JPS63105089A - Blended refrigerant - Google Patents

Blended refrigerant

Info

Publication number
JPS63105089A
JPS63105089A JP61249156A JP24915686A JPS63105089A JP S63105089 A JPS63105089 A JP S63105089A JP 61249156 A JP61249156 A JP 61249156A JP 24915686 A JP24915686 A JP 24915686A JP S63105089 A JPS63105089 A JP S63105089A
Authority
JP
Japan
Prior art keywords
refrigerant
trifluoroethane
present
performance
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61249156A
Other languages
Japanese (ja)
Other versions
JPH0655940B2 (en
Inventor
Takeshi Kanai
健 金井
Makoto Segami
瀬上 信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Sanyo Electric Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP61249156A priority Critical patent/JPH0655940B2/en
Publication of JPS63105089A publication Critical patent/JPS63105089A/en
Publication of JPH0655940B2 publication Critical patent/JPH0655940B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain a blended refrigerant, having improved coefficient of performance as well as condenser capacity and useful for heat pump air conditioners, by blending monochlorodifluoromethane as a principal component with 1,1,1- trifluoroethane. CONSTITUTION:A blended refrigerant obtained by blending (A) mono chlorodifluoromethane as a principal component with (B) 1,1,1-trifluoroethane at 0.25-0.45mol fraction. The above-mentioned refrigerant is capable of miniatur izing and improving the efficiency of conventional air conditioners.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、加圧液化、減圧気化という物質の状態変化を
利用して流体の冷却、加熱などを行なう蒸気圧縮式冷凍
サイクル用作動媒体として使用される混合冷媒に関する
もので、特に空気調和に用いる冷暖房機器に使用される
混合冷媒に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to a working medium for a vapor compression refrigeration cycle that cools or heats a fluid by utilizing changes in the state of substances such as pressurized liquefaction and depressurized vaporization. It relates to mixed refrigerants used, and particularly to mixed refrigerants used in heating and cooling equipment used for air conditioning.

[従来の技術] 蒸気圧縮式冷凍サイクルは、冷暖房機器、冷蔵庫、給i
Ql器などに広く応用され、実用に供されている。
[Conventional technology] Vapor compression refrigeration cycles are used in heating and cooling equipment, refrigerators,
It is widely applied to QL devices and put into practical use.

このような圧縮式冷凍サイクルに利用される作動媒体は
、フロン系冷媒を中心として様々な作動媒体が開発され
実用に供されてきた。
Various working fluids, mainly fluorocarbon-based refrigerants, have been developed and put into practical use for use in such compression refrigeration cycles.

代表的なものはメタン系やエタン系のハロゲン化炭化水
素を単一成分とする作動媒体であり、メタン系ではR1
1、R12、R13、R14及びR22など、またエタ
ン系ではR113、R114、及びR115などが目的
に応じて使用されている。
A typical working medium is a methane-based or ethane-based halogenated hydrocarbon as a single component, and in the case of methane, R1
1, R12, R13, R14, and R22, and in the case of ethane, R113, R114, and R115 are used depending on the purpose.

なかでも空気調和に用いる冷暖の機器にはR22(モノ
クロロジフルオロメタン)が冷媒として広く使用されて
いる。
Among them, R22 (monochlorodifluoromethane) is widely used as a refrigerant in heating and cooling equipment used for air conditioning.

R22は冷蔵庫、除湿器などに一般的に用いられている
R12(ジクロロジフルオロメタン)に比べて、同じ大
きさの圧縮機で大きな冷凍能力を得ることかできるので
機器の小型化が計れる。
Compared to R12 (dichlorodifluoromethane), which is commonly used in refrigerators, dehumidifiers, etc., R22 can achieve greater refrigerating capacity with the same size compressor, allowing for smaller equipment.

また、−40℃の蒸発温度でも吸入圧力が大気圧よりも
高いことも利点であり、化学的にも安定で熱力学的性質
が良い冷媒として広く実用に供ざれている。
Another advantage is that the suction pressure is higher than atmospheric pressure even at an evaporation temperature of -40°C, and it is widely used as a refrigerant that is chemically stable and has good thermodynamic properties.

