JPH01139684A - Working medium mixture - Google Patents

Working medium mixture

Info

Publication number
JPH01139684A
JPH01139684A JP62297639A JP29763987A JPH01139684A JP H01139684 A JPH01139684 A JP H01139684A JP 62297639 A JP62297639 A JP 62297639A JP 29763987 A JP29763987 A JP 29763987A JP H01139684 A JPH01139684 A JP H01139684A
Authority
JP
Japan
Prior art keywords
working medium
temperature
medium mixture
butane
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62297639A
Other languages
Japanese (ja)
Inventor
Masato Fukushima
正人 福島
Toru Kamimura
徹 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP62297639A priority Critical patent/JPH01139684A/en
Publication of JPH01139684A publication Critical patent/JPH01139684A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Abstract

PURPOSE:To obtain the title novel mixture having excellent refrigeration and heating efficiency, usable for refrigerator, heat pump, etc., and having excellent thermal stability, by using specific hydrocarbons such as n-butane and monochlorotetrafluoroethane as essential components. CONSTITUTION:The objective mixture contains (A) at least one kind of hydrocarbons selected from n-butane, cyclobutane, n-pentane, isopentane and cyclopentanes and (B) monochlorotetrafluoroethane as essential components. In the case of necessitating the improvement in the thermal stability for the use under severe condition, the working medium is added with about 1wt.% of a stabilizer such as dimethyl phosphite.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、冷凍機、ヒートポンプ等に使用し得る新規な
作動媒体混合物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel working medium mixture that can be used in refrigerators, heat pumps, etc.

[従来技術] 空調、冷凍および冷蔵機器(冷凍サイクル・ヒートポン
プサイクル)、廃熱回収発電(ランキンサイクル)、熱
交換機器(ヒートパイプ)等が実用化ないし試験開発さ
れている。これらの機器に用いる作動媒体には、水をは
じめプロパンやブタン等の炭化水素類、トリクロロフル
オロメタン(R11)や、クロロジフルオロメタン(+
722)3のフロン類、又はアンモニア等が知られてい
る。
[Prior Art] Air conditioning, refrigeration and refrigeration equipment (refrigeration cycle/heat pump cycle), waste heat recovery power generation (Rankine cycle), heat exchange equipment (heat pipe), etc. have been put into practical use or tested and developed. Working media used in these devices include water, hydrocarbons such as propane and butane, trichlorofluoromethane (R11), and chlorodifluoromethane (+
722) 3 fluorocarbons or ammonia are known.

[発明の解決しようとする問題点] フロンは毒性が少なく、非可燃性で化学的にも安定てあ
り、標7F佛点の異なる各種フロンか容易に入手できる
ことから、作動媒体としての評価研究が活発に行なわれ
ている。本発明は、熱回収効率、特に、冷凍庫、冷蔵庫
、冷暖N4!1器、給湯機器あるいは廃熱回収を目的と
したヒートポンプシステムの効率が高い゛フロン類を新
規に提供するものである。
[Problems to be solved by the invention] Since fluorocarbons have low toxicity, are non-flammable, and are chemically stable, and various types of fluorocarbons with different standard 7F points are easily available, evaluation research as a working medium has been conducted. It is actively carried out. The present invention provides novel fluorocarbons that have high heat recovery efficiency, particularly for freezers, refrigerators, N4!1 air conditioners, water heaters, or heat pump systems for waste heat recovery.

[問題点を解決するための手段] 本発明は炭素数4〜5の炭化水素類の中から選ばれる少
なくとも1種とテトラフルオロエタンとを必須成分とす
ることを特徴とする作動媒体混合物に関するものである
[Means for Solving the Problems] The present invention relates to a working medium mixture characterized in that it contains at least one kind selected from hydrocarbons having 4 to 5 carbon atoms and tetrafluoroethane as essential components. It is.

