JPS59117580A - Refrigerant composition - Google Patents

Refrigerant composition

Info

Publication number
JPS59117580A
JPS59117580A JP57225915A JP22591582A JPS59117580A JP S59117580 A JPS59117580 A JP S59117580A JP 57225915 A JP57225915 A JP 57225915A JP 22591582 A JP22591582 A JP 22591582A JP S59117580 A JPS59117580 A JP S59117580A
Authority
JP
Japan
Prior art keywords
refrigerant
boiling point
composition
heat pump
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57225915A
Other languages
Japanese (ja)
Other versions
JPS6312512B2 (en
Inventor
Yuji Yoshida
雄二 吉田
Yuji Mukai
裕二 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57225915A priority Critical patent/JPS59117580A/en
Publication of JPS59117580A publication Critical patent/JPS59117580A/en
Publication of JPS6312512B2 publication Critical patent/JPS6312512B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To provide the titled composition consisting of a non-azeotropic mixture of a refrigerant having lower boiling point than flon 22 and a refrigerant having higher boiling point than flon 22 at a ratio within a specific range, and capable of improving the efficiency of a heat pump keeping the refrigeration capacity without modification of the heat pump. CONSTITUTION:The objective composition is composed of a non-azeotropic mixture of (A) a refrigerant having lower boiling point than flon 22 (hereinafter called as R22) (preferably R503, R23, R13, R13B1, R125, etc.) and (B) a refrigerant having higher boiling point than R22 (preferably R500, R12, R152a, R124, etc.). The boiling point difference between the refrigerants is preferbly 20-60 deg.C. The boiling point of the saturated liquid of the composition is higher than that of R22, and the condensation point of the saturated vapor is lower than R22 under arbitrary pressure, or the boiling pressure of the saturated liquid of the composition is higher than that of R22 and the condensation pressure of the saturated vapor is lower than R22 an at arbitrary temperature. USE:Suitable for the heat pump for heating or cooling a room at about -20-+ 60 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は熱ポンプ装置、特に冷暖房用として好適な冷媒
用組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a refrigerant composition suitable for heat pump devices, particularly for heating and cooling.

(従来例の構成とその問題点) 従来、冷暖房を目的とした熱ポンプ装置用冷媒としては
、熱源温度範囲一20℃〜60℃程度の内、フロン22
(ジクロロフルオロメタン、沸点−40,8℃、R22
の如く、フロン系冷媒は以下R−と略す)をもっばら用
いてきた。しかるに熱ポンプ装置の効率は、熱源温度に
よって規定される冷媒の熱力学的性質によっておのずと
限定があシ、よシ省エネルギーi実現するための方法と
しては、高沸点冷媒となる程一般に蒸発潜熱が大きく効
率も高いため、R22より高沸点な冷媒(例えばR12
、R114等)を使用することが考えられている。しか
るにR22よシ高沸点な冷媒は、圧縮機の吸入比容積も
大きいため、同一圧縮機では冷凍サイクル中の冷媒循環
量が減少し、冷凍能力も大きく減少することになる。逆
に高効率を図りなからR22と同等能力を得るためには
、圧縮機や熱交換器伝熱面積等を増大させる必要があり
、機器の大きさを適度に押またいという要求とは相反す
るものであった。
(Configuration of conventional example and its problems) Conventionally, as a refrigerant for a heat pump device for heating and cooling purposes, within the heat source temperature range of -20°C to 60°C, Freon 22
(Dichlorofluoromethane, boiling point -40.8℃, R22
Freon-based refrigerants (hereinafter abbreviated as R-) have been widely used. However, the efficiency of heat pump equipment is naturally limited by the thermodynamic properties of the refrigerant, which is determined by the heat source temperature.In order to achieve energy savings, the higher the boiling point of the refrigerant, the greater the latent heat of vaporization. Because of its high efficiency, refrigerants with higher boiling points than R22 (e.g. R12
, R114, etc.). However, since a refrigerant with a higher boiling point than R22 has a large suction specific volume of the compressor, with the same compressor, the amount of refrigerant circulated during the refrigeration cycle is reduced, and the refrigeration capacity is also significantly reduced. On the other hand, in order to achieve the same capacity as R22 without aiming for high efficiency, it is necessary to increase the heat transfer area of the compressor and heat exchanger, which conflicts with the request to keep the size of the equipment moderate. It was something.