また、単一冷媒では満足し得ない特性を冷媒を混合して
使用することににり補足しようとする試みから、最近で
は非共沸混合冷媒の検討がなされ、事実、R22にR1
3[31(モノプロモトリフルオロメタン)を混合する
ことにより、R22よりも暖房能力を増大させる工夫を
したヒートポンプ冷暖房機器が製品化されている(昭和
60年8月30日付は電波新聞参照)。
Additionally, non-azeotropic mixed refrigerants have recently been studied in an attempt to supplement the characteristics that cannot be satisfied with a single refrigerant by using a mixture of refrigerants.
A heat pump air-conditioning device has been commercialized that is designed to increase the heating capacity more than R22 by mixing 3[31 (monopromotrifluoromethane) (see Dempa Shimbun dated August 30, 1985).

上述した混合冷媒はR22単一冷媒よりも暖房能力を改
善することに重きをおいて開発されているため、成績係
数に関しては注目されていないのが現状である(昭和5
4年度日本冷凍協会学術講演会講演論文集29〜30頁
参照)。
The above-mentioned mixed refrigerant was developed with more emphasis on improving the heating capacity than the R22 single refrigerant, so at present it has not received much attention in terms of its coefficient of performance (1931).
(Refer to pages 29-30 of the Proceedings of the 4th Annual Japan Refrigeration Society Academic Conference).

[発明が解決しようとする問題点] 本発明の目的は、R22よりも一段優れた、すなわちR
22よりも暖房能力が大きく、かつ成績係数も高く、従
来の空気調和磯の小型化、高効率化が計れるヒートポン
プ冷暖房機用作動媒体を提供することにある。
[Problems to be Solved by the Invention] The object of the present invention is to provide R22 that is even better than R22.
It is an object of the present invention to provide a working medium for a heat pump air conditioner that has a larger heating capacity than that of 22, has a higher coefficient of performance, and can reduce the size and increase the efficiency of conventional air conditioning units.

[問題点を解決するための手段] 本発明者らは以上のような本発明の目的を達成するため
に多くのフロン系冷媒について検討を加えた結果、本発
明の目的は、R22を主成分とし、これに対して化学的
に安定で熱力学的特性に優れた別のフロン系冷媒である
R143a (1,1゜1−トリフルオロエタン)を混
合して成り、好ましくはその混合割合いが混合冷媒中の
1.1.1−トリフルオロエタンのモル分率として0.
25〜0.45であるヒートポンプ冷暖房機用混合冷媒
により達成されることを見い出した。
[Means for Solving the Problems] In order to achieve the above-mentioned object of the present invention, the present inventors have studied many fluorocarbon-based refrigerants. R143a (1,1°1-trifluoroethane), which is another fluorocarbon-based refrigerant that is chemically stable and has excellent thermodynamic properties, is mixed with this, preferably at a mixing ratio of 1-trifluoroethane. The mole fraction of 1.1.1-trifluoroethane in the mixed refrigerant is 0.
It has been found that this can be achieved by a mixed refrigerant for heat pump air conditioners having a temperature of 25 to 0.45.

[実施例] 次に本発明を添付図面に従って詳述するが、本発明の要
旨を逸脱しない限り、この実施例のみに限定されるもの
ではない。
[Example] Next, the present invention will be described in detail with reference to the accompanying drawings, but the present invention is not limited to this example unless it departs from the gist of the present invention.

第1図は本発明の混合冷媒(作動媒体)を試験した蒸気
圧縮式冷凍サイクルの概要である。
FIG. 1 is an outline of a vapor compression refrigeration cycle in which the mixed refrigerant (working medium) of the present invention was tested.

