JPS63101474A - Refrigeration medium mixture - Google Patents
Refrigeration medium mixtureInfo
- Publication number
- JPS63101474A JPS63101474A JP61248946A JP24894686A JPS63101474A JP S63101474 A JPS63101474 A JP S63101474A JP 61248946 A JP61248946 A JP 61248946A JP 24894686 A JP24894686 A JP 24894686A JP S63101474 A JPS63101474 A JP S63101474A
- Authority
- JP
- Japan
- Prior art keywords
- mixture
- refrigeration medium
- difluoroethane
- medium mixture
- mixed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005057 refrigeration Methods 0.000 title abstract description 13
- 239000000203 mixture Substances 0.000 title abstract description 10
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 claims abstract description 21
- VOPWNXZWBYDODV-UHFFFAOYSA-N Chlorodifluoromethane Chemical compound FC(F)Cl VOPWNXZWBYDODV-UHFFFAOYSA-N 0.000 claims abstract description 14
- BHNZEZWIUMJCGF-UHFFFAOYSA-N 1-chloro-1,1-difluoroethane Chemical compound CC(F)(F)Cl BHNZEZWIUMJCGF-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000004338 Dichlorodifluoromethane Substances 0.000 claims abstract description 6
- 235000019404 dichlorodifluoromethane Nutrition 0.000 claims abstract description 6
- NPNPZTNLOVBDOC-UHFFFAOYSA-N 1,1-difluoroethane Chemical compound CC(F)F NPNPZTNLOVBDOC-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000003507 refrigerant Substances 0.000 claims description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 11
- 238000009833 condensation Methods 0.000 abstract description 5
- 230000005494 condensation Effects 0.000 abstract description 5
- 239000012530 fluid Substances 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- RWRIWBAIICGTTQ-UHFFFAOYSA-N difluoromethane Chemical compound FCF RWRIWBAIICGTTQ-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
この発明は加圧液化、減圧気化という物質の状態変化を
利用して流体の加熱、冷却など?行なう蒸気圧縮式冷凍
サイクルの作動媒体として使用される混合冷媒に関する
もので、特に、ヒートポンプ式給湯機に使用される混合
冷媒な対象としたものである。[Detailed description of the invention] (a) Industrial application field This invention utilizes changes in the state of substances such as pressurized liquefaction and reduced pressure vaporization to heat and cool fluids. The present invention relates to a mixed refrigerant used as a working medium in a vapor compression refrigeration cycle, and is particularly directed to a mixed refrigerant used in a heat pump water heater.
(ロ)従来の技術
蒸気圧縮式冷凍サイクルは冷蔵庫、冷暖房機器などに広
く応用されている。このような冷凍サイクルに利用され
る作動媒体はフロン系冷媒?中心として種々の作動媒体
が開発され、実用に供されている。(b) Conventional technology Vapor compression refrigeration cycles are widely applied to refrigerators, air conditioning equipment, etc. Is the working medium used in such a refrigeration cycle a fluorocarbon-based refrigerant? Various working media have been developed and put into practical use.
代表的なものはメタン系やエタン系のノ・ロゲン化炭化
水素を単一成分とする作動媒体であり、メタン系ではR
11、R12,R13、R14及びR22など、またエ
タン系ではR113、R114及びR115などが目的
や用途に応じて使用されている。Typical examples are working media containing methane-based or ethane-based non-logenated hydrocarbons as a single component;
11, R12, R13, R14 and R22, and in the case of ethane, R113, R114 and R115 are used depending on the purpose and use.
特に、高温度(60〜85°C)の温水の取出しが請求
されるヒートポンプ式給湯機においては、作動媒体とし
て冷暖房機器と同様にR22(モノクロロジフルオロメ
タン)?使用すると、凝縮圧力が高くなり、圧縮機の負
担が太き(なるので、一般KR12(ジクロロジフルオ
ロメタン)が用いられている。また、R12は凝縮温度
が高(なっても、加熱時の成績係数がR22より大きく
、効率面から見ても優れた冷媒である。In particular, in heat pump water heaters that require hot water at a high temperature (60 to 85°C), R22 (monochlorodifluoromethane) is used as the working medium, similar to air conditioning equipment. General KR12 (dichlorodifluoromethane) is used because it increases the condensing pressure and puts a heavy burden on the compressor.Also, R12 has a high condensing temperature (even if it has a high condensing temperature, it has poor performance when heated). The coefficient is larger than R22, making it an excellent refrigerant from an efficiency standpoint.