(発明の目的) 本発明の目的は、従来R22を使用していた熱ポンプ装
置において、R22よシ高効率であシながら、現行熱ポ
ンプ装置の圧縮機や伝熱面積等を大きく改造する必要の
ない新規な冷媒組成を提供するものであシ、これを2成
分以上の混合冷媒によって達成しようとするものである
(Objective of the Invention) The object of the present invention is to provide a heat pump device that conventionally uses R22, while achieving higher efficiency than R22, while requiring major modification of the compressor, heat transfer area, etc. of the current heat pump device. The aim is to provide a new refrigerant composition free from the above, and to achieve this by using a mixed refrigerant of two or more components.

(発明の構成) 本発明の冷媒用組成物は、R22より低沸点々冷媒とR
22より高沸点な冷媒の組合せからなる非共沸混合冷媒
において、適当々組成範囲において実現されるものであ
る。特に望ましい組成範囲とは、混合冷媒の大気圧にお
ける温度−組成線図(以下T−X線図と略し、混合冷媒
中の低沸点冷媒のモル分率をXで表わす)において、R
22よシ低沸点な冷媒の組成が、沸点線とR22沸点と
交わる組成より大きく、露点線がR22沸点と交わる組
成より小さい範囲が好適となるものである。
(Structure of the Invention) The refrigerant composition of the present invention comprises a refrigerant with a boiling point lower than R22 and a refrigerant with a boiling point lower than R22.
This can be achieved in an appropriate composition range in a non-azeotropic mixed refrigerant consisting of a combination of refrigerants having a boiling point higher than 22. A particularly desirable composition range is defined as R
It is preferable that the composition of the refrigerant having a lower boiling point than No. 22 is greater than the composition where the boiling point line intersects with the R22 boiling point and smaller than the composition where the dew point line intersects with the R22 boiling point.

なおT−X線図における沸点線とは、混合冷媒飽和液体
が沸騰を開始する組成と温度の関係を表わ  ′し、露
点線とは混合冷媒飽和気体が凝縮を開始する組成と温度
の関係を表わすものである。また組合せるべきR22よ
り低沸点な冷媒とR22より高沸点な冷媒の沸点差は最
大60 deg差程度が好ましいものであり、逆に沸点
差が20 deg差以下になると、その効果はかなり減
じられたものとなり、場合によっては混合冷媒が共沸組
成を形成するため好ましくないものとなる。
The boiling point line in the T-X diagram represents the relationship between the composition and temperature at which the saturated liquid of the mixed refrigerant begins to boil, and the dew point line represents the relationship between the composition and temperature at which the saturated gas of the mixed refrigerant begins to condense. It represents. In addition, it is preferable that the boiling point difference between the refrigerant with a lower boiling point than R22 and the refrigerant with a higher boiling point than R22 to be combined is about 60 deg at the maximum, and conversely, if the boiling point difference becomes 20 deg or less, the effect will be considerably reduced. In some cases, the mixed refrigerant forms an azeotropic composition, which is undesirable.

(実施例の説明) 以下、本発明の冷媒用組成物を実施例と共に例示する。(Explanation of Examples) Hereinafter, the refrigerant composition of the present invention will be illustrated together with Examples.

実施例1 第1図は本発明の冷媒用組成物を適用した熱ポンプ装置
である。■は圧縮機、2は冷媒対水2重管式凝縮器、3
は手動式膨張弁、4は冷媒対水2重管式蒸発器である。
Example 1 FIG. 1 shows a heat pump device to which the refrigerant composition of the present invention is applied. ■ is a compressor, 2 is a refrigerant-to-water double pipe condenser, 3
4 is a manual expansion valve, and 4 is a refrigerant-to-water double pipe evaporator.

