JPH01141982A - Working medium mixture - Google Patents

Working medium mixture

Info

Publication number
JPH01141982A
JPH01141982A JP62300081A JP30008187A JPH01141982A JP H01141982 A JPH01141982 A JP H01141982A JP 62300081 A JP62300081 A JP 62300081A JP 30008187 A JP30008187 A JP 30008187A JP H01141982 A JPH01141982 A JP H01141982A
Authority
JP
Japan
Prior art keywords
working medium
mixture
tetrafluoroethane
present
medium mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62300081A
Other languages
Japanese (ja)
Inventor
Masato Fukushima
正人 福島
Toru Kamimura
徹 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP62300081A priority Critical patent/JPH01141982A/en
Publication of JPH01141982A publication Critical patent/JPH01141982A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title mixture excellent in an efficiency of refrigerating cycle and usable in a refrigerating machine, a heat pump, etc., by mixing tetrafluoroethane with a specified chlorofluorocarbon. CONSTITUTION:At least one chlorofluorocarbon selected from among dichloromonofluoromethane, monochlorotetrafluoroethane and monochlorotrifluoroethane is mixed with tetrafluoroethane at a molar ratio of 1-99:99-1, and a stabilizer (dimethyl phosphite) is optionally added to the mixture.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、冷凍機、ヒートポンプ等に使用し得る新規な
作動媒体混合物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel working medium mixture that can be used in refrigerators, heat pumps, etc.

[従来技術] 空調、冷凍および冷蔵機器(冷凍サイクル・ヒートポン
プサイクル)、廃熱回収発電(ランキンサイクル)、熱
交換機器(ヒートパイプ)等が実用化ないし試験開発さ
れてい゛る。これらの機器に用いる作動媒体には、水を
はしめプロパンやメタン等の炭化水素類、トリクロロフ
ルオロメタン(all)や、クロロジフルオロメタン(
R22)等のフロン類、又はアンモニア等か知られてい
る。
[Prior Art] Air conditioning, refrigeration, and refrigeration equipment (refrigeration cycle/heat pump cycle), waste heat recovery power generation (Rankine cycle), heat exchange equipment (heat pipe), etc. have been put into practical use or tested and developed. Working media used in these devices include water, hydrocarbons such as propane and methane, trichlorofluoromethane (all), and chlorodifluoromethane (all).
CFCs such as R22) or ammonia are known.

[発明の解決しようとする問題点] フロンは毒性か少なく、非可燃性て化学的にも安定であ
り、標準沸点の異なる各種フロンか容易に入手てきるこ
とから、作動媒体としての評価研究が活発に行なわれて
いる。本発明は、熱回収効率、特に、冷凍庫、冷蔵庫、
冷暖房機器、給湯機器あるいは廃熱回収を目的としたヒ
ートポンプシステムの効率か高いフロン類を新規に提供
するものである。
[Problems to be solved by the invention] Freon is less toxic, non-flammable, and chemically stable, and various types of fluorocarbons with different standard boiling points are easily available, so evaluation research as a working medium has been conducted. It is actively carried out. The present invention improves heat recovery efficiency, especially in freezers, refrigerators,
This new product provides highly efficient fluorocarbons for heating and cooling equipment, hot water supply equipment, and heat pump systems for the purpose of waste heat recovery.

[問題点を解決するための手段] 本発明はジクロロモノフルオロメタン(R21)モノク
ロロテトラフルオロエタンおよびモノクロロトリフルオ
ロエタンの中から選ばれる少なくとも1種とテトラフル
オロエタンとを必須成分とすることを特徴とする作動媒
体混合物に関するものである。
[Means for solving the problems] The present invention is characterized in that at least one selected from dichloromonofluoromethane (R21), monochlorotetrafluoroethane, and monochlorotrifluoroethane and tetrafluoroethane are essential components. The present invention relates to a working medium mixture.