(1)は作動媒体の圧縮機、(2)は水冷式二m管凝縮
器1、(3)は受液器、(4)は減圧用膨張弁、(5)
は蒸発器、(6)は吸熱源用ブライン槽、(7)はアキ
ュムレータ、(8)、(8−)は放熱源水用配管である
(1) is a compressor for the working medium, (2) is a water-cooled 2m pipe condenser 1, (3) is a liquid receiver, (4) is an expansion valve for pressure reduction, (5)
is an evaporator, (6) is a brine tank for heat absorption source, (7) is an accumulator, and (8) and (8-) are piping for heat radiation source water.

かかる蒸気圧縮式冷凍サイクルにおいて、作動媒体は圧
縮1!!(1)で圧縮された後、凝縮器(2)に導かれ
、導入される放熱源水に熱を与えて凝縮される。本実施
例においてはこの放熱源水の出入口温度をそれぞれほぼ
一定にして、凝縮器能力を出入口温度差と流量と比熱の
積により求め比較を行なった。
In such a vapor compression refrigeration cycle, the working medium is compressed 1! ! After being compressed in (1), it is led to a condenser (2), where it is condensed by giving heat to the introduced heat radiation source water. In this example, the temperature of the inlet and outlet of the heat radiation source water was kept approximately constant, and the condenser capacity was determined by the product of the temperature difference in the inlet and outlet, the flow rate, and the specific heat, and a comparison was made.

凝縮した作動媒体は受液器(3)に貯められ、減圧用I
II脹弁により調圧された後、蒸発器(5)に導かれ、
吸熱源用ブライン槽(6)から吸熱して蒸発し、アキュ
ムレータ(7)を経由して再び圧縮機(1)に吸引され
るサイクルを繰り返す。
The condensed working medium is stored in the liquid receiver (3) and
After the pressure is regulated by the II expansion valve, it is led to the evaporator (5),
The cycle of absorbing heat from the heat-absorbing brine tank (6), evaporating it, and sucking it into the compressor (1) again via the accumulator (7) is repeated.

吸熱源用ブライン槽には加熱用ヒータが内臓されており
、蒸発器能力に比例して投入電力をコントロールし、梢
内濡度を一定に保持するようにして比較試験が行なえる
ように構成されている。
The heat-absorbing brine tank has a built-in heater, and is configured to control the power input in proportion to the evaporator capacity and maintain a constant wetness in the treetops to enable comparative tests. ing.

第1表に第1図の構成から成る蒸気圧縮式冷凍サイクル
を用いて行なった結果を示す。
Table 1 shows the results obtained using a vapor compression refrigeration cycle having the configuration shown in FIG.

試験条件としては本発明の混合冷媒において、R143
aの混合割合いを変化させた混合冷媒とR22単独の冷
媒を用いた時とで、凝縮器出入口の温水温度、蒸発器の
吸熱源用ブライン槽温度をそれぞれほぼ一定にし、また
、減圧用膨張弁入口液冷媒温度、アキュムレータ入口冷
媒温度がほぼ等しくなるようにして、圧縮機入力、凝縮
器能力、成績係数を比較したものである・。
The test conditions are R143 in the mixed refrigerant of the present invention.
When using a mixed refrigerant with a different mixing ratio in a and R22 alone, the hot water temperature at the condenser inlet and outlet and the temperature of the brine tank for the heat absorption source in the evaporator are kept almost constant, and the expansion for pressure reduction is Compressor input, condenser capacity, and coefficient of performance are compared with the valve inlet liquid refrigerant temperature and accumulator inlet refrigerant temperature being approximately equal.

実施例1は本発明の混合冷媒においてR143aのモル
分率が0.4の場合である。。
Example 1 is a case where the molar fraction of R143a in the mixed refrigerant of the present invention is 0.4. .

実施例2はR143aのモル分率が0.35の場合、実
施例3はR143aのモル分率が0.25の場合である
。比較例はR22単独の冷媒の場合である。
Example 2 is a case where the mole fraction of R143a is 0.35, and Example 3 is a case where the mole fraction of R143a is 0.25. The comparative example is a case where R22 is used alone as a refrigerant.

