JPS59117579A - Refrigerant composition - Google Patents

Refrigerant composition

Info

Publication number
JPS59117579A
JPS59117579A JP57225914A JP22591482A JPS59117579A JP S59117579 A JPS59117579 A JP S59117579A JP 57225914 A JP57225914 A JP 57225914A JP 22591482 A JP22591482 A JP 22591482A JP S59117579 A JPS59117579 A JP S59117579A
Authority
JP
Japan
Prior art keywords
refrigerant
boiling point
composition
temperature
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57225914A
Other languages
Japanese (ja)
Inventor
Yuji Yoshida
雄二 吉田
Yuji Mukai
裕二 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57225914A priority Critical patent/JPS59117579A/en
Publication of JPS59117579A publication Critical patent/JPS59117579A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To provide the titled composition consisting of a non-azeotropic mixture of a refrigerant having lower boiling point than flon 12 and a refrigerant having higher boiling point than flon 12 at a ratio within a specific range, and capable of improving the efficiency of a heat pump keeping the refrigeration capacity without modification of the heat pump. CONSTITUTION:The objective composition is composed of a non-azeotropic mixture of (A) a refrigerant having lower boiling point than flon 12 (hereinafter called as R12) (preferably R503, R23, R13, etc.) and (B) a refrigerant having higher boiling point than R12 (preferably R152a, R124, etc.). The boiling temperature difference between the refrigerants is preferably 20-60 deg.C. The boiling point of the saturated liquid is lower than that of R12, and the condensation point of the saturated vapor of the composition is higher than R12 under arbitrary pressure, or the boiling pressure of the saturated liquid of the composition is higher than that of R12 and the condensation pressure of the saturated vapor is lower than R12 at an arbitrary temperature. USE:Heat pump for utilization of small-scale cold heat in a refrigerator, dehumidifier, etc., and for utilization of high-temperature heat in a hot water supplier.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、熱ポンプ装置、特に冷蔵庫、除湿機等の小容
量冷熱利用や、給湯機等の高温熱利用に好適な冷媒用組
成物に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a refrigerant composition suitable for heat pump devices, particularly for small-capacity cold heat utilization in refrigerators, dehumidifiers, etc., and high-temperature heat utilization in water heaters, etc. .

(従来例の構成とその問題点) 従来冷蔵庫、除湿機等の小容量冷熱利用や、給湯機等の
高温熱利用を目的とした熱ポンプ装置用冷媒としては、
前者に対しては圧縮機等の製作上の問題から、又後者に
対しては高温耐圧上の問題から、ハロゲン化炭化水素の
内フロン12(ジクロロジフルオロメタン、沸点−29
,8℃、R12の如く、フロン系冷媒は以下R−と略す
)をもっばら用いてきた。しかるに熱ポンプ装置の効率
は、熱源温度によって規定される冷媒の熱力学的性質に
よっておのずと限定があシ、よシ省エネルギーを実現す
るための方法としては、高沸点冷媒となる程一般に蒸発
潜熱が大きく効率も高いため、R12より高沸点な冷媒
(R114,R21等)を使用することが考えられてい
る。しかるにR12よシ高沸点な冷媒は、圧縮機の吸入
比容積も大きいため、同一圧縮機では冷凍サイクル中の
冷媒循環量が減少し、冷凍能力も大きく減少することに
なる。逆に高効率を図シなからR12と同等能力を得る
ためには、圧縮機や熱交換器伝熱面積等を増大させる必
要があシ、構成部品を汎用的に利用したいという要求と
は相反するものであった。
(Conventional structure and its problems) Conventionally, as a refrigerant for heat pump equipment for the purpose of using small capacity cold energy such as refrigerators and dehumidifiers, and high temperature heat utilization such as water heaters,
For the former, due to problems in manufacturing the compressor, etc., and for the latter, due to problems in high temperature and pressure resistance, halogenated hydrocarbons such as Freon 12 (dichlorodifluoromethane, boiling point -29
, 8°C, R12 (hereinafter abbreviated as R-) has been widely used. However, the efficiency of heat pump equipment is naturally limited by the thermodynamic properties of the refrigerant, which is determined by the heat source temperature.In order to save energy, the higher the boiling point of the refrigerant, the higher the latent heat of vaporization. Since the efficiency is also high, it is considered to use a refrigerant with a higher boiling point than R12 (R114, R21, etc.). However, since a refrigerant with a higher boiling point than R12 has a large suction specific volume of the compressor, the amount of refrigerant circulated during the refrigeration cycle in the same compressor is reduced, and the refrigeration capacity is also significantly reduced. On the other hand, since high efficiency is not an objective, in order to obtain the same capacity as R12, it is necessary to increase the heat transfer area of the compressor and heat exchanger, which is contrary to the desire to use the component parts for general purpose. It was something to do.