第1の実施例としてR22より低沸点な冷媒としてはR
13B1(沸点−57,8℃)、R22よシ高沸点な冷
媒としてはR12(沸点−29,8℃)を用い、R13
B]のモル分率XをO〜1まで可変とした。また実験は
凝縮器2及び蒸発器4において、冷媒対水が対向流とな
る如く水を流し、凝縮器2の入口水温35℃、出口水温
50℃、蒸発器4の入口水温25℃、出口水温10℃と
々る如く水量と手動式膨張弁3の開度を調節した。これ
らの結果を同−熱ポンプ装置を用いてR22を適用した
場合と対比すると、成(5) 績係数(−蒸発器4冷凍能力/圧縮機1人力)、冷凍能
力は第2図の如き関係が得られた。即ちX二〇〜0.5
の範囲において、冷凍能力はR22よりもやや低下する
ものの、成績係数はR22より向上し、X二0.2にお
いて、約20%の成績係数の向上が見られた。これらは
冷媒対水を対向流とすることにより、熱交換過程の損失
が低減されたためと考えられる。
In the first embodiment, R is a refrigerant with a lower boiling point than R22.
13B1 (boiling point -57.8°C), R12 (boiling point -29.8°C) is used as a refrigerant with a higher boiling point than R22, and R13
The molar fraction X of B] was made variable from O to 1. In addition, in the experiment, water was flowed in the condenser 2 and the evaporator 4 so that the refrigerant and water were in counterflow. The amount of water and the opening degree of the manual expansion valve 3 were adjusted to 10°C. Comparing these results with the case where R22 is applied using the same heat pump equipment, the performance coefficient (-evaporator 4 refrigeration capacity/compressor 1 manual power) and refrigeration capacity are related as shown in Figure 2. was gotten. That is, X20~0.5
Although the refrigerating capacity was slightly lower than that of R22 in the range of , the coefficient of performance was improved compared to R22, and at X20.2, an improvement of about 20% in the coefficient of performance was observed. This is thought to be due to the fact that losses in the heat exchange process were reduced by making the refrigerant and water flow in opposite directions.

またR13B1/R12混合冷媒において、R]、3B
1の組成を適宜可変として、飽和溶液の蒸気圧を計測し
、これらのデータを用いて大気圧におけるT −X線図
を推定したものを第3図に示す。第3図においてR22
沸点(−40,8℃)を記入すると、第2図において見
られた成績係数の向上と、混合冷媒中のR13B1の組
成との関係が一層明瞭になる。即ちR22沸点と沸点線
の交わる組成(X二O,OS)から、R22沸点と露点
線の交わる組成(X=0.44)の範囲は、第2図にお
いてR22よシ成績係数の向上する範囲に含まれている
。またX二〇、08〜0.44の範囲においては、(6
) 冷凍能力がR22の078〜1.01倍でありR12単
体(x=00)よりも成績係数、冷凍能力共に向上して
いる。従ってR22に代って効率向上を図るにはR12
よりもR13B]/R12混合冷媒の方が望ましく、R
22と同等能力を得るためにも熱ポンプ装置を大きく改
造する必要がないものと考えられる。
In addition, in the R13B1/R12 mixed refrigerant, R], 3B
The vapor pressure of the saturated solution was measured while changing the composition of No. 1 as appropriate, and the T-X diagram at atmospheric pressure was estimated using these data, which is shown in FIG. In Figure 3, R22
When the boiling point (-40.8°C) is entered, the relationship between the improvement in the coefficient of performance seen in FIG. 2 and the composition of R13B1 in the mixed refrigerant becomes clearer. In other words, the range from the composition where the R22 boiling point and the boiling point line intersect (X2O,OS) to the composition where the R22 boiling point and the dew point line intersect (X = 0.44) is the range in which the coefficient of performance improves over R22 in Figure 2. included in. Also, in the range of X20, 08 to 0.44, (6
) The refrigerating capacity is 078 to 1.01 times that of R22, and both the coefficient of performance and the refrigerating capacity are improved compared to R12 alone (x=00). Therefore, in order to improve efficiency instead of R22, R12
R13B]/R12 mixed refrigerant is more desirable than R13B]/R12 mixed refrigerant.
It is considered that there is no need to significantly modify the heat pump device in order to obtain the same capacity as No. 22.