本発明におけるテトラフルオロエタンには、1.1,2
.2−テトラフルオロエタン(R1:14)と1.1゜
1.2−テトラフルオロエタン(R134a)の2種類
の異性体か知られているか、互いに物性か類似している
ため、これらを単独て用いてもよく、またこれらの混合
物を用いてもよい。モノクロロテトラフルオロエタンに
は、モノクロロー■。
Tetrafluoroethane in the present invention includes 1.1,2
.. Are the two isomers 2-tetrafluoroethane (R1:14) and 1.1゜1.2-tetrafluoroethane (R134a) known?Since their physical properties are similar to each other, they cannot be considered alone. or a mixture thereof may be used. For monochlorotetrafluoroethane, monochloro■.

2.2.2−テトラフルオロエタン(R124)と1−
クロロ−1,1,2,2−テトラフルオロエタン(R1
24a)の2種類の異性体か知られているか、互いに物
性か類似しているため、これらを単独で用いてもよく、
またこれらの混合物を用いてもよい。
2.2.2-tetrafluoroethane (R124) and 1-
Chloro-1,1,2,2-tetrafluoroethane (R1
Since the two types of isomers of 24a) are known or have similar physical properties to each other, they may be used alone,
A mixture of these may also be used.

また、モノクロロトリフルオロエタンには、1−クロロ
−1,2,2−トリフルオロエタン(R133)と1−
クロロ−2,2,2−)−リフルオロエタン(R1:1
3a)およびl−クロロ−1,1,2−)−リフルオロ
エタン(R1:13b)の3種類の異性体か知られてい
るか、互いに物性か類似しているため、これらを単独で
用いてもよく、またこれらの混合物を用いてもよい。以
下の説明においてはR1:14aとR21,R134a
、 R124およびR1:14aとR133aの各作動
媒体混合物を使用する例を示す。
In addition, monochlorotrifluoroethane includes 1-chloro-1,2,2-trifluoroethane (R133) and 1-chlorotrifluoroethane.
Chloro-2,2,2-)-lifluoroethane (R1:1
Since the three isomers of 3a) and l-chloro-1,1,2-)-lifluoroethane (R1:13b) are known and have similar physical properties, they can be used alone. or a mixture thereof may be used. In the following explanation, R1:14a and R21, R134a
, R124 and R1: Examples using working medium mixtures of 14a and R133a are shown.

以下、本発明の作動媒体混合物(以下単に作動媒体とい
うことかある。)を用いた冷凍サイクルシステムのフロ
ーシートを示す第1図に従って本発明の詳細な説明する
。第1図の1は圧縮機、2は凝縮器、3,3°は負荷流
体用配管、4は減圧装置、5は蒸発器、6,6′は熱源
流体用配管を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to FIG. 1, which shows a flow sheet of a refrigeration cycle system using a working medium mixture (hereinafter also simply referred to as working medium) of the present invention. In FIG. 1, 1 is a compressor, 2 is a condenser, 3 and 3° are load fluid pipes, 4 is a pressure reducing device, 5 is an evaporator, and 6 and 6' are heat source fluid pipes.

i1図に示す冷凍サイクルシステムにおいて作動媒体は
圧縮機lて圧縮された後、凝縮器2に導かれ、該凝縮器
2中て管3より導入される負荷流体により冷却されて凝
縮する。一方、負荷流体は凝縮器2中て逆に加熱され管
3′を経て負荷加熱に供される。つきに凝縮した作動媒
体は減圧装a4により減圧された後、蒸発器5に導かれ
、該蒸発器5に導かれ、該蒸発器5中て管6より導入さ
れ管6′から排出される熱源流体により加熱された後、
再び圧縮機lに吸引され上記のサイクルを繰り返す。一
方、熱源流体は蒸発器5中で逆に冷却され、管6“を経
て冷却に供される。
In the refrigeration cycle system shown in Fig. 1, the working medium is compressed by a compressor 1 and then led to a condenser 2, where it is cooled and condensed by a load fluid introduced from a pipe 3. On the other hand, the load fluid is reversely heated in the condenser 2 and passed through the pipe 3' for load heating. The condensed working medium is reduced in pressure by the pressure reducing device a4, and then guided to the evaporator 5, where it is introduced into the evaporator 5 through a tube 6 and is discharged through the tube 6' as a heat source. After being heated by the fluid,
It is sucked into the compressor 1 again and the above cycle is repeated. On the other hand, the heat source fluid is reversely cooled in the evaporator 5 and is provided for cooling through the tube 6''.