(発明の目的) 本発明の目的は、従来R12を使用していた熱ポンゾ装
置において、R12よシ高効率であシながら、現行熱ポ
ンプ装置の圧縮機や伝熱面積等を大きく改造する必要の
ない新規な冷媒組成を提供するものであシ、これを2成
分以上の混合冷媒によって達成しようとするものである
(Objective of the Invention) The object of the present invention is to provide a heat pump system that has conventionally used R12 with higher efficiency than R12, while requiring major modifications to the compressor, heat transfer area, etc. of the current heat pump system. The aim is to provide a new refrigerant composition free from the above, and to achieve this by using a mixed refrigerant of two or more components.

(発明の構成) 本発明による冷媒用組成物は、R12よシ低沸点な塔媒
とR12よシ高沸点な冷媒の組合せからなる非共沸混合
冷媒において、適当な組成範囲において実現されるもの
である。特に望ましい組成範囲とは、混合冷媒の大気圧
における温度−組成線図(以下T−X線図と略し、混合
冷媒中の低沸点冷媒のモル分率をXで表わす)において
、沸点線とR12沸点と交わる組成よシ大きく、露点線
がR12沸点と交わる組成よシ小さい範囲が好適となる
ものである。なおT−X線図における沸点線とは、混合
冷媒飽和液体が沸騰を開始する組成と温度の関係を表わ
し、露点線とは、混合冷媒飽和気体が凝縮を開始する組
成と温度の関係を表わすものである。
(Structure of the Invention) The refrigerant composition according to the present invention is a non-azeotropic mixed refrigerant consisting of a combination of a tower medium with a lower boiling point than R12 and a refrigerant with a higher boiling point than R12, and is realized in an appropriate composition range. It is. A particularly desirable composition range is defined as the boiling point line and the R12 Preferably, the range is larger than the composition where the boiling point intersects, and smaller than the composition where the dew point line intersects the R12 boiling point. The boiling point line in the T-X diagram represents the relationship between the composition and temperature at which the mixed refrigerant saturated liquid begins to boil, and the dew point line represents the relationship between the composition and temperature at which the mixed refrigerant saturated gas begins to condense. It is something.

また組合せるべきR12よシ低沸点な冷媒と、R12よ
シ高沸点な冷媒の沸点差は、最大60 deg差程度が
好ましいものであシ、逆に沸点差が20deg差以下に
々ると、その効果はかなシ減じられたものとなり、場合
によっては混合冷媒が共沸組成を形成するため好ましく
ないものとなる。
In addition, it is preferable that the boiling point difference between a refrigerant with a lower boiling point than R12 and a refrigerant with a higher boiling point than R12 to be combined is about 60 deg at the maximum, and conversely, if the boiling point difference is 20 deg or less, The effect is diminished, and in some cases, the mixed refrigerant forms an azeotropic composition, which is undesirable.

(実施例の説明) 以下、本発明による冷媒用組成物を実施例と共に例示す
る。
(Description of Examples) Hereinafter, the refrigerant composition according to the present invention will be illustrated together with Examples.

