JPS58129164A - Hot-water supply device for heat pump - Google Patents

Hot-water supply device for heat pump

Info

Publication number
JPS58129164A
JPS58129164A JP57009987A JP998782A JPS58129164A JP S58129164 A JPS58129164 A JP S58129164A JP 57009987 A JP57009987 A JP 57009987A JP 998782 A JP998782 A JP 998782A JP S58129164 A JPS58129164 A JP S58129164A
Authority
JP
Japan
Prior art keywords
heat exchanger
hot water
water supply
refrigerant
boiling point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57009987A
Other languages
Japanese (ja)
Inventor
香曾我部 弘勝
坂爪 秋郎
啓夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57009987A priority Critical patent/JPS58129164A/en
Publication of JPS58129164A publication Critical patent/JPS58129164A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はヒートポンプ給湯装置に剪し、特に混合冷媒を
使用し一般家庭において必要とする70℃程度の給湯を
圧縮比t−特に大きくとらなくとも実現できるヒートポ
ンプ給湯装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat pump water heater, and more particularly to a heat pump water heater that uses a mixed refrigerant and can supply hot water of about 70°C, which is required in ordinary households, without having to set a particularly large compression ratio t. It is something.

従来、外気を熱源とし冷凍サイクルの放熱に工り給湯す
るヒートポンプ給湯装置においては・一般に作動流体(
冷IJE)として気液相変化音な・す単−組成冷媒又は
共沸混合冷媒が用いられておるので、15℃程良の低い
水温から70℃程良0高温の給湯を得ようとする場合に
は使用する冷媒によって島田の圧力上昇、加熱能力低下
といった欠点があった。
Conventionally, in heat pump water heaters that use outside air as a heat source and heat dissipation from the refrigeration cycle to supply hot water, the working fluid (
Since a gas-liquid phase change sound mono-composition refrigerant or an azeotropic mixed refrigerant is used as a cold IJE, when trying to obtain hot water from a water temperature as low as 15°C to as high as 70°C. had drawbacks such as an increase in Shimada pressure and a decrease in heating capacity depending on the refrigerant used.

例えば、現在家庭用の空気調和装置で広く磨いられてい
るフロン冷媒R−22でヒートポンプ給湯を行った場合
には、R−22の凝縮温度70℃における飽和圧力は3
0、”kg’em”qb*であるため20i、9”7c
m”aba紬後を常用最大圧力としている現在σ)圧縮
機は使用出来なく、実現するためには圧紛模ヲ大巾に設
計変更して、耐圧強度會増して±る必要があった。
For example, when heat pump water supply is performed using the CFC refrigerant R-22, which is currently widely used in home air conditioners, the saturation pressure at the condensation temperature of R-22 of 70°C is 3.
0, “kg’em” qb*, so 20i, 9”7c
At present, the maximum pressure for normal use is σ) compressor, which cannot be used.

又、家誕用の冷蔵庫や一般の冷沫装重で広く用いられて
いるフロン冷媒R−12?作kIJ流体としてζ−トホ
ンブ給湯を行った場合には、R−12の峡紘温曳70℃
における飽和圧力は19、”!1/crn” absと
圧力の点では問題ないが、蒸発圧力か低くなり圧縮比が
増加して、圧縮機の体積効率が低下し冷媒の比容積も大
きくなることから加熱能力がR−22に比べて30%以
上減少するという欠点があった。従って、加熱能力を増
すためには圧縮参の押しのけ量を大きくしてやる必要が
ありた。
Also, fluorocarbon refrigerant R-12, which is widely used in household refrigerators and general cold storage. When ζ-thombu hot water is used as a production kIJ fluid, the temperature of R-12 is 70℃.
The saturation pressure at is 19, "!1/crn" abs, so there is no problem in terms of pressure, but the evaporation pressure becomes lower, the compression ratio increases, the volumetric efficiency of the compressor decreases, and the specific volume of the refrigerant also increases. Therefore, the heating capacity was reduced by 30% or more compared to R-22. Therefore, in order to increase the heating capacity, it was necessary to increase the displacement of compressed ginseng.