本発明におけるモノクロロテトラフルオロエタンには、
l−クロロ−1,2,2,2−テトラフルオロエタン(
R124)と1−クロロ−1,1,2,2−テトラフル
オロエタン(R124a)の2種類の異性体が知られて
いるが、互いに物性が類似しているため、これらを単独
で用いてもよく、またこれらの混合物を用いてもよい、
以下の説明においては、R124とn−ブタン、シクロ
ブタン、n−ペンタン、イソペンタンおよびシクロペン
タンの中から選ばれる1種を必須成分とし、混合使用す
る例を示す。
Monochlorotetrafluoroethane in the present invention includes:
l-chloro-1,2,2,2-tetrafluoroethane (
Two types of isomers are known: R124) and 1-chloro-1,1,2,2-tetrafluoroethane (R124a), but since their physical properties are similar to each other, they cannot be used alone. Often, mixtures of these may also be used.
In the following description, an example will be shown in which R124 and one selected from n-butane, cyclobutane, n-pentane, isopentane, and cyclopentane are used as essential components and are used in combination.

以下、本発明の作動媒体混合物(以下単に作動媒体とい
うことがある。)を用いた冷凍サイクルシステムのフロ
ーシートを示す第1図に従って本発明の詳細な説明する
。第1図の1は圧縮機、2は凝縮器、3,3°は負荷流
体用配管、4は減圧装置、5は蒸発器、6,6′は熱源
流体用配管を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to FIG. 1, which shows a flow sheet of a refrigeration cycle system using the working medium mixture of the present invention (hereinafter sometimes simply referred to as working medium). In FIG. 1, 1 is a compressor, 2 is a condenser, 3 and 3° are load fluid pipes, 4 is a pressure reducing device, 5 is an evaporator, and 6 and 6' are heat source fluid pipes.

第1図に示す冷凍サイクルシステムにおいて作動媒体は
圧縮機lで圧縮された後、凝縮器2に導かれ、該凝縮器
2中で管3より導入される負荷流体により冷却されて凝
縮する。一方、負荷流体は凝縮器2中で逆に加熱され管
3′を経て負荷加熱に供される。つぎに凝縮した作動媒
体は減圧装置i!t4により減圧された後、蒸発器5に
導かれ、該蒸発器5に導かれ、該蒸発器5中て/i?6
より導入され管6゛から排出される熱源流体により加熱
された後、再び圧縮機lに吸引され上記のサイクルを繰
り返す、一方、熱a流体は蒸発器5中で逆に冷却され、
管6゛を経て冷却に供される。
In the refrigeration cycle system shown in FIG. 1, the working medium is compressed by a compressor 1 and then led to a condenser 2, where it is cooled and condensed by a load fluid introduced through a pipe 3. On the other hand, the load fluid is reversely heated in the condenser 2 and passed through the pipe 3' for load heating. Next, the condensed working medium is transferred to the pressure reducing device i! After being depressurized by t4, it is guided to the evaporator 5, and in the evaporator 5 /i? 6
After being heated by the heat source fluid introduced from the tube 6' and discharged from the pipe 6', it is sucked into the compressor l again and the above cycle is repeated, while the hot a fluid is reversely cooled in the evaporator 5,
It is provided for cooling through a tube 6.

第2図および第3図は第1図に示す冷凍サイクルシステ
ムにおける作動媒体混合物のサイクルを圧力−エンタル
ピー線図上に記入したものである。作動媒体の飽和蒸気
を断熱圧縮した場合、湿り状態になるものを第2図に、
乾き状態になるものを第3図に示す。
2 and 3 are pressure-enthalpy diagrams showing the cycles of the working medium mixture in the refrigeration cycle system shown in FIG. 1. Figure 2 shows what becomes wet when the working medium, saturated steam, is compressed adiabatically.
Figure 3 shows what is in a dry state.

