JPH01139674A - Working medium mixture - Google Patents

Working medium mixture

Info

Publication number
JPH01139674A
JPH01139674A JP62296177A JP29617787A JPH01139674A JP H01139674 A JPH01139674 A JP H01139674A JP 62296177 A JP62296177 A JP 62296177A JP 29617787 A JP29617787 A JP 29617787A JP H01139674 A JPH01139674 A JP H01139674A
Authority
JP
Japan
Prior art keywords
working medium
butane
medium mixture
temperature
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62296177A
Other languages
Japanese (ja)
Inventor
Masato Fukushima
正人 福島
Toru Kamimura
徹 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP62296177A priority Critical patent/JPH01139674A/en
Publication of JPH01139674A publication Critical patent/JPH01139674A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Abstract

PURPOSE:To obtain the title novel mixture having excellent refrigeration and heating efficiency, usable for refrigerator, heat pump, etc., and having excellent thermal stability, by using specific hydrocarbons such as n-butane and monochlorodifluoromethane as essential components. CONSTITUTION:The objective mixture contains (A) at least one kind of hydrocarbons selected from n-butane, cyclobutane, n-pentane, isopentane and cyclopentane and (B) monochlorodifluoromethane as essential components. In the case of necessitating the improvement in the thermal stability for the use under severe condition, the working medium is added with about 1wt.% of a stabilizer such as dimethyl phosphite or triphenoxyphosphine sulfide.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、冷凍機、ヒートポンプ等に使用し得る新規な
作動媒体混合物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel working medium mixture that can be used in refrigerators, heat pumps, etc.

[従来技術] 空調、冷凍および冷蔵機器(冷凍サイクル・ヒートポン
プサイクル)、廃熱回収発TL(ランキンサイクル)、
熱交換機器(ヒートパイプ)等が実用化ないし試験開発
されている。これらの機器に用いる作動媒体には、水を
はじめプロパンやブタン等の炭化水素類、トリクロロフ
ルオロメタン(R11)や、クロロジフルオロメタン(
R22)等のフロン類、又はアンモニア等が知られてい
る。
[Prior art] Air conditioning, refrigeration and refrigeration equipment (refrigeration cycle/heat pump cycle), waste heat recovery TL (Rankin cycle),
Heat exchange equipment (heat pipes), etc. are being put into practical use or tested and developed. Working media used in these devices include water, hydrocarbons such as propane and butane, trichlorofluoromethane (R11), and chlorodifluoromethane (
CFCs such as R22) or ammonia are known.

[発明の解決しようとする問題点] フロンは毒性が少なく、非可燃性で化学的にも安定てあ
り、標準沸点の異なる各種フロンが容易に入手できるこ
とから、作動媒体としての評価研究が活発に行なわれて
いる。本発明は、熱回収効率、特に、冷凍庫、冷蔵庫、
冷暖房機器、給湯機器あるいは廃熱回収を目的としたヒ
ートポンプシステムの効率が高いフロン類を新規に提供
するものである。
[Problems to be solved by the invention] Freon has low toxicity, is non-flammable, and is chemically stable, and various types of fluorocarbons with different standard boiling points are easily available, so evaluation research as a working medium has been actively conducted. It is being done. The present invention improves heat recovery efficiency, especially in freezers, refrigerators,
The objective is to provide new fluorocarbons that are highly efficient for heating and cooling equipment, hot water supply equipment, and heat pump systems for the purpose of waste heat recovery.

[問題点を解決するための手段] 本発明はn−ブタン、シクロブタン、n−ペンタン、イ
ソペンタン、シクロペンタンの中から選ばれる少なくと
も1種とモノクロロジフルオロメタン(以下R22と略
す)とを必須成分とすることを特徴とする作動媒体混合
物に関するものである。
[Means for solving the problems] The present invention uses at least one selected from n-butane, cyclobutane, n-pentane, isopentane, and cyclopentane and monochlorodifluoromethane (hereinafter abbreviated as R22) as essential components. The present invention relates to a working medium mixture characterized in that:

以下、本発明の作動媒体混合物(以下単に作動媒体とい
うことがある。)を用いた冷凍サイクルシステムのフロ
ーシートを示す第1図に従って本発明の詳細な説明する
。第1図の1は圧縮機、2は凝縮器、3,3′は負荷流
体用配管、4は減圧装置、5は蒸発器、6,6°は熱源
流体用配管を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to FIG. 1, which shows a flow sheet of a refrigeration cycle system using the working medium mixture of the present invention (hereinafter sometimes simply referred to as working medium). In FIG. 1, 1 is a compressor, 2 is a condenser, 3 and 3' are load fluid pipes, 4 is a pressure reducing device, 5 is an evaporator, and 6 and 6 are heat source fluid pipes.

