JPH0655940B2 - Mixed refrigerant - Google Patents

Mixed refrigerant

Info

Publication number
JPH0655940B2
JPH0655940B2 JP61249156A JP24915686A JPH0655940B2 JP H0655940 B2 JPH0655940 B2 JP H0655940B2 JP 61249156 A JP61249156 A JP 61249156A JP 24915686 A JP24915686 A JP 24915686A JP H0655940 B2 JPH0655940 B2 JP H0655940B2
Authority
JP
Japan
Prior art keywords
mixed refrigerant
refrigerant
present
working medium
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61249156A
Other languages
Japanese (ja)
Other versions
JPS63105089A (en
Inventor
健 金井
信 瀬上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Sanyo Electric Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP61249156A priority Critical patent/JPH0655940B2/en
Publication of JPS63105089A publication Critical patent/JPS63105089A/en
Publication of JPH0655940B2 publication Critical patent/JPH0655940B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、加圧液化、減圧気化という物質の状態変化を
利用して流体の冷却、加熱などを行なう蒸気圧縮式冷凍
サイクル用作動媒体として使用される混合冷媒に関する
もので、特に空気調和に用いる冷暖房機器に使用される
混合冷媒に関する。
The present invention relates to a working medium for a vapor compression refrigeration cycle, which cools or heats a fluid by utilizing the state changes of substances such as pressurized liquefaction and depressurized vaporization. The present invention relates to a mixed refrigerant used, and more particularly, to a mixed refrigerant used for air conditioning equipment used for air conditioning.

[従来の技術] 蒸気圧縮式冷凍サイクルは、冷暖房機器、冷蔵庫、給湯
機器などに広く応用され、実用に供されている。
[Prior Art] A vapor compression refrigeration cycle is widely applied to air conditioning equipment, refrigerators, hot water supply equipment, and the like, and is put to practical use.

このような圧縮式冷凍サイクルに利用される作動媒体
は、フロン系冷媒を中心として様々な作動媒体が開発さ
れ実用に供されてきた。
As a working medium used in such a compression refrigeration cycle, various working media centered on a CFC-based refrigerant have been developed and put into practical use.

代表的なものはメタン系やエタン系のハロゲン化炭化水
素を単一成分とする作動媒体であり、メタン系ではR1
1、R12、R13、R14及びR22など、またエタ
ン系ではR113、R114、及びR115などが目的
に応じて使用されている。
A typical example is a working medium containing a methane- or ethane-based halogenated hydrocarbon as a single component.
1, R12, R13, R14, R22 and the like, and in the ethane system, R113, R114, R115 and the like are used according to the purpose.

なかでも空気調和に用いる冷暖房機器にはR22(モノ
クロロジフルオロメタン)が冷媒として広く使用されて
いる。
Among them, R22 (monochlorodifluoromethane) is widely used as a refrigerant in air conditioning equipment used for air conditioning.

R22は冷蔵庫、除湿器などに一般的に用いられている
R12(ジクロロジフルオロメタン)に比べて、同じ大
きさの圧縮機で大きな冷凍能力を得ることができるので
機器の小型化が計れる。
Since R22 can obtain a large refrigerating capacity with a compressor of the same size as R12 (dichlorodifluoromethane) which is generally used in refrigerators, dehumidifiers, etc., the device can be downsized.

また、−40℃の蒸発温度でも吸入圧力が大気圧よりも
高いことも利点であり、化学的にも安定で熱力学的性質
が良い冷媒として広く実用に供されている。
Further, the suction pressure is higher than the atmospheric pressure even at the evaporation temperature of −40 ° C., which is an advantage, and is widely put to practical use as a refrigerant that is chemically stable and has good thermodynamic properties.

また、単一冷媒では満足し得ない特性を冷媒を混合して
使用することにより補足しようとする試みから、最近で
は非共沸混合冷媒の検討がなされ、事実、R22にR1
3B1(モノブロモトリフルオロメタン)を混合するこ
とにより、R22よりも暖房能力を増大させる工夫をし
たヒートポンプ冷暖房機器が製品化されている(昭和6
0年8月30日付け電波新聞参照)。
In addition, a non-azeotropic mixed refrigerant has recently been studied because of an attempt to supplement the characteristics that cannot be satisfied by a single refrigerant by mixing and using the refrigerants.
By mixing 3B1 (monobromotrifluoromethane), a heat pump cooling and heating device has been commercialized, which is devised to increase the heating capacity over R22 (Showa 6).
(See Denpa Shimbun, dated August 30, 0).

