、例えば、図4に示すように圧縮機101
と、室内熱交換器103と、減圧装置105と、室外熱
交換器107とにより構成される。
2. Description of the Related Art Generally, in a heat pump type air conditioner, for example, as shown in FIG.
, An indoor heat exchanger 103, a decompression device 105, and an outdoor heat exchanger 107.

【0003】冷房モード時には、四方弁109を切換え
ることで、室内熱交換器103は蒸発器として、室外熱
交換器107は凝縮機として使用されるもので、圧縮機
101から吐出された冷媒は、点線矢印で示すように室
外熱交換器107→減圧装置105→室内熱交換器10
3を通り、仕事を終えた冷媒は再び圧縮機101に戻る
冷凍サイクルを繰返す。
In the cooling mode, the four-way valve 109 is switched so that the indoor heat exchanger 103 is used as an evaporator and the outdoor heat exchanger 107 is used as a condenser. The refrigerant discharged from the compressor 101 is As shown by the dotted arrow, the outdoor heat exchanger 107 → the decompression device 105 → the indoor heat exchanger 10
After passing through 3, the refrigerant that has completed its work repeats a refrigeration cycle returning to the compressor 101 again.

【0004】暖房モード時には、室内熱交換器103を
凝縮器として、室外熱交換器107を蒸発器として使用
するもので、圧縮機101から吐出された冷媒は、実線
矢印で示すように室内熱交換器103→減圧装置105
→室外熱交換器107を通り、仕事を終えた冷媒は再び
圧縮機101に戻るサイクルを繰返すことで、冷房モー
ド、暖房モードがそれぞれ得られるようになる。
[0004] In the heating mode, the indoor heat exchanger 103 is used as a condenser and the outdoor heat exchanger 107 is used as an evaporator. The refrigerant discharged from the compressor 101 is subjected to indoor heat exchange as shown by a solid arrow. Vessel 103 → decompression device 105
→ The refrigerant that has completed work after passing through the outdoor heat exchanger 107 returns to the compressor 101 again, so that a cooling mode and a heating mode can be respectively obtained.

【0005】[0005]

【発明が解決しようとする課題】前記した如く、室内・
室外熱交換器103,107を蒸発器として、または凝
縮器としてそれぞれ使用することで冷房モード、暖房モ
ードがそれぞれ得られる。この場合、単一冷媒に代え
て、蒸発し易い低沸点冷媒と蒸発しにくい高沸点冷媒か
らなる混合冷媒を使用すると、熱交換器が蒸発器として
作用する時、熱交換器の出口側では蒸発しにくい高沸点
冷媒の液比率の高い気液2相の状態が発生し、冷媒の流
動抵抗を増加させる結果、圧縮機の吸入圧力を低下させ
圧縮機の性能低下を招来する。同時に、熱交換器の入口
側では、流動抵抗の影響で相対的に管内圧力が高まり、
液冷媒の蒸発を妨げ、熱交換量の低下を招く等、性能・
効率の低下の原因となる。
As described above, indoor and indoor
By using the outdoor heat exchangers 103 and 107 as an evaporator or a condenser, respectively, a cooling mode and a heating mode can be obtained. In this case, when a mixed refrigerant composed of a low-boiling refrigerant that evaporates easily and a high-boiling refrigerant that hardly evaporates is used instead of a single refrigerant, when the heat exchanger acts as an evaporator, the evaporator is evaporated at the outlet side of the heat exchanger. A gas-liquid two-phase state having a high liquid ratio of the high-boiling-point refrigerant, which is difficult to generate, is generated, and the flow resistance of the refrigerant is increased. As a result, the suction pressure of the compressor is reduced, and the performance of the compressor is reduced. At the same time, at the inlet side of the heat exchanger, the pressure in the pipe relatively increases due to the effect of flow resistance,
Performance and other factors, such as hindering the evaporation of liquid refrigerant and reducing the amount of heat exchange
This causes a reduction in efficiency.

【0006】一方、熱交換器が凝縮器として作用する
時、熱交換器の出口側では凝縮しにくい低沸点冷媒のガ
ス比率の高い気液2相の状態が発生し、熱交換パイプと
未凝縮気体冷媒の接触を妨げる結果、熱交換パイプの熱
伝達率が低くなり、熱交換量の低下を招く等、性能・効
率の低下の原因となっていた。
On the other hand, when the heat exchanger acts as a condenser, a gas-liquid two-phase state having a high gas ratio of the low boiling point refrigerant which is hardly condensed is generated at the outlet side of the heat exchanger, and the heat exchange pipe and the uncondensed refrigerant are not condensed. As a result of preventing the contact of the gaseous refrigerant, the heat transfer coefficient of the heat exchange pipe is reduced, which causes a decrease in the amount of heat exchange, which causes a decrease in performance and efficiency.