一般にR−12からR−22と沸点か低くなる程同−の
冷凍サイクルにおいては能力が大きくなることが工〈知
られているか、この工うに冷媒の沸点が低くなる程70
℃における飽和圧力が上昇してくることになり、単−組
成冷媒又は共沸混合冷媒では両者を満足させるのは困難
であった。
It is generally known that the lower the boiling point of the refrigerant, from R-12 to R-22, the greater the capacity in the same refrigeration cycle.
This results in an increase in the saturation pressure at °C, making it difficult to satisfy both requirements using a mono-composition refrigerant or an azeotropic refrigerant mixture.

本発明の目的は、従来技術の欠点をなくし、家庭におい
て必要な70℃程度の給湯を凝縮圧力(高圧)の上昇、
加熱能力の低下をおさえ、桿状の圧縮機のままで効率工
〈供給することができるヒートポンプ給湯装置を提供す
ることにある。
The purpose of the present invention is to eliminate the drawbacks of the prior art, and to increase the condensing pressure (high pressure) to supply hot water of about 70°C, which is necessary for households.
The purpose of the present invention is to provide a heat pump water heater that can suppress the reduction in heating capacity and supply efficient water supply with a rod-shaped compressor.

上記目的を達成するために、本発明はヒートポンプサイ
クルの作ma体(冷&)として、勧沸点と低沸点の2成
分を適宜混合比率となした非共沸の混合冷媒を使用する
とともに、給湯用熱交換器を2つ配置し、第1、の給湯
用熱交換器では高沸点冷媒の凝縮を主とし、気液分離器
1通してガスと液を分離し、分離されたガス全果2の給
湯用熱交換器に導いて主に低沸点冷媒?凝縮させる工う
にしたもので、70℃給湯における高圧の上昇をおさえ
、さらに室外側熱交換器を2つ配置し第1の室外側熱交
換器では高沸点冷媒が主に、第2の室外側熱交換器では
低沸点冷媒が主に蒸発吸熱する工うにして蒸発圧力を高
め、加熱能力を増加させるようにしたものである。
In order to achieve the above object, the present invention uses a non-azeotropic mixed refrigerant in which the two components of a high boiling point and a low boiling point are mixed in an appropriate ratio as a component (refrigeration) of a heat pump cycle. The first heat exchanger for hot water supply mainly condenses high boiling point refrigerant, passes through a gas-liquid separator 1 to separate gas and liquid, and separates the separated gas 2 Mainly low boiling point refrigerant used in heat exchangers for hot water supply? The refrigerant is designed to condense, suppressing the rise in high pressure when hot water is supplied at 70°C, and is equipped with two outdoor heat exchangers. In the heat exchanger, the low boiling point refrigerant mainly evaporates and absorbs heat to increase the evaporation pressure and heating capacity.

以下不発明を実施例にしたがって説明する。The invention will be explained below based on examples.

第1図は本発明のヒートポンプ給に装置の一実施例であ
る。図において1は貯湯タンク、2は室外ユエコト、3
ti圧縮機、4に1lciiS器としての機能を有する
給湯用熱交換器でこれq 4g、 4bと直列に接続さ
れた2つの水熱交換器からなる。
FIG. 1 shows an embodiment of the heat pump supply device of the present invention. In the figure, 1 is a hot water storage tank, 2 is an outdoor Yuekoto, and 3 is a hot water storage tank.
This is a heat exchanger for hot water supply which has the functions of a ti compressor and a 4 to 1lciiS unit. It consists of two water heat exchangers connected in series with q 4g and 4b.