実施例2 第2の実施例は第1の実施例と同じく、第1図に示した
熱ポンプ装置において同一の実験方法によシ行なわれた
。ここで用いた混合冷媒は、R22より低沸点々冷媒と
してはR502(R22とR115の共沸冷媒、沸点−
45,6℃)、R22よシ高沸点な冷媒としてはR] 
14 (沸点3.8℃)の組合せである。このときの結
果をR22の場合と対比すると、同じく第4図の如き関
係が得られた。この場合はほとんど全組成領域において
R22よりも成績係数が向上しており、特にX二0.2
〜0、3においては約30%の向上が見られるものの、
冷凍能力は約4割以下に大きく低下している。
Example 2 The second example, like the first example, was carried out using the heat pump apparatus shown in FIG. 1 using the same experimental method. The mixed refrigerant used here was R502 (azeotropic refrigerant of R22 and R115, boiling point -
45.6℃), R is a refrigerant with a higher boiling point than R22]
14 (boiling point 3.8°C). When the results at this time were compared with the case of R22, the same relationship as shown in FIG. 4 was obtained. In this case, the coefficient of performance is better than R22 in almost all composition ranges, especially in X20.2
Although an improvement of about 30% is seen in ~0 and 3,
Refrigeration capacity has significantly decreased to less than 40%.

ま□た第1の実施例と同じ(T−X線図を推定したもの
を第5図に示すが、第5図においてR22沸点(−40
,8°C)を記入すると、R22に代るべき混合冷媒の
重重しい組成範囲が特定できることがわかる。即ちR2
2と沸点線の交わる組成(x=0.79)から、R22
と露点線の交わる組成(X二0.97 )の範囲におい
ては、成績係数がR22の1.17〜100倍、冷凍能
力がR22の0.72〜0.93倍となっている。従っ
てこの組成範囲においては最大効率を達成しているとは
いえないものの、熱ポンプ装置を大きく改造することな
く成績係数の向上が図れるものである。
Also, the same as in the first embodiment (the estimated T-X diagram is shown in Figure 5, but the R22 boiling point (-40
, 8°C), it is possible to specify the heavy composition range of the mixed refrigerant that should replace R22. That is, R2
From the composition where 2 and the boiling point line intersect (x = 0.79), R22
In the composition range (X20.97) where the dew point line intersects, the coefficient of performance is 1.17 to 100 times that of R22, and the refrigerating capacity is 0.72 to 0.93 times that of R22. Therefore, although it cannot be said that maximum efficiency is achieved in this composition range, the coefficient of performance can be improved without major modification of the heat pump device.