【0007】そこで、この発明は、混合冷媒を用いて冷
房モード時、暖房モード時の性能、能力効率の向上が図
れる空気調和装置を提供することを目的としている。
Accordingly, an object of the present invention is to provide an air conditioner capable of improving the performance and the performance efficiency in a cooling mode and a heating mode using a mixed refrigerant.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
に、この発明は、圧縮機と四方弁と室内熱交換器と減圧
装置と室外熱交換器とにより構成され、暖房モード時
に、室内熱交換器を凝縮器として、室外熱交換器を蒸発
器として使用する一方、冷房モード時に、室内熱交換器
を蒸発器として、室外熱交換器を凝縮器として使用する
混合冷媒を用いた空気調和装置において、前記室外熱交
換器を、冷媒が流れるチューブと冷却用のフィンとで形
成すると共に、チューブの途中に、冷媒のガス成分と液
成分に分離する液溜タンクを設け、この液溜タンクに
は、このタンク内の液面の高低により動作する2個のフ
ロート弁を設け、暖房モード時に、前記液溜タンクで分
離したガス成分を前記一方のフロート弁を介して圧縮機
の吸込側へ送り込むようにし、冷房モード時に、前記液
溜タンクで分離した液成分を前記他方のフロート弁を介
して減圧装置の流入側へ送り込むようにしたことを特徴
とする。
In order to achieve the above object, the present invention comprises a compressor, a four-way valve, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger. An air conditioner using a mixed refrigerant that uses an indoor heat exchanger as an evaporator and an outdoor heat exchanger as a condenser in a cooling mode while using an exchanger as a condenser and an outdoor heat exchanger as an evaporator. in, the outdoor heat exchanger, so as to form between the fins for cooling the tube through which the refrigerant flows, in the middle of the tube, the liquid reservoir tank for separating the gas component and the liquid component of the refrigerant is provided in the liquid reservoir tank
Are operated by the level of the liquid in this tank.
A funnel valve is provided, and in the heating mode,
The separated gas component is supplied to the compressor via the one float valve.
To the suction side of the
The liquid component separated in the storage tank is passed through the other float valve.
The pressure is then sent to the inflow side of the decompression device .

【0009】[0009]

【0010】[0010]

【作用】かかる空気調和装置によれば、暖房運転におい
て、混合冷媒は、圧縮機→室内熱交換器→減圧装置→室
外熱交換器を通り再び圧縮機に戻るサイクルを繰返す。
この時、凝縮器として作用する室内熱交換器において、
フィンを通る空気は熱交換され、温風となって室内へ向
け送り出される。
According to this air conditioner, in the heating operation, the mixed refrigerant repeats a cycle of passing through the compressor, the indoor heat exchanger, the decompression device, and the outdoor heat exchanger and returning to the compressor again.
At this time, in the indoor heat exchanger acting as a condenser,
The air passing through the fins undergoes heat exchange, and is sent out as warm air toward the room.

【0011】次に、蒸発器として作用する室外熱交換器
にあっては、熱交換器の前半部で低沸点冷媒を主体とす
る蒸発の後、液溜タンク内に送り込まれ、液成分とガス
成分とに分離、貯留される。分離・貯留されたガス成分
は、圧縮機の吸込側へ送り出される。
Next, in the outdoor heat exchanger functioning as an evaporator, after the evaporation mainly composed of a low-boiling-point refrigerant in the first half of the heat exchanger, it is sent into a liquid storage tank, where the liquid component and gas are removed. Separated into components and stored. The separated and stored gas components are sent out to the suction side of the compressor.

【0012】一方、室外熱交換器の後半部において、前
半部から送り込まれる高沸点冷媒を主体とする未蒸発の
液冷媒は、ガス成分の比率が非常に小さくなるために、
体積流量の減少、管内流速の低下により、管内流動抵抗
が減少して圧縮機の吸入圧力を低下させることが少なく
なる。併せて入口側の管内圧力が相対的に低くなり、液
冷媒の蒸発が促進され熱交換量が増加する。
On the other hand, in the latter half of the outdoor heat exchanger, the non-evaporated liquid refrigerant mainly composed of the high-boiling refrigerant sent from the former half has a very small gas component ratio.
Due to a decrease in the volume flow rate and a decrease in the flow velocity in the pipe, the flow resistance in the pipe is reduced, and the reduction in the suction pressure of the compressor is reduced. At the same time, the pressure in the pipe on the inlet side becomes relatively low, the evaporation of the liquid refrigerant is promoted, and the heat exchange amount increases.