第2図および第3図は第1図に示す冷凍サイクルシステ
ムにおける作動媒体混合物のサイクルを圧力−エンタル
ピー線図上に記入したものである。作動媒体の飽和蒸気
を断熱圧縮した場合、湿り状態になるものを第2図に、
乾き状態になるものを第3図に示す。
2 and 3 are pressure-enthalpy diagrams showing the cycles of the working medium mixture in the refrigeration cycle system shown in FIG. 1. Figure 2 shows what becomes wet when the working medium, saturated steam, is compressed adiabatically.
Figure 3 shows what is in a dry state.

第1図の圧縮機による作動媒体の変化は第2図および第
3図の符合8か69あるいは13から14の変化に、凝
縮器による作動媒体の変化は9→10→11あるいは1
4→15→16→17の変化に、減圧装置による作動媒
体の変化は11から12あるいは17から18の変化に
、蒸発器による作動媒体の変化は12から8あるいは1
8から13の変化にそれぞれ対応する。
The change in the working medium due to the compressor in Figure 1 is the change from 8 or 69 or 13 to 14 in Figures 2 and 3, and the change in the working medium due to the condenser is 9→10→11 or 1.
The change in working medium due to the pressure reducing device is from 11 to 12 or from 17 to 18, and the change in working medium due to the evaporator is from 12 to 8 or 1.
This corresponds to the change from 8 to 13, respectively.

本発明の作動媒体混合物を用いた第1図の冷凍サイクル
システムの運転条件として蒸発器における作動媒体の蒸
発器り温度(符合7あるいは13の温度。以下、蒸発温
度という)と凝縮器における作動媒体の凝縮器めの温度
(符合9あるいは15の温度。以下、凝縮温度という)
を設定した。第1表から第6表に本発明の作動媒体混合
物を用いた上記の冷凍サイクルシステムにおける成績係
数および圧縮機単位容積当りの冷凍能力を比較例ととも
に記す。
The operating conditions of the refrigeration cycle system shown in FIG. 1 using the working medium mixture of the present invention are the evaporator temperature of the working medium in the evaporator (temperature of code 7 or 13, hereinafter referred to as evaporation temperature) and the working medium in the condenser. temperature of the condenser (temperature with code 9 or 15; hereinafter referred to as condensing temperature)
It was set. Tables 1 to 6 show the coefficient of performance and refrigeration capacity per unit volume of the compressor in the above-mentioned refrigeration cycle system using the working medium mixture of the present invention, along with comparative examples.

表から理解されるように、本発明の作動媒体混合物の一
構成成分であるR 134aは、R21゜R124およ
びR133aに比べ圧縮機単位容積当りの冷凍能力が高
いという長所を有しているものの、成績係数か低いとい
う欠点を有している。
As can be seen from the table, R134a, which is a component of the working medium mixture of the present invention, has the advantage of having a higher refrigerating capacity per unit volume of the compressor than R21°R124 and R133a. It has the disadvantage of a low coefficient of performance.

一方、 R21,R124およびR133aは、成績係
数の点てはR134aに比べ優れているものの、圧縮機
単位容積当りの冷凍能力か能力か低いという欠点を有し
ている。すなわち、本発明の作動媒体混合物を用いるこ
とにより、各々の欠点を改善し、かつ長所を生かすこと
かでき、極めて有効であることかわかる。すなわち1本
発明の作動媒体混合混合物を使用することにより、R!
34aの成績係数およびR21,R124およびR13
3aの冷凍能力を大きく改善することかできる。特に、
R134aとR21の混合モル比か約l0=90、 R
!34a/ R124の混合モル比か約20:80およ
びR134aとR+3:laの混合モル比か約20 二
80の各作動媒体混合物は、成績係数の改善の割合か極
めて高く、極めて有効であるといえる。
On the other hand, although R21, R124 and R133a are superior to R134a in terms of coefficient of performance, they have the disadvantage of low refrigerating capacity per unit volume of the compressor. In other words, it can be seen that the use of the working medium mixture of the present invention is extremely effective since it is possible to improve each of the disadvantages and take advantage of the advantages. That is, by using the working medium mixture of the present invention, R!
34a coefficient of performance and R21, R124 and R13
The refrigerating capacity of 3a can be greatly improved. especially,
The mixing molar ratio of R134a and R21 is about 10=90, R
! The working medium mixtures with a mixing molar ratio of 34a/R124 of about 20:80 and a mixing molar ratio of R134a and R+3:la of about 20:280 have extremely high improvement rates in the coefficient of performance and can be said to be extremely effective. .