第1図の圧縮機による作動媒体の変化は第2図および第
3図の符号8から9あるいは13から14の変化に、凝
縮器による作動媒体の変化は9→lO→11あるい・は
14→15→16→17の変化に、減圧装置による作動
媒体の変化は11から12あるいは17から18の変化
に、蒸発器による作動媒体の変化は12から8あるいは
18から13の変化にそれぞれ対応する。
The change in the working medium due to the compressor in Figure 1 is the change from 8 to 9 or from 13 to 14 in Figures 2 and 3, and the change in the working medium due to the condenser is 9→1O→11 or 14. →15→16→17, the change in the working medium due to the depressurizer corresponds to the change from 11 to 12 or from 17 to 18, and the change in the working medium due to the evaporator corresponds to the change from 12 to 8 or 18 to 13. .

本発明の作動媒体混合物を用いた第1図の冷凍サイクル
システムの運転条件として蒸発器における作動媒体の蒸
発路り温度(符号7あるいは13の温度。以下、蒸発温
度という)と凝縮器における作動媒体の凝縮器めの温度
(符号9あるいは15の温度。以下、凝縮温度という)
を設定した。第1表から第12表に本発明の作動媒体混
合物を用いた上記の冷凍サイクルシステムにおける成績
係数および圧縮機単位容積当りの冷凍能力を比較例とと
もに記す。
The operating conditions of the refrigeration cycle system shown in FIG. 1 using the working medium mixture of the present invention are the evaporation path temperature of the working medium in the evaporator (temperature 7 or 13, hereinafter referred to as evaporation temperature) and the working medium in the condenser. Temperature of the condenser (temperature with code 9 or 15; hereinafter referred to as condensing temperature)
It was set. Tables 1 to 12 show the coefficient of performance and refrigeration capacity per unit volume of the compressor in the above refrigeration cycle system using the working medium mixture of the present invention, along with comparative examples.

表から理解されるようにn−ブタン、シクロブタン、n
−ペンタン、イソペンタン、シクロペンタンの中から選
ばれる少なくとも1種とR124とを必須成分とする本
発明の作動媒体混合物は、R124を単独で用いた場合
に比べ大きく改善することかでき、特にR124の組成
が20モル%前後となる作動媒体混合物はR124およ
びn−ブタン、シクロブタン、n−ペンタン、イソペン
タン、シクロペンタンをそれぞれ単独で用いた場合に比
べ大きく改善されていることかわかる。本発明の作動媒
体混合物の1構成酸分であるn−ブタン、シクロブタン
、n−ペンタン、イソペンタン、シクロペンタンの炭化
水素類はR124に比べ成績係数が高いものの圧縮機単
位容v1当りの冷凍能力が低い、可燃性であるという欠
点を有している。一方、R124はn−ブタン、シクロ
ブタン、n−ペンタン、イソペンタン、シクロペンタン
の炭化水素類に比べ成績係数か低いという欠点を有して
いるものの、圧縮機単位容積当りの冷凍能力か高いとと
もに非可燃性であるという長所を宥しており、本発明の
作動媒体混合物を用いることにより、各々の欠点を改善
し、かつ長所を生かすことができ、極めて有効であるこ
とかわかる。
As understood from the table, n-butane, cyclobutane, n
- The working medium mixture of the present invention containing at least one selected from pentane, isopentane, and cyclopentane and R124 as essential components can be greatly improved compared to the case where R124 is used alone. It can be seen that the working medium mixture having a composition of about 20 mol % is greatly improved compared to the case where R124, n-butane, cyclobutane, n-pentane, isopentane, and cyclopentane are used alone. Hydrocarbons such as n-butane, cyclobutane, n-pentane, isopentane, and cyclopentane, which are one of the acid components of the working medium mixture of the present invention, have a higher coefficient of performance than R124, but have a lower refrigerating capacity per unit volume of the compressor. It has the disadvantage of low flammability. On the other hand, although R124 has the disadvantage of a lower coefficient of performance than hydrocarbons such as n-butane, cyclobutane, n-pentane, isopentane, and cyclopentane, it has a high refrigerating capacity per unit volume of the compressor and is non-flammable. By using the working medium mixture of the present invention, each of the disadvantages can be improved and the advantages can be utilized, and it can be seen that it is extremely effective.