第2図は実施例1〜3及び比較例の凝縮器能力、成績係
数をR143aのモル分率をパラメータとして表わした
ものである。
FIG. 2 shows the condenser capacity and coefficient of performance of Examples 1 to 3 and Comparative Example using the mole fraction of R143a as a parameter.

この図から、R1438のモル分率が0.25〜0.4
5の範囲で成績係数(COPi)がR22よりも高くな
る極大値が存在し、そのピークがR143aのモル分率
0.35の時であることが判明した。
From this figure, the mole fraction of R1438 is 0.25 to 0.4
It was found that there is a maximum value in which the coefficient of performance (COPi) is higher than that of R22 in the range of 5, and that the peak occurs when the molar fraction of R143a is 0.35.

一方、凝縮器能ノjもそのピークがR143aのモル分
率0,35の時であり、上記成績係数がR22よりも高
くなるR143aのモル分率0.25〜0.45の範囲
で凝縮器能力がR22よりも増大している。
On the other hand, the condenser performance no.j also peaks when the mole fraction of R143a is 0.35. Its capacity has increased compared to R22.

R143aのモル分率0.35+7)時のR22と比べ
た成績係数向上率は2.4%、凝縮器能力向上率は7%
であった。
When the mole fraction of R143a is 0.35+7), the coefficient of performance improvement rate compared to R22 is 2.4%, and the condenser capacity improvement rate is 7%.
Met.

[発明の効果] 蒸気圧縮式冷凍サイクルを用いるヒートポンプ冷暖房機
用の作動媒体としてR143aをR22に適う混合した
本発明の混合冷媒は、現在広く使用されているR22と
比較して凝縮器能力のみならず成績係数も向上させるこ
とができヒートポンプ冷暖房機の小型、高効率化を可能
とするものである。
[Effect of the invention] The mixed refrigerant of the present invention, which is a mixture of R143a and R22 as a working medium for a heat pump air conditioner using a vapor compression refrigeration cycle, has a higher condenser capacity than R22, which is currently widely used. It also improves the coefficient of performance, making it possible to make heat pump air conditioners smaller and more efficient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の混合冷媒(作vJar体)を使用した
蒸気圧縮式冷凍サイクルの概要説明図であり、第2図は
R22/R143a系の混合冷媒におけるR143aモ
ル分率による特性変化を示す説明図である。 (1)・・・作動媒体の圧縮機、 (2)・・・水冷式二重管凝縮器、 (3)・・・受液器、 (4)・・・減圧用膨張弁、 (5)・・・蒸発器、 (6)・・・吸熱源用ブライン槽、 (7)・・・アキュムレータ、 (8)、(8−)・・・放熱源水用配管。 出 願 人 三洋電機株式会社 同  旭硝子株式会社
Fig. 1 is a schematic explanatory diagram of a vapor compression refrigeration cycle using the mixed refrigerant of the present invention (made by Jar body), and Fig. 2 shows the change in characteristics depending on the R143a mole fraction in the R22/R143a mixed refrigerant. It is an explanatory diagram. (1)...Compressor for working medium, (2)...Water-cooled double pipe condenser, (3)...Liquid receiver, (4)...Expansion valve for pressure reduction, (5) ... Evaporator, (6) ... Brine tank for heat absorption source, (7) ... Accumulator, (8), (8-) ... Piping for heat radiation source water. Applicant Sanyo Electric Co., Ltd. Asahi Glass Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)モノクロロジフルオロメタンを主成分とし、これ
に1,1,1−トリフルオロエタンを混合して成る混合
冷媒。
(1) A mixed refrigerant comprising monochlorodifluoromethane as a main component and 1,1,1-trifluoroethane mixed therein.
(2)混合冷媒中の1,1,1−トリフルオロエタンの
モル分率が0.25〜0.45であることを特徴とする
特許請求の範囲第1項記載の混合冷媒。
(2) The mixed refrigerant according to claim 1, wherein the molar fraction of 1,1,1-trifluoroethane in the mixed refrigerant is 0.25 to 0.45.
JP61249156A 1986-10-20 1986-10-20 Mixed refrigerant Expired - Lifetime JPH0655940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61249156A JPH0655940B2 (en) 1986-10-20 1986-10-20 Mixed refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61249156A JPH0655940B2 (en) 1986-10-20 1986-10-20 Mixed refrigerant