本発明の作動媒体混合物は低温〜高温分野の空調、冷凍
および冷蔵を目的とし冷凍サイクルの応用する場合に特
に有効であるか、ランキンサイクルなどのその他各種の
熱回収技術の作動媒体としても使用することもてきる。
The working medium mixture of the present invention is particularly effective in refrigeration cycle applications for air conditioning, refrigeration and refrigeration in low to high temperature fields, or can also be used as a working medium in various other heat recovery techniques such as the Rankine cycle. It can also happen.

本発明の作動媒体混合物は熱安定性か優れており、通常
の使用条件においては安定剤を必要としないが、苛酷な
使用条件のため熱安定性の向とか必要な場合には、ジメ
チルホスファイ、ジイソプロピルホスファイト、ジフェ
ニルホスファイ1へ等のホスファイト系化合物、または
チオホスファイト系化合物、あるいはトリフエノキシホ
スフィンサルファイド、トリメチルホスフィンサルファ
イド等のホスフィンサルファイド系化合物、その他りリ
シシルエーテル類等の安定剤を作動媒体100重量部に
対し、1重量部前後の少量添加すればよい。
The working fluid mixture of the present invention has excellent thermal stability and does not require a stabilizer under normal conditions of use, but if thermal stability is required due to severe conditions of use, dimethyl phosphide may be used. , diisopropyl phosphite, diphenyl phosphite 1, etc., or thiophosphite compounds, or phosphine sulfide compounds such as triphenoxyphosphine sulfide, trimethylphosphine sulfide, and other lysicyl ethers. The agent may be added in a small amount of about 1 part by weight to 100 parts by weight of the working medium.

[発IJJの効果コ 本発明の作動媒体混合物は、特に冷凍サイクル効率すな
わち冷凍、加熱効率に優れ、テトラフルオロエタンとジ
クロロモノフルオロメタン、モノクロロテトラフルオロ
エタンおよびモノクロロトリフルオロエタンに比し、大
幅な数片か認られる。
[Effects of IJJ] The working medium mixture of the present invention has particularly excellent refrigeration cycle efficiency, that is, freezing and heating efficiency, and has significantly higher A few pieces are recognized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例を説明するための冷凍サイク
ルのフローシト、第2図および第3図は本発明の作動媒
体混合物を作動媒体として用いたサイクルを圧力−エン
タルピー線図に記入した図である。 P  1  図 第 2 侶     躬 3 図 工ンクルヒ0              エンタ几ヒ
Fig. 1 is a flow sheet of a refrigeration cycle for explaining one embodiment of the present invention, and Figs. 2 and 3 are pressure-enthalpy diagrams of a cycle using the working medium mixture of the present invention as the working medium. It is a diagram. P 1 Diagram 2 Companion 3 Diagram number 0 Enta 几hi.

Claims (1)