第1図に示す冷凍サイクルシステムにおいて作動媒体は
圧縮41!1で圧縮された後、凝縮器2に導かれ、該凝
縮器2中で管3より導入される負荷流体により冷却され
て凝縮する。一方、負荷流体は凝縮器2中で逆に加熱さ
れ管3′を経て負荷加熱に供される。つぎに凝縮した作
動媒体は減圧装置4により減圧された後、蒸発器5に導
かれ、該蒸発器5に導かれ、−該蒸発器5中で管6より
導入され管6′から排出される熱源流体により加熱され
た後、再び圧縮機lに吸引され上記のサイクルを繰り返
す、一方、熱源流体は蒸発器5中で逆に冷却され、管6
゛を経て冷却に供される。
In the refrigeration cycle system shown in FIG. 1, the working medium is compressed by compression 41!1 and then introduced into the condenser 2, where it is cooled and condensed by the load fluid introduced through the pipe 3. On the other hand, the load fluid is reversely heated in the condenser 2 and passed through the pipe 3' for load heating. The condensed working medium is then depressurized by the pressure reducing device 4 and then led to the evaporator 5; - introduced into the evaporator 5 through the pipe 6 and discharged through the pipe 6'. After being heated by the heat source fluid, it is sucked into the compressor l again to repeat the above cycle, while the heat source fluid is reversely cooled in the evaporator 5 and passed through the tube 6.
It is then subjected to cooling.

第2図および第3図は第1図に示す冷凍サイクルシステ
ムにおける作動媒体混合物のサイクルを圧力−エンタル
ピー線図上に記入したものである。作動媒体の飽和蒸気
を断熱圧縮した場合、湿り状態になるものを第2図に、
乾き状態になるものを第3図に示す。
2 and 3 are pressure-enthalpy diagrams showing the cycles of the working medium mixture in the refrigeration cycle system shown in FIG. 1. Figure 2 shows what becomes wet when the working medium, saturated vapor, is compressed adiabatically.
Figure 3 shows what is in a dry state.

第1図の圧縮機による作動媒体の変化は第2図および第
3図の符号8から9あるいは13から14の変化に、凝
縮器による作動媒体の変化は9→lO→11あるいは1
4→15→16→17の変化に、減圧装置による作動媒
体の変化は11から12あるいは17から18の変化に
、蒸発器による作動媒体の変化は12から8あるいは1
8から13の変化にそれぞれ対応する。
The change in the working medium due to the compressor in Figure 1 is the change from 8 to 9 or 13 to 14 in Figures 2 and 3, and the change in the working medium due to the condenser is 9→lO→11 or 1.
The change in working medium due to the pressure reducing device is from 11 to 12 or from 17 to 18, and the change in working medium due to the evaporator is from 12 to 8 or 1.
This corresponds to the change from 8 to 13, respectively.

本発明の作動媒体混合物を用いた第1図の冷凍サイクル
システムの運転条件として蒸発器における作動媒体の蒸
発路り温度(符号7あるいは13の温度、以下、蒸発温
度という)と凝縮器における作動媒体の凝縮器めの温度
(符号9あるいは15の温度、以下、凝縮温度という)
を設定した。第1表から第10表に本発明の作動媒体混
合物を用いた上記の冷凍サイクルシステムにおける成績
係数および圧縮機単位容積当りの冷凍能力を比較例とと
もに記す。
The operating conditions of the refrigeration cycle system shown in FIG. 1 using the working medium mixture of the present invention are the evaporation path temperature of the working medium in the evaporator (temperature 7 or 13, hereinafter referred to as evaporation temperature) and the working medium in the condenser. Temperature of the condenser (temperature of code 9 or 15, hereinafter referred to as condensing temperature)
It was set. Tables 1 to 10 show the coefficient of performance and refrigeration capacity per unit volume of the compressor in the above refrigeration cycle system using the working medium mixture of the present invention, along with comparative examples.