実施例1 第1図は、本発明による冷媒用組成物を適用した熱ポン
プ装置である。1は圧縮機、2は冷媒対水2重管式凝縮
器、3は手動式膨張弁、4は冷媒対水2重管式蒸発器で
ある。第1の実施例としてR12より低沸点な冷媒とし
てはR22(沸点−40,8℃)、R12よシ高沸点な
冷媒としてはR114(沸点3.8℃)を用い、R22
のモル分率Xをθ〜1まで可変とした。また実験は給湯
機用を目的として、凝縮器2及び蒸発器4において、冷
媒対水が対向流となる如く水を流し、凝縮器2の入口水
温25℃、出口水温70℃、蒸発器4の入口水温25℃
、出口水温10℃となる如く水量と手動式膨張弁3の開
度を調節した。これらの結(5) 果を同−熱ポンプ装置を用いてR12を適用した場合と
対比すると、成績係数(=凝縮器2加熱能力/圧縮機1
人力)、加熱能力は第2図の如き関係が得られた。この
場合はほとんど全組成領域において、R12よりも成績
係数が向上しており、最も高い効率はx = 0.2前
後で約20%以上、加熱能力はR12の約5割弱という
結果に々っている。これらは冷媒対水を対向流とするこ
とによシ、熱交換過程の損失が低減されたためと考えら
れる。
Example 1 FIG. 1 shows a heat pump device to which a refrigerant composition according to the present invention is applied. 1 is a compressor, 2 is a refrigerant-to-water double-pipe condenser, 3 is a manual expansion valve, and 4 is a refrigerant-to-water double-pipe evaporator. In the first example, R22 (boiling point -40.8°C) is used as a refrigerant with a lower boiling point than R12, R114 (boiling point 3.8°C) is used as a refrigerant with a higher boiling point than R12, and R22
The mole fraction X was made variable from θ to 1. In addition, the experiment was conducted for the purpose of water heater use, and water was flowed in the condenser 2 and evaporator 4 so that the refrigerant and water were in counterflow. Inlet water temperature 25℃
The amount of water and the opening degree of the manual expansion valve 3 were adjusted so that the outlet water temperature was 10°C. Comparing these results (5) with the case where R12 is applied using the same heat pump device, the coefficient of performance (=condenser 2 heating capacity/compressor 1
The relationship shown in Figure 2 was obtained for heating capacity (manpower) and heating capacity. In this case, the coefficient of performance is better than R12 in almost all composition ranges, with the highest efficiency being about 20% or more at around x = 0.2, and the heating capacity being about 50% of R12. ing. This is thought to be due to the fact that the loss in the heat exchange process was reduced by making the refrigerant and water flow in opposite directions.

またR22/R114混合冷媒において、R22の組成
を適宜可変として飽和溶液の蒸気圧を計測し、これらの
データを用いて大気圧におけるT−X線図を推定したも
のを第3図に示す。第3図においてR12沸点(−29
,8℃)を記入すると、R12に代るべき混合冷媒の望
ましい組成範囲が特定できることがわかる。即ちR12
と沸点線の交わる組成(x−=0.36)から、R12
と露点線の交わる組成(X二0.84)の範囲において
は、成績係数がR12の1.21〜1.04倍、加熱能
力がR12の0.67〜1.36倍となっておシ、R1
]4(6) 単体(x=0.0)よシも成績係数・加熱能力共に向上
している。従ってこの組成範囲においては最大効率を達
成しているとはいえないものの、熱ポンゾ装置を大きく
改造することなく、成績係数の向上が図れるものである
Further, in the R22/R114 mixed refrigerant, the vapor pressure of the saturated solution was measured while changing the composition of R22 as appropriate, and the T-X diagram at atmospheric pressure was estimated using these data, which is shown in FIG. In Figure 3, R12 boiling point (-29
, 8° C.), it is possible to specify the desirable composition range of the mixed refrigerant to replace R12. That is, R12
From the composition where the boiling point line intersects (x-=0.36), R12
In the composition range where the and dew point lines intersect (X20.84), the coefficient of performance is 1.21 to 1.04 times that of R12, and the heating capacity is 0.67 to 1.36 times that of R12. , R1
]4(6) Both the coefficient of performance and heating capacity are improved compared to the single unit (x=0.0). Therefore, although it cannot be said that the maximum efficiency is achieved in this composition range, the coefficient of performance can be improved without major modification of the thermoponzo device.