給・湯用熱交換器4a%4bの間には気液分離器5か配
置されている。6は蒸発器としての機II′@t−有す
る室外側熱交換器60は送風機、7.7αは減圧器(例
えばキャピラリチ異−ブ)であり、圧縮機5、給湯用熱
交換器4、室外側熱交換器6と共に冷凍サイクルを構成
している。貯湯タンク1周囲の水配管(破線で図示)は
、8給水弁、9は減圧逆止弁、10は貯湯タンク1内の
水を給湯用熱交換器41通って貯湯タンク上部へと循環
させるポンプ、11は給湯管、12は給湯栓、13は熱
交換戻り管、14祉安全弁、15は排水栓、16は排水
管、17は排水溝である。上記構成において使用する冷
媒は従来のような単一組成流体ではなく性質の異なる複
数の冷媒を混合した非共沸混合冷媒である。例えば高沸
点で比較的冷凍能力の小きいR−12および低沸点で比
較的能力の大きいR−22の混合冷媒とする。
A gas-liquid separator 5 is arranged between the heat exchangers 4a and 4b for water supply and hot water. 6 is an outdoor heat exchanger 60 having a machine II'@t as an evaporator, and 7.7α is a pressure reducer (e.g. capillary lift), which connects a compressor 5, a hot water supply heat exchanger 4, and an indoor heat exchanger 60. Together with the outer heat exchanger 6, it constitutes a refrigeration cycle. The water piping around the hot water storage tank 1 (indicated by broken lines) includes a water supply valve 8, a pressure reducing check valve 9, and a pump 10 that circulates the water in the hot water storage tank 1 through a hot water supply heat exchanger 41 to the upper part of the hot water storage tank. , 11 is a hot water supply pipe, 12 is a hot water tap, 13 is a heat exchange return pipe, 14 is a safety valve, 15 is a drain plug, 16 is a drain pipe, and 17 is a drain ditch. The refrigerant used in the above configuration is not a single composition fluid as in the past, but a non-azeotropic mixed refrigerant that is a mixture of a plurality of refrigerants with different properties. For example, a mixed refrigerant of R-12, which has a high boiling point and relatively low refrigerating capacity, and R-22, which has a low boiling point and relatively large capacity, is used.

次に、ヒートポンプ給湯運転方式を説明する。Next, the heat pump hot water supply operation method will be explained.

圧縮機3で加圧された冷媒管給湯用熱交換器4αに移送
して熱交換し、これ金気液分離器5でガス冷媒と液??
謀に分除し、このガス冷′kを給湯用熱交換器AbIL
送出し、他方の上記液冷atキャビラリチェーブ7a(
これは給湯用熱交換器4bでの配管圧力損失を補償する
程度の僅かな紋9抵抗である)を通して減圧器7へと送
出する。
The refrigerant pipe pressurized by the compressor 3 is transferred to the hot water supply heat exchanger 4α for heat exchange, and the metal gas-liquid separator 5 separates the refrigerant from gas to liquid. ?
This gas cooling is divided into parts and used in the hot water heat exchanger AbIL.
delivery, and the other liquid-cooled at cavity cavity 7a (
This is sent to the pressure reducer 7 through a slight resistance (which is enough to compensate for the piping pressure loss in the hot water supply heat exchanger 4b).

給湯用熱交換器4bで熱交換し液化した冷媒も一様に減
圧器7へと送出され共に減圧降温して室外側熱交換器6
へと移送する。ここで冷媒は外気がら熱を奪りて気化し
、ガス状態で圧縮機5に吸込まれる。
The refrigerant that has been heat exchanged and liquefied in the hot water supply heat exchanger 4b is also uniformly sent to the pressure reducer 7, where it is depressurized and cooled down to the outdoor heat exchanger 6.
to be transferred to. Here, the refrigerant absorbs heat from the outside air, evaporates, and is sucked into the compressor 5 in a gaseous state.