上述した混合冷媒はR22単一冷媒よりも暖房能力を改
善することに重きをおいて開発されているため、成績係
数に関しては注目されていないのが現状である(昭和5
4年度日本冷凍協会学術講演会講演論文集29〜30頁
参照)。
Since the above-mentioned mixed refrigerant has been developed with an emphasis on improving the heating capacity over the R22 single refrigerant, the current situation is that attention is not paid to the coefficient of performance (Showa 5).
(See page 29-30 of the 4th academic conference of the Japan Refrigeration Society.)

[発明が解決しようとする問題点] 本発明の目的は、R22よりも一段優れた、すなわちR
22よりも暖房能力が大きく、かつ成績係数も高く、従
来の空気調和機の小型化、高効率化が計れるヒートポン
プ冷暖房機用作動媒体を提供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to be further superior to R22, namely R
It is intended to provide a working medium for a heat pump cooling / heating machine which has a larger heating capacity and a higher coefficient of performance than that of No. 22, and can be downsized and improved in efficiency of a conventional air conditioner.

[問題点を解決するための手段] 本発明者らは以上のような本発明の目的を達成するため
に多くのフロン系冷媒について検討を加えた結果、本発
明の目的は、R22を主成分とし、これに対して化学的
に安定で熱力学的特性に優れた別のフロン系冷媒である
R143a(1,1,1−トリフルオロエタン)を混合
して成り、好ましくはその混合割合いが混合冷媒中の
1,1,1−トリフルオロエタンのモル分率として0.
25〜0.45であるヒートポンプ冷暖房機用混合冷媒
により達成されることを見い出した。
[Means for Solving the Problems] The inventors of the present invention have studied many chlorofluorocarbon-based refrigerants in order to achieve the above-described object of the present invention, and as a result, the object of the present invention is to make R22 as a main component. In contrast, R143a (1,1,1-trifluoroethane), which is another fluorocarbon refrigerant that is chemically stable and has excellent thermodynamic characteristics, is mixed, and the mixing ratio is preferably The molar fraction of 1,1,1-trifluoroethane in the mixed refrigerant is 0.
It has been found to be achieved with a mixed refrigerant for heat pump air conditioners that is 25 to 0.45.

[実施例] 次に本発明を添付図面に従って詳述するが、本発明の要
旨を逸脱しない限り、この実施例のみに限定されるもの
ではない。
EXAMPLES Next, the present invention will be described in detail with reference to the accompanying drawings, but the present invention is not limited to these examples without departing from the gist of the present invention.

第1図は本発明の混合冷媒(作動媒体)を試験した蒸気
圧縮式冷凍サイクルの概要である。
FIG. 1 is an outline of a vapor compression refrigeration cycle in which the mixed refrigerant (working medium) of the present invention was tested.

(1)は作動媒体の圧縮機、(2)は水冷式二重管凝縮
器、、(3)は受液器、(4)は減圧用膨脹弁、(5)
は蒸発器、(6)は吸熱源用ブライン槽、(7)はアキ
ユムレータ、(8)、(8′)は放熱源水用配管であ
る。
(1) is a working medium compressor, (2) is a water-cooled double-tube condenser, (3) is a liquid receiver, (4) is a pressure reducing expansion valve, and (5).
Is an evaporator, (6) is a brine tank for heat absorption source, (7) is an accumulator, and (8) and (8 ') are piping for heat radiation source water.

かかる蒸気圧縮式冷凍サイクルにおいて、作動媒体は圧
縮機(1)で圧縮された後、凝縮器(2)に導かれ、導
入される放熱源水に熱を与えて凝縮される。本実施例に
おいてはこの放熱源水の出入口温度をそれぞれほぼ一定
にして、凝縮器能力を出入口温度差と流量と比熱の積に
より求め比較を行なった。
In such a vapor compression refrigeration cycle, the working medium is compressed by the compressor (1) and then guided to the condenser (2) to give heat to the radiant heat source water to be condensed. In this example, the inlet and outlet temperatures of the heat radiation source water were made substantially constant, and the condenser capacity was calculated by the product of the inlet and outlet temperature difference, the flow rate, and the specific heat for comparison.