しかしながら、ヒートポンプ式給湯機に用いられている
R12は上述した利点な有する反面、加熱能力が小さく
、所要な能力な得るのに圧縮機などが大型化する欠点が
あった。However, while R12 used in heat pump type water heaters has the above-mentioned advantages, it has a small heating capacity, and has the disadvantage that the compressor etc. are large in size even though it has the required capacity.
近年、例えば、特公昭57−348号公報に開示されて
いるように、R22にジフルオロメタン(R32)を混
合し、R22よりも冷凍能力を向上させるようにした混
合冷媒が開発されているが、ヒートポンプ式給湯機では
R12よりも加熱能力の優れた混合冷媒が望まれていた
。In recent years, for example, as disclosed in Japanese Patent Publication No. 57-348, a mixed refrigerant in which difluoromethane (R32) is mixed with R22 has been developed to improve the refrigerating capacity compared to R22. For heat pump water heaters, a mixed refrigerant with better heating ability than R12 has been desired.
eウ 発明が解決しようとする問題点この発明は上述
した事実に鑑みてなされたもので、ヒートポンプ式給湯
機に適し、かつ、R12に比べ同等以上の成績係数が得
られるようにするとともに、加熱能力を増加し得るよう
にした混合冷媒を提供することを目的とする。eC Problems to be Solved by the Invention This invention was made in view of the above-mentioned facts, and is suitable for heat pump water heaters and provides a coefficient of performance equal to or higher than that of R12. It is an object of the present invention to provide a mixed refrigerant whose capacity can be increased.
に)問題点な解決するだめの手段
この発明の混合冷媒はジクロロジフルオロメタント1.
1−ジフルオロエタンのそれぞれの混合割合が73.8
重量%と26.2重量%の共沸混合物を主成分とし、こ
れに1−クロロ−1,1−ジフルオロエタンとモノクロ
ロジフルオロメタンとを混合した構成である。2) Means to solve the problems The mixed refrigerant of this invention is dichlorodifluoromethane.1.
The mixing ratio of each of 1-difluoroethane is 73.8
The main component is an azeotrope of 26.2% by weight, and 1-chloro-1,1-difluoroethane and monochlorodifluoromethane are mixed therein.
(ホ)作用
ジクロロジフルオロメタンと1.1−ジフルオロエタン
とをそれぞれ73.8重量%と26.2重量%の割合で
混合すると、共沸混合物(R500)が得られる5発明
者の研究によれば、R2O3を主成分とし、これに1−
クロロ−1,1−ジフルオロエタン(R142b)とモ
ノクロロジフルオロメタン(R22)とを適宜混合モル
分率を選定して混合した非共沸混合冷媒な用いることに
より、R12を用いる場合に比べ、R12と同等以上の
高い成績係数が得られ、しかも加熱能力を増大できるこ
とがわかった。このような特性を有する混合冷媒は凝縮
圧力が極端に高(なることもなく、R12よりもヒート
ポンプ式給湯機に適している。(e) Effect According to the research of the five inventors, an azeotrope (R500) is obtained when dichlorodifluoromethane and 1,1-difluoroethane are mixed at a ratio of 73.8% by weight and 26.2% by weight, respectively. , R2O3 as the main component, and 1-
By using a non-azeotropic refrigerant mixture of chloro-1,1-difluoroethane (R142b) and monochlorodifluoromethane (R22) at an appropriate mixing molar fraction, the refrigerant is equivalent to R12 compared to the case of using R12. It was found that the above-mentioned high coefficient of performance could be obtained and that the heating capacity could be increased. A mixed refrigerant with such characteristics does not have an extremely high condensation pressure, making it more suitable for heat pump water heaters than R12.
(へ)実施例
第1図はこの発明の混合冷媒を用いた蒸気圧縮式冷凍サ
イクルの基本的な構成な示すものである。(F) Embodiment FIG. 1 shows the basic structure of a vapor compression type refrigeration cycle using a mixed refrigerant according to the present invention.
第1図において、1は圧縮機、2は凝縮器、 3A、3
Bは負荷流体用配管、4は減圧装置、5は蒸発器、6A
、6Bは熱源流体用配管である。In Figure 1, 1 is a compressor, 2 is a condenser, 3A, 3
B is a load fluid pipe, 4 is a pressure reducing device, 5 is an evaporator, 6A
, 6B are heat source fluid piping.