【特許請求の範囲】 1、ジクロロモノフルオロメタン、モノクロロテトラフ
ルオロエタンおよびモノクロロトリフルオロエタンの中
から選ばれる少なくとも1種とテトラフルオロエタンと
を必須成分とすることを特徴とする作動媒体混合物。 2、ジクロロモノフルオロメタン、モノクロロテトラフ
ルオロエタンおよびモノクロロトリフルオロエタンの中
から選ばれる少なくとも1種とテトラフルオロエタンの
混合モル比が1:99〜99:1である特許請求の範囲
第1項記載の作動媒体混合物。
[Scope of Claims] 1. A working medium mixture comprising at least one selected from dichloromonofluoromethane, monochlorotetrafluoroethane, and monochlorotrifluoroethane and tetrafluoroethane as essential components. 2. Claim 1, wherein the mixing molar ratio of at least one selected from dichloromonofluoromethane, monochlorotetrafluoroethane, and monochlorotrifluoroethane and tetrafluoroethane is 1:99 to 99:1. working medium mixture.
JP62300081A 1987-11-30 1987-11-30 Working medium mixture Pending JPH01141982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62300081A JPH01141982A (en) 1987-11-30 1987-11-30 Working medium mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62300081A JPH01141982A (en) 1987-11-30 1987-11-30 Working medium mixture

Publications (1)

Publication Number Publication Date
JPH01141982A true JPH01141982A (en) 1989-06-02

Family

ID=17880474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62300081A Pending JPH01141982A (en) 1987-11-30 1987-11-30 Working medium mixture

Country Status (1)

Country Link
JP (1) JPH01141982A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320388A (en) * 1989-06-16 1991-01-29 Sanyo Electric Co Ltd Refrigerant composition
US5425890A (en) * 1994-01-11 1995-06-20 Apd Cryogenics, Inc. Substitute refrigerant for dichlorodifluoromethane refrigeration systems
US5512197A (en) * 1990-03-23 1996-04-30 The California Institute Of Technology Near azeotropic mixture substitute for dichlorodifluoromethane
WO1996037571A1 (en) * 1995-05-24 1996-11-28 Intercool Energy Corporation Mixed gas refrigerant

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320388A (en) * 1989-06-16 1991-01-29 Sanyo Electric Co Ltd Refrigerant composition
US5512197A (en) * 1990-03-23 1996-04-30 The California Institute Of Technology Near azeotropic mixture substitute for dichlorodifluoromethane
US5523011A (en) * 1990-03-23 1996-06-04 California Institute Of Technology Near azeotropic mixture substitute
US5728314A (en) * 1990-03-23 1998-03-17 California Inst. Of Technology Near azeotropic mixture substitute for dichlorodifluoromethane
US5425890A (en) * 1994-01-11 1995-06-20 Apd Cryogenics, Inc. Substitute refrigerant for dichlorodifluoromethane refrigeration systems
WO1995018846A1 (en) * 1994-01-11 1995-07-13 Intercool Energy Corporation Mixed gas refrigerant
US5622644A (en) * 1994-01-11 1997-04-22 Intercool Energy Mixed gas R-12 refrigeration apparatus
AU681757B2 (en) * 1994-01-11 1997-09-04 Intercool Distribution, Llc Mixed gas refrigerant
WO1996037571A1 (en) * 1995-05-24 1996-11-28 Intercool Energy Corporation Mixed gas refrigerant
AU700721B2 (en) * 1995-05-24 1999-01-14 Intercool Distribution, Llc Mixed gas refrigerant

Similar Documents

Publication Publication Date Title
JP2576161B2 (en) Working medium mixture
JP2841451B2 (en) Working medium
JP2576162B2 (en) Working medium mixture
JPS63308085A (en) Operation medium mixture
JPH0655939B2 (en) Mixed refrigerant
JPS63308084A (en) Operation medium mixture
JPH01153786A (en) Working medium mixture
JP2507437B2 (en) Working medium mixture
JPH0192286A (en) Working medium mixture
JPH01141982A (en) Working medium mixture
JP2841430B2 (en) Working medium mixture
JPH01139677A (en) Working medium mixture
JP2536560B2 (en) Working medium mixture
JPH01139683A (en) Working medium mixture
JPH01168785A (en) Working medium mixture
JPH0655940B2 (en) Mixed refrigerant
JPH01139676A (en) Working medium mixture
JPH01139684A (en) Working medium mixture
JP2536545B2 (en) Working medium mixture
JPH01141981A (en) Working medium mixture
JPH01139682A (en) Working medium mixture
JPH03168566A (en) Operation of refrigeration cycle device
JPS63305186A (en) Working medium mixture
JPH01139681A (en) Working medium mixture
JPH01168784A (en) Working medium mixture