表から理解されるようにn−ブタン、シクロブタン、n
−ペンタン、イソペンタン、シクロペンタンの中から選
ばれる少なくとも1種とR22とを必須成分とする本発
明の作動媒体混合物は、R22を単独で用いた場合に比
べ大きく改善することができ、特にR22の組成が20
モル%前後となる作動媒体混合物はR22gよびn−ブ
タン、シクロブタン、n−ペンタン、イソペンタン、シ
クロペンタンをそれぞれ単独で用いた場合に比べ大きく
改善されていることがわかる。本発明の作動媒体混合物
のl#i成成分成分るn−ブタン、シクロブタン、n−
ペンタン、インペンタン、シクロペンタンはR22に比
べ成績係数が高いものの圧縮機単位容積当りの冷凍。能
力が低い、可燃性であるという欠点を有している。一方
、R22はn−ブタン、シクロブタン、n−ペンタン、
イソペンタン、シクロペンタンに比べ成績係数が低いと
いう欠点を有しているものの、圧縮機単位容積当りの冷
凍能力が高いとともに非可燃性であるという長所を有し
ており、本発明の作動媒体混合物を用いることにより、
各々の欠点を改善し、かつ長所を生かすことができ、極
めて有効であることがわかる。
As understood from the table, n-butane, cyclobutane, n
- The working medium mixture of the present invention containing at least one selected from pentane, isopentane, and cyclopentane and R22 as essential components can be greatly improved compared to the case where R22 is used alone, and in particular, R22 can be greatly improved. composition is 20
It can be seen that the working medium mixture with a mole % of around 22g is greatly improved compared to the case where each of R22g, n-butane, cyclobutane, n-pentane, isopentane, and cyclopentane is used alone. The l#i components of the working medium mixture of the present invention are n-butane, cyclobutane, n-
Although pentane, impentane, and cyclopentane have a higher coefficient of performance than R22, they are refrigerated per unit volume of the compressor. It has the disadvantages of low capacity and flammability. On the other hand, R22 is n-butane, cyclobutane, n-pentane,
Although it has the disadvantage of a lower coefficient of performance than isopentane and cyclopentane, it has the advantage of having a high refrigerating capacity per unit volume of the compressor and being non-flammable. By using
It can be seen that it is extremely effective as it can improve the shortcomings of each and take advantage of the strengths of each.

本発明の作動媒体混合物は低温〜高温分野の空調、冷凍
および冷蔵を目的とし冷凍サイクルの応用する場合に特
に有効であるが、ランキンサイクルなどのその他各種の
熱回収技術の作動媒体としても使用することもできる0
本発明の作動媒体混合物は熱安定性が優れており、通常
の使用条件においては安定剤を必要としないか、苛酷な
使用条件のため熱安定性の向上が必要な場合には、ジメ
チルホスファイト、ジイソプロピルホスファイト、−ジ
フェニルホスファイト等のホスファイト系化合物、また
はチオホスファイト系化合物、あるいはトリフェノキシ
ホスフィンサルファイド、トリメチルホスフィンサルフ
ァイド等のホスフィンサルファイド系化合物、その他グ
リシジルエーテル類等の安定剤を作動媒体100重量部
に対し、1重量部前後の夕晴添加すればよい。
The working medium mixture of the present invention is particularly effective for refrigeration cycle applications for air conditioning, refrigeration and refrigeration in low to high temperature fields, but can also be used as a working medium for various other heat recovery techniques such as the Rankine cycle. 0 can also be done
The working medium mixture of the present invention has excellent thermal stability and does not require stabilizers under normal conditions of use, or if improved thermal stability is required due to severe conditions of use, dimethyl phosphite , diisopropyl phosphite, -diphenyl phosphite, phosphite compounds, thiophosphite compounds, triphenoxyphosphine sulfide, trimethylphosphine sulfide, and other phosphine sulfide compounds, and other stabilizers such as glycidyl ethers as the working medium. About 1 part by weight may be added to 100 parts by weight.