第1図に示す蒸気圧縮式冷凍サイクルにおいて、作動媒
体としての混合冷媒は圧縮機1で圧縮された後、凝縮器
2に導かれ、凝縮器2中では配管3Aより導入される負
荷流体により冷却されて凝縮する。一方、負荷流体は凝
縮器2中で加熱され、配管3Bを経て負荷の加熱に供さ
れる。次に、凝縮した混合冷媒は減圧装置4により減圧
された後、蒸発器5に導かれ、蒸発器5中で配管6Aよ
り導入され、かつ配管6Bから排出される熱源流体によ
り加熱されて蒸発する。そして、蒸発した混合冷媒は圧
縮機1に吸引され、上述した動作を繰返す。In the vapor compression refrigeration cycle shown in Fig. 1, a mixed refrigerant as a working medium is compressed by a compressor 1 and then led to a condenser 2, where it is cooled by a load fluid introduced from a pipe 3A. be condensed. On the other hand, the load fluid is heated in the condenser 2 and passed through the pipe 3B to heat the load. Next, the condensed mixed refrigerant is depressurized by the pressure reducing device 4, and then led to the evaporator 5, where it is heated and evaporated by the heat source fluid introduced from the pipe 6A and discharged from the pipe 6B. . Then, the evaporated mixed refrigerant is sucked into the compressor 1, and the above-described operation is repeated.
作動媒体はR500を主成分とし、これにR142bと
R22&混合した非共沸混合冷媒である。The working medium is a non-azeotropic refrigerant mixture containing R500 as a main component, mixed with R142b and R22.
第1図の冷凍サイクルにおいて、凝縮及び蒸発の相変化
は等圧下で行なわれる。一般に単−冷媒及び共沸混合冷
媒は、凝縮温度及び蒸発温度がそれぞれ一定であるが、
非共沸混合冷媒は凝縮温度及び蒸発温度が始めと終りに
おいて温度差な生じる。In the refrigeration cycle of FIG. 1, the phase changes of condensation and evaporation occur under equal pressure. In general, mono-refrigerants and azeotropic mixed refrigerants have constant condensation and evaporation temperatures, respectively.
A non-azeotropic mixed refrigerant has a temperature difference between the condensation temperature and the evaporation temperature at the beginning and end.
R500とR22の混合モル比を適宜選定することによ
り、これらの温度勾配なそれぞれ負荷流体及び熱源流体
の温度勾配(2近づけることができ、熱交換過程での不
可逆損失を減少させ、R12と同等以上の高い成績係数
を得ることができるとともに、R12よりも加熱能力を
向上させることができる。By appropriately selecting the mixing molar ratio of R500 and R22, these temperature gradients can be brought closer to the temperature gradients (2) of the load fluid and heat source fluid, respectively, reducing irreversible loss in the heat exchange process, and improving the temperature to the same or higher level than R12. A high coefficient of performance can be obtained, and the heating capacity can be improved compared to R12.
下表及び第2図は第1図に示す冷凍サイクルの運転条件
として、凝縮器2の出入口の温水温度差をほぼ一定(約
7℃)とし、蒸発fF5側の乾球温度及び湿球温度をそ
れぞれ7℃と6℃で一定にし、この発明の混合冷媒を用
いた場合と、R12を用いた場合とで、加熱能力と成績
係数を比較したものである。The table below and Figure 2 show the operating conditions of the refrigeration cycle shown in Figure 1, with the hot water temperature difference at the inlet and outlet of the condenser 2 being almost constant (approximately 7°C), and the dry bulb temperature and wet bulb temperature on the evaporator fF5 side. The heating capacity and coefficient of performance are compared between a case where the mixed refrigerant of the present invention is used and a case where R12 is used, respectively, at a constant temperature of 7°C and 6°C.
表
上表及び第2図から理解されるように、この発明の混合
冷媒な用いた場合、従来一般に用いられているR12に
比べて成績係数が同等以上となり、加熱能力が約7%向
上されている。As can be understood from the table above and Figure 2, when the mixed refrigerant of the present invention is used, the coefficient of performance is equal to or higher than that of R12, which has been commonly used, and the heating capacity is improved by about 7%. There is.
なお、R500の混合モル分率が0.75〜0.8、R
22の混合モル分率が0.05〜0.1となるように混
合割合を設定することが好ましい。In addition, when the mixed molar fraction of R500 is 0.75 to 0.8, R
It is preferable to set the mixing ratio so that the mixing molar fraction of No. 22 is 0.05 to 0.1.