ここにおいて、給湯用熱交換器444bでの冷媒と加熱
媒体である水との流通方向は向流となっている。従って
最初温度の低い貯湯タンク1内の水はポンプ10により
給湯用熱交換器4bに送られ加熱昇温され、さらに給湯
用熱交換器4aに送出されて熱交換に工り76”C程良
のお湯となり貯湯タンク1内に貯えられる。2つの給湯
用熱交換器4a、 4bの凝縮温度管比べると給湯用熱
交換器4αは給湯用熱交換器4bニジ高い凝m@良とな
る。しかして、上記ヒートポンプサイクルにおいて使用
する冷媒は高沸点(例えばR−12)と低沸点(例えば
R−22)の非共沸混合冷媒である、から、圧縮機5を
出た混合冷媒は給湯用熱交換器4αに入り、高凝縮温度
であるため主として高沸点のR−12が凝縮することに
なる。そして気液分離器5に入ってまた凝縮しないガス
冷媒が分離されて低凝縮温度の給湯用熱交換器4bに送
られることから給湯用熱交換器4bでは主として低沸点
のR−22か凝縮することになる。
Here, the flow direction of the refrigerant and the water that is the heating medium in the hot water supply heat exchanger 444b is countercurrent. Therefore, the water in the hot water storage tank 1, which is initially low in temperature, is sent to the hot water supply heat exchanger 4b by the pump 10, heated and raised in temperature, and then sent to the hot water supply heat exchanger 4a for heat exchange. The hot water is stored in the hot water storage tank 1.Comparing the condensing temperature pipes of the two hot water heat exchangers 4a and 4b, the hot water heat exchanger 4α has a higher condensation temperature than the hot water heat exchanger 4b.However, Therefore, the refrigerant used in the heat pump cycle is a non-azeotropic mixed refrigerant having a high boiling point (e.g. R-12) and a low boiling point (e.g. R-22). It enters the exchanger 4α, and because of its high condensing temperature, R-12, which has a high boiling point, is mainly condensed.Then, it enters the gas-liquid separator 5, where the gas refrigerant that does not condense is separated and used for hot water supply with a low condensing temperature. Since the water is sent to the heat exchanger 4b, R-22 having a low boiling point is mainly condensed in the hot water supply heat exchanger 4b.

以上エリア0℃程度の高温給湯を行なう場合でも高圧側
の圧力は、給湯用熱交換器4gで主として高沸点冷媒の
R−12か凝縮するためR−12の凝縮温度70℃にお
ける飽和圧力19.2に!i/crt? (!、6#程
度となる。
Even when hot water is supplied at a high temperature of about 0°C in the above area, the pressure on the high pressure side is 19.9°C, which is the saturation pressure at the condensation temperature of R-12 of 70°C, because R-12, which is a high boiling point refrigerant, is mainly condensed in the hot water supply heat exchanger 4g. To 2! i/crt? (!, it will be about 6#.

次に熱源側である室外側熱交換器6における吸熱を考え
る。凝縮を終えた高沸点、低沸点の混合冷媒は減圧器7
に工り減圧降温して室外側熱交換器6に入るわけだが、
この時の蒸発圧力(圧縮機吸込圧力)は混合冷媒である
ため同一蒸発温度に対して単一組成の高沸点、低沸点の
飽和圧力の中間の圧力となる。従りて高沸点冷媒R−1
2を作動流体として用いた場合工すも蒸発圧力は高くな
り、圧縮比が減少して圧縮機の体積効率が向上する。又
、冷媒の比容積も減少することから加熱能力も増加する
ことになる。
Next, consider heat absorption in the outdoor heat exchanger 6, which is the heat source side. After condensation, the mixed refrigerant of high boiling point and low boiling point is transferred to the pressure reducer 7.
It is then depressurized and cooled down to enter the outdoor heat exchanger 6.
Since the refrigerant is a mixed refrigerant, the evaporation pressure (compressor suction pressure) at this time is intermediate between the saturated pressure of the high boiling point and low boiling point of a single composition for the same evaporation temperature. Therefore, high boiling point refrigerant R-1
2 as the working fluid, the evaporation pressure increases, the compression ratio decreases, and the volumetric efficiency of the compressor improves. Furthermore, since the specific volume of the refrigerant also decreases, the heating capacity also increases.

このように、本発明は従来の単−組成冷媒便用時の欠点
を解消し、高温(70℃)給湯においても凝縮圧力(高
圧)の上昇管おさえ塊状の圧縮機の着まで加熱能力を向
上して効率よく高温の温水を得ることができる。
In this way, the present invention eliminates the drawbacks of conventional single-component refrigerants, and improves the heating ability even in high-temperature (70°C) hot water supply by suppressing the condensing pressure (high pressure) in the riser tube and reaching the bulk compressor. This allows you to efficiently obtain high-temperature hot water.