実施例2 第2の実施例は第1の実施例と同じく、第1図に示した
熱ポンプ装置において、同一の実験方法により行なわれ
た。ここで用いた混合冷媒は、R12より低沸点な冷媒
としてはR13B1(沸点−57,8℃)、R12よシ
高沸点な冷媒としてはR]2B1(沸点−3,5℃)の
組合せである。このときの結果は、凝縮圧力の上昇のた
めx = 0.7前後までしか行っていないが、R12
の場合と対比すると、同じく第4図の如き関係が得られ
た。この場合も実験したほとんど全組成領域において、
R]2よシも成績係数が向上しておシ、最も高い効率は
X二0.2前後で約30係近く、加熱能力はR12の約
7割前後という結果になっている。
Example 2 A second example, like the first example, was conducted using the same experimental method in the heat pump apparatus shown in FIG. The mixed refrigerant used here is a combination of R13B1 (boiling point -57.8°C) as a refrigerant with a lower boiling point than R12, and R]2B1 (boiling point -3.5°C) as a refrigerant with a higher boiling point than R12. . The results at this time were only around x = 0.7 due to the increase in condensation pressure, but R12
When compared with the case of , the same relationship as shown in Fig. 4 was obtained. In this case as well, in almost all the composition ranges tested,
The coefficient of performance has improved for R]2 as well, and the highest efficiency is around 30 coefficients at around X20.2, and the heating capacity is around 70% of R12.

また第1の実施例と同じく、T−X線図を推定したもの
を第5図に示すが、第5図においてR12沸点(−29
,8℃)を記入すると、R12に代るべき混合冷媒の望
ましい組成範囲が特定できることがわかる。即ちR12
と沸点線の交わる組成(x=0.15)から、R12と
露点線の交わる組成(x = 0.72 )の範囲にお
いては、成績係数がR12の1,28〜0.97倍、加
熱能力がR12の0.70〜129倍となっている。従
ってこの組成範囲においては最大効率となる組成をも含
み、熱ポンプ装置を大きく改造することなく成績係数の
向上が図れるものである。
Also, as in the first embodiment, an estimated T-X diagram is shown in FIG. 5. In FIG.
, 8° C.), it is possible to specify the desirable composition range of the mixed refrigerant to replace R12. That is, R12
In the range from the composition where R12 and the dew point line intersect (x = 0.15) to the composition where R12 and the dew point line intersect (x = 0.72), the coefficient of performance is 1.28 to 0.97 times that of R12, and the heating capacity is is 0.70 to 129 times that of R12. Therefore, this composition range includes the composition that provides the maximum efficiency, and the coefficient of performance can be improved without major modification of the heat pump device.

以上の実施例かられかる如く、本発明による冷媒用組成
物は、R12よ多像沸点な冷媒とR12よシ高沸点な冷
媒の組合せからなる非共沸混合冷媒であり、その望まし
い組成範囲は次のように#丘は特定することができる。
As can be seen from the above examples, the refrigerant composition according to the present invention is a non-azeotropic mixed refrigerant consisting of a combination of a refrigerant with a polymorphic boiling point than R12 and a refrigerant with a higher boiling point than R12, and its desirable composition range is #Hills can be identified as follows.