【0013】次に、冷房運転に入ると、室内熱交換器は
蒸発器として、室外熱交換器を凝縮器として作用する。
即ち、圧縮機で冷媒ガスを吸入・圧縮し、高温高圧にし
て送り出す。高温高圧ガスは凝縮器(熱交換器)に入
る。この時、冷媒ガスはフィンを通過する空気に凝縮の
潜熱を奪われて液化される。
Next, when the cooling operation is started, the indoor heat exchanger functions as an evaporator and the outdoor heat exchanger functions as a condenser.
That is, the refrigerant gas is sucked and compressed by the compressor, and is sent out at high temperature and high pressure. The high temperature and high pressure gas enters a condenser (heat exchanger). At this time, the refrigerant gas is liquefied by depriving the latent heat of condensation by the air passing through the fins.

【0014】液化した冷媒は、減圧装置へ流れ、ここで
高圧の冷媒は急激に膨脹して、低温低圧の霧状となる。
次に蒸発器(熱交換器)に流れ、周囲の空気からフィン
を通して蒸発の潜熱を奪い、空気を冷却して冷風とし、
室内へ送られる。冷媒はここで霧状からガス状になり、
再び圧縮機に流れる。このサイクルの繰返しで冷房が行
われる。
The liquefied refrigerant flows to the decompression device, where the high-pressure refrigerant expands rapidly to form a low-temperature, low-pressure mist.
Next, it flows into an evaporator (heat exchanger), takes the latent heat of evaporation from the surrounding air through fins, cools the air to cool air,
Sent to the room. The refrigerant changes from mist to gaseous here,
It flows again to the compressor. Cooling is performed by repeating this cycle.

【0015】この冷凍サイクル時において、室外熱交換
器の前半部で高沸点冷媒を主体とした凝縮が行われた
後、液溜タンク内に送り込まれ、液成分とガス成分とに
分離、貯留される。分離・貯留された液成分は減圧装置
の吸込側へ送り出される。
In this refrigeration cycle, after the condensation mainly of the high-boiling refrigerant is performed in the first half of the outdoor heat exchanger, it is sent into the liquid storage tank, where it is separated and stored into the liquid component and the gas component. You. The separated and stored liquid components are sent out to the suction side of the decompression device.

【0016】一方、室外熱交換器の後半部において、前
半部からは、ガス成分の比率が大きい冷媒が送り込まれ
るため、ガス冷媒は液冷媒に邪魔されることなくチュー
と接触し易くなり、凝縮が促進される。これら冷房運
転、暖房運転時において、液溜タンクは室外に設置され
る室外熱交換器に設けられているため、液溜タンク内を
流れる耳障りな冷媒音対策が不要となる。 また、室内外
の温度湿度条件、および熱交換器の送風量、等の運転環
境条件の変化によって、液溜タンク内の混合冷媒のガス
成分と液成分の構成比率が変化するが、液溜タンクに
は、このタンク内の液面の高低により動作するフロート
弁を設けているので、前記構成比率の変化に対してフロ
ート弁が常に追従し混合冷媒のガス成分あるいは液成分
の流出量を適切に制御でき、常に適切なガス成分と液成
分に分離できる。これにより運転環境条件の変化に対し
ても効率の良い運転を確保できる。
[0016] On the other hand, in the second half portion of the outdoor heat exchanger, from the first half, since the ratio of the gas components is large refrigerant fed, Chu without gas refrigerant being obstructed by the liquid refrigerant
The contact is facilitated and the condensation is promoted. These cooling operations
The liquid storage tank is installed outside the
Is installed in the outdoor heat exchanger,
Eliminating countermeasures for the annoying refrigerant noise is eliminated. Also, indoor and outdoor
Operating environment such as temperature and humidity conditions, and air flow rate of heat exchanger
Of the refrigerant mixture in the liquid storage tank
The composition ratio of the component and the liquid component changes, but the
Is a float that operates depending on the level of the liquid in this tank.
Because the valve is provided, the flow is
Gas valve or liquid component of the mixed refrigerant
Control the flow rate of gas, ensuring that the appropriate gas components and liquid
Can be separated into minutes. As a result, changes in operating environment conditions
However, efficient operation can be ensured.

【0017】[0017]

【実施例】以下、図1乃至図3の図面を参照しながらこ
の発明の一実施例を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS.