第2図は本発明の他の実施例管示すヒートボゝX ンプ給湯装置で、第1図の室外側熱交換器の効率向上を
図りた本のである。第2図において第1図と同一番号を
付した庵のは同一部分で同一作用をする。第2図の構成
で第1図と異なる点は、熱源側の熱交換器で、気液分離
器5で分離された低沸点のR−12の割合の多い液冷媒
と、給湯用熱交換器4bを出た高沸点冷媒R−22の割
合の多い液冷媒は各々別個の減圧器7にニジ減圧降温し
、各々別個の室外側熱交換器6へ6bに入り、外気から
熱を奪りて気化し、ガス状聰で圧輻執3に吸込まれる。
FIG. 2 is a heat pump water heater showing another embodiment of the present invention, which is intended to improve the efficiency of the outdoor heat exchanger shown in FIG. In FIG. 2, the hermitages with the same numbers as in FIG. 1 have the same parts and have the same functions. The configuration in Figure 2 differs from Figure 1 in the heat exchanger on the heat source side, where the liquid refrigerant with a high proportion of low boiling point R-12 separated by the gas-liquid separator 5 and the heat exchanger for hot water supply are used. The liquid refrigerant having a high proportion of high boiling point refrigerant R-22 exiting the refrigerant 4b is decompressed and cooled in each separate pressure reducer 7, and enters the separate outdoor heat exchanger 6 6b, where it absorbs heat from the outside air. It vaporizes and is sucked into the pressure gas 3 in a gaseous state.

従って室外側熱交換器6cLでは主として高沸点のR−
12が蒸発吸熱し、室外側熱交換器6hでは主として低
沸点のR−22が蒸発吸熱する。
Therefore, in the outdoor heat exchanger 6cL, mainly high boiling point R-
In the outdoor heat exchanger 6h, mainly R-22 having a low boiling point evaporates and absorbs heat.

ここにおいて、送風機60による通風を図において矢印
で示すように室外側熱交換器6番がら室外側熱交換器6
kに移送するようになりている。従って室外側熱交換器
4番で熱交換して冷たくなりた空気はさらに室外側熱交
換器6bで熱交換されることになる。2つの室外側熱交
換器6m、 6にの蒸発温度を比べると室外側熱交換器
6αは室外側熱交換器6bニジ高い蒸発温度となる。し
がして、室外側熱交換器6gでは高沸点のR−12が主
として蒸発し、室外側熱交換器6にでは低沸点のR−2
2が蒸発するようになりているので、第1図のように両
者混合して蒸発吸熱する場合よりもさらに蒸発圧力管高
くできることになる。なお、室外熱交換器6bの出口部
に設けられているキャビラリチ、−プ7bは特に同一圧
力に対して蒸発温度の大巾に異なる2つの冷媒を作動流
体とじて用いる場合に室外熱交換器6tL、4bでの熱
交換を確保するため、内熱交換器の蒸発温度の差をある
限度低下に補償するものである。給湯用熱交換器4&、
 4hの作用は第1図と同じなので説明全省略する。
Here, the ventilation by the blower 60 is moved from the outdoor heat exchanger No. 6 to the outdoor heat exchanger 6 as shown by the arrow in the figure.
k. Therefore, the air that has been cooled by heat exchange in the outdoor heat exchanger No. 4 is further heat exchanged in the outdoor heat exchanger 6b. Comparing the evaporation temperatures of the two outdoor heat exchangers 6m and 6, the outdoor heat exchanger 6α has a higher evaporation temperature than the outdoor heat exchanger 6b. However, in the outdoor heat exchanger 6g, R-12 with a high boiling point mainly evaporates, and in the outdoor heat exchanger 6, R-2 with a low boiling point evaporates.
Since 2 is evaporated, the evaporation pressure can be made higher than in the case where both are mixed and heat is absorbed by evaporation as shown in FIG. Note that the cavity 7b provided at the outlet of the outdoor heat exchanger 6b is used especially when two refrigerants with widely different evaporation temperatures for the same pressure are used as working fluids. , 4b, the difference in evaporation temperature of the internal heat exchanger is compensated for by a certain limit. Heat exchanger for hot water supply 4&,
Since the action of 4h is the same as that shown in FIG. 1, a complete explanation will be omitted.