(ト)発明の効果
この発明は以上のように構成されているので、凝縮圧力
が極端に高くなることがな(、ヒートポンプ式給湯機に
適しており、しかもR12に比べ同等以上の高い成績係
数が得られるとともに、加熱能力を増大させることがで
きるものである。(g) Effects of the invention Since this invention is configured as described above, the condensing pressure does not become extremely high (it is suitable for heat pump type water heaters, and has a higher coefficient of performance than R12. is obtained, and the heating capacity can be increased.
第1図はこの発明の混合冷媒が使用される蒸気圧縮式冷
凍サイクルの1例な示す系統図、第2図はこの発明によ
る混合冷媒の特性説明図である。FIG. 1 is a system diagram showing an example of a vapor compression refrigeration cycle in which the mixed refrigerant of the present invention is used, and FIG. 2 is a diagram illustrating the characteristics of the mixed refrigerant of the present invention.
Claims (2)
エタンのそれぞれの混合割合が73.8重量%と26.
2重量%の共沸混合物を主成分とし、これに1−クロロ
−1,1−ジフルオロエタンとモノクロロジフルオロメ
タンとを混合したことを特徴とする混合冷媒。(1) The respective mixing ratios of dichlorodifluoromethane and 1,1-difluoroethane are 73.8% by weight and 26% by weight.
A mixed refrigerant characterized in that the main component is a 2% by weight azeotrope, and 1-chloro-1,1-difluoroethane and monochlorodifluoromethane are mixed therein.
モノクロロジフルオロエタンの混合モル分率が0.05
〜0.1であることを特徴とする特許請求の範囲第1項
記載の混合冷媒。(2) The mixing molar fraction of the azeotrope is 0.75 to 0.8,
The mixed molar fraction of monochlorodifluoroethane is 0.05
The mixed refrigerant according to claim 1, wherein the refrigerant has a temperature of 0.1 to 0.1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61248946A JPS63101474A (en) | 1986-10-20 | 1986-10-20 | Refrigeration medium mixture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61248946A JPS63101474A (en) | 1986-10-20 | 1986-10-20 | Refrigeration medium mixture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63101474A true JPS63101474A (en) | 1988-05-06 |
Family
ID=17185770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61248946A Pending JPS63101474A (en) | 1986-10-20 | 1986-10-20 | Refrigeration medium mixture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63101474A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2663642A1 (en) * | 1990-06-20 | 1991-12-27 | Atochem | New propellent mixture for aerosols |
US5512197A (en) * | 1990-03-23 | 1996-04-30 | The California Institute Of Technology | Near azeotropic mixture substitute for dichlorodifluoromethane |
-
1986
- 1986-10-20 JP JP61248946A patent/JPS63101474A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5512197A (en) * | 1990-03-23 | 1996-04-30 | The California Institute Of Technology | Near azeotropic mixture substitute for dichlorodifluoromethane |
US5728314A (en) * | 1990-03-23 | 1998-03-17 | California Inst. Of Technology | Near azeotropic mixture substitute for dichlorodifluoromethane |
FR2663642A1 (en) * | 1990-06-20 | 1991-12-27 | Atochem | New propellent mixture for aerosols |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01139675A (en) | Working medium mixture | |
US4468337A (en) | Process for the heating and/or thermal conditioning of a building by means of a heat pump operated with a specific mixture of working fluids | |
JPH0655939B2 (en) | Mixed refrigerant | |
JPS63308085A (en) | Operation medium mixture | |
JPS63308084A (en) | Operation medium mixture | |
JPS63101474A (en) | Refrigeration medium mixture | |
JPH075881B2 (en) | Working medium mixture | |
JPH0655940B2 (en) | Mixed refrigerant | |
JP2507437B2 (en) | Working medium mixture | |
JPH01153786A (en) | Working medium mixture | |
JPS63218785A (en) | Blended refrigerant | |
JPH01141982A (en) | Working medium mixture | |
JP2536560B2 (en) | Working medium mixture | |
JPS59117580A (en) | Refrigerant composition | |
JPH01139677A (en) | Working medium mixture | |
JPH01139683A (en) | Working medium mixture | |
JP2536545B2 (en) | Working medium mixture | |
JPS61262550A (en) | Heat pump | |
JPH01139682A (en) | Working medium mixture | |
JPH01168785A (en) | Working medium mixture | |
JPH01139676A (en) | Working medium mixture | |
JPS60166373A (en) | Working medium and heat pump using said working medium | |
JPS60173083A (en) | Operating medium for heat pump | |
JPH01139674A (en) | Working medium mixture | |
JPS61179286A (en) | Working medium and heat pump using said working medium |