第1の方法としては第6図に示す如く、混合冷媒の任意
圧力における飽和液体の沸騰温度がR12よシ低温で、
かつ飽和気体の凝縮温度がR12より高温となる様な組
成範囲として特定できる。彦お任意圧力としては大気圧
を用いるのが便利である。また第2の方法としては第7
図に示す如く、任意温度における飽和液体の沸騰圧力が
R12よシ高く、かつ飽和液体の凝縮圧力がRI2よシ
低い様な組成範囲として特定できる。なお組成範囲を特
定するための第1及び第2の方法のいづれを用いてもそ
の範囲に大差はない。
The first method, as shown in Figure 6, is that the boiling temperature of the saturated liquid at an arbitrary pressure of the mixed refrigerant is lower than R12,
Moreover, it can be specified as a composition range in which the condensation temperature of the saturated gas is higher than R12. It is convenient to use atmospheric pressure as the arbitrary pressure. Also, the second method is the seventh method.
As shown in the figure, it can be specified as a composition range in which the boiling pressure of the saturated liquid at any temperature is higher than R12, and the condensing pressure of the saturated liquid is lower than RI2. Note that there is no significant difference in the range whether the first or second method for specifying the composition range is used.

次に混合冷媒の組合せとしては、沸点差が20〜5 Q
 deg差程度のものが望ましく、R12より低沸点な
冷媒としてはR503,R23,R13゜R13B1.
R32,R125,R502,R22゜R500等、R
12よシ高沸点な冷媒としてはR152a 、R1,2
4、R142b 、R12B1  。
Next, as a combination of mixed refrigerants, the boiling point difference is 20 to 5 Q
A refrigerant with a boiling point lower than R12 is preferable, and R503, R23, R13°R13B1.
R32, R125, R502, R22゜R500 etc., R
R152a, R1,2 are refrigerants with higher boiling points than R12.
4, R142b, R12B1.

R114,RI33a、R21,R11等 が挙げられ
る。なおR12に代るべき混合冷媒をこれらの組合せか
ら選択する際、R503,R23゜R13等の非常に沸
点の低い冷媒は、冷蔵庫や除湿機等の低温熱源での利用
には適するものの、給湯機等の高温熱利用に際しては大
きな圧力上昇を誘引するため必ずしも好ましいものとは
ならない。
Examples include R114, RI33a, R21, and R11. When selecting a mixed refrigerant to replace R12 from these combinations, refrigerants with very low boiling points such as R503 and R23°R13 are suitable for use in low-temperature heat sources such as refrigerators and dehumidifiers, but they are not suitable for use in water heaters. This is not necessarily preferable when using high-temperature heat such as, because it induces a large pressure increase.

(9) またこれらのR12よシ低沸点な冷媒と、R12よシ高
沸点な冷媒との組合せにおいて、低沸点冷媒を基準とし
た組成範囲は、低沸点冷媒の沸点が低ければ低い程低沸
点冷媒のよシ少ない方向に移行し、高沸点冷媒の沸点が
高ければ高い程低沸点冷媒のより多い方向に移行する。
(9) In addition, in the combination of a refrigerant with a lower boiling point than R12 and a refrigerant with a higher boiling point than R12, the composition range based on the low boiling point refrigerant is that the lower the boiling point of the low boiling point refrigerant, the lower the boiling point. The higher the boiling point of the high-boiling point refrigerant, the more the amount of the low-boiling point refrigerant is shifted.