【0018】図1は、高沸点冷媒と低沸点冷媒とを混合
した非共沸混合冷媒が封入されたヒートポンプ式の空気
調和装置であって、1はサクションカップ3を有する圧
縮機、5は四方弁、7は室内熱交換器、9は減圧装置、
11は室外熱交換器をそれぞれ示しており、冷媒パイプ
13を介して接続連通している。
FIG. 1 shows a heat pump type air conditioner in which a non-azeotropic mixed refrigerant in which a high boiling point refrigerant and a low boiling point refrigerant are mixed is enclosed, 1 is a compressor having a suction cup 3, and 5 is a four-way compressor. Valve, 7 is an indoor heat exchanger, 9 is a decompression device,
Numeral 11 denotes an outdoor heat exchanger, which is connected and connected via a refrigerant pipe 13.

【0019】圧縮機1は、サクションカップ3からのガ
ス状の非共沸冷媒を高温、高圧の冷媒ガスとして吐出す
るよう機能する。
The compressor 1 functions to discharge the gaseous non-azeotropic refrigerant from the suction cup 3 as a high-temperature, high-pressure refrigerant gas.

【0020】四方弁5は、切換操作することで圧縮機1
からの冷媒を室内熱交換器7側へ又は室外熱交換器11
側へ冷媒ガスを切換えるもので、図面は圧縮機1から吐
出された冷媒ガスを室内熱交換器7側へ送るよう設定さ
れている。
The four-way valve 5 switches the compressor 1 by switching operation.
From the indoor heat exchanger 7 or the outdoor heat exchanger 11
In the drawing, the refrigerant gas discharged from the compressor 1 is set to be sent to the indoor heat exchanger 7 side.

【0021】室内熱交換器7は、冷房時において蒸発器
として、暖房時において凝縮器としてそれぞれ使用す
る。
The indoor heat exchanger 7 is used as an evaporator during cooling and as a condenser during heating.

【0022】蒸発器として使用する室内熱交換器7にあ
っては、減圧装置9から低温低圧の霧状となって送り込
まれる冷媒ガスは、室内送風機15によって熱交換器7
のフィンを通過する空気により蒸発してガス状になると
共に周囲の空気からフィンを通して蒸発の潜熱を奪い、
空気を冷却して冷風とするよう機能し、冷風は室内送風
機15によって室内へ送られるようになる。
In the indoor heat exchanger 7 used as an evaporator, the refrigerant gas sent as a low-temperature and low-pressure mist from the pressure reducing device 9 is supplied to the heat exchanger 7 by the indoor blower 15.
Evaporate by the air passing through the fins to become gaseous and take away the latent heat of evaporation from the surrounding air through the fins,
It functions to cool the air into cool air, and the cool air is sent indoors by the indoor blower 15.

【0023】また、凝縮器として使用する室内熱交換器
7にあっては、圧縮機1から高温高圧のガス状となって
送り込まれる冷媒ガスは、室内送風機15によって熱交
換器15のフィンを通過する空気に凝縮の潜熱を奪われ
て霧状になると共にフィン通過時の空気に熱を与えて温
風とするよう機能し、温風は、室内送風機15によって
室内へ送られるようになる。
In the indoor heat exchanger 7 used as a condenser, the refrigerant gas sent from the compressor 1 in the form of a high-temperature and high-pressure gas passes through the fins of the heat exchanger 15 by the indoor blower 15. The latent air of heat is deprived of latent heat of condensation to form a mist and functions to give heat to the air when passing through the fins to generate hot air. The hot air is sent to the room by the indoor blower 15.

【0024】減圧装置9は、冷媒を低温、低圧の霧状に
すると共に、冷媒温度検知部(図示していない)からの
指令信号によって熱負荷等の運転条件に対応した冷媒流
量とするよう機能する。
The decompression device 9 functions to make the refrigerant into a low-temperature, low-pressure mist and to adjust the flow rate of the refrigerant according to operating conditions such as a heat load by a command signal from a refrigerant temperature detector (not shown). I do.

【0025】室外熱交換器11は、暖房時において蒸発
器として、冷房時において凝縮器としてそれぞれ使用す
るもので、前半部となる第1の熱交換部16と、後半部
となる第2の熱交換部17とに分けられ、第1と第2の
熱交換部16・17との間に、液溜タンク19が設けら
れている。
The outdoor heat exchanger 11 is used as an evaporator at the time of heating and as a condenser at the time of cooling, respectively. The first heat exchanger 16 as a first half and the second heat as a second half. A liquid storage tank 19 is provided between the first and second heat exchange units 16 and 17.

【0026】第1、第2の熱交換部16・17と、液溜
タンク19は、冷媒パイプ13を介して接続連通し、暖
房モード時の冷媒流れ方向上流側から、第1の熱交換器
16、液溜タンク19、第2の熱交換器17の順に配置
されている。
The first and second heat exchange sections 16 and 17 and the liquid storage tank 19 are connected and connected via a refrigerant pipe 13, and the first heat exchanger is connected to the first heat exchanger from the upstream side in the refrigerant flow direction in the heating mode. 16, a liquid reservoir tank 19, and a second heat exchanger 17 are arranged in this order.