Publications (2)

Publication Number Publication Date
JPS63105089A true JPS63105089A (en) 1988-05-10
JPH0655940B2 JPH0655940B2 (en) 1994-07-27

Family

ID=17188737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61249156A Expired - Lifetime JPH0655940B2 (en) 1986-10-20 1986-10-20 Mixed refrigerant

Country Status (1)

Country Link
JP (1) JPH0655940B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923626A (en) * 1987-11-02 1990-05-08 Daikin Industries, Ltd. Refrigerants
JPH02267472A (en) * 1989-04-06 1990-11-01 Matsushita Electric Ind Co Ltd Refrigerating cycle device
EP0448997A2 (en) * 1990-03-07 1991-10-02 Daikin Industries, Limited Refrigerant
WO1992001762A1 (en) * 1990-07-26 1992-02-06 E.I. Du Pont De Nemours And Company Near-azeotropic blends for use as refrigerants
US5277834A (en) * 1990-07-26 1994-01-11 E. I. Du Pont De Nemours And Company Near-azeotropic blends for use as refrigerants
US8002702B2 (en) 2002-09-27 2011-08-23 Hitachi Medical Corporation Ultrasonograph and method for controlling movement of display body of ultrasonograph

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923626A (en) * 1987-11-02 1990-05-08 Daikin Industries, Ltd. Refrigerants
JPH02267472A (en) * 1989-04-06 1990-11-01 Matsushita Electric Ind Co Ltd Refrigerating cycle device
EP0448997A2 (en) * 1990-03-07 1991-10-02 Daikin Industries, Limited Refrigerant
WO1992001762A1 (en) * 1990-07-26 1992-02-06 E.I. Du Pont De Nemours And Company Near-azeotropic blends for use as refrigerants
US5277834A (en) * 1990-07-26 1994-01-11 E. I. Du Pont De Nemours And Company Near-azeotropic blends for use as refrigerants
US5800730A (en) * 1990-07-26 1998-09-01 E. I. Du Pont De Nemours And Compnay Near-azeotropic blends for use as refrigerants
US8002702B2 (en) 2002-09-27 2011-08-23 Hitachi Medical Corporation Ultrasonograph and method for controlling movement of display body of ultrasonograph

Also Published As

Publication number Publication date
JPH0655940B2 (en) 1994-07-27

Similar Documents

Publication Publication Date Title
JP2576161B2 (en) Working medium mixture
JPS63105088A (en) Blended refrigerant
WO1994011458A1 (en) Hydrocarbon refrigerant for closed cycle refrigerant systems
JP2576162B2 (en) Working medium mixture
JPS63105089A (en) Blended refrigerant
JPS63308084A (en) Operation medium mixture
JPH01153786A (en) Working medium mixture
JPH075881B2 (en) Working medium mixture
JPS63305185A (en) Working medium mixture
JPS59117580A (en) Refrigerant composition
JPH01141982A (en) Working medium mixture
JPH01139683A (en) Working medium mixture
JP2536560B2 (en) Working medium mixture
JPH01139677A (en) Working medium mixture
JP2536545B2 (en) Working medium mixture
JPH01103689A (en) Refrigerant
JPS63218785A (en) Blended refrigerant
JPS63101474A (en) Refrigeration medium mixture
JPH01139681A (en) Working medium mixture
JPH01168785A (en) Working medium mixture
JPH01139676A (en) Working medium mixture
JPS5959779A (en) Refrigerant
CN117720882A (en) CO-containing material 2 Is an environment-friendly mixed refrigerant
JPH01139682A (en) Working medium mixture
JPH01139672A (en) Working medium mixture