凝縮した作動媒体は受液器(3)に貯められ、減圧用膨
脹弁により調圧された後、蒸発器(5)に導され、吸熱
源用ブライン槽(6)から吸熱して蒸発し、アキユムレ
ータ(7)を経由して再び圧縮機(1)に吸引されるサ
イクルを繰り返す。吸熱源用ブライン槽には加熱用ヒー
タが内臓されており、蒸発器能力に比例して投入電力を
コントロールし、槽内温度を一定に保持するようにして
比較試験が行なえるように構成されている。
The condensed working medium is stored in the liquid receiver (3), regulated by the decompression expansion valve, then guided to the evaporator (5), and absorbs heat from the heat absorption source brine tank (6) to evaporate, The cycle of being sucked into the compressor (1) again via the accumulator (7) is repeated. The brine tank for the heat absorption source has a built-in heater for heating, which is configured so that the input power is controlled in proportion to the capacity of the evaporator and the temperature inside the tank is kept constant so that a comparative test can be performed. There is.

第1表に第1図の構成から成る蒸気圧縮式冷凍サイクル
を用いて行なった結果を示す。
Table 1 shows the results of the vapor compression refrigeration cycle having the configuration shown in FIG.

試験条件としては本発明の混合冷媒において、R143
aの混合割合いを変化させた混合冷媒とR22単独の冷
媒を用いた時とで、凝縮器出入口の温水温度、蒸発器の
吸熱源用ブライン槽温度をそれぞれほぼ一定にし、ま
た、減圧用膨脹弁入口液冷媒温度、アキユムレータ入口
冷媒温度がほぼ等しくなるようにして、圧縮機入力、凝
縮器能力、成績係数を比較したものである・. 実施例1は本発明の混合冷媒においてR143aのモル
分率が0.4の場合である。。
As a test condition, in the mixed refrigerant of the present invention, R143
The temperature of the hot water at the inlet and outlet of the condenser and the temperature of the brine tank for the heat sink of the evaporator are kept substantially constant and the expansion for decompression is performed when the mixed refrigerant in which the mixing ratio of a is changed and the refrigerant of R22 alone is used. This is a comparison of the compressor input, condenser capacity, and coefficient of performance, with the valve inlet liquid refrigerant temperature and the accumulator inlet refrigerant temperature being approximately the same. Example 1 is a case where the mole fraction of R143a in the mixed refrigerant of the present invention is 0.4. .

実施例2はR143aのモル分率が0.35の場合、実
施例3はR143aのモル分率が0.25の場合であ
る。比較例はR22単独の冷媒の場合である。
In Example 2, the mole fraction of R143a is 0.35, and in Example 3, the mole fraction of R143a is 0.25. The comparative example is a case where the refrigerant is R22 alone.

第2図は実施例1〜3及び比較例の凝縮器能力、成績係
数をR143aのモル分率をパラメータとして表わした
ものである。
FIG. 2 shows the condenser performance and the coefficient of performance of Examples 1 to 3 and Comparative Example using the mole fraction of R143a as a parameter.

この図から、R143aのモル分率が0.25〜0.4
5の範囲で成績係数(COPh)がR22よりも高くな
る極大値が存在し、そのピークがR143aのモル分率
0.35の時であることが判明した。
From this figure, the molar fraction of R143a is 0.25 to 0.4.
It was found that there was a maximum value in which the coefficient of performance (COPh) was higher than that of R22 in the range of 5, and the peak thereof was at the molar fraction of R143a of 0.35.

一方、凝縮器能力もそのピークがR143aのモル分率
0.35の時であり、上記成績係数がR22よりも高く
なるR143aのモル分率0.25〜0.45の範囲で
凝縮器能力がR22よりも増大している。
On the other hand, the peak of the condenser capacity is when the molar fraction of R143a is 0.35, and the condenser capacity is in the range of 0.25 to 0.45 of the molar fraction of R143a where the above coefficient of performance is higher than that of R22. It is larger than R22.

R143aのモル分率0.35の時のR22と比べた成
績係数向上率は2.4%、凝縮器能力向上率は7%であ
った。
When the mole fraction of R143a was 0.35, the coefficient of performance improvement was 2.4% and the condenser capacity improvement was 7% compared to R22.