【0027】第1、第2の熱交換部16・17は、冷媒
が流れるチューブ21と冷却用のフィン23とから成
り、蒸発器としての使用時において、霧状となって送り
込まれる冷媒ガスは、フィン23を通過する空気により
蒸発してガス状になると共にフィン23を通過した空気
は室外送風機19によって外へ排出される。
The first and second heat exchanging sections 16 and 17 each comprise a tube 21 through which a refrigerant flows and fins 23 for cooling. When used as an evaporator, the refrigerant gas fed in a mist state is The air passing through the fins 23 evaporates and becomes gaseous, and the air passing through the fins 23 is discharged to the outside by the outdoor blower 19.

【0028】また、凝縮器としての使用時において、高
温高圧のガス状となって送り込まれる冷媒ガスは、室外
送風機25によってフィン23を通過する空気に凝縮の
潜熱を奪われて霧状になると共にフィン23を通過した
空気は室外送風機25によって外へ排出されるようにな
る。
Further, when used as a condenser, the refrigerant gas which is sent in the form of a high-temperature and high-pressure gas is deprived of the latent heat of condensation by the air passing through the fins 23 by the outdoor blower 25 and becomes mist-like. The air that has passed through the fins 23 is discharged outside by the outdoor blower 25.

【0029】液溜タンク19は、冷媒を液成分とガス成
分とに分離、貯留するもので、図2に示すように、液成
分は、自重により下部に、軽いガス成分は上部にそれぞ
れ分離される。分離された液成分は逆止弁27を備えた
第1バイパス回路29を介して第1の熱交換部16と減
圧装置9とを繋ぐ冷媒パイプ13に送り込まれるように
なっている。
The liquid storage tank 19 separates and stores the refrigerant into a liquid component and a gas component. As shown in FIG. 2, the liquid component is separated by its own weight into a lower portion and the light gas component into an upper portion. You. The separated liquid component is sent to a refrigerant pipe 13 that connects the first heat exchange unit 16 and the pressure reducing device 9 via a first bypass circuit 29 having a check valve 27.

【0030】ガス成分は逆止弁31を備えた第2バイパ
ス回路33を介して第2の熱交換部17と四方弁5とを
繋ぐ冷媒パイプ13に送り込まれるようになっている。
The gas component is sent through a second bypass circuit 33 provided with a check valve 31 to a refrigerant pipe 13 connecting the second heat exchange section 17 and the four-way valve 5.

【0031】第1バイパス回路29に設けられた逆止弁
27は、液溜タンク19側から減圧装置9側へ向けて一
方向にのみ流れるよう機能する。この場合、逆止弁27
にかえて第1バイパス回路29を運転条件に応じて最適
値に制御可能な液流量制御弁を用いてもよい。
The check valve 27 provided in the first bypass circuit 29 functions to flow only in one direction from the liquid storage tank 19 side to the pressure reducing device 9 side. In this case, the check valve 27
Instead, a liquid flow control valve capable of controlling the first bypass circuit 29 to an optimum value according to the operating conditions may be used.

【0032】第2バイパス回路33に設けられた逆止弁
31は、液溜タンク19側から四方弁5側へ向けて一方
向にのみ流れるよう機能する。この場合、逆止弁31に
かえて第2バイパス回路33を運転条件に応じて最適値
に制御可能なガス流量制御弁を用いてもよい。
The check valve 31 provided in the second bypass circuit 33 functions so as to flow only in one direction from the liquid storage tank 19 side to the four-way valve 5 side. In this case, a gas flow control valve capable of controlling the second bypass circuit 33 to an optimum value according to the operating conditions may be used instead of the check valve 31.

【0033】一方、第1・第2バイパス回路29,33
には、液溜タンク19内において、フロート弁35,3
5がそれぞれ設けられ、第1バイパス回路29に設けら
れたフロート弁35は、液成分が少なくなった時に、鎖
線で示すようにバイパス回路を遮断し、ガス成分が第1
バイパス回路29へ流れ込むのを阻止するよう機能す
る。
On the other hand, the first and second bypass circuits 29 and 33
In the reservoir tank 19, the float valves 35, 3
5 are provided, and the float valve 35 provided in the first bypass circuit 29 shuts off the bypass circuit when the liquid component becomes low, as indicated by the dashed line, and the gas component becomes the first component.
It functions to prevent the flow into the bypass circuit 29.