(発明の効果) 本発明で特定される混合冷媒とその組成範囲は、単一冷
媒の如く同一の沸点と露点をもつものではないが、その
平均値な値がR12とほぼ同等沸点となる如く構成する
ものであシ、圧縮機吸入比容積もR12とほぼ同等とな
シ、熱ポンプ装置を大きく改造することなく冷凍(加熱
)能力を維持しながら、効率の向上を図ることが可能と
なるものであり、特に冷蔵庫、除湿機等の小容量冷熱利
用や、給湯機等の高温熱利用の熱ポンプ装置に好適とな
るものである。
(Effect of the invention) The mixed refrigerant and its composition range specified in the present invention do not have the same boiling point and dew point like a single refrigerant, but the average value thereof is almost the same boiling point as R12. The compressor suction specific volume is almost the same as R12, making it possible to improve efficiency while maintaining refrigeration (heating) capacity without major modification of the heat pump device. It is particularly suitable for heat pump devices that utilize small-capacity cold heat such as refrigerators and dehumidifiers, and high-temperature heat such as water heaters.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による冷媒用組成物を適用した熱ポンプ
装置の一実施例を示す図、第2図及び第(10) 4図は混合冷媒組成とR112に対比した成績係数、加
熱能力の関係を示す図、第3図及び第5図は混合冷媒組
成と大気圧における温度との関係を示す図、第6図及び
第7図は本発明による冷媒用組成物の組成範囲を特定す
るだめの方法を説明する図である。 1・・圧縮機、2・・・凝縮器、3・・・手動式膨張弁
、4・蒸発器。 (11) 第1図 第3図 R22/R114中のR22のモル介卑第4図 R13日1/R12B1ヤの R13B1  の毛1シ
介ヤ第5図 R13B1/R12B1ヤっR13BI Q LAi亦
専第6図 う先奢清l象ヤリ格停見、内4区のネル奈キ第7図
Figure 1 shows an example of a heat pump device to which the refrigerant composition of the present invention is applied, and Figures 2 and (10) 4 show the mixed refrigerant composition, coefficient of performance and heating capacity compared to R112. Figures 3 and 5 are diagrams showing the relationship between the mixed refrigerant composition and temperature at atmospheric pressure, and Figures 6 and 7 are diagrams for specifying the composition range of the refrigerant composition according to the present invention. It is a figure explaining the method. 1. Compressor, 2. Condenser, 3. Manual expansion valve, 4. Evaporator. (11) Figure 1 Figure 3 The mole of R22 in R22/R114 Figure 4 R13 day 1/R12B1 Ya's R13B1 hair 1 figure Figure 5 R13B1/R12B1 Ya R13BI Q LAi Yisendai Figure 6 shows the number of people in the 4th ward, Figure 7

Claims (3)

【特許請求の範囲】[Claims] (1)R12より低沸点な冷媒と、R12より高沸点な
冷媒の組合せで2成分以上から成る非共沸混合冷媒にお
いて、 A、任意圧力における飽和液体の沸騰温度がR12よシ
低温で、かつ飽和気体の凝縮温度がR12よシ高温とな
る組成 又は、 B、任意温度における飽和液体の沸騰圧力がR12よシ
高く、がっ飽和気体の凝縮圧力がR12よシ低くなる組
成 で特定されるような組成範囲をもち、冷蔵庫。 除湿機等の小容量冷熱利用や、給湯機等の高温熱利用の
熱ポンプ装置に供される冷媒用組成物。
(1) In a non-azeotropic mixed refrigerant consisting of two or more components, which is a combination of a refrigerant with a lower boiling point than R12 and a refrigerant with a higher boiling point than R12, A. The boiling temperature of the saturated liquid at any pressure is lower than that of R12, and It is specified by a composition in which the condensation temperature of saturated gas is higher than R12, or (B) a composition in which the boiling pressure of saturated liquid at any temperature is higher than R12 and the condensation pressure of saturated gas is lower than R12. Refrigerator with a composition range. A refrigerant composition used in heat pump devices that utilize small-capacity cold heat, such as dehumidifiers, and high-temperature heat, such as water heaters.
(2)  R12!D低沸点な冷媒としテR503、R
23゜R13,R13B1.R125,R502,R2
2゜R500の少なくともいづれが1つを含み、R12
より高沸点な冷媒としてR152a −R124。 R142b 、R12B1 、R114、R133a 
、R21゜R11の少くともいづれか1つを含むことを
特徴とする特許請求の範囲第(1)項記載の冷媒用組成
物。
(2) R12! D Low boiling point refrigerant Te R503, R
23°R13, R13B1. R125, R502, R2
2° R500 contains at least one, R12
R152a-R124 as higher boiling point refrigerants. R142b, R12B1, R114, R133a
, R21°R11.
(3)沸点差が20〜60 deg差の2成分から成る
ことを特徴とする特許請求の範囲第(1)項記載の冷媒
用組成物。
(3) The refrigerant composition according to claim (1), characterized in that it consists of two components with a boiling point difference of 20 to 60 degrees.
JP57225914A 1982-12-24 1982-12-24 Refrigerant composition Pending JPS59117579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57225914A JPS59117579A (en) 1982-12-24 1982-12-24 Refrigerant composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57225914A JPS59117579A (en) 1982-12-24 1982-12-24 Refrigerant composition