[発明の効果] 蒸気圧縮式冷凍サイクルを用いるヒートポンプ冷暖房機
用の作動媒体としてR143aをR22に適量混合した
本発明の混合冷媒は、現在広く使用されているR22と
比較して凝縮器能力のみならず成績係数も向上させるこ
とができヒートポンプ冷暖房機の小型、高効率化を可能
とするものである。
[Effects of the Invention] The mixed refrigerant of the present invention in which R143a is appropriately mixed with R22 as a working medium for a heat pump air conditioner using a vapor compression refrigeration cycle has only a condenser capacity as compared with R22 which is widely used at present. In addition, the coefficient of performance can be improved and the heat pump air conditioner can be made smaller and more efficient.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の混合冷媒(作動媒体)を使用した蒸気
圧縮式冷凍サイクルの概要説明図であり、第2図はR2
2/R143a系の混合冷媒におけるR143aモル分
率による特性変化を示す説明図である。 (1)……作動媒体の圧縮機、 (2)……水冷式二重管凝縮器、 (3)……受液器、 (4)……減圧用膨脹弁、 (5)……蒸発器、 (6)……吸熱源用ブライン槽、 (7)……アキユムレータ、 (8)、(8′)……放熱源水用配管。
FIG. 1 is a schematic explanatory view of a vapor compression refrigeration cycle using the mixed refrigerant (working medium) of the present invention, and FIG. 2 is R2.
It is explanatory drawing which shows the characteristic change by R143a mole fraction in a 2 / R143a type | system | group mixed refrigerant. (1) ... Compressor of working medium, (2) ... Water-cooled double-tube condenser, (3) ... Liquid receiver, (4) ... Expansion valve for decompression, (5) ... Evaporator , (6) …… Brine tank for heat absorption source, (7) …… Akymulator, (8), (8 ′) …… Pipe for heat radiation source water.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】モノクロロジフルオロメタンを主成分と
し、これに1,1,1−トリフルオロエタンを混合して
成る混合冷媒。
1. A mixed refrigerant comprising monochlorodifluoromethane as a main component and 1,1,1-trifluoroethane mixed therein.
【請求項2】混合冷媒中の1,1,1−トリフルオロエ
タンのモル分率が0.25〜0.45であることを特徴
とする特許請求の範囲第1項記載の混合冷媒。
2. The mixed refrigerant according to claim 1, wherein the molar fraction of 1,1,1-trifluoroethane in the mixed refrigerant is 0.25 to 0.45.
JP61249156A 1986-10-20 1986-10-20 Mixed refrigerant Expired - Lifetime JPH0655940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61249156A JPH0655940B2 (en) 1986-10-20 1986-10-20 Mixed refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61249156A JPH0655940B2 (en) 1986-10-20 1986-10-20 Mixed refrigerant

Publications (2)

Publication Number Publication Date
JPS63105089A JPS63105089A (en) 1988-05-10
JPH0655940B2 true JPH0655940B2 (en) 1994-07-27

Family

ID=17188737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61249156A Expired - Lifetime JPH0655940B2 (en) 1986-10-20 1986-10-20 Mixed refrigerant

Country Status (1)

Country Link
JP (1) JPH0655940B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2545887B2 (en) * 1987-11-02 1996-10-23 ダイキン工業株式会社 Coolant
JPH02267472A (en) * 1989-04-06 1990-11-01 Matsushita Electric Ind Co Ltd Refrigerating cycle device
JPH03258888A (en) * 1990-03-07 1991-11-19 Daikin Ind Ltd Refrigerant
ATE135733T1 (en) * 1990-07-26 1996-04-15 Du Pont QUASI-AZEOTROPIC MIXTURES FOR USE AS REFRIGERANTS
US5277834A (en) * 1990-07-26 1994-01-11 E. I. Du Pont De Nemours And Company Near-azeotropic blends for use as refrigerants
JP4192545B2 (en) 2002-09-27 2008-12-10 株式会社日立メディコ Ultrasonic diagnostic equipment

Also Published As

Publication number Publication date
JPS63105089A (en) 1988-05-10

Similar Documents

Publication Publication Date Title
JPH0730311B2 (en) Coolant
JPH0655939B2 (en) Mixed refrigerant
JPH0655941B2 (en) Coolant
JP2015215112A (en) Refrigeration cycle device
JPH01139678A (en) Working medium mixture
JPH0655940B2 (en) Mixed refrigerant
JPS63308084A (en) Operation medium mixture
JP2545879B2 (en) Coolant
JPH075880B2 (en) Coolant
JPH075881B2 (en) Working medium mixture
JPH01153786A (en) Working medium mixture
JP2507437B2 (en) Working medium mixture
JP2841430B2 (en) Working medium mixture
JP2867932B2 (en) Coolant
JP2536560B2 (en) Working medium mixture
JPH01141982A (en) Working medium mixture
JPS59117580A (en) Refrigerant composition
JPH01139677A (en) Working medium mixture
JPH01103689A (en) Refrigerant
JPH01139683A (en) Working medium mixture
JPS63101474A (en) Refrigeration medium mixture
JP2536545B2 (en) Working medium mixture
JPS63218785A (en) Blended refrigerant
JPS5959779A (en) Refrigerant
JPH01139682A (en) Working medium mixture