【0034】また、第2バイパス回路33に設けられた
フロート弁35は、液成分が多くなり、液面が上昇した
時に、鎖線で示すようにバイパス回路を遮断し、液成分
が第2バイパス回路33へ流れ込むのを阻止するよう機
能する。
The float valve 35 provided in the second bypass circuit 33 shuts off the bypass circuit as indicated by a dashed line when the liquid component increases and the liquid level rises, and the liquid component is removed from the second bypass circuit 33. It functions to prevent it from flowing into 33.

【0035】かかる空気調和装置によれば、例えば、室
内熱交換器7を凝縮器として、室外熱交換器11を蒸発
器として使用する暖房時において冷媒は、圧縮機1→室
内熱交換器7→減圧装置9→室外熱交換器11を通り再
び圧縮機1に戻る暖房サイクルを繰返すようになる。こ
の動作時において、室内熱交換器7にあっては、フィン
23通過時の空気は熱が与えられ、室内送風機15によ
り温風となって室内へ向け送り出される。
According to such an air conditioner, for example, during heating using the indoor heat exchanger 7 as a condenser and the outdoor heat exchanger 11 as an evaporator, the refrigerant flows from the compressor 1 → the indoor heat exchanger 7 → The heating cycle that returns to the compressor 1 through the decompression device 9 and the outdoor heat exchanger 11 is repeated. During this operation, in the indoor heat exchanger 7, the air when passing through the fins 23 is given heat, is turned into warm air by the indoor blower 15, and is sent out indoors.

【0036】一方、室外熱交換器11にあっては、蒸発
器として作用し、冷媒は、第1の熱交換部16におい
て、低沸点冷媒を主体とする蒸発の後、液溜タンク19
内に送り込まれ、液成分とガス成分とに分離、貯留され
る。分離貯留されたガス成分は、第2バイパス回路33
によって圧縮機の吸込側へ送り出される。
On the other hand, in the outdoor heat exchanger 11, the refrigerant acts as an evaporator, and the refrigerant is evaporated in the first heat exchange section 16, mainly composed of a low-boiling-point refrigerant.
And is separated and stored in a liquid component and a gas component. The separated and stored gas component is supplied to the second bypass circuit 33.
Is discharged to the suction side of the compressor.

【0037】一方、第2の熱交換器17において、第1
の熱交換器16から送り込まれる高沸点冷媒を主体とす
る未蒸発の液冷媒は、ガス成分の比率が非常に小さくな
るために、体積流量の減少、チューブ21内流速の低下
により、チューブ内流動抵抗が減少して圧縮機1の吸入
圧力を低下させることが少なくなる。併せて入口側のチ
ューブ圧力が相対的に低くなるため、液冷媒の蒸発が促
進され熱交換量が増加し、効率のよい暖房運転が可能と
なる。
On the other hand, in the second heat exchanger 17,
The non-evaporated liquid refrigerant mainly containing the high boiling point refrigerant sent from the heat exchanger 16 has a very small gas component ratio, so that the volume flow rate decreases and the flow velocity in the tube 21 decreases. It is less likely that the resistance is reduced and the suction pressure of the compressor 1 is reduced. At the same time, since the tube pressure on the inlet side is relatively low, the evaporation of the liquid refrigerant is promoted, the heat exchange amount is increased, and an efficient heating operation can be performed.

【0038】次に、冷房運転にあっては、室内熱交換器
7は蒸発器として、室外熱交換器11を凝縮器として作
用する。即ち、圧縮機1で冷媒ガスを吸入・圧縮し、高
温高圧にして送り出す。この高温高圧ガスは凝縮器(熱
交換器11)に入る。この時、冷媒ガスはフィン23を
通過する空気に凝縮の潜熱を奪われて液化される。
Next, in the cooling operation, the indoor heat exchanger 7 functions as an evaporator, and the outdoor heat exchanger 11 functions as a condenser. That is, the refrigerant gas is sucked and compressed by the compressor 1 and sent out at a high temperature and a high pressure. This high-temperature high-pressure gas enters the condenser (heat exchanger 11). At this time, the refrigerant gas is liquefied by deprived of the latent heat of condensation by the air passing through the fins 23.

【0039】液化した冷媒ガスは、減圧装置9へ流れ、
ここで高圧ガスは急激に膨脹して、低温低圧の霧状とな
る。次に蒸発器(熱交換器7)に流れ、周囲の空気から
フィンを通して蒸発の潜熱を奪い、空気を冷却して冷風
とし、室内へ送られる。冷媒ガスはここで霧状からガス
状になり、再び圧縮機1に流れる。このサイクルの繰返
しで冷房が行われる。
The liquefied refrigerant gas flows to the pressure reducing device 9,
Here, the high-pressure gas expands rapidly and becomes a low-temperature, low-pressure mist. Next, it flows into an evaporator (heat exchanger 7), takes latent heat of evaporation from the surrounding air through fins, cools the air to cool air, and sends it to the room. Here, the refrigerant gas changes from a mist state to a gas state, and flows into the compressor 1 again. Cooling is performed by repeating this cycle.