以上、室外側熱交換器を2分し、高沸点、低沸点の混合
冷媒の特徴を有効に作用させることに工り、蒸発圧力を
高め、はぼ理想的に外気から熱を吸収することができる
As described above, by dividing the outdoor heat exchanger into two parts and effectively utilizing the characteristics of the high boiling point and low boiling point mixed refrigerant, it is possible to increase the evaporation pressure and absorb heat from the outside air in an ideal manner. can.

以上の実施例で説明したLうに、従来のヒートポンプ給
湯装置は単一組成の冷媒又は共沸混合冷媒ヲヒートポン
プサイクルの作動流体としていたため、低沸点冷媒では
高圧の上昇、高沸点冷媒では加熱能力の低下という問題
を有していたのに対し、前記した各実施例においては作
動流体として低沸点と高沸点の少なくとも2成分の冷媒
を適宜混合比率となした非共沸混合冷媒を用い給湯用熱
交換器を主として高沸点冷媒が凝蟲する第1の給湯用熱
交換器と主として低沸点冷媒が凝縮する第2の給湯用熱
交換器に2分し両者直列に配置し水と向流熱交換させる
ことにより高温(70℃)給湯に′おける高圧の上昇金
おさえ、さらに室外側熱交換器を主として高沸点冷媒が
蒸発する第1の室外情熱交換器と上として低沸点冷媒か
蒸発する第2の室外側熱交換器に2分し、第1の室外情
熱交換器で熱交−を終えた空気が次に第2の室外情熱交
換器で熱交換を行なうような送風構成とすることによシ
高沸点、低沸点各冷媒の特徴を生かして外気から効率的
に熱管吸収し、蒸発圧力を高くできることから圧縮死金
減少し、加熱能力を向上することができ、圧縮機を大巾
に構造変更することなく、家IIにおいて必要な70℃
程度の給湯を容易に実現できるというすぐれた実用的効
果を賽する。
As explained in the above examples, conventional heat pump water heaters use a single composition refrigerant or an azeotropic mixture refrigerant as the working fluid of the heat pump cycle. However, in each of the above-mentioned embodiments, a non-azeotropic mixed refrigerant in which at least two refrigerants of low boiling point and high boiling point are mixed in an appropriate mixing ratio is used as the working fluid. The heat exchanger is divided into two parts: a first hot water supply heat exchanger that mainly condenses a high boiling point refrigerant, and a second hot water supply heat exchanger that mainly condenses a low boiling point refrigerant, and both are placed in series to generate countercurrent heat to the water. By exchanging the hot water, the high pressure rise during hot water supply at high temperature (70°C) can be suppressed. Furthermore, the outdoor heat exchanger is used as a first outdoor heat exchanger in which high boiling point refrigerant evaporates, and a second outdoor heat exchanger in which low boiling point refrigerant evaporates. The air blowing configuration is such that the air is divided into two outdoor heat exchangers, and the air that has undergone heat exchange in the first outdoor heat exchanger is then heat exchanged in the second outdoor heat exchanger. By taking advantage of the characteristics of high boiling point and low boiling point refrigerants, heat can be efficiently absorbed from the outside air and the evaporation pressure can be increased, reducing compression waste and improving heating capacity, making the compressor more spacious. 70℃ required in house II without structural changes
It has an excellent practical effect of easily realizing a certain amount of hot water supply.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のヒートポンプ給湯装置の一実施例を示
す構成図、第2図は本発明の他の実施例を示すヒートポ
ンプ給湯装置の構成図である。 2・・・室外ユニット 5・・・圧縮機 44へ4b・・・給湯用熱交換器 5・・・気液分離器 6.6へ6b・−室外側熱交換器 7.7tL、7b・・・減圧器(キャピラリチューブ)
10・・・ポンプ 代理人弁理士 薄 出 暫167− オ II!1 4 片 2 山
FIG. 1 is a block diagram showing one embodiment of a heat pump water heater of the present invention, and FIG. 2 is a block diagram of a heat pump water heater showing another embodiment of the present invention. 2...Outdoor unit 5...To compressor 444b...Hot water supply heat exchanger 5...To gas-liquid separator 6.66b...Outdoor heat exchanger 7.7tL, 7b...・Pressure reducer (capillary tube)
10... Pump agent patent attorney Usui Shitaku 167- Oh II! 1 4 piece 2 mountain

Claims (1)