以上の実施例かられかる如く、本発明の媒用組成物は、
R22より低沸点な冷媒とR22よシ高沸点な冷媒の組
合せから々る非共沸混合冷媒であり、その重重しい組成
範囲は次のようにほぼ特定することができる。第1の方
法としては第6図に示す如く、混合冷媒の任意圧力にお
ける飽和液体の沸騰温度がR22より低温で、かつ飽和
気体の凝縮温度がR22よシ高温となるような組成範囲
として特定できる。なお任意圧力としては大気圧を用い
るのが便利である。また第2の特定の方法としては、第
7図に示す如く任意温度における飽和液体の沸騰圧力が
R22よシ高く、かつ飽和気体の凝縮圧力がR22よシ
低いような組成範囲として特定できる。なお組成範囲を
特定するための第1及び第2の方法のいづれを用いても
その範囲に大差はない。
As can be seen from the above examples, the medium composition of the present invention is
It is a non-azeotropic mixed refrigerant consisting of a combination of a refrigerant with a lower boiling point than R22 and a refrigerant with a higher boiling point than R22, and its heavy composition range can be roughly specified as follows. The first method, as shown in Figure 6, is to specify a composition range in which the boiling temperature of the saturated liquid at a given pressure of the mixed refrigerant is lower than R22, and the condensation temperature of the saturated gas is higher than R22. . Note that it is convenient to use atmospheric pressure as the arbitrary pressure. As a second specific method, as shown in FIG. 7, the composition range can be specified such that the boiling pressure of the saturated liquid is higher than R22 and the condensation pressure of the saturated gas is lower than R22 at any temperature. Note that there is no significant difference in the range whether the first or second method for specifying the composition range is used.

次に混合冷媒の組合せとしては、沸点差が20〜5 Q
 deg差程度のものが望ましく、R22より低沸点な
冷媒としてはR503,R23,R13゜R13B1.
R32,R]、25.R502等、R22より高沸点々
冷媒としてはR500,R12゜R152a 、R12
4JR142b 、R12B1 。
Next, as a combination of mixed refrigerants, the boiling point difference is 20 to 5 Q
A refrigerant with a boiling point lower than R22 is preferably R503, R23, R13°R13B1.
R32,R], 25. Examples of refrigerants with higher boiling points than R22, such as R502, are R500, R12°R152a, R12
4JR142b, R12B1.

R114,R133a、R21,R11等が挙げられる
Examples include R114, R133a, R21, and R11.

またこれらのR22より低沸点な冷媒と、R22より高
沸点な冷媒との組合せにおいて、低沸点冷媒を基準とし
た組成範囲は、低沸点冷媒の沸点が低ければ低い程低沸
点冷媒のより少ない方向に移(9) 行し、高沸点冷媒の沸点が高ければ高い程低沸点冷媒の
よシ多い方向に移行する。
In addition, in the combination of a refrigerant with a boiling point lower than R22 and a refrigerant with a higher boiling point than R22, the composition range based on the low boiling point refrigerant is such that the lower the boiling point of the low boiling point refrigerant, the less the low boiling point refrigerant. (9), and the higher the boiling point of the high boiling point refrigerant, the more the low boiling point refrigerant.

(発明の効果) 本発明で特定される混合冷媒とその組成範囲は、単一冷
媒の如く同一の沸点と露点をもつものではないが、その
平均的な値がR22とほぼ同等沸点となる如く構成する
ものであシ、圧縮機吸入比容積もR2’2とほぼ同等と
なり、熱ポンプ装置を大きく改造することなく冷凍能力
を維持しながら、効率の向上を図ることが可能となるも
のであり、特に熱源温度範囲が一20℃〜60℃程度の
冷暖房用熱ポンプ装置に好適となるものである。
(Effect of the invention) The mixed refrigerant and its composition range specified in the present invention do not have the same boiling point and dew point like a single refrigerant, but the average value is almost the same boiling point as R22. The compressor suction specific volume is also almost the same as R2'2, making it possible to improve efficiency while maintaining refrigeration capacity without major modification of the heat pump device. It is particularly suitable for heat pump devices for air conditioning and heating in which the heat source temperature range is about 120°C to 60°C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の冷媒用組成物を適用した熱ポンプ装置
の一実施例を示す図、第2図及び第4図は混合冷媒組成
とR22に対比した成績係数、冷凍能力の関係を示す図
、第3図及び第5図は混合冷媒組成と大気圧における温
度との関係を示す図、第6図及び第7図は本発明の冷媒
用組成物の組成範囲を特定するための方法を説明する図
である。 (10) 1・・・圧縮機、2・・・凝縮器、3・・・手動式膨張
弁、4・・・蒸発器。 (11) 第1図 第2図 R13B1/R12+の R13B1  の 彷しδト
ノ1第3図 R13B1/R12中のR13B’l の彷し介ヰ第4
図 R502/R114寺ill R502*(A/IP’
f−第5図 第6図 t4’:々11ヤr)A甑褐免、六((のルル々す!第
7図
Fig. 1 shows an example of a heat pump device to which the refrigerant composition of the present invention is applied, and Figs. 2 and 4 show the relationship between the mixed refrigerant composition, coefficient of performance, and refrigerating capacity compared to R22. Figures 3 and 5 are diagrams showing the relationship between the mixed refrigerant composition and temperature at atmospheric pressure, and Figures 6 and 7 are diagrams showing the method for specifying the composition range of the refrigerant composition of the present invention. FIG. (10) 1... Compressor, 2... Condenser, 3... Manual expansion valve, 4... Evaporator. (11) Figure 1 Figure 2 Wandering of R13B1 in R13B1/R12+ 1 Figure 3 Wandering of R13B'l in R13B1/R12 4th
Figure R502/R114 templeill R502*(A/IP'
f-Fig. 5 Fig. 6 t4': 11 ya r)