第1表(蒸発温度二〇″C2凝縮温度=60℃、過冷却
度:0°C)第2表(蒸発温度ニー20″C9凝縮温度
:40℃、過冷却度:0℃)第3表(蒸発温度:0°C
9凝縮温度=60℃、過冷却度二〇℃)第4表(蒸発温
度ニー20℃、!2縮温度:40°C1過冷却度:0°
C)第5表(蒸発温度=θ℃、凝縮温度温度0℃、過冷
却度:0℃)第6表(蒸発温度ニー20℃、凝縮温度:
40℃、過冷却度:0℃)第7表(蒸発温度二〇℃、凝
縮温度:60’O,過冷却度:0°C)第8表(蒸発温
度ニー20℃、凝縮温度:40℃、過冷却度:0℃)第
9表(蒸発温度二〇℃、凝縮温度:60℃、過冷却度:
0”Q)第1O表(蒸発温度ニー20℃、凝縮温度:4
0℃、過冷却度:O”O)[発明の効果] 本発明の作動媒体混合物は、特に冷凍サイクル効率すな
わち冷凍、加熱効率に優れ、現在−般に用いられている
R22に比し、大幅な改善が認められる。
Table 1 (Evaporation temperature 20''C2 Condensing temperature = 60℃, degree of supercooling: 0℃) Table 2 (Evaporation temperature 20''C9 Condensing temperature: 40℃, Degree of supercooling: 0℃) Table 3 (Evaporation temperature: 0°C
9 Condensation temperature = 60°C, degree of supercooling 20°C) Table 4 (Evaporation temperature knee 20°C, !2 Condensation temperature: 40°C 1 Degree of supercooling: 0°
C) Table 5 (Evaporation temperature = θ℃, Condensation temperature 0℃, Degree of supercooling: 0℃) Table 6 (Evaporation temperature knee 20℃, Condensation temperature:
40℃, degree of supercooling: 0℃) Table 7 (Evaporation temperature: 20℃, condensation temperature: 60'O, degree of supercooling: 0℃) Table 8 (Evaporation temperature: 20℃, condensation temperature: 40℃ , degree of supercooling: 0℃) Table 9 (evaporation temperature: 20℃, condensation temperature: 60℃, degree of supercooling:
0"Q) Table 1O (Evaporation temperature: 20℃, Condensation temperature: 4
0°C, degree of supercooling: O”O) [Effects of the Invention] The working medium mixture of the present invention has particularly excellent refrigeration cycle efficiency, that is, freezing and heating efficiency, and is significantly superior to the currently commonly used R22. Significant improvements were observed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例を説明するための冷凍サイク
ルのフローシート、第2図および第3図は本発明の作動
媒体混合物を作動媒体として用いたサイクルを圧力−エ
ンタルピー線図に記入した図である。
Fig. 1 is a flow sheet of a refrigeration cycle for explaining one embodiment of the present invention, and Figs. 2 and 3 are pressure-enthalpy diagrams of cycles using the working medium mixture of the present invention as the working medium. This is a diagram.

Claims (1)

【特許請求の範囲】[Claims] 1、n−ブタン、シクロブタン、n−ペンタン、イソペ
ンタン、シクロペンタンの中から選ばれる少なくとも1
種とモノクロロジフルオロメタンとを必須成分とするこ
とを特徴とする作動媒体混合物。
1, at least one selected from n-butane, cyclobutane, n-pentane, isopentane, and cyclopentane
A working medium mixture characterized in that the essential components are seeds and monochlorodifluoromethane.
JP62296177A 1987-11-26 1987-11-26 Working medium mixture Pending JPH01139674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62296177A JPH01139674A (en) 1987-11-26 1987-11-26 Working medium mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62296177A JPH01139674A (en) 1987-11-26 1987-11-26 Working medium mixture

Publications (1)

Publication Number Publication Date
JPH01139674A true JPH01139674A (en) 1989-06-01

Family

ID=17830160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62296177A Pending JPH01139674A (en) 1987-11-26 1987-11-26 Working medium mixture

Country Status (1)

Country Link
JP (1) JPH01139674A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049296A (en) * 1989-01-28 1991-09-17 Chujun Gu Working media for a thermodynamic engineering device operating in accordance with the Gu thermodynamic cycle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049296A (en) * 1989-01-28 1991-09-17 Chujun Gu Working media for a thermodynamic engineering device operating in accordance with the Gu thermodynamic cycle

Similar Documents

Publication Publication Date Title
JP2576161B2 (en) Working medium mixture
JP2576162B2 (en) Working medium mixture
JPS63308085A (en) Operation medium mixture
JPH0655939B2 (en) Mixed refrigerant
JPS63308084A (en) Operation medium mixture
JPH01153786A (en) Working medium mixture
JPH0192286A (en) Working medium mixture
JP2507437B2 (en) Working medium mixture
US20090049856A1 (en) Working fluid of a blend of 1,1,1,3,3-pentafluoropane, 1,1,1,2,3,3-hexafluoropropane, and 1,1,1,2-tetrafluoroethane and method and apparatus for using
JPH01139677A (en) Working medium mixture
JPH01139683A (en) Working medium mixture
JPH01139674A (en) Working medium mixture
JPH01141982A (en) Working medium mixture
JPH01139676A (en) Working medium mixture
JPH01139684A (en) Working medium mixture
JP2536560B2 (en) Working medium mixture
JPH0655940B2 (en) Mixed refrigerant
JPH02240186A (en) Halogenated hydrocarbon mixture
JPH01168785A (en) Working medium mixture
JP2536545B2 (en) Working medium mixture
JPH01139682A (en) Working medium mixture
JPH01139672A (en) Working medium mixture
JPH01139679A (en) Working medium mixture
JPH01139681A (en) Working medium mixture
JPH01139680A (en) Working medium mixture