【0040】この冷凍サイクル時において、第2の熱交
換器17で高沸点冷媒を主体とした凝縮が行なわれた
後、液溜タンク19内に送り込まれ、液成分とガス成分
とに分離・貯留される。分離・貯留された液成分は第1
バイパス回路29を介して減圧装置9へ送り込まれるた
め、第2の熱交換器17内のガス冷媒は、液冷媒に邪魔
されることなくチューブ21壁面と接触し効率のよい凝
縮が行われるようになる。
At the time of the refrigeration cycle, after the condensation mainly of the high-boiling refrigerant is performed in the second heat exchanger 17, it is sent into the liquid storage tank 19, where it is separated and stored into a liquid component and a gas component. Is done. The separated and stored liquid component is the first
Since the gas refrigerant in the second heat exchanger 17 is sent to the pressure reducing device 9 via the bypass circuit 29, the gas refrigerant in the second heat exchanger 17 contacts the wall surface of the tube 21 without being disturbed by the liquid refrigerant so that efficient condensation is performed. Become.

【0041】[0041]

【発明の効果】以上、説明したように、この発明の空気
調和装置によれば、混合冷媒を運転モードに対応して液
成分とガス成分とに分離貯留することができるため、冷
房能力、暖房能力の大幅な向上を図ることができる。
た、液溜タンクを室外熱交換器に設けているので、液溜
タンク内を流れる耳障りな冷媒音対策などを考慮する必
要がない。 さらに、冷房もしくは暖房のいずれの選択さ
れた運転モードにおいても、室内外の温度湿度条件、お
よび熱交換器の送風量、等の運転環境条件の変化によっ
て、液溜タンク内の混合冷媒のガス成分と液成分の構成
比率が変化した場合でも、液溜タンク内の液面の高低に
より動作するフロート弁によって、前記構成比率の変化
に対してフロート弁が常に追従し、混合冷媒のガス成分
あるいは、液成分の流出量を適切に制御でき、常に適切
なガス成分と液成分に分離できる。これにより運転環境
条件の変化に対しても効率の良い運転を確保できる。
As described above, according to the air conditioner of the present invention, the mixed refrigerant can be separated and stored into the liquid component and the gas component in accordance with the operation mode. The ability can be greatly improved. Ma
In addition, since the liquid storage tank is provided in the outdoor heat exchanger,
It is necessary to take measures against harsh refrigerant noise flowing in the tank.
No need. In addition, the choice of cooling or heating
Temperature and humidity conditions inside and outside the room,
Changes in operating environment conditions, such as
Of the gas and liquid components of the mixed refrigerant in the liquid storage tank
Even if the ratio changes, the liquid level in the reservoir tank will
The change of the composition ratio by the float valve which operates more
The float valve always follows the gas component of the mixed refrigerant.
Alternatively, the flow rate of liquid components can be controlled appropriately and always
Gas and liquid components. The driving environment
Efficient operation can be ensured even when conditions change.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明にかかる空気調和装置の配管図。FIG. 1 is a piping diagram of an air conditioner according to the present invention.

【図2】液溜タンクの概要切断面図。FIG. 2 is a schematic sectional view of a liquid storage tank.

【図3】第1・第2の熱交換部の概要図。FIG. 3 is a schematic diagram of first and second heat exchange units.

【図4】従来の単一冷媒を用いた図1と同様の配管図。FIG. 4 is a piping diagram similar to FIG. 1 using a conventional single refrigerant.

【符号の説明】[Explanation of symbols]

1 圧縮機 7 室外熱交換器 9 減圧装置 11 室内熱交換器 19 液溜タンク 21 チューブ 23 フィン DESCRIPTION OF SYMBOLS 1 Compressor 7 Outdoor heat exchanger 9 Decompression device 11 Indoor heat exchanger 19 Liquid storage tank 21 Tube 23 Fin