本発明の作動媒体混合物は低温〜高温分野の空調、冷凍
および冷蔵を目的とし冷凍サイクルの応用する場合に特
に有効であるか、ランキンサイクルなどのその他各種の
熱回収技術の作動媒体としても使用することもできる0
本発明の作動媒体混合物は熱安定性が優れており、通常
の使用条件においては安定剤を必要としないが、苛酷な
使用条件のため熱安定性の向上が必要な場合には、ジメ
チルホスファイ、ジイソプロピルホスファイト、ジフェ
ニルホスファイト等のホスファイト系化合物、またはチ
オホスファイト系化合物、あるいはトリフエノキシホス
フィンサルファイト、トリメチルホスフィンサルファイ
ド等のホスフィンサルファイド系化合物、その他グリシ
ジルエーテル類等の安定剤を作動媒体100重量部に対
し、1重量部前後の少量添加すればよい。
The working medium mixture of the present invention is particularly effective in refrigeration cycle applications for air conditioning, refrigeration and refrigeration in low to high temperature fields, or can also be used as a working medium in various other heat recovery techniques such as the Rankine cycle. 0 can also be done
The working medium mixture of the present invention has excellent thermal stability and does not require stabilizers under normal conditions of use; however, if improved thermal stability is required due to severe conditions of use, dimethyl phosphide may be used. , phosphite compounds such as diisopropyl phosphite and diphenyl phosphite, or thiophosphite compounds, phosphine sulfide compounds such as triphenoxyphosphine sulfite and trimethylphosphine sulfide, and other stabilizers such as glycidyl ethers. It may be added in a small amount of about 1 part by weight per 100 parts by weight of the medium.

第1表(蒸発温度:0℃、凝縮温度=60℃、過冷却度
:0℃)第2表(蒸発温度ニー20°C1凝縮温度=4
0℃、過冷却度:0℃)第3表(蒸発温度:0°C,凝
縮温度=60℃、過冷却度二〇℃)第4表(異光温度ニ
ー20℃、凝縮温度:40℃、過冷却度:0℃)第5表
(蒸発温度:0°C,凝縮温度=60℃、過冷却度:O
″C)第6表(M発温度ニー20℃、凝縮温度:40℃
、過冷却度:0℃)第7表(蒸発温度:0℃、凝縮温度
二80℃、過冷却度:0℃)第8表(蒸発温度ニー20
℃、凝縮温度:40℃、過冷却度:0℃)第9表(蒸発
温度ニ〇℃、凝縮温度:60℃、過冷却度:0℃)i7
510表CM発温度ニー20℃、aWl[:4G℃、m
即度: ooC)[発明の効果] 本発明の作動媒体混合物は、特に冷凍サイクル効率すな
わち冷凍、加熱効率に優れ、モノクロロテトラフルオロ
エタンに比し、大幅な改善か認られる。
Table 1 (Evaporation temperature: 0℃, Condensation temperature = 60℃, Degree of supercooling: 0℃) Table 2 (Evaporation temperature: Knee 20℃ 1 Condensation temperature = 4
0°C, degree of supercooling: 0°C) Table 3 (Evaporation temperature: 0°C, condensing temperature = 60°C, degree of supercooling 20°C) Table 4 (different optical temperature: 20°C, condensing temperature: 40°C , degree of supercooling: 0°C) Table 5 (evaporation temperature: 0°C, condensation temperature = 60°C, degree of supercooling: O
"C) Table 6 (M temperature: knee 20℃, condensation temperature: 40℃
, supercooling degree: 0℃) Table 7 (Evaporation temperature: 0℃, condensation temperature 280℃, supercooling degree: 0℃) Table 8 (Evaporation temperature 20℃)
°C, condensation temperature: 40 °C, degree of supercooling: 0 °C) Table 9 (evaporation temperature: 20 °C, condensation temperature: 60 °C, degree of supercooling: 0 °C) i7
510 Table CM temperature knee 20℃, aWl[:4G℃, m
Immediately: ooC) [Effects of the Invention] The working medium mixture of the present invention is particularly excellent in refrigeration cycle efficiency, that is, freezing and heating efficiency, and is recognized as being significantly improved compared to monochlorotetrafluoroethane.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例を説明するための冷凍サイク
ルのフローシート、第2図および第3図は本発明の作動
媒体混合物を作動媒体として用いたサイクルを圧力−エ
ンタルピー線図に記入した図である。
Fig. 1 is a flow sheet of a refrigeration cycle for explaining one embodiment of the present invention, and Figs. 2 and 3 are pressure-enthalpy diagrams of cycles using the working medium mixture of the present invention as the working medium. This is a diagram.