Claims (3)

【特許請求の範囲】[Claims] (1)R22よシ低沸点な冷媒と、R22よシ高沸点な
冷媒の組合せで2成分以上から成る非共沸混合冷媒にお
いて、 A、任意圧力における飽和液体の沸騰温度がR22よシ
低温で、かつ飽和気体の凝縮温度がR22よシ高温とな
る組成 又は、 B、任意温度における飽和液体の沸騰圧力がR22よシ
高く、かつ飽和気体の凝縮圧力がR22より低くなる組
成 で特定されるような組成範囲をもち、冷暖房用熱ポンプ
装置に供されることを特徴とする冷媒用組成物。
(1) In a non-azeotropic mixed refrigerant consisting of two or more components, which is a combination of a refrigerant with a lower boiling point than R22 and a refrigerant with a higher boiling point than R22, A. The boiling temperature of the saturated liquid at any pressure is lower than that of R22. , and the condensation temperature of the saturated gas is higher than R22, or B. The boiling pressure of the saturated liquid at any temperature is higher than R22, and the condensation pressure of the saturated gas is lower than R22. 1. A refrigerant composition characterized in that it has a composition range and is used in a heat pump device for heating and cooling.
(2)R22よシ低沸点な冷媒としてR503゜R23
、R13、R13B1 、R125,R502の少くな
くともいづれか1つを含み、R22より高沸点な冷媒と
してR500,R12゜RI52a 、RJ 24 、
R142b 、R12B1 。 R114,R133a、R21,R11の少くなくとも
いづれか1つを含むことを特徴とする特許請求の範囲第
(1)項記載の冷媒用組成物。
(2) R503°R23 as a refrigerant with a lower boiling point than R22
, R13, R13B1, R125, R502, and has a higher boiling point than R22, such as R500, R12°RI52a, RJ24,
R142b, R12B1. The refrigerant composition according to claim (1), which contains at least one of R114, R133a, R21, and R11.
(3)沸点差が20〜60 deg差の2成分から成る
ことを特徴とする特許請求の範囲第(1)項記載の冷媒
用組成物。
(3) The refrigerant composition according to claim (1), characterized in that it consists of two components with a boiling point difference of 20 to 60 degrees.
JP57225915A 1982-12-24 1982-12-24 Refrigerant composition Granted JPS59117580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57225915A JPS59117580A (en) 1982-12-24 1982-12-24 Refrigerant composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57225915A JPS59117580A (en) 1982-12-24 1982-12-24 Refrigerant composition

Publications (2)

Publication Number Publication Date
JPS59117580A true JPS59117580A (en) 1984-07-06
JPS6312512B2 JPS6312512B2 (en) 1988-03-19

Family

ID=16836874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57225915A Granted JPS59117580A (en) 1982-12-24 1982-12-24 Refrigerant composition