Publications (1)

Publication Number Publication Date
JPS59117579A true JPS59117579A (en) 1984-07-06

Family

ID=16836859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57225914A Pending JPS59117579A (en) 1982-12-24 1982-12-24 Refrigerant composition

Country Status (1)

Country Link
JP (1) JPS59117579A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142090A (en) * 1986-11-21 1988-06-14 アンスティテュ・フランセ・デュ・ペトロール Hydraulic fluid mixture usable in compression type thermodynamic cycle consisting of trifluoromethane and chorodifluoroethane
JPS6479288A (en) * 1987-09-21 1989-03-24 Daikin Ind Ltd Cooling medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171495A (en) * 1982-03-31 1983-10-08 Daikin Ind Ltd Working fluid for rankine cycle
JPS5959782A (en) * 1982-09-30 1984-04-05 Daikin Ind Ltd Refrigerant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171495A (en) * 1982-03-31 1983-10-08 Daikin Ind Ltd Working fluid for rankine cycle
JPS5959782A (en) * 1982-09-30 1984-04-05 Daikin Ind Ltd Refrigerant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142090A (en) * 1986-11-21 1988-06-14 アンスティテュ・フランセ・デュ・ペトロール Hydraulic fluid mixture usable in compression type thermodynamic cycle consisting of trifluoromethane and chorodifluoroethane
JPS6479288A (en) * 1987-09-21 1989-03-24 Daikin Ind Ltd Cooling medium
JP2545879B2 (en) * 1987-09-21 1996-10-23 ダイキン工業株式会社 Coolant

Similar Documents

Publication Publication Date Title
CN100538205C (en) Preparation method with how warm refrigeration machine of variable evaporating temperature
JP4832355B2 (en) Refrigeration air conditioner
CN101430144B (en) Operation method for multi-temperature refrigerating machine with variable evaporating temperature
CN101446455B (en) Method for preparing multi-temperature refrigerator with variable evaporation temperature
JPS63105088A (en) Blended refrigerant
JPS63308084A (en) Operation medium mixture
JPS59117579A (en) Refrigerant composition
Kim et al. Cycle analysis and heat transfer characteristics of a heat pump using R22/R142b refrigerant mixtures
JPS59117580A (en) Refrigerant composition
JPH02289673A (en) Refrigerant
Cao et al. Analysis and experiment of stepped pressure cycle performance conditional on evaporator superheat
JPS63105089A (en) Blended refrigerant
Chen et al. Theoretical analysis of hydrocarbon refrigerant mixtures as a replacement for HCFC-22 for residential uses
JPH03168566A (en) Operation of refrigeration cycle device
Onaka et al. Analysis of heat pump cycle using CO2/DME mixture refrigerant
JPH1144499A (en) Refrigerating cycle controller
JPS6353456B2 (en)
US7340919B2 (en) Method and apparatus for enhancing heat pump and refrigeration equipment
JPS63101474A (en) Refrigeration medium mixture
JPS58104467A (en) Heat pump device
JPH02267473A (en) Refrigerating cycle device
JPH01139683A (en) Working medium mixture
CN104946206A (en) Binary non-azeotropic mixed refrigerant containing difluoromethane and dichlorotrifluoroethane
JPS63218785A (en) Blended refrigerant
JP2006124462A (en) Refrigerant composition