【特許請求の範囲】 圧縮機、給湯用熱交換器、室外偵熱交換器お・よび減圧
器を備えたヒートポンプ給湯装置において、適宜の混合
比率となした非共沸の混合冷・媒を前記装置の作動流体
に用いるとともに、前・記給湯用熱交換器′f:2分し
、各々水と向流熱交・換となし第1の給湯用熱交換器と
第2の給湯用。 熱交換器の間に気液分#器を配置して、該気液。 分離器で分離されたガス冷媒か第2の給湯用熱交換器に
流入し、分離された液冷媒は該第2の給湯用熱交換器を
バイパスして流れる工うにしたことを特徴とするヒート
ポンプ給湯装置。
[Scope of Claims] In a heat pump water supply system equipped with a compressor, a heat exchanger for hot water supply, an outdoor heat exchanger, and a pressure reducer, the non-azeotropic mixed refrigerant/medium at an appropriate mixing ratio is used as described above. In addition to being used as the working fluid of the device, the hot water supply heat exchanger'f is divided into two parts, each of which is used for countercurrent heat exchange and exchange with water, the first heat exchanger for hot water supply and the second heat exchanger for hot water supply. A gas-liquid separator is placed between the heat exchangers to separate the gas-liquid. A heat pump characterized in that the gas refrigerant separated by the separator flows into a second heat exchanger for hot water supply, and the separated liquid refrigerant flows by bypassing the second heat exchanger for hot water supply. Water heater.
JP57009987A 1982-01-27 1982-01-27 Hot-water supply device for heat pump Pending JPS58129164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57009987A JPS58129164A (en) 1982-01-27 1982-01-27 Hot-water supply device for heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57009987A JPS58129164A (en) 1982-01-27 1982-01-27 Hot-water supply device for heat pump

Publications (1)

Publication Number Publication Date
JPS58129164A true JPS58129164A (en) 1983-08-02

Family

ID=11735223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57009987A Pending JPS58129164A (en) 1982-01-27 1982-01-27 Hot-water supply device for heat pump

Country Status (1)

Country Link
JP (1) JPS58129164A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101574A (en) * 2008-10-24 2010-05-06 Mitsubishi Electric Corp Water heater
JP2013185741A (en) * 2012-03-07 2013-09-19 Rinnai Corp Heat pump type water heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101574A (en) * 2008-10-24 2010-05-06 Mitsubishi Electric Corp Water heater
JP2013185741A (en) * 2012-03-07 2013-09-19 Rinnai Corp Heat pump type water heater

Similar Documents

Publication Publication Date Title
US4406135A (en) Heating and thermal conditioning process making use of a compression heat pump operating with a mixed working fluid
JPH09170832A (en) Refrigerating cycle device having two evaporation temperature
JPS61119954A (en) Absorption heat pump/refrigeration system
US4498999A (en) Process for the heating and/or thermal conditioning of a building by means of a heat pump operated with a specific mixture of working fluids
WO2021065943A1 (en) Heat treatment system
CA2061323A1 (en) High efficiency absorption cycle of the gax type
JP2552555B2 (en) How to operate the heat pump
JPH0425463B2 (en)
KR20030045175A (en) Phase-change Heat Transfer Coupling For Aqua-ammonia Absorption Systems
CN109163470A (en) A kind of ultralow temperature carbon dioxide water chiller-heater unit
JP3226247U (en) Refrigeration equipment
JPS58129164A (en) Hot-water supply device for heat pump
CN113950602B (en) Air conditioner
CN109724284A (en) A kind of supercritical carbon dioxide refrigeration system of two-stage throttling
JPH04103571U (en) Heat pump water heater
JP2013124820A (en) Two-step heater and two-step cooler
JPH0655940B2 (en) Mixed refrigerant
JPS59219665A (en) Heat pump device
JP3466018B2 (en) Liquid phase separation type absorption refrigeration system
JPS58104466A (en) Heat pump device
JPS59117580A (en) Refrigerant composition
JPH0861799A (en) Air conditioner
JP3785737B2 (en) Refrigeration equipment
JPS60173082A (en) Operating medium for heat pump
JPS61276662A (en) Heat pump type water heater