Country Status (1)

Country Link
JP (1) JPS59117580A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343991A (en) * 1986-08-11 1988-02-25 Du Pont Mitsui Fluorochem Co Ltd Working medium for heat pump
US5433879A (en) * 1989-11-30 1995-07-18 Matsushita Electric Industrial Co., Ltd. Working fluid containing difluoroethane
US5470496A (en) * 1991-07-12 1995-11-28 Matsushita Electric Industrial Co., Ltd. Working fluid containing chlorotetrafluoroethane
US5736063A (en) * 1991-03-18 1998-04-07 Alliedsignal Inc. Non-azeotropic refrigerant compositions containing carbon dioxide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565881A (en) * 1979-06-25 1981-01-21 Du Pont Coolant composition
JPS5887182A (en) * 1981-10-19 1983-05-24 アンステイテユ・フランセ・デユ・ペトロ−ル Composition for compression type heat pumping fluid and house heating or air conditioning method thereby
JPS5959782A (en) * 1982-09-30 1984-04-05 Daikin Ind Ltd Refrigerant
JPS5959781A (en) * 1982-09-30 1984-04-05 Daikin Ind Ltd Refrigerant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565881A (en) * 1979-06-25 1981-01-21 Du Pont Coolant composition
JPS5887182A (en) * 1981-10-19 1983-05-24 アンステイテユ・フランセ・デユ・ペトロ−ル Composition for compression type heat pumping fluid and house heating or air conditioning method thereby
JPS5959782A (en) * 1982-09-30 1984-04-05 Daikin Ind Ltd Refrigerant
JPS5959781A (en) * 1982-09-30 1984-04-05 Daikin Ind Ltd Refrigerant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343991A (en) * 1986-08-11 1988-02-25 Du Pont Mitsui Fluorochem Co Ltd Working medium for heat pump
US5433879A (en) * 1989-11-30 1995-07-18 Matsushita Electric Industrial Co., Ltd. Working fluid containing difluoroethane
US5736063A (en) * 1991-03-18 1998-04-07 Alliedsignal Inc. Non-azeotropic refrigerant compositions containing carbon dioxide
US6113803A (en) * 1991-03-18 2000-09-05 Alliedsignal Inc. Non-azeotropic refrigerant compositions comprising difluoromethane or 1,1,1-trifluoroethane
US5470496A (en) * 1991-07-12 1995-11-28 Matsushita Electric Industrial Co., Ltd. Working fluid containing chlorotetrafluoroethane

Also Published As

Publication number Publication date
JPS6312512B2 (en) 1988-03-19

Similar Documents

Publication Publication Date Title
WO1989002455A1 (en) Refrigerant
US4498999A (en) Process for the heating and/or thermal conditioning of a building by means of a heat pump operated with a specific mixture of working fluids
JPH01108291A (en) Refrigerant
JPH0655939B2 (en) Mixed refrigerant
JPS63308085A (en) Operation medium mixture
CN112195015B (en) Mixed refrigerant and refrigerating system
JPS63308084A (en) Operation medium mixture
JPS59117580A (en) Refrigerant composition
JPS63105089A (en) Blended refrigerant
JPH075881B2 (en) Working medium mixture
JPS59117579A (en) Refrigerant composition
JPH04110383A (en) Fluid for heat transfer
JPH01103689A (en) Refrigerant
JP2014196868A (en) Cascade refrigeration system
JPS63101474A (en) Refrigeration medium mixture
JPS5959779A (en) Refrigerant
JPS63218785A (en) Blended refrigerant
JPH09318182A (en) Absorption room cooler
JPH08170075A (en) Working fluid
JPH01139683A (en) Working medium mixture
JPS61276881A (en) Mixed refrigerant for displacement type compression heat pump
JPH01139676A (en) Working medium mixture
JP2536545B2 (en) Working medium mixture
JPH01121392A (en) Refrigeration medium
JPS58129164A (en) Hot-water supply device for heat pump