Claims (1)

【特許請求の範囲】[Claims] 1、n−ブタン、シクロブタン、n−ペンタン、イソペ
ンタン、シクロペンタン類の中から選ばれる少なくとも
1種とモノクロロテトラフルオロエタンとを必須成分と
することを特徴とする作動媒体混合物。
1. A working medium mixture comprising at least one member selected from n-butane, cyclobutane, n-pentane, isopentane, and cyclopentanes and monochlorotetrafluoroethane as essential components.
JP62297639A 1987-11-27 1987-11-27 Working medium mixture Pending JPH01139684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62297639A JPH01139684A (en) 1987-11-27 1987-11-27 Working medium mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62297639A JPH01139684A (en) 1987-11-27 1987-11-27 Working medium mixture

Publications (1)

Publication Number Publication Date
JPH01139684A true JPH01139684A (en) 1989-06-01

Family

ID=17849183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62297639A Pending JPH01139684A (en) 1987-11-27 1987-11-27 Working medium mixture

Country Status (1)

Country Link
JP (1) JPH01139684A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5425890A (en) * 1994-01-11 1995-06-20 Apd Cryogenics, Inc. Substitute refrigerant for dichlorodifluoromethane refrigeration systems
WO1996037571A1 (en) * 1995-05-24 1996-11-28 Intercool Energy Corporation Mixed gas refrigerant

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5425890A (en) * 1994-01-11 1995-06-20 Apd Cryogenics, Inc. Substitute refrigerant for dichlorodifluoromethane refrigeration systems
WO1995018846A1 (en) * 1994-01-11 1995-07-13 Intercool Energy Corporation Mixed gas refrigerant
US5622644A (en) * 1994-01-11 1997-04-22 Intercool Energy Mixed gas R-12 refrigeration apparatus
AU681757B2 (en) * 1994-01-11 1997-09-04 Intercool Distribution, Llc Mixed gas refrigerant
WO1996037571A1 (en) * 1995-05-24 1996-11-28 Intercool Energy Corporation Mixed gas refrigerant
AU700721B2 (en) * 1995-05-24 1999-01-14 Intercool Distribution, Llc Mixed gas refrigerant

Similar Documents

Publication Publication Date Title
JP2576161B2 (en) Working medium mixture
JP2841451B2 (en) Working medium
JP2576162B2 (en) Working medium mixture
JPS63308085A (en) Operation medium mixture
JPH0655939B2 (en) Mixed refrigerant
JPS63308084A (en) Operation medium mixture
JPH01153786A (en) Working medium mixture
JPH0192286A (en) Working medium mixture
JP2507437B2 (en) Working medium mixture
JPH01139684A (en) Working medium mixture
JPH01139677A (en) Working medium mixture
JPH01141982A (en) Working medium mixture
JPH01139683A (en) Working medium mixture
JPH01139676A (en) Working medium mixture
JP2536560B2 (en) Working medium mixture
JPH01168785A (en) Working medium mixture
JPH01139674A (en) Working medium mixture
JPH02240186A (en) Halogenated hydrocarbon mixture
JPH01139682A (en) Working medium mixture
JPH01139680A (en) Working medium mixture
JPH01139679A (en) Working medium mixture
JP2536545B2 (en) Working medium mixture
JPH01139681A (en) Working medium mixture
JPH01168784A (en) Working medium mixture
JPS63305186A (en) Working medium mixture