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩永 隆喜 神奈川県横浜市磯子区新杉田町8番地 株式会社東芝 住空間システム技術研究 所内 (72)発明者 山下 哲司 神奈川県横浜市磯子区新杉田町8番地 株式会社東芝 住空間システム技術研究 所内 (72)発明者 後藤 功一 神奈川県横浜市磯子区新杉田町8番地 株式会社東芝 住空間システム技術研究 所内 (56)参考文献 特開 昭57−41559(JP,A) 実開 平2−24251(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 39/00 F25B 1/00 385 F25B 5/00 309 F25B 13/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takayoshi Iwanaga 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Pref. Toshiba Corporation Living Space Systems Research Laboratory (72) Inventor Tetsuji Yamashita 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Toshiba Living Space System Technology Research Institute (72) Inventor Koichi Goto 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Toshiba Living Space System Technology Research Laboratory (56) References JP-A-57-41559 (JP, A) Practical application Hei 2-24251 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 39/00 F25B 1/00 385 F25B 5/00 309 F25B 13/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機と四方弁と室内熱交換器と減圧装
置と室外熱交換器とにより構成され、暖房モード時に、
室内熱交換器を凝縮器として、室外熱交換器を蒸発器と
して使用する一方、冷房モード時に、室内熱交換器を蒸
発器として、室外熱交換器を凝縮器として使用する混合
冷媒を用いた空気調和装置において、 前記室外熱交換器を、冷媒が流れるチューブと冷却用の
フィンとで形成すると共に、チューブの途中に、冷媒の
ガス成分と液成分に分離する液溜タンクを設け、この液
溜タンクには、このタンク内の液面の高低により動作す
る2個のフロート弁を設け、暖房モード時に、前記液溜
タンクで分離したガス成分を前記一方のフロート弁を介
して圧縮機の吸込側へ送り込むようにし、冷房モード時
に、前記液溜タンクで分離した液成分を前記他方のフロ
ート弁を介して減圧装置の流入側へ送り込むようにした
ことを特徴とする空気調和装置。
1. A compressor, a four-way valve, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger.
While using the indoor heat exchanger as a condenser and the outdoor heat exchanger as an evaporator, in the cooling mode, air using mixed refrigerant using the indoor heat exchanger as an evaporator and the outdoor heat exchanger as a condenser in conditioner, the outdoor heat exchanger, so as to form between the fins for cooling the tube through which the refrigerant flows, in the middle of the tube is provided with a liquid reservoir tank for separating the gas component and the liquid component of the refrigerant, the liquid
The sump tank operates depending on the level of the liquid in the tank.
Two float valves are provided, and in the heating mode, the liquid reservoir is provided.
The gas component separated in the tank is passed through the one float valve.
And send it to the suction side of the compressor.
The liquid component separated in the liquid storage tank is
An air conditioner characterized in that the air is sent to an inflow side of a pressure reducing device via a heat valve .
JP05352793A 1993-03-15 1993-03-15 Air conditioner Expired - Fee Related JP3281438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05352793A JP3281438B2 (en) 1993-03-15 1993-03-15 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05352793A JP3281438B2 (en) 1993-03-15 1993-03-15 Air conditioner

Publications (2)

Publication Number Publication Date
JPH06265240A JPH06265240A (en) 1994-09-20
JP3281438B2 true JP3281438B2 (en) 2002-05-13

Family

ID=12945287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05352793A Expired - Fee Related JP3281438B2 (en) 1993-03-15 1993-03-15 Air conditioner

Country Status (1)

Country Link
JP (1) JP3281438B2 (en)

Also Published As

Publication number Publication date
JPH06265240A (en) 1994-09-20

Similar Documents

Publication Publication Date Title
US5689962A (en) Heat pump systems and methods incorporating subcoolers for conditioning air
JP2003075009A (en) Heat pump system
JP2006071268A (en) Refrigerating plant
US20040118151A1 (en) Integrated dual circuit evaporator
JPH06213518A (en) Heat pump type air conditioner for mixed refrigerant
JPH02290475A (en) Heat pump type air conditioner
JP2997504B2 (en) Air conditioner
JPH06272998A (en) Refrigerator
JP3281438B2 (en) Air conditioner
JP2002243284A (en) Air conditioner
JP3155645B2 (en) Air conditioner
JPH0798162A (en) Air-conditioner
JP3054539B2 (en) Air conditioner
JP2002195675A (en) Air conditioner
KR20050043089A (en) Heat pump
JPH06272978A (en) Air conditioner
JPH07103622A (en) Air-conditioner
JPH10253171A (en) Air conditioner
JP3354244B2 (en) Refrigeration equipment
JP3159038B2 (en) Absorption heat pump
JPS5849863A (en) Refrigerating cycle of heat pump type hot-water supply machine
JP2005326131A (en) Liquid refrigerant pressurization device
JPH0989398A (en) Refrigerating cycle
JP2000018752A (en) Air conditioner
JPS5820858Y2 (en) Air conditioning equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees